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Abstract. A new parallel computational approach to the Levenberg-
Marquardt learning algorithm is presented. The proposed solution is
based on the AVX instructions to effectively reduce the high compu-
tational load of this algorithm. Detailed parallel neural network com-
putations are explicitly discussed. Additionally obtained acceleration is
shown based on a few test problems.
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1 Introduction

Artificial feedforward neural networks have been studied by many scientists e.g.
[2,12,14,27,28,31,43,45]. One of the most frequently used methods for training
feedforward neural networks are gradient methods, see e.g. [18,29,44]. Most of
the simulations of neural networks learning algorithms, like other learning algo-
rithms [19,20,30,33,34,36,40,41], work on a serial computer. The computational
complexity of many learning algorithms is very high. This makes serial implemen-
tation very time consuming and slow. The Levenberg Marquart (LM) algorithm
[21,26] is one of the most effective learning algorithms, unfortunately, it requires
a lot of calculations. But, for very large networks the computational load of the
LM algorithm makes it impractical. A suitable solution to this problem is the
use of high performance dedicated parallel structures, see eg. [3,5–13,38,39,48].
This paper shows a new parallel computational approach to the LM algorithm
based on vector instruction. The results of the study of a new parallel approach
to the LM algorithm is shown in the last part of the paper.

A sample structure of the feedforward neural network is shown in Fig. 1. This
sample network has L layers, Nl neurons in each l − th layer, and NL outputs.
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The input vector contains N0 input values. The Eq. (1) describes the recall phase
of the network

s
(l)
i (t) =

Nl−1∑

j=0

w
(l)
ij (t) x

(l)
i (t), y(l)

i (t) = f(s(l)i (t)). (1)

Fig. 1. Sample feedforward neural network.

The Levenberg-Marquard method [21,26] is used to train the feedforward
neural network. The following loss function is minimized
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where ε

(L)
i is defined as

ε(L)
r (t) = ε(Lr)

r (t) = y(L)
r (t) − d(L)

r (t) (3)

and d
(L)
r (t) is the r − th desired output in the t − th probe.

The LM algorithm is a modification of the Newton method and is based on
the first three elements of the Taylor series expansion of the loss function. A
change of weights is given by

Δ (w(n)) = −[∇2E (w(n))
]−1∇E (w(n)) (4)

this requires knowledge of the gradient vector

∇E (w(n)) = JT (w(n)) ε (w(n)) (5)

and the Hessian matrix

∇2E (w(n)) = JT (w(n))J (w(n)) + S (w(n)) (6)
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where J (w(n)) in (5) and (6) is the Jacobian matrix
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In the hidden layers the errors ε
(lr)
i are calculated as follows

ε
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Based on this, the elements of the Jacobian matrix for each weight can be com-
puted
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(L)
r (t)

w
(l)
ij

= δ
(lr)
i (t) x

(l)
j (t) . (10)

It should be noted that derivatives (10) are computed in a similar way it is done
in the classical backpropagation method, except that each time there is only one
error given to the output. In this algorithm, the weights of the entire network
are treated as a single vector and their derivatives form the Jacobian matrix J.

The S (w(n)) component (6) is given by the formula

S (w(n)) =
∑Q

t=1

∑NL

r=1
ε(L)
r (t)∇

2

ε(L)
r (t) . (11)

In the Gauss-Newton method it is assumed that S (w(n)) ≈ 0 and that equation
(4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n))

]−1
JT (w(n)) ε (w(n)) . (12)

In the Levenberg-Marquardt method is is assumed that S (w(n)) = μI and that
equation (4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n)) + μI

]−1
JT (w(n)) ε (w(n)) . (13)

By defining
A (n) = − [

JT (w(n))J (w(n)) + μI
]

h (n) = JT (w(n)) ε (w(n)) (14)
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the Eq. (13) is as follows

Δ (w(n)) = A(n)−1h (n) . (15)

The Eq. (15) can be solved using the QR factorization

QT (n)A (n) Δ (w(n)) = QT (n)h (n) , (16)

R (n) Δ (w(n)) = QT (n)h (n) . (17)

This paper used the Givens rotations for the QR factorization. The operation,
in 5 steps, of the LM algorithm is described below:

1. The calculation of the network outputs for all input data, errors, and the loss
function.

2. The calculation of the Jacobian matrix, using the backpropagation method
for each error individually.

3. The calculation of weight changes Δ (w(n)) using the QR factorization.
4. The recalculation of the loss function (2) for new weights w(n)+Δ (w(n)). If

the loss function is less than the one calculated earlier in step 1, then μ should
be reduced β times, the new weight vector is saved and the algorithm returns
to Step 1. Otherwise, the μ value is increased β times and the algorithm
repeats step 3.

5. The algorithm stops running when the loss function falls below a preset value
or the gradient falls below a preset value.

