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Abstract. We propose a new method of constructing and estimating
descriptors for classifying functional data. These descriptors are based
on Bernstein polynomials and their estimation is based on noisy samples
of a function (signal) to be classified.

The next step is to select an appropriate classifier, well suited to these
descriptors. Although the result can be case dependent, we provide the
methodology of running comparisons. As a vehicle for presenting the
results, we choose benchmark data published in [32]. They represent
shocks and vibrations of the operator’s cabin in a large mechanical struc-
ture.
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1 Introduction

Descriptors of functional data, for example signals and curves, are created to
extract features from the data to provide high-quality classification. At the same
time, the descriptors should provide a significant degree of compression of the
functional data, allowing it to be stored in computer memory in a cost-effective
manner.

Approaches to creating descriptors can be divided into two large groups.
The first includes methods tailored to a specific class of signals. These methods
make significant use of specialized knowledge about a particular class of signals
and their specific characteristics. A classic example of this class of methods is the
recognition of electrocardiogram (ECG) signals based on so-called Q, R, S wave-
forms. We refer the reader to the following recent papers [1,17] [3] on classifying
ECG signals. Specialized methods, dedicated to feature selection from electroen-
cephalogram (EEG) signals, are developed and surveyed in [10,11], while in [2]
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one can find the survey on electromyography signals. In [33] a representative
artificial intelligence (AI) method applied to acoustic signals is described. A
common feature of application-specific feature extraction methods is that they
are highly labour intensive, which is justified mainly by applications in sensi-
tive fields such as medicine. The second group of descriptor generation methods
aims to significantly automate the feature extraction process for pattern, signal
and image recognition. The expected result is a significant reduction in labor
intensity, while maintaining satisfactorily high classification quality that is suf-
ficient for applications in less demanding areas, for example, in technology and
manufacturing processes.

Descriptors for Functional Data. The first examples of applications of meth-
ods from this group date back to the 1960 s s and are related to the development
of algorithms known collectively as Fast Fourier Transform (FFT). In recent
years, there has been renewed interest in this class of feature extraction meth-
ods due to the emergence of functional data classification methods. A special
subclass within this group of methods are approaches that require the classifier
to be sensitive to the shapes of the functions (signals) being classified. We refer
the reader to [12,16,29,34] for more details on such approaches and to [23] for
the latest contribution.

In these papers, the primary tool for obtaining the sensitivity of algorithms
to the shape of signals is to consider the waveforms of their derivatives.

Advantages of Applying Bernstein Polynomials. In contrast, the approach
proposed in this work is based on obtaining shape-sensitive descriptors of signals
by comparing them with elements of the function space basis that have shape-
preserving features. The best-known basis with these properties is that spanned
by Bernstein polynomials. In the theoretical version of the proposed method, this
comparison is implemented by computing scalar products between the signal to
be classified and successive Bernstein polynomials. These products attain high
values when individual signal (function) fragments are well matched to successive
Bernstein polynomials and, conversely, the values are small when a given signal
fragment is orthogonal to successive polynomial Bernsteins. For this reason, we
choose these products (after possible normalization) as descriptors sensitive to
signal shapes.

The question of whether to normalize descriptors or to use only non-
normalized scalar products has no clear answer. In situations where the signal
amplitudes vary considerably between classes, normalization is not advisable.
On the other hand, when membership of a signal to a given class is determined
only by its shape, the use of normalization will be useful.

Why is Learning Needed? In practice, we usually do not have a signal at
all points of the observation interval, but only its samples, taken most often at
equidistant moments of time, and observed with random disturbances. For these
reasons, the process of learning the features of this signal is needed. In fact, we
need to apply descriptor learning in two situations. The first one appears when
we extract signal descriptors contained in the training sequence. The second one
is needed when – after learning the classifier – we acquire new signals to be
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classified. In the first case, a learning process can be more accurate, since it is
usually performed off-line. In the second one, it can be desirable (or necessary)
to learn descriptors on-line.

Assumptions. A common feature of all approaches to the construction of clas-
sifiers for functional data is the assumption of statistical repeatability of signals
and their (dis-)similarities when they come from the same or different classes.
Since the description of probability distributions in function spaces is complex,
in this paper we will make the simplifying assumption that we describe the prob-
ability distributions of signals of particular classes as finite-dimensional distribu-
tions of the coefficients of the expansion of that signal into a series of Bernstein
polynomials of given degree N > 1. We refer the reader to [23,24] and [28] for a
more advanced model of imposing a probability structure on random functions.

The well-known Weierstrass theorem on the approximation of a continuous
function on a finite interval by a polynomial of a sufficiently high degree can
serve as a justification of this assumption. Bernstein polynomials form the basis
of a constructive proof of this theorem.

