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Częstochowa University of Technology
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Preface

This volumeconstitutes the proceedings of the 21st InternationalConference onArtificial
Intelligence and Soft Computing ICAISC 2022, held in Zakopane, Poland, on June
19–23, 2022. The conference was organized by the Polish Neural Network Society in
cooperation with the Department of Intelligent Computer Systems at the Częstochowa
University of Technology, the University of Social Sciences in Łódź, and the IEEE
Computational Intelligence Society, Poland Chapter. The conference was held under the
auspices of the Committee on Informatics of the Polish Academy of Sciences.

Previous conferences took place in Kule (1994), Szczyrk (1996), Kule (1997) and
Zakopane (1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2013, 2014, 2015, 2016,
2017, 2018, 2019, 2020 and 2021) and attracted a large number of papers and interna-
tionally recognized speakers: Lotfi A. Zadeh, Hojjat Adeli, Rafal Angryk, Igor Aizen-
berg, Cesare Alippi, Shun-ichi Amari, Daniel Amit, Plamen Angelov, Sanghamitra
Bandyopadhyay, Albert Bifet, Piero P. Bonissone, Jim Bezdek, Zdzisław Bubnicki, Jan
Chorowski, Andrzej Cichocki, Swagatam Das, Ewa Dudek-Dyduch, Włodzisław Duch,
Adel S. Elmaghraby, Pablo A. Estévez, João Gama, Erol Gelenbe, Jerzy Grzymala-
Busse, Martin Hagan, Yoichi Hayashi, Akira Hirose, Kaoru Hirota, Adrian Horzyk,
Tingwen Huang, Eyke Hüllermeier, Hisao Ishibuchi, Er Meng Joo, Janusz Kacprzyk,
Nikola Kasabov, Jim Keller, Laszlo T. Koczy, Tomasz Kopacz, Jacek Koronacki, Zdzis-
law Kowalczuk, Adam Krzyzak, Rudolf Kruse, James Tin-Yau Kwok, Soo-Young Lee,
Derong Liu, Robert Marks, Ujjwal Maulik, Zbigniew Michalewicz, Evangelia Micheli-
Tzanakou, Kaisa Miettinen, Krystian Mikołajczyk, Henning Müller, Christian Napoli,
Ngoc Thanh Nguyen, Andrzej Obuchowicz, Erkki Oja, Nikhil R. Pal, Witold Pedrycz,
Marios M. Polycarpou, José C. Príncipe, Jagath C. Rajapakse, Šarunas Raudys, Enrique
Ruspini, Roman Senkerik, Jörg Siekmann, Andrzej Skowron, Roman Słowiński, Igor
Spiridonov, Boris Stilman, Ponnuthurai Nagaratnam Suganthan, Ryszard Tadeusiewicz,
Ah-Hwee Tan, Dacheng Tao, Shiro Usui, Thomas Villmann, Fei-Yue Wang, Jun Wang,
BogdanM.Wilamowski, RonaldY.Yager,XinYao, SyozoYasui,GaryYen, IvanZelinka
and Jacek Zurada.

The aim of this conference is to build a bridge between traditional artificial intelli-
gence techniques and so-called soft computing techniques. It was pointed out by Lotfi
A. Zadeh that “soft computing (SC) is a coalition of methodologies which are oriented
toward the conception and design of information/intelligent systems. The principalmem-
bers of the coalition are: fuzzy logic (FL), neurocomputing (NC), evolutionary comput-
ing (EC), probabilistic computing (PC), chaotic computing (CC), and machine learning
(ML). The constituent methodologies of SC are, for the most part, complementary and
synergistic rather than competitive”.

These proceedings present both traditional artificial intelligence methods and soft
computing techniques. Our goal is to bring together scientists representing both areas
of research. This volume is divided into five parts:
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– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Pattern Classification
– Artificial Intelligence in Modeling and Simulation

I would like to thank our participants, invited speakers and reviewers of the papers
for their scientific and personal contribution to the conference. The advice and con-
stant support of the Honorary Chair of the conference Prof. Ryszard Tadeusiewicz is
acknowledged with many thanks. Finally, I thank my co-workers Łukasz Bartczuk, Piotr
Dziwiński, Marcin Gabryel, Rafał Grycuk, Marcin Korytkowski and Rafał Scherer, for
their enormous efforts to make the conference a very successful event. Moreover, I
would like to acknowledge the work of Marcin Korytkowski who was responsible for
the Internet submission system.

June 2022 Leszek Rutkowski
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BiLSTM Deep Learning Model for Heart Problems Detection . . . . . . . . . . . . . . . 93
Jakub Siłka, Michał Wieczorek, Martyna Kobielnik, and Marcin Woźniak
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Abstract. In this paper, the computational improvement for the scaled
Givens rotation-based training algorithms is presented. Application of
the scaled rotations boosts the algorithm significantly due to the elimi-
nation of the computation of the square root. In a classic variant scaled
rotations utilize so-called scale factors — χ. It turns out that the scale
factors can be omitted during the computation which boosts the over-
all algorithm performance even further. This paper gives a mathematical
explanation of how to apply the proposed improvement to the scaled vari-
ants of the training algorithms. The last section of the paper contains
several benchmarks which prove the proposed method to be superior to
the classic approach.

Keywords: Neural network training algorithm · QR decomposition ·
Scaled givens rotations · Optimization · Approximation · Classification

1 Introduction

The artificial neural networks are flexible mathematical abstractions capable of
solving many problems, whereas the classic mathematical apparatus fails to suc-
ceed. To date, neural networks are the very common utilities in the scope of
science and industry. Recently many researches revolving around various types
of neural networks were released eg. in [4,26,33,34]. Many branches of artifi-
cial intelligence are discussed and applied in various sectors of industry such as
biology, medicine [1,20,24,28] and others [13,15,16,21,25–27,29,31].

Most modern neural network training algorithms originate from the classic
Backpropagation algorithm that was initially proposed in [30]. As the artificial
intelligence evolved many training methods superior to the classic Backpropaga-
tion were made [14,23,32]. These algorithms are close to their archetype making
use of the error function’s gradient and the learning rate occasionally adding
some additional hyperparameters such as momentum. The other group of train-
ing algorithms is more complex. Their cores originate from various mathematical
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principles such as Hessian matrices (eg. Levenberg-Marquardt [19]) or RLS [5].
Each training method has its advantages but also some drawbacks. In most cases
more complex algorithms struggle with huge datasets due to computational com-
plexity.

The SGQR training algorithm for feedforward neural networks was initially
proposed in [12] to boost the classic GQR method [11]. In this paper, the method
to increase the original SGQR algorithm performance is described. This can be
achieved by removing the so-called scale factors from the equations which leads
to the overall boost in performance while maintaining similar training metrics in
terms of success ratio and average epoch count per training. The core of the paper
contains a detailed mathematical background of the proposed improvement. The
equations are followed by a set of benchmarks and conclusions.

2 Givens Rotations Basics

The Givens rotation is one of the well-known orthogonal transformations. It is
used in many engineering aspects especially, in image processing. A rotation can
be multidimensional but most often it is limited to two dimensions defined by
vectors span{ep, eq}(1 ≤ p < q ≤ n). Such rotation is described by an orthogonal
matrix of the following structure [18,22]:

Gpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

c · · · s
...

...
. . .

...
...

−s · · · c
. . .

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(1)

The Gpq matrix given by (1) from now on will be referred to as rotation matrix
or simply rotation. Based on the rotation structure given by (1) it is easy to see
that in comparison to the Identity matrix it differs only in terms of four elements
gpp = gqq = c and gpq = −gqp = s, where

c2 + s2 = 1 (2)

Equation (2) reveals that GT
pqGpq = I which is the proof for matrix Gpq being

an orthogonal matrix. Assume that a ∈ R
n. The following transformation is

achieved by a single rotation

a → ā = Gpqa (3)

Knowing the structure of the rotation matrix (1) it is easy to notice that only
two elements of vector a will be changed during this transformation. Due to
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this property, it is possible to compute the values of c and s, so the aq will be
replaced with 0 after being rotated. Let us consider

āq = −sap + caq = 0 (4)

To achieve that the parameters c and s of rotation matrix Gpq are calculated as
follows

c =
ap

ρ
, s =

aq

ρ
, where ρ =

√
a2

p + a2
q (5)

3 The Scaled Givens Rotation

For vector a ∈ R
n, consider transformation given by (3) [17,22]. Matrix Gpq

has to meet the condition (4). The scaled Givens rotation is obtained by using
scaled multipliers K2 and K̄2:

a = Kd, where K = diag (
√

χl)

ā = K̄d̄, where K̄ = diag
(√

χ̄l

) (6)

where χl, χ̄l > 0 (l = 1, . . . , n). Also matrix Gpq will be presented in a scalable
form

Gpq = KFpqK−1 (7)

where Fpq is:

Fpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

α · · · β
...

...
. . .

...
...

−γ · · · δ
. . .

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(8)

Equation (3) takes the form

K2 → K̄2

d → d̄ = Fpqd
(9)

and Eq. (4) becomes the following

d̄q = −γdp + δdq = 0 (10)

From (7) the following is obtained

χ̄l = χl for (l �= p, q; l = 1, . . . , n) (11)

c = α
√

χ̄p

χp
= δ

√
χ̄q

χq
, s = β

√
χ̄p

χq
= γ

√
χ̄q

χp
(12)
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Equation (2) must also be satisfied.
Because there are six variables α, β, δ, γ, χ̄p, χ̄q and only four Eqs. (10), (12)

and (2), two cases have to be treated as parameters. Two variants are possible,
see the important parts of the Fpq matrix

[
1 β

−γ 1

]
and

[
α 1
−1 δ

]
(13)

From (5) and (6) the following is obtained

c2 =
a2

p

a2
p + a2

q

=
χpd

2
p

χpd2p + χqd2q
, s2 =

a2
q

a2
p + a2

q

=
χqd

2
q

χpd2p + χqd2q
(14)

There are two computational cases:
Case 1: c �= 0 i.e. dp �= 0. The two parameters are set as follows

α = δ = 1 (15)

from (10), (12) and (14) the following is obtained

γ =
dq

dp
, β =

γχq

χp
=

γχ̄q

χ̄p
. (16)

From (12) is χ̄i = χic
2 for i = p, q. Taking into account equation

1
c2

= 1 + βγ
def
= τ (17)

and (12), the following values are obtained

χ̄p =
χp

τ
, χ̄q =

χq

τ
, d̄p = dpτ. (18)

Case 2: s �= 0 i.e. dq �= 0. The two parameters are set as follows

β = γ = 1 (19)

from (10) we obtain

δ =
dp

dq
, α =

δχp

χq
=

δχ̄q

χ̄p
. (20)

From (12) is χ̄p = χqs
2 and χ̄q = χps

2. Taking into account equation

1
s2

= 1 + αδ
def
= τ (21)

and (12) the obtained values are

χ̄p =
χq

τ
, χ̄q =

χp

τ
, d̄p = dqτ. (22)

Equations (11, 15–22) allow to determine parameters α, β, γ, δ of matrix Fpq and
scaling multipliers χ̄i.



A Fast Learning Algorithm for the Multi-layer Neural Network 7

4 Weights Update in the FSGQR Algorithm

The FSGQR algorithm is designed for any multi-layered neural network with
any differentiable activation function. The weight update is computed based on
the error measure given as

J (n) =
n∑

t=1

λn−t
NL∑
j=1

ε
(L)2
j (t) =

n∑
t=1

λn−t
NL∑
j=1

[
d
(L)
j (t) − f

(
x(L)T (t)w(L)

j (n)
)]2

(23)
Finding the minimum of function (23) is a primary target for the SGQR algo-
rithm. It starts with the classic error backpropagation phase followed by lineari-
sation of the activation function, which yields

n∑
t=1

λn−tf ′2
(
s
(l)
i (t)

) [
b
(l)
i (t) − x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0 (24)

The SGQR algorithm is using rotation matrices, hence Eq. (24) needs to be
presented in the matrix notation as follows

A(l)
i (n)w(l)

i (n) = h(l)
i (n) (25)

where

A(l)
i (n) =

n∑
t=1

λn−tz(l)i (t) z(l)Ti (t) (26)

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s
(l)
i (t)

)
b
(l)
i (t) z(l)i (t) (27)

and
z(l)i (t) = f ′

(
s
(l)
i (t)

)
x(l) (t) (28)

b
(l)
i (n) =

{
f−1

(
d
(l)
i (n)

)

s
(l)
i (n) + e

(l)
i (n)

for l = L
for l = 1 . . . L − 1 (29)

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s
(k)
i (n)

)
w

(k+1)
ji (n) e

(k+1)
j (n) for k = 1 . . . L − 1 (30)

To solve Eq. (25) we use QR decomposition with the Givens rotations for
k = 0 . . . ni − 1 and for q = k + 1 . . . ni − 1 (p < q) as follows

G(k)
pq A(l)

i (n)w(l)
i (n) = G(k)

pq h(l)
i (n) (31)

or in the scaled form

KF(k)
pq K−1KE(l)

i (n)w(l)
i (n) = KF(k)

pq K−1Kd(l)
i (n) (32)
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where h(l)
i (n) = Kd(l)

i (n), and A(l)
i (n) = KE(l)

i (n). After multiply the Eq. (32)
by K−1 it is obtained

IF(k)
pq E(l)

i (n)w(l)
i (n) = IF(k)

pq d(l)
i (n) (33)

or simply
F(k)

pq E(l)
i (n)w(l)

i (n) = F(k)
pq d(l)

i (n) (34)

Now it is easy to see the all
χi = χ̄i = 1. (35)

This leads to a Fast Scaled GQR algorithm. The two computational cases
take the form:
Case 1: c �= 0 i.e. dp �= 0. The two parameters are set as follows

α = δ = 1 (36)

the remaining parameters are calculated

γ =
dq

dp
, β = γ. (37)

τ = 1 + γ2 (38)

d̄p = dpτ. (39)

Case 2: s �= 0 i.e. dq �= 0. The two parameters are set as follows

β = γ = 1 (40)

other parameters are calculated

δ =
dp

dq
, α = δ. (41)

τ = 1 + α2 (42)

d̄p = dqτ. (43)

Equations (35–43) allow to calculate parameters α, β, γ, δ of matrix Fpq. The
scaling factors χ̄i = 1 and should not be calculated.

In the FSGQR algorithm the linear response (s(l)i ) is calculated for each
neuron. That forces the Eq. (25) to be solved as many times as there are neurons
in the network. This is achieved by the Givens QR decomposition that utilizes
a fast variant of the scale rotations as described in the previous section. The
intermediary rotation matrix QT does not need to be stored in the memory
since, only the rotation parameters α, β, γ, and δ are needed to accomplish the
decomposition process.

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) (44)
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R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) (45)

Once Eq. (45) is calculated, the matrix A(l)
i (n) is fully transformed to its upper-

triangle form depicted as R(l)
i (n). Due to the upper triangle matrices proper-

ties inversion of R(l)
i (n) is not burdened with high computational complexity.

Finally, the weight update formula is

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) (46)

w(l)
i (n) = (1 − η)w(l)

i (n − 1) + η ŵ(l)
i (n) (47)

5 Experimental Results

To test the performance of the proposed FSGQR algorithm it has been com-
pared to its predecessors — SGQR and GQR. All three algorithms share the
same core — the QR decomposition, but they differ in terms of rotation types.
The algorithms have trained several neural networks of various topologies. The
main effort was put on the classical multilayered perceptrons (MLP) and fully
connected multilayered perceptrons (FCMLP). The FCMLP networks are char-
acterized by additional connections between layers and inputs. That means each
layer is connected to the network’s input and outputs of all preceding layers.

The conducted experiment yields two measures — Success Ratio (SR), and
average training Time (T) in milliseconds. The FSGQR algorithm utilizes two
hyperparameters, the learning rate (η) and the forgetting factor (λ). During
the experiment, the best combinations of η and λ have been found and used to
generate the statistics presented in this paper. For gathering the most valuable
data, each experiment was conducted 100 times. The criterion of best matching
hyperparameters is called the performance factor and is given by the following
equation

ξ =
SR

Ep · T
(48)

where Ep is the average epoch count that was required to meet the training
target.

5.1 Logistic Function Approximation

The logistic function approximation benchmark assumes training the network in
order to resolve the problem given by the following equation

y = f (x) = 4x (1 − x) (49)

The training set for this benchmark contains 11 samples where x ∈ [0, 1]. The
training target is to drop the average error measure below 0.001.
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Fig. 1. The logistic function success ratio.

Figure 1 presents the outcome in terms of success ratio which is similar to
other GQR variants. Lower values of the SR can be observed for the bigger
FCMLP networks.

Fig. 2. The logistic function average time.

Figure 2 presents the average training time. The FSGQR algorithm estab-
lishes convergence about 50% faster than the classic GQR method. It is worth
noticing that the time difference is bigger as the network size grows.

5.2 Hang Function Approximation

In the Hang function benchmark, the network is expected to be able to find a
solution for a non-linear two-dimensional function given as

y = f (x1, x2) =
(

1 + x−2
1 +

√
x−3
2

)2

(50)
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The training set for Hang benchmark contains 50 samples where x1, x2 ∈ [1, 5].
The training target is to achieve average error lower or equal to 0.001.

Fig. 3. The Hang success ratio.

As presented in Fig. 3, all three algorithms manifest similar performance in
terms of success ratio.

Fig. 4. The Hang average time.

The Hang benchmark average training time is shown in Fig. 4. The overall
time boost of the FSGQR over the classic GQR is about 38%. Again, the bigger
the network is, the training time difference grows.

5.3 Two Spirals Classification

The Two Spirals benchmark originates from the classification problems domain.
The neural network needs to group the input set into two categories — the lower
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and the upper spiral. The training set for this benchmark consists of 96 samples.
The training target is to drop the average epoch error below 0.05 threshold.

Fig. 5. The Two Spirals success ratio.

The overall success ratio (Fig. 5) of the FSGQR algorithm is similar to it’s
predecessors.

Fig. 6. The Two Spirals average time.

The training time for the Two Spirals benchmark, as presented in Fig. 6, is
similar for FSGQR and SGQR algorithms. The FSGQR method manifests about
32% time boost compared to the classic GQR variant.

6 Conclusion

This paper presents the computational optimization for the scaled rotations that
are utilized in the SGQR algorithm. The proposed modification is called FSGQR



A Fast Learning Algorithm for the Multi-layer Neural Network 13

(Fast Scaled Givens QR decomposition). The core of this paper contains a math-
ematical explanation of eliminating the redundant scaled factors (χ) calculation
which brings a significant time boost for the algorithm. The experimental results
that are shown in Sect. 5 confirm that the proposed FSGQR algorithm is supe-
rior to its predecessors in terms of the average training time. As expected, the
FSGQR algorithm retains a similar (very high) success ratio as other variants
of the GQR algorithm. The FSGQR algorithm is eligible to train any feedfor-
ward neural network. It is also flexible enough to seek for further improvements
and modifications in terms of momentum or parallel computation as initially
presented in [2,3,6–10].

References

1. Alsaadi, F.E., et al.: On knowledge discovery and representations of molecular
structures using topological indices. J. Artif. Intell. Soft Comput. Res. 11(1), 21–
35 (2021)

2. Bilski, J.: Momentum modification of the RLS algorithms. In: Rutkowski, L., Siek-
mann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI),
vol. 3070, pp. 151–157. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24844-6 18
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Abstract. A new parallel computational approach to the Levenberg-
Marquardt learning algorithm is presented. The proposed solution is
based on the AVX instructions to effectively reduce the high compu-
tational load of this algorithm. Detailed parallel neural network com-
putations are explicitly discussed. Additionally obtained acceleration is
shown based on a few test problems.

Keywords: Neural network learning algorithm · Levenberg-marquardt
learning algorithm · Vector computations · Approximation ·
Classification

1 Introduction

Artificial feedforward neural networks have been studied by many scientists e.g.
[2,12,14,27,28,31,43,45]. One of the most frequently used methods for training
feedforward neural networks are gradient methods, see e.g. [18,29,44]. Most of
the simulations of neural networks learning algorithms, like other learning algo-
rithms [19,20,30,33,34,36,40,41], work on a serial computer. The computational
complexity of many learning algorithms is very high. This makes serial implemen-
tation very time consuming and slow. The Levenberg Marquart (LM) algorithm
[21,26] is one of the most effective learning algorithms, unfortunately, it requires
a lot of calculations. But, for very large networks the computational load of the
LM algorithm makes it impractical. A suitable solution to this problem is the
use of high performance dedicated parallel structures, see eg. [3,5–13,38,39,48].
This paper shows a new parallel computational approach to the LM algorithm
based on vector instruction. The results of the study of a new parallel approach
to the LM algorithm is shown in the last part of the paper.

A sample structure of the feedforward neural network is shown in Fig. 1. This
sample network has L layers, Nl neurons in each l − th layer, and NL outputs.
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The input vector contains N0 input values. The Eq. (1) describes the recall phase
of the network

s
(l)
i (t) =

Nl−1∑

j=0

w
(l)
ij (t) x

(l)
i (t), y(l)

i (t) = f(s(l)i (t)). (1)

Fig. 1. Sample feedforward neural network.

The Levenberg-Marquard method [21,26] is used to train the feedforward
neural network. The following loss function is minimized

E (w (n)) =
1
2

∑Q

t=1

∑NL

r=1
ε(L)2

r (t) =
1
2

∑Q

t=1

∑NL

r=1

(
y(L)

r (t) − d(L)
r (t)

)2

(2)
where ε

(L)
i is defined as

ε(L)
r (t) = ε(Lr)

r (t) = y(L)
r (t) − d(L)

r (t) (3)

and d
(L)
r (t) is the r − th desired output in the t − th probe.

The LM algorithm is a modification of the Newton method and is based on
the first three elements of the Taylor series expansion of the loss function. A
change of weights is given by

Δ (w(n)) = −[∇2E (w(n))
]−1∇E (w(n)) (4)

this requires knowledge of the gradient vector

∇E (w(n)) = JT (w(n)) ε (w(n)) (5)

and the Hessian matrix

∇2E (w(n)) = JT (w(n))J (w(n)) + S (w(n)) (6)
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where J (w(n)) in (5) and (6) is the Jacobian matrix
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ε
(L)
1 (1)

∂w
(1)
10

· · · ∂ε
(L)
1 (1)

∂w
(k)
ij

· · · ∂ε
(L)
1 (1)

∂w
(L)
NLNL−1

... · · · ... · · · ...
∂ε

(L)
NL

(1)

∂w
(1)
10

· · · ∂ε
(L)
NL

(1)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(1)

∂w
(L)
NLNL−1

... · · · ... · · · ...
∂ε

(L)
NL

(Q)

∂w
(1)
10

· · · ∂ε
(L)
NL

(Q)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(Q)

∂w
(L)
NLNL−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

In the hidden layers the errors ε
(lr)
i are calculated as follows

ε
(lr)
i (t) ∧=

Nl+1∑

m=1

δ
(l+1,r)
i (t)w

(l+1)
mi , (8)

δ
(lr)
i (t) = ε

(lr)
i (t) f ′

(
s
(lr)
i (t)

)
. (9)

Based on this, the elements of the Jacobian matrix for each weight can be com-
puted

∂ε
(L)
r (t)

w
(l)
ij

= δ
(lr)
i (t) x

(l)
j (t) . (10)

It should be noted that derivatives (10) are computed in a similar way it is done
in the classical backpropagation method, except that each time there is only one
error given to the output. In this algorithm, the weights of the entire network
are treated as a single vector and their derivatives form the Jacobian matrix J.

The S (w(n)) component (6) is given by the formula

S (w(n)) =
∑Q

t=1

∑NL

r=1
ε(L)
r (t)∇

2

ε(L)
r (t) . (11)

In the Gauss-Newton method it is assumed that S (w(n)) ≈ 0 and that equation
(4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n))

]−1
JT (w(n)) ε (w(n)) . (12)

In the Levenberg-Marquardt method is is assumed that S (w(n)) = μI and that
equation (4) takes the form

Δ(w(n)) = −[
JT (w(n))J (w(n)) + μI

]−1
JT (w(n)) ε (w(n)) . (13)

By defining
A (n) = − [

JT (w(n))J (w(n)) + μI
]

h (n) = JT (w(n)) ε (w(n)) (14)
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the Eq. (13) is as follows

Δ (w(n)) = A(n)−1h (n) . (15)

The Eq. (15) can be solved using the QR factorization

QT (n)A (n) Δ (w(n)) = QT (n)h (n) , (16)

R (n) Δ (w(n)) = QT (n)h (n) . (17)

This paper used the Givens rotations for the QR factorization. The operation,
in 5 steps, of the LM algorithm is described below:

1. The calculation of the network outputs for all input data, errors, and the loss
function.

2. The calculation of the Jacobian matrix, using the backpropagation method
for each error individually.

3. The calculation of weight changes Δ (w(n)) using the QR factorization.
4. The recalculation of the loss function (2) for new weights w(n)+Δ (w(n)). If

the loss function is less than the one calculated earlier in step 1, then μ should
be reduced β times, the new weight vector is saved and the algorithm returns
to Step 1. Otherwise, the μ value is increased β times and the algorithm
repeats step 3.

5. The algorithm stops running when the loss function falls below a preset value
or the gradient falls below a preset value.

2 Vector Solution for Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm needs high computing power. Each epoch
starts with steps 1 and 2, and next steps 3 and 4 can be repeated a few times.
Figure 2 shows a single epoch of the LM algorithm, showing the first two steps
and repeating steps 3 and 4. It is worth noting that the next pairs of steps 3
and 4 are independent of each other and can be performed at the same time.
They only differ in the μ parameter value and have the same starting point.
Thus, they can be run parallel on separate processor cores. However, the solution
proposed in this article uses processor vector instructions. Vector instructions
allow 4, 8, and even 16 operations to be performed in parallel. This approach
enables simultaneous determination of new 4, 8, or 16 points in the weight space
using only one processor core, see Fig. 3. Figure 3a shows the epoch of the LM
algorithm with the use of four-element vectors. After completing the first two

Fig. 2. Sample illustration for computational steps in LM algorithm.
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steps, the algorithm calculates steps 3 and 4 for the next 4 parameters μ at one
time. Thus, the three consecutive computations of steps 3 and 4 are performed
earlier and therefore do not take computational time. The rectangles with the
line in the middle symbolize steps 3 and 4, which are used in the standard
calculation method and are omitted in calculations using vector instructions.
Figure 3b shows the version with eight-element vectors.

Fig. 3. Sample illustration for calculating method with vector instructions. a) the 4-
elements vector, b) the 8-elements vector

Figure 4 shows an example of the learning process using the LM algorithm. In
the following epochs, you can see a different number of steps 3 and 4 repetitions.
There are epochs where the repetition does not occur and there are those with a

Fig. 4. Sample illustration for training process with vector instructions.
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large number of repetitions, in this case, vector instructions can be used, which
makes it possible to calculate up to four pairs of steps 3 and 4 at the same
time and consequently shortening the learning time. Of course, eight- or sixteen-
element vectors can be used instead of using four-element vectors. This increases
the parallelism and speed of the proposed calculation method.

3 Experimental Results

The proposed solution was tested against the classical variant of the Levenberg-
Marquardt learning algorithm on several test problems. Two types of forward-
coupled artificial neural networks were tested in the experiment: MLP — Multi-
layer Perceptron, FCMLP — Fully Connected Multilayer Perceptron. The per-
formance of the presented calculation method was measured in average training
time in milliseconds. The presented results are compiled according to the best
combination of training parameters. In all cases, the initial weights were ran-
domly selected from the range [–0.5,0.5]. The number of epochs has been limited
to 1,000. Each training session was repeated 100 times.

3.1 Logistic Function Approximation

The logistic function is a unary function given by the formula

y = f (x) = 4x (1 − x) (18)

The teaching sequence contains 11 samples where x ∈ [0, 1]. The average
accepted error threshold has been set to 0.001. Table 1 shows the simulation
results for two kinds of neural networks MLP and FCMLP. Both networks have
five neurons in the hidden layer. The symbols LM, LMP 4, LMP 8, and LMP
16 represent the average network training time using the LM algorithm and its
vector versions for 4, 8, and 16 element vectors, respectively. The speed factor
means how many percent the vector version is faster then the classical one and
is given by the formula

SF =
(

1 − LMPx

LM

)

∗ 100% (19)

Table 1. Training results for the LOG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-1-5-1 0.880 0.440 50 0.434 50 0.433 50

FCMLP-1-5-1 0.588 0.311 47 0.306 48 0.305 48
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3.2 Hang Function Approximation

The Hang function is a nonlinear two-argument x1 and x2 function with the
following formula

y = f (x1, x2) =
(

1 + x−2
1 +

√

x−3
2

)2

(20)

The Hang teaching sequence contains 50 samples that cover arguments in the
range of x1, x2 ∈ [1, 5]. The target error threshold was set to 0.001 as the epoch
average. The results of simulations for the Hang function are shown in Table 2.
Both tested networks have 15 neurons in the hidden layer.

Table 2. Training results for the HANG function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-15-1 27.235 13.191 51 12.553 53 12.462 54

FCCMLP-2-15-1 34.237 16.691 51 16.165 52 16.111 52

3.3 IRIS Function Classification

The iris dataset contains 150 instances describing three species of iris flowers.
The flowers are identified with 4 numerical attributes describing the lengths and
widths of the petals of the flower. The target error has been set to 0.05. Table 3
shows the simulation results.

Table 3. Training results for the IRIS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-4-6-6-3 528.183 242.789 54 229.337 56 223.374 57

FCCMLP-4-6-6-3 1851.720 870.468 52 842.894 54 831.464 55

3.4 The Two Spirals Classification

Two spirals is a well-known classification problem where a neural network has
to identify one of the two helices based on two-dimensional coordinates. The
training set for this problem contains 96 samples. The target error has been set
to 0.05. Table 4 shows the simulation results.



A New Computational Approach 23

Table 4. Training results for the TS function.

Network LM LMP4 SF LMP8 SF LMP16 SF

[ms] [ms] [%] [ms] [%] [ms] [%]

MLP-2-5-5-5-1 166.819 77.954 53 76.139 54 75.555 54

FCMLP-2-5-5-5-1 349.704 165.037 52 161.613 53 161.192 53

4 Conclusion

In this paper, the new computational approach to the Levenberg-Marquardt
learning algorithm for a feedforward neural network is proposed. Two types of
feedforward neural networks were used in the experiments: multilayer percep-
tron and fully interconnected multilayer perceptron. The networks were trained
with different training sets: Logistic function, Hang, Iris, and Two Spirals. We
can compare the computational performance of the proposed solution, based on
vector instructions of the Levenberg-Marquardt learning algorithm, with a clas-
sical solution. The conducted experiments showed a significant reduction of the
real learning time. For all training sets, calculation times have been reduced by
an average of 50%. It has been observed that the performance of the proposed
solution is promising.

A vector approach can be used for other advanced learning algorithms of
feedforward neural networks, see eg. [2,8]. In the future research, we plan to
design parallel realization of learning of other structures including probabilistic
neural networks [32] and various fuzzy [1,15,20,22,24,37,42,46,47], and neuro-
fuzzy structures [16,17,23,25,35].
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Abstract. Quality measurement of vehicle ambient lighting during
series production can be influenced by subjective perceptions of light
homogeneity. In consequence, the labels correspond to the decisions
whether the lights appear homogeneous or not. In this article we demon-
strate how images of ambient lighting were trained by Deep Belief Net-
works using the learning rules “backpropagation” (BP) and “enforcing-
rule supervised” (ERS). In addition, the effect of the contrastive diver-
gence pre-training is analyzed on the accuracy of the trained networks.
The results are promising for decision support in the production process
to minimize the influence of subjectivity by human evaluators.

Keywords: Deep belief networks · Enforcing-rule supervised ·
Subjective perception · Vehicle ambient lighting

1 Introduction

Ambient lights have been used in luxury cars for years to enhance the mood,
orientation, and comfort of the driver [1–3]. Several experiments were conducted
to find out the individual perceptions, emotions, or the suited positions in the
vehicles (e.g., [4–8]).

Because the concept and technology of ambient lighting have been expanded
over the years, the effects of automotive lights were examined under further
aspects, e.g., positive psycho-physiological reactions on driver mood or carsick-
ness [9,10]. Likewise, the negative effects are studied in relation to cognitive stress
[11,12], accidents caused by distraction or load because of diverse contrast at
night [1,13,14]. In addition, the implications for future automatic driving are
considered [15–17].

Supported by MENTOR GmbH & Co. Präzisions-Bauteile KG.
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On the other hand, few analyses refer to the evaluation of ambient lighting
or light guides from the point of view of homogeneity distribution [12,18]. Minor
defects can hardly be noticed [12] but have importance for the perceived quality
of the interior [18]. This is a major challenge for inspection during production.

Since perception and human evaluation of ambient lighting is a matter of
subjectivity and depends on personal condition, decision support is desirable.
For the production process, a small amount of training data is required on the
part of the company, as well as quick adaptation. For this task we propose deep
belief networks (DBN) trained with images of light guides.

The challenge is that there are no open data sets available and no compar-
ative studies. Neural networks are proposed for e.g., evaluation of fiber optic
connectors [19] or LED chips [20], and in general for surface inspection, but
there are no findings for the evaluation of homogeneity distribution of ambient
lighting for vehicles.

The proposed solution using DBN with the learning rules “backpropagation”
and “enforcing-rule supervised” is quite promising, as will be shown in the fol-
lowing sections.

This contribution is structured as follows: in the next section the problem
and the data sets are described in more details. In Sect. 3 the architecture of
the Deep Belief Networks, the learning rules and the experimental design are
presented. The results and implications are discussed in Sect. 4.

2 Aesthetic Ambient Lighting in Vehicles

As already mentioned, the light emission in the interior of a vehicle should be
pleasant and perceived as uniform for the driver. In addition to aesthetic proper-
ties, ambient lighting should help with orientation inside the car, but not distract
while driving.

During the production process of the ambient lighting, the light guides
undergo a manual quality check by human evaluators. Labeling the light guides
into categories of “homogenous” or “not homogenous” as well as “pleasant” or
“not pleasant” can be subjective and depended on the evaluator’s experience,
opinion, and current state, e.g., the degree of fatigue or environmental influences.

As it was pointed out in [[12], p. 662] the problem is to detect an “invisible”
inhomogeneity. Figure 1 shows two such ambient lights, where it is difficult for
laypersons to decide which light guide produces a homogeneous light and which
one does not.

Fig. 1. Light guides for car interior lighting. Flawless light guide (upper one) and faulty
light guide (lower one). (Images by Mentor GmbH & Co. Präzisions-Bauteile KG)
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To verify whether decision support can be provided through image processing
and neural networks, the project was supported by the company Mentor GmbH
& Co. Präzisions-Bauteile KG. Because most of the light guides are of course
flawless in the production process, the dataset was specially created, including
manually scratched or manipulated light guides.

Dataset. Several light guides have been clamped into a specially designed sys-
tem with a camera to ensure that the light guide will always be in the same
position within the image. At a later stage, the images of the light guides were
evaluated and labeled.

A total of 201 images of light guides with a size of 4112× 188 pixels are
available: 82 images are labeled as flawless and 119 images of possible produc-
tion errors like scratches, faulty spots, too dark light emission, too yellow light
emission and combinations of it. These images were divided into different classes
and serve as a training and test dataset for the Deep Belief Network (DBN),
which will be discussed in the next section.

3 Deep Belief Networks and Learning Rules

DBN is a generative model and successfully used for monitoring in manufacturing
due to its feature extraction capability [21–23]. For the given task DBN have
been trained besides fully connected neural networks. DBN have been used as a
pre-training mechanism to find a good initial weight matrix for the network.

For pre-training, two layers of the network at a time form a Restricted Boltz-
mann Machine (RBM), where the hidden layer of the first RBM is used as the
visible layer of the second RBM. This way all created RBMs are stacked as
described by [24] and shown in Fig. 2. Just the last layer for classification is left
out since it can only be trained supervised.

Fig. 2. The RBM architecture.

In the unsupervised pre-training, the RBMs learn a probabilistic model of the
given input vectors. More details on the unsupervised learning are given below.
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3.1 Unsupervised Pre-training

The weight matrix W and the bias vectors �bv (visible units) and �bh (hidden
units) for a single RBM are updated for each training vector �x by performing
the following steps:

1 �p0
v = �x Use normalized input vector

as probabilities for visible units

2 �p0
h = σ

(
�bh + W · �p0

v

)

�h0 = sample
(

�p0
h

)
)

Calculate probabilities units for
hidden units and sample binary states

3 �p1
v = σ

(
�bv + W tr · �h0

v

)
Calculate probabilities for
visible units (reconstruction)

4. Repeat steps 2 and 3 (alternating Gibbs Sampling) n–1 times.

5 �pn
h = σ

(
�bh + W · �pn

v

)
Calculate probabilities for hidden
units the last time

6 ΔW = η ·
(

�p0
h ·

(
�p0
v

)tr

− �pn
h · ( �pn

v

)tr)
Calculate weight matrix changes and
change weights: W ′ = W + ΔW

7 Δ�bv = η ·
(

�p0
v − �pn

v

)

Δ�bh = η ·
(

�p0
h − �pn

h

) Calculate bias vector changes and change
biases: �b′

v = �bv + Δ�bv; �b′
h = �bh + Δ�bh

Note for step 2, 3, and 5 (1): The functions σ and sample calculate the
following output for each vector component:

σ(x) :=
1

1 + e−x
; sample(p) :=

{
1 if p > random([0|1])
0 else

(1)

After the changes for the first RBM are calculated from the input vector
(steps 1 to 7), the hidden units are sampled again by performing the second
step. These values are used as inputs for the next RBM, which is trained just
like the prior one. This procedure repeats until all RBMs respectively layers
are trained. Then the network continues learning the next input vector. This
practice is called Greedy Layer Wise Training [23]. For the experiments n=1
step of alternating Gibbs Sampling was used.

3.2 Learning Rules

The used learning rules are the well-known “backpropagation” (BP) and the
“enforcing-rule supervised” (ERS). The learning rule introduced by [25] is a
simplified alternative to BP, that is not based on the gradient descent method.
Moreover, the weighting values are allowed only in an interval between [–1,1].

ERS is based on the following Eq. (2), where c is the equivalent of the learning
rate:
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Δwi,j = c · |(1 − |wi,j |)| · δj · sgn (oi) (2)

The factor sgn (oi) is used only as the sign of the whole product.
ERS2 is a version in which the value of the sending neuron oi is multiplied

to allow better comparability with BP (3).

Δwi,j = c · |(1 − |wi,j |)| · δj · oi (3)

The error is computed as follows (4):

δj =

{
(tj − oj) if j is an output unit∑

k δk · wj,k if j is a hidden unit
(4)

The similarity with BP is obvious, but the function is much simplified by
omitting the derivatives.

To cope with deep architectures and many neurons, the error function was
modified to (5):

δ′
j = 2d · δj/ni (5)

where d is the number of layers and ni the number of neurons in the layer directly
above the layer of neuron j.

The ERS and ERS2 variants are called ERS-DL and ERS2-DL for deep
networks, respectively.

These five learning rules, i.e., BP and the four variants of ERS, are used for
the experiments.

3.3 Experimental Design

To reduce computational load, while keeping the RGB values, the images are
scaled to 180× 35× 3, resulting in 18.900 input neurons.

The input values for the RBM pre-training then are converted into binary
values either 0 and 1 or bi-polar values –1 and 1. For the subsequently supervised
training the input values are normalized to the corresponding interval with real
values between either 0 and 1 or –1 and 1.

The labels are coded as a vector with one component per class with the values
0 (wrong class) and 1 (correct class) for networks that use the logistic activation
function and –1 and 1 for networks that use the hyperbolic tangent activation
function.

The images were split into sets of 55% for training and 45% for testing to
meet the requirement to use less training data than usual.

Since the learning rules each work best with their own hyper parameters
(learning rate, activation function, number of layers, neurons per layer), various
architectures have been tested against each other. To discuss the results, only
the best architectures will be pointed out for each learning rule, even thou every
learning rule was tested with that particular architecture.
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The output layer contains 2 or 4 neurons corresponding to the number of
classes. In the first experiments, the images were only classified as “flawless” and
“faulty”. As a further task, the images were sorted into four classes (flawless,
light guides with a yellow cast, light guides that are too dark, other defects such
as scratches).

The hidden layers vary between one and three layers. Experiments have
shown that accuracy decreases when more than three layers are used.

The number of neurons per hidden layer varied from 10 neurons to a maxi-
mum of 1.500 neurons. It has been shown that the use of more than 1.500 neurons
does not lead to any improvement or even to a degradation of the performance
of the network. Before training, the matrices were initialized in three different
ways: Gaussian distributed small random values (SRV), evenly distributed ran-
dom values between -0.5 and +0.5 (ESRV) as well as evenly distributed random
values between –1.0 and +1.0 (EBRV).

In addition, the contrastive divergence (CD) algorithm introduced by [26]
was alternately used or switched off for the same network configurations and
initial matrices. In this way, it is possible to validate whether there is a positive
effect on training results and whether different learning rules respond differently
to CD.

In the experiments, after initializing the weighting matrices, the next training
step was either to apply CD with a learning rate of 0.1 and one iteration, and then
apply the learning rules, or to proceed directly to supervised learning without
CD.

All experiments have been executed with learning rates 0.1, 0.05 and 0.01.

4 Experimental Results

In the experiments, over 1600 networks with different architectures and hyperpa-
rameters were tested to find the networks with the highest accuracy. The training
data set, i.e., 111 images for training and 90 images for testing, was divided into
two classes, “flawless” and “faulty”. An accuracy of 97.78% could be achieved
with ERS2-DL. The best configurations per learning rule are shown in Table 1.

The corresponding confusion matrices are shown only for the best ERS rule
in comparison to BP (Table 2).

To differentiate possible defects, the images were assigned as specified in
Table 3.

The results of the best performing networks per rule can be seen in Table 4
and 5.

Summary of the Results. The most promising candidates are ERS2-DL and
ERS2, with ERS2-DL being a good candidate for deeper networks.



Training Subjective Perception Biased Images with DBN, BP, and ERS 33

Table 1. Classification results of the test data

Rule ERS2-DL ERS2 ERS-DL ERS BP

Accuracy (%) 97.78 96.67 95.56 91.11 90.00

Architecture 18900-500-500-2 18900-500-500-2 18900-500-500-2 18900-500-2 18900-500-2

Initialization ESRV ESRV ESRV ESRV ESRV

CD No Yes No Yes No

Learning Rate 0.01 0.1 0.01 0.01 0.01

Batch Size 2 2 2 2 2

Activation Function Logistic Logistic Tanh Tanh Logistic

Target vector encoding [0,1 ] [0,1] [–1,1] [–1,1] [–1,1]

Table 2. Confusion matrices for two classes

predicted ERS2-DL Flawless Faulty

flawless 34 0 100.00%

Faulty 2 54 96.43%

94.44% 100.00% 97.78%

predicted BP Flawless Faulty

flawless 36 9 80.00%

faulty 0 45 100.00%

100.00% 83.33% 90.00%

Table 3. Image assignment to four classes

Flawless Yellow Faulty Dark

Training data set 46 9 47 9

Test data set 36 8 39 7

Table 4. Classification in four classes

Rule ERS2 ERS2-DL ERS-DL BP ERS

Accuracy(%) 88.89 87.78 87.78 85.56 81.11

Architecture 18900-500-500-4 18900-100-100-4 18900-1500-500-4 18900-100-100-4 18900-100-100-4

Initialization ESRV ESRV ESRV SRV ESRV

CD Yes No No No Yes

Learning Rate 0.01 0.01 0.1 0.01 0.01

Batch Size 4 4 4 4 4

Activation Function Logistic Tanh Tanh Logistic Tanh

Target Vector Encoding [0,1] [–1,1] [–1,1] [0,1] [–1,1]
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Table 5. Confusion matrices for 4 classes

Predicted ERS2 Flawless Yellow Faulty Dark

Flawless 36 0 5 1 89.47%

Yellow 0 6 0 0 100.00%

Faulty 0 1 32 0 96.97%

Dark 0 1 2 6 66.67%

100.00% 75.00% 82.05% 85.71% 88.89%

Predicted BP Flawless Yellow Faulty Dark

flawless 36 0 6 1 83.72%

yellow 0 6 1 1 75.00%

faulty 0 2 32 2 88.89%

dark 0 0 0 3 100.00%

100.00% 75.00% 82.05% 42.86% 85.56%

The results also show that the benefits of CD can be especially used together
with ERS learning rules.

In addition, the classification of faulty light guides was the most successful.
This is true for both two-class and four-class classifications. When the BP learn-
ing rule was applied, the fault-free light guides were detected, but not the faulty
ones, and the dark ones in the case of the four classes.

The Problem of Subjectivity and Labeling of Data. Since the labels
are the result of subjective influences, it is likely that some of them should be
reviewed.

When subjective influences play a role, 100% accuracy of results cannot be
expected. The studies e.g., by [19,27] on different subjects came to similar results
as the ones presented here.

Jahani [27] has studied the forest landscape quality and received an accuracy
of R2 = 0.871 with a multilayer feed-forward network and R2 = 0.782 with
multiple regression. Fernandez et al. [19] deal with the classification of fiber
optic connectors through image processing and neural networks. The results are
a training accuracy of 97% and 92% for the test data. In this case, three classes
were defined for “clean”, “dirty” and “very dirty”, with most problems occurring
in the classification of “dirty”.

Hassib et al. [9] have analyzed the influence of the emotions on drivers’ capa-
bilities with camera-based methods, psycho-physiological sensors, and different
ambient light colors. Using the subject-dependent random forest classifier, an
average accuracy of 78.9% was achieved for valence classification and 68.7% for
arousal.

In a previous work of our study, the same data set was trained with a Convo-
lutional Neural Network (CNN) with similar results as ERS2-DL [28]. However,
the assignment of faulty light guides as correct ones was twice that of ERS2-DL.
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For the company, it is very important that as few faulty light guides as possible
are classified as fault-free.

As the question of interest in our case is why no network reached 100% in
the learning process, the images that were incorrectly assigned according to the
label were examined more closely.

It turned out that the images were assigned twice with uncertainty: once
with a “yellow tint” and the same image as “dark” (Fig. 3).

Fig. 3. Double designation of the image as “yellow tint” and “too dark”. (Color figure
online)

Due to this double classification, of course, no network can learn the images
unambiguously or to classify them correctly. This is also the case when these are
split by random selection once in the training data set and once in the test data
set.

Another problem occurs when light guides are labeled as e.g., “yellow tint”
while also having other flaws that belong into other classes like scratches that are
classified as “faulty”. The image then can only be classified as either “yellow”
or “faulty” when in reality both classes can apply.

Other cases will be shown in Fig. 4 and 5.

Fig. 4. Image is labeled as “flawless”, but classified as “faulty”.

Fig. 5. Image is labeled as “dark”, but classified as “yellow”. (Color figure online)

Most interesting is the classification of the image shown in Fig. 6: each net-
work, including the CNN, has classified the image as “flawless”.

A human being will certainly classify this image of a light guide as faulty.
This phenomenon needs to be investigated further.
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Fig. 6. Image classified as “flawless”.

5 Conclusion and Future Work

We proposed a solution to support human evaluators of ambient lights in the
production process using Deep Belief Networks. With different learning rules,
satisfactory results could be obtained despite subjective influences.

Subjective perception led to some images being listed twice in the dataset
with different labels. These could be identified by the classification results
through the networks.

The ERS learning rule introduced here has proven best for this problem. The
most suitable variation needs to be investigated in the production process. In
particular, it should be examined whether the use of both learning rules, BP
and ERS, is an option to identify light guides that cannot be unambiguously
classified. Only these then need to be evaluated by experts.

An automated support system offers the advantage that fatigue, one’s own
emotional state or subjective perceptions do not play a role. In this respect, the
number of ambient guides to be manually checked by human evaluators can be
reduced, as shown in this contribution.
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Abstract. Domain-adversarial learning allows a machine learning
model to be trained with supplementary data from a different domain.
This enables applications in various time series domains. Although sev-
eral domain-adversarial models have been proposed in the past, there is
a lack of empirical results with different types of time series. This paper
provides an empirical analysis with multiple models, datasets and eval-
uation objectives. Two models known from literature are evaluated in
combination with four public datasets: An RNN-based model (VRADA)
is contrasted with a newer CNN-based one (CoDATS). The datasets
include indoor climate, gas sensors, human activity and physiological
data. Our experiments explicitly consider different dataset sizes, simi-
larities between domains and the scenario of multisource training. It is
found that CoDATS is very suitable for univariate datasets and performs
well even with small datasets. Multivariate datasets can only benefit from
the adversarial domain adaptation if the number of data points is large
enough. VRADA was found to outperform CoDATS in modeling multi-
variate datasets. The multisource training available in CoDATS appears
promising. A correlation is shown between the similarity of domains and
prediction performance.

Keywords: Domain adaptation · Adversarial learning · Time series

1 Introduction

For the longest time, time series data was analyzed using traditional methods.
In recent years the focus has shifted to the use of deep learning models. This
is partly due to the fact that for the meaningful use of neural networks an
accurate training is necessary. An example in this regard is indoor climate data.
In general, if data such as humidity or CO2 values are recorded in a certain
environment, machine learning models for a different environment cannot be
trained with that data. Transfer Learning (TL) can provide a remedy. TL refers
to a subfield of machine learning, in which training and test data can come from
different domains. Reference is made to the statement that, in general, existing
knowledge can be used to tackle new problems faster or with better approaches
to solve them [13, p. 1346].
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Using TL, it is possible, given a particular source domain DS and the asso-
ciated problem TS , to find a target function fT (·) for the target domain DT and
the associated task TT [13, p. 1347]. Transfer learning can be defined according
to Tan et al. [17] as follows: Given a target problem TT , based on the target
domain DT , Transfer Learning, with the help of the source domain DS for the
source problem TS , aims to improve the performance of the prediction function
fT (·) for the target problem TT . This is done by determining and transferring
latent knowledge of DS and TS , where DS �= DT and/or TS �= TT holds. Addi-
tionally, in most cases, the size N of the domain DS is much higher than that of
DT , so NS � NT holds. This results in conserving resources by eliminating the
time and financial burden of having to perform a recollection of data for specific
scenarios.