2 Vector Solution for Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm needs high computing power. Each epoch
starts with steps 1 and 2, and next steps 3 and 4 can be repeated a few times.
Figure 2 shows a single epoch of the LM algorithm, showing the first two steps
and repeating steps 3 and 4. It is worth noting that the next pairs of steps 3
and 4 are independent of each other and can be performed at the same time.
They only differ in the μ parameter value and have the same starting point.
Thus, they can be run parallel on separate processor cores. However, the solution
proposed in this article uses processor vector instructions. Vector instructions
allow 4, 8, and even 16 operations to be performed in parallel. This approach
enables simultaneous determination of new 4, 8, or 16 points in the weight space
using only one processor core, see Fig. 3. Figure 3a shows the epoch of the LM
algorithm with the use of four-element vectors. After completing the first two

Fig. 2. Sample illustration for computational steps in LM algorithm.
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steps, the algorithm calculates steps 3 and 4 for the next 4 parameters μ at one
time. Thus, the three consecutive computations of steps 3 and 4 are performed
earlier and therefore do not take computational time. The rectangles with the
line in the middle symbolize steps 3 and 4, which are used in the standard
calculation method and are omitted in calculations using vector instructions.
Figure 3b shows the version with eight-element vectors.

Fig. 3. Sample illustration for calculating method with vector instructions. a) the 4-
elements vector, b) the 8-elements vector

Figure 4 shows an example of the learning process using the LM algorithm. In
the following epochs, you can see a different number of steps 3 and 4 repetitions.
There are epochs where the repetition does not occur and there are those with a

Fig. 4. Sample illustration for training process with vector instructions.



A New Computational Approach 21

large number of repetitions, in this case, vector instructions can be used, which
makes it possible to calculate up to four pairs of steps 3 and 4 at the same
time and consequently shortening the learning time. Of course, eight- or sixteen-
element vectors can be used instead of using four-element vectors. This increases
the parallelism and speed of the proposed calculation method.

3 Experimental Results

The proposed solution was tested against the classical variant of the Levenberg-
Marquardt learning algorithm on several test problems. Two types of forward-
coupled artificial neural networks were tested in the experiment: MLP — Multi-
layer Perceptron, FCMLP — Fully Connected Multilayer Perceptron. The per-
formance of the presented calculation method was measured in average training
time in milliseconds. The presented results are compiled according to the best
combination of training parameters. In all cases, the initial weights were ran-
domly selected from the range [–0.5,0.5]. The number of epochs has been limited
to 1,000. Each training session was repeated 100 times.

3.1 Logistic Function Approximation

The logistic function is a unary function given by the formula

y = f (x) = 4x (1 − x) (18)

The teaching sequence contains 11 samples where x ∈ [0, 1]. The average
accepted error threshold has been set to 0.001. Table 1 shows the simulation
results for two kinds of neural networks MLP and FCMLP. Both networks have
five neurons in the hidden layer. The symbols LM, LMP 4, LMP 8, and LMP
16 represent the average network training time using the LM algorithm and its
vector versions for 4, 8, and 16 element vectors, respectively. The speed factor
means how many percent the vector version is faster then the classical one and
is given by the formula

SF =
(

1 − LMPx

LM

)

∗ 100% (19)

Table 1. Training results for the LOG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-1-5-1 0.880 0.440 50 0.434 50 0.433 50

FCMLP-1-5-1 0.588 0.311 47 0.306 48 0.305 48
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3.2 Hang Function Approximation

The Hang function is a nonlinear two-argument x1 and x2 function with the
following formula

y = f (x1, x2) =
(

1 + x−2
1 +

√

x−3
2

)2

(20)

The Hang teaching sequence contains 50 samples that cover arguments in the
range of x1, x2 ∈ [1, 5]. The target error threshold was set to 0.001 as the epoch
average. The results of simulations for the Hang function are shown in Table 2.
Both tested networks have 15 neurons in the hidden layer.

Table 2. Training results for the HANG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-15-1 27.235 13.191 51 12.553 53 12.462 54

FCCMLP-2-15-1 34.237 16.691 51 16.165 52 16.111 52

3.3 IRIS Function Classification

The iris dataset contains 150 instances describing three species of iris flowers.
The flowers are identified with 4 numerical attributes describing the lengths and
widths of the petals of the flower. The target error has been set to 0.05. Table 3
shows the simulation results.

Table 3. Training results for the IRIS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-4-6-6-3 528.183 242.789 54 229.337 56 223.374 57

FCCMLP-4-6-6-3 1851.720 870.468 52 842.894 54 831.464 55

3.4 The Two Spirals Classification

Two spirals is a well-known classification problem where a neural network has
to identify one of the two helices based on two-dimensional coordinates. The
training set for this problem contains 96 samples. The target error has been set
to 0.05. Table 4 shows the simulation results.
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Table 4. Training results for the TS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-5-5-5-1 166.819 77.954 53 76.139 54 75.555 54

FCMLP-2-5-5-5-1 349.704 165.037 52 161.613 53 161.192 53

4 Conclusion

In this paper, the new computational approach to the Levenberg-Marquardt
learning algorithm for a feedforward neural network is proposed. Two types of
feedforward neural networks were used in the experiments: multilayer percep-
tron and fully interconnected multilayer perceptron. The networks were trained
with different training sets: Logistic function, Hang, Iris, and Two Spirals. We
can compare the computational performance of the proposed solution, based on
vector instructions of the Levenberg-Marquardt learning algorithm, with a clas-
sical solution. The conducted experiments showed a significant reduction of the
real learning time. For all training sets, calculation times have been reduced by
an average of 50%. It has been observed that the performance of the proposed
solution is promising.

A vector approach can be used for other advanced learning algorithms of
feedforward neural networks, see eg. [2,8]. In the future research, we plan to
design parallel realization of learning of other structures including probabilistic
neural networks [32] and various fuzzy [1,15,20,22,24,37,42,46,47], and neuro-
fuzzy structures [16,17,23,25,35].
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