We emphasize that knowledge of these probability distributions is not
assumed in this paper. On the contrary, we only assume their existence and
the complete lack of knowledge about them. Thus, the proposed approach is
non-parametric, even though it deals with a finite number (N + 1) of parame-
ters, since this number can be chosen depending on the number of observations
n and can grow with it.

Our Approach. In summary, the method proposed in this work to construct
classifiers for functional data consists of two steps. In the first one, we learn
vectors of Bernstein descriptors for each class, based on the learning sequence.
In the second stage, we select a descriptor classification method from among
known algorithms in such a way that it gives a satisfactory classification quality
for a given application.

Other Approaches Based on Bernstein Polynomials. Another approach to
constructing classifiers based on Bernstein polynomials was proposed in [21]. The
difference is that in [21] Bernstein polynomials were used to estimate the proba-
bility densities of the classes. Classifiers or predictors acting as neural networks
based on Bernstein polynomials are constructed in a similar way (cf. [18,30]).
Advantages of using Bernstein polynomials occurred to be useful in estimating
quantile functions [19]. Recently, an interesting application of Bernstein polyno-
mials to modeling Covid-19 growth was proposed in [25].

Paper Organization. The paper is organized as follows. The next section
presents the basic properties of Bernstein polynomials that are needed later
in the paper. In Sect. 3, we formulate the assumptions and pose the descriptor
learning problem. We present the learning algorithm itself and its elementary
properties in Sect. 4. In that section we also describe the interaction of this algo-
rithm with the decision function of the classifier. We then illustrate the selection
of the decision function using the example of classification of the acceleration
signals of the excavator operator’s cab as a function of ground hardness.
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2 Descriptors Based on the Bernstein Polynomials

We refer the reader to [5,7,14] for classic and more recent results on Bernstein
polynomials (BP) and to [6] for their application to nonparametric estimation
of probability density functions (p.d.f.).

It should be emphasized that Bernstein polynomials do not form an orthog-
onal basis, but many formulas are similar to those typical for nonparametric
estimation methods based on orthogonal expanssions (see, e.g., [20,26,27] and
the bibliography cited therein).

Definition and Elementary Properties of Bernstein Polynomials
Bernstein polynomials are usually defined on the interval X = [0, 1]. Further
in this paper we will assume that also all other functions considered here are
defined on X.

For x ∈ X k-th of order N ≥ k the Bernstein polynomial, denoted as B
(N)
k (x),

is defined as follows

B
(N)
k (x) =

(
N

k

)
xk(1 − x)N−k, k = 0, 1, . . . , N.

We extend this definition by setting B
(N)
k (x) ≡ 0, if k < 0 or k > N .

We summarize and comment on the following, well-known, properties of the
BPs.

∀x ∈ X

N∑
k=0

B
(N)
k (x) = 1, 0 ≤ B

(N)
k (x) ≤ 1. (BP 1)

Observe that (BP 1), being a partition of the unity, implies the ability of the
BPs to restore constants exactly. Indeed, it suffices to set ak = 1 for all k in
formula (1) below.

For each sequence ak ∈ R, k = 0, 1, . . . , N the following function

wN (x) =
N∑

k=0

ak · B
(N)
k (x) (1)

is an N - th order polynomial in x. Let f be a continuous function on X. Then,
it is well known that selecting ak = f(k/(N + 1)), k = 0, 1, . . . , N in (1) we
obtain wN (x) → f(x), uniformly in X, as N → ∞.

The following expression is of importance for a proper scaling of integrals
containing the BPs∫

X

B
(N)
k (x)dx = (N + 1)−1

, k = 0, 1, . . . , N. (BP 2)

Proposed Descriptors
Let Cp(X), p = 0, 1, 2 . . . denote the space of p-times differentiable functions in
X with the convention that C(X) = C0(X) is the space of all functions that are
continuous in X. Define the inner product

∀f, g ∈ C(X) < f, g >=
∫
X

f(x) g(x) dx. (2)
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As descriptors of function (signal) f ∈ C(X), denoted further as dk(f) (or dk
for brevity), we propose to take

dk(f) = (N + 1) < f,B
(N)
k >= (3)

= (N + 1)
∫
X

f(x)B
(N)
k (x) dx, k = 0, 1, . . . , N.

Note that dk(f)’s depend also on N , but this dependence is not displayed, unless
necessary.