Within the last five years, there has been a vast increase in research on
TL with time series [19]. Frequently addressed approaches are pre-training a
source prediction model and fine-tuning it in the target domain, or training
an autoencoder to transform between feature spaces in advance to the actual
model training. Beside these, another trending approach is domain-adversarial
learning. It is a model-based TL technique that allows a model to be trained
with data from different domains in the same time [6]. Although this approach
is still young, according to a recent literature review on time series TL [19], it
has been used more frequently than other model-based approaches supporting
joint-training. Alternative approaches are ensemble-based transfer or the con-
struction of a transfer-dedicated model objective function. In the last years,
new models depending on adversarial domain adaptation have been introduced,
see Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) [14],
Joint Adversarial Domain Adaptation (JADA) [22] or Domain-Adversarial Neu-
ral Network (DANN) [7]. However, to the best of our knowledge, there is no
empirical review of existing models. Therefore, this paper presents an evaluation
of existing models in different scenarios.

2 Background

Domain Adaptation (DA). There are several approaches to TL. In this paper,
we discuss DA. In this case, source and target problems are identical, but differ
in source and target domains. This is possible both when the target domain data
is unlabeled and when there is little labeled data in the target domain. Thus,
Neural Networks (NNs) can be trained with data different from the target data.

Generative Adversarial Learning. Adversarial learning is inspired by Generative
Adversarial Networks (GANs) [1]. Two NNs are trained simultaneously. One of
the networks is a generative network, the generator G. The discriminator D, on
the other hand, is a discriminative network. Here, G is supposed to represent
the probability distribution of a given dataset, while D computes the probability
that a sample was not generated by G. Thus, the two networks are constantly
optimizing each other. This is defined by the following function [8]:
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minGmaxDV (D;G)
= Ex∼pdata(x)[logD(x)]
+ Ez∼pz(z)[log(1 − D(G(z)))] (1)

x describes the data whose probability should be learned, z the input noise
variables and p the probability over those variables.

Domain Adversarial Leaning. The first use of adversarial NNs in conjunction
with DA was presented in 2014 by Ajakan et al. [1]. This is the DANN, which was
developed for image processing and has better performance than a standard NN
or even Support Vector Machines. The approach is based on the assumption that
a representation of the data has to be found, which cannot distinguish between
training and test data [1]. It must be ensured that the internal representation
no longer contains any discriminative information that can be used to infer from
which domain the data was obtained.

The problem in [1] is described by
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with
Ld(o(x),z) = −z · log(o(x)) − (1 − z) · log(1 − o(x)) (3)

The hyperparameter λ must be greater than zero and describes the weighting
of the DA regularization term. The adversarial part of the network is described
by the NN, parameterized by {W ,V , b, c}, and the domain regressor, param-
eterized by {u,d}, which continuously optimize each other during the learning
process [1].

3 Related Work

VRADA was one of the first models introduced using time series. Since then more
have been added, differing in the architecture used, task to be solved and data to
be addressed. Table 1 compares prominent models concerning adversarial DA in
relation to time series data. Learning tasks include regression and classification
and models are available for both univariate and multivariate time series data.
As shown in Table 1, adversarial DA is only introduced since 2017 in relation
to time series data. Since then mainly new models have been introduced and
empirical studies are hard to find.
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Table 1. Published models

Model Year Architecture Data Task

CoDATS [20] 2020 CNN Multivariate Classification

DATSING [9] 2020 CNN Univariate Regression

CDAN [18] 2020 CNN Multivariate Classification

MTS-ADNN [21] 2020 CNN Multivariate Classification

LSTM-DANN [3] 2019 LSTM multivariate Regression

ADA [11] 2019 LSTM Univariate Regression

DANN [7] 2018 CNN Univariate Regression

ADAN [4] 2018 LSTM Multivariate Regression

JADA [22] 2018 CNN Univariate Classification

VRADA [14] 2017 RNN Multivariate Classification

4 Methodology

For the evaluation of the models, elements of implementation are presented
below.

4.1 Models

CoDATS. The Convolutional Deep Domain Adaptation Model for Time Series
Data (CoDATS) was developed to fill the gap of unsupervised learning models
that work with time series data [20]. It was developed with the intention of
using Convolutional Neural Networks (CNNs) to train and evaluate models more
quickly. The three most important aspects of CoDATS in doing so are the use
of existing DA methods, better performance than existing time series fitting
methods with respect to individual sources, and ease of extension to varying
situations. Additionally, the network can be used when multiple source domains
are available, making it usable for complex scenarios. This is referred to as
multisource training in the following.

The optimization steps for the CoDATS can be described via Eq. 4 [20].

argmin
θf ,θc,θd

n∑
i=1

E(x,y)∼DSi
[Ly(C(F (x)), y) + Ld(D(R(F (x)), dSi

)]

+ EX∼DX
T

[Ld(D(R(F (x)), dT )] (4)

Underlying this is a discriminator D(;̇θd) with parameters θd, a feature extractor
F (;̇θf ) with parameters θf , and a problem classifier C(·; θc) with parameters θc.
DSi

corresponds to the labeled data from the source domain and DX
T corresponds

to the unlabeled data from the target domain. Ly and Ld correspond to the
multiclass cross-entropy losses of the labels and domains. Using the Gradient
Reversal Layer (GRL) represented by R(x), the forward- and backpropagation
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is represented as R = x; dR
dx = λI where I corresponds to the identity matrix

and λ to a constant, defining if forward or backpropagation is used.
Considering the lack of labeled data in time series Wilson, Doppa and Cook

developed Domain Adaptation with Weak Supervision (DA-WS). Here, the few
parameters that exist for the given dataset are used as a constraint to optimally
search for model parameters, described by Equation [20].

LWS = DKL(Ytrue(y)‖Ỹpred(y))
= DKL(Ytrue‖EX∼DX

T
[C(F (x))]) (5)

Combining the DA-WS, shown in Eq. 5 with the presented optimization func-
tion of the CoDATS, shown in Eq. 4, yields to the Convolutional Deep Domain
Adaptation Model for Time Series Data with Weak Supervision (CoDATS-WS).

VRADA. The VRADA was developed in 2017 by Purushotham et al. to be
one of the first models to apply adversarial DA to time series data [14]. The NN
in this case is a Recurrent Neural Network (RNN). Using the VRADA model, a
Variational Autoencoder (VAE) is conditioned on itself at each time point via
recurrent lines. VRADA can be described by Equation [14].

E(θe, θg, θy, θd) =
1
N
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T i
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1
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All points in the time series dataset are described using xi = (xi
t)

T i

t=1. For each
xi, the term z̃i ∼ qθe

(zi
T i |xi

≤T i , zi
<T i) is used as the feature representation for

the source domain classification. Equation 6 combines the optimization of Varia-
tional Recurrent Neural Network (VRNN) and a regulator for the parameters of
the VRNN encoder. λ corresponds to balancing the optimization of the domain
invariant representation and the optimization of the accuracy of the source clas-
sification.

4.2 Datasets

For the evaluation four different datasets are used. A brief summary of the
datasets can be found in Table 2.

The first univariate dataset of Arendt et al. from the University of South-
ern Denmark [2] is used to predict room occupancy based on carbon dioxide
data. Data was acquired in four rooms of the premises of the university in 2017,
whereby the usage of the different rooms (study and educational purpose) repre-
sent the different domains. Occupancy is categorized into “empty”, “occupied”
and “full”, which depict the classes. The occupancy was measured by the PC2 3D
Stereo Vision camera by Xovis, with which the rooms were watched for 5713 h
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Table 2. Datasets

Dataset Number of Fraction of data
usedDomains Classes Features Datapoints per

domain

Room occupation [2] 4 3 1 259200 1

Gas sensors [10] 8 3 1 3715964 1
6

WESAD [16] 15 5 8 3749759–5055419 1
180

sEMG [12] 36 6 8 343540–507536 1
6

hours. The feature used for training was solely CO2 concentration since the
values were used as a representative of a univariate dataset.

The second dataset was collected in 2016 for online decorrelation of humidity
and temperature in chemical sensors for continuous monitoring [10]. Classes are
representations of stimuli used on the gas sensors, which are “wine”, “banana”
and “background”. The domains are the eight different sensors whereby data
was acquired by stimulating the sensors for different time periods (from seven
minutes to two hours) over a course of 79 days. As a feature, the sensor values
were used, which depict the sensor resistance in Ohm. Only 1

6 of the available
data is used to create a better comparison between datasets.

As a multivariate dataset, Wearable Stress and Affect Detection (WESAD)
is presented. It contains various physiological data over which specific emotional
states are to be determined, which were acquired in 2018 [16]. The emotional
states depict different classes: “transient”, “baseline”, “stress”, “amusement”
and “meditation”. The different features used of the multivariate dataset were
represented by the sensors of the RespiBAN Professional, a wrist-worn device. It
measures acceleration in x, y and z direction, ECG-, EDA-values, respiration and
temperature. Those values were acquired by 17 people, hereby used as domains,
were only 15 could be used because of problems with the used sensors. Since so
many data points are available, only 1

180 is used.
As a second multivariate dateset, Surface Electromyography (sEMG) is used,

which is composed of eight channels of a MYO Thalmic wristband, which
recorded hand movements of 37 people in the form of myographic signals in
2018 [12]. The individuals are used as domains, whereby the features are repre-
sented by the eight different sensors of the wristband. Different movements are
used as classes: “hand at rest”, “hand clenched in a fist”, “wrist flexion”, “wrist
extension”, “radial deviations” and ”ulnar deviations”. For better comparison,
only 1

6 of the available data is used.

4.3 Experimental Setup

We conduct three different experiments considering dataset size, similarity and
a multisource training scenario. The experiments on dataset size and domain
similarity are applied to CoDATS-WS and VRADA. These networks represent
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on the one hand the most current state of the art of adversarial DA, since the
CoDATS is one of the most recent developments of the adversarial DA in terms of
time series data. On the other hand, by additional investigation of the VRADA,
both RNNs and CNNs are evaluated. The CoDATS is representative of the use of
CNNs in adversarial domain adaptation and the for the use of Long Short-Term
Memorys (LSTMs) and therefore of an RNN.

To obtain an upper and lower bound, the experimental scenarios are per-
formed on additional models. The lower bound is the base model of CoDATS
without DA. This is based on the assumption that models with DA always per-
form better than models without DA. The same model is used as the upper
bound, whereby the target domain serves as the source domain. Therefore the
same data is used during training as well as in testing. The assumption in this
case is, that since data during training and testing is the same, no other model
will outperform this upper bound.

Dataset Sizes. For the consideration of the effect of the dataset size on the
models to be examined, three different datasets are created from the given data.
Small datasets are represented by the usage of 30 datapoints in the training
phase. 2500 datapoints are used to represent medium sized datasets and 16000
datapoints represent large datasets. To obtain comparable results, an identical
number of 3000 test data points is used in each case. In the room occupancy
dataset, room 1 serves as the source domain and room 4 serves as the target
domain. In the gas sensor dataset, sensor 5 serves as the source domain and
sensor 6 serves as the target domain. Subject 6 represents the source domain
and subject 8 represents the target domain in the WESAD dataset. The sEMG
dataset uses the dataset of proband 1 as source domain and proband 2 as target
domain.

Similarity of Domains. To determine the similarity between domains, we
use Dynamic Time Warping (DTW), as implemented by S. Salvador and P.
Chan [15]. This allows a comparison between the individual domains in a dataset.
For a comparison of datasets DTW distances are determined after data normal-
ization. This leads to the fact that all examined values lie between 0 and 1 and
thus a better comparison between the datasets is possible. However, important
information is lost. Conducting the experiment, different combinations of source
and target domains are examined in each case and then related to the corre-
sponding DTW distance. In each scenario, 80% of the available data is used to
train the respective model. 20% of the available data is used for testing.

Multisource Training. The purpose of investigating the multisource approach is
to determine the extent to which training with multiple source domains affects
prediction accuracy. It is only applied to the CoDATS-WS since, according to the
authors, it is the first NN in the field of adversarial DA for time series data that
supports training with multiple source domains [20]. For testing each dataset,
the model is trained in stages with the possible source domains. This results
in N − 1 possible source domains for each dataset with N domains and thus



46 S. Hundschell et al.

N −1 experimental scenarios. The last domain is used as the target domain. For
training 80% and for testing 20% of the data in the selected domain are used.

5 Results

Dataset Sizes. In Fig. 1 the Area under a Receiver Operating Characteristic
Curve (AUROC) value of the performed experiments is shown. It can be seen
that adversarial DA does not always provide better results than models without
DA. This seems true for the small WESAD dataset, i.e., a multivariate dataset,
with only few data in the training phase. The undercutting of the lower bound
is due to the fact that learning invariant features is significantly more difficult
in multivariate datasets than in univariate datasets.

Fig. 1. Results of data sizes

Training of NNs benefits from a larger amount of test data in almost every
case. It should be noted that for multivariate datasets, where little data is avail-
able in training, machine learning does not always benefit from adversarial DA
methods. For univariate datasets, DA methods significantly improve training in
all cases, since they are easier to model. CoDATS-WS provides particularly good
values for univariate datasets.
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Similarity of Data Domains. In Fig. 2, AUROC values are shown in dependence
on the DTW distance in percent. This can be calculated by

WDTW =
DTWx − DTWmin

DTWmax − DTWmin
(7)

where DTWmin and DTWmax describe the minimal and maximal distance
acquired in a dataset. DTWx describes the distance of the corresponding domain
combination. Considering Fig. 2, it does not make much of a difference which
adversarial methods are used to model univariate datasets. In addition, the sim-
ilarity of the source and target domains has much less of an effect than assumed.
In most cases, the adversarial DA methods perform better than the model with-
out adversarial DA. The results of WESAD in Fig. 2 show very large variations
between the individual DTW distances. No relationship between AUROC and
domain similarity is apparent. It can be seen that VRADA produces better
results than CoDATS in many cases, especially at a low DTW distance, i.e., a
high similarity. The adversarial DA is again superior to the model without DA in
most cases. Nevertheless, no general statement can be made about the influence
of the similarity of the source and target domains. Regarding the AUROC of the
sEMG dataset, CoDATS-WS does not perform better than the model without
DA or the VRADA in any case. Due to the constant results when training with
the test data, again an investigation of the effect of domain similarity is basi-
cally very well done. In Fig. 2, a downward trend in all models is additionally
evident as the DTW distance increases. Although there are some deviations of
the negative slope in the results these combinations also perform better than
average when trained with the test data. The DTW distance, which is deter-
mined over the normalized samples of a dataset, provides a good estimate of the
quality of the dataset in a machine modeling task. However, it does not provide
a meaningful estimate of the similarity of domains within a dataset.

As opposed to Fawaz et al.’s conclusion that DTW distance may be used
as an identifier to detect negative transfer [5] it can be stated that this does
not necessarily seem to affect classification performance in domains of the same
application field since they may be already similar.

Multisource Training. In Fig. 3 the precision of the results is shown. It can be
seen that multisource training can improve classification performance, compare
data of room occupation and sEMG. But it can also be seen that adding domains
does not always improve results. Therefore we compare DTW distances, shown
in Table 3, with the acquired results.

It is noticeable that a lower DTW distance leads to an improvement in mul-
tisource training over time. Since new domains are only a small fraction in the
training data, the model does not immediately improve when applying a source
domain more similar to the target domain. However, they generally lead to a bet-
ter mapping. In summary, this means that the adversarial DA benefits from the
possibility of multisource training when the domains have a certain similarity.
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Fig. 2. Similarity of domains

Fig. 3. Multisource training

Table 3. DTW distances

Source
domain

DTW distance
to domain 17

2 15,51

3 9,57

4 12,07

5 8,72

6 10,02

7 18,87

8 10,01

9 12,01

10 14,44

11 8,30

13 11,30

14 12,15

15 11,79

16 12,88
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6 Conclusion

As a part of this work, both VRADA and CoDATS were applied to a number of
multi- and univariate datasets. When examining dataset sizes, it was found that
adversarial DA does not always produce better results than methods without
DA. For univariate datasets, where only few data are available for the training
phase, the CoDATS-WS provided good results, but for multivariate datasets
the adversarial DA did not generate satisfactory results. Alternative methods
should be considered here. It is assumed that the DTW distance mainly influ-
ences the modeling of domains of datasets that generally have higher similarity
to each other. The lower the DTW distance, the more likely a statement can be
made about how well a model can represent these domains. However, this state-
ment should be investigated further. It can be stated that negative transfer in
domains from the same application field can not be detected by DTW distance
as proposed by Fawaz et al. [5] since it does not affect modeling in this case. The
VRADA model was found to be significantly superior to the CoDATS-WS model
in modeling multivariate datasets. However, in terms of similarity, determined by
DTW distance, it may not make a difference which model is applied. Prediction
performance benefits from multisource training provided by the CoDATS-WS
model. To guarantee this improvement during training, it should be considered
which domains are similar. As a indicator of prediction performance regarding
different datasets the DTW distance can be applied to normalized time series.
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Abstract. Virtual reality (VR) is gaining popularity very fast due to
newer solutions that increase user perception. Glasses, sensors, and tread-
mills are the basic functionality for immersing yourself in a virtual envi-
ronment. In this paper, we propose a human-AI collaboration for analyz-
ing the newly generated images that can be used for creating worlds. The
presented method is based on analyzing different scenes (from simula-
tion and real environment) using generative adversarial networks (GAN)
and the communication with the user for assessments of the created new
environment. User’s information contributes to the analysis of sample
quality and possible rebuilding or retraining of the GAN model. The
proposal increases the perception of VR by taking the user’s feelings
in creating new environments. For this purpose, we combine GAN with
fuzzy soft sets inference to gain the possibility of retraining/remodeling
the used neural network. It was examined in theoretical simulation and
real-environment case study.

Keywords: Neural networks · Convolutional · Soft sets · Virtual
reality · Human-AI · Collaboration · Machine learning

1 Introduction

The era of virtual reality (VR) began with simple blue and red filter glasses. The
next decades allowed the use of smartphones to emit an image with the help of
special goggles. Initial immersion consisted of moving the head with goggles. This
type of activity focused mainly on simple games and video projections. Then,
additional functionality was introduced, such as allowing additional movements.
To enable this, the operation of the joysticks/controllers was added. Their oper-
ation was based on pairing them with a smartphone or goggles, which took the
position of controllers and make a projection of it in VR’s application. The result
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was gaining huge possibilities through additional manipulation of objects in VR
and creating smart classes [2,11].

Unfortunately, the perception of VR did not meet the expectations of users.
There were problems with the operation, quality, and possible safety of people
immersed in the created world. The first two aspects, i.e. the operation of the
application and their quality, are elements that can be improved through addi-
tional computational effort. It is especially possible with much better technical
parameters of the equipment. However, the inability to interact with other users
or with artificial intelligence was also noticed. These problems caused that to
some extent, VR has been rejected by many users. An additional element was
the lack of safety during the immersion. To get the best experience in analyzed
technology, goggles, controllers, and headphones are used [4]. As a consequence,
the user lost the ability to analyze sounds, images, and interactions through the
hands with the surrounding environment. In the case when some unexpected
object would have appeared in the area, the user may be putting himself at
risk. Despite cooling enthusiasm for the VR technology itself, recent years have
brought some interesting solutions to eliminate the existing problems.

It should be noted that the times of the global pandemic caused by covid-
19 have contributed to a renewed wave of popularity of VR. This is especially
visible in virtual walks around centers or museums [14]. The authors focused on
the problem of such immersion and the possibility of movement between shows.
It was noticed that despite the lack of realistic objects or the atmosphere, peace
and the possibility of analyzing works of art were obtained. The reason for this
is the lack of talks by other visitors. Moreover, this technology is used in schools
and colleges [18]. The inability to conduct chemical or physical experiments can
be compensated for by a virtual simulation of this phenomenon. In [5], the idea
of molecular visualization was presented and this is a perfect application of VR.
Very small objects can be enlarged and modeled in 3D for better understanding
and manipulation of them. In addition to the practical applications of the cur-
rent state of VR, scientists are developing technology and pointing out future
directions. One of such directions is the adaptation and creation of games to
strengthen/increase movement by training [7,17]. Moreover, these developments
are used for analyzing neural activity and behavior of animals like adult zebrafish
[10]. The scientist proposes to create a VR system that helps to analyze behavior
by an automatic mechanism. Such solutions can be helpful in many areas of our
life because it helps to understand some phenomena in virtual simulation (when
it is impossible in a real one). The next step of this is the merge of VR into the
Internet of Things. It can be very helpful for automatization, analyzing actions
occurring in the communication and operation of intelligent things and other
aspects of smart technologies and machine learning approaches [1,13,15,16].

Based on these technological changes and various additional aspects to
increase perception and safety, we propose a method for increasing the immers-
ing quality. Our solution is based on a model of collaboration between the user
and artificial intelligence, which uses a player’s feelings about the created sce-
nario for possible retraining or rebuilding the model. The main contribution of
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this paper are: the human-AI-collaboration method for developing the machine
learning model, a mechanism for evaluating the information received from the
user, the use of generative models during immersion to increase user perception,
combine GAN and soft sets for VR applications.

Fig. 1. Visualization of the proposed framework for building VR applications using
AI-human collaboration.

2 AI Model for Virtual Reality Scenario Creation

The proposal is based on the use of generative adversarial networks (GAN)
[12,21] for generating a new simulation environment depending on the user’s
preferences whether it should be as close to reality or simulation as possible. For
this purpose, we propose using two neural networks that compete with each other
in a zero-sum game. Such a model is named GAN. In this approach, the first
neural network is called the discriminator network and is marked as a function D.
The purpose of this network is to evaluate incoming images x to distinguish real
from generated. The second network is called a generator defined as a function
G and trying to train the model to deceive the other network. The idea of using
such a model is to create realistic new images. In such a model, the training is a
min-max optimization task, where G is minimized and D is maximized. It can
be described as:

min
G

max
D

V (D,G) =Ex∼pdata(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))],
(1)

where pdata, pz are respectively the probability distribution of database, and of
latent space (a random Gaussian distribution).
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2.1 Human-AI-Collaboration

Having a database with k scenarios, a k GAN is also created. At first, each
instance is trained by a training algorithm until some constant number of itera-
tions Tmax would not be reached. When all GAN are trained, the newly generated
samples can be used in the VR simulation environment. The user is testing the
newly generated sample and assessing the quality γ of his immersion/quality of
immersion, etc. This value is in a set {0, 1}. In the user’s assessment, the value
of the loss function described in equation (1) is taken into account whether the
classifier should be retrained or even the architecture changed.

The analysis of the human verdict and all information from GAN are analyzed
by the probability module which takes mentioned γ1, V1(D,G), the number of
samples in database |P1|, and the results of the previous evaluation (γ0, V0(D,G),
|P0|). The decision is made based on fuzzy soft sets inference idea [6].

A pair (F,E) is called a fuzzy soft set when F : A �→ IU and E ⊂ A, where
U is universal set, A is a subset of U and IU is the power set of all U . Inference
using fuzzy soft sets to choose a decision is made by finding the maximum value
according to:

max

{
o∑

i=0

wi · r
(0)
i ,

o∑
i=0

wi · r
(1)
i , . . . ,

o∑
i=0

wi · r
(j−1)
i

}
, (2)

where r
(j)
i is i-th value from j-th decision, and wi means the weights (impor-

tance) of a a given value identified with calculated value.
In the proposed approach, we have a set of three values for each GAN

instance: {γ1−γ0, V0(D,G)−V1(D,G), |P1|−|P0|} and three decisions {retrain,
remodel, noAction}. Retrain means retraining a GAN by additional 10 itera-
tions, remodeling means changing the architecture of used networks and the last
decision does not make any changes in the current state of the model. This two
sets can be formulated as a table (see Table 1) with ri values. In the case of
retrain, the most important value is the user’s assessment and in the case of
remodel, the loss difference is more important. It must be noticed, that the last
value which is the increased number of samples is larger than 0 only in one case.
If the user’s assessment is higher or even to 7, the generated sample is added to
the database.

Fig. 2. Generator and discriminator
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Table 1. Proposed soft set table for decision making.

γ1 − γ0 V0 − V1 |P1| − |P0|
Retrain 0.45 0.4 0.15

Remodel 0.4 0.5 0.1

No action 0.3 0.3 0.4

Algorithm 1: Proposition of human-AI collaboration.
Input: GAN instances, the number of images evaluation M

1 Train all instances of GAN;
2 for each GAN instance do
3 m := 0;
4 for m < M do
5 Create a sample image;
6 Load image to VR application;
7 Get user’s assessments;
8 m+ = 1;

9 Average user’s assessments;
10 if there are previous measurements then
11 Create a soft set table;
12 Calculate weights values;
13 Make a decision using Eq. (2);
14 if decision == retrain then
15 Retrain model;
16 else if decision==remodel then
17 Send information that GAN architecture should be remodeled;
18

This inference system is running after a constant value of the user’s evaluation
M . The whole idea is shown in the form of pseudo-code in Algorithm1 and Fig. 1,
respectively.

3 Experiments

Our proposal was examined in simulation for analyzing the best architectures, to
find an optimal model which can be applied in VR applications. For this reason,
we used a database called Scene Classification: Simulation to Reality [3] that
contains 6 classes: field (1085 images), forest (1007 images), bathroom (1034
images), computer lab (1029 images), living room (1065 images), and stairs (708
images). At first, we analyzed the use of different transfer learning like VGG19
[19], Inception [20], Xception [8], and ResNet50 [9], and proposed architecture
shown in Fig. 2. The main metric that was taken into consideration was accuracy
calculated as:

accuracy =
TP + TN

TP + TN + FP + FN
, (3)
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where TP , TN , FP , FN successively means true positive/negative and false
positive/negative.

In the next step of conducting tests, we used the selected model of GAN and
asked 20 people to test the proposed method. For this purpose, we used Goggle
VR Dell Visor VR with controls and a simple application that shows true images
and created ones. The main task of the user was to decide if this is a real or
fake image of some scenery The user’s assessment is used in our approach to give
some information and data for the AI mechanism.

Table 2. Comparison of different models for classification database.

Method Accuracy [%]

Proposed architecture 0,7802

VGG19 0,7801

VGG19 with frozen first 2 blocks 0,6791

VGG19 with frozen first 4 blocks 0,6901

Xception 0,7401

Xception with frozen first 2 blocks 0,7134

Xception with frozen first 4 blocks 0,7323

Inception 0,7802

Inception with frozen first 2 blocks 0,7831

Inception with frozen first 4 blocks 0,7763

ResNet50 0,7742

ResNet50 with frozen first 2 blocks 0,7313

ResNet50 with frozen first 4 blocks 0,5441

3.1 Simulations

Used datasets were split into 70% to 30% (training set to validation) - equally
for each class. Then all mentioned before models were trained without the freez-
ing layers technique, and learning transfer architectures have been subjected to
freezing operation the first two/four blocks for more accurate comparison. This
experiment was made for choosing architecture for the discriminator in our pro-
posal. The obtained results with calculated accuracy are shown in Table 2. Based
on these values, all cases where layer freezing was applied have the worst results.
This is because the frozen blocks have predetermined filters to extract features.
Transferring ready-made filters is not always beneficial for the new dataset. Here
was the case where transfer learning models were pre-trained for other databases
and here used for analyzing six classes of scenery. However, the best models were
the proposed architecture, VGG19, and Inception, which reached over 78% of
accuracy. This result shows that there is no one and the best model for the
selected database. Having such selected models, we choose a new architecture
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trained from the beginning for the discriminator. Moreover, we evaluate this
trained model (after 800 iterations) to check the whole database and analyze
the classification results. It is shown in the form of a confusion matrix in Fig. 3a.
It can be seen that the main problems occurred in the case of forest/field and
bathroom/computer lab. Some problems were also in the classification living
room and stairs. These problems can be caused because of similar features, but
for the most part, the results are correct.

Fig. 3. Confusion matrices

Having chosen a discriminator, we added a generator shown in Fig. 2. Before
we trained a GAN architecture, we split the dataset into pairs of field/forest,
bathroom/computer lab, and living room/stairs. Then we created three instances
of GAN - one for each set of pair classes. And trained by 800 iterations. The
loss values of generator and discriminator were very similar for all instances.
The evaluation of such structure of many GAN was made as follows: generated
samples were analyzed by all discriminators and the highest result was taken.
In such a way, we created 400 images for each class and evaluated them by
discriminators. The results are presented as a confusion matrix in Fig. 3b. It
can be seen that the generated samples have high accuracy, exactly 77,8%. This
result is very high because the classifier trained for this database has a similar
value of accuracy. So, the generator can reach high efficiency in deceiving the
discriminator, so the generated samples should be quite realistic. Such trained
models indicate a good adaptation to generate new samples that will be used in
a practical test using the already proposed collaboration technique between the
user and AI.

3.2 Real-Time Experiments

The second step of the research was aimed at a practical analysis of the proposed
collaboration technique. We asked 20 people (the age of the participants ranged



58 A. Jaszcz et al.

from 18–30 years) to wear the goggles and controls and use a simple VR app.
The main idea was to give information about is it real scenery or created by AI.
Each user has to analyze 10 real images and 10 generated by GAN. The answer
was given by moving the hand with the controller to the left (real), and the right
(artificially generated).

Fig. 4. Decision results using user assessment

In Fig. 4a, we can see a sum of all votes on each image. An interesting obser-
vation is that in the case of the original images, there were times when users
were unsure if it was an image created by a neural network. However, most of
the users were deciding on the image correctly. In the case of image no 7 (that
was real), 16 people thought it was generated. The image presented only a field
and sky. The simplicity of the image itself contributed to the conclusion that the
image was generated. For the fake images, opinions were quite mixed. Generated
images most often presented fragments or slightly blurred shapes. In particular,
the most problematic were images number 16 and 19, which depicted a fragment
of the forest (see Fig. 3b). On the other hand, the network also generated samples
that were difficult to assign to any class, which can be seen in the evaluation of
image number 17. The general opinion was that the quality of images was not
the best so it was difficult to analyze if it is real or fake. This issue is based on
the fact, that network returned an image of size 128 × 128. In this case, if there
would be a need for higher quality, an autoencoder can be applied.

After the analysis of one image by all users, the proposed model analyzed the
current situation using the soft set idea (see Table 1). The soft set table decides
about three actions - retrain, remodel, and no action. If the decision is retrained,
then all GAN were trained by additional 10 iterations which should improve the
next generated images. The second situation that is remodeling stops the GAN
from working and waits for remodel by the programmer. Obtained results during
conducting the experiments are shown in Fig. 4b. The case of remodeling does
not appear because, the model was trained to a good accuracy level and if the
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sum of the user’s assessment was higher than 10 on the fake image, then this
image was added to the database. Consequently, the database was larger with
one more sample after deceiving the user. The other two actions were more
frequent, as can be seen in Fig. 4b. In most cases, the method determined the
lack of additional operations. This means that the classifier is well suited for
practical use. In other situations, the retrain option allowed for increasing the
accuracy, which affects the quality of subsequent images. The proposed method
shows that in the case when the users are not satisfied with the current effect, the
AI decides about additional retraining or no action. It is a simple mechanism of
collaboration that results in a better quality of AI method and better perception
of VR by the user.

4 Conclusions and Future Works

In this paper, we propose a method for collaboration of an AI method with
users in VR. The proposal is based on GAN and a soft set inference mechanism
that takes the users’ assessment. The main idea was to adapt the AI-human
collaboration for increasing the quality of generated images and the reception of
the user, or even the immersion itself. The evaluation of the method shows that
it can be used in VR apps and provide an automatic analysis of the quality of
the used AI technique. The low assessment provides a retrain of classifiers, so
there is no need to analyze the number of training iterations. This value will be
automatically increased when the result will be badly received by the user.

In future works, we will focus on the analysis of the soft set table that is used
in decision-making. In this research, this table was filled with values based on
some simulation tests, but in the case of other applications or used databases,
these values might be not so efficient. For this purpose, we plan to extend this
idea to automatically adjust these values during use.
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5. Cassidy, K.C., Šefč́ık, J., Raghav, Y., Chang, A., Durrant, J.D.: ProteinVR:
web-based molecular visualization in virtual reality. PLoS Comput. Biol. 16(3),
e1007747 (2020)



60 A. Jaszcz et al.

6. Chandrasekhar, U., Mathur, S.: Decision making using fuzzy soft set inference
system. In: Vijayakumar, V., Neelanarayanan, V. (eds.) Proceedings of the 3rd
International Symposium on Big Data and Cloud Computing Challenges (ISBCC
– 16’). SIST, vol. 49, pp. 445–457. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30348-2 37

7. Checa, D., Bustillo, A.: A review of immersive virtual reality serious games to
enhance learning and training. Multimedia Tools Appl. 79(9), 5501–5527 (2020)

8. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. Huang, K.H., Rupprecht, P., Frank, T., Kawakami, K., Bouwmeester, T., Friedrich,
R.W.: A virtual reality system to analyze neural activity and behavior in adult
zebrafish. Nat. Methods 17(3), 343–351 (2020)

11. Ikedinachi, A., Misra, S., Assibong, P.A., Olu-Owolabi, E.F., Maskeliūnas, R.,
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Abstract. Traditional approaches to financial asset allocation start
with returns forecasting followed by an optimization stage that decides
the optimal asset weights. Any errors made during the forecasting step
reduce the accuracy of the asset weightings, and hence the profitability
of the overall portfolio. The Portfolio Transformer (PT) network, intro-
duced here, circumvents the need to predict asset returns and instead
directly optimizes the Sharpe ratio, a risk-adjusted performance metric
widely used in practice. The PT is a novel end-to-end portfolio optimiza-
tion framework, inspired by the numerous successes of attention mecha-
nisms in natural language processing. With its full encoder-decoder archi-
tecture, specialized time encoding layers, and gating components, the
PT has a high capacity to learn long-term dependencies among portfolio
assets and hence can adapt more quickly to changing market conditions
such as the COVID-19 pandemic. To demonstrate its robustness, the PT
is compared against other algorithms, including the current LSTM-based
state of the art, on three different datasets, with results showing that it
offers the best risk-adjusted performance.

Keywords: Transformers · Deep learning · Portfolio optimization

1 Introduction

Portfolio optimization algorithms aim to select the optimal weighting of finan-
cial assets in a given portfolio as a means to maximize or minimize some specific
metric of interest. It is arguably the most important phase in the entire invest-
ment lifecycle, without which investors would be exposed to unacceptable levels
of risk. Markowitz formally formulated this problem in what is now known as
Modern Portfolio Theory (MPT) [14]. The risk-return trade-off pioneered by
Markowitz was very influential at the time and became in effect a go-to tool for
the vast majority of industry practitioners. However, despite its rigorous theo-
retical foundations and wide popularity, the MPT has significant shortcomings
when applied in practice. One of these limitations is the assumption that future
investment returns of individual assets can be predicted with a reasonable level
of precision. This task has, however, been shown to be extremely difficult due
to the highly stochastic nature of financial markets [15].
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Recent advances in computational power and the wider availability of market
data have allowed machine learning architectures to be used for portfolio opti-
mization. For example, by using ensembles of gradient-boosted trees, one can
reduce estimation errors in the returns predictions of standard Markowitz-style
optimization [3], and the XGBoost model has been successfully used within a
meta-allocation framework to switch between different risk-based strategies in
order to achieve better risk-adjusted performance [12]. Most recently, deep learn-
ing architectures have also started to play a major role [7]. However, a substantial
drawback of the above portfolio selection methodologies is that they follow the
classical two-step procedure in which errors in the parameter estimations of the
first step are translated into inaccurate asset weightings in the second step.

Moody et al. [16] pioneered the contrasting idea of combining prediction and
performance optimization in a single step. This work was later extended by that
of Zhang et al. [24], who introduced an LSTM-based architecture that showed
significant performance improvements over classical asset allocation techniques.
In this paper, we introduce the Portfolio Transformer (PT), which combines
prediction and optimization in a novel end-to-end deep learning architecture
based on an attention mechanism, directly outputting portfolio weights that
optimize the Sharpe ratio, a measure of risk-adjusted return widely used in
practice, under the specified transaction cost penalties. Additionally, the PT
makes use of specialized gating mechanisms to determine the ideal level of non-
linearity when optimizing each portfolio. Results demonstrate that the Portfolio
Transformer is able to outperform a number of other methodologies, ranging from
a classical optimization method to the current LSTM-based state of the art [24],
on three different datasets encompassing ETFs, commodities, and stocks.

2 Background and Related Work

2.1 Long Short-Term Memory (LSTM)

There exists a large volume of literature applying recurrent neural networks, such
as simple RNNs [18] or Gated Recurrent Unit (GRU) networks [17], to finan-
cial time series prediction problems. However, the main drawback of standard
recurrent neural networks, observed in multiple domains, including finance, is
the so-called ’vanishing gradient problem’ [8], whereby gradients corresponding
to long-term dependencies become very small, effectively preventing the model
from further training. LSTM networks [9] tackle this problem by introducing gate
mechanisms that allow gradients to flow unchanged; through a process of filter-
ing and summarizing they can ignore irrelevant past information. The vanilla
LSTM architecture proposed by Zhang et al. [24] for portfolio optimization is
used in this work as one of the benchmark algorithms.

2.2 The Transformer Model

Despite their efficacy at learning time-localized patterns, LSTMs struggle to
capture meaningful dependencies when the length of a sequence is relatively
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large. The Transformer architecture [19] was developed to address this issue and
has now been established as state of the art in most work in natural language
processing [20]. Several studies also show the successful application of this archi-
tecture in the financial domain. For example, Wood et al. [21] show that their
Transformer model outperforms an LSTM network in time-series momentum
strategies, and Xu et al. [22] apply the model to portfolio policy learning in
a reinforcement learning setting (though to maximize cumulative return rather
than the industry-preferred Sharpe ratio).

At the heart of every Transformer architecture lies a mechanism called ‘self-
attention’, which replaces recurrence and allows for simultaneous processing of
all sequence elements. The Portfolio Transformer implements ‘scaled dot-product
attention’ [19], as given by

Attention (Q,K, V ) = softmax

(
QKT

√
dmodel

+ M

)
V. (1)

The value matrix V ∈ R
τ×dv of equation (1) is weighted by a set of ‘scores’

obtained from the softmax operation, which determines how much emphasis
each time step from the key matrix K ∈ R

τ×dk should receive when encod-
ing sequence positions from the query matrix Q ∈ R

τ×dk . The dot product of
Q and K is divided by the square root of the encoding dimension (dmodel) to
counteract problems associated with small gradients. Additionally, the Portfolio
Transformer implements masking via matrix M ∈ R

τ×τ in the first attention
block of each decoder layer to ensure it can only attend to preceding time steps
and hence maintain its autoregressive property. The operation defined by equa-
tion (1) is repeated h times in what is known as multi-headed attention (MHA),

MHA (Q,K, V ) = Concatenate (head1, · · · , headh) WO, (2)

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
, (3)

which allows the model to extract information from multiple representation sub-
spaces, where each headi is implemented using its own set of learned linear
projection matrices WQ

i ∈ R
dmodel×dk , WK

i ∈ R
dmodel×dk and WV

i ∈ R
dmodel×dv .

Outputs from all attention heads are then concatenated and again linearly pro-
jected using a learned parameter matrix WO ∈ R

hdv×dmodel to obtain final values.

2.3 Gated Residual Network (GRN)

In the original Transformer implementation of [19] each attention layer is fol-
lowed by a simple feed-forward network. The Portfolio Transformer adopts a
more flexible approach and instead makes use of a Gated Residual Network
(GRN) [13], acting as a gating mechanism that determines the extent of non-
linear processing required for a particular portfolio, defined by

GRN (z) = LayerNorm (z + GLU (g1)) , (4)
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g1 = W1g2 + b1, (5)

g2 = ELU (W2z + b2) , (6)

in which the GRN’s input is given by vector z, g1 and g2 are intermediate layers,
and ELU is the Exponential Linear Unit [4] activation function, and in which
the process of filtering non-linear contributions is carried out via a Gated Linear
Unit (GLU) [5], which provides the Portfolio Transformer with the ability to
scale down the amount of non-linear processing and default to a simpler model
when, for example, the dataset is small or highly noisy.

2.4 Time2Vec Embedding

Since the attention layers of a Transformer do not make use of recurrence, they
cannot inherently capture any information about the relative position of each
element in a sequence. In the original model [19] this information is injected via
positional encoding. The Portfolio Transformer, however, implements the time
encoding proposed by Kazemi et al. [10], that takes the following form:

Time2V ec (t) [i] =

{
ωit + ϕi if i = 0
sin (ωit + ϕi) if 1 ≤ i ≤ k.

(7)

The temporal signal represented by t in Eq. (7) is decomposed into a set of
frequencies ω and phase shifts ϕ. This time decomposition technique is closely
related to Fourier transforms, but instead of using a fixed set of values, all
frequencies and phase shifts are learnable parameters. It should be noted that
the use of sine as the activation function enables the Portfolio Transformer to
capture periodic behaviors in data.

3 Methodology

3.1 Portfolio Transformer Architecture

The network architecture of the Portfolio Transformer is shown in Fig. 1. It con-
sists of four main building blocks: input layer (Time2Vec embedding, Sect. 2.4),
encoder and decoder (Sects. 2.2 and 2.3), and output layer. Each of these blocks
will now be discussed in turn.

Input Layer. Each sequence position, denoted by vector xt in Fig. 1, contains
concatenated returns of all N assets in a given portfolio on day t. There are τ
such vectors (per encoder and decoder block) stacked together to form the input
matrix X of dimension (τ , N). Time2Vec embedding is then used to extract
time-encoded cross-sectional features.
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Fig. 1. The Portfolio Transformer: model architecture.

Encoder. The Portfolio Transformer uses a stack of four identical encoder lay-
ers. Inside each of these layers, the time-encoded input is first processed by
a multi-headed attention mechanism, where the number of attention heads h
is selected during hyperparameter optimization. A series of gating mechanisms
are then applied, using a GRN module that determines the ideal amount of
non-linearity. A residual connection [6], followed by layer normalization [1], are
additionally applied to these two sub-layers, as shown in Fig. 1.

Decoder. The decoder block is also composed of four identical layers, each of
which contains two multi-headed attention modules. The first one uses masking
to ensure predictions made by the Portfolio Transformer depend only on data
from preceding time steps. The second one allows the decoder to attend to the
output of the encoder stack, which provides a much more nuanced representation
of the data and the ability to learn longer-term dependencies among portfolio
assets. As in the case of the encoder, a GRN is used to remove any unnecessary
complexity and there is a residual connection around each sub-layer followed by
layer normalization.
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Output Layer. The Portfolio Transformer allows for short-selling via a spe-
cialized output layer that implements a compound function proposed by Zhang
et al. [23]. First, the output of the final decoder layer is processed by a fully-
connected layer. The resulting vector (si,t) is then used to compute final portfolio
weights, given by

wi,t = sign (si,t) × softmax (si,t) � sign (si,t) × esi,t∑N
j=1 esj,t

. (8)

The use of the softmax operation in Eq. (8) ensures that, while portfolio weights
can be either positive or negative (the latter allowing for short-selling), the sum
of their absolute values always remains equal to one.

3.2 Loss Function

The objective of the PT model as currently implemented (other objective func-
tions being possible) is to learn the asset distribution that maximizes risk-
adjusted returns as measured by the Sharpe ratio, which is defined below as
expected portfolio return divided by its volatility:

SR =
E(RP )√

E(R2
P ) − (E(RP ))2

. (9)

Since transaction costs can significantly diminish the performance of allocation
strategies with high turnover, the Portfolio Transformer uses cost-adjusted port-
folio returns

RP,t =
N∑
i

wi,t−1 × ri,t − C ×
N∑
i

|wi,t−1 − wi,t−2| (10)

in order to find solutions that account for trading costs, where C is a constant
cost rate, set to a realistic value of two basis points (2 bps), wi,t−1 represents
the weight of asset i on day t− 1, and ri,t denotes the realized arithmetic return
of asset i from day t − 1 to day t, computed using asset prices Pi,t and Pi,t−1 as
follows:

ri,t =
Pi,t

Pi,t−1
− 1. (11)

The expected portfolio return, denoted by E (RP ) in Eq. (9), is obtained by
taking an average of all portfolio returns over a trading period of length τ :

E (RP ) =
1
τ

τ∑
t=1

RP,t. (12)

Finally, since the PT allows for short-selling but no leverage, the portfolio posi-
tions are constrained by wi,t ∈ [−1, 1] and

∑N
i |wi,t| = 1, which is achieved

through the use of the compound function in Eq. (8).
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3.3 Training and Model Calibration

Data is split into training and test segments using an expanding window app-
roach, where initially all data points before the end of 2015 are used for training
and the out-of-sample test is carried out on observations recorded in 2016. The
training window is then extended to include the year 2016 and the model is tested
on the subsequent year (2017), and so on. This way, the model is retrained every
year, with all available historical data being used to update the network param-
eters. Portfolio positions are adjusted on a daily basis, and a transaction cost
rate of 2 bps is used during performance evaluation.

The PT network is trained via mini-batch stochastic gradient descent (with
batch size being among the hyperparameters) using the Adam optimizer [11].
For model calibration purposes, and to control for overfitting, 10% of any train-
ing segment is set aside as a separate validation set. Hyperparameter optimiza-
tion, conducted using 100 iterations of random grid search, is performed only
on the validation set, ensuring that the model has access to test data only dur-
ing the performance evaluation stage. To further improve the model’s ability to
generalize, early stopping is implemented. The Portfolio Transformer was devel-
oped using the TensorFlow framework and all experiments were conducted on
NVIDIA’s Tesla P100 16 GB GPU with 55 GB of RAM memory.

3.4 Datasets Used

The efficacy of the Portfolio Transformer is demonstrated on three datasets
containing daily price observations. The first of these datasets starts in 2006
and is composed of the same four Exchange Traded Funds (ETFs) used in the
LSTM-based experiments carried out by Zhang et al. [24]: AGG (aggregate bond
index), DBC (commodity index), VIX (volatility index), and VTI (US stocks
index). The second dataset, which starts in 2002, is composed of 24 continuous
commodity futures contracts, including metals, agricultural products, and energy
commodities such as oil and natural gas. Finally, the PT model is tested on daily
observations of 500 stocks based in the US and listed on NASDAQ. This last
dataset starts in 1996 and aims to demonstrate the model’s performance on a
large portfolio of hundreds of instruments.

3.5 Benchmark Models

Four algorithms are implemented as benchmarks: (1) mean-variance optimiza-
tion (MV) [14], a classical two-step portfolio selection procedure with a moving
window of 50 days used to estimate expected asset returns and covariances; (2)
XGBoost [2], included because gradient-boosted decision trees perform very well
in applied machine learning competitions; (3) a multilayer perceptron (MLP),
as a universal function approximator that can capture highly non-linear depen-
dencies; and (4) the LSTM architecture of [24], a high-performance recurrent
architecture that represents the previous state of the art.
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4 Results

4.1 Performance Comparison: Full Investment Horizon

The performance of the Portfolio Transformer is compared to that of the bench-
mark algorithms of Sect. 3.5 using a number of metrics that aim to capture
portfolio risk level through annualized volatility (Vol.) and maximum drawdown
(MDD), profitability via annualized returns (Returns) and percentage of positive
returns (% of + Ret), and risk-adjusted performance using annualized Sharpe,
Sortino and Calmar ratios.

Table 1. Experimental results for different algorithms and datasets.

Returns Vol. Sharpe Sortino MDD Calmar % of +Ret

Panel A: ETFs

MV 0.004 0.122 0.012 0.270 0.120 0.836 0.497

XGBoost 0.100 0.140 0.657 1.240 0.116 2.591 0.496

MLP 0.135 0.128 0.923 1.789 0.087 2.225 0.498

LSTM 0.215 0.133 1.539 2.830 0.096 3.621 0.535

Portfolio Transformer 0.138 0.067 2.252 4.093 0.036 4.773 0.548

Panel B: Commodities

MV 0.008 0.053 0.174 0.342 0.059 0.682 0.519

XGBoost 0.015 0.059 0.277 0.420 0.063 0.267 0.505

MLP 0.026 0.056 0.479 0.727 0.057 0.797 0.515

LSTM 0.038 0.031 1.182 1.852 0.023 2.108 0.528

Portfolio Transformer 0.174 0.108 1.506 2.304 0.077 2.272 0.543

Panel C: Stocks

MV 0.079 0.126 0.694 1.126 0.106 1.386 0.523

XGBoost 0.101 0.118 0.923 1.352 0.080 1.491 0.533

MLP 0.089 0.121 0.767 1.102 0.087 1.236 0.534

LSTM 0.111 0.077 1.456 2.155 0.056 2.561 0.565

Portfolio Transformer 0.334 0.147 2.001 3.440 0.091 4.824 0.566

Panel A in Table 1 shows the results for the portfolio of ETFs, where the
Portfolio Transformer outperforms the benchmarks on all but one metric, annu-
alized returns. These are higher for the LSTM model, but this comes at a cost
of increased volatility; when this is accounted for, by using the Sharpe ratio,
the PT offers much higher risk-adjusted returns. Results presented in Panels B
(commodities) and C (stocks) show that in both cases the PT achieves the best
risk-adjusted performance, while also delivering the highest annualized returns.
The PT is beaten by the LSTM in these cases on only two out of seven metrics,
volatility and maximum drawdown. In the former case, this is compensated by
the PT’s higher Sharpe ratio and in the latter by the higher Calmar ratio, rela-
tive to the LSTM; the Sharpe ratio is a measure of portfolio return adjusted by
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Fig. 2. Comparison of cumulative returns.

volatility, and Calmar ratio of portfolio return adjusted by maximum drawdown,
arguably of more relevance than volatility and maximum drawdown per se.

The cumulative return plots of Fig. 2 demonstrate the superior performance
of the Portfolio Transformer over the whole investment horizon. The PT gen-
erates the highest cumulative returns and offers a reasonable risk profile for all
three datasets. The second-best performing model is the LSTM, suggesting that
time dependencies learned through recurrence, in case of the LSTM model, or
through an attention mechanism, in case of the PT, are very useful in a portfolio
optimization setting. However, it can be seen that the LSTM model struggles
during the COVID-19 crisis (first quarter of 2020), while the attention-driven
Portfolio Transformer shows a much quicker response to this sudden market
regime change. The performances of the XGBoost and MLP models are compa-
rable, but lag considerably behind those of the LSTM and the PT, while mean-
variance optimization (MV) is by far the worst-performing algorithm, suggesting
that highly inaccurate asset weightings are generated by this classical two-step
procedure.

