
A New Computational Approach
to the Levenberg-Marquardt Learning

Algorithm

Jaros�law Bilski(B) , Barosz Kowalczyk , and Jacek Smola̧g

Institute of Computational Intelligence, Czȩstochowa University of Technology,
Czȩstochowa, Poland

{Jaroslaw.Bilski,Barosz.Kowalczyk,Jacek.Smolag}@pcz.pl

Abstract. A new parallel computational approach to the Levenberg-
Marquardt learning algorithm is presented. The proposed solution is
based on the AVX instructions to effectively reduce the high compu-
tational load of this algorithm. Detailed parallel neural network com-
putations are explicitly discussed. Additionally obtained acceleration is
shown based on a few test problems.

Keywords: Neural network learning algorithm · Levenberg-marquardt
learning algorithm · Vector computations · Approximation ·
Classification

1 Introduction

Artificial feedforward neural networks have been studied by many scientists e.g.
[2,12,14,27,28,31,43,45]. One of the most frequently used methods for training
feedforward neural networks are gradient methods, see e.g. [18,29,44]. Most of
the simulations of neural networks learning algorithms, like other learning algo-
rithms [19,20,30,33,34,36,40,41], work on a serial computer. The computational
complexity of many learning algorithms is very high. This makes serial implemen-
tation very time consuming and slow. The Levenberg Marquart (LM) algorithm
[21,26] is one of the most effective learning algorithms, unfortunately, it requires
a lot of calculations. But, for very large networks the computational load of the
LM algorithm makes it impractical. A suitable solution to this problem is the
use of high performance dedicated parallel structures, see eg. [3,5–13,38,39,48].
This paper shows a new parallel computational approach to the LM algorithm
based on vector instruction. The results of the study of a new parallel approach
to the LM algorithm is shown in the last part of the paper.

A sample structure of the feedforward neural network is shown in Fig. 1. This
sample network has L layers, Nl neurons in each l − th layer, and NL outputs.

This work has been supported by the Polish National Science Center under Grant
2017/27/B/ST6/02852.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13588, pp. 16–26, 2023.
https://doi.org/10.1007/978-3-031-23492-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23492-7_2&domain=pdf
http://orcid.org/0000-0003-1769-3934
http://orcid.org/0000-0002-7683-9051
http://orcid.org/0000-0002-1326-3374
https://doi.org/10.1007/978-3-031-23492-7_2


A New Computational Approach 17

The input vector contains N0 input values. The Eq. (1) describes the recall phase
of the network

s
(l)
i (t) =

Nl−1∑

j=0

w
(l)
ij (t) x

(l)
i (t), y(l)

i (t) = f(s(l)i (t)). (1)

Fig. 1. Sample feedforward neural network.

The Levenberg-Marquard method [21,26] is used to train the feedforward
neural network. The following loss function is minimized

E (w (n)) =
1
2

∑Q

t=1

∑NL

r=1
ε(L)2

r (t) =
1
2

∑Q

t=1

∑NL

r=1

(
y(L)

r (t) − d(L)
r (t)

)2

(2)
where ε

(L)
i is defined as

ε(L)
r (t) = ε(Lr)

r (t) = y(L)
r (t) − d(L)

r (t) (3)

and d
(L)
r (t) is the r − th desired output in the t − th probe.

The LM algorithm is a modification of the Newton method and is based on
the first three elements of the Taylor series expansion of the loss function. A
change of weights is given by

Δ (w(n)) = −[∇2E (w(n))
]−1∇E (w(n)) (4)

this requires knowledge of the gradient vector

∇E (w(n)) = JT (w(n)) ε (w(n)) (5)

and the Hessian matrix

∇2E (w(n)) = JT (w(n))J (w(n)) + S (w(n)) (6)



18 J. Bilski et al.

where J (w(n)) in (5) and (6) is the Jacobian matrix

J(w (n)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ε
(L)
1 (1)

∂w
(1)
10

· · · ∂ε
(L)
1 (1)

∂w
(k)
ij

· · · ∂ε
(L)
1 (1)

∂w
(L)
NLNL−1

... · · · ... · · · ...
∂ε

(L)
NL

(1)

∂w
(1)
10

· · · ∂ε
(L)
NL

(1)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(1)

∂w
(L)
NLNL−1

... · · · ... · · · ...
∂ε

(L)
NL

(Q)

∂w
(1)
10

· · · ∂ε
(L)
NL

(Q)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(Q)

∂w
(L)
NLNL−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

In the hidden layers the errors ε
(lr)
i are calculated as follows

ε
(lr)
i (t) ∧=

Nl+1∑

m=1

δ
(l+1,r)
i (t)w

(l+1)
mi , (8)

δ
(lr)
i (t) = ε

(lr)
i (t) f ′

(
s
(lr)
i (t)

)
. (9)

Based on this, the elements of the Jacobian matrix for each weight can be com-
puted

∂ε
(L)
r (t)

w
(l)
ij

= δ
(lr)
i (t) x

(l)
j (t) . (10)

It should be noted that derivatives (10) are computed in a similar way it is done
in the classical backpropagation method, except that each time there is only one
error given to the output. In this algorithm, the weights of the entire network
are treated as a single vector and their derivatives form the Jacobian matrix J.

