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Abstract. Federated Learning (FL) has become one of the most exten-
sively utilized distributed training approaches since it allows users to
access large datasets without really sharing them. Only the updated
model parameters are exchanged with the central server after the model
has been trained locally on the devices holding the data. Because of the
distributed nature of the FL technique, there is a possibility of adversar-
ial attacks that aim to manipulate the behavior of the model. This paper
explores targeted clean-label attack in which adversaries inject poisoned
images into compromised clients’ dataset to alter the behaviour of the
model on a specific target image at test time. The standard CIFAR10
dataset is used in this study to conduct various experiments and manip-
ulate the image classifier. This study discovered that the behavior of
a FL model can be altered maliciously towards a specific target image
without significantly affecting the model’s overall accuracy. In addition,
the attack’s impact grows in direct proportion to the number of injected
poisonous images and malicious client (i.e. controlled by adversaries)
participating in the FL process.

Keywords: Federated Learning · Targeted attacks · Data poisoning ·
Clean label

1 Introduction

The artificial intelligence industry is dominated by data-driven machine learning
methods. For the model to work well in broader deployments, a large scale diver-
sified dataset is needed, which is not always available due to a variety of factors
such as competitive dynamics between different organisations, legal restrictions,
user discomfort, privacy concerns, and so on. Because of the aforementioned
challenges, there has been an increase in the number of proposals for various
distributed training architectures. For example, under the Federated Learning
(FL) paradigm, instead of collecting all essential data on a central server, the
data remains on numerous edge devices e.g., computers, mobile phones, and IoT
devices. Each data holding device is responsible for training the model using local
data. Only the ‘model parameters’ are exchanged with the central server, where
the global model is developed by aggregating the local parameters. So Federated
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Learning has evolved as a privacy-enhancing technology, allowing the model to
be trained locally on data from millions of devices without actually sharing it.

Despite the fact that FL eliminates the need for a centralized database,
it remains subject to adversarial attacks that might compromise the model’s
integrity and endanger data privacy in a situation where an adversary controls a
portion of edge devices. By tempering local training data or model parameters,
these devices may then be corrupted to achieve adversarial goals. Because there
is no central authority to validate data, malicious clients can poison the trained
global model. Despite the fact that FL restricts the malicious agent’s access to
a subset of the data available on a few devices, this can still significantly impair
model performance, and they can be reverse-engineered to reveal clients’ data.

This study explores vulnerability of FL systems to various adversarial attacks
attempting to alter the behaviour of global model. Broadly, the attacks on FL
can be classified into two main categories:

– Attacks on the model behaviour: The goal of these attacks is to alter the
model’s behaviour. There may be one or more malicious clients capable of
causing model behaviour to degrade by delivering poisoned updates to the
central server. These attacks are difficult to detect owing to the fact that the
central server has no knowledge of the client’s training data.

– Privacy attacks: The goal of these attacks is to infer sensitive information
about the clients/participants in the FL process. They endanger not only the
privacy of the data that the clients have, but also the local model parameters
that the clients provide to the central server.

This paper concentrates on the first type of attacks: attacks on the model
behaviour. Shafahi et al. [1] presented targeted data poisoning attacks on neural
networks as part of attacks altering the behaviour of the model, as well as a method
to generate ‘clean-label poisoned instances’ (i.e. poisoned instances are correctly
labeled) to alter classifier’s behaviour. The attack occurs during training time by
carefully introducing poisoned instances into the training data with the purpose
of manipulating classifier behaviour on one specific target instance at time. Since
the attacks are targeted, the change in overall model accuracy is trivial and hence
readily overlooked while accomplishing the intended misclassification.

FL, like machine learning, is vulnerable to adversarial attacks, particu-
larly this type of poisoning attacks, and recent research [5,6,9] has demon-
strated that the FL model’s functionality can be significantly damaged. So, this
research focuses on extending the attack described in [1] in the context of Feder-
ated Learning. To create clean-labeled poison instances, the study employs the
optimization-based strategy described in [1]. The study looks into the model’s
behavior using two variables: the number of malicious clients involved in the FL
process and the number of poisoned instances injected by them.

The rest of the paper is organized as follows: Sect. 2 gives a brief overview of
the possible attacks on FL and discusses about an optimization method that can
generate poisoned instances. Section 3 presents the related work and Sect. 4 pro-
vides experimental setup, threat model and framework for data poisoning attack
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on FL. Section 5 contains four different experiments on images from CIFAR-10
dataset followed by a discussion about the results in Sect. 6 and finally, the
conclusion.