4.2 Performance Comparison: COVID-19 Crisis

The above-mentioned difference between the performances of the PT and LSTM
models during this period of extreme market volatility is further illustrated in
Fig. 3, which shows the 12-month rolling Sharpe ratio of the two models on
the ETF dataset. The LSTM suffers a large fall in its risk-adjusted returns
during this period and there are times when it even drops down below zero. The
Portfolio Transformer, on the other hand, shows a more stable behavior, with
its rolling Sharpe ratio staying mostly well above one and delivering outstanding
risk-adjusted performance during the Bull market that followed the crisis.
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Fig. 3. Rolling Sharpe ratio (12-month) on the ETF dataset.

5 Conclusions

This work has introduced the Portfolio Transformer (PT), which directly opti-
mizes risk-adjusted returns using a novel end-to-end attention-based architecture
with specialized time-encoding layers and gating mechanisms. By incorporating
transaction costs directly into its loss function the PT model can account for
trading cost constraints faced by investors. The results demonstrate that the PT
model delivers exceptional risk-adjusted performance, in this respect outperform-
ing all benchmark algorithms on three different datasets with varying portfolio
sizes. Due to its full encoder-decoder configuration and its attention mecha-
nism the Portfolio Transformer is able to learn long-term dependencies and as a
result can react more quickly to changing market regimes, as demonstrated by
its response to the COVID-19 crisis. Turning to future work, one extension of
the current model could study the Portfolio Transformer’s performance under an
attention mechanism different from the scaled dot-product attention currently
used. In addition, while it is popular with industry practitioners, the Sharpe
ratio is only one of many possible objective functions that could be optimized,
and subsequent work will consider alternative metrics and their effect on the
overall portfolio performance.
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Abstract. In this paper we present an approach for transfer learn-
ing with deep neural embeddings applied to a selection of music infor-
mation retrieval (MIR) classification tasks with several datasets. The
tasks include genre recognition, speech/music distinguishing, predomi-
nant instrument recognition and performer identification. We propose
the usage of pre-trained L3 neural networks for feature extraction and
apply several supervised classification algorithms to the obtained feature
representations in order to compare their performance. The deep neural
embedding representations are compared with traditional, hand-crafted
features and are shown to outperform the baselines.
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1 Introduction

Music information retrieval (MIR) is a well established, interdisciplinary research
area concerned with meaningful analysis and generation of musical content using
computational methods. Over the years it has gained significant attention from
researchers as well as industries, like streaming services and audio equipment
manufacturers. However, music is a particularly tricky data type for artificial
intelligence algorithms: the sequential structure of music and its deeply human,
often abstract qualities, introduce several unique problems into the MIR domain.
Aside from more traditional digital signal processing methods [1–3], various deep
learning solutions inspired by computer vision and natural language processing
have already been proposed in the field in tasks like music tagging [4–6], musical
content analysis [7–10] and music generation [11–15]. These methods are often
data and compute hungry, which poses a significant challenge for MIR due to
dataset copyright reasons and overall data sparsity in comparison with the vast
variety of datasets used in other fields. Also, obtaining large annotated datasets
requires very specific human expertise and is in most cases not feasible.
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This has lead to the introduction of new methods, such as applications of
transfer learning, self-supervised learning and semi-supervised learning for var-
ious tasks of music classification. Models are trained on large amounts of avail-
able data and later applied to subsequent, downstream tasks on smaller datasets.
Development of such solutions has lead to the usage of deep audio embeddings
computed with the usage of neural networks such as VGGish [16] and L3 (Look,
Listen and Learn) net [17,18], which have been shown to outperform other fea-
ture representations in tasks of environmental sound classification [19] and music
emotion recognition [20]. Furthermore, the usage of embeddings allows for a
decrease in compute and enables the training of lightweight classifiers on CPU,
as opposed to deep learning models based on image representations of music
such as spectrograms.

In this paper we propose and analyze the usage of deep audio embeddings for
representation of selected musical qualities such as genre and instrumentation,
as applied to downstream tasks of genre recognition, instrument recognition and
performer recognition. We train several classification models for each of the tasks
and present experimental results and evaluation of the results in comparison with
baseline Mel-frequency cepstral coefficient (MFCC) features.

2 Related Work

Transfer learning, in general, is the idea of training a model on large amounts
of available data and applying them to downstream tasks on smaller, previously
unseen datasets. This can be done either via fine-tuning the pre-trained model on
a specific dataset or using the model to extract new representations (embeddings)
on the specific dataset.

This idea has already shown promising results in the MIR domain [21]. Kim
et al. propose methods of analyzing and interpreting deep audio embeddings
in terms of their consistency [22] and apply a transfer learning framework for
artist-related information in order to predict musical genre [23]. Choi et al. [24]
propose embeddings built of activations of feature maps of a convolutional neu-
ral network. This representation was then further used for several downstream
tasks, like emotion prediction and ballroom dance classification. The usage of the
convolutional embedding along with variants of SVMs was shown to outperform
baseline MFCC models on all tasks. Pons et al. [25] show that very little model
assumptions are needed for music tagging when operating with large amounts of
data. Many experiments with musical data at scale are, however, performed with
the usage of private, proprietary datasets, i.e. collected by streaming services. A
recent work by Koh and Dubnov [20] shows deep neural embeddings outperform
hand-crafted audio features on several music emotion recognition datasets. The
authors present strong results with the usage of SVMs, random forests, bayesian
classification and MLPs.
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3 Experimental Design

Our experimental approach consists of two steps. In the first step, the input
audio is passed to a deep embedding model to obtain feature representations. In
the second step, a classification model is trained in a supervised way using the
representation vectors from the first step. We make our code publicly available1.

3.1 Audio Embeddings

VGGish. The VGGish embeddings were proposed by Hershey et al. in [16]
and are based on the well-known VGG deep convolutional model for image clas-
sification presented in [26]. VGGish embeddings are 128-dimensional and are
pre-trained on tens of millions of YouTube videos from a preliminary version of
the YouTube-8M dataset [27].

L3. The original L3 network [18] is used for the audio-video correspondence task
in order to detect correspondence between a single video frame and a 1s audio
clip. The network consists of an audio and video convolutional subnetwork front-
end for feature extraction and a fully-connected network backend for late fusion
and learning whether the audio and video samples correspond to each other.
This approach enables self-supervised training on large amounts of unlabelled
data.

This idea was further improved for musical tasks in [17] with pre-training
on AudioSet [28] musical performances. L3 embeddings were already shown to
outperform VGGish on emotion recognition tasks in music in [20]. We use the
openl3 implementation of the network for our experiments. We use the 512
dimensional embeddings extracted using mel-spectrogram input representation
with 256 mel bands. A 1s window length and 0.5 s hop size is used for full
samples, while a 0.1 s hop size is used for the ones which include cropping in the
preprocessing stage, as described in further sections.

Baseline MFCC Feature. Mel-frequency cepstral coefficients (MFCCs) are a
robust and widely used feature in speech recognition and a range of MIR tasks.
MFCCs are derived from a cepstral representation of audio with the usage of
the non-linear Mel scale. We use the librosa [29] implementation of MFCC
extraction for our experiments. For each sample we craft a feature vector using
the means and standard deviations of the first 20 MFCCs, along with means and
standard deviations of the first and second derivatives of the MFCCs.

3.2 Tasks and Datasets

GTZAN - Genre Recognition. The GTZAN datasaet [30] has already been
called “the MNIST of MIR” [31]. It is a musical genre recognition dataset with
1000 30s samples divided into 10 musical genres (“rock”, “blues”, “classical”

1 https://github.com/pszachew/music classification deep embeddings.
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etc.). There are 100 samples per genre. It’s the most widely used benchmark
dataset in MIR, although it has its known flaws which already have been thor-
oughly described in literature [32]. Although the dataset is not recommended
any more for drawing musically insightful conclusions in music tagging and genre
recognition, it is still valuable as a reference for other tasks.

GTZAN Speech/Music - Speech vs. Music Recognition. The GTZAN
speech/music [33] is a small dataset of 128 audio samples meant for a binary
classification task of distinguishing between speech and music.

IRMAS - Predominant Instrument Recognition. The IRMAS dataset
[34] consists of 9579 3 s samples of musical instruments divided into 11 classes
(“cello”, “saxophone”, “human singing voice”, “piano”, “electric guitar” etc.)
with a slight class imbalance. The authors of the dataset provide an official split
with 6705 training and 2874 testing samples.

TinySOL - Instrument Recognition. The TinySOL dataset [35,36] consists
of 2913 samples of 12 instruments in 3 dynamics (pp, mf, ff ). It is a subset of the
OrchideaSOL dataset of extended instrumental techniques. TinySOL contains
only samples of the ordinario playing technique. The dataset has an interesting
unbalance, with 691 accordion samples, around 300 samples of string instruments
(violin, viola, cello, contrabass) and around 120 samples for each woodwind and
brass instrument. The length varies between around 2 s and 10 s.

VocalSet - Performer Recognition. The VocalSet dataset [37] consists of
over 10 h of monophonic vocal performances by professional singers, 11 male
and 9 female. The recordings cover a variety of techniques (including arpeg-
gios and long tones), dynamics and a wide range of pitches. In addition, the
authors present classification results for the tasks technique classification and
singer identification (performer recognition), the latter being the task described
in this paper.

3.3 Data Processing

We use 10-fold cross validation with stratified splits in our experiments with
GTZAN, GTZAN speech/music, IRMAS and TinySOL. We embed the full sam-
ples in all datasets except TinySOL and VocalSet. For TinySOL, we introduce
additional difficulty for the classifiers by randomly selecting and embedding only
a 1s chunk of each sample. For VocalSet, we attempt to closely recreate the orig-
inal preprocessing and splitting method proposed by the authors in [37]. The
preprocessing includes normalization, trimming of silence and partitioning into
non-overlapping 3 s chunks. We use a 0.8 to 0.2 train test split with all singers
present in both sets. We also disjoint the recordings between the training and
test set.
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3.4 Downstream Task Classifiers

We apply the following classification algorithms for our experiments: logistic
regression (LR), k nearest neighbors [38] (KNN), support vector machines [39]
[40] with a linear kernel function (SVM), decision trees [41] (DT), random
forests [42] (RF), multi-layer perceptron [43] trained with ReLU activations and
Adam [44] optimizer with a learning rate of 1e-3 and β1 of 0.9 (MLP) and
extreme gradient boosting (XGB). We use scikit-learn [45] implementations
of classifires 1–6 and xgboost [46] for classifier 7.

4 Results

Upon training, we compare accuracy metrics for all of the experiments. Fig-
ures 1, 2, 3, 4 and 5 depict the results for L3 embeddings as well as the baseline
MFCC vectors. Support vector machines and logistic regression models consis-
tently show the best performance in our experiments. The deep neural embed-
ding has outperformed the baseline MFCC feature vectors by far in most tasks
- the difference is especially noticeable in the IRMAS predominant instrument
recognition task.

The figures do not include the regular decision tree, as its performance was
consistently the poorest out of the considered classifiers, falling up to 50% accu-
racy when compared to SVMs. Interestingly, MFCC features have shown to work
better with regular decision tree classifiers due to the lower dimensionality of the
embedding vectors, however still falling short to the results obtained with other
algorithms.

Fig. 1. Results for genre classification on GTZAN dataset.

The error rates on GTZAN speech/music are trivial due to the small size of
the dataset. The deep neural embedding obtains generally better performance,
however both representations achieve accuracy scores close to 100%, showcasing
their ability to capture differences between musical and speech signals.
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Fig. 2. Results for speech/music distinguishing on GTZAN speech/music dataset.

In the case of instrument recognition, in addition to the results presented in
Figs. 3 and 4, we perform additional confusion matrix analysis for the SVM. In
the case of IRMAS, human voice meets a 98% accuracy, further supporting the
voice vs. music capabilities of L3 observed on GTZAN speech/music. We notice
that most errors occur between instances of the string instrument families, like
cello and viola. With TinySOL, most misclassifications occur between alto sax
and flute. Both of these cases may lie within the actual similarity of sound of
these instruments within certain pitch ranges.

Fig. 3. Results for instrument classification on IRMAS dataset.
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Fig. 4. Results for instrument classification on TinySOL dataset.

Fig. 5. Results for performer identification on VocalSet.

5 Conclusions and Further Work

In this paper we have proposed the usage of transfer learning with deep L3

embeddings for music classification tasks of genre recognition, speech/music dis-
tinguishing, predominant instrument recognition and performer identification.
We have trained several classifiers on 5 datasets, presented original results and
compared the performance of the deep embeddings against hand-crafted MFCC
feature vectors. The deep embeddings have outperformed the MFCC vectors on
all considered tasks, giving further insight into the robustness of L3 and its use-
fulness for various MIR tasks. Furthermore, the deep embedding approach has
proved more than competent in fairly difficult tasks, like distinguishing between
particular string instruments and female singing voice identification. The usage
of the embeddings also allowed us to use CPU-trainable classification algorithms.
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In further work, we would be very interested in performing a large-scale eval-
uation of other embeddings on a multitude of MIR tasks, as well as in an attempt
of proposing an embedding of our own, perhaps using previously untested neural
network architectures.
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Abstract. The Denial of Service attacks are one of the most common
attacks used to disrupt the services of public institutions. The crimi-
nal act of exhausting a network resource with the intent to obstruct
the utility of a service is associated with hacktivism, blackmailing and
extortion attempts. Intrusion Prevention Systems are an essential line
of defence against this problem, strengthening public institutions, indus-
trial and critical infrastructure alike. In the following work, an analysis
of the detection of DDoS Backscatter with the use of neural networks
is performed. To this end, a novel dataset is collected and described, on
which a hyperband-optimized neural network is trained, and the decision
process of the classifier is explained using LIME and SHAP.

Keywords: Cyber security · Machine learning · Explainable AI (xAI)

1 Introduction

Spoofing source IP addresses is a common technique for rendering mitigation of
DoS attacks more difficult [13,19]. The addresses are usually spoofed at random
[17]. The exceptions are reflection attacks, in which the source IP addresses are
replaced by the victim IP address so that the reflected packets are forwarded to
the victim [13]. In our work, we focus on attacks with randomly spoofed source
IP addresses, namely, flooding attacks utilizing TCP and ICMP protocols. The
randomness of IP spoofing makes it possible to observe artifacts of an attack
even in the networks which do not carry the attack traffic, by monitoring the
so-called backscattered packets (backscatter). These packets are received by the
spoofed IP addresses from the victim of an attack. The backscattered packets
are illustrated in Fig. 1. In this image, the attacker’s packets are shown in red
and are aimed at the victim with IP addresses B. The victim responds to these
packets by sending a response (blue). However, response packets do not go back
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to the attacker with IP address A, but to the devices with IP address C and
D, which have been spoofed by the attacker. Therefore, it is possible to observe
packets from the victim of the attack on devices C and D.

Fig. 1. An example of backscatter attack packets (blue). Attacker (A) performs an
attack (red) on IP address B. The attacking machine spoofs its source address using
IP addresses C and D. Therefore, the victim of an attack B sends a response (blue) to
the attacker’s request A to IP addresses C and D [5]. (Color figure online)

The observation of the backscatter traffic is performed by the so-called tele-
scopes. Telescopes are made of a relatively large unused IP address block. There
are no services nor clients, only a machine that receives all the packets for the
whole assigned block. Therefore, the arrival of a packet to the address range of
a telescope indicates an illegitimate activity. Typically, this is a backscatter or a
scan. The detection of a backscatter at the telescope is relatively straightforward
and is typically based on different quantitative thresholds that are able to recog-
nize the backscatters from scans [5,17]. In this work, we experimentally evaluate
if it is possible to detect a backscatter using data provided by the flow monitor-
ing of a large productional backbone network. Our motivation is twofold; having
the ability to observe backscatter without the need to dedicated large IP address
space to the telescope since unassigned IP addresses are scarce resources in IPv4
world, and observing backscatter achieving high quality, i.e. the assumption is
that the larger the IP address space, the better.

The methods for detecting DDoS attacks from backscattered packets are
discussed in more detail in Sect. 2.

2 Related Work

The ground work on detection of backscatter was established by Moore [17].
Their work provided a theoretical background on the probability of observing
backscatter at the network telescope of a specific size as well as proposed the
first backscatter detector. The proposed detector applies thresholds over several
traffic characteristics and it was constructed manually.
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Blenn et al. performed another comprehensive study about DoS attacks using
backscatter analysis ten years later. The study reports on evolution of DoS dur-
ing five consecutive years on the TU Delft telescope. The detection of backscat-
ter is based on several rules and thresholds, to differentiate between scans and
backscatter traffic arriving at the telescope.

There are three research papers reporting on the use of various machine
learning algorithms for backscatter analysis. Furutani et al. [11] defined twelve
packet features (such as number of packets and average packet size) and used
the Support Vector Machine algorithm to train backscatter traffic detector. They
used HTTP traffic at the NICT telescope to train the classifier (thresholds over
traffic characteristics were used to label data) and applied the detector on all
the TCP traffic subsequently.

They also tested three other machine learning approaches, namely RBFNN,
RAN and RAN-LHS, in [2]. They extended their dataset with UDP traffic and
they used DNS (with thresholds) to provide labeled UDP traffic for training.
They also extended the feature set with seven additional features (e.g., variance
of interpacket intervals, average packets with unique source port, etc.).

Another work that served as an inspiration for our feature set is [22]. Skr-
janc et al. investigated evolving Cauchy possibilistic clustering as a means of
clustering similar traffic from NICT telescope. The authors labeled the resulting
clusters using the well-known rules with thresholds, subsequently.

The main difference between the following work and the previous research
is that in this work, the analysed network flow data was not collected from
a telescope but from the whole backbone network. This introduces additional
challenges to differentiating the backscatter traffic from the legitimate traffic and
the specific events, such as misconfiguration. We build upon the previous works
on telescopes by utilizing the existing CAIDA telescope to label our dataset.

3 Backscatter Detection Without Telescope

The current approach to detecting backscatter traffic is to capture packets at
telescopes/honeypots [5] and differentiate between scans, attacks, misconfigura-
tion and the DDoS backscatter. However, telescopes observe only a limited range
of the IP address space. Moreover, telescopes are deployed using an unassigned
IP address range. But, due to the depleted pool of IPv4 addresses, it is costly
for organizations to sacrifice part of their address space to deploy telescopes
to be able to observe the DDoS landscape. Our approach extends the existing
work on detecting the backscatter traffic, to utilize a whole backbone network
hosting several/16 prefixes as an observation point for the backscatter traffic.
In such a case, it is not possible to use the raw packet capture as a source of
data due to its volume; we use flow data collected from the edges of the back-
bone network. In such a setup, we face the additional challenge, in comparison
to the telescopes, of spotting the backscatter in the vast amount of legitimate
traffic, and, at the same time, not to misclassify the legitimate traffic for being
a backscatter. Therefore, we apply machine learning to achieve a high success
rate of classification between backscatter and non-backscatter traffic.
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Our approach utilizes data inferred from the telescopes to annotate our
dataset. The dataset serves for the training of a classifier which is subsequently
applied on IP flow data. The telescope and its analysis engine recognize the
backscatter traffic received from the attacked IP addresses. The output is a
list of IP addresses that generated the backscatter traffic. This list serves as
an annotation for our flow dataset. The feature vectors per each IP address
are extracted from the annotated flow dataset. In comparison to the previous
packet-based approaches, we are limited to the features that can be obtained
from the flow data. The following list summarizes these features (Table 1).

Table 1. The list of all the features utilized in this work. The protocol column denotes
if a feature is applicable for the given protocol. The Source column indicates if the
feature was already used in the previous work, or if it is new. By the destination IP
address we mean the receiver of the backscatter traffic, while the source is the victim
of DDoS attack.

Features Protocol Source/inspiration

Number of bytes TCP, ICMP

Number of packets TCP, ICMP [11,22]

Average bytes per packet TCP, ICMP [11,22]

Std. deviation of bytes per packet TCP, ICMP [11,22]

Number of flows TCP, ICMP

Average number of packets per flow TCP, ICMP

Std. deviation of packets per flow TCP, ICMP

Max. number of flows per minute TCP, ICMP [17]

Average number of flows per second TCP, ICMP

Number of unique destination IP addresses TCP, ICMP [11,22]

Number of unique destination/24 networks TCP, ICMP

Number of unique destination ports TCP [11,22]

Number of unique source ports TCP [11,22]

Number of unique destination IP addresses
normalized by the number of flows

TCP, ICMP

Number of unique destination/24 networks
normalized by the number of flows

TCP, ICMP

Number of unique source ports normalized
by the number of flows

TCP

Number of unique source ports normalized
by the number of flows

TCP

For an IP address, both the ICMP and TCP features are calculated sepa-
rately, e.g. packet count.
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4 Evaluation

The evaluation empirically discovers whether the proposed approach is capable of
recognizing the DDoS backscatter traffic from the vast amount of other network
traffic flowing through the backbone network.

4.1 Deep Learning

Artificial Neural Networks (ANN), which sit at the heart of the Deep Learning
revolution, are adaptable instruments capable of very accurate performance in
specific tasks. With an ever-growing variety of applications, Deep Learning is
successfully applied for data mining, classification, regression, clustering and
time series analysis. This includes uses in Intrusion Detection Systems (IDS) [1,7,
10,12,21]. From a certain point of view, ANNs mimic the learning characteristics
of biological neural networks, although heavily streamlined [16].

Hyperparameter Optimization. Apart from the parameters that are
adjusted to the data in the training procedure, the ANN algorithms also have a
set of parameters that cannot be inferred from the data. These are called ‘hyper-
parameters’. The proper setting of hyperparameters can influence the results
of the ANN to a great extent [8]; thus, a myriad of hyperparameter tuning
approaches have been formulated. This process governs the choice of parameters
like the activation function, the learning rate, the optimizer, the batch size, the
number of epochs and even the number of layers of the network along with the
count of neurons on those layers. There are a number of approaches to hyperpa-
rameter optimization, starting from exhaustive searches of the parameter space
with GridSearch [8], through Random Search [3] and Bayesian Optimization
[23]. One of the most recent approaches is Hyperband Optimization [15]. Hyper-
band is an improvement to the successive halving algorithm, which discarded
half of the worst performing hyperparameter setups out of a set on each itera-
tion. Hyperband solves the resource allocation problem present in the successive
halving algorithm (whether one should try a large number of setups over a short
period of time, or try a smaller number of setups over a longer period of examina-
tion time). Hyperband performs a GridSearch on the number of hyperparameter
setups for a fixed finite computation budget.

Employing the hyperband algorithm, the hyperparameters for the Deep Neu-
ral Network (DNN) used in this work were established as seen in Table 2. The
hyperband completed 354 hyperparameter setup tests, choosing the finest combi-
nation of hyperparameters with regard to the number of layers (1–4), the number
of neurons on the layers (minimum value set to four, maximum to 4096, with
the step size of 32), the most suitable activation function (Rectified Linear Unit,
Hyperbolic Tangent, Scaled Exponential Linear Unit or Sigmoid), the learning
rate (0.1, 0.01, 0.001, 0.0001), the batch size (1, 2, 4, 8, 16, 32 and 64), and the
number of Epochs (10, 30, 50, 100, 150).

Our dataset covers one week of network traffic captured at the edge of the
CESNET backbone. The dataset is publicly available at [26].
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Table 2. Best hyperparameter setup

Hyperparameter Best value

layers 2

units 1668

activation relu

optimizer ADAM

learning rate 0.0001

epochs 50

batch size 16

Dataset Balancing. The data imbalance problem affects some ML-based clas-
sifiers in the situation when the number of datapoints in one of the classes
outweighs the number of samples in other classes. When trained on such data,
some ML classifiers have a tendency to misclassify the minority samples as the
majority samples. This poses an issue when the minority samples are the very
reason of the deployment of ML algorithms, as in the case of anomaly detection
in network traffic [14]. There is a number of established ways to handle the data
imbalance problem in ML; in this study, random subsampling of the majority
class was employed.

4.2 Detection Results

The DNN setup described in Table 2 was capable of detecting the DoS attacks
with an accuracy (ACC) and balanced accuracy (BACC) of 0.986 and the
Matthews Correlation Coefficient (MCC) of 0.971. The results, along with the
precision, recall and f1-score for the particular classes are reported in Table 3.

Table 3. DoS detection results using DNN

Precision Recall F1-score

False 0.99 0.98 0.99

True 0.99 0.99 0.99

Value

ACC 0.99

BACC 0.99

MCC 0.97

4.3 Explaining the Attributes of a Deep Learning Based Intrusion
Detection System

Explainability of Artificial Intelligence (xAI) can be defined as the pursuit of
adequate intuitions on the behaviour of a black box AI model [4]. The authors
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of [9] notice that in this early stage of explainability and interpretability, it is
not yet possible to formulate a homogeneous, formal definition of both of those
aspects of AI. However, it is of paramount importance, as AI which directly
impacts individuals is bound by legislation such as the GDPR [6]; this can include
intrusion detection [18]. Apart from the legislative viewpoint, xAI can be used
to provide crucial insights to security operators [25]. In this work, xAI is used
to peek into the inner workings of DNN and see what the most relevant features
to the classification of particular datapoints were.

Fig. 2. Explanations for a sample marked as ‘True’ - LIME

Fig. 3. Explanations for a sample marked as ‘True’ - SHAP

Local Interpretable Model-Agnostic Explanations (LIME). LIME is
a model-agnostic Artificial Intelligence Explainability method. The premise of
LIME is expressed by building a local linear model, following the assumption
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Fig. 4. Explanations for a sample marked as ‘False’ - LIME

that any complex model is linear at the local level [20]. LIME samples data-
points in the neighbourhood of the explained instance and uses perturbations
of the sampled data to train a linear model. In Fig. 2 and in Fig. 4, the cor-
responding feature contributions to the samples where symptoms of an attack
were found (True label) and benign traffic (False label) are showcased. The x-
axis displays the contributions themselves, while the numbers in the y-axis labels
are the bounding values for the particular features. Green bars are contributing
positively to the classification, the red bars are contributing negatively.

SHapley Additive exPlanations (SHAP). is an approach to explainability
rooted in game theory. Using SHAP, one can figure out which features increase
or decrease the probability of a particular classification, considering the inter-
actions and redundancies among features. The method is validated in [24] in a
controlled experiment, to provide better comprehension of the model behaviour.
The plots in Fig. 3 and Fig. 5 showcase the features that contribute to the clas-
sification of the particular samples. The samples are the same as in the LIME
explanations. The red and blue colors indicate that the feature will contribute
to the classification regardless of the fact if the samples were to be classified as
attacks or as benign traffic.

All explainability examples note the importance of the Unique DST 24
Subnets feature. The standard deviation of bytes per packet is of importance
in all cases as well, as is the duration feature, along with the Packet Per Flow
(PPF) standard deviation.
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Fig. 5. Explanations for a sample marked as ‘False’ - SHAP

5 Conclusion

In this work, a novel cybersecurity dataset is presented; the collection process
and the features available are described. The validity of the dataset is tested
using a deep neural network which was optimized using the hyperband tuning
method. The accuracy and balanced accuracy of the classifier reached almost
99%, and the recall for the attack class exceeded 99%. The classifications made
with the use of the DNNs are explained using two xAI methods - LIME and
SHAP.
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Abstract. Deep learning architectures find applications where analysis
of complex data inputs is demanding and regular neural networks may
have problems. There are many types of deep learning models, however
the most important to fit architecture and training model to the input
data. In this article we propose a model of deep learning based on archi-
tecture in which we use BiLSTM neural network. Proposed model is
trained by using Adam algorithm. For the research experiment we have
examined also other latest algorithms to select the best configuration of
proposed model. Results show that our proposed BiLSTM deep learning
neural network archived over 99% of accuracy.

Keywords: Deep learning · BiLSTM · Adam · Heart signal

1 Introduction

Computer simulations and decision models are very often powered by various
aspects of Computational Intelligence. New ideas use variety of complex archi-
tectures to solve data analysis tasks. In recent years deep learning has been
presented in many applications. There are different types of architectures which
are mostly oriented particular applications. The type of architecture must be
developed for the input data, to fit information and context of the data. We
can read about many interesting models which use Long Short-Term Memory
(LSTM) neurons, since this kind of neural unit simulates cognition processes
and therefore improves classification of complex data structures.

LSTM units are mostly applied to numerical data, however we can also read
about compositions with other types to process also complex data of various
structure. Recent advances in machine learning show that bidirectional compo-
sitions of memory type units show excellent adaptation to data inputs which
are oriented on time changing domain of inputs. This kind of complex struc-
ture however improve processing of inputs of various type which may show value
fluctuation in time intervals. In [1] was presented how to use this model as sen-
timent analyzer for various types of texts that are posted in comments in the
Internet. Similar proposal for text analysis from conversations, where developed
in [2], where BiLSTM neurons were labelling information for further analysis. A
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model presented in [3] was developed to help in stock price prediction, however
this application was built as composition of CNN with BiLSTM, since it was
assumed that composed in this way architecture will be able to process images.
Deep learning has also interesting applications in incomplete data analytic [4].
Model presented in [5] proposed recurrent neural network for technical purposes
to optimize control of heating appliances. We can also find various applications
of BiLSTM neurons in composition with other structures to operate on data
inputs presents in a form complex sensor readings or knowledge graphs. In [6]
was discussed how to apply a composition with CNN to search for optimal deci-
sion patterns in knowledge graph completion process, where a role of switching
processor was given to particular attention mechanism. In [7] was presented how
to use such compositions for automatic modulation of recognition target, while
model discussed in [8] was using a concept of auto-encoder for training strategy
to learn from soft-sensor data.

Models based on BiLSTM are also very important for the development in
assisted environments or even life symptoms detection and analysis. In [9] was
presented a very interesting model of human activity recognition in which sensor
readings were analyzed by developed spatio-temporal deep learning model. A
model of BiLSTM was applied in [10] to analyze life symptoms by double channel
input to the network. Such constructions are also very efficient in hear signal
reading analysis and detection. This type of signal is very well fitted to the nature
of BiLSTM neurons since heart is giving a signal changing in the time interval.
In [11] was presented devote proposition to use EEG signals as models of control
for robotic arm, where complex CNN-BiLSTM network was analyzing inputs to
improve the control of the arm. We can also read about using BiLSTM neurons as
interpreters of the hear beat to analyze correctness of recorded electrocardiogram
(ECG).

In this article we present a model of BiLSTM neurons applied in deep learning
model to detect potential malfunctions of hear beats from recorded electrocar-
diogram (ECG) signals. Our research was started in [12] where was presented
how to improve training algorithms for probabilistic neural networks. That idea
was developed to preserve generalization of neural networks without complex
signal processing. In this article we want to discuss our proposed novel approach
to heart signal analysis. Proposed deep learning architecture is composed in the
way to adapt time interval input signal. Proposed by us architecture is using
simplified concept of auto-encoder in a form of connected bidirectional layers of
the network, where BiLSTM units are implemented to analyze the signal. We
show abilities of deep learning to adopt to the signal just by using BiLSTM
neurons with simple data normalization. In our research experiments we have
analyzed various training approaches to improve final classification form training
on applied data set. Results show that our proposed model is very efficient and
results of classification are reaching 99% Accuracy, which is a very promising
result for further development of this idea.
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Fig. 1. Above we can see sample four ECG recordings. Two of them are correct and
two are abnormal. It can be observed that the negative records are irregular and the
positive ones, despite the imperfect overlap, can be observed to have distinguished
characteristics.

Fig. 2. Sample signal processing model. We assume that the data will be recorded by
a set of sensors, then they are saved, processed and fed to the neural network inside
the ECG and if a need is found, an impulse is sent from the ICD.

2 System

Our assumed system is based on smart-ICD in combination with ECG-holder,
which ensures a much greater probability of detecting the right moment for the
use of an implanted defibrillator or other necessary supports. Therefore, we have
considered an innovative system for recognizing abnormal heart activity based
on IoT and proposed deep learning model. A sample model is discussed in Fig. 2
with possible sequence of actions. We assume that first the data is collected
from sensors located on the patient’s chest, information is read and then written
and transported to the ECG-holder which, using a deep neural network, decides
what is the best action, and if necessary, will order ICD to cause a discharge
or other device. The system is more extensive than the ICD itself, however, it
has much better accuracy with which assesses the most appropriate method of
patient assistance. Therefore, possible device application would be intended for
people in the highest risk group. As the information itself is recorded, the next
step would be to refine the entire system with all the data collected.
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3 Dataset

As we are aware of the current global problem of heart disease and the enormous
cost of treatment faced by millions of people every day, we recognized that there
is a need for increased accuracy of ICD devices. We found relevant data on [13].
The data-set was created from 48 half-hour fragments that were recorded using
a two-channel ECG. All these data were obtained from 47 patients studied by
the BIH Arrhythmia Laboratory. Recorded data was digitized at 360 samples
per second, for each of the channels all this was done with a resolution of eleven
bits at 10mV. To make sure that none of the records was assigned to an incorrect
abstraction class, each vector was checked by independent cardiologists. The data
includes 187 values, each of the values ranges from 0 to 10. This set has been
divided into five abstraction classes in turn: Normal beat (N), Supraventricular
ectopic beat (S), Ventricular ectopic beat (V), Fusion beat (F), Unclassified beat
(Q).

4 BiLSTM Deep Learning Model

To achieve this results we have used Bidirectional-LSTM architecture which can
be described by Fig. 3, Fig. 4 and Fig. 5. To ensure that our signal is not entirely
lost through the deep neural network model we have used a signal normalization
layer in the middle of the network which allowed us to add more layers than was
possible without the danger of instant loss of accuracy. This allowed our model
to adapt to more complicated multi-dimensional mathematical functions than is
possible with the more shallow neural network model.

Fig. 3. LSTM gate unit in our neural network architecture.
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Fig. 4. A sample model of applied signal forwarding over our proposed BiLSTM archi-
tecture in which gated units are connected for double side communication to improve.

Fig. 5. Applied deep neural network architecture with normalization unit. Proposed
concept serves as a simplified auto-encoder model in which normalization by using
activation of the previous layer work independently on the data. It is implemented
as operation in-between the recurrent layers of the network. It was applied the mean
activation values between direct example close to 0 and standard deviation close to 1.

Applied LSTM layers work in a concept of a forget gate and memory recall.
Mathematical model of this construction is defined as:

ft = σ(Wf [ht−1, xt] + bt) (1)

it = σ(Wi[ht−1, xt] + bi) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

ĉt = tanh(Wc[ht−1, xt] + bc) (4)

ct = ft ◦ ct−1 + it ◦ ĉt (5)

ht = ot ◦ tanh(ct) (6)
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where xt is the input, ft is activation vector, it is input/update activation vector,
ot is output activation vector, ht is hidden state vector, c̃t is cell input activation
vector, ct is cell state vector, W,b are weights matrices and bias, σ is a sigmoid
function, tanh is a hyperbolic tangent function, we also assume c0 = 0 and
h0 = 0.

Algorithm 1. Adam training process
Input: ε = 0.001, β1 = 0.9, β2 = 0.998, η = 0.0025

1: Randomize all initial weights for the architecture,

2: while global error value ε < error value do

3: Reshuffle training data as TS,

4: for each mini-batch inside TS as MBP do

5: Step ++,

6: Calculate gradient vector for MBP,

7: Calculate values of momentum eq. (7) and oscillations eq. (8)

8: Calculate correction values eq. (9) and eq. (10)

9: Calculate new weights values eq. (11)

10: end for

11: Update global error ε eq. (12).

12: end while

Output: trained model

4.1 Adam

The training the model was most efficient by adaptive moment estimation algo-
rithm called Adam. This algorithm is very fast and has low computational com-
plexity. Adam is based on similar idea to RMSProp where first and second
moments of gradients are used to update weights. First we calculate mean and
variation

mt = β1mt−1 + (1 − β1)gt, (7)

vt = β2vt−1 + (1 − β2)g2t , (8)

where hyper-parameters β1 = 0.9, β2 = 0.998 and g is gradient value of applied
loss function. Next we calculate correlations of mean and variation

m̂t =
mt

1 − βt
1

(9)
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v̂t =
vt

1 − βt
2

. (10)

which are used to update the weights

wt+1 = wt − η√
v̂t + ε

m̂t, (11)

where η is learning rate and ε is a constant small value. In our training we have
used loss function in a form of Mean Squared Logarithmic Error

L(y, ŷ) =
1
N

N∑

i=0

(log(yi + 1) − log(ŷi + 1))2 (12)

as it is very well fitted to the data type of our use. The training process is
presented in Algorithm 1.

5 Numerical Experiments

To ensure we are using the best fitted algorithms we have conducted series
of numerical experiments. Results can be seen in Fig. 6, Fig. 7 and Fig. 8. As
we can see the system performs well on algorithms such as: Adam, NAdam,
RMSprop and Adamax and is not suited well for the other four algorithms.
What’s interesting the loss function creates a logarithmic curve for all training
algorithms which were giving promising results. For all the other the curve was
almost linear. In terms of accuracy over time plots of Adadelta, Ftrl, Adagrad
and SGD performed almost equally by classifying all values as the most numerous
class thus giving us not useful results from training. After some deeper analysis of
the plots mentioned before we can also spot that the smallest difference between

Fig. 6. Comparison of accuracy plots from examined models.
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Fig. 7. Comparison of loss plots from examined models.

Fig. 8. Confusion Matrices from our experimental results comparisons among tested
training algorithms.

training and testing sets. In the case of the Adamax algorithm loss decreases and
accuracy increases. This could erroneously conclude that this is the best choice
for our dataset. However from very important metric such as Confusion Matrix
we can see that this algorithm may have some disadvantages. Here we can see
the big fall of Adamax training algorithm for the benefit of Adam and NAdam
methods. What we can see the first, third and the fifth classes are commonly well
classified by all of them, however the other ones are much easier to miss-classify.
With this task the best work was done by the Adam algorithm followed by the
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Table 1. Comparison of results between different optimization algorithms

Algorithm Accuracy Precision Recall F1
Nadam 98.362273% 92.755022% 85.383819% 0.889169
Adam 98.21411% 88.697324% 88.432159% 0.885645
RMSprop 98.159116% 91.461394% 83.840187% 0.874851
Adamax 98.089926% 91.831089% 82.826612% 0.870967
Adadelta 89.321633% 22.330408% 25.0% 0.235899
Adagrad 89.321633% 22.330408% 25.0% 0.235899
Ftrl 89.321633% 22.330408% 25.0% 0.235899
SGD 89.321633% 22.330408% 25.0% 0.235899
Algorithm Specificity FDR FPR FNR
Nadam 91.810345% 99.789811% 8.189655% 0.649816%
Adam 84.540117% 99.562739% 15.459883% 0.618785%
RMSprop 89.808917% 99.73419% 10.191083% 0.667365%
Adamax 87.5% 99.684543% 12.5% 0.787662%
Adadelta 0.0% 100.0% 0.0% 2.977402%
Adagrad 0.0% 100.0% 0.0% 2.977402%
Ftrl 0.0% 100.0% 0.0% 2.977402%
SGD 0.0% 100.0% 0.0% 2.977402%

Nadam. However the best classification as the final accuracy of Nadam was a bit
higher than the Adam’s as it did a better job with the main 3 classes. Results
of comparing tested algorithms for 30 epoch are presented in Table 1, while the
final selected model training presented in next sections used 100 epochs. We can
see that among results the best metrics in terms of accuracy are for Nadam.
Very close came Adam algorithm which had smaller overall accuracy however
performed much better in terms of classification consistency across all classes.
Next are RMSprop and Adamax with the accuracy of 98.16% and 98.09%. And in
the end we have Adadelta, Adagrad, Ftrl and SGD which did not learn any useful
features on our architecture. As a result of our comparisons we have selected
Adam as the best training model for our developed deep learning architecture
as it gave us more stable results.

5.1 Results

As a result of our experiments we have select trained BiLSTM neural network
with the final accuracy of 99.2%. The final plots and confusion matrix can be
seen in Fig. 9. What we can see is that the final train accuracy reached almost
100% however the test one is reaching 99.2% at its best. Because of that we
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Fig. 9. Final results of training for our selected BiLSTM neural network architecture.

Table 2. Comparison of results between different approach

Year Type Accuracy

Our model 2021 Bidirectional-LSTM 99.2%
Zhai et al. [14] 2018 2D-CNN 99.1%
Huang et al. [15] 2019 2-D Deep CNN 99.0%
Kiranyaz et al. [16] 2015 1-D CNN 99%
Oh et al. [17] 2018 CNN-LSTM 98.1%
Acharya et al. [18] 2017 9-layer CNN 94.03%

can conclude that there is probably some overfitting or the data features are
not diverse enough to be correctly classified. Nevertheless we can still talk about
high accuracy of prediction compared to other methods presented in Table 2.
The network almost perfectly classifies the first class of abstraction with a small
decrease in performance with the last fifth class. The third one has also a high
accuracy and the second and fourth ones can be described as good enough with
a high tendency to classify their examples as the members of the first class of
abstraction. In Table we can see comparison of our proposed model to other
solutions in literature. We can see that our proposed model is reaching best
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results among compared solution of machine learning, that gives good start for
further development and research.

6 Final Remarks

Using our neural network model, we obtained 99.2% accuracy for validation data
what is a considerable achievement as the classification method itself was very
difficult without much interference with the input data to ensure the appropriate
speed of operation. As a whole, we can say that in the future, when starting the
classification of this set, it would be worth using various methods of balancing
the input data, especially due to not perfect classification of the second class
attracted by the first. In the future we will consider the use of dropout layers,
data augmentation and more experiments with layer normalization to enhance
the performance even more. What also could be beneficial is the use of some
KFold derivatives to better fit the hyper-parameters such as batch size, learning
rate, normalization momentum. We also hope that the field of science dealing
with heart disease will develop significantly in the future as it is the greatest
killer of our time.
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ing method to preserve generalization of rbpnn classifiers applied to ecg signals
diagnosis. Neural Netw. 108, 331–338 (2018)

13. Moody, G.B., Mark, R.G.: The impact of the mit-bih arrhythmia database. IEEE
Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

14. Zhai, X., Tin, C.: “Automated ecg classification using dual heartbeat coupling
based on convolutional neural network.” IEEE Access. 6 27 465–27 472 (2018)

15. Huang, J., Chen, B., Yao, B., He, W.: “Ecg arrhythmia classification using stft-
based spectrogram and convolutional neural network.” IEEE Access 7 92 871–92
880 (2019)

16. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ecg classification
by 1-d convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675
(2015)

17. Oh, S.L., Ng, E.Y., San Tan, R., Acharya, U.R.: “Automated diagnosis of arrhyth-
mia using combination of cnn and lstm techniques with variable length heart
beats.” Comput. Biol. Med. 102 278–287 (2018)

18. Acharya, U.R.: “A deep convolutional neural network model to classify heartbeats.”
Comput. Biol. Med. 89 389–396 (2017)



Short Texts Representations for Legal
Domain Classification

Tomasz Zymkowski1 , Julian Szymański1(B) , Andrzej Sobecki1 ,
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Abstract. This work presents the results of comparison text represen-
tations used for short text classification with SVM and neural network
when challenged with imbalanced data. We analyze both direct and
indirect methods for selecting the proper category and improve them
with various representation techniques. As a baseline, we set up a BOW
method and then use more sophisticated approaches: word embeddings
and transformer-based. The study were done on a dataset from a legal
domain where the task was to select the topic of the discussion with the
layer. The experiments indicate that fine-tuned pre-trained BERT model
for this task gives the best results.

Keywords: Text representation · Short text classification ·
Transformer · BERT

1 Introduction and Problem Statement

The recent development of advanced deep neural network architectures proves
its suitability for the natural language processing domain. More sophisticated
language models allow continuous improvements of tasks related to language
analysis. One of them is text classification, where the aim is to assign a piece
of text to a predefined category. Besides the classification algorithm, often the
essential step of this task is to create a text representation that allows processing
it using machines. Traditional approaches employ the so-called Vector Space
Model that treats the set of documents as points in the high dimensional space
of the features. These features are usually single words that aims to represent
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the text as a set of separate utterances that are related to the document with
some weights, e.g.: tf × idf is used that is based on statistical word frequencies
analysis [14].

In our research, we aim to evaluate how much information can be introduced
to the model using different representation methods and evaluate them using a
classification task. We compare the application of the typical BOW approach
that forms the baseline for our research with word representations based on
embeddings such as word2vec and fastText and document vectors constructed
with transformer models. The experiments were conducted on our dataset ded-
icated to the classification of short texts in the legal domain. The goal was to
assign a topic of the legal opinion based on a short sample of the text. This
allows directing the client to the most suitable specialist in an automatic way.

The paper is constructed as follows. Section 2 provides a more detailed
description of embedded text representations with particular emphasis on trans-
former methods used in NLP domain. Then we describe the setup of our experi-
ment in Sect. 3 and provide the achieved results in Sect. 4. The paper is concluded
with the discussion and description of directions for further improvements.

2 Neural Text Representations

One of the extensions of the BOW model is to code words as vectors instead
of using a single numerical identifier. In such a case, words are encoded using a
set of the numbers stored as a vector that allows to capture more sophisticated
similarities and thus introduce elementary semantics into representation. One of
the most popular approaches to building word vectors is to statistically analyze
large text collections and, based on word concurrences in the context, modify
the weights of the neural network that builds such a vector – word embedding.
There are a number of methods to create the word embeddings, most well known
are Word2vec [15], Glove [17], fastText [4]. For a large number of NLP tasks, it
is sufficient to use already pretrained word embeddings that may be considered
as a kind of transfer learning [19] within the representation level. The next step
in text processing is to represent the whole document using word vectors. In
the vector space model (VSM), a document is represented as a single point in
the high dimensional space of words. Using word embeddings a tensor of vectors
is formed that represent a document. To map it into VSM, usually, a simple
average of word embeddings that occurs in the document is performed. It should
be noticed that this approach works well for small texts, as while the number
of averaged vectors increases, the resulted document representations turn out
very similar and thus are hardly distinguishable. The detailed description and
comparison of word embeddings used for text representation can be found in
[24]. As word embeddings face several issues when creating text representation,
and more efficient approaches should be used. The extensive review of neural
approaches for text representation can be found in [3,30].
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The transformer [27] architecture is dedicated for sequential data, in NLP
tasks it employs analysis of word co-occurrences in the large text copra. The
neural network is built with the encoder-decoder blocks with attention modules
used to combine the information from the encoder with the results of the decoder
operations. In machine translation tasks this approach is used to map words
between languages [29].

At the model input the sequence of words is converted to embedding vectors.
As there is no information about the position of a particular word in the sequence
the positional encoding [25] is used. The approach employs an additional set of
embeddings that contain information about the position of each token in the
sentence. Thus the input representation of each token is the sum of word and
position embeddings.

The typical architecture of a transformer is built from encoder-decoder blocks
repeated six times. Each encoder block contains self-attention and feed-forward
layers separated by a nonlinear transformation in the form of the ReLU function.
It process the information provided by the attention mechanisms and transform
them into a form used by successive layers of encoders or decoders. Between
these layers, there are residual connections and normalizing layers. The decoder
block has three main layers: masked self-attention, encoder-decoder attention
and a feed-forward layer that scales the output vector from the decoder part to
the number of vector dimensions of each word. Analogically, as in the encoder
part, there are also residual connections. In the last decoder block a softmax
layer produces the probability distribution of the particular word occurrence.

The introduction of the transformer architecture push forward the NLP
domain. This resulted in the invention of further improvements to the Trans-
former network, creating new architectures for solving sophisticated lexical tasks.

The initial goal of the transformer architecture was to solve the machine
translation task; hence it contains both encoder and decoder parts. Based on
this approach, BERT [7] architecture was proposed to create a language repre-
sentation model. To complete this task, it only needs a part of the encoder from
the transformer network that encodes semantic and syntactic information into
embeddings [10].

The BERT architecture employs two training techniques: masking [8] and
Next Sentence Prediction (NSP) [22]. The first one extends training capabilities
and thus improve predictions with the usage of the information stored in the
embeddings so the model is capable to use more information from the input.
The second training technique allows the encoder to predict the entire sentence
taking into account the previous one.

The initial BERT architecture is a basis for many new variants [26], introduc-
ing improvements for particular tasks or adapting them to a particular language.
Some of the important architectures are:

RoBERTa - Robustly Optimized BERT Pretraining Approach [12]. Extends
the original BERT by training it longer and on larger data.

ELECTRA - Efficiently Learning an Encoder that Classifies Token Replace-
ment Accurately [5] is a model that uses replaced token detection technique, where
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tokens are replaced with alternative samples. This approach provided more effi-
cient results as the model is trained using all entry tokens, and not only the
masked part of them.

XLNet - Generalized Autoregressive Pretraining for Language Understanding
[31] is a combination of a large two-way transformer with auto-encoding noise
reduction used in BERT. In BERT tokens were predicted in a specific order
which limits capture long-term relationships between words. XLNet employs the
permutation technique to capture a bidirectional context where the tokens are
predicted randomly.

DistilBERT - Distilled version of BERT [21] is a light version of the BERT
created to solve the problems with limited computational resources while using
the original network for real-life tasks. The approach uses knowledge distillation
[9] where, after the training of the larger model the knowledge is transferred
to the smaller model. The method allows to obtain results similar to the orig-
inal solution, despite a significant reduction in the size of the model and the
processing time.

ALBERT - A lite version of BERT [11] was proposed to improve the learning
process as well as the results achieved by the BERT architecture by applying
cross-layer parameter sharing and factorized embedding parameterization tech-
niques.

SBERT - Sentence BERT [18] – Architecture dedicated to simpler and less
computationally complex comparisons of two sequences. It is a Siamese network
composed of the BERT model, overlaid with a pooling layer, which builds a
constant-size representation for input sentences of different lengths. This app-
roach allows to compute the representation of each sentence separately, and then
compute the similarity between any two sequences. The model performs signif-
icantly better than the standard BERT architecture in the semantic textual
similarity task [13].

HerBERT [20] - BERT has been constructed for many languages, HerBERT
using extensions introduced by ROBERTa is a network dedicated to Polish lan-
guage, trained on the corpus composed of many sources, not only Wikipedia.

3 Experiment Setup

The goal of our research was to compare different text representation methods
using the classification task. In our study, we test two groups of approaches. The
first one creates a vector representation of a given text and then uses a classifier
to predict the proper label. Here two processing steps are used, thus we call this
an indirect approach as opposed to the direct one, which uses one transformer
model both for text representation and classification tasks.