The S (w(n)) component (6) is given by the formula

S (w(n)) =
∑Q

t=1

∑NL

r=1
ε(L)
r (t)∇

2

ε(L)
r (t) . (11)

In the Gauss-Newton method it is assumed that S (w(n)) ≈ 0 and that equation
(4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n))

]−1
JT (w(n)) ε (w(n)) . (12)

In the Levenberg-Marquardt method is is assumed that S (w(n)) = μI and that
equation (4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n)) + μI

]−1
JT (w(n)) ε (w(n)) . (13)

By defining
A (n) = − [

JT (w(n))J (w(n)) + μI
]

h (n) = JT (w(n)) ε (w(n)) (14)



A New Computational Approach 19

the Eq. (13) is as follows

Δ (w(n)) = A(n)−1h (n) . (15)

The Eq. (15) can be solved using the QR factorization

QT (n)A (n) Δ (w(n)) = QT (n)h (n) , (16)

R (n) Δ (w(n)) = QT (n)h (n) . (17)

This paper used the Givens rotations for the QR factorization. The operation,
in 5 steps, of the LM algorithm is described below:

1. The calculation of the network outputs for all input data, errors, and the loss
function.

2. The calculation of the Jacobian matrix, using the backpropagation method
for each error individually.

3. The calculation of weight changes Δ (w(n)) using the QR factorization.
4. The recalculation of the loss function (2) for new weights w(n)+Δ (w(n)). If

the loss function is less than the one calculated earlier in step 1, then μ should
be reduced β times, the new weight vector is saved and the algorithm returns
to Step 1. Otherwise, the μ value is increased β times and the algorithm
repeats step 3.

5. The algorithm stops running when the loss function falls below a preset value
or the gradient falls below a preset value.

2 Vector Solution for Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm needs high computing power. Each epoch
starts with steps 1 and 2, and next steps 3 and 4 can be repeated a few times.
Figure 2 shows a single epoch of the LM algorithm, showing the first two steps
and repeating steps 3 and 4. It is worth noting that the next pairs of steps 3
and 4 are independent of each other and can be performed at the same time.
They only differ in the μ parameter value and have the same starting point.
Thus, they can be run parallel on separate processor cores. However, the solution
proposed in this article uses processor vector instructions. Vector instructions
allow 4, 8, and even 16 operations to be performed in parallel. This approach
enables simultaneous determination of new 4, 8, or 16 points in the weight space
using only one processor core, see Fig. 3. Figure 3a shows the epoch of the LM
algorithm with the use of four-element vectors. After completing the first two

Fig. 2. Sample illustration for computational steps in LM algorithm.



20 J. Bilski et al.

steps, the algorithm calculates steps 3 and 4 for the next 4 parameters μ at one
time. Thus, the three consecutive computations of steps 3 and 4 are performed
earlier and therefore do not take computational time. The rectangles with the
line in the middle symbolize steps 3 and 4, which are used in the standard
calculation method and are omitted in calculations using vector instructions.
Figure 3b shows the version with eight-element vectors.

Fig. 3. Sample illustration for calculating method with vector instructions. a) the 4-
elements vector, b) the 8-elements vector

Figure 4 shows an example of the learning process using the LM algorithm. In
the following epochs, you can see a different number of steps 3 and 4 repetitions.
There are epochs where the repetition does not occur and there are those with a

Fig. 4. Sample illustration for training process with vector instructions.



A New Computational Approach 21

large number of repetitions, in this case, vector instructions can be used, which
makes it possible to calculate up to four pairs of steps 3 and 4 at the same
time and consequently shortening the learning time. Of course, eight- or sixteen-
element vectors can be used instead of using four-element vectors. This increases
the parallelism and speed of the proposed calculation method.