It is worth mentioning also the normalized version of these descriptors,
denoted further as d̆k(f), that for f ∈ C(X) is defined as follows

d̆k(f) =
(N + 1) < f,B

(N)
k >

maxx∈X |f(x)| , k = 0, 1, . . . , N. (4)

Note that d̆k(f) is well defined, since for f ∈ C(X) the maximum in the compact
set X is attained. Furthermore,

∀ f ∈ C(X) − 1 ≤ d̆k(f) ≤ 1 (5)

and d̆k(f) = ±1 for f(x) = ±1, x ∈ X. To prove this fact, it suffices to observe
that

| < f,B
(N)
k > | = |

∫
X

f(x)B
(N)
k (x) dx| ≤

∫
X

|f(x)|B(N)
k (x) dx ≤ (6)

≤ max
x∈X

|f(x)|
∫
X

B
(N)
k (x) dx = max

x∈X
|f(x)|/(N + 1),

due to (BP1) and (BP2).
Additionally, d̆k(f) = 0, if f is orthogonal to B

(N)
k . Thus, d̆k(f)’s are descrip-

tors that are well suited for classification problems. One can interpret descriptors
dk(f) and d̆k(f) as indicators to what extent f is close to (or fits) B

(N)
k . Note

that dk(f) and d̆k(f) depend also on N , but this dependence is not displayed,
unless necessary.

Sensitivity of Descriptors to Function Shapes
These descriptors are – to some extent – shape sensitive in the sense that is
explained below. Our starting point is the following well-known – formula for
iterative calculations of the derivative, denoted as Dx, of B

(N)
k (x)

DxB
(N)
k (x) = N · [B(N−1)

k−1 (x) − B
(N−1)
k (x)], k = 0, 1, .., N. (BP 3)

Then, multiplying both sides of (BP 3) by f ∈ C1(X), integrating over X

with the aid of the integration by parts (for 1 ≤ k ≤ (N − 1) we have B
(N)
k (0) =

B
(N)
k (1) = 0) and shifting index k we immediately obtain

< Dxf,B
(N+1)
k+1 > = dk+1(f) − dk(f) k = 0, 1, . . . , (N − 1). (7)
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These relationships can be interpreted as follows: if f is strictly increasing
(decreasing) in X, then the left-hand side of (7) is positive (negative). Thus
also the difference dk+1(f) − dk(f) retains this property. In other words, if
f is strictly increasing (decreasing) in X then also the sequence of dk(f) is,
and this statement holds in a natural way, i.e., without having a priori knowl-
edge or our intervention by imposing constraints. Dividing both sides of (7)
by maxx∈X |f(x)| we conclude that this monotonicity preserving property holds
also for the normalized descriptors d̆k(f)’s.

Assuming that f ∈ C2(X) and repeating the similar reasoning for D2
xf(x), we

come to the conclusion that if D2
xf(x) > 0, x ∈ X, which implies the convexity

of f , then also sequences dk(f)’s and d̆k(f)’s are also convex in the sense that
their second order differences are positive.

These properties, important for classification of the descriptor sequence, are
illustrated in Fig. 1.

0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.5

1.0

y t

Fig. 1. Descriptors dk(f)’s (dots) for N = 50 of function f(x) = sin(2 π x), x ∈ X.

3 Learning Descriptors from Noisy Samples of Functional
Data

In practice, the data is not available in functional form f ∈ C(X), which means
that the proposed descriptors cannot be computed directly. Most often we only
have samples of f values, observed with noise. We adopt a standard description of
this type of sampling, assuming that the samples are taken at equidistant points
xi (e.g., instants of time or spatial variables), with random additive perturbations
εi, i = 1, 2, . . . , n. We assume that these disturbances have zero expected values
and finite variances. For simplicity, we assume that these variances are equal,
and denote them by 0 < σ2 < ∞. In summary, the functional data samples yi,
i = 1, 2, . . . , n are of the form

yi = f(xi) + εi, Eεi = 0, Eε2i = σ2 < ∞, i = 1, 2, . . . , n, (8)

E[εi εj ] = 0 for i 	= j, where E is the expectation of a random variable.
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Problem statement: having observations (xi, yi), i = 1, 2, . . . , n at our disposal,
our aim is to propose a learning algorithm for estimating descriptors dk(f),
k = 0, 1, . . . , N . For the sake of simplicity we assume that the original sample
points are already transformed to xi ∈ [0, 1] and Δn

def
= xi+1 − xi = 1/n.

In the remainder of this paper, we will denote the descriptor estimates as
d̂
(n)
k (ȳ), k = 0, 1, . . . , N , where ȳ is a column vector of ordered observations yi,

i = 1, 2, . . . , n with possible upper indices when several functional elements f
are considered.