The approaches are evaluated on a dataset built from legal documents written
in the Polish language and manually assigned to a particular category.

In this section, we describe in detail the data along with the models used in
the classification task in our experiments.
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3.1 Dataset Overview

Data used in this experiment has been obtained from legal opinions made for
clients’ inquiries, collected for the last seven years. Each of them was initially
assigned to a category from a set of predefined 11 classes referring to separate
branches of law.

Due to the fixed format of the documents, it was possible automatically
extract client queries that describe the topic of the legal opinion. For documents
with a larger number of queries, we concatenated them into one long string.
Making this reduction would later allow the model to make a classification based
on users’ queries and therefore provide a high level of efficiency in the processing
of each legal case.

Fig. 1. Comparison of class distributions

Raw datasets usually require initial preprocessing: stop words removal, stem-
ming etc. In our case, the distribution of classes was highly imbalanced ranging
from 5 to over 1500 samples. To mitigate this issue it was decided to merge four
of the smallest categories into one, finally obtaining 8 classes (1). The results
of performing this adaptation are shown in Fig. 1a and Fig. 1b where class dis-
tributions are shown before and after concatenation of the smallest categories
respectively.

After the above mentioned adaptations and preprocessing the resulting
dataset consists of 5901 records of a key-value pairs stored as (query, category).
The detailed information of the dataset size is shown in Table 1.

3.2 Indirect Predictions

Indirect models are built from two separate steps, which we will refer to as
a representation and classifier. The former maps text into an n-dimensional
vector creating a numerical representation. The latter assigns to this vector a
corresponding label and predicts the law category.

As this paper focuses on the evaluation of the information that is brought to
the model using different representations, we compare representations obtained
from BoW, Word2Vec, fastText, and BERT models and classify them with a
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Table 1. Number of samples of each category

# Class Number of samples

1 Civil law 1530

2 Medical law 1504

3 Administrative law 1028

4 Labor law 804

5 Pharmaceutical law 349

6 Criminal law 302

7 Tax law 270

8 Rest 114

single C-Support Vector Machine and Feed Forward Neural Network to make
the final prediction.

SVM has been used with its basic setup except gamma parameter set to 1
n

(where n was equal to the number of features) and was proceeded with a feature
scaling phase.

Custom Feed Forward Neural Network with one dense layer of size 128 acti-
vated with the ReLU function and an output layer containing eight neurons with
softmax activation. Batch sizes and the number of epochs were selected for each
model individually on the validation set to achieve its best performance.

Bag of Words. The first representation model was built on a full corpus as we
use it as a baseline. Representation here is a high dimensional, sparse vector of
length equal to the number of unique words in a whole corpus. To reduce the
noise we proceed with additional steps of stop words removal and stemming.

Word2Vec. In this model, we use pretrained word vectors. We use 300-
dimensional word vectors from the repository of Natural Language Processing
resources for the Polish language [6]. The Polish word2vec vectors were trained
on a corpus of 1.5 billion tokens from articles, books, and Wikipedia. For each
sentence in the dataset, the words were processed to the basic form, embedded,
and later aggregated by taking the average of all word vectors. In the case of an
unrecognized word a zero vector was used.

FastText. Another pre-trained model producing 300-dimensional vectors comes
from the repository of [1]. Since it operates on character n-grams instead of full
words it does not require a stemming phase. Splitting sentences into words,
embedding and aggregating steps were performed as in the Word2Vec approach.

SentenceBERT. The most advanced model was developed for the Polish lan-
guage, leveraging a modification of the pretrained BERT network to derive
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semantically meaningful sentence embeddings [2]. Whole sentences were fed into
this model without the need for word splitting or aggregating its embeddings.
Resulting representation produces a 768-dimensional vector.

3.3 Direct Prediction

Direct models should be considered more of an end-to-end solution as they pre-
dict for a selected text the target class without preprocessing. This approach
has become much more popular after the introduction of the transformer archi-
tecture. In the experiment we use the same pretrained SentenceBERT model
as described in the previous section and finetune it for our classification task.
It was achieved by adding a linear layer on top of the pooled output and then
training it on our custom data. The tokenizer input sequences were either trun-
cated or padded to fit the model architecture. Hyper-parameters were selected
empirically on the validation set with a batch size set to 16 and the number of
epochs to four.

4 Results

Each model has been tested with 10-fold stratified cross-validation and evaluated
with a balanced accuracy metric defined as the average of recall obtained on
each class. To compare effectiveness of text representation both SVM and neural
network classifiers were used.

Results of indirect models are presented in Table 2. All three of more
advanced methods proved to be more accurate than the BoW baseline by both
classifiers. Moreover, it has been confirmed that more complex representation
models allows to provide more information to the classifier. All the approaches
reach better results using a custom neural network classifier improving their
results by a few percentage points. The SentenceBERT model delivered the most
information to the classifier as it achieved much higher results compared to oth-
ers. However, it did not come close to the fine-tuned direct model which achieved
the highest score of 0.68.

Table 2. Accuracy of classification using indirect representation methods

Model SVM Neural network

BoW 0.457 0.493

Word2Vec 0.497 0.521

FastText 0.501 0.513

SentenceBERT 0.561 0.571
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5 Discussion and Future Works

In our research, we study the influence of different text representation models
on the classification task. As can be expected, the usage of more sophisticated
approaches for text representation allows us to increase the quality of the predic-
tion. The best results have been achieved while using the end-to-end model that
beats indirect approaches. It can also be observed usage of the neural network
as a classifier allows achieving better results than using SVM.

The study allowed us to select the best method for short text classification
that was used in our system, aiming to automatically select the specialist for
a case reported by the client. The system has been implemented in the legal
domain, but by providing the descriptive data, it could be easily adapted to
other applications, e.g. in the medical area.

It seems the results may be slightly improved, using a bit more sophisticated
models. In the future, we plan to test the usage of an additional convolutional
layer in the representation model that may extract some additional features [28]
useful for results improvement. It could also be possible that we are near the
highest possible results that can be extracted statistically from this data. In
this case, introducing more sophisticated models would not result in significant
improvements. The solution would be adding more representative data as well
as the further study on representation methods. One of the approaches we plan
to test is extending the representations based on raw text and using external
repositories as a reference for detected named entities. Here we plan to employ
methods inspired by the Wikifiction approach. This method maps the text onto
Wikipedia and uses additional information provided by this repository. This
allows performing classification tasks based on more abstract features instead of
ones created from words directly occurring in the text [16,23].

Acknowledgments. The work was supported by founds of the project A semi-
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Abstract. The shear slowness well-log is a fundamental feature used in
reservoir modeling, geomechanics, elastic properties, and borehole stabil-
ity. This data is indirectly measured by well-logs and assists the geological,
petrophysical, and geophysical subsurface characterization. However, the
acquisition of shear slowness is not a standard procedure in thewell-logging
program, especially in mature fields that have a limited logging scope. In
this research,we propose to develop machine learning models to create syn-
thetic shear slowness well-logs to fill this gap. We used standard well-log
features such as natural gamma-ray, density log, neutron porosity, resis-
tivity logs, and compressional slowness as input data to train the models,
and successfully predicted a synthetic shear slowness well-log. Addition-
ally, we created five supervised models using Neural Networks, AdaBoost,
XGBoost, and CatBoost algorithms. Among all models created, the neu-
ral network algorithm provided the most optimized model, using multi-
layer perceptron architecture reaching impressive scores as R2 of 0.9306,
adjusted R2 of 0.9304, and MSE less than 0.0694.
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models · Forecasting Time-series
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the geological and geophysical subsurface characterization of reservoirs [3]. This
set of factors constantly prevents the complete acquisition of wireline logging
data [17], although they are essential for the geological and geophysical modeling
of oil and natural gas fields [7].

Moreover, there is often the need to reduce the scope of data acquisition of
geophysical well-logs [3,17] and in particular for the acoustic velocities. Typically,
the usual utilization for acoustic well-logs is in the pore pressure prediction,
petrophysics, and geomechanics evaluation, in which the shear slowness data is
an important input data [2,15,28].

The absence of a shear slowness dataset for all wells leads to a necessity in the
use of the information of previous data acquired in older wells, to mitigate the
lack of the information in new ones, especially in production and injection wells
during the reservoir production phase, or the utilization of classical approach as
the empirical correlations [4,5,12]. However, such correlations show limitations
of generalization because they incorporate the particularities of the geological
context or the geographic region that were developed for, and hence may not
be successfully applied to all locations [18,19]. Therefore, an alternative solution
to overcome this issue is to use previous information from the well-logging data
and predict this feature for future/newest wells, generating synthetic well-logs.
The use of machine learning models has highlighted the potential use of solving
several problems of regression and classification in geoscience studies [17,21,23,
27] and is a powerful technique to estimate geological reservoirs. Recent examples
of machine learning applications have been used to create synthetic geophysical
well-logs, especially used for geological formation evaluation, petrophysical and
geochemical characterization [17,26].

The main contribution of this study is to generate generalized synthetic shear
slowness well-logs, using a supervised machine learning approach. To accomplish
this task, it is necessary to use a database composed of similar well-logging
features, often available in mature onshore fields. For this study, we used a
Brazilian Northeast subsurface dataset. In this region, there is an increase in
investments by major operators, but many fields are still profitable and currently
with high production [9].

Finally, synthetic slowness shear well-log data obtained by supervised
machine learning models, when estimated with precision and accuracy, may be
used in subsurface characterization, aligned with the demand of technical needs
and cost reduction in well-logging acquisition.

2 Material and Methods

The study was carried out using a public dataset available from the Brazilian
National Agency of Petroleum, Natural Gas and Biofuels, ANP [11]. All wells
belong to the Canto do Amaro onshore Field, located in the Potiguar Basin, in
the Rio Grande do Norte State, Brazil. The development of this research follows
to the workflow summarized below:

Initial preprocessing step:
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1. Creation of the database and selection of wells and well-logging features.
2. Quality control of database well-logs.
3. Statistical analysis and data analysis, e.g., data standardization, exclusion of

spurious values.
4. Supervised machine learning techniques applied to create the regression model

and prediction of the shear wave slowness well-logs.
5. Error estimation used in machine learning metrics and comparison between

synthetic and real well datasets.

After the preprocessing step, the database was divided into: (i) training set,
(ii) validation set, composed of 30% of training data randomly selected, and (iii)
test set. The supervised machine learning algorithms were applied to the train-
ing data, varying their hyperparameters to find the optimal configuration and
generate the trained model, and for each model, we individually performed 10-
fold cross-validation within the training data and, and finally compared machine
learning algorithms with the real data set tested. This evaluation was performed
using regression metrics and aid to validate the synthetic DTS well-logs results
(Fig. 1).

Fig. 1. Location map of the Canto do Amaro Field, Potiguar Basin, Rio de Grande do
Norte State, Brazil [10].

2.1 Supervised Machine Learning Models

This research applied supervised regression algorithms used in highly relevant
academic publications, such as artificial neural networks, boosting learners, and
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support vector machine. The neural networks model is based on neural struc-
tures. The neuron receives the input data and calculates the output through non-
linear interactions assisted by activation functions. Among the several architec-
tures used, the multilayer perceptron (MLP) showed recently successful applica-
tions to geological and petrophysical features [14,25,28]. This architecture uses
multiple neurons connected in feedforward interactions, in which the training
process updates the weights assigned to each neuron, using the backpropagation
function to minimize errors in the created network [16]. The Extreme Gradient
Boosting (XGBoost), CatBoost, and Adaptive Boosting (AdaBoost) are super-
vised ensemble models that use decision trees and can be applied to classifi-
cation or regression problems [8,13]. The Boosting algorithms train the model
sequentially and update each round of iteration. At the end of each round, the
poorly classified cases are identified, and new interactions gain emphasis to be
sequentially used and then provide feedback for the new training. Thus, these
subsequent models seek to compensate for previous errors [22]. The Support Vec-
tor Machine (SVM) model is an algorithm based on linear relationships related
to the principle of margin maximization [24] that minimizes the structural risk
of classification and regression cases, aiming to improve the generalization of
performance, enhancing the models’ complexity. Additionally, the SVM traces a
hyperplane that selectively separates the data sets to be predicted [1]. Finally,
for the evaluation of machine learning models, usual metric scores for regres-
sion problems are used to evaluate the models’ outputs, such as the coefficient
of determination (R2), adjusted coefficient of determination (adj R2), the mean
absolute error (MAE), and the root mean square error (RMSE).

R2 = 1 −
∑

i(yi − fi)2∑
i(yi − Yi)2

, (1)

adj R2 = 1 − (1 −R2)(n− 1)
(n− k − 1)

, (2)

MAE =
1
n

n∑

i=1

(fi − yi)
n

, (3)

RMSE =

√
√
√
√

n∑

i=1

(fi − yi)
n

, (4)

where fi: is the predicted value, yi is the actual value; Yi: is the average real
value; n: is the number of points for each database; and k is the number of
independent variables for each regressor.

2.2 Database Description

The public database is available in the ANP database, comprising 13 wells drilled
at the Canto do Amaro onshore field, in the emerged portion of the Potiguar
Basin, in the state of Rio Grande do Norte in northeastern Brazil (Fig. 1). This
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field was discovered in 1985 and is currently considered a mature producing field,
with a development area of approximately 363 km2 [10].

The Geophysical well-logs are important sources of subsurface geological
information, essential to any geological, petrophysical, and geophysical charac-
terization of an oil field. They are acquired by wireline tools, which consist of sen-
sors and receivers [7]. The 8 logs used in this work were Borehole Caliper (CALI),
Natural Gamma-Ray (GR), Deep Resistivity (RT90), Shallow Resistivity (RT30)
and Microspherical Resistivity (MSFL), Density Log (RHOB), Neutron Porosity
(NPHI), compressional (DTC) and Shear (DTS) acoustic slowness well-logs. The
borehole caliper consists of a profile capable of identifying the integrity of the
open hole wall. The logging tool has arms (pads) that allow the identification of
rough surfaces and washout zones when the well diameter is outside the nomi-
nal drilling of the well [7]. The natural gamma rays and neutron porosity logs
explore the interaction of neutrons and the atom’s collision, recording an energy
spectrum emitted by sensors and receivers of the logging tools. The Gamma-
ray logs are commonly obtained to identify the natural radioactivity in rocks
and stratigraphic correlations [7,20]. Finally, the neutron porosity is a geophys-
ical well-log that indicates the total porosity of the geological sections, used for
petrophysical evaluation [7,20]. The deep, shallow, and microspherical resistiv-
ity well-logs measure the natural resistivity of rocks, used to estimate water and
hydrocarbon saturation inside the reservoir zone [6]. The density log measures
the Compton scattering when the geological formation is excited by electron
collision/absorption while logging. The density is also an important property
for the evaluation of porosity and geophysical correlations in reservoirs [7,20].
Finally, the sonic log measures the compressional and shear slowness of acous-
tic waves emitted by transmitters and acquired by receivers after propagation
through rocks [7]. Additionally, compressional slowness is used for time-depth
seismic tie, pore pressure calculation, and petrophysical evaluation, especially
for total porosity [7,20]. Finally, the shear slowness is important for the calcula-
tion of elastic and mechanical properties [20]. The geophysical well-logs data are
usually displayed in graphs that identify the variation of properties as a func-
tion of depth. Figure 2 shows an example applied to the database for well 1535,
illustrating the spatial position of variables for the entire geological zone logged.

2.3 Pre-processing and Data Summary

The pre-processing stage consisted of creating a database with information about
the 13 wells, shown in Table 1. The data set was randomly selected from the ANP
collection. Firstly, we identified the features to be worked with, at this stage it
was noted that in wells 1040, 1050, 1509, and 1512, shear wave data were not
acquired. Thus, these data were not used in the creation of the database, because
this is the variable to be predicted by the machine learning models assisted by
the other geophysical well-logs.

Finally, we build the training and test sets described in Table 1. We used the
Well 1535 as the test set because that was the most recent well logged among the
others, and consequently Well 1356, 1438, 1456, 1462, 1475, 1505, 1519, and 1530
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Fig. 2. Examples of well-logs feature composite applied to Well 1535.

Table 1. Well-logs data summary.

Well CALI DTC GR MSFL NPHI RHOB RT30 RT90 DTS Data

in us/ft oAPI ohm/m % g/cm3 ohm/m ohm/m us/ft Set

1040 X X X X X X X X

1050 X X X X X X X X

1356 X X X X X X X X X Training

1438 X X X X X X X X X Training

1456 X X X X X X X X X Training

1462 X X X X X X X X X Training

1475 X X X X X X X X X Training

1505 X X X X X X X X X Training

1509 X X X X X X X X

1512 X X X X X X X X X Training

1519 X X X X X X X X X Training

1530 X X X X X X X X X Training

1535 X X X X X X X X X Testing

comprised the training set. We used this selection criterion based on the data
acquisition, and our intent sought to build supervised machine learning models
using the oldest information, and then predict for the recent well to simulate the
potential use of applying machine learning techniques for the prediction of shear
slowness, as close as to a real case scenario.

In addition to structuring the database, quality control of the features was
carried out. This step consisted of statistical analysis and instances standardiza-
tion, exclusion of null values, and spurious ones, caused by washouts and rough-
ness of the borehole wall. Table 2 shows the statistical summary of the total of
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26745 instances of the geophysical features applied to the training wells, and
Table 3 presents the statistical summary for the test set (Well 1535) composed
of 2832 instances.

Table 2. Statistic summary for features in the training set.

No Instances 26475 CALI DTC GR MSFL NPHI RHOB RT30 RT90 DTS

Max 11,73 167 764 134 54.8 2.704 738 466 407

95% 9.2 134 173 11 40.5 2.508 21 24 292

Q3 8.85 108 143 5 28.2 2.373 6 7 220

Mean 8.69 101 119 5 24.7 2.316 7 8 203

Median 8.65 98 117 3 23.3 2.311 5 5 192

Q1 8.5 92 96 2 20.3 2.252 4 4 179

5% 8.28 77 55 1 12.4 2.165 3 3 145

Min 6.5 55 11 0 2.8 1.750 1 1 100

Std. Dev 315 16.2 39 6.86 7.87 102 12,1 13.5 42.4

Var 99 261 1.517 47.1 62 10 147 183 1.797

Table 3. Statistic summary for features of the testing set.

No Instances 2832 CALI DTC GR MSFL NPHI RHOB RT30 RT90 DTS

Max 9.35 145.3 271.0 44 43.6 2.626 25.7 28.6 340

95% 8.67 130.8 202.0 7.6 36.1 2.456 9.5 10.7 272

Q3 8.55 109.4 176.0 4.8 25.8 2.380 5.8 6.3 226

Mean 8.45 101.4 15.0 4.0 22.7 2.329 5.5 5.9 199

Median 8.45 96.7 142.0 3.5 21.3 2.323 5.0 5.3 185

Q1 8.34 91.8 125.0 2.0 18.5 2.264 4.3 4.5 172

5% 8.25 86.5 110.0 0.9 15.2 2.169 3.0 3.1 161

Min 8.4 65.4 65.0 0.4 5.0 1.990 2.1 2.1 121

Std. Dev 161 13.8 32.2 3.56 6.27 93 2.63 3.2 37.1

Var 26 192.0 1.038 12.6 39.3 9 6.91 9.13 1.373

The comparison between the target feature (DTS) between the training and
testing set is illustrated in the histogram in Fig. 3, in which it is possible to
identify a similar distribution between these sets.

The following analysis conducted was to observe the correlations among the
features, we used the Spearman correlation method for the data set and observed
these relations with the DTS features illustrated by the correlation matrix in
Fig. 4. The DTC, NPHI, and GR features show strong positive correlations with
DTS as warm colors. In addition, the variables RT30, RT90, RHOB, MSFL, and
CALI presented negative correlations with DTS, represented by cold colors.
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Fig. 3. Distribution of the shear slowness (DTS) instances for training and testing sets.

Finally, the standardization of all features was individually conducted for
training and test sets, this transformation generated new data with zero mean
(0) and standard deviation of one (1) value.

Fig. 4. Correlation Matrix of all well-log features.

3 Results and Discussions

3.1 Machine Learning DTS Synthetic Well-Logs

We conducted the generation of 5 supervised models created for the prediction
of synthetic shear slowness well-logs. The models were trained using the training
set, with an optimal hyper parametrization tested for each algorithm.
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The scenario evaluated consisted of the use of 8 well-log features (CALI,
DTC, GR, MSFL, NPHI, RHOB, RT30, and RT90) for training the models.
Table 4 shows the optimal hyperparameter configuration found for the 5 machine
learning models implemented. Initially, we applied the Gridsearch CV function,
selecting a range of values for each hyperparameter of the supervised algorithms,
then we chose the optimal combinations which returned the maximized R2 values
and minimized errors score. Additionally, to this analysis, the validation curve
function was applied in both validation and test sets, and 10-fold cross-validation
was used to evaluate the results of R2 and RMSE.

Table 4. Summary of optimal hyperparameters configuration applied to scenario 1.

Model Hyperparameter Scenario

MLP Hidden layers 10

Hidden layers size 3

Activation ReLu

Solver Adam

Max iterations 1000

Learning rate Adaptive

Learning rate initial 1

Others * MLP default

SVM kernel RBF

C (regularization parameter) 1

Others * SVM default

XGBoost n estimators (trees) 30

Learning rate 0.1

Max depth 3

Others * XGB default

AdaBoost base estimator Decision Tree

n estimators (trees) 20

Learning rate 0.12

Loss linear

Others * AdaBoost default

CatBoost n estimators (trees) 45

Learning rate 0.12

Max depth 4

Others * CatBoost default

Finally, for the model’s evaluation, we calculated the regression metrics for
the training and validation sets, using 10-fold cross-validation. The comparison
between both sets for all models highly indicated agreement through the calcu-
lated metrics. In general, the results of the training and validation sets obtained
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vary between 0.89–0.91 (R2) and small errors in the order of 0.08–0.1 (MSE) as
displayed in Table 5.

Table 5. Score metrics achieved for training, validation and testing set for scenario
evaluated.

Scores metrics

Model MLP CatBoost XGBoost AdaBoost SVM

Training set 10-fold cross-validation R2 8.927 9.104 9.068 8.860 9.173

MSE 1.071 894 930 1.137 826

RMSE 3.269 2.989 3.049 3.371 2.872

Validation set R2 8.959 9.035 8.997 8.833 9.103

adj R2 8.958 9.034 8.996 8.833 9.102

MAE 1.818 1.800 1.865 2.122 1.611

MSE 1.019 945 982 1.141 879

RMSE 2.634 3.073 3.134 3.378 2.964

Testing set R2 9.306 9.254 9.228 9.051 8.874

adj R2 9.304 9.252 9.226 9.049 8.871

MAE 1.710 1.763 1.883 2.127 2.036

MSE 694 746 772 949 1.126

RMSE 3.193 2.731 2.778 3.080 3.355

Following the analysis, we applied the models in the test set and evaluated
the results using the same metrics used in the previous step, the results are sum-
marized in Table 5. In general, the predicted well-logs obtained for the tested
well achieved a variation of R2 between 0.8874 and 0.9306. To directly com-
pare all models the adj R2 was calculated, considering the number of features
and instances for each algorithm. The highest adj R2 found was for the MLP
(adj R2 0.9304), followed by the Boosting models CatBoost (adj R2 0.9252),
XGBoost (adj R2 0.9226) and AdaBoost (adj R2 0.9049), respectively. Finally,
the SVM presented the lowest result (adj R2 0.8874) among all algorithms imple-
mented. The analysis of the errors, in general, indicated that the lowest val-
ues of MAE and MSE are found for the MLP model and the highest for the
SVM. Additionally, it was observed that Boosting models presented very simi-
lar results (Table 5), with the lowest found for CatBoost and the highest errors
for AdaBoost. In addition to the calculated scores, the synthetic machine learn-
ing DTS well-logs results were compared to the real results logged for Well
1535, graphically displayed in Fig. 5. The gray curve shows the actual data
obtained during the logging operation, and the blue curves are the synthetic
results obtained for each of the regression models. In general, it is possible to
observe that trends of the synthetic curves of all models follow the real data and
that the curves are similar. Additionally, small variations are in between them,
as exemplified in the 475–525m interval, where the curves diverge.

The visual interpretation of the models corroborates the analytical result
found by the metrics previously calculated. Graphically it is observed that the
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Fig. 5. Scenario evaluated. Machine learning synthetic DTS well-logs in comparison
with real DTS slowness well-log applied to Well 1535; right to left. Multi-layer per-
ceptron (MLP), CatBoost (CAT), XGBoost (XGB), AdaBoost (ADA), and Support
Vector Machine (SVM) results, respectively.

MLP synthetic DTS well-logs are the most similar to the real data, followed by
the boosting algorithms: CatBoost, XGBoost, and AdaBoost. Finally, among all
models implemented the SVM synthetic well-log presented more differences from
the real DTS well-log, which is evidenced around the intervals 500–510 m.

Figure 6 shows a pair-plots comparison between the data distribution of syn-
thetic shear and real data well. The real data distribution presents a multi-
modal distribution with 2 peaks, at approximately 150 and 250 us/ft, and is
visible a decreasing trend toward values greater than 275 us/ft. This trend was
also observed in the format of the MLP, CatBoost, and XGBoost distributions.
Among all distributions the MLP data is the most similar to the real result
distribution, reflecting the higher value of the adjusted R2 result calculated in
Table 5.

Additionally, the results obtained using AdaBoost and SVM models pre-
sented differences in the distribution shape, when compared to the real distribu-
tion. For example, the result predicted by the AdaBoost indicates a third mode
at 300 us/ft, while the SVM model shows only one peak as shown in Fig. 6.
Finally, these differences indeed reflect the lower scores obtained in adjusted R2

and the higher results from the RMSE of the supervised models.
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Fig. 6. Scenario 1 pair-plot with the synthetic shear well-log data predicted for Multi-
layer Perceptron, CatBoost, XGBoost, AdaBoost, and Support Vector Machine algo-
rithms applied in the Well 1535

3.2 Discussions

The results found in this research showed successfully that the implementation
of supervised machine learning models may create trustable synthetic DTS well-
logs, assisted by another well-log feature. The metrics obtained indicate highly
reliable predictions, especially represented by high values of R2 and adj R2 (0.89-
0.93), and low errors (MAE, MSE, and RMSE).

Among all models evaluated, the most interesting responses were obtained
by the implementation of the neural network algorithms, using multi-layer per-
ceptron architecture, with multiple layers and a few numbers of neutrons per
layer in the scenario evaluated. In addition, the decision trees-based models of
the Boosting family, especially the CatBoost and XGBoost algorithms provide
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equally good results for this scenario. On the other hand, the AdaBoost and
SVM algorithm results presented the higher errors and dissimilarities with the
real DTS well-log, which were evidenced graphically in Fig. 5 and Fig. 6.

Additionally, another point for discussion is the confidence level in the eval-
uation of the results obtained. The score metrics applied in similar publications
using geological and petrophysical properties to regression problems are usually
R2 and RMSE-MSE scores. Table 6 shows the comparison between the results
presented in this research and some examples found by other authors. Although
there are considerable differences in previous research from the one presented
here, such as the geological context, database features, and methodology; in
general, it is possible to identify that R2 results higher than 0.85 were consid-
ered with adequate quality for the synthetic well-logs. This is consistent with
the results obtained in this study.

Table 6. R2 and adjusted R2 scores comparison from synthetical well-logs. Modified
from [2].

Research Algorithm Synthetic Well-log Testing Set (R2) Testing Set (Adj R2)

Proposed MLP DTS slowness R2 = 0.9306 Adj R2 = 0.9304

CatBoost R2 = 0.9254 Adj R2 = 0.9252

XGBoost R2 = 0.9228 Adj R2 = 0.9226

AdaBoost R2 = 0.9051 Adj R2 = 0.9049

SVM R2 = 0.8874 Adj R2 = 0.8871

[29] Neural GR, Resistivity 0.85 ≤ R2 ≤ 0.95 Not Available

Networks RHOB, NPHI

[30] Fast Fuzzy RHOB R2 = 0.85 Not Available

DTC R2 = 0.92 Not Available

[31] SVM Back-propagation Shear Velocity R2 = 0.97 Not Available

neural network (BPNN) R2 = 0.94 Not Available

[32] Neural Resistivity R2 = 0.92 Not Available

Networks RHOB R2 = 0.97 Not Available

[33] Least Square SVM Cuckoo Shear Velocity 0.868 ≤ R2 ≤ 0.929 Not Available

Optimization Algorithm (COA)

[2] AdaBoost Al-Ca-Fe-Mg-Na-Si-S-Ti 0.843 ≤ R2 ≤ 0.976 Not Available

Furthermore, another evaluation that must be considered is the application
of the synthetic well-log. In the results presented here, it was possible to correctly
identify all trends in geological and petrophysical variations of the synthetic well-
log created. It is noteworthy that the small local dissimilarities found do not
affect the geological interpretation of the user, and therefore machine learning
predictions can be successfully used. In addition, the creation of high confidence
models opens the possibility to substitute the real data with synthetic ones. In
this context, this application can be applied during the life cycle of a reservoir,
particularly in cases where well-logs were not acquired due to operational prob-
lems or lack of technology available at the time of drilling the wells. Moreover,
it is well known that subsurface data acquisition is highly expensive to the oper-
ators. Moreover, the use of predictive techniques used in this research can assist
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in the type of replacement, in mature fields, in which a large amount of data
are already acquired, and consequently, a mature geological model and reservoir
characterization are known. Finally, the substitution must be carefully evalu-
ated for the activities of reservoir characterization and geomechanical modeling
because errors associated with the machine learning predictions will certainly
impact such analysis. Therefore, considerable limitations in the use of machine
learning models are expected for exploratory fields, at exploratory frontiers, or
even in the early stages of development. Last, it is expected that the learn-
ing curve of the models will evolve as the characterization of these reservoirs is
updated and decrease the errors in the well-log prediction.

4 Conclusions

The implementation of supervised machine learning algorithms for the prediction
of synthetic shear slowness at the Canto do Amaro oil field showed consistent
results with high-reliability results for the test well.

The test performed indicated the potential use of optimization in the reduc-
tion of input features in the training of the models. The best result was obtained
considering eight input features for all algorithms. In addition, the best models
obtained are the MLP, CatBoost, XGBoost, AdaBoost, and SVM algorithms,
respectively. In addition, it was observed that the strong dependence of the
DTC variable impacted the trial conducted, and the most interesting results
were obtained when this feature was used to build machine learning models.

Finally, it is concluded that all synthetic well-logs, independently of the algo-
rithm, respected the trends of the DTS feature for the tested well, allowing a com-
plete geological well-log interpretation, due to the high score metrics achieved
in the R2-adjusted R2, and lower values in the errors scores.
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1 Introduction

Because of the innovative technology based on Blockchain, Bitcoin, a kind of
decentralized digital currency, has attracted much attention from investors. The
price of Bitcoin is extremely high volatility. The accurate prediction of Bitcoin
price can not only provide strong decision support for investors but may also
provide a reference for governments to create or change the policies [14].

Numerous studies have been investigated recently to predict the price of
Bitcoin from time-series data either through some traditional machine learning
methods or deep learning models, as evidenced in survey papers [10,14]. The tra-
ditional forecasting techniques are extensively used and easy to implement [15];
for example, the Authors of the study [5] have used Bayesian Neural Networks.
Also, the recent approaches in deep learning have been utilized [8]. Different
types of time-series data, such as financial and meteorological data, suffer signif-
icant fluctuation; numerical data often has a nonlinear relationship [1,11]. That
is why nonlinear time series forecasting is a suitable object to predict the change
in time series as a basis for risk management [6,16,17]. A popular model for
nonlinear time series forecasting includes the models such as ARIMA, LSTM,
SVM.

There are three different time types such as short-term period, mid-term
period, and long-term period [4,9]. Short-term forecasting focuses on the period
of less than one day whereas the mid-term and long-term consider the period
more than one week. A model may provide a best fit in short term prediction
task, but may not provide good results in long-term series data prediction task.
Thus, using only a single model is not suitable for forecasting time series data
that depends on how long the time data is sampled and predicted and the type
of specific applications.

As mentioned above, many machine learning algorithms and models have
been recently published for the time-series cryptocurrency data prediction. Some
exploit the hybrid methods by combining more than one model or combining
optimization algorithms and prediction models to improve accuracy. The Hybrid
ARIMA-SVM model is considered a promising candidate, which is applied to
various applications related to the investigated task [12,13,18].

With recent hardware advantages with high performance and low power com-
putation, more advanced machine learning algorithms have been proposed, such
as deep learning. The new models and architectures implementations are devel-
oped to forecast time series data. An important research question is an accuracy
when comparing traditional forecasting techniques with advanced algorithms.
According to the literature search, there is no specific designed method for fore-
casting Bitcoin time series data.

The main goal of this study is to compare the different models and ana-
lyze their performance in reducing the error rate. The secondary objective also
defining the originality was to answer the research question of whether the newly
developed algorithms are better than the traditional algorithms such as ARIMA.
As stated in the literature, the ARIMA should be chosen with the non-stationary
property of collected data. Similarly, the LSTM is an example of a deep learning
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method used due to the features of a long time of data. This paper also pro-
vides the procedure for processing data and training model for a Bitcoin time
series data set. The study exploits the analysis to investigate the performance
of traditional forecasting techniques and deep learning-based algorithms. Based
on the current research directions and in contrast with research [7], this study
aims to develop and deploy a new hybrid forecasting approach to simplify the
model and improve forecasting accuracy.

2 Methods

This section contains a description of the models used for the cryptocurrency
prediction task.

2.1 ARIMA Model

ARIMA stands for AutoRegressive Integrated Moving Average and it represents
a generalization of simpler AutoRegressive Moving Average with the notion of
integration. There are two linear time series models which are used widely such as
Autoregression (AR) and Moving Average (MA). ARIMA mathematical model
is a combination of AR (p), Integration, and MA (q) models [2].

The ARIMA model was proposed to include the case of non-stationarity. In
the ARIMA model, the future value of a variable is supposed to be a combination
of past values and past errors.

2.2 Support Vector Machines

Support Vector Machines (SVM) model is used to solve two common types of
tasks which are classification and regression estimation problem. Support vector
regression (SVR) is applied to solve the regression task. The SVR attempts to
minimize the generalization error boundary to achieve generalized performance.
The SVR creates a decision boundary that separates n-dimensional space into
classes so that we can put new data points to the correct category in the future.
The computation of SVR is based on the linear regression function in a high
dimensional feature space where input data is mapped through a nonlinear func-
tion [2].

The major limitation of the ARIMA model it does not consider the factors
of the input with non-linear patterns. Whereas, the SVR is a method designed
to improve forecasting accuracy. The idea of the SVR algorithm is to find a
hyperplane f(x) with a certain deviation (ε) from the input training in the form
of an Eq. (1):

f(x) = y = ω · x + b (1)

The optimization problem in SVR is to find ω and b such that the margin
reaches the maximum value at input training to the f(x). The regression problem
is transformed into an optimization function (2).
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min
1
2
‖ω‖2 + C

m∑

i=1

(ξi + ξ∗
i ) (2)

With constrain conditions of optimization function (3):
⎧
⎨

⎩

yi − ω1, xi − b ≤ ε + ξi

ω1, xi + b − yi ≤ ε + ξ∗
i

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,m

(3)

where C is the parameter determining penalty degree and C > 0, ω is the weight,
b is the parameter of mapping, ε is the loss function and ε > 0.

The above-defined hyperplane determination is assumed under ideal condi-
tions when the input training has a margin of less than or equal to ε. Thus, in
the case of data sets with confounding points, these points will not meet the
above conditions, and the solution will not be found. For those cases, we need
to use slack variables ξi ≥ 0. The slack variables present the distance from the
actual values to corresponding boundary values.

When the data problem is non-linear, we have to use the kernel that maps
the data to a more dimensional space so that the data can be represented in
a computational form. In more dimensional space, the calculation of each data
point takes more memory and time. The kernel functions are implemented to
make this calculation more manageable. The used SVR model utilizes the radial
basis function kernel (RBF) in the form (4) [3].

K(x, y) = e−γ‖x−y‖2
(4)

To obtain the best result, two parameters, C and γ (gamma), are adjusted
based on the data sets. The parameters with the less error are used for the best
model. The SVR algorithm uses RBF kernel with many different parameters
such as C = 1, 10, 100 and γ = 0.1, 0.2..., 10. To find the best parameter,
we calculate the accuracy between the predicted data and test data according
to many different C and γ parameters. When applying the algorithm to the
experiment, the algorithm chooses the best C and γ parameters.

2.3 The Hybrid Model

The different prediction model hybridizations have been studied extensively in
various types of research. A Hybrid prediction model capable of solving both
linear and non-linear tasks is a good choice for weather or financial data predic-
tion cases. The Hybrid model (Zt) can be represented as in (5), where Yt is the
linear part, Nt is the non-linear part.

Zt = Yt + Nt (5)

Both Yt and Nt are predicted from the data set. Consequently, εt represents
the error at time t obtained from the linear model (6).

εt = Zt − Ỹt (6)
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where Ỹt is the predicted data from the linear model at time t. These errors will
be predicted from the non-linear model (SVR) and can be expressed as follows
(7):

εt = f (εt−1, εt−2, . . . , εt−n) + Δt (7)

where f is the non-linear function generated by the SVR model and Δt is the
random error. Finally, the model is combined:

Z̃t = Ỹt + Ñt (8)

where Ñt is the predicted result from a non-linear model. In the used hybrid
model, the linear part will be handled by the ARIMA model and the non-linear
part by the SVR model. The ARIMA model is used to filter the linear patterns
of the data set. The error terms of the ARIMA model are applied to SVR model
in the hybrid model.

2.4 LSTM

Long Short-Term Memory (LSTM) represents an improvement of a recurrent
neural network that allows learning long relationships. While recurrent neural
networks (RNN) are limited when the long-term gradients can vanish or explode
after propagating through multiple layers in a time-series model, LSTM is effec-
tive for learning long-term relationships. Unlike standard feed-forward neural
networks, LSTM has feedback connections. LSTM can process a single data
point and entire sequences of data. The long-term series represents the correla-
tion between the outputs of the previous and later stages in a time-series model.
The model of one layer in an RNN is represented by a processing block with the
output of the Tanh function [3]. LSTM has a more complex model, but it is also
based on RNN connections. RNN layers are referred to as RNN cells. Cells are
connected in a temporal pattern to form recurrent neural networks that allow
time series processing. LSTM cells are also connected similarly to RNN cells to
create LSTM networks [3].

3 Simulation Results

This section describes both the data set used and the results of the individual
models, including the necessary pre-processing and data analysis to estimate the
coefficients of the models.

3.1 Data Set

This research uses daily data of the closing price of Bitcoin as the object of
study. Bitcoin data was collected from January 1, 2015, to September 23, 2021,
from Yahoo Finance1. The repository also allows exporting data to a .csv file as

1 https://finance.yahoo.com/quote/BTC-USD/.

https://finance.yahoo.com/quote/BTC-USD/
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input for the prediction algorithm. Bitcoin cryptocurrency price data is extracted
continuously by day. The experiment implementation used the first 1966 points
(80%) to build the prediction model. The remaining 492 data points (20%) were
used to predict and evaluate the accuracy, as shown in Fig. 1(a).

3.2 ARIMA Model

The model preprocesses the data by replacing the missing values with the value
of the previous date. The logarithm function transforms the daily Bitcoin price
data. In the case of ARIMA model, we take the first order of difference for
log-transformation daily Bitcoin price to make the time series stationary. ADF
Test (Augmented Dickey Fuller Test), also known as unit root test, helps check
whether a time series of data is stationary or not by basing it on the p-value of
the test method. If p-value < 0.05, the model is stationary; otherwise, the model
is non-stationary.

To determine the parameter p, d, q values of the model, the presented research
encompasses a two-step analysis. We analyze data based on an autocorrelation
chart (ACF - AutoCorrelation Function) and Partial AutoCorrelation Function
(PACF) or based on the p,d,q values at which the model’s RMSE (Root Mean
Square Error) reaches the minimum value. Then, the dataset is split into 2 sets of
train and test. After training the ARIMA model, the experiment implementation
predicts future Bitcoin price data in 1-day, 7-day, and 30-day intervals. Then,
the model updates the actual value corresponding to the predicted value of each
time interval into the training set so that the model continues to learn and
predict. Finally, the model converts the data into its original form to evaluate
the accuracy of the model.

To select parameters for the ARIMA model, we must first evaluate whether
the Bitcoin price over time is stationary or non-stationary. The original data
source for the Bitcoin price is shown in Fig. 1(a), whose variance and standard
deviation vary over time. Figure 1 also shows characteristics that make time-
series non-stationary.

The stationary nature of the data is a prerequisite for predictive model-
ing, especially when using an autoregressive time series model such as ARIMA.
Table 1 shows the results of data stationary testing using the Augmented
Dicky-Fuller test (ADF) and Phillips-Perron test (PP). The original and log-
transformed data are both non-stationary. Still, they are stationary after the
first difference for both the original and the data after the log-to-log conversion.
Where p-values are shown in parentheses, a p-value less than 0.05 proves the
data is stationary.

Figure 2 shows the ACF and PACF graph for Bitcoin price data. Often,
non-stationary data cannot be predicted or modeled. Results obtained using
non-stationary time series may be wrong because they may indicate a relation-
ship between two variables for which neither of them exists. To get consistent
and reliable results, non-stationary data must be converted to stationary data.
Unlike non-stationary data series, which have variable variance and zero mean,
stationary data series return to mean and have constant and time-independent
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variance. The autocorrelation function (ACF) shows that values tend to grad-
ually decrease, which is an indication of the non-stationary nature of the data
and this turns it into a stationary series.

Partial autocorrelation and analyzed autocorrelation did not yield accurate
values for the parameters p and q after the time series had been made station-

Fig. 1. (a) Train set and test set for predictive model in daily Bitcoin price (b) Original
daily series data of Bitcoin price in USD (c) logarithmic transformed daily Bitcoin price
(d) The first difference for log-transformation daily Bitcoin price.

Fig. 2. Graph of autocorrelation function (ACF) and graph of partial autocorrelation
function (PACF) for the first difference log transformation.
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Table 1. Data stationary condition test

Data Training sample ADF test PP test

Original data 1/1/2015–19/5/2020 −0.477 (0.896) −0.197 (0.939)

1st difference 1/1/2015–19/5/2020 −7.521 (3.785e−11) −52.22 (0.000)

Log transformed data 1/1/2015–19/5/2020 −0.622 (0.866) −0.490 (0.894)

1st difference log transformation 1/1/2015–19/5/2020 −14.940 (1.325e−26) −51.042 (0.000)

ary by the difference parameter d. Many research has found that the difference
parameter d should be set to 1 since our time series data are required to be sta-
tionary [11–13]. The parameters p and q are, in this research, manually assigned
values. The ACF and PACF plots of the differenced data have been used to
select the optimal model and determine the optimal values of a range of p and q.
Each pair of p and q values is used to create a separate model. The RMSE error
is used to compare the models and select the p, q values at which the RMSE
reaches the minimum value. The results are shown in Tables 2, 3 and 4, from
where we can observe that the best p, q parameter setup for 1-day ARIMA is (3,
1, 0), for 7-day ARIMA (3, 1, 1), and for 30-day ARIMA (3, 1, 0), where RMSE
has the lowest value.

Table 2. Results of p, q parameters for 1-day ARIMA model.

q = 0 q = 1 q = 2 q = 3 q = 4

p = 0 1459.129 1457.637 1457.407 1457.096 1457.160

p = 1 1457.581 1457.750 1457.4087 1457.097 1457.1613

p = 2 1457.479 1458.427 1457.31 1461.193 1460.143

p = 3 1457.090 1458.245 1457.306 1462.365 1462.005

p = 4 1457.105 1459.8047 1459.3331 1463.253 1465.155

Table 3. Results of p, q parameters for 7-day ARIMA model

q = 0 q = 1 q = 2 q = 3 q = 4

p = 0 2898.117 2896.455 2898.750 2897.970 2901.093

p = 1 2896.488 2897.474 2877.112 2888.148 2900.195

p = 2 2898.670 2876.656 2886.725 2885.715 2881.415

p = 3 2897.774 2871.819 2876.772 2886.725 2889.715

p = 4 2901.307 2888.515 2873.622 2876.260 2892.386

3.3 SVM Model

The SVM algorithm uses the Radial Basis Function (RBF) kernel with different
C and gamma values. The SVM network model can determine the C and gamma
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Table 4. Results of p, q parameters for 30-day ARIMA model

q = 0 q = 1 q = 2 q = 3 q = 4

p = 0 6248.683 6240.709 6246.273 6236.782 6235.950

p = 1 6240.851 6243.860 6247.160 6252.136 6231.187

p = 2 6246.000 6295.073 6254.032 6198.412 6270.301

p = 3 6236.282 6181.004 6270.172 6272.666 6205.004

p = 4 6236.322 6327.818 6216.045 6214.917 6208.199

values by re-running it many times. Then, we can find the optimal value of the
C and gamma values at which the RMSE error between the predicted data
and actual data reaches the minimum. In addition to selecting the parameters,
the kernel selection for the model is also essential. This research investigation
utilizes values C and gamma for each prediction period of 1 day, 7 days, and 30
days as indicated in Table 5. C and gamma parameter values are designed by
experiment. To find the best model, different values are assigned C and gamma.
The parameter values with lower errors are used as the best accuracy model.

Table 5. Parameters of C and gamma for SVM model

Parameters C Gamma

1-day prediction 10000 0.0001

7-day prediction 10000 0.0001

30-day prediction 10000 0.0001

3.4 Hybrid ARIMA-SVM Model

The presented research uses the best parameter (p, d, q) corresponding to each
period time in Tables 2, 3 and 4 to run ARIMA algorithm. The residuals will be
used as input for the SVM model. The corresponding C and gamma parameters
are shown in the Table 6.

Table 6. Parameters of C and gamma for Hybrid ARIMA-SVM model

Parameters C Gamma

1-day prediction 0.0001 0.01

7-day prediction 0.1 0.001

30-day prediction 100 0.001
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3.5 LSTM Model

For the Bitcoin cryptocurrency price prediction model, the parameters for the
LSTM network model have been set as follows. The number of input features is
one corresponding to the daily Bitcoin price input. The number of hidden layers
in the LSTM network structure is 100. There is one neuron output layer. Dropout
is set to 0.2, which is a technique to remove connections to avoid overfitting
problems in a multilayer neural network model. The Tanh activation function is
applied in the hidden layer.

4 Results

This section contains the performance comparisons for four models, three case
studies supported by graphical data, and the definitions of performance evalu-
ation factors used to analyze the time-series data. The accuracy result of the
algorithm has been calculated as follows. With a total of N given historical data
in the dataset, y and ŷ are the real data and corresponding predicted values.
The formula of RMSE (Root Mean Square Error) and MAE (Mean Absolute
Error) is given in (9) and (10). Table 7 shows the model’s accuracy through the
RMSE and MAE error metrics.

Considering the values of error metrics in Table 7, the LSTM model predicts
with better accuracy than the ARIMA, SVM, and Hybrid ARIMA-SVM models
when predicting for the long period of 7 days and 30 days. Meanwhile, the
ARIMA model predicts in a 1-day period better than the LSTM model. At the
same time, the 1-day prediction is not effective compared to the long period of
7 days and 30 days when applying the Hybrid ARIMA-SVM prediction model.
The graph showing the actual value and the predicted value of the Bitcoin price
when using the LSTM algorithm is shown in Fig. 3(a). All models are compared
in Figs. 3(b)–3(d).

RMSE =
√

MSE =

√√√√ 1
N

N∑

i=1

(y − ŷ)2 (9)

MAE =
∑N

i=1 abs(y − ŷ)
N

(10)



Daily Bitcoin Price Prediction 141

Fig. 3. (a) Actual and predicted data of the LSTM model. Actual and predicted data
of LSTM and ARIMA, SVM, Hybrid ARIMA-SVM (b) 1-day prediction (c) 7-day
prediction (d) 30-day prediction.

Table 7. Comparison of results of prediction models

Prediction period Prediction model MAE RMSE

long term LSTM 919.4612 1469.3486

1-day ARIMA 899.6506 1457.0917

1-day SVM 2699.6564 3907.7522

1-day Hybrid ARIMA-SVM 907.2164 1459.6408

7-day ARIMA 1816.1934 2871.8153

7-day SVM 2773.8227 3853.02596

7-day Hybrid ARIMA-SVM 1808.3425 2846.6203

30-day ARIMA 4176.0200 6181.004

30-day SVM 5053.8817 6834.2842

30-day Hybrid ARIMA-SVM 3999.1995 5814.5864

5 Conclusion

In this study, daily Bitcoin price prediction is compared between the traditional
algorithm model such as ARIMA, SVM, hybrid ARIMA-SVM, and the model
based on a deep learning network (LSTM). The results given in Table 7 and
supported by Figs. 3(b)–3(d) show that LSTM is a very efficient technique with
a lower error rate so that it can be used more often for forecasting than other
models. It is commonly known that LSTM can be implemented with a deep
learning approach to get more efficient prediction results because of its pattern
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recognition property that works efficiently over a long period. Accordingly, the
ARIMA model produces better error results with a short prediction period or a
small data set. In contrast, the Hybrid ARIMA-SVM model will help improve
the performance of the ARIMA model when predicting over a long period, specif-
ically 7 and 30 days. However, when predicting over a long period of time, it is
found that algorithms based on deep learning, such as LSTM, are better than
traditional algorithms such as the ARIMA model and also the Hybrid ARIMA-
SVM model. But of course, for the price of higher computational demands. For
further study, other real-world data will be evaluated to compare the results and
confirm conclusions.
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Petra Vidnerová(B) and Jan Kalina

Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

petra@cs.cas.cz

Abstract. A novel multi-objective algorithm denoted as MO-BayONet
is proposed for the Neural Architecture Search (NAS) in this paper. The
method based on Bayesian optimization encodes the candidate architec-
tures directly as lists of layers and constructs an extra feature vector for
the corresponding surrogate model. The general method allows to accom-
pany the search for the optimal network by additional criteria besides the
network performance. The NAS method is applied to combine classifi-
cation accuracy with network size on two benchmark datasets here. The
results indicate that MO-BayONet is able to outperform an available
genetic algorithm based approach.