3 Experimental Results

The proposed solution was tested against the classical variant of the Levenberg-
Marquardt learning algorithm on several test problems. Two types of forward-
coupled artificial neural networks were tested in the experiment: MLP — Multi-
layer Perceptron, FCMLP — Fully Connected Multilayer Perceptron. The per-
formance of the presented calculation method was measured in average training
time in milliseconds. The presented results are compiled according to the best
combination of training parameters. In all cases, the initial weights were ran-
domly selected from the range [–0.5,0.5]. The number of epochs has been limited
to 1,000. Each training session was repeated 100 times.

3.1 Logistic Function Approximation

The logistic function is a unary function given by the formula

y = f (x) = 4x (1 − x) (18)

The teaching sequence contains 11 samples where x ∈ [0, 1]. The average
accepted error threshold has been set to 0.001. Table 1 shows the simulation
results for two kinds of neural networks MLP and FCMLP. Both networks have
five neurons in the hidden layer. The symbols LM, LMP 4, LMP 8, and LMP
16 represent the average network training time using the LM algorithm and its
vector versions for 4, 8, and 16 element vectors, respectively. The speed factor
means how many percent the vector version is faster then the classical one and
is given by the formula

SF =
(

1 − LMPx

LM

)

∗ 100% (19)

Table 1. Training results for the LOG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-1-5-1 0.880 0.440 50 0.434 50 0.433 50

FCMLP-1-5-1 0.588 0.311 47 0.306 48 0.305 48



22 J. Bilski et al.

3.2 Hang Function Approximation

The Hang function is a nonlinear two-argument x1 and x2 function with the
following formula

y = f (x1, x2) =
(

1 + x−2
1 +

√

x−3
2

)2

(20)

The Hang teaching sequence contains 50 samples that cover arguments in the
range of x1, x2 ∈ [1, 5]. The target error threshold was set to 0.001 as the epoch
average. The results of simulations for the Hang function are shown in Table 2.
Both tested networks have 15 neurons in the hidden layer.

Table 2. Training results for the HANG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-15-1 27.235 13.191 51 12.553 53 12.462 54

FCCMLP-2-15-1 34.237 16.691 51 16.165 52 16.111 52

3.3 IRIS Function Classification

The iris dataset contains 150 instances describing three species of iris flowers.
The flowers are identified with 4 numerical attributes describing the lengths and
widths of the petals of the flower. The target error has been set to 0.05. Table 3
shows the simulation results.

Table 3. Training results for the IRIS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-4-6-6-3 528.183 242.789 54 229.337 56 223.374 57

FCCMLP-4-6-6-3 1851.720 870.468 52 842.894 54 831.464 55

3.4 The Two Spirals Classification

Two spirals is a well-known classification problem where a neural network has
to identify one of the two helices based on two-dimensional coordinates. The
training set for this problem contains 96 samples. The target error has been set
to 0.05. Table 4 shows the simulation results.



A New Computational Approach 23

Table 4. Training results for the TS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-5-5-5-1 166.819 77.954 53 76.139 54 75.555 54

FCMLP-2-5-5-5-1 349.704 165.037 52 161.613 53 161.192 53

4 Conclusion

In this paper, the new computational approach to the Levenberg-Marquardt
learning algorithm for a feedforward neural network is proposed. Two types of
feedforward neural networks were used in the experiments: multilayer percep-
tron and fully interconnected multilayer perceptron. The networks were trained
with different training sets: Logistic function, Hang, Iris, and Two Spirals. We
can compare the computational performance of the proposed solution, based on
vector instructions of the Levenberg-Marquardt learning algorithm, with a clas-
sical solution. The conducted experiments showed a significant reduction of the
real learning time. For all training sets, calculation times have been reduced by
an average of 50%. It has been observed that the performance of the proposed
solution is promising.

A vector approach can be used for other advanced learning algorithms of
feedforward neural networks, see eg. [2,8]. In the future research, we plan to
design parallel realization of learning of other structures including probabilistic
neural networks [32] and various fuzzy [1,15,20,22,24,37,42,46,47], and neuro-
fuzzy structures [16,17,23,25,35].