According to (3), a natural and simple algorithm for d̂
(n)
k (ȳ) is of the form

d̂
(n)
k (ȳ) =

N + 1
n

n∑
i=1

yi B
(N)
k (xi), k = 0, 1, . . . , N. (9)

Notice that noisy observations yi’s are directly inserted into (9) without any
prefiltering (see [22] for a discussion on the advantages of using pre- or post-
filtering). Nevertheless, d̂

(n)
k (ȳ) still have satisfactory statistical properties, as

stated below. One can consider more robust estimators of the expectation, e.g.,
the median or the trimmed mean in (9), but here we confine our attention to
the classic mean, since Bernstein polynomials have a hidden ability to mitigate
large errors.

Notice that for the bias δkn
def
= dk(f) − E[d̂(n)k (ȳ)] we have

δkn = (N + 1) Δn

n∑
i=1

[f(x̃ki)B
(N)
k (x̃ki) − f(xi)B

(N)
k (xi)], (10)

where x̃ki’s are intermediate points in Ii
def
= [xi − Δn/2, xi + Δn/2] when the

mean value theorem is applied to the integrals∫
Ii

f(x)B
(N)
k (x) dx = Δn f(x̃ki)B

(N)
k (x̃ki).

Lemma 1. If f has a continuous derivative in [0, 1], then |δkn| = O(N/n) and
the learning algorithm d̂

(n)
k (ȳ) is asymptotically unbiased, as n → ∞, for each

finite and fixed N , k = 0, 1, . . . , N .

Indeed, the modulus of each summand in (1) is bounded by Δn multiplied by
by the maximum over [0, 1] of the modulus of the derivative of f(x)B

(N)
k (x),

which – in turn – is bounded by

max
x

|f(x)| + N max
x

|f ′(x)|.

due to BP3). This finishes the proof, since this bound is uniform in k.
For the variance of d̂

(n)
k (ȳ) we have for k = 0, 1, . . . , N

VAR[d̂(n)k (ȳ)] =
(

N + 1
n

)2

E

[
n∑

i=1

εi B
(N)
k (xi)

]2

≤ σ2 (N + 1)2

n
, (11)
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due to the uncorrelatedness of εi’s and the fact that 0 ≤ B
(N)
k (x) ≤ 1.

Lemma 2. Under the assumptions of Lemma 1, d̂
(n)
k (ȳ)’s are consistent in the

mean squared error (MSE) sense as n → ∞, for each finite and fixed N , k =
0, 1, . . . , N .

Indeed, it is well known that the MSE can be expressed as the sum of the variance
and the squared bias. Thus, the result follows directly for Lemma 1 and (11).

Notice that the above results hold also in the case when f is a random element
and descriptors dk(f)’s are random variables. To this end, it suffices to consider
the expectations as conditional ones, given dk(f)’s.

4 Learning Classifiers Based on Bernstein Descriptors

We assume that random element f is drawn from a (sub-)class of continuously
differentiable functions F : X → R. Two nonempty subsets FI and FII are
distinguished in F and f is drawn from one of them with a priori probabilities
pI > 0, pII > 0, respectively, and pI +pII = 1. These probabilities are unknown,
but their estimation by fractions in the learning sequence is a simple task, unless
there is no large imbalance between samples from class I and II in a learning
sequence.

f is represented by random vector vector d̄(f) of its descriptors dk(f), k =
0, 1, . . . , N , assuming fixed N > 1. Its choice is discussed later on. Probability
distributions of d̄(f) depend on whether f is from class I or II, but they are
unknown. Also d̄(f) is not directly available.

The only information that we have at our disposal is contained in a learning
sequence, which is of the form:

LL
def
= {(ȳ(1), j1), (ȳ(2), j2), . . . , (ȳ(L), jL)}, (12)

where jk ∈ {I, II} are class labels, assumed to be correct, while ȳ(k) are vectors
of equidistant samples from random elements f (k), drawn either from FI or FII .
These samples are taken at xi, i = 1, 2, . . . , n, according to (8), k = 1, 2, . . . , L.

Now, our aim is to present an algorithm of learning, tuning, testing and
selecting a classifier that classifies a random element f to classes I or II, based
on its random samples ȳ and using the estimates of the Bernstein descriptors.

To this end, let us denote by

cl. parameters = LEARN[cl. name, learning seq.]

a generic learning procedure that takes a classifier name and a learning sequence
as its inputs and provides tuning parameters of the classifier after learning as its
outputs.

As cl. name one may select, e.g., one of the frequently used classifiers listed
in Table 1 or even an ensemble of classifiers. We denote such a class of considered
classifiers as CL. The second tool that we need is a testing procedure:
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Table 1. Examples of frequently used classifiers.