Keywords: Bayesian optimization · Multi-objective optimization ·
Neural architecture search · Number of parameters

1 Introduction

Deep neural networks (DNNs) are nowadays used in a huge variety of applications
in various fields including (but not limited to) image analysis, signal processing, or
natural language processing [9,14]. Their growing popularity increases the neces-
sity to have tools for finding the most suitable neural architecture for a given task.
The search for the optimal model for a given task should not take into account
only its performance, but also other aspects related to its complexity. For exam-
ple, the network size, computational costs or time, or energy consumption for the
computation may also be relevant. This is especially true when the computation
is performed on mobile phones or other devices with high energetic demands.

The most common approaches for choosing the optimal architecture for a par-
ticular task are based on solid expert experience, various rules of thumbs, or brute
force. Automatic procedures for finding the optimal architecture are highly desir-
able. The neural architecture search (NAS) has already become an established
research field with a variety of available algorithms that differ in the search
space coding (how they perform coding of architectures) and in their optimiza-
tion tools. The majority of NAS algorithms exploit evolutionary optimization or
Bayesian optimization [4].
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Computational demands represent the typical bottleneck of NAS approaches.
The objective function being optimized reflects the performance of the result-
ing network and thus requires evaluation of this network including its learning
phase. The Bayesian optimization [2] is particularly aimed for costly (in terms of
time) objective functions. It benefits from two key advantages over the classical
methods: efficiency, i.e. very low number of objective function evaluations due to
surrogate modeling, and no need for analytical knowledge of the objective func-
tion. The latter property holds also for evolutionary approaches. Therefore, we
decided to utilize Bayesian optimization for multi-objective NAS in this paper.

Our contribution is an extension of the multi-objective Bayesian optimization
procedure MOBopt [7]. To allow it to work with candidate solutions represent-
ing architectures of deep neural networks, we use direct encoding of candidate
architectures. To explain this, a candidate solution is not represented by a vector
of numeric values as usual, but is represented directly by a list of layers, each
layer encoded by a tuple of its characteristics (a number of neurons or filters,
an activation function type, a dropout value, etc.). For such representation we
construct the operations crossover and mutation needed during the surrogate
function optimization phase. In addition, each candidate solution is accompa-
nied by a feature vector. These vectors are of a fixed length, contain only numeric
values, and describe the main characteristics of a given network. These feature
vectors are used for the purpose of the surrogate model.

The multi-objectivity used in the proposed approach is motivated by the need
for smaller and energy efficient architectures. Such need is motivated by the fact
that many applications are run on mobile devices with limited memory and
powered by a battery. The proposed approach allows to accompany the search
for the optimal architecture with other criteria, which may be especially useful
for controlling the network size (or complexity in general) of the final network.
The method presented here allows to consider the trade-off between accuracy
and network size in a unique way; the presented approach can be interpreted
as a regularization, which is tailor-made for the NAS context, or dimensionality
reduction of the considered parametric space.

Section 2 recalls available results on using Bayesian optimization in the con-
text of NAS. Our proposed NAS framework is described in Sect. 3. Section 4
presents the results of our experiments and Sect. 5 brings conclusion. The full
algorithm used for the computations of this paper is made publicly available at
GitHub [21].

2 Related Work

Although NAS algorithms have been studied since 1990s, the field attracted
an enormous interest in the last decade due to an easy access to sufficiently
efficient hardware [12,16]. Available algorithms can be classified into categories
according to the way of the search space encoding and the optimization algo-
rithm used. The majority of NAS algorithms are based on evolutionary algo-
rithms [19,22]; Bayesian optimization is also successful for the NAS task [11],



146 P. Vidnerová and J. Kalina

but still remains underutilized in such context. This is mainly because typical
Bayesian optimization toolboxes are based on Gaussian processes and focus on
low-dimensional continuous optimization problems, as claimed in the compre-
hensive survey [4] of NAS techniques for deep learning. A recent application
of Bayesian optimization on NAS can be found in [24], where a path encod-
ing [23] is used as a representation of neural network architecture and Bayesian
optimization is enhanced with a neural predictor.

Multi-objective Bayesian optimization remains only rarely used for NAS,
although multi-objective problems were characterized as a promising research
direction in [4]. The first application of multi-objective Bayesian optimization
to the NAS problem was presented in [5]. The work considered two objectives,
namely performance and on-device inference time (latency) of the networks;
highly accurate networks naturally tend to have a high latency. Nevertheless, the
experiments did not bring comparisons with results of available NAS approaches
there. A very recent publicly available implementation of the multi-objective
Bayesian optimization was presented in [7], where it was applied to optimization
problems not related to neural networks.

3 Multi-objective NAS Framework

An approach to solving NAS based on multi-objective Bayesian optimization,
denoted here as MO-BayONet (Multi-Objective BAYesian Optimization for
NETwork architecture), is proposed in this section. First, the NAS problem
is introduced in Sect. 3.1. In Sect. 3.2, our coding used for the network archi-
tectures is described. Section 3.3 lists the set of features used for the surrogate
modeling. Section 3.4 introduces the crossover and mutation operators needed in
the main procedure that is described in Sect. 3.5.

3.1 Problem Definition

NAS can be defined as a global multi-objective optimization problem of finding
the architecture that satisfies our requirements in the best way. The requirements
are expressed by means of objective functions

{O1, . . . , Om}, (1)

where m is a number of objectives, typically two or three. Objectives Oi are
usually computationally costly (requiring the network training) and black-box
functions (without knowledge about derivatives or other characteristics).

The aim of NAS to find the architecture A that minimizes Oi across all i
may be formally expressed as the task to solve

min
A∈A

Oi(A), (2)

where A is a space of all possible solutions (search space). Solving (2) is usually
not possible, as the individual objectives Oi are conflicting in the sense that
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decreasing one implies increasing another. Thus, the desired solution has to find
a compromise among all the objectives.

Therefore, the result of multi-objective optimization is not a single solution
but rather a set of solutions (in our case architectures) {A�}. Such set is known
as the Pareto set, which contains all solutions that are Pareto optimal. The
solution A is called Pareto optimal, if it is not dominated by another solution.
Solution A1 is said to dominate A2 if Oi(A1) ≤ Oi(A2) for all i and at the same
time Oi(A1) < Oi(A2) for at least one i. The corresponding objective values
(points in the objective space) are known as the Pareto front (Pareto frontier).

3.2 Search Space

In this work, the family of feed-forward convolutional networks represents the
search space. The networks consist of convolutional and dense parts, where the
convolutional part is a list of convolutional and pooling layers and the dense
part consists only of dense layers. The first formal study of encodings for neural
architecture was presented in [23]; the paper states the encoding is typically
performed by means of directed acyclic graphs, and claims that there remains
a need for new non-trivial encodings.

An encoding of candidate architectures is proposed here that allows a fast
network construction needed during the evaluation of the objective function, and
also allows a straightforward design of the crossover and mutation operators. A
candidate solution A is retained within the procedure as a list of layer codes,
where a layer code is a tuple of layer characteristics in the form

A = [[(t1, n1, k1, a1), . . . , (tN , nN , kN , aN )],
[(m1, a1, d1), . . . , (mM , aM , dM )]]. (3)

Here, t represents the layer type, n is the number of filters, k is the filter size, a is
the activation function type, N is the number of layers in the convolutional part;
m is the number of neurons, d is the dropout parameter, and M is the number
of dense layers. The input and output layers are not a part of the encoding,
since they are defined by the problem at hand. An illustrative example of the
encoding is shown in Fig. 1.

3.3 Feature Space

The encoding proposed in the previous subsection cannot be used as input for
the purpose of surrogate modeling, and therefore we construct a feature vector
for each candidate solution. Such vector contains the main characteristics of the
network, has a fixed length, and contains only numerical values. The particular
features used in this work are listed in Table 1.

3.4 Mutation and Crossover Operators

Since the proposed approach uses the NSGA2 [3] algorithm for optimization of
surrogate functions, we have to implement the crossover and mutation operators.
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Fig. 1. An illustrative example of the encoding of a particular feed-forward convolu-
tional neural network.

Table 1. List of the features used for the surrogate modeling.

NA The number of network parameters

N The number of convolutional layers

P The number of pooling layers

k̄ The mean size of the convolutional filter

aC
at Relative numbers of individual activations in convolutional part

M The number of dense layers

aD
at Relative numbers of individual activations in dense part

d The minimal, maximal, and mean dropout values

The aim of crossover is to produce two new candidate solutions by a combina-
tion of two existing ones, and mutation produces a new candidate solution by
applying small random modifications of an existing one.

Crossover combines two parent architecture codes and produces two off-
spring codes. It is inspired by the one-point crossover used in genetic algorithms.
Only the whole layers are interchanged and the crossover is applied separately
to the convolutional part and the dense part.

To explain crossover on an example, let us have two parent architectures

A1 = [C1,D1], A2 = [C2,D2]. (4)

The two offsprings are constructed as

Ao1 = [Co1,Do1] Co1, Co2 = crossover(C1, C2)
Ao2 = [Co2,Do2] Do1,Do2 = crossover(D1,D2), (5)

where the crossover applied to two parents Xp1 and Xp2

Xp1 = (Bp1
1 , Bp1

2 , . . . , Bp1
k ) and Xp2 = (Bp2

1 , Bp2
2 , . . . , Bp2

l ) (6)
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produces the offsprings

Xo1 = (Bp1
1 , . . . , Bp1

cp1, B
p2
cp2+1, . . . , B

p2
l )

Xo2 = (Bp2
1 , . . . , Bp2

cp2, B
p1
cp1+1, . . . , B

p1
k ) (7)

with cp1 ∈ {1, . . . , k − 1} and cp2 ∈ {1, . . . , l − 1}.
Mutation randomly chooses one of these operations: deleting a randomly

chosen layer, adding a randomly chosen layer, or mutating a randomly chosen
layer. Mutating a chosen layer includes a random change of its characteristics.

3.5 Multi-objective Bayesian Optimization

Bayesian optimization can be described as an efficient and effective global opti-
mization tool for functions with expensive evaluations [1]. It is particularly popu-
lar for tuning hyper-parameters of machine learning methods [20]. The Bayesian
approach is built upon the idea of constructing probabilistic models for the objec-
tive functions, called surrogate functions, that are searched efficiently (instead
of searching the true objectives) before the candidate samples are chosen for
the evaluation of the true objective function [2]. Typically, Gaussian Processes
(GP) [18] are used as surrogate models.

The core cycle of the optimization algorithm is depicted in Fig. 2. The algo-
rithm starts with a set of Ninit initial points (Ninit being a small number)
that are generated randomly and are evaluated by the objective functions. Dur-
ing the run, it is necessary to store the database of candidate solutions eval-
uated so far together with the corresponding values of the objective functions
D = {Ai, O1(Ai), . . . , Om(Ai)}t

i=1. The dataset D is then used to train Gaussian
Processes (GP) as surrogate models of the objective functions. For a given A,
GPi represents an estimate of the mean and variance of the Gaussian distribution
that describes Oi(A). Then, a standard optimization algorithm may be applied.
Since we deal with a multi-objective case, we use the NSGA2 algorithm, which is
an established multi-objective optimization method able to obtain qualitatively
good Pareto fronts [3].

After obtaining an approximation of the Pareto front and the Pareto set, it
is possible to use one of two approaches for choosing a new point to be evaluated
by the true objectives. The first one selects a point close to {A�}. For the eval-
uation of distances between candidate solutions, the feature vectors are used.
The second approach selects a point in the same way, but then applies muta-
tion on it. The trade-off between these two approaches represents the trade-off
between exploitation and exploration. Each new point is then evaluated by the
true objective functions and is added to the database D. With the update of the
database, the Gaussian Processes are retrained.

Our optimization algorithm is based on the multi-objective Bayesian opti-
mization algorithm MOBopt [7] that is publicly available on GitHub; it uses
NSGA2 [3] for optimization of surrogate functions and keeps the Pareto set
of candidate solutions. We implemented the whole procedure in Python using
libraries Tensorflow [8], and DEAP [6].
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Fig. 2. The flow of the Bayesian optimization used within the proposed MO-BayONet
procedure.

4 Experimental Results

In order to illustrate the performance of the novel method MO-BayONet, exper-
iments on three popular benchmark datasets are performed. These datasets are
MNIST, fashionMNIST and CIFAR10 [13,15,25]. The classification problem into
one of 10 given groups is solved. We optimized an architecture of a feed-forward
convolutional network and used two objectives.

The first objective is the network performance evaluated as the classifica-
tion accuracy

O1(A) =
1
K

K∑

k=1

Lacc(A) (8)

in K-fold cross-validation, where K is the number of folds (here K = 3) and Lacc

is classification accuracy. The network was trained using the Adam optimizer [8]
for 10 epochs and using categorical cross-entropy as a loss function.

The second objective, aiming to represent the energetic demands of the net-
work and hardware, is considered as the number of parameters of the network.
We denote it as

O2(A) = NA, (9)

where NA is the total number of the network parameters. No surrogate model
was used for this objective and it was always evaluated directly, since it is not
computationally expensive.

The algorithm was run for 100 iterations. The resulting networks were trained
on the whole training set for 20 epochs for 5 trials. For each trial, the classification
accuracy of the network was evaluated on the testing set. The mean and the
standard deviation of test set accuracies were computed.

For comparison purposes, two architectures are used. One is a baseline solu-
tion proposed by a human expert (from tutorials on MNIST) and the other is
a network found by a genetic algorithm for NAS (GA-NAS) [22]. The genetic
algorithm was run for comparable number of objective function evaluations as
was required by our algorithm.
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Table 2. Results of the baseline solution (expert-designed network), GA-NAS solution
(found by NAS based on genetic algorithms), and MO-BayONet solution (our proposed
approach): classification accuracies (i.e. their averages and standard deviations, where
applicable) and network sizes (numbers of parameters).

Task Baseline GA-NAS MO-BayONet

MNIST database

Clas. accuracy 98.97 99.19 99.34 99.27 99.13

Std. deviation – 0.26 0.09 0.06 0.05

Network size 600K 690K 233K 199K 39K

fashion-MNIST database

Clas. accuracy 91.64 93.13 93.05 92.75 91.78

Std. deviation – 0.20 0.19 0.16 0.14

Network size 356K 769K 2382K 360K 92K

CIRAR10 database

Clas. accuracy 70.45 72.8 74.29 76.45 76.46

Std. deviation – 0.59 0.49 0.51 0.17

Network size 122K 154K 81K 196K 455K

The obtained classification accuracies and sizes of the resulting networks are
shown in Table 2. We can see that MO-BayONet is able to find competitive
solutions in terms of classification accuracy, while using smaller network sizes.

A scatter plot of the objectives (classification accuracies and network sizes)
of all obtained solutions is presented in Fig. 3. All resulting solutions (obtained
approximations of Pareto sets) from 10 runs of MO-BayONet are shown. The
solutions that are closer to the right bottom corner than the baseline and the
GA-NAS solution outperform these two solutions.

Fig. 3. Left: an example of the resulting Pareto front for MNIST dataset in terms
of size and cross-validation classification accuracy. Right: the resulting networks for
MNIST in terms of size and classification accuracy on the test set: baseline (expert-
designed network); GA-NAS (result of NAS based on a genetic algorithm); the novel
MO-Bayonet (Pareto sets from 10 computations).
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5 Conclusion

A novel NAS approach based on Bayesian multi-objective optimization is pro-
posed in this paper. In contrary to the available Bayesian optimization methods
for NAS, the presented approach has the following unique features:

– It is multi-objective, and
– It uses a direct encoding of candidate solutions.

The proposed MO-BayONet approach yields promising results on 2 bench-
mark datasets, while the computational demands are comparable to available
approaches. We made the software implementation of the novel approach pub-
licly available on GitHub [21]. It does not use parallelization, but the paralleliza-
tion is possible. Since the objective function contains cross-validation, network
training and evaluation on individual folds can be done in parallel; inspiring
ideas on a possible parallelization of Bayesian optimization can be found in [10].

There are several open directions left for the future work. As the method
is general, it can be extended to more complex networks (arbitrary hierarchical
structures) in a straightforward way. A more elaborated study of suitable fea-
tures for surrogate models would also be desirable. As this paper was created in
a broader framework of approximate neurocomputing research, other complexity
objectives are planned to be investigated as well. It would be particularly useful
to include objectives evaluating the energetic demands of the computations [17];
possible applications on mobile phones would allow energy savings and the work
could thus contribute to the development of “green machine learning” [26].
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Abstract. The paper reconsiders multilayer perceptron networks for
the case where the Euclidean inner product is replaced by a semi-inner
product. This would be of interest, if the dissimilarity measure between
data is given by a general norm such that the Euclidean inner product
is not longer consistent to that situation. We prove mathematically that
the universal approximation completeness is guaranteed also for those
networks where the used semi-inner products are related either to uni-
formly convex or to reflexive Banach-spaces. Most famous examples of
uniformly convex Banach spaces are the spaces Lp and lp for 1 < p < ∞.
The result is valid for all discriminatory activation functions including
the sigmoid and the ReLU activation.

1 Introduction and Motivation

Various types of multilayer perceptrons (MLP) including deep networks belong
nowadays certainly to the standard neural networks in machine learning for clas-
sification and regression tasks [1,8]. Biologically motivated by pyramid cells in
brains the corresponding mathematical perceptron is the basis of those networks
[24], see Fig. 1.

Fig. 1. Schematic illustration of a mathematical perceptron (left) according to a pyra-
mid cell (right). The input vector x = (x1, . . . , xn)

T is weighted by the weight vector
w = (w1, . . . , wn)

T to generate the output O.
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The capability for these networks is justified by Cybenko’s theorem with
states the universal approximation capability for MLP’s with sigmoidal activa-
tion functions [5]. One key ingredient in the proof of the respective theorem
is the Hilbert-space-property needed to ensure the application of the Riesz-
Representation-Theorem (RRT). This property is given for each perceptron in
the network, because perceptrons generate their output based on the Euclidean
inner product (EIP) between the input and the weight vector. Thus the data
space is implicitly assumed to be a Hilbert space equipped with the Euclidean
norm, which is generated by the standard inner product. However, depending
on the task, other than the Euclidean metric might be more appropriate, e.g.
lp-norms (metrics) with p �= 2 [18] or kernel metrics [28]. However, those metrics
relate to so-called semi-inner products (SIP, [20]) which show weaker require-
ments than inner products. Hence, a consistent approach for a perceptron net-
work should make use of SIPs instead of the EIP. Consequently the question
arises whether those networks remain universal approximators. The paper tack-
les exactly this problem and will provide respective proofs.

The remainder of the paper is as follows: First we provide the basic math-
ematical concepts and definitions needed for the mathematical analysis of the
problem. Thereafter, we recapitulate the proof of Cybenko’s theorem regarding
the approximation completeness to identify the keypoints of this proof in the
light of the given problem. For this purpose, we analyze the class of discrimina-
tory activation functions regarding the Euclidean inner product (or general inner
products) and show that both sigmoidal and ReLU activation function belong
to that class. In the next step we provide the results for SIP-based perceptrons,
which we also denote as Banach-like-perceptrons (BlP). For this purpose, we
show that the class of discriminatory functions with respect to a given SIP can
be appropriately defined and, again sigmoidal and ReLU activation belong to
this class. Further, we show which parts of the original Cybenko-theorem have
to be modified. In particular, we identify those SIPs (and respective Banach-
spaces), which can be equipped with an RRT compared to that valid for Hilbert
spaces. The technical structure of this paper follows closely the mathematical
description of MLP’s given in [10].

2 The Standard Multilayer Perceptron Revisited

The mathematical modeling of standard perceptrons assumes stimulus vectors
x ∈ R

n and a weight vector w ∈ R
n to generate the output according to

O (w,x) = f (〈w,x〉 + b) (1)

where b ∈ R is the bias and f is the so-called activation function. The quantity
〈w,x〉 =

∑n
k=1 xk · wk is the (real) Euclidean inner product, which is motivated

biologically by the weighted sum of inputs, see Fig. 1. The activation function f
usually is a monotonically increasing function. Common choices are the identity
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id (z) = z (linear perceptron), the Heaviside function H (z) (standard percep-
tron) or the sigmoid function

fθ (z) =
1

1 + exp (θz)
(2)

as smooth (differentiable) approximation of H (z) as wellas the hyperbolic tan-
gent. Nowadays, other activation functions became popular, rather motivated
computationally than biologically [22]. Among them, the function

ReLU (z) = max (0, z) (3)

known as Rectified Linear Unit has gained great focus because of its easy com-
putation and derivative [8].

MLPs are directed graphs with mathematical perceptrons as nodes organized
in layers [13]. Only the first layer (input layer) receives direct data inputs. The
last layer is denoted as output layer and delivers the network response o for
a given data vector x. The stimulus vectors of perceptrons in all layers except
the input layer are output vectors of previous layers. Mathematically speaking,
MLPs realize a mapping

FW,B : Rn � x �−→ o ∈ R
m (4)

if m output units are available and W is the set of all weights w and B is
the set of all biases in the network. It was shown by Cybenko that under
certain conditions MLP’s are universal approximators [5]. We will consider the
proof of this theorem in detail after giving useful definitions and theorems from
mathematical analysis needed for an adequate problem description in the proof
of the Cybenko-theorem.

2.1 Basic Concepts, Mathematical Definitions and Theorems

Definition 1. The function σ is n-discriminatory with respect to the inner
product 〈·, ·〉 if for a measure μ ∈ M (In) of the closed (compact) subset
In = [0, 1]n ⊂ R

n with the property
∫

In

σ (〈w,x〉 + b) dμ (x) = 0

for all w ∈ R
n and b ∈ R the implication μ ≡ 0 follows. A function is said to

be discriminatory with respect to the inner product 〈·, ·〉 if it is n-discriminatory
for all n.

A function σ is denoted as sigmoidal if

σ (z) −→
{

1 for z → ∞
0 for z → −∞

holds. Obviously, fθ (z) from (2) is sigmoidal. Another example is
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λ (z) =

⎧
⎪⎨

⎪⎩

0 if z < 0
z if z ∈ [0, 1]
1 if z > 1

(5)

denoted as interval-restricted linear function. Let the set Λ[0,1] =
{L (z) = λ (a · z + b) , a, b ∈ R} of interval-restricted linear functions.

Later, we will make use from the following lemma:

Lemma 2. If the span S (
Λ[0,1]

)
is dense in C [0, 1], then the span S (

Λ[0,1]n
)

is
dense in C [0, 1]n with Λ[0,1]n =

{
L (z) = λ

(
aTb + b

)
, a,b ∈ R

n
}

The proof can be found in [14,17]
The following Lemma, proven in [5], relates sigmoidal functions to discrimi-

natory functions:

Lemma 3. Any bounded, measurable sigmoidal function is discriminatory with
respect to the real inner product 〈·, ·〉 and, hence, any continuous sigmoidal func-
tion is discriminatory.

It turns out that also the function ReLU (z) from (3) is discriminatory with
respect to the inner product 〈·, ·〉. In fact, we now prove the following lemma
about the discriminatory property of the ReLU -activation with respect to a real
inner product:

Lemma 4. The ReLU (z) from (3) is discriminatory with respect to the real
inner product 〈·, ·〉 for z (x) = 〈w,x〉 + b.

Proof. We follow [10] and start with the case n = 1 (1-discriminatory), i.e.
〈w, x〉 = w · x and z (x) = w · x + b for given w and b. For w = 0 we can rewrite
an arbitrary λ (z) ∈ S (

Λ[0,1]

)
into

λ (b) =

{
ReLU (λ (b)) if λ (b) ≥ 0
−ReLU (−λ (b)) if λ (b) ≤ 0

whereas for w �= 0 we decompose λ (z (x)) into

λ (x) = ReLU
(

w · x − b

w

)

− ReLU
(

w · x +
1 − b

w

)

(6)

using the linearity of the (inner) product w · x. Applying this decomposition we
prove immediately the assertion: Because λ (z (x)) is discriminatory according
to the previous lemma we have that for the integral I [λ] =

∫
λ (w · x − b) dμ (x)

the equality I [λ] = 0 holds, which further implies that μ ≡ 0 has to be valid.
Hence, we get for the decomposition (6)

I [λ] =
∫

ReLU
(

w · x − b

w

)

dμ (x)

−
∫

ReLU
(

w · x +
1 − b

w

)

dμ (x)

μ≡0
= 0 − 0

which is the desired result.
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For n > 1 we consider the span S (G) of the set G =
{g (z (x)) |nonlinear g ∈ C ([0, 1])} of continuous functions depending on x with
parameters w and b and keep in mind Lemma 2: Let h (x) ∈ S (G), arbitrarily
given. According to Kolmogorov’s representation theorem [2,14] and [9] exist
affine functions gk (zε (x)) ∈ C ([0, 1]) with zε (x) = 〈w,x〉 + b

N(ε) such that
∣
∣
∣
∣
∣
∣
h (x) − g

⎛

⎝
N(ε)∑

k=1

gk (zε (x))

⎞

⎠

∣
∣
∣
∣
∣
∣
<

ε

2

for arbitrarily chosen ε > 0 using the non-linearity of g. Because z (x) =∑
k,j wkxj 〈ek, ej〉 + b is an affine (linear) function in each variable xj the intro-

duced functions gk are affine (linear) functions of xj , i.e. we have gk (zε (x)) =∑n
j=1 ĝk (zε (xj)) with zε (xj) = xj · wj + bj . Each of the continuous functions

ĝk can be further approximated by
∣
∣
∣
∣
∣
∣
ĝk (zε (xj)) −

Nk(ε)∑

l=1

λk,l (zε (xj))

∣
∣
∣
∣
∣
∣
<

ε

2 · N (ε) · n

with λk,l ∈ S (
Λ[0,1]

)
which can be taken as combinations of ReLU-functions

according to (6).
In consequence, we are able approximate each h (x) ∈ S (G) with arbitrary

precision which implies the n-discriminatory property using the first part of the
proof. This completes the proof of the lemma. ��
Remark 5. We emphasize that for (6) the linearity of the inner product with
respect to the first argument was used.

Definition 6. Let X be a vector space over K ∈ {R,C} and ϕ : X → K be a
functional. If both properties

– positive homogeneity: ϕ (λx) = λϕ (x) for λ ∈ R+ and ϕ (ix) = iϕ (x) is valid
in the complex case

– subadditivity: ϕ (x + y) ≤ ϕ (x) + ϕ (y)

hold, ϕ is denoted as sublinear.

We remark that every norm on a vector space X is sublinear. A central role in
this paper plays the Hahn-Banach-Theorem which states the following [15,23]:

Theorem 7 (Hahn-Banach-Theorem). Variant a): Let X be a vector space
over K ∈ {R,C} and Y ⊆ X a subspace. Let ϕ : X → R be a sublinear functional
and f : Y → K be a linear functional with � (f (y)) ≤ ϕ (y) for all y ∈ Y . Then
there exists a linear functional F : X → K with F |Y = f and � (F (x)) ≤ ϕ (x)
is valid for all x ∈ X.

An alternative formulation is the variant [25,27] b): Let X be a normed space
and Y is a subspace Y ⊂ X. Let be f ∈ X∗ with f |Y = 0. The subspace Y is
dense in X iff under these assumptions always follows f (x) = 0 for all x ∈ X.
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The following theorem is known as the Theorem of Dominated Convergence from
Lebesgue [15,23]:

Theorem 8 (Dominated-Convergence-Theorem). Let X be a measure
space, μ a Borel-measure on X and g : X −→ R absolute integrable, g ∈ L1 (X).
Let further {fk} be a sequence of measurable functions fk : X −→ R such that
|fk (x)| ≤ g (x) holds for all x ∈ X, i.e. g dominates all fk. If the sequence {fn}
converges point-wise to a function f , i.e. fk (x)

pointwise−→
k→∞

f (x) then f is absolute

integrable, i.e. f ∈ L1 (X) with

lim
k→∞

∫

fk (x) dμ (x) =
∫

f (x) dμ (x) .

2.2 Cybenko’s Results for Standard MLP

The main statement regarding the universal approximation property of MLP’s
is given by the following theorem. For the sake of later considerations we also
give the proof of the theorem as provided in [5]. We will later make use of that
proof structure.

Theorem 9. Let In = [0, 1]n ⊂ R
n be the closed hypercube equipped with the

Euclidean metric., Let σ be a continuous discriminatory function with respect to
the inner product 〈·, ·〉. Further, let

Π =

⎧
⎨

⎩
π (x) ∈ C (In) |π (x) =

N∑

j=1

αj · σ (〈wj ,x〉 + bj)

⎫
⎬

⎭
(7)

be the set of continuous functions consisting of finite sums of perceptrons (1)
with an activation function f = σ. Then the set P = span (Π) of functions π (x)
is dense in the space C (In) of continuous functions over In.

Proof. The set P is dense in C (In) iff for any function g (x) ∈ C (In) and ε > 0
exists a function π (x) ∈ P with |π (x) − g (x)| < ε for all x ∈ In. This statement
is proven if we can show that for the closure P of P the equality P = C (In)
holds. We apply a proof by contradiction:

Obviously, P is a linear subspace of C (In). Thus, the closure P is a closed
subspace of C (In). We remark that In is equipped with the Euclidean norm such
that it is a Banach-space or, more precisely, a Hilbert space. Now we suppose
that P �= C (In), i.e. P is not dense in C (In) and show that this assumption
leads to a contradiction:

It follows from the assumed equality according to the Hahn-Banach-theorem
that there is a bounded linear functional L on C (In) with L (h) �= 0, i.e. it is not
completely vanishing for h ∈ C (In) but L (P) = L

(P)
= 0 is valid. We remark

that L is continuous and we have L ∈ C∗ (In) being the dual space of C (In).
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According to the Hilbert-space property of In we can apply the Riesz-
Representation-Theorem (RRT, [23]), which states that the functional L can
be written in the form

L (h) =
∫

In

h (x) dμ (x) (8)

for some measure μ ∈ M (In) and a continuous function h ∈ C (In). Yet, so far
μ is unspecified.

Because for the continuous function σ (〈w,x〉 + b) ∈ P is valid for all w and
b we must have that

L (σ) =
∫

In

σ (〈w,x〉 + b) dμ (x) = 0

holds for all choices w and b according to L
(P)

= 0. Since σ is assumed to
be discriminatory, the zero integral implies that μ ≡ 0 has to be valid, which
further implies, however, that L (h) ≡ 0 for any h ∈ C (In). This contradicts the
assumption P �= C (In). Hence, G is dense in C (In) which completes the proof. ��

According to this result and the Lemma 4 we can conclude that also the
ReLU-activation ensures the universal approximation property.

Remark 10. In the proof of the Cybenko-theorem the Hilbert-space property
of In was explicitly used which is guaranteed by the Euclidean metric/norm.
Further, the Euclidean norm in In is consistent with the mathematical structure
of the discriminatory functions σ (〈w,x〉 + b) containing the Euclidean inner
product in the argument.

Remark 11. We explicitly remark that the validity of the RRT provided by
Eq. (8) is essential to complete the proof. The RRT, however, originally requires
the Hilbert-space property.

3 Generalizations of Cybenko’s Results for MLPs
with Generalized Inner Products

In this chapter we generalize the Cybenko-Theorem 9. First, we make the easy
step to kernel-based inner products replacing the inner product in perceptrons.
Thereafter, we consider more general inner product variants, namely, semi-inner
products and variants thereof.

3.1 Kernels for Hilbert-Spaces

Obviously, the proof of the Cybenko-theorem remains valid if we replace the
Euclidean inner product 〈w,x〉 in the standard perceptron (1) by an arbitrary
inner product and use the resulting norm as norm for the n-dimensional real
space R

n. We can continue this idea and, more generally, replace the inner prod-
uct by a kernel κ, i.e. we consider

κ (w,x) = 〈φ (w) , φ (x)〉
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with φ (w) ∈ H where H is a reproducing kernel Hilbert space (RKHS) [26].
Then In = φ (In) is compact in the Hilbert space H and the Cybenko’s theorem
is still applicable also for In.

3.2 Semi-inner Products

In the second, more challenging case we want to exchange in the perceptron (1)
the inner product 〈w,x〉 by a semi-inner product (SIP) [w,x] [20].

Definition 12. A mapping [·, ·] : B × B → C is called a semi-inner product
(SIP) if the following relations are fulfilled:

1. linearity: [λx + z,y] = λ [x,y] + [z,y] for λ ∈ C

2. positiveness: [x,x] > 0 for x �= 0
3. Cauchy-Schwarz-inequality: |[x,y]|2 ≤ [x,x] [y,y]

Lumer has shown that a SIP always generates a norm by ‖x‖ =
√

[x,x] as well
as he has proofed that every Banach-space with norm ‖x‖B is equipped with a
SIP generating this norm [20]. Generally, there may exist several SIPs generating
a given norm. Additional requirements are needed to ensure uniqueness. Further,
given a norm, generally there is no constructive way to derive a respective SIP.
Despite this impossibility, one can show that the homogeneity property [x, λy] =
λ [x,y] can be imposed without causing any significant restriction of the Lumer
results [7].

Now we equip In with the norm ‖x‖ =
√

[x,x] denoted as IB
n ⊂ R

n
B. Thus

R
n
B becomes an n-dimensional real Banach-space. Considering now Banach-like

perceptrons (B-perceptron) with output

O (w,x) = f ([w,x] + b) (9)

using real SIPs, we cannot simply apply the original Cybenko-theorem to show
approximation completeness, because its proof requires the Hilbert-space prop-
erty needed to apply the RRT. However, as mentioned before, IB

n is not contained
in a Hilbert space. Fortunately, there exist variants of the RRT which suppose
weaker but special Banach-spaces instead of a Hilbert-space.

Before we will characterize those Banach-spaces, we have to extend the defi-
nition of a discriminatory functions:

Definition 13. The function σ is n-discriminatory with respect to the real-
valued linear functional l (w,x) in x, if for a measure μ ∈ M (In) of the closed
(compact) subset In = [0, 1]n ⊂ R

n with the property
∫

In

σ (l (w,x) + b) dμ (x) = 0

for all w ∈ R
n and b ∈ R the implication μ ≡ 0 follows. The function σ is said to

be discriminatory with respect to the real-valued linear functional l (w,x) in x,
if it is n-discriminatory with respect to the real-valued linear functional l (w,x)
for all n.
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Lemma 14. Any bounded, measurable sigmoidal function is discriminatory with
respect to the real-valued linear functional l (w,x) and, hence, any continuous
sigmoidal function is discriminatory.

Proof. The proof we give here follows the argumentation in [5]. Doing so, we
suppose a sigmoid function σ and a real-valued linear functional l (w,x) with∫

In
σ (l (w,x) + b) dμ (x) = 0 for given signed measure μ. We have to show that

μ ≡ 0 follows.
For this purpose we consider the function

σλ (x) = σ (λ · (l (w,x) + b) + ϕ)

which converges point-wise and bounded to the function

γ (x) =

⎧
⎨

⎩

1 for l (w,x) + b > 0
0 for l (w,x) + b < 0

σ (ϕ) for l (w,x) + b = 0

in the limit λ −→ +∞, i.e. σλ (x)
pointwise−→
λ→+∞

γ (x). Hence, |σλ (x)| ≤ γ (x) is valid.

Applying the Dominant-Convergence-Theorem 8 we have
∫

In

γ (x) dμ (x) = lim
λ→+∞

∫

In

σλ (x) dμ (x)

with
∫

In
σλ (x) dμ (x) = 0 according to the assumed discriminatory property of

σ. Thus we can further calculate for an arbitrary choice of w, b, and ϕ

∫

In

γ (x) dμ (x) =
∫

X+
w,b

1dμ (x) +
∫

X−
w,b

0dμ (x)

+
∫

X0
w,b

σ (ϕ) dμ (x) (10)

= μ
(
X+

w,b

)
+ σ (ϕ) μ

(
X0

w,b

)
(11)

= 0

using the definition of γ (x) in the first equation together with the half-planes
X+

w,b = {x ∈ In|l (w,x) + b > 0} and X−
w,b = {x ∈ In|l (w,x) + b < 0} whereas

X0
w,b = {x ∈ In|l (w,x) + b = 0} is a hyperplane according to the linearity of

l (w,x). For ϕ → +∞ we observe σ → 1, because σ is sigmoid. Hence,

μ
(
X+

w,b

)
+ μ

(
X0

w,b

)
= 0

must be valid in (11). Otherwise, if ϕ → −∞ we observe that σ → 0 holds in
(11) and, therefore, μ

(
X+

w,b

)
= 0 must be valid. Thus we have shown that the

measures of all half-planes are zero. It remains to show that from this property
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it follows that the measure μ has to be zero. This would be trivial for positive
measures, but this is not assumed here.

Thus, we now fix w and consider the linear functional

F (h) =
∫

In

h (l (w,x)) dμ (x)

for a bounded measurable function h. Hence, F (h) is a bounded functional on
L∞ (R) because μ is a finite signed measure. We consider two choices for h: First
we take the indicator function 1[b,∞) obtaining

F
(
1[b,∞)

)
=

∫

In

1[b,∞) (l (w,x)) dμ (x)

= μ
(
X+

w,b

)
+ μ

(
X0

w,b

)

= 0

for the functional. Second, we have the indicator function 1(b,∞) obtaining

F
(
1(b,∞)

)
=

∫

In

1(b,∞) (l (w,x)) dμ (x)

= μ
(
X+

w,b

)

= 0

for the open interval (b,∞). We can decompose indicator functions h1 of arbi-
trary sets into sums of indicator functions of the above types. Due to the linearity
of the functional F (linearity of the integral operator) all these integrals vanish
and, hence, F (h1) vanishes for indicator functions. Yet, indicator functions are
dense in L∞ (R) and, therefore, F (h) = 0 for all h ∈ L∞ (R) has to be valid.

In the last step of the proof we consider the functions hs (z) = sin (z) and
hc (z) = cos (z), which are both in L∞ (R). We take z (x) = l (w,x) and calculate

F (hc + i · hs) =
∫

In

hc (z (x)) + i · hs (z (x)) dμ (x)

=
∫

In

exp (i · z (x)) dμ (x)

which is the Fourier-transform of the linear functional l (w,x) with an arbitrary
chosen parameter w. However, the Fourier-transform has to be zero in any case
which is only possible for μ ≡ 0, which completes the proof. ��
Lemma 15. The ReLU (z) from (3) is discriminatory for z (x) = l (w,x) + b,
where l (w,x) is a real-valued linear functional in x and w.

Proof. The proof is in complete analogy to the proof for Lemma4: Because
in this proof only the linearity of the inner product was used as the essential
property of the inner product, the argumentation remains valid also for linear
functionals. ��
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Now we start to characterize special Banach-spaces such that we can take
them for a Cybenko-like theorem. In particular, we have to identify those
Banach-spaces which preserve the possibility to apply an appropriate RRT as it
was emphasized in Remark 11.

Theorem 16. Let B be an uniformly convex Banach space with continuous SIP
[·, ·]. Then a RRT analogously to (8) is valid.

Proof. The proof can be found in [7, Theorem 6]. ��
The theorem can be extended to:

Theorem 17. Let B be a reflexive Banach space. Then a RRT analogously to
(8) is valid.

Proof. Let B be a reflexive Banach space and h ∈ B∗ = C (B). Then exists a
SIP [·, ·] and an element β ∈ B such that ϕ (x) = [x, β] is a continuous linear
functional [6]. Hence, the respective SIP determines a RRT analogously to (8). ��

Both theorems are related according to the following lemma:

Lemma 18. Every smooth (continuous) uniformly convex Banach space is also
reflexive and strictly convex. The reverse direction is not valid. Hence, Theo-
rem16 is a special case of Theorem17.

Proof. The proof can be found in [6]. ��
Now we are able to formulate a theorem which states the universal approxi-

mation property for perceptron networks consisting of Banach-like perceptrons.

Theorem 19 (Cybenko theorem for Banach-like perceptron networks).
Let σ be a continuous general discriminatory function with respect to the SIP [·, ·]
for IB

n ⊂ R
n
B equipped with the norm ‖x‖ =

√
[x,x] such that R

n
B is a reflexive

n-dimensional real Banach-space. Additionally, let

ΠB (x) =
N∑

j=1

αj · σ ([wj ,x] + bj) (12)

be the finite sum of Banach-like perceptrons (9) with activation function f = σ.
Then ΠB (x) is an universal approximator.

Proof. The proof is in complete analogy to the proof of the Cybenko-theorem.
The application of the Hahn-Banach-theorem is not affected by the weaker
assumption regarding the Banach-space. The existence of a respective RRT is
guaranteed by the previous lemmata. ��
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The most famous examples for (real) Banach-spaces are the spaces Lp and
lp. The latter one is equipped with the unique SIP

[w,x]p =
1

‖x‖p−2
p

∑

k

wk · |xk|p−1 · sgn (xk) (13)

with 1 ≤ p < ∞ [7]. Thus we can equip IB
n with the SIP [w,x]p. Further, the

following lemma holds:

Lemma 20. Both Lp and lp are uniformly convex for 1 < p < ∞.

Proof. The proof can be found in [12]. ��
Corollary 21. The compact set IB

n with the SIP [w,x]p from (13) is contained
in the uniformly reflexive Banach space lp for 1 < p < ∞. Hence, a RRT
analogously to (8) is valid.

Proof. Just applying Theorem 17 gives the desired result. ��
The last corollary leads to the following statement:

Lemma 22. A MLP using Banach-like perceptrons with output

Op (w,x) = f
(
[w,x]p + b

)
(14)

according to (9) generated by the SIP [w,x]p from (13) is an universal approxi-
mator in case of 1 < p < ∞.

Proof. The previous corollary about uniform convexity of the lp-space together
with Lemma 18 guarantees that Theorem 19 is applicable. ��

The particular B-perceptron (14) is denoted as Bp-perceptron.
Zhang & Zhang considered generalized SIPs (gSIP) [31] extending a first

attempt by Nath [21]. They considered SIPs [w,x]ξ for a function ξ : R+ →
R+ fulfilling the requirements 1) and 2) of Definition 12. The Cauchy-Schwarz-
inequality is replaced by

∣
∣
∣[w,x]ξ

∣
∣
∣ ≤ ξ

(
[w,w]ξ

)
· ψ

(
[x,x]ξ

)

for a conjugate function ψ : R+ → R+, i.e. ξ (t) · ψ (t) = t has to be valid.
According to statement in [31] a RRT is also valid for generalized SIP-spaces:
For a RRT regarding those gSIPs it is assumed that ξ (t) is a so-called gauge
function, i.e. ξ (0) = 0 and limt→∞ ξ (t) = ∞. If ξ (t) is surjective onto R+ and
ζ (t) = ξ−1(t)

t is a gauge function on R+ then a RRT can be formulated, because
the resulting Banach-space is reflexive and strictly convex [31].
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3.3 Kernels for Banach-Spaces

In the last step we extend Cybenko’s theorem to the case of kernels regard-
ing reproducing kernel Banach spaces (RKBS). As stated in [30, Theorem 4], a
RKBS is always reflexive. Thus, we suppose a kernel κB corresponding to the ker-
nel feature map φB : In → In ⊂ B with B being a RKBS [18]. From Theorem 17
we can conclude that Cybenko’s theorem is applicable, accordingly.

4 Numerical Simulations and Conclusions

Fig. 2. left: Obtained accuracies of an MLP with Bp-perceptrons for the MNIST data
set depending on the p-value for the SIP [w,x]p. We observe a broad range of p-values
delivering the same good accuracy. right: Investigation of the convergence behavior of
MLPs with Bp-perceptrons for the MNIST data set depending on the p-value for the
SIP [w,x]p. A linear correlation between early stopping (number of learning epochs
until convergence) and p-value is observable.

In the simulation part we trained MLPs using B-perceptrons with SIP [w,x]p
from (13) for the two well-known data sets MNIST and CIFAR10 [16,19]. For
the MNIST-problem, the gray-value images were vectorized and taken as an
input for an MLP with only one hidden layer consisting of 32 Bp-perceptrons
with sigmoid activation. For CIFAR10 we used a convolutional network with
four convolutional layers and three max-pooling layers. The final dense layer was
performed by 10 Bp-perceptrons with ReLU-activation. The convolutional layers
were trained using the dense layer for p = 2. After this training, the convolutional
layers were kept fix - only the dense layer was trained using different p-values.

Both networks were trained using cross-entropy loss for different p-values for
the SIP [w,x]p. The MNIST-results are depicted in Fig. 2.

The MLP is always capable to solve the classification problem appropriately.
For large and small p-values, numerical instabilities and difficulties lead to a
slightly decreased performance.

For the CIFAR10 data set the results are depicted in Fig. 3.
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Fig. 3. left: Obtained accuracies of CNN-networks with final dense layers consisting of
Bp-perceptrons for the CIFAR10 data set depending on the p-value for the SIP [w,x]p.
We observe a broad range of p-values delivering the same good accuracy. Particularly,
p-values lower than one provide good performance. right: Investigation of the con-
vergence behavior of CNN-networks with final dense layer using Bp-perceptrons for
the CIFAR10 data set depending on the p-value for the SIP [w,x]p. A rough linear
correlation between early stopping (number of learning epochs until convergence) and
p-value is observable.

Again, we can recognize a overall good performance for a wide range of p-
values. The decrease of the performance for higher and very low p-values is
again attributed to numerical difficulties. These can be observed also from the
early-stopping analysis reflecting the somewhat instable convergence behavior.

In this paper we investigated the approximation completeness of multilayer
perceptrons consisting of Banach-like perceptrons. These perceptrons use semi-
inner products whereas usual perceptrons rely on the standard Euclidean inner
product. Semi-inner products are related to Banach-spaces. We prove mathe-
matically that for semi-inner products determining reflexive Banach-spaces the
respective perceptron networks are approximation complete. The proof is valid
for discriminatory activation functions which comprise both sigmoid and ReLU -
functions. Numerical simulations accompany the theoretical considerations.

Future work will deal with indefinite inner products as well as will include
the investigation of ResNets. Further, other more promising activation functions
like swish (see [3,22,29]) should considered as well as networks with bounded
width [11].

Appendix

In this appendix we give some useful definitions regarding SIPs and Banach
spaces, which are used in the text as well as some basic statements and remarks.

Definition 23. A Banach space B is denoted as strictly convex iff for x,y �= 0
with ‖x‖ + ‖y‖ = ‖x + y‖ we can always conclude that x = λy for some λ > 0.

Lemma 24. A Banach space B with SIP [·, ·] is strictly convex iff for x,y �= 0
with [x,y] = ‖x‖ · ‖y‖ we can always conclude that x = λy for some λ > 0.
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Proof. The proof can be found in [7]. ��
The following definition for the uniform convexity was introduced in [4]:

Definition 25. A Banach space B is denoted as uniformly convex iff for each
ε > 0 exists a δ (ε) > 0 such that if ‖x‖ = ‖y‖ = 1 with ‖x − y‖ > ε then
‖(x+y)‖

2 < 1 − δ (ε) is valid.

Definition 26. A Banach space B with SIP [·, ·] is denoted as continuous iff

�{[x,y + λx]} −→
λ→0

�{[x,y]}

is valid for λ ∈ R. The space is uniformly continuous iff this limit is approached
uniformly.

Definition 27. A Banach space B is denoted as reflexive iff the mapping J :
B → B∗∗ = (B∗)∗ is surjective, where the star indicates the dual space.

Theorem 28. Let B be a Banach space. Then a necessary and sufficient con-
dition for B to be reflexive is that for every f ∈ B∗ exists an SIP [·, ·] and an
element y ∈ B with f (x) = [x,y] for all x ∈ B. If B is strictly convex then y is
unique.

Proof. The proof can be found in [6, Theorem 2]. ��
Definition 29. A Banach space B is denoted as smooth iff for each x ∈ B
with ‖x‖ = 1 there exists a linear functional fx ∈ B∗ with fx (x) = ‖fx‖. The
existence of fx is guaranteed by the Hahn-Banach-Theorem.
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Abstract. In this paper we introduce a new Knowledge Representa-
tion model, the Similarity Fuzzy Semantic Networks. It is an extension
of Fuzzy Semantic Networks that incorporates reasoning by similarity
through a Similarity Inference Rule. Moreover, we show as it can be
effectively applied to a trending and complex problem like the analysis
of radical discourse in Twitter.
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1 Introduction and Motivation

Semantic Networks are one of the first models proposed for Knowledge Rep-
resentation, and they have been effectively applied over the years [5,10]. Later,
graduations were introduced to obtain Fuzzy Semantic Networks, that have inter-
esting and relevant applications [1,3]. Moreover, it is an effective approach to
use reasoning by similarity in fuzzy systems [9]. Thus, it would be interesting to
extend the Fuzzy Semantic Network model to include similarity reasoning.

In this paper, we propose a new model of knowledge representation which
extend Fuzzy Semantic Network model, and incorporate an inference by simi-
larity rule.

The rest of this paper is organised as follows. Sections 2 and 3 present a
brief introduction to Semantic Networks and Fuzzy Semantic Networks models,
respectively. Section 4 proposes our Similarity Fuzzy Semantic Network model,
jointly with the similarity inference rule. Section 5 shows an inference strategy
for an effective application of the model. Lastly, Sect. 6 applies it to a trending
and complex problem: the analysis of radical discourse in social networks.
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2 Semantic Networks

Semantic Networks represent knowledge with directed labelled graphs, where
vertices represent concepts, which can be individuals or classes (sets of individ-
uals), and labelled edges represent semantic relations between concepts, such
that:

A relationS−−−−−−→ B (1)

represents the assertion “ A relationS B ”. Consequently, we can represent
knowledge as “Bird has-part Wings”, “Animal has-part legs” or “Bird is-an
Animal”.

We can distinguish between two types of semantic relations:

– Hierarchical semantic relations:
• instance-of (an individual is an instance of a class)
• is-a (a class is a subclass of another class)

– Domain-specific semantic relations, such as is-an-opponent-of, owns...

Hierarchical semantic relations are universal, in the sense that they are
present in any semantic network, meanwhile each semantic network introduces
its own domain-specific relations.

The main inference rule in a Semantic Network is inference by inheritance.
It consists on deducing new assertions in accordance with the following scheme:

A is-a B ∨ A instance-of B
B relationS C
A relationS C

(2)

3 Fuzzy Semantic Networks

It has been proposed to use graduations to obtain Fuzzy Semantic Networks [1,3].
These models represent knowledge as graded labelled directed graphs. Classes are
now defined as fuzzy sets of individuals, and the degree of the relation instance-of
is the membership function of the correspondent fuzzy set. Analogously, edges
represent graded semantic relations:

– instance-of : α stands for an instance with grade α
– is-a : α stands for a class that inherits from other in grade α
– Domain-specific fuzzy semantic relations, such that each relation has a an

associated degree in which the assertion meets.