References

1. Bartczuk, �L, Przyby�l, A., Cpa�lka, K.: A new approach to nonlinear modelling of
dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. (AMCS)
26(3), 603–621 (2016)

2. Bilski, J.: The UD RLS algorithm for training the feedforward neural networks.
Int. J. Appl. Math. Comput. Sci. 15(1), 101–109 (2005)

3. Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for neural
networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24844-6 19

4. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network
learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69731-2 2

5. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent elman neural network
learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13232-2 3

https://doi.org/10.1007/978-3-540-24844-6_19
https://doi.org/10.1007/978-3-540-69731-2_2
https://doi.org/10.1007/978-3-642-13232-2_3


24 J. Bilski et al.

6. Bilski, J., Smol ↪ag, J.: Parallel realisation of the recurrent multi layer perceptron
learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 12–20.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4 2

7. Bilski, J., Smol ↪ag, J.: Parallel approach to learning of the recurrent Jordan neu-
ral network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 32–
40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9 3

8. Bilski, J.: Parallel structures for feedforward and dynamical neural networks (in
Polish). AOW EXIT (2013)

9. Bilski, J., Smol ↪ag, J., Galushkin, A.I.: The parallel approach to the conjugate
gradient learning algorithm for the feedforward neural networks. In: Rutkowski,
L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.
(eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07173-2 2

10. Bilski, J., Smola̧g, J.: Parallel architectures for learning the RTRN and elman
dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. PP(99), (2014).
https://doi.org/10.1109/TPDS.2014.2357019

11. Bilski, J., Kowalczyk, B., Marchlewska A., Żurada J.M.: Local levenberg-
marquardt algorithm for learning feedforwad neural networks. J. Artif. Intell. Soft
Comput. Res. 10(4), 299–316 (2020). https://doi.org/10.2478/jaiscr-2020-0020

12. Bilski, J., Kowalczyk, B., Marjański, A., Gandor, M., Żurada, J.M.: A novel fast
feedforward neural networks training algorithm. J. Artif. Intell. Soft Comput. Res.
11(4), 287–306 (2021). https://doi.org/10.2478/jaiscr-2021-0017

13. Bilski J., Rutkowski L., Smola̧g J., Tao D., A novel method for speed training
acceleration of recurrent neural networks. Inf. Sci. 553, 266–279 (2021). https://
doi.org/10.1016/j.ins.2020.10.025

14. Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support
vector machines, convolutional neural networks and deep belief networks. J. Artif.
Intell. Soft Comput. Res. 4(1), 5–19 (2014)

15. Cpa�lka, K., Rutkowski, L.: Flexible takagi-sugeno fuzzy systems. In: Proceedings of
the International Joint Conference on Neural Networks, Montreal, pp. 1764–1769
(2005)

16. Cpa�lka, K., �Lapa, K., Przyby�l, A., Zalasiński, M.: A new method for designing
neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neuro-
computing 135, 203–217 (2014)

17. Cpalka, K., Rebrova, O., Nowicki, R. et al.: On design of flexible neuro-fuzzy
systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), Special Issue: SI, 706–
720 (2013)

18. Fahlman, S.: Faster learning variations on backpropagation: an empirical study.
In: Proceedings of Connectionist Models Summer School, Los Atos (1988)

19. Gabryel, M., Przybyszewski, K.: Methods of searching for similar device finger-
prints using changes in unstable parameters. In: Rutkowski, L., Scherer, R., Kory-
tkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020.
LNCS (LNAI), vol. 12416, pp. 325–335. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-61534-5 29

20. Gabryel, M., Scherer, M.M., Su�lkowski, �L, Damaševičius, R.: Decision making sup-
port system for managing advertisers by ad fraud detection. J. Artif. Intell. Soft
Comput. Res. 11, 331–339 (2021)

21. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt
algorithm. IEEE Trans. Neuralnetworks 5(6), 989–993 (1994)

https://doi.org/10.1007/978-3-642-29347-4_2
https://doi.org/10.1007/978-3-642-38658-9_3
https://doi.org/10.1007/978-3-319-07173-2_2
https://doi.org/10.1109/TPDS.2014.2357019
https://doi.org/10.2478/jaiscr-2020-0020
https://doi.org/10.2478/jaiscr-2021-0017
https://doi.org/10.1016/j.ins.2020.10.025
https://doi.org/10.1016/j.ins.2020.10.025
https://doi.org/10.1007/978-3-030-61534-5_29
https://doi.org/10.1007/978-3-030-61534-5_29


A New Computational Approach 25

22. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to
single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2 26

23. Korytkowski, M., Scherer, R.: Negative correlation learning of neuro-fuzzy system.
LNAI 6113, 114–119 (2010)

24. �Lapa, K., Przyby�l, A., Cpa�lka, K.: A new approach to designing interpretable
models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI),
vol. 7895, pp. 523–534. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38610-7 48

25. �Lapa, K., Zalasiński, M., Cpa�lka, K.: A new method for designing and complex-
ity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38658-9 30

26. Marqardt, D.: An algorithm for last-sqares estimation of nonlinear paeameters. J.
Soc. Ind. Appl. Math. 431–441 (1963)

27. Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpa�lka, K., Zalasiński,
M., Cader, A.: Monitoring regenerative heat exchanger in steam power plant by
making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res.
11(2), 143–155 (2021). https://doi.org/10.2478/jaiscr-2021-0009

28. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. J. Artif. Intell. Soft Comput. Res. 1(2), 103–114 (2011)

29. Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning:
the RPROP Algorithm. In: IEEE International Conference on Neural Networks,
San Francisco (1993)

30. Romaszewski, M., Gawron, P., Opozda, S.: Dimensionality reduction of dynamic
msh animations using HO-SVD. J. Artif. Intell. Soft Comput. Res. 3(3), 277–289
(2013)

31. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Parallel Distributed Processing, vol. 1, ch. 8, Rumelhart,
D.E., McCelland, J. (red.). The MIT Press, Cambridge, Massachusetts (1986)

32. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)

33. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a
wide class of disturbances. IEEE Trans. Inf. Theor. 37(1), 214–216 (1991)

34. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining
data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng.
26(1), 108–119 (2014)

35. Rutkowski, L., Przyby�l, A., Cpa�lka, K., Er, M.J.: Online speed profile genera-
tion for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski,
L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010.
LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13232-2 79

36. Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of some non-
parametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–
1091 (1989)

37. Rutkowski, T., �Lapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explain-
able flexible fuzzy recommender and its performance evaluation using the akaike

https://doi.org/10.1007/978-3-540-69731-2_26
https://doi.org/10.1007/978-3-642-38610-7_48
https://doi.org/10.1007/978-3-642-38610-7_48
https://doi.org/10.1007/978-3-642-38658-9_30
https://doi.org/10.2478/jaiscr-2021-0009
https://doi.org/10.1007/978-3-642-13232-2_79
https://doi.org/10.1007/978-3-642-13232-2_79


26 J. Bilski et al.

information criterion. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019.
CCIS, vol. 1142, pp. 717–724. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36808-1 78

38. Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In:
Proceedings of V Conference Neural Networks and Soft Computing, Zakopane, pp.
754–758 (2000)

39. Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Pro-
ceedings of IV Conference Neural Networks and Their Applications, Zakopane, pp.
487–497 (1999)

40. Starczewski, A.: A clustering method based on the modified RS validity index.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 242–250. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7 23

41. Starczewski J.T. Advanced Concepts in Fuzzy Logic and Systems with Membership
Uncertainty, volume 284 of Studies in Fuzziness and Soft Computing. Springer,
Berlin (2013). https://doi.org/10.1007/978-3-642-29520-1

42. Starczewski, J.T., Goetzen, P., Napoli, Ch.: Triangular fuzzy-rough set based fuzzi-
fication of fuzzy rule-based systems. J. Artif. Intell. Soft Comput. Res. 10, 271–285
(2020)

43. Tadeusiewicz, R.: Neural Networks (in Polish). AOW RM (1993)
44. Werbos, J.: Backpropagation through time: what it does and how to do it. In:

Proceedings of the IEEE, vol. 78, no. 10 (1990)
45. Wilamowski, B.M., Yo, H.: Neural network learning without backpropagation.

IEEE Trans. Neural Network. 21(11), 1793–1803 (2010)
46. Zalasiński, M., Cpa�lka, K.: New approach for the on-line signature verification

based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013.
LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38610-7 32

47. Zalasiński, M., �Lapa, K., Cpa�lka, K.: Prediction of values of the dynamic signature
features. Expert Syst. Appl. 104, 86–96 (2018)

48. El Zini J., Rizk Y., Awad M.: An optimized parallel implementation of non-
iteratively trained recurrent neural networks. Journal of Artif. Intell. Soft Comput.
Res. 11(1), 33–50 (2021). https://doi.org/10.2478/jaiscr-2021-0003

https://doi.org/10.1007/978-3-030-36808-1_78
https://doi.org/10.1007/978-3-030-36808-1_78
https://doi.org/10.1007/978-3-642-38610-7_23
https://doi.org/10.1007/978-3-642-29520-1
https://doi.org/10.1007/978-3-642-38610-7_32
https://doi.org/10.1007/978-3-642-38610-7_32
https://doi.org/10.2478/jaiscr-2021-0003

	A New Computational Approach to the Levenberg-Marquardt Learning Algorithm
	1 Introduction
	2 Vector Solution for Levenberg-Marquardt Algorithm
	3 Experimental Results
	3.1 Logistic Function Approximation
	3.2 Hang Function Approximation
	3.3 IRIS Function Classification
	3.4 The Two Spirals Classification

	4 Conclusion
	References