Fig. 1. Types of attacks on federated learning

2 Background Concepts

In this section, we will go through potential attacks that might occur in a fed-
erated learning situation. Thereafter, a brief overview of an optimization-based
technique for generating poison instances is provided [1].

2.1 Overview of Attacks on FL

The distributed nature of FL can be exploited by the adversaries to influence
model behaviour and infer sensitive information about FL participants. Broadly
the attacks on FL can be categorized into: Attacks on the FL model and Privacy
attacks.

Now, the attacks on the FL model can be classified further according to the
four scenarios outlined below.
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1. Time at which the attacks are carried out

– Training time attacks: These attacks take place during data gathering, data
preparation, and model training processes. The primary purpose of these
attacks is to either influence the behaviour of the model getting trained or
infer information from the training data.

– Inference time attacks: These attacks occur after the model has been trained.
The fundamental goal of these attacks is to obtain information about the
model’s characteristics.

2. Target of the attack

– Targeted attacks: These attacks are aimed at misclassifying a certain target
instance or class as a different class chosen by the adversary. The key goal
here is to question the system’s integrity rather than to reduce overall model
accuracy.

– Untargeted attacks: The primary purpose of these attacks is to change the
model in a way that it ends up predicting any of the incorrect classes. These
attacks cause a noticeable drop in model performance and are thus clearly
detectable.

3. Poisoning of client’s information

– Data poisoning attacks: The attacker tampers with the training data of one
or more clients involved in the FL process. The primary goal of these attacks
is to degrade the performance of the global model.

– Model poisoning attacks: The attacker directly modifies the updated weights
sent to the central server by different clients.

4. Frequency of the attack

– One shot attack: These attacks are carried out at one precise moment during
the training process.

– Multiple attacks: These attacks occur repeatedly during the training process,
either throughout all of the training rounds or just a few of them.

Similarly, the privacy attacks can be classified further into the three cate-
gories outlined below.

1. Feature inference attacks

– The major goal of these attacks, as the name implies, is to retrieve the dataset
of clients participating in the FL process. Clients either exchange their gradi-
ents or local model parameters with the central server during communication
rounds, providing surface for the attackers.
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2. Membership inference attacks

– Given the training data of clients participating in FL and the local model,
these attacks attempt to determine whether or not this data was utilised to
train the model.

3. Property inference attack

– These attacks are aimed at identifying whether or not certain properties are
possessed by clients participating in FL process. For example, whether a client
possesses certain qualities that are not directly related to the FL model’s core
goal.

2.2 Optimization Based Method to Generate Poisons

Shafahi et al. [1] proposed an optimization-based strategy for creating poisons
which, when introduced to the training set, carries a change on the behaviour
of the classifier. Let’s start by deciphering a few terms.

– Target instance is an instance from the test dataset that we intend to
misclassify at test time.

– Base instance is an instance from the test dataset. The model will misclas-
sify the target instance with the label of base instance at test time.

– Poison instance is an instance generated by making imperceptible changes
to base instance. It is injected to the training dataset to spur misclassification.

Let f(x) denote feature representation of input x, p poison instance, b base
instance and t target instance then Eq. (1) represents how poisons are generated
via feature collision.

p = argmin
x

||f(x) − f(t)||22 + β||x − b||22 (1)

The first term in Eq. (1) causes the poison instance to migrate in feature space
toward the target instance. The second term in Eq. (1) transforms the poison
instance into a base class instance. Shafahi et al. [1] proposes an algorithm to
optimize Eq. (1). The forward step is a gradient descent update to reduce the
L2 distance between base instance and target instance in feature space, whereas
backward step is a proximal update to minimise the Frobenius distance from the
base instance in input space [1].

3 Related Work

A variety of targeted attacks with the purpose of injecting a secondary or back-
door task into the model have been proposed in the literature. These are regarded
effective as long as they are successful in preserving the overall accuracy of
the model. Bagdasaryan et al. proposed a model-poisoning technique where the
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attacker compromises one or more clients, connects basic patterns in training
data with a specific target label and train the model locally using constraint-
and-scale technique. The resulting model, thereafter replaces the joint model
as a result of federated averaging [2]. They showcased that this type of model-
poisoning attack is significantly powerful than data-poisoning attacks. Bhagoji
et al. exploited the lack of transparency in the client updates and boosted the
malicious client’s update to overcome the effect of other clients [3]. Wang et al.
trained the model using projected gradient descent (PGD) so that at every train-
ing round the attacker’s model does not deviate much from the global model [4].
This was more robust than the simple model replacement strategies against a
range of defense mechanisms provided in [2] and [3].