In this way,
A relationS:α−−−−−−−→ B (3)

represents the fuzzy assertion

A relationS B in α degree. (4)
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that can be abbreviated as

A relationS:α B (5)

We can now define the fuzzy inference by inheritance rule. It consists on
deducing new fuzzy assertions by the following scheme:

A is-a:α B ∨ A instance-of:α B
B relationS:β C
A relationS:t(α, β) C

(6)

being t a t-norm chosen to model the connective “and”.
Obviously, the fuzzy inference by inheritance is a generalisation of the (non

fuzzy) inference by inheritance: if we have crisp semantic relations in the premises
(α = β = 1), then we obtain the same crisp consequence (t(1, 1) = 1).

3.1 Combining Inferences

After applying fuzzy inference by inheritance (or any other reasoning method),
it is possible to obtain the same semantic relation between two given concepts
but with different degrees. We can use an aggregation function [2] to combine
both assertions in the following combining inference rule:

A relationS:α B
A relationS:β B
A relationS:g(α, β) B

(7)

were g is a previously chosen aggregation function.

4 Similarity Fuzzy Semantic Networks

In the same way that classes extend its semantic relations to its sub-classes
and instances by inheritance, individual or classes may transmit properties, by
similarity semantic relations, to similar individual or classes [6,7]. For example, if
two persons have similar opinions about political topics, then it will be reasonable
to think that the properties with political sense would affect one another.

In order to enrich the model of fuzzy semantic relation with this idea, we
propose a new model for knowledge representation that we call Similarity Fuzzy
Semantic Networks. It consist on fuzzy semantic networks with a specific family
of semantic relations between classes or individuals, which we call Similarity
semantic relations.

4.1 Similarity Semantic Relations

Similarity semantic relations are fuzzy semantic relations that represent that
two individuals or two classes are similar in some sense or aspect:

A is-similar-in-sense-D : α B, (8)
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where D may be any topic or aspect, and it represents the assertion that concepts
A and B are similar in the sense D in α degree.

We can have similarity relations between classes and also between individuals.
Additionally, for every sense D, each concept will have a fuzzy neighbourhood
of similar concepts in sense D.

On the other hand, we only might transmit by similarity-in-sense-D those
semantic relations that are related to D. Thus, we introduce relations between
senses and semantic relations of the network.

4.2 Meta-relations

Semantic relations of the network can be considered second order concepts, there-
fore it is possible to think in second order relations where relations between
semantic relations of the network are established. We call them meta-relations.

Particularly, we introduce in our Similarity Fuzzy Semantic Networks model
a meta-relation that will be used for the Similarity inference. It is a relation that
goes from domain-specific semantic relations to is-similar-in-sense-D relations:

relationS is-related-to:γ senseD, (9)

representing the assertion that relationS is related to senseD and thus, it
can be transmitted by is-similar-in-sense-D.

The similarity semantic relation specifies a correspondence between concepts
in an specific aspect D, meanwhile is-related-to delimits the domain in which
similarity relations apply. In fact, when using meta-relations, we are defining a
new semantic network of a higher level in which concepts are similarity relations
of the principal semantic network.

4.3 Similarity Inference

These new relations enable a new kind of reasoning based on similarity. New
knowledge may be extracted upon propagation of semantic relations through
the is-similar-in-sense-D by means of the Similarity Inference Rule:

A is-similar-in-sense-D : α B
B relationS:β C
relationS is-related-to:γ senseD
A relationS:(γ ∗ t(α, β)) C

(10)

where t is a triangular norm (t-norm).

5 Inference Strategy

In the proposed similarity fuzzy semantic network, the properties of the concepts
may be deduced by fuzzy inheritance and/or by similarity inference. Moreover,
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each reasoning process results in new knowledge that may lead to new inferences.
Hence, we might to establish an inference strategy.

First of all, we may choose the prevalence between inheritance and simi-
larity inference rules. Inheritance is a depth reasoning, while similarity can be
considered a breadth inference, since it is based on the neighbourhood of simi-
lar concepts. Therefore, we can use the classical Z and N models of reasoning
strategy:

– Z model: first similarity, then inheritance.
– N model: first inheritance, then similarity.

Lastly, we establish iterations or cycles, as it is usual when dealing with these
kind of systems. In each step, we update the degree of every semantic relation
by applying inheritance and similarity reasoning rules in the chosen order, and
then applying the combining inference rule.

6 Application to Radical Discourse in Twitter

There are several cases in which it may be interesting to infer knowledge using
similarity fuzzy semantic networks. In this case, we applied it to represent and
infer new knowledge about radical discourse in Twitter.

Radical propaganda is disseminated through Social Networking Sites (SNS)
such as Twitter, blogs and other platforms [8,12]. Recruitment and radicalisation
of SNS users is due to diverse factors which radicals take advantage of [11]. Iden-
tifying these radical accounts and others that are susceptible of being radicalised
are important tasks in order to deal with extremism.

We used Twitter API to obtain tweets about some specific topics that are
frequently found in the radical discourse. The challenge that we are facing is to
detect radical users in the social network, and its main handicap is that most of
the users and tweets are not radical in any form.

Given a twitter user U, we consider a domain-specific fuzzy semantic relation
is-radical to represent whether a user is radical or not:

U
is-radical:α−−−−−−−→ Y es (11)

U
is-radical:β−−−−−−−→ No (12)

being α and β the degrees in which U is radical or not, respectively.
When two users, A and B, share opinions regarding the selected topics, we

represent it by the similarity semantic relation is-similar-in-sense-opinion-share:

A is-similar-in-sense-opinion-share : w B (13)

where w stands for the degree in which they share opinions. This enables us to
propagate knowledge from user A to B and vice versa. However, we still need
to determine a way in which properties defined by the semantic fuzzy relation
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Fig. 1. Graphical representation of a similarity fuzzy semantic network for the radical
discourse in Twitter.

is-radical can be propagated using the similarity relation. Let us define a meta-
relation such that

is-radical is-related-to : γ is-similar-in-sense-opinion-share (14)

Figure 1 shows the graphic representation of the fuzzy semantic network.
Let us exemplify the results of the inference in this similarity fuzzy semantic

network. We use the product t-norm and the sum aggregation.
First, we apply the similarity inference rule for every pair of similar users

(users that share opinions about the selected topics):

A is-similar-in-sense-opinion-share:w B
B is-radical:p Yes
is-radical is-related-to:γ is-similar-in-sense-opinion-share
A is-radical:γ ∗ w ∗ p Yes

(15)

Then, using the combination inference rule, we obtain the degree in which
every twitter user is radical :

A is-radical:p1 Yes
A is-radical:p2 Yes
A is-radical:p1 + p2 Yes

(16)

For each cycle, the similarity inference is fired for every similar user to A,
and since summation is an associative operator, the order in the combination
inference rule is not relevant. Thus, we may conclude that, when the cycle i ends,
it is possible to deduct that:

A is-radical:
(
radical(i)(A)

)
Yes (17)
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being

radical(i)(A) = radical(i−1)(A) + γ ∗
∑

U |wu∈neighbours(A)

wu ∗ radical(i−1)(u) (18)

where neighbours(A) is the fuzzy set of twitter users similar to A in the sense
that they share opinions about the selected topics:

neighbours(A) = {U |wu : A is-similar-in-sense-opinion-share : wu U} (19)

and being
radical(0)(A) = α (20)

where α is the initial degree (if any) for A is-radical : α Yes.

6.1 Determining Degrees for the Fuzzy Relations

The similarity inference process is conditioned to the initial degrees of at least
one of the instances of Twitter users. Determining these values is not a trivial
task, but it can be done in several manners.

is-radical is defined for a particular user and, initially, it can be calculated
taking into account only the information available for such user (in this case,
their tweets). It is possible to use an oracle that, given a tweet, returns a binary
answer (yes or no) to the question “is this tweet radical?”. In our case, we used
a human expert as an oracle, which answer this question for some tweets. The
initial degree p would be the result of the aggregation of the answers. We used
the mean, that result in the ratio between user’s radical tweets an the total
number of them.

is-similar-to-in-sense-opinion-share is defined between two users and it needs to
be determined taking into account the information available for both of them.
We used a predictor H using Twitter mechanics as proposed in [4]:

∀u, v ∈ T,H(u, v) = cocopies(u, v) + cofavourites(u, v) + ‖{m : m ∈ M
∧author(u,m) ∧ ∃n ∈ M : [author(v, n)
∧(copy(m,n) ∨ favourite(u, n))]}‖

(21)

where:

– M is the set of all the tweets.
– cocopies(u, v) stands for the number of retweets that both users have in com-

mon (which can be translated to the number of tweets that both users agree
with).

– cofavourites(u, v) stands for the number of favourites that both users have in
common (analogously to cocopies).



180 J. L. Castro and M. Francisco

Table 1. Results of the expert evaluation of the deductions made by the model. 3537
of the 4114 deductions were accepted, that yields 85.97% of accuracy.

Accepted deductions 3537

Rejected deductions 549

Undetermined deductions 28

Total deductions 4114

– author(u,m) checks if the tweet m belongs to the user u.
– copy(m,n) checks if the tweet n is a retweet of m.
– favourite(u, n) checks if the tweet n is marked as favourite by u.

After applying normalisation to H, we obtain a degree in which both users
share opinions.

is-related-to is a context-dependant degree that should be decided after an anal-
ysis of the specific problem. It may be defined using statistical measures such as
percentiles or centrality measures.

6.2 Real-World Experiments

We effectively conducted real-world experiments with a dataset that involve more
than 430000 tweets authored by more than 30000 users using a human oracle
to establish initial degrees for 778 tweets. Later, since our model implements
an approximate reasoning, we evaluated the result of the inference process with
the help of human experts to check for the soundness of these conclusions, and
we obtained good results as shown in Table 1. We obtained 85.97% of accuracy,
which is a better result than a baseline non-deductive model such as Support
Vector Machines (SVM). Particularly, we trained a SVM model over the same
dataset and we obtained a 68.97% accuracy in a cross-validation scheme.

7 Conclusions

Semantic Networks are widely used to represent Knowledge, and they have been
specialised to Fuzzy Semantic Networks with useful applications. Throughout
this paper, we extended these to provide them with similarity reasoning. In
order to do so, we introduced a new family of semantic relations and a higher
order meta-relation that allows to develop an inference by similarity rule, along
with an inference strategy. We also showed how it can be applied to radical
discourse in Twitter and how knowledge is inferred in a practical manner. This
example illustrates that our proposal can be applied to complex problems and
that it has great potential. We obtain effective and sound results that shows
that deductions are precise in 85.97% of the cases, that is better than a baseline
non-deductive machine learning model.
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We intend to pursue further research in the future, both at a theoretically
and at application level. In particular, we want to explore dissimilarities as a
manner to complement similarity measures in order to better determine fuzzy
memberships.
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Abstract. The COVID-19 pandemic has affected almost every aspect
of life. The patterns of interpersonal contacts, the ways of doing busi-
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1 Introduction

To monitor and prevent the spread of disease, various public health surveillance
systems are implemented at the national level [9]. Nowadays, these systems have
found unprecedented use in monitoring the rapid spread of the SARS-CoV-2
coronavirus. Globally, confirmed cases of infection with this virus amount to
hundreds of millions and nearly six million people have died [2]. In addition to
health problems, the coronavirus pandemic has caused many and diverse social,
economic and environmental consequences [8,17,18,20,21].

To limit the transmission of the virus, national governments have been forced
to take a series of radical and unpopular decisions, such as outdoor and indoor
masking orders, mobility restrictions or lockdowns [6]. Epidemic decisions were
made under strong social pressure, and taking or not taking certain actions
resulted in the death of thousands of people, a serious disturbance in business,
or the risk of collapse of the national health care systems [7].

Crisis management decisions were usually made on the basis of the national
system of data collection, modelling and prediction of the future course of the
epidemic [9]. Meanwhile, due to the unprecedented scale and nature of the SARS-
CoV-2 epidemic, the epidemiological data collection and reporting system was
error prone [10]. Basic pandemic data collected at different levels by public health
surveillance systems were usually: number of coronavirus tests performed, num-
ber of confirmed cases, number of deaths, number of convalescent patients, and
number of hospitalisations. However, the number of uncontrolled variables affect-
ing these indicators was so large that modelling and predicting the course of the
epidemic turned out to be very difficult and in most cases ineffective [5,6,11,24].
At the same time, in outbreak forecasting, extreme errors can lead to suboptimal
decision-making, such as unexpected shortages in or oversupply of resources [19].

Since single models used to describe or predict the development of an epi-
demic have often turned out to be ineffective, major public health government
units, such as the Centre for Disease Control and Prevention (CDC), adopted
ensemble forecasts for modelling and forecasting epidemic development [1]. This
approach proved to be sufficiently accurate and precise at short-term predic-
tion horizons, with a general increase in error at longer horizons [19]. However,
the precision of ensemble forecasts and their prediction horizons depends on the
precision of the individual models that are aggregated. Thus, the most accurate
single models and methods of their optimal aggregation are still sought in order
to better understand and predict the epidemic at the national and global level
[3–6,22,23].

In this study, we propose modelling the course of COVID-19 epidemic using a
novel approach based on information granules. This new method of fuzzy analysis
has already been described and applied for various data [12,15,16]. In this paper,
we focus on data from 37 European countries, because it is the continent where
the highest number of confirmed cases of coronavirus infections in the world has
been recorded (over 160 million) [2]. However, the novel method we present is
universally applicable.
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The work is organised as follows. Section 2 provides a theoretical description
of the proposed anomaly detection method based on information granules. In the
next Sect. 3, the results of numerical experiments are presented. Finally, Sect. 4
contains conclusions and future work directions.

2 Methodology

Data describing the dynamics of the COVID-19 pandemic are collected by
many institutions and made public. This study will use data from the Our
World in Data website (https://ourworldindata.org/coronavirus-source-data).
The structure of the data allows the observation of many phenomena related
to the pandemic in the following days, broken down into individual regions of
the world and specific countries. These data are organised in such a way that
it is possible to identify a number of phenomena, including: date; total cases;
new cases; new cases smoothed (7-day smoothed); total deaths – total deaths
attributed to COVID-19; new deaths – new deaths attributed to COVID-19;
new deaths smoothed (7-day smoothed); total cases per million – total con-
firmed cases of COVID-19 per 1,000,000 people; new cases per million – new con-
firmed cases of COVID-19 per 1,000,000 people; total deaths per million – total
deaths attributed to COVID-19 per 1,000,000 people; new deaths per million
– new deaths attributed to COVID-19 per 1,000,000 people; icu patients;
hosp patients; new tests.

From the theoretical point of view, these data can be equated with time
series describing particular phenomena for individual countries. As part of this
study, interesting relationships between the individual ranks will be examined.
In addition, in-depth analyses within individual time series will be carried out.
Contrary to the classic approaches that are presented in the media, the anal-
yses will be carried out using fuzzy techniques, in particular with the use of
information granules.

At the outset, it is necessary to get acquainted with the basic properties of
individual time series. If not necessary, considerations will be made on a gen-
eral case. Let us denote by X[n], n ≥ 1 the time series describing one of the
above-mentioned phenomena changing with time. It is obvious that, due to the
dynamics of the pandemic itself, the series will show some seasonal fluctuations
that can be identified with successive waves of the pandemic. Additionally, due
to technical conditions, in many cases weekly fluctuations can be noted. Under-
estimated values are most often reported during the weekend and on Mondays.
The largest increases in individual phenomena are recorded on Tuesdays and
Wednesdays. Therefore, it is advisable to use smoothing within a week. You
should compare smoothed values or data on a weekly basis.

Within individual time series, an important element is the study of the direc-
tion and pace of growth. The use of simple relative increment or absolute incre-
ment is unreliable. It is because the weekly fluctuations mentioned above should
be taken into account. Data smoothing is based on the application of the trans-
formation given by the formula

https://ourworldindata.org/coronavirus-source-data


An Application of Information Granules to Detect Anomalies 185

X̃[n] =
1

2k + 1

k∑

i=−k

X[n + k] (1)

Typically, all analyses present data taking into account weekly smoothing
with the parameter k = 3. This approach is absolutely justified, but other levels
of smoothing can also be considered.

In traditional mainstream approaches, increases of a certain phenomenon are
said to be when the values of the smoothed time series are increasing, or when
there is a relation

X[n] − X[n − 7] > 0. (2)

Both approaches are correct, however, they are not free from fluctuations
caused by various factors. It seems reasonable to consider certain states of the
analysed phenomena, to which the membership function to this class should be
properly defined. For the purposes of this study, we distinguish the following 7
classes of states of the phenomenon:

– series X[n] increases strongly
– series X[n] increases
– series X[n] increases slightly
– series X[n] is stable
– series X[n] decreases slightly
– series X[n] decreases
– series X[n] decreases strongly.

Of course, for analytical and predictive reasons, it is not advisable to use the
values of the X[n] series for n > n0 to describe the series at time n0. However, one
should be aware of weekly fluctuations and it is not reasonable to use unsmoothed
values. Let us apply a slightly different smoothing given by the formula

¯̄X[n] =
1

k + 1

k∑

i=0

X[n − k] (3)

Then, for such a modified time series, statistics describing the location and
dispersion should be determined. For this purpose, the classical mean and stan-
dard deviation of the last N days given by the formulas can be used

X̄ =
1
N

N−1∑

k=0

¯̄X[n − k] (4)

S̄ =

√√√√ 1
N

N−1∑

k=0

( ¯̄X[n − k] − X̄)2 (5)
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Instead of arithmetic mean and standard deviation, median and quadrant
deviations can be used, which by their nature are less sensitive to outliers. Nev-
ertheless, the use of series smoothing protects us against the occurrence of strong
fluctuations.

Due to the high intuitiveness and ease of interpretation, the use of the trape-
zoidal membership function was proposed to describe the degree of membership
to particular states. For example, “stable” state membership function is given
by the formula

μ(X[n], stable) =

⎧
⎪⎪⎨

⎪⎪⎩

X[n]−(X̄−0.5S)
0.25S , X[n] ∈ [X̄ − 0.5S; X̄ − 0.25S)

1, X[n] ∈ [X̄ − 0.25S; X̄ + 0.25S]
X̄+0.5S−X[n]

0.25S , X[n] ∈ (X̄ + 0.25S; X̄ + 0.5S)
0, X[n] /∈ [X̄ − 0.5S; X̄ + 0.5S]

(6)

For the remaining states, membership functions are defined analogously. The
transformation of any value of the X[n] series is presented in Fig. 1.

Fig. 1. Membership functions of descriptors describing the time series state

After applying such a transformation for M different time series describing
various phenomena within one country, we obtain an information granule that
can be identified with an element of space χM of a given feature, where

χ = [μ(strong decrease), μ(decrease), μ(slight decrease), . . .].

In such a defined space of states, the process of detecting and classifying anoma-
lies can be carried out [13,14]. In this way, it is possible to search for anomalies
and define trends of individual features within one country. An interesting issue
seems to be the confrontation of the state of the pandemic in different countries.

In this case, the above considerations should be slightly modified and the
transformation into space χM should be made with the use of fuzzy statistical
semantics determined for different countries. More precisely, when determining
the mean and standard deviation, one should not go back in time and use prop-
erly smoothed (possibly shifted) data from different countries. It should be noted
that countries in the same region should be used for comparison. Additionally,
based on the conducted preliminary analyses, it is possible to perform a certain
transformation of the data consisting in the transfer of data from certain coun-
tries. It can be noticed, based on previous waves, that successive peaks of the
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disease are shifting within a given region. In the case of Europe, it is most often
from west to east.

Additionally, it should be noted that the comparison of individual features
should not be made on the raw data. The population of the country should be
taken into account. It is most convenient to operate on data representing the
size of a given phenomenon per a given number of inhabitants.

3 Numerical Experiments

In the experimental section, all calculations are made of data per 100,000 inhab-
itants. This transformation does not disturb the directions or strength of incre-
ments, and on the other hand it allows for the comparison of values between dif-
ferent countries. In the case of limiting the analysed period of time to a selected
time interval, a more in-depth analysis is possible.

To reduce the impact of weekly fluctuations, the smoothing given by formula
(1) should be performed. The smoothing effect with the parameter values k =
1, 2, 3 is shown in Fig. 2.

Fig. 2. Smoothing the data describing the number of new cases

Comparing the influence of the parameter k on the smoothing level, it can
be seen that the fluctuations disappear with the increase of this parameter. In
further considerations, smoothing will be used with the parameter k = 3 cor-
responding to the weekly smoothing. Based on the smoothed data, information
granules were determined for 5 series corresponding to the following features:
new cases, new deaths, hosp patients, new test, and the quotient of new cases
by new test.
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In the process of determining the information granules, it was assumed that
the value of parameter N = 31. This value corresponds to one month. For such
information granules, it is possible to visualise them in the form presented in
Fig. 3.

Fig. 3. Visualization of information granules for Poland

Analyzing the results shown in Fig. 3, it can be seen that there is a significant
correlation between the number of new cases, the number of new deaths, and
the number of hospitalized patients. In most cases, the membership degrees of
each state are close to each other. The level of the quotient of new cases to
new tests has an interesting tendency. The ratio strongly decreases when the
number of new cases and the number of tests performed in successive waves of
the pandemic increases. This may be due to the fact that a significant number
of tests are positive, but the quotient decreases slightly in subsequent days.
However, it should be noted that in the case of Poland, as well as other Eastern
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European countries, a very high level of positive tests can be observed. This is
motivated by the reluctance to test and only those who are sick and in mandatory
quarantine are tested. The result is a high number of positive tests. Therefore, it
can be assumed that many infected people are not included in the official counts.

An interesting issue seems to be the comparison of such defined information
granules for different countries. It is worth noting that for each of the compared
countries, the mean and standard deviation are determined independently, which
are the basis for determining the degrees of membership in particular states.
The summary of information granules describing the number of new cases for 3
selected countries is presented in Fig. 4.

Fig. 4. Comparison of information granules for Belgium (BE), Poland (PL) and Italy
(IT)

The results presented in Fig. 4 shows differences between the duration and
specificity of subsequent pandemic waves in individual countries. The greatest
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differences can be seen in the occurrence of the 4th and 5th wave of the pandemic.
The reasons for this may be found in the percentage of fully vaccinated persons
in the compared countries. In the case of Poland, where this ratio is low, higher
fluctuations can be observed.

Besides constructing information granules for each country, a specific case
was independently considered, where information granules were created based on
the mean and median determined using data from 36 countries in the European
region. In this case, as before, data per 100,000 inhabitants were analyzed. It
is a very important assumption, otherwise the time series for different countries
should not be compared.

4 Conclusions and Future Work

Based on the obtained results, it is clearly seen that the granular fuzzy tech-
niques can find more applications in modeling the epidemic course, detecting
patterns and dependencies. The presented numerical experiments show that this
approach can be useful for tracking and predicting trends at the country level
and for cross-country comparisons. The obtained results even allow very detailed
conclusions about the impact of regional social behavior on epidemic spread rates
and hospitalization rates. Such detailed insights into epidemic phenomena are
extremely valuable for decision making because they can help to make better
choices. Granular techniques can also be applied to analyze the direction of pan-
demic spread, an issue intensively studied today using a variety of analytical
techniques [23].

Among the directions of the proposed approach development should be men-
tioned the expansion of the set of analyzed features. It seems to be important
to consider additional data, such as information about the percentage of people
with a positive result going to hospitalization. Additionally, it is advisable to
determine the time that passes from a positive test result to full recovery or to
hospitalization. Furthermore, it seems worth considering the impact of vaccina-
tion on the period of possible hospitalization.
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Abstract. The defuzzification of a type-2 fuzzy set is a two-stage pro-
cess consisting of firstly type-reduction, and a secondly defuzzification
of the resultant type-1 set. All accurate type reduction methods used
to build fuzzy classifiers are based on the recursive Karnik-Mendel algo-
rithm, which is troublesome to obtain a feedforward type-2 fuzzy network
structure. Moreover, the KM algorithm and its modifications complicate
the learning process due to the non-differentiability of the maximum and
minimum functions. Therefore, this paper proposes to use the smooth
maximum function to develop a new structure of the fuzzy type-2 clas-
sifier.

Keywords: Smooth type reduction · Interval type-2 fuzzy logic
systems

1 Introduction

In recent years, fuzzy logic methodology has shown to be very effective in solving
complex nonlinear systems containing uncertainties that are otherwise challeng-
ing. However, it is also noted that fuzzy rules working in an uncertain or non-
stationary environment require a higher order of fuzziness. This is due to the
fact that type-1 fuzzy sets, whose membership grades are real numbers, could
have limitations in minimizing the effect of uncertainty, whereas the membership
grades of a type-2 fuzzy logic system are themselves fuzzy logic systems in [0, 1].
Describing a type-2 fuzzy set by a rectangular membership function sufficiently
describes the uncertainty in modeling of most processes. However, for the out-
put, there will need a type reduction to convert the output of the fuzzy inference
engine into a type 1 fuzzy sets before defuzzification can be performed to obtain a
crisp output. The center-of-sets iterative Karnik-Mendel (KM) approach to type
reduction is of great interest. Over the years, modifications have been made to
the basic KM algorithm, including Wu and Tan [17] who presented their concept
using a genetic algorithm. In this paper, the smooth method is used to design
efficient type reduction algorithms (Fig. 1).
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Fig. 1. Type-2 FLS (from Mendel [8])

2 An Overview

The Type-1 Fuzzy Set. Let X be a universe of discourse. A fuzzy set A on X is
characterised by a membership function μA : X → [0, 1] and can be represented
as follows:

A = {(x, μA(x));μA(x) ∈ [0, 1]∀x ∈ X} (1)

The Type-2 Fuzzy Set. Let P̃ (U), where U = [0, 1], be set of fuzzy sets in U .
A type-2 fuzzy set Ã in X is a fuzzy set whose membership grades are themselves
fuzzy [23].

Ã = {(x, μÃ(x));μÃ(x) ∈ P̃ (U)∀x ∈ X} (2)

where μÃ(x) is a fuzzy set in U for all x, i.e. μÃ(x) : X → P̃ (U).
It implies that ∀x ∈ X ∃Jx ⊆ U such that μÃ(x) : Jx → U [4].

μA(x)) = {(u, μÃ(x)(u))|μÃ(x)(u) ∈ U∀u ∈ Jx ⊆ U} (3)

where X is called the primary domain, Jx the primary membership of x, U is
known as the secondary domain and μÃ(x) is the secondary membership of x.

In this paper, an interval singleton type-2 fuzzy logic system type is used.
This means that the fuzzifier converts the fuzzy logic system input signals into
fuzzy singletons and then the inference engine adjusts the fuzzy singletons with
the fuzzy rules in the rule base.

Considering a type-2 fuzzy system with K rules will be used with the follow-
ing scheme [7]:

˜Rk : IF ˜A
′
is ˜Ak THEN ˜B

′
is ˜Bk. (4)

where ˜A
′
, ˜Ak, ˜B

′
and ˜Bk are type-2 fuzzy sets. In the interval case, they

are subintervals of [0, 1] expressed by of upper and lower bounds, e.g. ˜Ak =
[

μ
Ak

(x) , μAk
(x)

]

⊆ [0, 1] for each x ∈ X.
The output needs a type reduction to convert into a type 1 fuzzy sets before

defuzzification can be performed to obtain a crisp output. This is the main
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1. Let the consequent values be aranged in the ascending order
y1 < y2 < . . . < yK

2. calculate type-1 system output y0 as an average of yk weighted by mean

membership grades, i.e.,
(
µ

k
+ µk

)
/2,

3. set the initial values ymin = ymax = y0,
4. for each k = 1, 2, . . . ,K, if yk > ymax, then −→µ k = µk, otherwise −→µ k = µ

k
,

5. find the closest ynext = min
k=1,...,K

yk : yk > ymax,

6. calculate ymax as an average of yk weighted by new grades −→µ k,
7. if ymax ≤ ynext, continue, else go to step 4,
8. for each k = 1, 2, . . . ,K, if yk < ymin, then µ←−k = µk, otherwise µ←−k = µ

k
,

9. find the closest ynext = max
k=1,...,K

yk : yk < ymin,

10. calculate ymin as an average of yk weighted by new grades µ←−k,

11. if ymin ≥ ynext, finish, else go to step 8.

Algorithm 1.1: The KM type reduction

structural difference between type-1 and type-2 logic fuzzy sets. One of the most
common type reduction methods is the centroid type-reducer. The centroid of a
type-1 fuzzy set when the domain X is discretised into k points is:

CA =
∑k

i=1 xiμA(xi)
∑k

i=1 μA(xi)
(5)

Referring to the literature [6,23] the centroid of a type-2 fuzzy set Ã with
domain X discretised into k points x1, ...xk with x1 < ... < xk as

CÃ =
∫

u1∈Jx1

...

∫

uk∈Jxk

[μÃ(x1)(u1) · ... · μÃ(xk)(uk)] /

∑k
i=1 xiui

∑k
i=1 ui

(6)

In case Ã is interval type-2 logic fuzzy set, then the centroid is the crisp set:

CÃ =
∫

u1∈Jx1

...

∫

uk∈Jxk

/

∑k
i=1 xiui

∑k
i=1 ui

(7)

It has been shown that this iterative procedure can converge in at most K
iterations [8]. Once yl and yr are available, they can be used to compute the
approximate output. Since the reduced type set is an interval fuzzy set of type
1, the fuzzy output value is [17]:

y(x) =
ymax + ymin

2
(8)

The KM type reduction in its simplest form can be summarized as follows in
Algorithm 1.1.
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Fig. 2. Adaptive interval type-2 fuzzy logic system using KM type-reduction

In Nowicki’s work [10] on defuzzification for binary class membership of
objects, it can be seen that the result does not require any ordering of yj,k

as is done in the KM method (Fig. 2).
According to a theorem stated in the literature [15] with a proof, it turns out

that for given rough approximations, μ
j,k

and μj,k of the binary set yj,k = 0, 1
representing by a single rule class membership, where k is the index for rules
k = 1, ....,K and j is the index for classes j = 1, ....J , the lower and upper
approximations of the object’s class membership Cj are given by
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ymin (j) =

∑K
k=1 μ

j,k
yj,k

∑K
k=1 μ

j,k
yj,k +

∑K
k=1 μj,k¬yj,k

, (9)

ymax (j) =
∑K

k=1 μj,kyj,k
∑K

k=1 μ
j,k

¬yj,k +
∑K

k=1 μj,kyj,k

. (10)

3 Smooth Type Reduction

To characterize the smooth type reduction, assume that the described system
has an output value Vp, where p = 1...P . Then its smooth maximum of v1, ..., vp

would be a differentiable approximation of maximum of a function with continu-
ous derivatives. In addition, the universal smooth maximum/minimum function
is defined as

yα (υ1, . . . , υP ) =

∑P
p=1 υpe

αυp

∑P
p=1 eαυp

(11)

which yα has the following properties:

1. yα → max as α → ∞,
2. yα → min as α → −∞,

3. y0 =
∑P

p=1 υp

P

Notably, this means that the values of y−∞ and y∞ are the endpoints of the
reduced set, respectively ymin and ymax. In the search for end points, e.g., ymax,
only those tuples should be considered that have lower memberships for conse-
quents being no larger than y0, which is the output of the type 0 fuzzy system
in an interval fuzzy system of type 2. For values of υk arranged in ascending
order, we run the algorithm. Perform a right-shift operation to compute the
output values υp that maximize the result. An example shift is demonstrated in
the Table 1 and the proposed algorithm using the smooth extremum function is
presented in Algorithm 1.2 (Fig. 3).

Another approach to smooth maximum is to use LogSumExp, which is as
follows: LSE (υ1, . . . , υP ) = 1

α log
∑

P exp (αυp), which can be normalized for
all non-negative VP , yielding a function with domain [0,∞)n and range [0,∞):
g (υ1, . . . , υP ) = log(

∑

P exp (υp)−(P −1)). There is also another approach that

uses the p-norm, ‖(υ1, . . . , υR)‖p = (
∑

r |υr|p)
1
p . The LogSumExp approach as

well as the p-Norm approach generate similar results.

4 Experimental Results

The source Wisconsin Breast Cancer data are reports of clinical cases [Mangasar-
ian and Wolberg 1990] [18]. The original data set contained 699 cases divided
into two categories: benign breast cancer (65.5% of instances) and malignant
cancer (34.5%). Each case was described by nine attributes: clump thickness,
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Table 1. Right-shifted mask to calculate ymax

r\k 1 2 R R+1 K−1 K

R 0 0 1 1 1 1

R+1 0 0 0 1 1 1

K−1 0 0 0 0 1 1

K 0 0 0 0 0 1

Fig. 3. Adaptive interval type-2 fuzzy logic system using smooth type-reduction

uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithe-
lial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitosis, note
that 16 individuals are missing the attribute.

The specificity of interval-valued fuzzy logic systems allows us for an analysis
on a lower level of classification if only we make use of the interval outputs of the
system: ymin and ymax. Using this information, instead of strict classification,
we get three groups of objects classified with the following labels:
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1 Let the consequent values be aranged in the ascending order y1 < y2 < . . . < yK

and the values in vector forms, i.e.,

y = [y1, . . . , yK ]

µ = [µ1, . . . , µK ]

µ =
[
µ
1
, . . . , µ

K

]

To compute the right and the left endpoints of the type-reduced set, perform
the following steps:

1. calculate type-1 system output y0 as an average of elements of yweighted by
mean membership grades, i.e.,

(
µ + µ

)
/2,

2. find index R of the closest yR = min
k=1,...,K

yk : yk > y0,

3. for r = R, . . . ,K − 1:
(a) set a mask Mr = 0 . . . 01 . . . 1

1 ... R ... K
,

(b) apply the mask to upper and lower memberships−→µ = (1 − Mr) � µ + Mr � µ (where � is the Hadamard product),
(c) calculate ymax,r as an average of elements y weighted by −→µ ,

4. return ymax as an aggregation of all ymax,r with the use of smooth maximum,
r = R, . . . ,K − 1,

5. find index L of the closest yL = min
k=1,...,K

yk : yk < y0,

6. for l = 2, . . . , L:
(a) set a mask Ml = 1 . . . 10 . . . 0

1 ... L ... K
,

(b) apply the mask to upper and lower memberships←−µ = (1 − Ml) � µ + Ml � µ,
(c) calculate ymin,l as an average of elements y weighted by ←−µ ,

7. return ymax as an aggregation of all ymax,r with the use of smooth maximum,
r = R, . . . ,K − 1.

Algorithm 1.2: Smooth type reduction

– certain classification if ymin > 0.5,
– uncertain classification if ymax ≥ 0.5 ≥ ymin,
– certain rejection if ymax < 0.5.

As a result, we get three rate groups: classified, misclassified, and unclassified
(“NoClass.”) when classification cannot be performed certainly. This can help
in practical classification systems such as the medical diagnosis when uncertain
classification cases can be again directed to a thorough examination. The clas-
sification results in the imputation of input values by means of rough-fuzzy sets
are presented in Table 2
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Table 2. Wisconsin Breast Cancer classification with optional uniform noise applied
to single input X1, . . . , X9 as well as to all inputs Xall

Original data Singleton Interrval KM-T2FLC Interval T2FLC based
Smooth Type-Reduction

Class./Misclass. Class./NoClass./Misclass. Class./NoClass./Misclass.

0.988/0.012 0.975/0.10/0.015 0.986/0.011/0.003

σ1

1.0 0.978/0.022 0.964/0.019/0.017 0.974/0.020/0.006

5.0 0.931/0.069 0.673/0.315/0.012 0.675/0.317/0.008

σ2

1.0 0.977/0.023 0.963/0.016/0.020 0.973/0.018/0.009

5.0 0.960/0.040 0.647/0.336/0.017 0.660/0.333/0.007

σ3

1.0 0.970/0.030 0.912/0.074/0.014 0.933/0.062/0.005

5.0 0.911/0.089 0.589/0.406/0.005 0.694/0.302/0.004

σ4

1.0 0.977/0.023 0.975/0.009/0.016 0.985/0.009/0.006

5.0 0.967/0.033 0.838/0.152/0.010 0.844/0.150/0.006

σ5

1.0 0.977/0.023 0.970/0.011/0.019 0.981/0.010/0.009

5.0 0.962/0.038 0.795/0.195/0.010 0.799/0.191/0.010

σ6

1.0 0.978/0.022 0.948/0.034/0.019 0.961/0.032/0.008

5.0 0.938/0.062 0.824/0.166/0.010 0.825/0.167/0.008

σ7

1.0 0.980/0.020 0.961/0.024/0.015 0.970/0.025/0.005

5.0 0.965/0.035 0.634/0.360/0.006 0.642/0.352/0.006

σ8

1.0 0.978/0.022 0.968/0.012/0.020 0.978/0.011/0.009

5.0 0.970/0.030 0.854/0.137/0.009 0.853/0.139/0.008

σ9

1.0 0.980/0.020 0.969/0.014/0.018 0.978/0.015/0.008

5.0 0.944/0.056 0.717/0.272/0.011 0.722/0.271/0.007

σall

1.0 0.973/0.027 0.518/0.480/0.002 0.538/0.462/0.000

5.0 0.749/0.251 0.001/0.999/0.000 0.021/0.979/0.000

5 Conclusion

In this paper, a smooth type-reduction method that is competitive with the KM
type-reduction system is presented. It shows good results as it achieves low train-
ing error values. It is worth noting that both type-2 fuzzy systems significantly
exceed the learning ability of the type-1 fuzzy system. The proposed system
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is worth considering for solving problems with increased model uncertainty or
when there is uncertain input data.

The initial learning of type 2 systems treated as type 1 fuzzy systems, followed
by the application of generating type-2 fuzzy rules methods for uncertain data
using the fuzzy-rough approximation [13,16] or possibilistic fuzzification [15],
shows that fuzzy systems are important in the process of extracting explanatory
fuzzy rules.
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Abstract. Metaheuristic methods are designed to solve continuous and
discrete problems. Such methods include population based algorithms
(PBAs). They are distinguished by the flexibility of defining the fit-
ness function, therefore they are a good alternative to gradient methods.
However, creating new variants of PBAs that work similarly and differ in
detail might be problematic. Therefore, it is interesting to combine exist-
ing PBAs in order to increase their effectiveness. One of the hybrid meth-
ods is the Multi-population Nature-Inspired Algorithm (MNIA), which
uses search operators from different PBAs. The formula of MNIA’s oper-
ation is based on the appropriate cooperation of its subpopulations. That
is why in this paper we focus on expanding MNIAs with various schemes
of such cooperation. In particular, we analyze various combinations of
migration models, intervals, and topologies. The proposed solutions were
tested and compared using generally known benchmark functions. The
obtained results showed an advantage of certain patterns of cooperation
of the - subpopulations, which confirmed the validity of the adopted
assumptions.

Keywords: Metaheuristic method · Population-based algorithm ·
Multi-population algorithm · Cooperation of subpopulations

1 Introduction

Metaheuristic methods are designed to solve continuous and discrete problems.
Such methods include population based algorithms (PBAs - see e.g. [1,10,11,
17,18,29,35,37,39,61,68,71]). They are distinguished by the lack of necessity
to determine derivative functions, flexibility of defining the fitness function and
the ease of its modification. PBAs are therefore a good alternative to gradient
methods. Alternatively, PBA can be used to initially investigate a given problem
and find an initial optimum. Such optima can be, for example, a starting point
for gradient methods. Various combinations of these algorithms can be found in
the literature (see e.g. [1,26,41,58]). PBAs can be combined with other methods
in a number of other ways, which is the reason why many hybrid solutions are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. The idea of various ways of cooperation in MNIA.

created [52]. In such approaches, various methods of computational intelligence
are often used [4,57,64,65,67,69].

The problem with PBAs is creating their new variations (see e.g. [8,13,27,
33,40]). They often work in a similar way and differ only in details [15,54].
Therefore, combining capabilities offered by existing PBAs in order to increase
their effectiveness is an interesting research topic. This approach was used in the
MNIA (Multi-population Nature-Inspired Algorithm [53]), which uses operators
from different PBAs to process a given population. The formula of its operation
is based on the appropriate cooperation of its subpopulations (islands). In this
paper, we focus on expanding a MNIA by using various schemes of such coop-
eration. In particular, we investigate various combinations of migration models,
intervals and topologies (see e.g. [2,9,28,30]). Migration topologies define how
subpopulations are interconnected, and migration models define how individuals
are exchanged within subpopulations. In contrast, migration intervals determine
the frequency of interactions between subpopulations. They are therefore the
number of steps between two consecutive cooperation of subpopulations.

1.1 Motivation

In our previous work, we proposed an algorithm that used search operators
from different PBAs. In that algorithm, cooperation between subpopulations
was of a fundamental nature. Since the issue of interactions between subpopu-
lations seems to determine the effectiveness of the multi-population algorithm,
we decided to focus on it in this paper.
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1.2 Contribution of the Paper

For the purpose of this paper, we collected information available in the literature
on the migration topology and the strategy of exchanging individuals between
subpopulations collected. Next, we combined that information with the capabili-
ties of a multi-population algorithm using search operators derived from different
PBAs (MNIA). In addition, we proposed combinations of topology and strat-
egy, and then the proposed combinations were tested with different migration
intervals.

1.3 Structure of the Paper

Section 2 presents the characteristics of the MNIA method which was used to test
the proposed combinations of the cooperation between subpopulations. Section 3
discusses the considered combinations in more detail. Section 4 presents the
obtained results and in Sect. 5 the conclusions are drawn and future research
ideas are presented.

2 Multi-population Nature-Inspired Algorithm (MNIA)

The MNIA has many subpopulations. Each subpopulation is processed by a
different PBA equipped with individual search operators. This is an approach
that follows the Island Model with Migrations [60]. Therefore, the operation of
MNIA can be interpreted as follows [53]:

– Groups of Npop experts (subpopulations or islands) in various research cen-
tres are looking for a solution to a certain problem.

– Each group of experts looks for a solution using methods typical of a research
center (PBA1,PBA2, . . .PBANpop, see Fig. 1).

– Research centres interact with each other (according to the migration topol-
ogy) - groups of experts regularly exchange obtained solutions. Such exchange
is represented by an interaction between subpopulations (according to the
migration model). The intensity of such exchange is determined by a certain
interval.

– If any group of experts finds a solution that meets the requirements defined in
the adopted fitness function, the search for the solution is completed - MNIA
ends its operation. The algorithm’s stop condition may also take into account
the number of iterations, the number of calls to the fitness function, runtime,
etc.

More details about MNIA can be found in [53]. In the further part of the
paper, this algorithm will be the base method for testing solutions for coop-
eration between subpopulations. In particular, various combinations of models,
intervals, and migration topology are tested. They are described in the detail in
the next section.
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Table 1. Migration models for MNIA adopted in the simulations.

Mark Description

BS During migration, the best individual of the source subpopulation
replaces the worst of the target subpopulation

RW During migration, the individual selected by the roulette wheel from the
source subpopulation replaces the worst of the target subpopulation

TS During migration, an individual selected by a tournament from the source
subpopulation replaces the worst of the target subpopulation

RN During migration, an individual randomly selected from the source
subpopulation replaces the worst of the target subpopulation

Table 2. Migration intervals for MNIA adopted in the simulations.

Mark Description

M1 Migrations are performed every 1 step of the algorithm

M4 Migrations are performed every 4 steps of the algorithm

M10 Migrations are performed every 10 steps of the algorithm

M20 Migrations are performed every 20 steps of the algorithm

3 Methods of Subpopulation Cooperation

The idea of the subpopulation cooperation is shown in Fig. 1. The considered
migration topologies for MNIA are shown in Fig. 2. Most of them have been pre-
sented in the literature [14,16,32,36,42]. We do not comment on the legitimacy
of these topologies, but it should be noted that some of them are similar to each
other and that the presented set can be easily extended. In Fig. 2 the following
markings are used:

– The arrowhead indicates the subpopulation that has been modified.
– A dark circle (e.g. for ‘starw’) means an additional population replacement

after the adopted interval for the population that is the worst of all others in
terms of the mean fitness function value.

– A light-colored circle (e.g. for ‘starb’) means an additional replacement of the
population with the best subpopulation.

– Light lines indicate connections from subpopulations selected at random (e.g.
for ‘swrl02’).

Migration topologies determine how subpopulations are connected, but do
not specify the rules for how their individuals are traded between them. These
rules result from the adopted migration model. The considered migration models
are shown in Table 1. The migration interval complements the topology and the
migration model. As already said, it determines the intensity of subpopulations
interaction. The considered intervals are shown in Table 2.
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Fig. 2. Migration topologies for MNIA adopted in the simulations.

4 Simulations

The considered solutions were tested using the MNIA algorithm and the known
CEC05 benchmark functions [56], hereinafter referred to as F01-F25. The param-
eters of the simulations performed are presented in Table 3. The migration vari-
ants shown in Fig. 2, the migration models shown in Table 1 and migration inter-
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Table 3. Parameters related to the performed simulations.

No. Parameter Value

1 Number of dimensions of benchmark functions D = 50

2 Number of iterations Niter = 1000

3 Number of individuals when Npop = 1 Nind = 256

4 Number of individuals when Npop = 8 Nind = 32

5 Number of individuals when Npop = 16 Nind = 16

6 Number of simulations repetitions 100

Table 4. PBAs used in the construction of the MNIA.

No. Algorithm Acronym Literature

1 Whale Optimization Algorithm WO [34]

2 Fireworks Algorithm FA [59]

3 Cuckoo Search CS [62]

Table 5. Parameters of the PBAs used in the MNIA construction.

No. Parameter Description Value Algorithm

1 b Logarithmic spiral shape constant 1.0 WO

2 Â Maximum amplitude of explosion 0.2 FA

3 n Number of fireworks 0.2 ·Npop FA

4 m Parameter for controlling number of sparks Npop− n FA

5 pa Fraction of worst abandoned nests 0.1 CS

vals shown in Table 2 were tested. Moreover, each simulation was performed in
two variants: (a) 8 subpopulations of 32 individuals each (‘8x32’, see Table 6)
and (b) 16 subpopulations of 16 individuals each (‘16x16’).

The PBAs shown in Table 4 with the parameters shown in Table 5 were used
in the construction of the MNIA. The same simulation variants were tested for:
(a) MNIA with different PBAs and (b) MNIA with the same PBAs. Variant
(a) is typical of MNIA, while value (b) corresponds to the scheme used in other
multi-population PBAs. This approach made it possible to compare the results
and assess the impact of differentiation of the MNIA component methods on the
final result of the optimization.

The obtained results are presented in Table 6. The comparison of the consid-
ered simulation variants is shown in Table 7. A comparison with the results of
PBAs designed by other authors is presented in Table 8. In order to make the
comparison, all tested algorithms were implemented in a test environment of our
own design, which unified the test procedure.
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Table 6. Summary of the percentage improvement of the results for MNIA in relation
to the results obtained without migration. The results are averaged for the considered
problems. Best results are shown in bold.