Acronym Classifier

LogR The logistic regression classifier

SVM The support vector machine

DecT The decision tree classifier

gbTr The gradient boosted trees

RFor The random forests classifier

k-NN The k nearest neighbors classifier

{accuracy, precision, . . .} = TEST[cl. name, parameters, testing seq.]

that takes the classifier name, its parameters and a testing sequence as inputs.
Its output is a list of commonly used indicators of classifiers’ quality, e.g., the
accuracy, precision, recall, specificity, F1 and possibly many others. The TEST

runs in a standard way, namely, it the selected classifier (with parameters from
the learning procedure) on a supplied testing sequence and calculates the quality
indicators. In a more advanced version, the testing inside TEST is performed
many times on randomly selected subsequences of the testing sequence and the
resulting indicators are averaged. It is further assumed that the TEST procedure
is used in this more advanced version.

Selection and Learning a Classifier Based on Bernstein Descriptors

Data acquisition Collect samples of random elements, ask an expert to classify
them and form learning sequence LL

Learning descriptors Select the order N of Bernstein descriptors. For the
vector of samples ȳ(l) in LL estimate the elements of the following list:

d̄(ȳ(l))
def
= {d̂

(n)
k (ȳ(l)), k = 0, 1, . . . , N}, (13)

using (9). To each d̄(ȳ(l)) attach label jl that corresponds to ȳ(l) in LL

and form a transformed learning sequence DL from pairs (d̄(ȳ(l)), jl), l =
1, 2, . . . , , L.

Optional step DL augmentation. Extend DL by copying each of its elements
η > 1 times and replacing d̄(ȳ(l)) vectors by their randomly perturbed copies
with zero mean, but keeping the same class label. Perturbations by additive
Gaussian random vectors are the first choice. Slightly abusing the notation,
we shall further denote this extended learning sequence again by DL.

Preparations Select classifier CLcur from CL and split at random DL into
two disjoint and covering DL sets: tuning set DLL1 and testing set DT L2,
L1 + L2 = L.

Learning Run CLcur parameters = LEARN[CLcur, DLL1].
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Testing and Validation. Run the testing procedure:

{accuracy, precision, . . .} = TEST[CLcur, CLcur parameters, DT L2]

and decide whether the quality indicators are satisfactory.
IF YES – STOP and provide CLcur, CLcur parameters as the final result.
OTHERWISE
IF the admissible number of trials to select a proper classifier is not reached,
then GO TO the Preparations step.
OTHERWISE
IF N < n increase N and GO TO the Learning descriptors step.
OTHERWISE
Declare the failure of the learning process and STOP.

If failure occurred, one may consider enlarging the number of observations n
and/or extending the set of considered classifiers.

Testing on Samples from Shocks and Vibrations
Operators’ cabins of large working machines repetitively undergo shocks and
vibrations (see [31] for examples of signals of this kind and [32] for their inter-
pretation). The data in [31] consists of N = 43 curves, sampled at n = 1024
equidistant points each. An expert assigned label I (light working conditions) or
II (heavy working conditions) to each series of signal samples.

An optional step – data augmentation was applied, providing DL with L =
43000. This was done by adding the Gaussian noise with zero mean and the
disperssion 0.05 to the estimates obtained in the learning descriptors step of the
algorithm.

The algorithm of learning and selecting good classifiers was run on the aug-
mented data. The list of tested classifiers is presented in Table 1. Only two of
them, namely the logistic regression and the SVM provided accuracy larger than
0.95 (for the LogR – 0.98 and for the SVM –0.951 were obtained). Other quality
indicators of these classieifers were high: the recall was larger than 0.98 in both
cases, the precision attained by the LogR was 0.98 and 0.93, respectively, by the
SVM. The Cohen kappa coefficient was equal to 0.96 for the LogR and 0.9 for
the SVM.

Conclusions and Possible Extensions. Summarizing, the proposed approach
of selecting the descriptors based on Bernstein polynomials and testing an ade-
quate classifier occurred to be successful in classifying functional data from their
noisy samples.

These descriptors can also be used for estimating an observed signal by apply-
ing the following kernel K(x, x′)

def
= (N + 1)

∑N
k=0 B

(N)
k (x)B

(N)
k (x′), x, x′ ∈

X. Although kernel K has different properties than those typically used in non-
parametric regression estimation by Parzen kernel methods, it can be applied for
change detection problems in a similar way as it was recently proposed in [8,9].
Our descriptors can also be used as a part of generating signature hybrid descrip-
tors in a way similar to the one proposed recently in [35]. Another way of their
applications include novelty detection in ways found fruitful in [13] and [24].
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