Sun et al. implemented data poisoning attacks exploiting the communication
protocol and suggested bi-level data poisoning attacks - ATTacks on Federated
Learning (AT 2FL) [5]. The extensive experiments carried out by the authors
suggest that it can significantly damage performances of real world applications.
Tolpegin et al. investigated targeted data poisoning attacks where malicious
clients’ ‘mislabeled’ data changes the behaviour of the global model [6]. They
suggest a defensive approach for identifying malevolent clients who are engaged
in the FL process. The study indicated that as the number of malevolent indi-
viduals rises, the detrimental influence on the global model also improves. In
addition, increasing the number of malevolent players in later rounds of training
can improve the efficacy of these attacks. For CIFAR-10 dataset, the findings
show that if 40% of total clients are altered, the number of images correctly
classified for the target class drops to 0% and overall model accuracy drops by
3.9%, from 78.3% to 74.4%. Cao et al. investigated the number of poisoned sam-
ples and attackers as variables influencing the performance of poisoning attacks
[7]. The study found that the attack success rate grows linearly with the number
of poisoned samples. When the number of poisoned samples is kept constant, the
attack success rate increases with the increased number of attackers. The study
also suggested a method called ‘sniper’ for removing poisoned local models from
malevolent players during training.

Generative Adversarial Networks (GANs) have been widely employed in
recent years to produce poisoned data since they improve the accuracy of back-
door tasks and secure the attack against potential defences. Zhang et al. devel-
oped a GAN-based approach for creating poisoned samples as well as a poisoning
attack model for the FL framework [8]. It was further extended to an approach
where the attacker acts as benign participant in the FL process, sending poi-
soned updates to the server [9]. Ligeng Zhu et al. showed that private training
data can be obtained exploiting publicly shared gradients questioning the safety
of gradient exchange [10].

4 Clean-Label Poisoning Attacks on Federated Learning

This paper takes into account attacks on FL models that aim to change the
model behaviour during test time. The attacks are also targeted i.e., they intend
to manipulate model behaviour on a single test instance. In addition, the attacker
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is expected to be able to inject poisons into the training set of one or more clients,
classifying the attack as targeted data poisoning attacks.

This section will cover the dataset utilized for the attack, as well as the exper-
imental setting, the adversaries’ goals, the framework used to produce poisons,
and ultimately targeted data poisoning attacks in the case of FL.

4.1 Dataset

This study focuses on a range of experiments about the targeted clean-label
attacks for the image classification task utilizing the CIFAR-10 [11] dataset.
There are 50,000 training samples in the CIFAR-10 dataset, with 5000 samples
in each of the 10 classes, i.e., aeroplane, car, bird, cat, deer, dog, frog, horse, ship,
truck. There are also 10,000 test samples on the premises. This study utilizes
RESNET18, which is an 18-layer deep convolutional neural network (CNN).
Without the introduction of poisoned instances, the model achieved an accuracy
of 78.07% in case of FL.

4.2 Experimental Setup

This research utilizes the PyTorch framework to construct a FL scenario in
Python. The experiments are conducted by firstly loading the RESNET18 model
that was trained on the IMAGENET dataset, but do not use pretrained weights
and trains the model from scratch on CIFAR-10 dataset. In total, 50 clients were
involved in the FL process. By default, 5 of the 50 clients were assumed to be
under the control of adversaries. Also, it is assumed that the adversaries can only
manipulate the training data on their local device. This study assumes a non-iid
(independent and identically distributed) scenario, where each client is randomly
assigned 1000 images from the CIFAR-10 dataset. This FL configuration has
been trained for a total of 100 global epochs. Federated averaging (fedAvg) is
utilized as central aggregator.

4.3 Threat Model

This study takes into consideration a scenario in which a portion of clients
is controlled by adversaries who don’t have access to training data but can
access the model and its parameters. This can be exploited to generate poisoned
instances. It is safe to make this assumption as a lot of traditional networks (i.e.,
RESNET, Inception, etc.) are utilized to extract features. It is also assumed that
the federated aggregation operations are not compromised.

4.4 Adversarial Goal

The attack described in this work is targeted, focusing on misclassifying only a
specific target instance during testing. It will result in a minor change in overall
model accuracy, allowing the attack to go unnoticed while still accomplishing
the desired purpose. Targeted attacks are harder to detect than the untargeted
attacks as they are more covert.
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4.5 Generating Poison Instances

To create the poison instance, the attacker will first select a base instance and a
target instance from the test dataset. Thereafter he will make undetectable mod-
ifications to the base instance using the optimization-based technique described
in [1]. In the experiments, we injected several poisoned instances generated with
the watermarking approach mentioned in [1]. These poisoned instances were
labeled as base class and seem remarkably similar to the original base instances,
resulting in clean-label attacks.