Npop Topo- M1 M4 M10 M20 M1 M4 M10 M20 M1 M4 M10 M20 M1 M4 M10 M20 Avg
x Nind logy BS BS BS BS RW RW RW RW TS TS TS TS RN RN RN RN
8x32 star1d −5 13 35 35 4 34 45 14 57 11 21 33 68 18 26 58 29
8x32 star2d 9 121 88 97 20 128 224 294 −6 48 84 82 −28 113 135 108 95
8x32 starb −25 −4 14 −1 −15 −12 20 2 −20 −3 18 −4 −13 −19 6 20 −2
8x32 starw 141 156 193 106 228 179 195 143 174 228 90 67 125 153 116 66 147
8x32 rstarb 28 175 159 79 62 404 760 264 17 61 163 153 42 107 110 88 167
8x32 rstarw −81 −2 19 24 −78 −35 20 36 −79 −29 0 2 −77 −5 −22 −31 −21
8x32 ring1d −2 145 101 149 35 124 159 157 −10 60 137 70 −35 97 71 50 82
8x32 ring2d −46 85 157 142 −30 182 188 161 −33 106 111 87 −53 66 81 64 79
8x32 ringp1 −31 80 115 84 −32 136 240 118 −28 129 73 76 −51 27 120 23 67
8x32 ringp2 −36 114 88 117 −1 146 272 394 −24 90 103 89 −46 49 39 76 92
8x32 ringp3 −34 120 107 65 −3 88 271 169 −42 60 79 72 −43 52 49 24 65
8x32 ring12 −42 93 130 113 −16 128 345 157 −44 82 61 112 −53 71 115 47 81
8x32 ring13 −59 23 100 54 −54 150 300 204 −50 74 25 136 −64 58 98 90 68
8x32 swrl02 −61 74 111 169 −29 246 322 223 −40 127 167 221 −56 70 82 122 109
8x32 rwrl03 −63 66 195 168 −60 153 186 317 −60 98 245 196 −54 144 217 211 122
8x32 strnc −3 184 95 129 13 101 153 122 −5 124 306 195 6 106 69 64 104
8x32 strnb −25 64 126 103 −31 81 61 80 −27 39 63 44 −34 51 69 43 44
8x32 strnw 8 113 248 95 3 126 226 258 13 149 355 161 10 108 100 73 128
8x32 rsrb −48 93 153 62 −7 271 519 235 −2 268 158 73 −20 42 98 148 128
8x32 rsrw −64 38 64 28 −54 83 75 110 −53 58 85 64 −65 62 6 102 34
8x32 mesh4 −53 38 165 83 −49 138 290 114 −38 147 125 75 −38 25 173 132 83
8x32 tor04 −55 126 147 188 −32 96 264 128 −49 92 148 351 −31 231 102 144 116
8x32 torus −56 142 228 254 −40 114 266 209 −52 133 431 163 −53 112 90 268 138
8x32 fullc −81 22 156 90 −80 110 226 227 −82 71 244 265 −80 63 144 257 97
8x32 path −39 69 77 110 −7 102 100 79 −5 93 164 169 1 148 107 55 76
8x32 pathb −32 9 103 56 −30 77 80 109 −23 46 110 82 −27 93 94 78 52
8x32 pathw 18 95 159 151 44 137 163 121 121 164 178 117 34 196 177 48 120
8x32 tree −19 65 51 48 −5 81 42 61 −8 35 16 75 3 43 33 −3 32
8x32 treeb −11 29 80 51 −11 53 58 93 −24 37 69 54 −10 27 24 59 36
8x32 treew −43 6 49 85 −42 13 39 14 −49 22 47 61 −37 25 43 0 15
8x32 rtree 107 84 152 106 112 234 88 55 196 195 183 149 161 156 177 89 140
8x32 lad −35 181 92 85 −35 69 178 121 −46 90 162 226 −40 62 93 122 83
8x32 ladlp 8 110 120 100 1 272 300 248 −13 118 319 325 −11 147 347 150 159
8x32 rand2 −28 81 435 300 −30 206 130 175 −6 107 438 189 −4 158 174 178 156
8x32 rand3 −42 143 245 227 −38 162 326 250 −38 138 534 158 −23 60 195 193 156
8x32 rand4 −50 111 207 274 −57 167 201 216 −54 119 131 235 −51 43 143 280 120
16x16 star1d −12 −29 −42 −45 −14 −23 −36 −40 −22 −32 −33 −13 −47 −20 −33 −38 −30
16x16 star2d −30 143 213 78 −26 86 158 81 −33 85 81 135 −53 48 64 69 69
16x16 starb −30 −46 −47 −48 −45 −42 −41 −36 −31 −58 −42 −36 −42 −42 −55 −30 −42
16x16 starw 123 114 108 76 123 183 92 35 166 77 154 73 144 121 22 46 104
16x16 rstarb −30 86 159 181 79 168 99 183 −17 119 121 135 1 95 129 197 107
16x16 rstarw −95 −72 −46 −42 −94 −66 −41 −46 −95 −62 −60 −60 −95 −61 −60 −49 −65
16x16 ring1d −41 57 83 45 −44 23 57 30 −47 32 61 26 −60 11 37 7 17
16x16 ring2d −66 29 115 90 −72 33 46 84 −66 54 87 67 −67 33 83 60 32
16x16 ringp1 −63 57 123 257 −64 29 42 63 −67 65 97 64 −70 5 85 46 42
16x16 ringp2 −64 44 80 102 −53 47 80 121 −64 9 118 98 −58 20 113 46 40
16x16 ringp3 −58 55 170 58 −61 56 66 41 −60 83 128 86 −66 27 73 37 40
16x16 ring12 −78 90 135 162 −70 47 134 100 −74 25 135 89 −73 21 40 115 50
16x16 ring13 −80 50 83 178 −76 6 46 103 −79 14 114 125 −76 6 88 167 42
16x16 swrl02 −71 56 183 183 −71 31 180 194 −71 70 106 147 −62 42 63 67 65
16x16 rwrl03 −78 66 207 158 −69 −3 101 72 −78 39 131 110 −72 15 71 65 46
16x16 strnc −48 60 63 56 −34 27 30 39 −51 61 61 69 −54 20 32 16 22
16x16 strnb −51 21 31 29 −53 5 36 −11 -61 9 −1 29 −63 16 −11 14 −4
16x16 strnw −29 139 79 99 −42 122 119 100 −44 101 117 64 −35 63 108 53 63
16x16 rsrb −62 103 189 156 −49 68 191 250 −60 70 165 190 −37 49 145 144 95
16x16 rsrw −83 −30 −10 37 −85 −30 32 14 −85 −26 10 37 −87 −54 −11 −7 −24
16x16 mesh4 −74 26 9 16 −70 −6 46 24 −77 −7 64 30 −76 −17 18 22 −5
16x16 tor04 −68 51 118 96 −65 23 131 74 −71 63 49 156 −72 37 46 92 41
16x16 torus −78 55 189 74 −78 18 159 159 −76 3 96 129 −74 19 80 97 48
16x16 fullc −90 −43 132 185 −90 −46 95 166 −95 −58 68 149 −89 −42 53 131 27
16x16 path −61 0 10 45 −60 7 13 0 −63 35 41 −1 −62 4 −1 −6 −6
16x16 pathb −70 11 17 56 −62 −3 11 2 −69 −18 13 21 −73 −21 1 −15 −12
16x16 pathw 5 69 58 47 −8 70 33 11 −7 71 116 57 −26 30 66 20 38
16x16 tree −54 −25 −14 1 −36 −40 −12 −8 −52 −25 −10 −10 −44 −34 −24 −7 −25
16x16 treeb −53 −12 −4 −23 −37 −26 −6 −17 −45 −42 5 1 −44 −27 0 8 −20
16x16 treew −67 −36 −13 −29 −62 −24 −31 −35 −69 −33 −14 −22 −68 −43 −28 −29 −38
16x16 rtree 49 121 94 96 104 68 51 16 111 155 88 62 85 62 77 45 80
16x16 lad −80 54 58 127 −73 14 70 75 −76 −7 75 78 −77 −19 25 47 18
16x16 ladlp −66 35 91 131 −63 32 54 88 −70 67 46 91 −65 59 55 40 33
16x16 rand2 −29 85 49 66 −46 47 70 112 −46 −14 64 79 −55 48 55 67 34
16x16 rand3 −59 71 131 82 −59 26 177 216 −62 32 99 141 −55 26 99 105 61
16x16 rand4 −73 62 211 55 −69 44 146 142 −64 15 127 186 −68 15 62 146 58
x Avg −37 64 108 95 −27 79 135 112 −31 61 113 100 −35 48 73 73 x
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Table 7. Comparison of the considered simulation variants in the context of the per-
centage improvement of the MNIA results in relation to the results obtained without
migration. The results were averaged for the considered problems and specified vari-
ants. Best results are shown in bold.

Migration interval Migration model Npop x Nind

M1 M4 M10 M20 BS RW TS RN 8 x 32 16 x 16

−32 63 107 95 57 75 61 40 89 28

Table 8. Average ranking position of the considered PBAs (including MNIA) for the
best model of RW migration (see Table 7). The best results including MNIA are marked
in bold, the best results without MNIA are underlined (to show the problem of selecting
a single population-based algorithm).

F CS WO FW MNIA

M1 M4 M10 M20 M1 M4 M10 M20 M1 M4 M10 M20 M1 M4 M10 M20

F01 11.7 10.8 9.9 9.2 5.1 2.5 2.1 2.4 15.4 14.5 13.8 14.1 7.9 5.6 5.3 5.5

F02 5.8 8.4 10.2 11.2 8.8 4.1 2.4 2.1 15.5 14.7 13.7 14.2 7.9 6.8 5.3 5.0

F03 4.7 5.8 7.0 7.9 11.5 10.6 9.8 9.8 14.0 13.7 15.6 14.7 4.6 2.7 1.8 1.7

F04 15.7 14.6 14.0 13.7 5.6 6.2 6.4 7.1 11.0 9.4 9.4 9.6 4.1 3.3 3.0 3.0

F05 13.0 13.4 14.1 14.4 5.4 2.7 2.1 2.1 14.5 10.3 9.9 10.4 7.7 5.8 5.1 5.1

F06 15.5 14.6 14.0 13.9 4.1 2.6 2.2 1.8 11.4 9.9 9.7 9.9 8.3 6.2 6.2 5.7

F07 10.8 9.9 10.4 11.0 5.5 2.2 2.2 2.0 15.1 14.3 13.9 14.6 7.5 6.1 5.0 5.4

F08 14.5 14.5 14.5 14.5 3.9 2.5 2.5 2.0 11.3 9.6 9.3 9.7 8.4 6.5 6.2 6.1

F09 12.4 11.1 10.4 9.7 5.9 2.6 1.8 2.5 14.8 14.0 13.4 13.8 7.9 5.5 4.9 5.2

F10 2.6 3.6 4.9 6.6 10.2 8.6 7.7 7.9 15.5 14.6 13.9 13.9 9.8 6.1 5.1 5.1

F11 9.3 10.2 11.2 11.5 5.8 3.0 2.0 1.9 15.5 14.6 13.9 13.9 7.7 6.1 4.9 4.7

F12 5.1 6.9 8.3 9.2 9.7 7.1 5.9 5.8 14.1 13.6 14.0 13.9 6.0 4.7 3.5 3.3

F13 14.5 14.1 14.0 14.1 4.7 2.6 2.2 1.9 12.6 10.1 9.8 10.1 8.0 6.0 5.8 5.5

F14 11.7 10.6 10.4 10.2 5.7 2.5 2.0 2.3 14.9 14.1 13.6 14.1 7.8 5.8 4.9 5.3

F15 12.3 12.5 12.9 13.0 5.6 3.9 3.3 3.5 13.8 11.7 11.4 11.5 6.6 5.1 4.4 4.3

F16 10.6 11.2 11.7 12.1 6.8 4.4 3.7 3.5 13.4 11.5 11.5 11.6 7.2 5.5 4.8 4.6

F17 13.4 12.6 12.6 12.8 4.8 2.5 2.2 1.9 13.1 11.7 11.4 11.8 7.9 6.1 5.6 5.6

F18 12.4 11.9 12.0 12.2 4.9 2.4 2.3 2.1 13.6 12.4 12.0 12.6 7.9 6.2 5.5 5.7

F19 13.2 12.7 12.5 12.3 5.1 2.8 2.4 2.5 13.2 11.8 11.4 11.7 7.9 5.8 5.3 5.4

F20 8.1 8.1 8.5 8.9 7.8 5.3 4.6 4.9 14.8 13.8 13.2 13.4 8.5 5.7 5.0 5.0

F21 4.6 6.3 7.7 8.8 10.0 7.5 6.3 6.3 14.7 14.0 14.3 14.1 6.9 5.0 3.9 3.7

F22 11.7 11.8 12.1 12.2 6.4 5.0 4.5 4.5 13.1 11.6 11.7 11.7 6.5 4.8 4.3 4.1

F23 11.4 11.2 11.4 11.5 6.4 4.2 3.7 3.9 13.9 12.3 12.1 12.4 6.7 5.1 4.3 4.4

F24 13.5 13.4 13.6 13.7 5.1 3.1 2.6 2.6 13.2 10.7 10.4 10.7 7.5 5.7 5.2 5.0

F25 11.8 11.5 11.6 11.9 5.8 3.2 2.7 2.6 13.7 12.3 12.1 12.4 7.6 5.8 5.2 5.1

AVG 10.8 10.9 11.2 11.5 6.4 4.2 3.6 3.6 13.9 12.5 12.2 12.4 7.4 5.5 4.8 4.8

The simulation conclusions can be summarized as follows:

– The formula of subpopulation cooperation has a large impact on the effective-
ness of the multi-population algorithm used in the simulations (see Table 6).
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For most of the considered test functions, satisfactory results were obtained
using the following formula: ‘rstarb’+M10+RW+8x32 (see Table 6).

– The results obtained for the MNIA using different PBAs are comparable to
the results obtained for the best population algorithm for a given function.
Moreover, for several functions, MNIA gave the best results (see Table 8).
There were also large differences in the results, depending on the PBA used.
Therefore, the use of MNIA eliminates the need to test different PBAs, which
makes it easier to find a satisfactory solution.

– The best migration topology is ’rstarb’ for variant Npop = 8, Nind = 32
(+167% - see Table 6). This is the topology proposed in this paper and it
was developed by analogy with the topologies considered in the literature.
By contrast, the best standard topology was ’ladp’ the variant Npop = 8,
Nind = 32 (+159% - see Table 6).

– The adopted migration interval affects the obtained results. The best interval
is M10, especially for the BS model (see Table 6). It can be seen that applying
an interval that is too large or too small does not have a positive effect on
the obtained results.

– Replacing the best or random individuals does not bring much improve-
ment, causing premature algorithm convergence (BS) or lack of it (RN) (see
Table 6).

5 Conclusions

In this paper, various ways of affecting subpopulations in the multi-population
nature-inspired algorithm (MNIA) were considered. More specifically, the fol-
lowing selected combinations of 36 migration topologies, 4 migration models, 4
migration intervals, and 2 variants of the number of subpopulations were tested.
The conducted simulations show that the use of the island model with differ-
ent PBAs and different ways of influencing the subpopulation may significantly
increase the effectiveness of the optimization. This confirmed the validity of the
assumptions made in this paper and has encouraged further research on inter-
actions between subpopulations.

Our plans for further research include automatic selection of how sub-
populations interact and using the resulting solutions to increase the effec-
tiveness of biometric methods [63,66,70], population-based algorithms [47–51],
fuzzy systems [43–46,55], neural networks and other deep learning methods [5–
7,12,21,31,38] and their various implementations. For example, in a molecu-
lar implementation [24,25] intelligent systems can be realized by the individual
molecules [3,19,22] or even precisely designed atoms layouts [20,23] constructed
by multi-population approach.
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Abstract. Selection hyper-heuristics have been used successfully to
solve hard optimization problems. These techniques choose a heuris-
tic or a group of heuristics to create a solution and/or improve it. In
a prior study, we proposed an approach that changes the heuristic set
from which the hyper-heuristic is allowed to choose dynamically and that
led to improving the performance of the hyper-heuristic. Previously, we
manually designed the proposed approach which involved challenging
design decisions and parameter tuning. In this study, we automate the
design of the previously proposed approach using grammatical evolution
to reduce human involvement in the design process. The proposed auto-
mated approach is evaluated on the domains of the CHeSC challenge. It
is found that the automated design reduces the design time remarkably
and performs as good as the manual design.

Keywords: Selection hyper-heuristics · Dynamic heuristic sets ·
Grammatical evolution

1 Introduction

Selection hyper-heuristics have been used successfully to solve hard optimization
problems such as timetabling [19,22], bin packing [7,20], and scheduling [12].
These techniques choose a low-level heuristic or a group of low-level heuristics
to create a solution and/or improve it [3,5]. The performance of selection hyper-
heuristics is influenced by the quality of the low-level heuristics utilized by the
hyper-heuristic [14,21,25].

Most often, the entire set of all available low-level heuristics (referred to as
the universal set) is used by the hyper-heuristic. The universal set may include
poor low-level heuristics or some low-level heuristics that are effective only at
particular phases during the search. For instance, Remde et al. [24] noted that
some low-level heuristics that are ineffective at the beginning of the search can
be valuable at the end of the search. Therefore, the universal set may harm
the performance of the hyper-heuristic if used as is. Recent investigations have
demonstrated that eliminating poor heuristics from the universal set before run-
ning the hyper-heuristic enhances the performance [8,25]. These studies generate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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a static set, which is a subset of the universal set, that remains unchanged for
the whole lifespan of the hyper-heuristic.

Recently, we developed a dynamic heuristic set selection approach (DHSS)
which changes the heuristic set, called the active set, from which the hyper-
heuristic can choose dynamically such that different heuristics can be part of
the active set at different phases during the lifespan of the hyper-heuristic [9].

The design of DHSS was challenging as we were faced with difficult design
decisions such as how to measure the quality of low-level heuristics, when to
update the active set, which criterion to use to update the active set, and whether
the poor heuristics should be removed at some point during the search. Further-
more, these design decisions are parameterized and require parameter tuning.

In this paper, we propose grammatical evolution to automate the design of
DHSS to overcome the challenges of the manual design. The automated design
includes finding appropriate design choices and setting the parameters of those
design choices. The choice of GE is motivated by its prior success in the auto-
mated design of search techniques [6,16]. In addition, the expressiveness of gram-
mars eases the representation of complex systems [23].

The automated design is evaluated on the domains of the CHeSC challenge.
The automated approach performs as good as the manual approach (outper-
forms the manual approach slightly) and reduces the design time significantly.
The main contribution of this paper is an automated approach for DHSS that
reduces the design time substantially without incurring a performance loss when
compared to the best manually designed approach.

The rest of this paper is organized as follows. In Sect. 2, we provide back-
ground information. Section 3 describes the proposed GE for automating the
active set approach. The experimental setup is outlined in Sect. 4. Section 5 dis-
cusses the results. The paper is concluded in Sect. 6.

2 Background

In this section, we present background information required for subsequent dis-
cussions.

2.1 Dynamic Heuristic Set Selection

In a prior study [9], we proposed DHSS to decide which heuristic to include in
the active set at different points during the lifespan of the hyper-heuristic. The
design of DHSS involves challenging design decisions listed below.

1. Update strategy to decide when to update the active set and which low-level
heuristics to include in the active set.

2. Removal strategy to decide which low-level heuristics to permanently remove
and when to do that.

3. Reset strategy to decide when to reset the active set such that it will include
all low-level heuristics that are not permanently removed.

4. Performance measure to evaluate the quality of low-level heuristics.
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To create a fully functional DHSS, each design decision is assigned a design
choice. The design choices for the update strategy are described in Table 1. The
design choices for the removal strategy are described in Table 2. The design
choices for the reset strategy are listed in Table 3. There are 24 design choices
for the performance measures that are based on three performance indicators: the
percentage or the frequency of improvements, the percentage or the frequency
of disimprovements, and the execution time of the heuristics.

Table 1. The design choices for the update strategy.

Choice Description

PhDom Removes all dominated heuristics (those that use more time but yield
poorer results) from the active set and updates the active set every pl
iterations

PhQi Converts the heuristic performance into quality indexes and excludes
all heuristics that perform below the average index. Updates the active
set every pl iterations

PhGrd Selects greedily the top tp heuristics every pl iterations

PtDom Same as PhDom but includes a patience factor pt that forces the updates
if the best solution is not improved for pt× waitmax where waitmax is
the maximum number of iterations we waited so far before the best
solution is improved

PtQi Same as PhQi but includes a patience factor pt (as explained for PtDom

PtGrd Same as PhGrd but includes a patience factor pt (as explained for PtDom

Table 2. Design choices for removal strategy.

Choice Description

NoRem No removal strategy

PtRem Wait for pt× waitmax before removing the worst heuristic
permanently where pt and waitmax are as explained for PtDom

FqRem Divides the search into phases of equal length and removes the
worst heuristic at the end of each phase where the number of
phases is determined by a frequency parameter fq

IndRem Removes all heuristics that perform worse than the average
performance calculated from the ratio between the
percentage/frequency of improvements and the
percentage/frequency of disimprovements

GrpRem Removes all heuristics that perform worse than the average
performance calculated from the ratio between the
percentage/frequency of improvements/disimprovement and the
percentage/frequency of improvement/disimprovements for all
other heuristics

ConsRem Removes all heuristics that perform worse than the average
performances calculated from IndRem and GrpRem
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Table 3. The design choices for the reset strategy.

Choice Description

NoRes No reset strategy

PtRes Waits for pt× waitmax before resetting the active set where pt and
waitmax are as explained for PtDom

FqRes Divides the search into phases of equal length and resets the active set
at the end of each phase where the number of phases is determined by
a frequency parameter fq

2.2 Cross-Domain Hyper-Heuristics

The purpose of cross-domain hyper-heuristics is to improve the generality of
hyper-heuristics by designing hyper-heuristics that perform well across a wide
spectrum of problem domains [4]. The CHeSC challenge was proposed to pro-
mote cross-domain hyper-heuristics. The challenge used six problem domains
which are the boolean satisfiability problem (SAT), one-dimensional bin pack-
ing problem (BP), personnel scheduling problem (PS), permutation flow shop
problem (PFS), traveling salesman problem (TSP), and vehicle routing problem
(VRP).

The cross-domain performance of the competing hyper-heuristics is evaluated
by ranking the hyper-heuristics in each problem domain and adding up all per-
domain scores to obtain a single overall score which is used to determine the
winner. The ranking is done using Formula 1 which assigns scores of 10, 8, 6, 5,
4, 3, 2, 1 points to the top 8 hyper-heuristics and the rest of the hyper-heuristics
receive no points. Ties are broken by adding the scores in the respective positions
and sharing them equally among all hyper-heuristics that tie.

3 Grammatical Evolution for Automated Design of DHSS

This section outlines Auto-GE proposed for the automated design of DHSS.
The task of Auto-GE is to find appropriate design choices (including parame-
ter values) for the design decisions involved in DHSS. The generational control
model is used to replace the current population with a new population in every
generation.

3.1 Grammar for DHSS

The grammar used to specify DHSS is presented in Listing 1.1. The terminals
of the grammar represent the design choices explained in Tables 1, and 2, 3.
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Listing 1.1. Grammar for DHSS

<dynset > ::= <update > <remove > <reset > <measure >

<update > ::= PhDom(<pl >) | PhQi(<pl >,<asp >) | PhGrd(<pl >,<tp

>) | PtDom(<pf1 >,<pl >) | PtQi(<pf1 >,<pl>,<asp >) | PtGrd(<

pf1 >,<pl>,<asp >)

<pl> ::= 1 | 2 | 4 | 8 | 16 | ... | 512 | 1024

<asp > ::= 0.1 | 0.2 | ... | 0.9 | 1.0

<tp> ::= 2 | 3 | 4 | 5 | 6

<pf1 > ::= 1 | 2 | 3 | ... | 10

<remove > ::= none | PtRem(<pf2 >) | FqRem(<fq1 >) | IndRem(<r

>,<asp >,<a1>,<a2>,<a3 >,<a4 >) | GrpRem(<r>,<asp >,<b1>,<b2

>,<b3>,<b4 >) | ConsRem(<r>,<asp >,<a1>,<a2>,<a3 >,<a4>,<b1

>,<b2>,<b3>,<b4 >)

<pf2 > ::= 1 | 2 | 3 | ... | 10

<fq1 > ::= 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.5

<r> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<asp > ::= 0.1 | 0.2 | ... | 0.9 | 1.0

<a1> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<a2> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<a3> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<a4> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<b1> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<b2> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<b3> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<b4> ::= 0.1 | 0.2 | ... | 0.8 | 0.9

<reset > ::= none | PtRes(<pf3 >) | FqRes <fq2 >

<pf3 > ::= 1 | 2 | 3 | ... | 10

<fq2 > ::= 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.5

<measure > ::= Imp | ImpDu | Dimp | DimpDu | FqImp | FqImpDu

| FqDimp | FqDimpDu | Prf | PrfDu | WtdPrf(<w1 >,<w2 >) |

WtdPrfDu(<w1 >,<w2 >) | FqPrf | FqPrfDu | WtdFqPrf(<w1>,<w2

>) | WtdFqPrfDu(<w1>,<w2 >) | BestPrf(<w1 >,<w2>,<w3 >) |

BestPrfDu(<w1>,<w2 >,<w3 >) | RbestPrf(<w1 >,<w2>,<w3>,<w4 >)

| RbestPrfDu(<w1>,<w2>,<w3>,<w4 >) | BestFqPrf(<w1>,<w2

>,<w3 >) | BestFqPrfDu(<w1>,<w2>,<w3 >) | RbestFqPrf(<w1 >,<

w2>,<w3>,<w4 >) | RbestFqPrfDu(<w1>,<w2>,<w3 >,<w4 >)

<w1> ::= 0.1 | 0.2 | ... | 1.0

<w2> ::= 0.1 | 0.2 | ... | 1.0

<w3> ::= 0.1 | 0.2 | ... | 1.0

<w4> ::= 0.1 | 0.2 | ... | 1.0

3.2 Initial Population

Each element in the initial population is a variable-length chromosome consisting
of several codons where a codon is an integer in the range [0, 255]. The integer
representation is widely adopted in GE [23] and reported to perform better than
the 8-bit string representation [11]. The initial population is created at random
where the length of each chromosome is chosen at random and each codon is
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chosen at random from the range [0, 255]. Duplicates are not allowed in the initial
population to enhance diversity.

3.3 Mapping

The integer genotype is mapped into a phenotype representing DHSS using the
grammar presented in Sect. 3.1. The integer chromosomes are processed from
left to right using one codon at a time to expand the current derivation rule of
the current nonterminal. A nonterminal is fully converted into terminals before
considering the next nonterminal in the same production choice. If all codons
in the chromosome are used without converting all nonterminals into terminals,
i.e. without generating a complete DHSS, the chromosome is wrapped from the
beginning and this process is repeated until a complete DHSS is generated or the
number of wraps hits a predefined limit and in this case, the individual is declared
invalid and assigned the worst fitness. The rule used to convert genotypes into
phenotypes is codon MOD the number of choices of the current derivation rule.

3.4 Fitness Evaluation

The individuals are evaluated by using the DHSS encoded in the individual with
FS-ILS [1] to solve 20 instances chosen at random from the public instances
of the CHeSC challenge (5 instances are chosen at random from the 4 public
domains). The fitness of the individual is measured by the average normalized
objective value across the 20 instances.

We normalize the objective values in the range [0, 1] since the objective
functions differ remarkably on a per-domain basis. In particular, the objective
functions for SAT and BP are orders of magnitude lower than the objective
functions for PS or PFS. This will lead to a bias toward individuals that perform
well on PS and PFS if the objective values are not normalized.

3.5 Tournament Selection

Tournament selection is used. A fixed number of individuals are chosen at ran-
dom from the population and the best individual is the winner of the tournament
which will be used as a parent to produce offspring for the next generation.

3.6 Elitism Selection

Elitism selection is used to preserve the fittest individuals across generations. A
fixed percentage of the best individuals are cloned to the next generation.

3.7 Crossover

After choosing two parents using tournament selection, the crossover operator is
applied with a probability rate. We use the standard one-point crossover operator
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which determines a crossover point at random and swaps the tail segments of
the two parents such that the tail segment of the first parent becomes the tail
segment of the second parent and vice versa. If the crossover operator is not
applied, the two parents are cloned to the next generation as in [6,17]. It is
interesting to note that despite its simplicity, the one-point crossover operator
was used successfully in GE for automated design [6,17].

3.8 Mutation

The individuals generated by the crossover operator undergo mutation using the
standard integer mutation operator [11]. With a very small mutation probability,
each codon is replaced with an integer chosen at random from the range [0, 225].

3.9 Replacement

At each generation, a new population is created via the elitism selection,
crossover, and mutation operators. The new population replaces the current
population.

4 Experimental Setup

4.1 Parameter Tuning

The proposed Auto-GE is configured manually via trial and error where several
values for each parameter are tried and the best values are chosen. Table 4 reports
the best values which are close to the parameter values found for similar GE for
automated design [6,17].

Table 4. Auto-GE parameter setting.

Parameter Value Parameter Value

Population size 50 Tournament size 3

Crossover rate 0.85 Mutation probability 0.05

Elitism 10% Individual length 10–30

Wrapping Yes Generations 20

4.2 Technical Specifications

The experiments are executed in Java 8 and ran partly on the Lengau Cluster of
the Center for High-Performance Computing, and partly on the MITC cluster.
The Lengau cluster has Intel Xeon CPUs (2.6 GHz) and runs CentOS operating
system. The MITC cluster has Intel Xeon CPUs (2.4 GHz) and runs Ubuntu
18.04 operating system.
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5 Results and Discussion

5.1 Automated Design Performance

We evaluate the automatically designed DHSS (Auto-DHSS) and the best man-
ually designed DHSS (Man-DHSS) [9] on the domains of the CHeSC challenge.
The performance of Auto-DHSS and Man-DHSS is compared with that of the
best methods for the CHeSC challenge. The best method for CHeSC is the
method with the highest cross-domain score computed as explained in Sect. 2.2.
The results are reported in Table 5.

From the results, Auto-DHSS outperforms Man-DHSS. The cross-domain
performance of FS-ILS without using either Auto-DHSS or Man-DHSS is worse
than when using any one of them. This is consistent with previous findings [9]
that DHSS is beneficial for hyper-heuristics.

The per-domain scores consider each problem domain separately. Even
though the individual per-domain scores are of less importance when dealing
with cross-domain hyper-heuristics, they are still useful to see which problems
present a challenge for which hyper-heuristic. The per-domain scores are pre-
sented in Fig. 1.

Auto-DHSS does not outperform Man-DHSS in all problem domains despite
having better cross-domain performance. In SAT, PS, TSP, Man-DHSS performs
better than Auto-DHSS, whereas in BP, PFS, and VRP, Auto-DHSS performs
better than Man-DHSS. No hyper-heuristic dominates all other hyper-heuristics
in all domains. For each hyper-heuristic, there is at least one problem domain
that is too challenging to solve. For instance, the winner of CHeSC (adapHH)

Table 5. The performance of Auto-DHSS and Man-DHSS compared to the best hyper-
heuristics for CHeSC.

Method Score Method Score

Auto-DHSS 167.66 Man-DHSS [9] 158.58

adapHH [15] 126.0 FS-ILS [1] 120.58

VNS [10] 81.83 ML [18] 79.92

PHunter [2] 62.33 EPH [13] 48.50

Fig. 1. The per-domain performance of Auto-DHSS and Man-DHSS compared to the
best hyper-heuristics for CHeSC.
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performs poorly in PS. Some hyper-heuristics receive no points at all in some
domains such as EPH in SAT and VNS in BP.

5.2 Design Time

The automated design can be contrasted to the manual design not only by
considering the results but also by considering other factors including the design
time, reusability, and the reduction of the level of expertise required to complete
the task. The manual design was an iterative process that lasted for two weeks,
whereas the automated approach took less than 24 h to run on a cluster.

6 Conclusion and Future Work

In this paper, we employed grammatical evolution to automate the design of the
DHSS that was previously proposed in [9]. The automatically designed DHSS
(Auto-DHSS) and the manually designed DHSS (Man-DHSS) were used within
FS-ILS [1], which is the best hyper-heuristic for the CHeSC challenge, to manage
the heuristic set dynamically. It was found that both Auto-DHSS set and Man-
DHSS improved the performance of FS-ILS and Auto-DHSS set outperformed
Man-DHSS. Furthermore, the automated design reduced the design time sub-
stantially.

Although the automated approach improves the performance of the manual
approach, the improvement is not as remarkable as we hoped. This could possibly
be attributed to the fact that we automate one aspect of the hyper-heuristics
without considering other aspects that can influence the overall performance. In
the future, we will widen the scope of our automated approach by considering
other aspects of hyper-heuristics.
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3. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-
heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)

https://doi.org/10.1007/978-3-642-34413-8_26


228 A. Hassan and N. Pillay

4. Burke, E.K., et al.: The cross-domain heuristic search challenge – an international
research competition. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp.
631–634. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-
3 49

5. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

6. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Trans. Evol. Comput. 16(3), 406–417 (2012)
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Abstract. The paper presents a novel evolutionary algorithm (EA) for
melodic line harmonization (MLH) - one of the fundamental tasks in
music composition. The proposed method solves MLH by means of a
carefully constructed fitness function (FF) that reflects theoretical music
laws, and dedicated evolutionary operators. A modular design of the FF
makes the method flexible and easily extensible. The paper provides a
detailed analysis of technical EA implementation, its parameterization,
and experimental evaluation. A comprehensive study proves the algo-
rithm’s efficacy and shows that constructed harmonizations are not only
technically correct (in line with music theory) but also nice to listen
to, i.e. they fulfill aesthetic requirements, as well. The latter aspect is
verified and rated by a music expert - a harmony teacher.

Keywords: Evolutionary algorithm · Harmonization · Music
composition

1 Introduction

The majority of real-life optimization problems are associated with engineering,
however, certain aspects of creative activities, such as painting, music composi-
tion, poetry, or film making, can be modeled as optimization problems [4,19], as
well. In this paper, one such task – the melodic line harmonization is considered.

The melodic line harmonization is a part of the process of composing music
and is about determining the musically appropriate chord accompaniment for a
given melody. It is a creative process that requires intuition and experience of
the musician, although, the music theory defines certain strict constraints and
rules which the composed music should follow in order to sound well [21]. In
this perspective, melodic line harmonization can be treated as an optimization
problem with maximizing the number of fulfilled constraints.

Evolutionary Algorithms (EAs), thanks to their effectiveness, are widely
applied to various practical problems [5,11,17,27]. This paper shows that EAs
can also be successfully adapted to the field of art and create formally correct,
well-structured, and musically aesthetic melody harmonizations.
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2 Related Work

Algorithmic music composition is a well-studied area of research with various
computational intelligence methods proposed in the literature [13,25]. There are
several research paths in this domain and researchers focus on various aspects of
music generation, for instance, style transfer [9], imitating a particular com-
poser (e.g. F. Chopin [15,16]), real-time music accompaniment [12], timbre,
pitch, rhythm, chord [14]. In this paper, we consider the problem of melodic
line harmonization which is an essential part of the music composition process.
The definition and details of the examined problem are presented in Sect. 2.1.

The most common approach to solving this task is learning harmonizations
based on existing melody lines using neural networks [6,8,10], which requires a
set of training data and is usually limited to a particular genre or music style,
e.g. Bach chorales [8]. Music composition can also be approached with Markov
chains [3,18,26] or evolutionary algorithms [7,20,22]. Evolutionary approaches
propose various representations of melodic line and fitness function definitions
to assess evolving solutions. Moreover, in [7] a multiobjective genetic algorithm
is constructed which, for a given melody, generates a set of harmonic functions
without adding new melodic lines.

Due to slightly different problem definitions and the lack of well-established
benchmarks, making a direct comparison between methods is usually difficult.
Thus, the evaluation process is often performed by human experts who rate the
obtained results (music pieces). This approach is also taken in this paper.

2.1 Melodic Line Harmonization

Harmonization of a melodic line is one of the fundamental tasks in music. The
input data in a harmonization problem is one melodic line, and the product of
harmonization is usually four melodic lines (voices): soprano (the highest), alto,
tenor, bass (the lowest). A given (input) melodic line could be also accompanied
by harmonic functions which are added to every or almost every note in that
line. These functions determine which notes can be included in the chord formed
across all four lines (vertically).

Harmonization of a melodic line depends not only on the composer’s creativ-
ity but also on various theoretical rules derived from music theory. These rules
regulate (1) the form of individual melodic lines, (2) chord’s construction, and
(3) how successive chords should be connected to each other.

The problem considered in this paper is a harmonization of a soprano line,
with harmonic functions added to each note. The solution is created based on a
selected set of theoretical rules for melodic line harmonization.

2.2 Contribution

The main contribution of the paper includes: (1) a novel evolutionary algorithm
capable of designing correct melodic line harmonizations; (2) a specially designed
fitness function that reflects theoretical music rules and can be easily tuned
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toward certain aspects of the output harmonization; (3) an extensive evaluation
of the proposed method which shows its quality and robustness; (4) a detailed
analysis of the algorithm’s performance and parameterization.

3 Evolutionary Harmonization

3.1 The Search Space and the Initial Population

Not every note can be used in a created chord. Harmonic functions define which
notes fit into a chord and which do not. Harmonizations containing notes in
chords that do not correspond to the required functions are incorrect.

After receiving the input (soprano line with harmonic functions), for each
unique function, a set of all possible chords that fulfill that function is created.
Created harmonizations are, therefore, not generated from individual notes but
from the whole chords. The above rules significantly narrow down the search
space, however, due to still many possible arrangements of notes in each chord,
the number of potential solutions is still too large (between 3l - 7l, where l is a
harmonization length) to evaluate all of them. Examples of created chords for
one of the functions are shown in Fig. 1.

Fig. 1. Various chords for function SII with a fixed (green) note in soprano. (Color
figure online)

Individuals are represented as 4 sequences of notes, one per each harmonized
voice. The chord is formed by the notes located across all four voices (vertically).
Individuals in the initial population are created randomly. Soprano notes are
completed to a randomly selected chord satisfying the following two conditions:

(*) the chord corresponds to the function assigned to the completed note,
(**) the note given in the input voice is located in the chord in the same voice.

3.2 Next Generation Population

After the generation of the initial population, the EA is run for a predefined
number of n generations. In each generation, first se elite (i.e. currently best)
individuals are promoted from the previous generation without any adjustments,
so as to ensure that the best individuals found in the entire run of the algorithm
will not be lost. The rest of the population is generated by means of selection pro-
cedure and genetic operators (mutation and crossover), following Algorithm 1.
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1 GenerateNewPopulation (P)
2 CalculateFitnessValues(P ) // calculates fitness of each individual

3 Pnew ← GetElite(P, se) // population of new individuals

4 while |Pnew| < |P | do
5 c1 ← Selection(P )
6 if rand([0,1]) < pc then // crossover

7 c2 ← Selection(P )
8 cnew = Crossover(c1, c2)

9 else
10 cnew ← c1
11 end
12 cnew ← Mutation(cnew)
13 Pnew = Pnew ∪ {cnew}
14 end
15 return Pnew

Algorithm 1: Next generation population procedure.

3.3 Selection Method

Selection of individuals from the population is performed in a ts-tournament
with a roulette, i.e. first ts individuals are uniformly sampled with replacement
to participate in the tournament. The drawn individuals are sorted from best to
worst according to their score. Let’s denote by ci, i = 1, . . . , ts the i-th ranked
individual. The chance of winning the tournament by ci is calculated as follows:

p(ci) =

⎧
⎪⎨

⎪⎩

ps if i = 1
(1 − ∑i−1

j=1 p(cj)) · ps if 1 < i < ts

(1 − ∑i−1
j=1 p(cj)) if i = ts

(1)

where ps ≥ 0.5 is the so-called selection pressure.

3.4 Mutation

Generated harmonizations are built using the whole chords, rather than indi-
vidual notes. For this reason, mutations are also performed on the entire chords
and each chord in the harmonization is mutated with the same probability equal
to pm

l , where l is the length of the harmonization (the number of notes in the
input melodic line) and pm is mutation coefficient. Mutation of a chord consists
in replacing it with another randomly selected chord that satisfies conditions
(*)-(**).

3.5 Crossover

Crossover is performed with probability pc. Two crossover methods are proposed
and tested: the classic operator and the one-point operator. Analogously to muta-
tion, the crossover is performed using whole chords rather than individual notes.
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Both crossover operators are presented in Algorithm 2, where c[i], i = 1, . . . , l is
the chord located at position i in a harmonization of length l.

1 Crossover1 (c1, c2)
2 for i ∈ [1, . . . , l] do
3 if rand([0,1]) < 0.5 then
4 c[i] = c1[i]
5 else
6 c[i] = c2[i]
7 end

8 end
9 return c

1 Crossover2 (c1, c2)
2 k ← rand(1, . . . , l)
3 for i ∈ [1, . . . , l] do
4 if i < k then
5 c[i] = c1[i]
6 else
7 c[i] = c2[i]
8 end

9 end
10 return c

Algorithm 2: Crossover: left - classic method, right - one-point method.

3.6 Fitness Function

The fitness function is based on music theory and is composed of 22 rules of
harmonization, taken from a harmony textbook [24]. Similar rules can be found
in [2,23]. Each rule is assigned a weight (positive or negative) that affects the
final score of the generated harmonization. Examples of violations of three of
these rules are shown in Fig. 2. A detailed description and implementation of all
rules can be found in a project repository [1].

The fitness function can be divided into 3 main modules:

1. Strong constraints Cs (strong penalty terms) - stemming from the rules that
must be strictly met in the created harmonization to be considered correct.

2. Weak constraints Cw (weak penalty terms) - derived from rules that do not
have to be strictly satisfied in the created harmonization, but their non-
fulfillment lowers the harmonization assessment.

3. Aesthetic value Va (reward terms) - the rules specifying chord arrangements
or connections between chords that improve the harmonization sound.

The fitness function ft for individual c has the following form:

ft(c) = Va + Cw + (p · t)Cs,

Cs =
ms∑

i=1

φi(c), Cw =
mw∑

j=1

χj(c), Va =
ma∑

k=1

ψk(c),
(2)

where φi(c) ≤ 0 is the penalty for not fulfilling strong constraint i, i = 1, . . . , ms,
χj(c) ≤ 0 is the penalty for not fulfilling weak constraint j, j = 1, . . . , mw,
ψk(c) ≥ 0 is the reward associated with the rule k, k = 1, . . . , ma, (ms = 9,
mw = 9, ma = 4), t ≤ n is the generation number, and p is a constant parameter.
Please note that during the evolution, the fitness function value is calculated
for each individual regardless of the fulfillment of the strong constraints. These
constraints, however, define the correctness of each individual.
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(a) Strong constraint: At
least one voice has to move
in different direction than
other voices.

(b) Weak constraint: A
maximal interval the bass
can take in two consecutive
moves is tenth.

(c) Weak constraint: There
should not be septim interval
between two consecutive notes
in one voice.

Fig. 2. Examples of rules violations.

4 Experimental Results

Since there are no standard benchmarks for the considered problem we decided
to use a set of exercises from the harmony textbook [24] as a test set (similar
exercises can be found in other harmony textbooks, e.g. [2,23]). The selected
problems were divided into 3 groups based on their complexity and length:

1. long examples (about 20 chords), using only basic functions,
2. short examples (about 10 chords), with more complicated functions,
3. long examples (about 20 chords), with more complicated functions.

4.1 Algorithm Parametrization

The choice of the evolutionary parameters is crucial for the algorithm perfor-
mance. The values of the following parameters were selected based on preliminary
tests: population size (sp), tournament size (ts), elite size (se), selection pressure
(ps), mutation coefficient (pm), crossover method and crossover probability (pc),
number of generations (n).

The following baseline values were selected: sp = 1000, ts = 4, se = 3, ps =
0.7, pm = 1, classic crossover with pc = 0.8, n = 5000. Individual parameters
were then optimized (with the remaining parameters frozen) to select the best
values for each of them. The tests were run on 3 different examples, one from
each group. These examples were different from the ones used as the test set.
Each test was repeated 5 times with different seed values for the random number
generator.

Population Size (sp). The following population sizes were tested: 10, 100, 500,
1000, 1750, 2500, 3500, 5000. As expected, for smaller population sizes, the algo-
rithm performed noticeably worse because the solution space was not searched
sufficiently. For larger values (above 1000), the results were not substantially dif-
ferent from each other. Results for an example from the third group are presented
in Fig. 3a. The resulting size of the population was chosen as 1000.
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(a) Population sizes (logarithmic scale). (b) Selection pressures.

(c) Mutation coefficients - crude estima-
tion.

(d) Mutation coefficients - fine-tuning.

Fig. 3. Parameter tuning averaged over 5 runs for an example from the third group.
The minimum and maximum are the worst and best fitness function values, resp., for
the individuals returned in 5 runs. Empty shape (e.g. ◦) denotes that the algorithm did
not return any correct solution over 5 runs and filled shape that at least one solution
was correct.

Tournament Size (ts). Four values of tournament size, equal to 2, 4, 8, and
10 were tested (see Table 1). The results for ts = 4 and ts = 8 were similar to
each other. At the same time, ts = 4 led to higher standard deviation of the
population (larger diversity of individuals) and was therefore selected for the
final experiments.

Elite Size (se). Four values of elite size, equal to 0, 3, 5 and 10 were tested.
The results are presented in Table 1. The algorithm with the elite mechanism is
more stable and achieves better results. The value of se = 3 was finally selected.

Selection Pressure (ps). This parameter describes the probability of the best
individual winning the tournament. Values between 0.5 and 1 with a step of 0.1
were tested. Results of the algorithm are presented in Fig. 3b. The higher the
value of ps, the lower the standard deviation in the population. Too low standard
deviation can have a negative impact on the results due to the lack of diversity
in the population. At the same time, an increase of ps results in an increase
of the percentage of correct individuals in the population, as shown in Table 2.
Finally, to balance the value of standard deviation and the percentage of correct
individuals, ps = 0.8 was chosen.
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Table 1. Fitness function with respect to the tournament size (top part) and the elite
size (bottom part).

Example ts = 2 ts = 4 ts = 8 ts = 10

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 11 −150 165 355 355 355 343 305 355 335 305 355

2 188 110 210 210 210 210 210 210 210 210 210 210

3 −171 −370 155 188 180 210 197 175 210 174 95 210

Example se = 0 se = 3 se = 5 se = 10

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 152 75 280 355 355 355 324 250 355 325 305 355

2 110 30 210 210 210 210 210 210 210 210 210 210

3 43 −30 125 188 180 210 187 175 210 206 190 210

Table 2. Percentage of correct individuals in the population, in relation to ps.

Example ps

0.5 0.6 0.7 0.8 0.9 1

1 0.03 0.14 0.28 0.37 0.37 0.46

2 0.02 0.8 0.18 0.27 0.32 0.37

3 0.01 0.06 0.16 0.25 0.32 0.38

Mutation Coefficient (pm). Values between 0 and l were tested, where l is the
harmonization length (number of chords), with a step equal to 1. The best results
were achieved with pm = 0, 1, 2. For higher values, the results were significantly
weaker, and for the highest ones, the returned results were incorrect.

As a further refinement of pm, the values from 1 to 2 with step 0.1 were
tested, which led to the final selection of pm = 1.1. The results for an example
from the third group are presented in Fig. 3c (initial tests with larger values)
and Fig. 3d (fine-tuning tests).

Crossover Method and Probability (pc). To select the crossover method
and its probability, various probability values, between 0 and 1 with a step of
0.1, for the two crossover versions were tested. For each value, tests were run
thirty times and the values for all three tuning examples were normalized using
min-max normalization. The average results are shown in Table 3.

The algorithm achieved similar results for values between 0.4 − 0.8. For this
reason, t-Student tests were performed to select the best values for each model
with a significance level of 0.05. A value of 0.8 was selected for both models. In the
last step, the t-Student test was conducted between two crossover variants (both
with the chosen probability of 0.8) with hypothesis H0: “the results obtained are
not significantly different” and the resulting p-value=0.113. Finally, one-point
model with pc = 0.8 was selected.
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Table 3. Normalized mean values of crossover tuning procedure.

pc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean, classic 0.86 0.84 0.9 0.88 0.91 0.89 0.91 0.92 0.93 0.88 0.9

Mean, one-point 0.86 0.9 0.9 0.89 0.91 0.93 0.93 0.95 0.96 0.95 0.95

Generation Number (n). This parameter was chosen as a compromise
between the quality of results and the running time. The value of n = 5000
was selected from the set {1000, 3000, 5000, 10000}.

The final selection of the steering parameters was as follows: sp = 1000,
se = 3, ts = 4, ps = 0.8, pm = 1.1, pc = 0.8 (one-point crossover), n = 5000.

4.2 Algorithm Efficacy

The efficacy of the algorithm was checked on 9 samples taken from the harmony
textbook [24]. For each sample, the algorithm was able to find the correct solution
in a relatively short time. The generation numbers in which the first correct
solution and the best solution were found, resp. are shown in Table 4. In each
case, the first correct solution was found in less than 90 generations.

The number of generations required to find the correct solution varies
between groups and depends mainly on the length of an example (cf. groups
1 and 2) and, to a lesser extent, the example’s complexity (cf. groups 1 and 3).
At the same time, for more complex problems (group 3) the solution is likely
to improve even after 3500 iterations, which does not happen for easier samples
(groups 1 and 2).

4.3 Evaluation by the Human Expert

The algorithm evaluates harmonizations based merely on their numerical fitness.
Hence, we asked a harmony teacher to assess their aesthetic value, as well. The
evaluation was performed according to a school scale from 1 (lowest score) to
5 (highest score). Out of 9 solutions, 4, 4 and 1 were rated 5, 4.5 and 4, resp.,
with the average grade of 4.67. This means that the solutions are theoretically
and sonically correct. An example solution rated 5 is presented in Fig. 4.

4.4 Algorithm Running Time

The average running times of the algorithm in three groups are presented in
Table 5. One can observe a quasi-linear relationship between the example length
and the execution time. Harmonizations in the group 2 are obtained in about
half of the time required for harmonizing samples from groups 1 and 3. On the
other hand, it seems that the degree of the example’s complexity does not affect
the running time - the average times in groups 1 and 3 are similar.
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Table 4. The number of generations required to find a solution.

Group no. Example no. Generation number in which the result was found:

First correct harmonization Finally returned harmonization

Mean Min Max Mean Min Max

1 1 16.6 14 22 208.2 86 343

2 16.8 13 22 268.2 129 744

3 14.8 12 18 218.4 109 397

2 4 8.2 6 10 177.6 27 593

5 3.2 1 5 24 13 36

6 6.8 5 8 826.2 75 3200

3 7 33.6 19 86 1933.6 96 3576

8 19.2 17 22 699.8 249 1224

9 21 18 25 3098.6 2179 3838

Fig. 4. Harmonization created by the algorithm for an example from the third group.
Given line (soprano) is marked in green. (Color figure online)

Table 5. The average algorithm’s running time (harmonization time) in seconds.

Group 1 Group 2 Group 3

Mean Min Max Mean Min Max Mean Min Max

531.91 485.47 567.02 225.76 180.66 252.05 536.18 508.68 582.39

4.5 Parameters’ Relevance and Robustness

The experiments showed that changing some parameters has a greater effect on
the results than changing other parameters. The crossover method, crossover
probability pc, and the selection pressure (ps) have a relatively small impact on
the results. For selection pressure, any value above 0.5 yields satisfactory results.

In contrast, changes of mutation probability value (pm

l ) have significant
impact. The results achieved for mutation coefficient between 1 and 2 are sta-
ble, but increasing pm above 2 results in a gradual results deterioration. The
elite mechanism has been shown to be crucial for the algorithm’s performance.
Its lack causes significant performance degradation and lower repeatability of
results.
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5 Conclusions

Creating melodic line harmonization is a non-trivial task. In this paper, we
employ EAs to approach this problem. There are two key components of the
proposed algorithm: (a) restriction of the search space (*)-(**) to feasible solu-
tions, and (b) specially-designed fitness function, based on theoretical music
rules, that defines proper harmonizations. The fitness function consists of three
modules: one responsible for the correctness of harmonization and the other two
for its quality. The harmonization process is performed for the whole chords and
likewise the mutation and crossover operators are applied to the whole chords,
not to individual notes.

Harmonizations constructed by the algorithm were evaluated by the harmony
teacher so as to additionally assess their aesthetic properties (sound). All but
one harmonization were rated at least 4.5 on a scale from 1 to 5, with a good
number of them rated 5. This means that in terms of musical quality generated
harmonizations meet all expectations. The algorithm finds the solution quickly
in terms of both the number of generations and the overall computational time.