4.6 Data Poisoning Attack on FL

To undertake targeted data poisoning attacks on a FL model with 50 clients, we
first pick 5 clients at random to act as adversaries. Thereafter, these malicious
clients train the model on poisoned dataset (clean dataset + 50 poison instances)
to compromise the behaviour of the model. We consider, (1) ‘bird’ as our target
class, (2) ‘dog’ as our base class (Figs. 2 and 3).

Fig. 2. Target instance from the class “bird”

Fig. 3. The first row has three random base instances from the class “dog.” The second
row contains poison instances created from the respective base instances for the target
instance depicted in Fig. 2.
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5 Experiments and Results

We conducted the experiments on images from CIFAR-10 dataset. We consid-
ered an experimental scenario where we evaluate different target instance - base
instance combinations with varying watermarking opacity. We are presenting
results for three such pairs, which are described below.

1. dog vs bird (opacity: 30%)
2. airplane vs frog (opacity: 30%)
3. airplane vs frog (opacity: 20%)

Cao et al., investigated the number of poisonous images and malicious clients
as variables influencing attack success rate [7]. The results obtained in this
research are similar to the conclusions reached in [7].

5.1 Experiment 1

In the first experiment we have kept number of malicious clients as 5 i.e. constant
and we vary number of poisonous images from 0 to 80. Figure 4 shows that the
attack success rate grows almost linearly as the number of malicious images
injected increases. As we increase the number of poisonous images, Model weights
achieved after federated averaging of poisoned weights derives away from the
original weights resulting in higher attack success rate.

Fig. 4. Experiment 1
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5.2 Experiment 2

In the second experiment, we maintained the number of poisonous images con-
stant at 60 and varied the number of malicious clients from 0 to 6. Figure 5
shows that the attack success rate grows almost linearly as the number of mali-
cious clients participating in the FL process increases. As we increase number of
malicious clients, poisoned local models involved in the global model aggregation
also increases resulting in higher attack success rate.

Fig. 5. Experiment 2

5.3 Experiment 3

In the third experiment, we examine overall accuracy of the model under condi-
tions when poison instances are inserted into the dataset vs when they are not.
For all cases, we maintained the total number of malicious clients participating
in the FL process at 5. We will evaluate the change in overall model accuracy
when the number of poisonous images increases from 50 to 70. When we insert
50 poisonous images, the initial 78.07% is reduced by an average of 0.1%. When
we raise the number of poisonous images to 70, it reduces by 0.22% on average.
This suggests that targeted data poisoning has little effect on the overall model
accuracy while achieving the desired misclassification (Fig. 6).
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Fig. 6. Experiment 3

5.4 Experiment 4

In the fourth experiment, the study tries to determine minimum number of
poisonous images required to incorrectly classify each image of a certain class.
We used the CIFAR-10 dataset’s ‘bird’ class as our target class and ‘dog’ as
our base class. The experiment’s findings show that if we create more than 80
poison images for each image in the ‘bird’ class, we can misclassify all of the
images present in that class. In this experiment, the overall model accuracy
drops significantly to 70% from the original 78.07%. This is due to the fact that
in our previous experiments, only one specific image from the target class was
incorrectly classified rather than all of the images from that class.

6 Discussion

If M t
i represents local model parameter of ith participant at tth epoch then if

we have N participants in the FL process then global parameter vector M t
G

M t
G = 1/N

N∑

i=1

M t
i (2)
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Now, we assume that p out of these N participants are under the control of
an adversary then poisoned global parameter vector M t

G′

M t
G′ = 1/N(

p∑

i=1

M t
i +

N∑

j=p+1

M t
j ) (3)

The local model parameter vector of clients under an adversary’s control is
represented by the first term in Eq. (3). It is linearly proportional to the global
parameter vector. As a result, when the number of participants under the control
of an adversary increases, its contribution in calculating global parameter vector
at the central server also increases. We were able to demonstrate the same in
experiment 2 when we increased the number of malicious clients and saw an
almost linear increase in the attack success rate.

7 Conclusion

In our research, we focused on targeted clean-label data poisoning attacks in
FL environment. We were able to show how FL models are susceptible to data
poisoning attacks. We demonstrated that the behaviour of a FL model can be
altered to misclassify a specific test image, affecting the model’s overall accuracy
just slightly. We also demonstrated the impact of varied numbers of poisonous
instances and malicious clients in the FL process. Based on the experiments, we
concluded that the attack success rate increases as we increase the number of
poisonous images and clients engaging in the learning process.

In future, we want to validate the scalability of the attack by testing the
model on different datasets. In addition, we want to develop a defense mechanism
against the targeted clean-label data poisoning attacks.
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