The modular design of the fitness function allows it to be easily expanded
and modified in the future. Adding more theoretical rules should allow harmo-
nizations to be generated for more advanced and complex harmonic functions.
Moreover, the task definition can be extended to the generation of harmoniza-
tions for melodic lines without the presence of harmonic functions.
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16. Mańdziuk, J., Woźniczko, A., Goss, M.: A neuro-memetic system for music com-
posing. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2014. IAICT,
vol. 436, pp. 130–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44654-6 13
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20. Olseng, O., Gambäck, B.: Co-evolving melodies and harmonization in evolutionary
music composition. In: International Conference on Computational Intelligence in
Music, Sound, Art and Design (2018)

21. Pachet, F., Roy, P.: Musical harmonization with constraints: a survey. Constraints
6(1), 7–19 (2001)

22. Prisco, R.D., Zaccagnino, G., Zaccagnino, R.: Evocomposer: an evolutionary algo-
rithm for 4-voice music compositions. Evol. Comput. 28(3), 489–530 (2020)

23. Rimsky-Korsakov, N.: Practical Manual of Harmony. C. Fischer, New York (2005)
24. Sikorski, K.: Harmony part 1. PWM (2020)
25. Siphocly, N.N., Salem, A.B.M., El-Horabty, E.S.M.: Applications of computational

intelligence in computer music composition. Int. J. Intell. Comput. Inf. Sci. 21(1),
59–67 (2021)

26. Wassermann, G., Glickman, M.: Automated harmonization of bass lines from Bach
chorales: a hybrid approach. Comput. Music J. 43(2–3), 142–157 (2020)
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Abstract. In this paper, we present our new and automatically tuned
gradient boosting software, Classifium GB, which beats its closest com-
petitor, H2O, for all datasets that we ran. The primary reason that we
found it easy to develop Classifium GB is that we employed meta machine
learning, based on evolution, to automatically program its most impor-
tant parts.

Gradient boosting is often the most accurate classification algorithm
for tabular data and quite popular in machine learning competitions.
However, its practical use has been hampered by the need to skilfully
tune many hyperparameters in order to achieve the best accuracy.

Classifium GB contains novel regularization methods and has auto-
matic tuning of all regularization parameters. We show that Classifium
GB gives better accuracy than another automatically tuned algorithm,
H2O, and often also outperforms manually tuned algorithms such as
XGBoost, LightGBM and CatBoost even if the tuning of these is done
with exceptional care and uses huge computational resources.

Thus, our new Classifium GB algorithm should rapidly become the
preferred choice for practically any tabular dataset. It is quite easy to
use and even say Random Forest or C5.0 require more skilled users. The
primary disadvantage is longer run time.

Keywords: Machine learning · Gradient boosting · XGBoost ·
LightGBM · CatBoost · AutoML · Hyperparameters · Automatic
programming · Automatic design of algorithms through evolution ·
Meta machine learning

1 Introduction

This paper introduces our novel gradient boosting algorithm, Classifium GB,
that gives better accuracy than the commercial H2O implementation for every
dataset that we have tested.

The key ingredients of Classifium GB were produced using meta machine
learning, that is through running another machine learning algorithm to produce
general code suitable for gradient boosting and apparently superior to anything
that human beings have been able to come up with during the decades that
gradient boosting and ensemble algorithms have been hot research topics. Thus,
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automatic programming based on evolution is now so advanced that even some
of the sharpest minds in computer science and machine learning cannot match
its capability and creativity.

In practice, the two most accurate machine learning methods for classification
of tabular datasets are gradient boosting and neural nets, often used together
through stacking to create ensembles that win machine learning competitions. In
this paper, we present Classifium GB and compare it with all known state-of-the-
art gradient boosting implementations, namely XGBoost, LightGBM, CatBoost
and H2O.

A problem with algorithm comparisons in the literature is that the hyper-
parameter tuning often only is carefully done for the novel method that is pre-
sented. We have gone to great lengths to avoid this pitfall and to ensure a fair
comparison by quite thorough tuning for all of the above implementation. Our
experimental results show that Classifium GB generally is the most accurate
even if one spends more than 100 000 CPU hours on careful manual tuning of
XGBoost, LightGBM and CatBoost. H2O and Classifium GB are automatically
tuned.

Our paper makes the following key contributions.

1. Novel regularization.
2. A node candidate evaluation function generated through our automatic pro-

gramming system, ADATE [7].
3. A new and automated hyperparameter tuning pipeline.

Our thorough comparison between all the leading gradient boosting imple-
mentations may be of additional interest.

The paper is organized as follows. First, Sect. 2 presents the various related
gradient boosting implementations and also gives a brief introduction to auto-
matic programming with ADATE.

Section 3 contains a mathematical description of our special version of gra-
dient boosting along with regularization techniques. It also presents our new
regularization methods and the key contribution of the paper, which is a novel
node selection function generated by automatic programming. Section 3 finishes
with our new but somewhat simplistic hyperparameter tuning pipeline.

In Sect. 4, we present our datasets and explain our experimental methodology
and experimental results. Finally, Sect. 5 contains some conclusions and outlook
for the future.

2 Related Work

2.1 Gradient Boosting

The original Gradient Boosting Machine (GBM) [3] was invented by Friedman
at about the same time as Breiman created the first Random Forest version [1],
which then generally was viewed as the most accurate tree ensemble method for
more than a decade. Thus, even if GBM was an outstanding algorithm, it still
did not become as popular as Random Forest.
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However, this changed dramatically in 2014 when Tianqi Chen made the first
extreme gradient boosting (XGBoost) [2] implementation, which turned out to
be superior to Random Forest for every single dataset as long as it was well
tuned. This lead to quick adoption of XGBoost among leading hyperscalers such
as AWS and Azure and also to newer alternatives such as LightGBM [5] and
CatBoost [8].

The primary difference between XGBoost and GBM is that the former con-
tains many more regularization methods to prevent overfitting. For example,
XGBoost adopted random sampling of predictors from Random Forest, where
this is controlled by the well-known “mtry” hyperparameter. The corresponding
parameter in XGBoost is “colsample bynode”. However, the number of regular-
ization hyperparameters has grown rapidly and there are now about 20 of them,
which makes it difficult to tune optimally. There have been many attempts to
automatically tune XGBoost using for example Bayesian optimization or differ-
ential evolution, but skilled manual tuning has so far remained superior as we
show in our experimental results, at least for the case of H2O.

LightGBM was made by Microsoft with an overall focus on efficiency, but also
builds trees in a slightly different way, where a node candidate is chosen based on
its reduction of the global loss instead of just the loss along a particular branch. It
is also able to combine features that are mutually exclusive such as the ones that
result from one-hot encoding. However, CatBoost and Classifium never need one-
hot encoding since they have built-in handling of categorical predictors. Another
speed improving technique, among several others in LightGBM, is to avoid exact
sorting of numerical features and use histograms instead. This method has now
also been incorporated into XGBoost, which appears able to rapidly adapt to
any advances made by its competition. Our experiments show that Microsoft has
been highly successful in improving time complexity since LightGBM is around
5 times faster than the best of the others for big datasets.

The main difference between CatBoost and XGBoost is that the former
directly handles categorical predictors. CatBoost has several creative methods
that are not widely known, such as a form of automatic feature extraction for
categorical predictors that can be merged into one single predictor on-the-fly as
is found to reduce the loss. It also contains special methods to avoid that gradi-
ents become too biased towards the data used to build a tree. CatBoost contains
fewer hyperparameters and appears somewhat easier to tune and is efficient both
on CPUs and GPUs.

The overall goal with H2O is that it should be very easy to use with excellent
graphical presentations, while also giving exceptionally high accuracy. It contains
a version of XGBoost along with sophisticated and automatic hyperparameter
tuning based on evolutionary computation. Another special technology that is
available in H2O is automatic construction of ensembles of different machine
learning models, such as deep neural nets and gradient boosting trees stacked
together. The H2O [6] software is free but H2O.ai gets revenue from consulting
services they provide for users of their software. Overall, it represents the current
state-of-the-art among automatically tuned boosters.
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2.2 Automatic Programming

ADATE is a system for machine learning of purely functional, recursive and
symbolic programs that operate on algebraic data types, for example lists or
trees. However, the ADATE runs that produced the Classifium GB evaluation
function only used ADATE to generate arithmetical expressions.

ADATE is able to automatically construct help functions as needed and can
for instance invent a long division algorithm for binary natural numbers from
tabula rasa without knowing say addition, subtraction, multiplication or even
the positional system for representing numbers. It has been used to synthesize
several hundred different recursive algorithms of a similar complexity since 1991.

ADATE basically consists of program transformations, rules for combining
them and systematic search algorithms to drive the evolution of gradually better
and better formulas or algorithms.

Let S be a newly synthesized expression and E and H(E) be subexpressions
of the program to be transformed, where H is a unary lambda expression and
S also is in cases two and three below. ADATE then tries the following kinds
of so-called replacements, also known as R transformations, in a systematic and
exhaustive way.

1. E −→ S
2. E −→ S(E)
3. H(E) −→ S(E)

For example, the third case above is implemented by first selecting a node in
the syntax tree of the program as the root of H, another node below it to be the
root of E and then synthesizing expressions that contain one or more copies of E.
If the tree contains n nodes, the number of possible choices of H and E is O(n2),
whereas the number of possible expressions S almost always grows exponentially
with the number of nodes in S.

However, evolution as well as local search is often able to make great progress
even if only a very small neighbourhood of a given solution, in our case a program,
is explored. Of course, there are thousands of examples of this in the literature
on combinatorial optimization, including say the satisfiability (SAT) and the
traveling salesman (TSP) problems.

Given that a number of R transformations, typically a few hundred, have
been performed and evaluated, ADATE keeps the ones that did not make the
program worse and labels these as so-called REQ transformations. The REQs
are sorted according to the size of their synthesized expressions. Then, ADATE
systematically generates combinations of k REQ transformations in order of big-
ger total size for k equal to one, two, three and four. ADATE also has heuristics
for keeping all the REQs local, that is possibly restricted to a small subtree of
the syntax tree.

A so-called compound transformation consists of such a sequence of REQs
followed by newly generated R transformations restricted to occur in the same
subtree as the REQs. R transformations and the mostly neutral short walks pro-
vided by these compound transformations are the fundamental mechanisms that
ADATE uses to generate the neighbourhood of a program chosen for expansion.
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Additionally, there are transformations for inventing new auxiliary functions
and for lifting and distribution of case-expressions, but these are mostly useful
for inventing more general functional programs and not needed when considering
only formulas as in this paper.

ADATE has always used Pareto fronts that balance syntactic complexities
and evaluation values. Obviously, size matters in order to alleviate overfitting
by sharpening Occam’s razor. Each program in a Pareto front is iteratively
expanded with exponentially increasing neighbourhood cardinality until it is
knocked out from the front by a new program that is smaller and at least as
good. Thus, the programs in a Pareto front are always gradually bigger and
better.

3 The Classifium Gradient Boosting Algorithm

We will first review standard gradient boosting as it is used in Classifium GB
and then present the novelties in Classifium GB, that is our own regularization
method, a new node candidate evaluation function and the automatic tuning
pipeline.

3.1 Standard Gradient Boosting

Classifium GB and related boosters incrementally build ensembles of trees where
each new tree takes steps that reduce the error that remains after the previously
generated trees. If there are c different classes for the output variable (response)
in a classification problem, each leaf in Classifium GB contains c weights, one
for each class. When a new example is to be classified after training is finished,
it is fed to all trees and a leaf is reached for each one. The weights in all reached
leaves are summed and the class with the overall max weight is chosen as the
classification of the new example.

In order to simplify the presentation, we will in the following assume that
c = 3 and the reader will afterwards find it trivial to generalize the algorithm to
any value of c.

Assume that training example number e has class k as its correct response and
that this example during training has weights we,1, we,2 and we,3 accumulated
from the trees generated so far. The contribution to the overall current error
(loss) from this example for weight we,i is given by the usual log loss defined as
follows for i = 1, 2, 3.

fe(we,i) = − ln
ewe,k

ewe,1 + ewe,2 + ewe,3
.

Note that fe goes to zero for i = k if and only if we,k goes to positive infinity
or the other weigths both go to negative infinity, which is exactly what we want.

Assume that the next tree has been built except for the leaves and that
example e reached a leaf with weights d1, d2 and d3 which are to be chosen. We
wish to minimize fe(we,i + di). Let f ′

e and f ′′
e denote the first and second order
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derivatives with respect to we,i. Using a second order Taylor series, we get the
following approximation.

fe(we,i + d1) ≈ fe(we,i) + f ′
e(we,i)di +

1
2
f ′′(we,i)di2.

To minimize the right hand side, we set its derivative with respect to di to
zero and obtain

di = − f ′
e(we,i)

f ′′
e (we,i)

However, the above was for only one training example e. In general, we get
the following for t training examples.

di = −
∑t

e=0 f ′
e(we,i)

∑t
e=0 f ′′

e (we,i)

Following standard practice, we use G to denote the sum of the first order
derivatives and H for the sum of the second order derivatives. By substituting
the expression for di into the approximation of the loss and removing constants,
it turns out that a good heuristic is to choose the node split candidate that
maximizes G2/H.

Classifium GB borrows learning rate, L1 and L2 regularization, mtry, sub-
sampling, max number of leaves and min samples in leaf from XGBoost and
Random Forest.

In contrast to XGBoost, it has built-in handling of nominal predictors and
uses basically the same approach as in the latest version of Random Forest.

3.2 Novelties in Classifium GB

Max Expected Number of Split Candidates. A minor novelty in Classi-
fium GB is a new regularization parameter that we call maxExpectedNumCands
and which is a complement to mtry, especially when there are very many split
candidates per predictor.

If there are n split candidates for a node, we allow each one to be consid-
ered with a probability that is maxExpectedNumCands divided by n, which on
average will mean that the subset of candidates considered has cardinality max-
ExpectedNumCands. Typical optimal values for this parameter lie between 2
and 36.

Weight Update. In order to automatically generate better functions for weight
updates as well as better functions to choose the best node candidate, we
employed the ADATE automatic programming system and used 8 UCI datasets,
each with about 10k lines, to evaluate its automatically generated programs on-
the-fly. The total run time for automatic improvement of gradient boosting was
several months on a cluster with 1000 CPU cores.
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In addition to the basic arithmetical operations, ADATE was allowed to use
the following help function, which is an approximation of the tanh function.

t(x) = x(27 + x2)/(27 + 9x2)

For |x| > 3, the asymptotic value is returned.
ADATE then came up with the following new weight update, which uses t

to softly clip the G/H ratio after adding the learning rate lr to it.

di = −t(t(t(t(0.25lr)) · (G/H + lr)))

Node Split Candidate Selection. In order to explain the new split evaluation
function, it helps to first look at the implementation of the standard one.

We partition the examples that reach a child of the current node according
to class as usual when building decision trees. Let Gl,i denote the sum of first
order derivatives for the examples of class i that reach the left child and use
analogous notation for second order derivatives and the right child.

For a given split, let pl denote the proportion of examples that go left and
pr the proportion that goes right. The standard split evaluation can then be
written as follows.

pl ·
c∑

i=1

−G2
l,i/Hl,i + pr ·

c∑

i=1

−G2
r,i/Hr,i

However, the new one generated by ADATE is formulated as a recursive
functional program where the function g corresponds to one of the two sums
above. ADATE generated the following novel definition of g that takes a list
of (G,H) values as its argument. We present it in the usual functional pro-
gramming notation where :: is the infix list constructor. ExtraPar1 is a new
hyperparameter.

g [] = 0.0
g( ( G, H ) :: Xs ) =

t( g Xs / ExtraPar1 ) - G * G / H

Each tree uses its own random permutation of the classes. Thus, which class
that is the first one varies from tree to tree. Apparently, the new g function
chooses to prioritize the classes according to the current permutation and the
degree of prioritization is tuned by ExtraPar1.

The overall definition of split candidate evaluation found by ADATE is as
follows, where XsL and XsR are the (G,H) values for the left and right children
respectively.

t(pl · t(t(t(t(t(g(XsL))))))) + pr · g(XsR)
Note that ADATE has generated code that squashes the g value for the left

child. The effect of this is that the evaluation focuses on the right child and that
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it does not care so much about left branches in a tree. Thus, a tree becomes
more like a rule in C5.0.

Hyperparameter Tuning Pipeline. Each stage in the pipeline is a single,
double or triple loop that simultaneously tunes one, two or three hyperparame-
ters respectively. The tuning is done using two-fold cross validation in order to
save time. Of course, this may lead to less accurate tuning. Also to save time,
almost all of the pipeline runs with just 100 trees but it has a few final stages
with 500 trees followed by a final stage that tunes the number of trees.

The stages are as follows, where “to” means “up to and including”.

1. Tune ExtraPar1 from 0 to 2 in steps of 0.2.
2. Let n be the number of trees. Tune the learning rate from 0.2/n to 5/n in

steps of 0.4/n.
3. Tune the following combinations. For each maxNumLeaves in 1, 2, 4, 8, 16,

32, 64, ∞ let minSamplesInLeaf also grow exponentially with a factor 2
from 1 to the max possible number of samples in a leaf.

4. Tune ExtraPar1 again in the same way as before.
5. Tune the learning rate again in the same way as before.
6. Tune the following for maxExpectedNumCands equal to 2 and 36. For each

maxNumLeaves in 1, 2, 4, 8, 16, 32, 64, ∞, let mtry be αm, where m is the
number of predictors and α goes from 0.4 to 1 in steps of 0.1.

7. Tune subsampling from 0.4 to 1 in steps of 0.1.
8. Tune ExtraPar1 again in the same way as before.
9. Tune the learning rate again in the same way as before.

10. Tune subsampling again in the same way as before.
11. Try regL1 equal to 0 and then from 10−6 to 216 ·10−6, growing exponentially

by a factor 2.
12. Tune regL2 in the same way as regL1.
13. Set the number of trees to 500 and tune the learning rate as above.
14. Tune ExtraPar1 again in the same way as before.
15. Tune subsampling again in the same way as before.
16. Finally, tune the number of trees from 500 to 1500 in steps of 100.

Of course, manual tuning may give better results than this automated pipeline,
but commercial machine learning practitioners may not have the time or the
patience that is needed to outperform it.

4 Experimental Results

We chose 7 UCI datasets that are well known to be useful for comparing classi-
fication algorithms and then split them with one half for training and the other
half for testing. Our motivation for choosing a rather large test set was to make
the comparison more statistically reliable.

The methodology was to use 5-fold stratified cross-validation for hyperpa-
rameter tuning on the training set and then run with the best found parameters
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Table 1. A Table presenting the information about the number of data used for training
and testing from each data set.

Data sets Training
rows

Training
columns

Testing
rows

Testing
columns

Adult 24420 15 24420 15

Bank 20593 21 20593 21

Dota 51471 117 51471 117

Flavours of Physics 33775 51 33775 51

Forest Cover Type 290505 55 290505 55

MiniB-ooNE 65031 51 65031 51

Porto Seguro 21695 59 21695 59

Table 2. Test accuracies for the 7 data sets.

Algorithms with dataset XGBoost Light GBM Cat boost H2O (Default) H2O (XGB) Classifium

Adult 0.8752 0.8754 0.8748 0.8766 0.8746 0.8752

Bank 0.9165 0.9159 0.9174 0.9159 0.9159 0.9160

Dota 0.5949 0.5938 0.5928 0.5973 0.5835 0.5975

Flavours of Physics 0.8927 0.8907 0.8928 0.8893 0.8872 0.8916

Forest Cover 0.9682 0.919 0.9601 0.9543 0.9553 0.9719

MiniBoo NE 0.9468 0.9476 0.9470 0.9456 0.9442 0.9471

Porto Seguro 0.5953 0.5935 0.5923 0.5970 0.5954 0.5985

on the entire training set. The resulting forest was then run on the test set and
all results reported in Table 2 are for test data. Table 1 briefly describes each
data set.

Adult, Bank, Dota, Forest Cover Type, and Porto Seguro have both categor-
ical and numerical predictors whereas Flavours of Physics and MiniBooNE only
have numerical ones. Forest Cover Type has seven different response classes but
the other ones are all binary. Only Adult, Bank, and Porto Seguro have missing
values.

The most relevant comparison in Table 2 is between XGBoost in H2O and
Classifium GB since they are the only gradient boosting algorithms that are
automatically tuned. As can be seen in the table, Classifium GB is more accurate
every single time albeit with a small margin sometimes.

If H2O is run in its default mode, it builds an ensemble with deep learning and
gradient boosting. However, Classifium GB still emerges as the overall winner
in the table, which means that it often also can beat automatically tuned deep
neural nets, at least on tabular data sets such as these.

The comparison between Classifium GB and the manually tuned algorithms
is less clear but Classifium GB was the overall winner for 4 out of the 7 datasets
and quite close to the winner for the other 3.

When compared with XGBoost, run after optimal hyperparameter tuning,
Classifium GB beats XGBoost for the Dota 2, Forest Cover Type, MiniBooNE,
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and Porto seguro data sets. When compared with LightGBM, also run after
optimal hyperparameter tuning, Classifium GB performed better for Dota 2,
Flavours of Physics, Forest Cover Type, and Porto Seguro. Finally, when com-
pared with CatBoost, also after optimal hyperparameter tuning, Classifium GB
outperformed it for the Adult, Dota 2, Forest Cover Type, and Porto Seguro
data sets.

4.1 Tuning of XGBoost, LightGBM and CatBoost

Since XGBoost, LightGBM, and CatBoost, in contrast to H2O and Classifium
GB, are dependent on good manual tuning, we will now provide the details of
how this tuning was done, which will help the reader to assess how reliable the
above experimental results are. Of course, the most important comparison, that
is the one between H2O and Classifium GB is not dependent on manual tuning.

We tuned XGBoost, LightGBM, and CatBoost using the following different
hyperparameter tuning pipelines, which are based on the official documentation
of the algorithms, [2,5], and [8], and some best practice presented online by
Analytics Vidyha [4], and our own working experience with the algorithms.

Our general tuning approach was to use 5-fold cross validation on the training
set and use grids covering one or two parameters. Each two dimensional grid
typically had size 5× 5 and was moved until the center point had the lowest cross
validation error rate for the training set. Then, we halved the resolution of the
grid and repeated the translation to once again get the minimum in the center.
This was done repeatedly until the experimenter was satisfied that no more
improvement was possible using the one or two parameters under consideration
and tuning then proceeded to the next stage in the pipeline.

Pipeline for Tuning XGBoost. We started with all hyperparameters having
their default values and then followed the pipeline below.

Step 1: Tune the number of trees and the learning rate together using a grid
as described above. The hyperparameter set was updated with the new values
of the number of trees and the learning rate.
Step 2: Tune max depth and min child weight together.
Step 3: Tune colsample bynode and subsampling.
Step 4: Tune gamma.
Step 5: Re-calibrate the number of trees
Step 6: Tune regularization parameters L1 and L2.
Step 7: Go back to step 1 and repeat until no improvement is found.

Pipeline for Tuning LightGBM. The following is rather similar to the
pipeline for XGBoost but given here anyway to provide a more exact description
of our tuning.

Step 1: Tune the number of trees and the learning rate.
Step 2: Tune maximum depth and minimum gain to split.
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Step 3: Tune minimum data in leaves and the number of leaves.
Step 4: Re-calibrate the number of trees.
Step 5: Tune bagging fraction and feature fraction.
Step 6: Tune regularization parameters lambda l1 and lambda l2.
Step 7: Go back to step 1 and repeat until no improvement is found.

Pipeline for Tuning CatBoost. Since CatBoost has somewhat different
hyperparameters, we used the following custom designed pipeline for it.

Step 1: Tune the number of trees and the learning rate.
Step 2: Tune the maximum depth of the trees.
Step 3: Tune the L1 and L2 leaf regularization hyperparameters.
Step 4: Tune the random strength.
Step 5: Tune the border count. Generally, the default value of this parameter
gives the best result.
Step 6: Tune the bagging temperature.
Step 7: Go back to step 1 and repeat until no improvement is found.

5 Conclusions and Future Work

We have used automatic programming to develop a novel and automatically
tuned gradient boosting algorithm that in general seems to be more accurate for
tabular datasets than the commercial H2O software even if the latter is allowed
to use both deep learning and gradient boosting. Our new algorithm is highly
competitive also with other leading boosters such as XGBoost, LightGBM and
CatBoost.

However, a unique aspect of our Classifium GB booster is that its most
essential code was not written by human beings. Instead, it was designed by
our old automatic programming system, ADATE. Thus, this is an example of
machines learning how to learn or in other words, meta machine learning.

The primary contribution of the paper is the automatically synthesized
weight update and split candidate selection, that is the two most important
parts of gradient boosting. Most likely, these new heuristics can be incorporated
also into the other gradient boosting packages and make them more accurate.

The paper also proposes two minor additions to gradient boosting, namely
new regularization and a simple but still effective hyperparameter tuning
pipeline.

Future work includes using an analogous meta machine learning approach for
other algorithms, for example LSTM, GNN or Transformers. We have already
made preliminary experiments on LSTM with amazing results.
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Abstract. This paper investigates some ideas for extending the IPSO method.
We design an IPSO-based procedure that combines the adaptive coefficients and
forced particle movements. We also propose a new criterion for the evaluation
of the forced movement. Then, using a set of benchmark functions, we test the
performance of algorithm variants based on the designed procedure. Our experi-
ments show that optimizers with forced movement mechanisms consistently find
better values of the global best solutions. Moreover, the addition of time adaptive
coefficients might benefit the algorithm’s performance.

Keywords: Particle swarm optimization · Forced particle movements ·
Adaptive coefficients · Runtime stasis

1 Introduction

Particle Swarm Optimization (PSO) [10] is a population-based stochastic optimization
technique. It has been applied to many optimization problems, and the method itself
was subject to modifications, such as introducing an inertia weight (PSO with Inertia
Weight, IPSO) [15]. This method has been a subject of analysis and improvement itself,
spawning several methods since. One of them is a forced movement PSO method (f-
PSO) [13].

Recently, new ideas for possible improvements have been proposed. First is a con-
cept of stasis [11], designed to indicate possible stagnation of the particle, that could
serve as a criterion for applying a forced movement. Moreover, a new guideline for
designing a particle swarm optimizer with time adaptive acceleration and inertia weight
coefficients has been published [3]. According to the author of the guideline, an adap-
tive PSO method should outperform the non-adaptive IPSO.

In this paper, we adapt the recent concept of stasis and utilize it as a criterion for
applying forced movement to particles. Furthermore, following a recently published
guideline for designing a time-adaptive IPSO based on the movement patterns analy-
sis (MAPSO, [3]), we design an algorithm with adaptive values of inertia weight and
acceleration coefficients. Ultimately, we combine the two ideas into a novel type of PSO
optimizer. In order to test the performance of the proposed algorithms, we use a set of
standard benchmark functions.

The text consists of seven sections. Section 2 presents the IPSO-based optimizer
with forced movements, adaptive coefficients, and a novel method combining these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13588, pp. 254–264, 2023.
https://doi.org/10.1007/978-3-031-23492-7_22
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components. In Sect. 3, we propose a new criterion for applying forced movement to
particles. Section 4 presents a procedure for generating the algorithms tested in exper-
iments. Section 5 describes the setups of the experiments, all algorithms are tested
against the benchmark functions, and the results are presented and analyzed. Section 6
compares the algorithms in the light of the results and discusses the advantages and
disadvantages of all approaches. Section 7 summarizes the presented research.

2 IPSO-Based Algorithms

Particles are the primary elements of a swarm, each representing a certain proposition
of a solution. Their movement is described by the equation

Xt+1 = Xt + V t, (1)

where Xs is a vector representing locations of particles in step s, and V s is a vector of
velocities of particles in step s.

2.1 Particle Swarm Optimization with Inertia Weight (IPSO)

Let’s consider a swarm of N particles positioned in the D-dimensional space R
D. In

the IPSO method, the position Xi and velocity Vi of particle i is updated according to
the set of equations [15]{

V t+1
i = wV t

i + c1r
t ⊗ (Li − Xt

i ) + c2s
t ⊗ (G − Xt

i ),
Xt+1

i = Xt
i + V t+1

i ,
(2)

where Li is the best location that the particle i has found so far (neighborhood best),
G—the best location found by particles overall (global best), w is an inertia weight
coefficient, c1, c2 are acceleration coefficients, rt and st are vectors of numbers gen-
erated independently from a uniform distribution over an interval of [0, 1], and ⊗ is a
Hadamard product (a component wise multiplication).

2.2 Forced Movement PSO

One of the modifications of the IPSO method is the forced movement particle swarm
optimization (f-PSO) [13,14]. The authors extend the regular IPSO with forced move-
ments (so-called “kicks”) designed to repulse the particles from their local attractors.

A vital element is defining a set of rules deciding when to apply a forced movement.
Hence, the authors define potential of the swarm.

Definition 1 (Potential). For d ∈ D, the current potential φt
d of the swarm in dimen-

sion d is

φt
d =

N∑
i=1

(|V t
i,d| + |Gd − Xt

i,d|︸ ︷︷ ︸
ϕt

i,d

) =
N∑

i=1

ϕt
i,d. (3)

φt = (φt
1, . . . , φ

t
D) is the total potential of the swarm, ϕt

i,d (partial potential) is the
contribution of particle i to the potential of the swarm in dimension d.
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Using the current potential as a criterion for applying forced movement, the formula
for movement of particles in the f-PSO method is given by the set of equations [1]

V t+1
i,d =

{
(2pt

d − 1) · γ, if ∀i∈N ϕt
i,d < δ

wV t
i,d + c1r

t
d ⊗ (Li,d − Xt

i,d) + c2s
t
d ⊗ (Gd − Xt

i,d), otherwise

Xt+1
i,d = Xt

i,d + V t+1
i,d ,

(4)

where γ—strength coefficient of the applied “kick” and δ—“kick” threshold are small
positive constants and pt is a vector of numbers generated independently from a uni-
form distribution over an interval of [0, 1].

2.3 Movement-Pattern Adaptation PSO

For some time, PSO optimizers with adaptive coefficient values have been analyzed [4,
5,7,9,12,16,18]. Intuitively, the adaptive behavior of the particles should be beneficial
to the overall performance of the swarm. However, the advantage has not yet been
proven. A regular IPSO optimizer initiated with parameters that are known to give good
results (c1 = c2 = 1.494, w = 0.729, [6]) proved to perform better than the adaptive
propositions [8].

In the recent literature, a new IPSO-based time-adaptive swarm optimizer, namely
themovement pattern adaptation PSO (MAPSO) has been proposed [3]. The move-
ment of particles in the method is given by the set of equations{

V t+1
i = wtV t

i + c1
t
ir

t ⊗ (Li − Xt
i ) + c2

t
is

t ⊗ (G − Xt
i ),

Xt+1
i = Xt

i + V t+1
i .

(5)

In order to establish a formula for the evolution of the movement coefficients, the
authors investigate the relationship between consecutive particle locations (autocorre-
lation) ρ, expected movement distance Vc and focus of the search F (i.e., the ratio of
how much should particles concentrate their search around their global best solutions
against the local best solution). Then, the authors divide the desired particle behavior
into three phases:

1. Global exploration—the particles should explore the search space dynamically and
not follow any particular direction. To achieve this kind of behavior, the particles
should take large steps (large Vc), search in all directions (low ρ), and balance the
search between local and global best solutions (F = 1).

2. Improvement—each particle is encouraged in the direction of the best improvement.
Thus, autocorrelation ρ should increase to maintain the search direction, and Vc

should decrease to prevent the movement distance from being too large.
3. Local exploration—the particles should now explore the vicinity of the best solu-

tions. The author suggests the possibility of setting large F values to concentrate the
search around the global best solution. ρ and Vc should be set to some low values.
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2.4 Forced Movement MAPSO

The MAPSO method, similarly to the regular IPSO, can also be expanded with a forced
movement mechanism. Combining the two ideas results in a novel method—the forced
movement MAPSO (f-MAPSO). The movement of particles in the method is given by
the set of equations

V t+1
i,d =

{
(2pt

d − 1) · γt
i , if ∀i∈N ϕt

i,d < δt
i

wtV t
i,d + c1

t
ir

t
d ⊗ (Li,d − Xt

i,d) + c2
t
is

t
d ⊗ (Gd − Xt

i,d), otherwise

Xt+1
i,d = Xt

i,d + V t+1
i,d .

(6)
Observe that the acceleration coefficients and the inertia weight are not the only

values that can change throughout the lifetime of the swarm. The strength of the “kicks”
γt, as well as the threshold δt, can also be adjusted accordingly.

3 Utilizing Stasis in Forced Movement IPSO Variants

Recently, a new concept of stasis [11] describing particle behavior has been introduced.
Detecting when a particle reaches a state of stasis is based on observing the evolution
of the value of its location’s variance over time. Suppose the variance stabilizes on
some constant level. In that case, it is a clear signal that the particle may have stopped
exploring the solution space, which often results in stagnation.

3.1 Relevant Definitions

Definition 2 (The particle location variance stasis time). Let ζ be a positive real
number. The particle location variance stasis time pvst(ζ) is a minimal number of
steps necessary for all subsequent differences between variances of particle locations
to be lower than ζ, that is

pvst(ζ) = min{t | |ds+1 − ds| < ζ for all s ≥ t}, (7)

where ds = V ar[Xs].

For empirical analysis, a measure including a time frame was introduced:

Definition 3 (The particle location weak variance stasis time). Let lw be a given
positive integer and ζ be a positive real number. The particle location weak variance
stasis time pwvst(ζ) is the minimal number of steps necessary to get lw subsequent
differences between variances of particle locations lower than ζ, that is

pwvst(lw, ζ) = min{t | |dt+k+1 − dt+k| < ζ

for all k ∈ {0, 1, . . . , lw − 1}}.
(8)
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3.2 Adapting Stasis to Empirical Evaluation

The purpose of stasis is to indicate possible stagnation. Thus, it could be utilized as a
condition for applying forced movement to a particle. However, it needs to be adapted
for runtime evaluation before it can be put to practical use. Hence, we propose runtime
stasis criterion.

Definition 4 (Runtime Stasis). Let lw be a given positive integer and ζ be a positive
real number. We say that the runtime stasis criterion is satisfied for particle i if:

∀d∈D ηt
i,d < ζ, (9)

where
ηt

i,d = max
k∈{1,2,...,lw}

|Dt−k
i,d (kw) − Dt−k−1

i,d (kw)| (10)

and Dt
i,d(kw) denotes the value of the empirical variance of the last kw locations of the

particle i in the dimension d:

Dt
i,d(kw) =

1
kw

kw∑
j=1

(
Xt−j

i,d − 1
kw

kw∑
j=1

Xt−j
i,d

)2

(11)

Now, we can incorporate runtime stasis into the f-PSO and f-MAPSO algorithms.

3.3 Stasis f-PSO

The runtime stasis can be utilized as a mean to determine whether to apply forced
movement to particles. The formula for the movement of particles in the stasis based
forced movement PSO method (Stasis f-PSO) is given by the set of equations

V t+1
i =

{
(2pt − 1) · γ, if ∀d∈D ηt

i,d < ζ

wV t
i + c1r

t ⊗ (Lt
i − Xt

i ) + c2s
t ⊗ (G − Xt

i ), otherwise

Xt+1
i = Xt

i + V t+1
i .

(12)

3.4 Stasis f-MAPSO

In the stasis based forced movement MAPSO method (Stasis f-MAPSO), we also
use runtime stasis to control the forced movement of particles:

V t+1
i =

{
(2pt − 1) · γt

i , if ∀d∈D ηt
i,d < ζt

i

wtV t
i + c1

t
ir

t ⊗ (Lt
i − Xt

i ) + c2
t
is

t ⊗ (G − Xt
i ), otherwise

Xt+1
i = Xt

i + V t+1
i

(13)
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4 Algorithms

All f-PSO, MAPSO, f-MAPSO, Stasis f-PSO, and Stasis f-MAPSO methods are based
on the regular IPSO. The evaluation of the forced movement condition and modification
of coefficient values are two independent actions. Thus, a comprehensive procedure can
be designed.

4.1 IPSO-based Algorithm

The first addition to the standard IPSO algorithm is the forced movement mechanism,
which is relevant when calculating a new velocity vector. Should a condition for apply-
ing a “kick” be satisfied, then, instead of the regular IPSO update, a new velocity vector
would be generated. The second addition is a decision process controlling the modifi-
cation of the inertia weight, acceleration coefficients, the strength of the forced move-
ments, and the threshold for forced movement criteria. An IPSO-based procedure con-
taining these modifications is described by Algorithm 1.

Algorithm 1. IPSO-based procedure

1: Input: Objective function f : RD → R, number of particles N
2: Output: G ∈ R

D

3: for i = 1 → N do
4: Initialize X0

i randomly
5: Initialize V 0

i with
−→
0

6: Initialize Li := X0
i

7: end for
8: Initialize: G := argmin{

Li|i∈{1,...,N}
} f .

9: repeat
10: for i = 1 → N do
11: for d = 1 → D do
12: if kick condition satisfied then � (f-PSO*)
13: V t+1

i,d := (2 · t − 1) · δ
14: else
15: V t+1

i,d := w · V t
i,d + c1i · r · (Lt

i,d − Xt
i,d) + c2i · s · (Gd − Xt

i,d)
16: end if
17: Xt+1

i,d := Xt
i,d + V t+1

i,d

18: end for
19: if f(Xi) ≤ f(Li) then Li := Xi

20: end if
21: if f(Xi) ≤ f(G) then G := Xi

22: end if
23: end for
24: ifMAPSO condition satisfied then � (MAPSO*)
25: Alter c1, c2, w, γ, δ, ζ
26: end if
27: until termination criterion are not met (iterations, stagnation etc.)
28: return G
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The evaluation of the forced movement mechanism takes place before the velocity
update (line 12), and modification of coefficients happens after the particle locations
are updated (line 24). Observe that the procedure is easily modifiable. In line 12, should
the forced movement mechanism be turned off, then the condition would always be
evaluated as false. The same can be done in line 24.

4.2 Controlling Movement Coefficient Values

Although the guideline [3] provides examples of coefficient values and their evolution
in relation to the phase the swarm is currently in, a straightforward solution for detecting
the phases is not given. In order to design theMAPSO condition in line 24, we take into
account the local best stagnation and improvement rate. For each particle, the condition
is evaluated independently.

Every particle starts in the global exploration phase. If it constantly improves the
local best solution found, it enters the improvement phase. If local best stagnation
occurs, then the particle is moved directly to the local exploration phase.

The particle remains in improvement phase as long as local stagnation does not
occur. If so happens, it enters the local exploration phase. In the local exploration phase,
the particle is given time to search locally for better solutions. If it cannot find one, the
phase is reset to the global exploration.

5 Experiments

In order to compare the efficiency of the algorithms, a series of experiments on the
standard benchmark functions (Ackley, Griewank, High Conditioned Elliptic, Schwe-
fel, Rastrigin, Rosenbrock, Sphere [17]) was performed. The experimental swarms con-
sisted of N = 10 particles, and the size of the search space was set to D = 5 dimensions.

For IPSO, f-PSO and Stasis f-PSO, the acceleration coefficients and inertia weight
were set to c1 = c2 = 1.711897, w = 0.711897 [2]. The forced movement related
parameters were γ = 1e − 3, δ = 1e − 12ζ = 1e − 12. For MAPSO, f-MAPSO and
Stasis f-MAPSO, different acceleration and inertia weight coefficients were calculated
according to the guideline [3], and γ, δ, ζ were chosen arbitrarily. For a particle in the
given phase, the coefficient values were:

1. Global exploration—the authors suggest setting Vc = 25, ρ = 0.1 and F = 1,
which results in c1 = c2 = 2.07, w = 0.73. Also we set γ = 1e − 1, δ = 1e − 6,
ζ = 1e − 6.

2. Improvement—the mean values suggested are Vc = 15, ρ = 0.8 and F = 1, which
results in coefficient values c1 = c2 = 0.39, w = 0.96. In this phase we set γ = 0,
δ = 0, ζ = 0 to prevent forced movements from occurring.

3. Local exploration—we set Vc = 5, ρ = 0.1 and maintain F = 1. The derived
coefficients are c1 = c2 = 0.5, w = 0.67. Also, we set γ = 1e − 6, δ = 1e − 36,
ζ = 1e − 36.

For each algorithm, success and failure criteria were defined. A simulation “failed”
if 100,000 iterations were completed or the global best solution did not change for 500
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iterations, or “succeeded” if the function value evaluated for the global best particle
location fell below a predefined threshold.

Each algorithm was run 300 times for every test function. The following were
measured: “Iterations” (the mean number of steps until the success condition is met),
“Time” (the mean time taken to reach the success condition), “Success rate” (percent-
age of successful runs), and “Iter/Sec” (short for iterations per second, measuring the
mean number of time steps completed in one second). The results are summarized in
Table 1.

Table 1. Experimental results

Function IPSO f-PSO f-PSO(S) MAPSO f-MAPSO f-MAPSO(S)

ACKLEY Threshold: 1e−4 Success rate 0.95 0.94 0.96 0.65 1.0 1.0

Time 0.27 0.63 0.62 0.26 0.79 0.82

Iterations 171 172 177 146 288 271

Iter/Sec 663 278 292 593 371 340

GRIEWANK Threshold: 1e−4 Success rate 0.0 0.0 0.0 0.0 0.0 0.0

H.C.ELLIPTIC Threshold: 1e−10 Success rate 0.5 1.0 0.98 0.43 1.0 0.58

Time 0.34 1.19 1.38 0.49 1.03 0.98

Iterations 292 387 449 330 483 428

Iter/Sec 884 332 335 706 482 461

RASTRIGIN Threshold: 1e−4 Success rate 0.07 0.05 0.07 0.02 0.80 0.20

Time 0.31 0.64 0.81 0.35 2.38 3.15

Iterations 281 226 310 372 1104 1351

Iter/Sec 899 365 388 1079 481 446

ROSENBROCK Threshold: 1e−4 Success rate 0.68 0.81 0.83 0.65 0.93 0.78

Time 3.08 16.95 17.2 0.95 3.73 3.2

Iterations 4093 4225 4268 863 1433 1190

Iter/Sec 1360 249 248 951 400 378

SCHWEFEL Threshold: 1e−4 Success rate 0.03 0.03 0.03 0.03 0.04 0.03

Time 0.18 0.43 0.51 0.31 0.26 0.37

Iterations 156 149 162 232 109 141

Iter/Sec 920 350 335 690 436 398

SPHERE Threshold: 1e−10 Success rate 1.0 1.0 1.0 1.0 1.0 1.0

Time 0.20 0.56 0.56 0.21 0.36 0.38

Iterations 168 167 170 140 142 144

Iter/Sec 870 300 306 709 403 385

5.1 Results Analysis

Analyzing the results, a few general observations can be made. The inclusion of
forced movement mechanisms severely affected the number of iterations per second.
f-MAPSO (potential-based) had the top success rates in 6 out of 7 test functions.
IPSO and MAPSO did not achieve the highest success rate for any test function except
the Sphere function. Furthermore, by analyzing the results for each function, one can
observe that:
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– For the Ackley function, almost all algorithms achieved almost 100% success rate.
Only MAPSO struggled with this function but required the least time and iterations.

– For the Griewank function, none of the algorithms reached the success threshold.
– For the H.C.Elliptic function, the f-PSO, Stasis f-PSO, and f-MAPSO were the most
successful. However, IPSO and MAPSO required the least time for success.

– For the Rastrigin function, the “adaptive” algorithms performed better than the “non-
adaptive” ones. f-MAPSO achieved by far the highest success rate.

– For the Rosenbrock function, the algorithms with forced movement mechanism suc-
ceeded more often than IPSO and MAPSO.

– For the Schwefel function, no significant difference in success rate can be observed
for the algorithms. MAPSO required the least amount of time and almost the least
amount of iterations to reach success.

– For the Sphere function, all algorithms succeeded in every run. IPSO required the
least time, while MAPSO needed the least iterations.

6 Discussion

In this part of the paper, we discuss the impact of forced movement extensions, adap-
tive coefficients, and stasis as a criterion for applying forced movements to the IPSO
method.

6.1 Forced Movement Extensions

Firstly, we compare the effectiveness of PSO versions with and without forced move-
ment extensions, that is, f-PSOs and f-MAPSOs vs. IPSO and MAPSO. For most of the
test functions (Ackley, Elliptic, Rastrigin, Rosenbrock), optimizers with a forced par-
ticle movement mechanism achieved a higher success rate. On the other hand, the cal-
culation of forced movement mechanisms requires additional computational resources.
This resulted in a lower count of iterations per second and an extended time (Ack-
ley, Elliptic, Rastrigin, Rosenbrock, Schwefel, Sphere) to reach success. A question
arises about whether the additional resources should be spent on the forcing mecha-
nism instead of adding more particles to the swarm.

6.2 Adaptive Coefficients

Secondly, we compare the effectiveness of PSO versions with and without adaptive
coefficients, that is, IPSO vs. MAPSO, f-PSO vs. f-MAPSO, Stasis f-PSO vs. Stasis
f-MAPSO. The introduction of adaptive movement coefficients did not significantly
affect the results, apart from the Rastrigin function, for which the success rate was con-
siderably higher. The challenge in designing an algorithm with adaptive coefficients is
finding the correct recipe to control those values. A broader set of experiments must be
performed and more ideas tested to confirm or deny the possible benefits of introducing
the adaptive coefficients to IPSO and its forced movement variants.
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6.3 Runtime Stasis Criterion

Thirdly, we compare the two forced movement criteria (potential and stasis), that is,
f-PSO vs. Stasis f-PSO and f-MAPSO vs. Stasis f-MAPSO. The runtime stasis crite-
rion proved to work as a mechanism triggering forced movements. However, it had a
higher calculation complexity than the potential-based criterion and was at times infe-
rior (Elliptic, Rastrigin) in terms of success rate. On the other hand, the potential-based
mechanism requires a fully connected topology for communication between particles.
Limited communication may affect the efficiency of this approach. Meanwhile, the run-
time stasis criterion is calculated independently for each swarm member, which could
be especially useful when the number of particles is limited, and they explore the search
domain isolated from one another.

7 Summary and Conclusions

In this paper, we investigated extending the IPSO method with forced movement mech-
anisms and adaptive coefficients. Based on the recently published guideline [3] for
designing a PSO optimizer with adaptive coefficient values and the theory of the f-
PSO method [13,14], we designed an IPSO-based f-MAPSO method which combines
forced movements with adaptive coefficients. Furthermore, we introduced runtime sta-
sis as a new criterion for determining when to force particle movement.

Next, we designed a procedure containing adaptive coefficients and forced move-
ment mechanisms. We showed how to derive IPSO, MAPSO, f-PSO, and f-MAPSO
algorithms from the procedure. We tested the performance of the algorithms with a
series of experiments using a set of benchmark functions: Ackley, Griewank, High Con-
ditioned Elliptic, Schwefel, Rastrigin, Rosenbrock, and Sphere [17]. The results were
collected and summarized in Table 1, analyzed in Sect. 5 and discussed in Sect. 6.

The main novelties of this paper are (1) designing a movement pattern adapta-
tion PSO optimizer according to the recently published guideline [3], (2) proposing
an adaptation of the concept of stasis [11] and utilizing it as a criterion for applying
forced movements in the f-PSO method and (3) presenting a way of combining adap-
tive parameters and forced particle movements into a new method (f-MAPSO).

More analysis will be done on forced movements and adaptive coefficients in future
work. The presented methods of choosing the correct thresholds for coefficients for
given swarm lifetime phases are not optimal. The optimizers were only tested on a
narrow set of optimization problems. Their applicability and performance in real-world
problem applications are still unexplored.
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Abstract. The application of evolutionary algorithms in continuous
optimization is a well-studied area of research. Nevertheless, recently
there have been numerous works associated with surrogate-assisted
approaches. This paper introduces LQ-R-SHADE: R-SHADE extended
with a quadratic surrogate model. The principles of LQ-R-SHADE and
its enhancements over the base R-SHADE are discussed in detail. The
extension consists of the three main components: an archive of sam-
ples, a prescreening meta-model, and an initialization supported by the
meta-model. In order to take advantage of the meta-model utilization
as early as possible, a cascade of models is proposed: linear, quadratic,
and quadratic with interactions. The proposed algorithm relies on multi-
ple generation of mutated versions of each individual. The prescreening
meta-model is then applied to select the most promising candidates for
further evaluation with the use of a (costly) true fitness function. The
performance of LQ-R-SHADE is evaluated on the well-known COCO
BBOB benchmark and compared with the baseline R-SHADE method
and its extension SHADE-LM, showing the advantage of the proposed
algorithm. Besides numerical assessment, the impact of particular meta-
model components on the obtained results is examined.

Keywords: Metaheuristics · R-SHADE · Quadratic model

1 Introduction

Unconstrained continuous global optimization in a black-box scenario is an
intensively researched but still under-explored area. While many optimization
approaches and experimental designs are task-specific, there is still a lot of inter-
est in the application of general-purpose algorithms, due to their flexibility and
ease of adaptation. Evolutionary algorithms are a good example of such meth-
ods – they are both simple in their design and easy to hybridize with various
optimization approaches.

The process of natural selection inspired a set of metaheuristics that consist
of the following three phases: mutation, crossover, and selection. Genetic Algo-
rithm (GA) [11] is the first and the best-known representative of this group.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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However, Differential Evolution (DE) algorithm [16] with its various extensions
(e.g. external memory or parameter adaptation) has proven more useful in con-
tinuous optimization. The above-mentioned DE enhancements have been incor-
porated into two successive algorithms: Adaptive Differential Evolution with
Optional External Archive (JADE) [23] and Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [17]. In addition, a restart mech-
anism has been applied in SHADE leading to Success-History Based Parameter
Adaptation for Differential Evolution with Restart (R-SHADE) [18].

Another group of powerful evolutionary metaheuristics in the continuous
optimization domain utilize the Covariance Matrix Adaptation (CMA). The
baseline Covariance Matrix Adaptation Evolution Strategy (CMA-ES), like DE,
has several well-known extensions, primarily referring to the population size
and the restart management (e.g. IPOP-CMA-ES [2], BIPOP-CMA-ES [8], KL-
BIPOP-CMA-ES [20]).

In this work we intend to integrate a global surrogate model into R-SHADE.
Furthermore, we require the integration to be straightforward and not increase
the computational cost considerably. We propose the LQ-R-SHADE algorithm
that extends R-SHADE with an archive of samples and a linear-quadratic global
surrogate model. Briefly, the extension consists of the following two steps. Firstly,
the number of offspring generated by each individual in the mutation phase is
greater than the default value of 1. Secondly, the surrogate model prescreens
the offspring (trial vectors) to evaluate only the best candidates in the selec-
tion phase. Since the number of samples used for model estimation is limited,
the computational and memory cost per iteration is constant during the whole
optimization run.

The remainder of the paper is structured as follows. Section 2 presents the
related literature, including a description of the original R-SHADE. Section 3
introduces the principles of the LQ-R-SHADE algorithm. Experimental results
utilizing the BBOB testbed are presented in Sect. 4. Finally, conclusions and
plans for future work are discussed in Sect. 5.

2 Related Work

Even though it is hardly possible to determine a priori whether utilization of
surrogate extensions would become profitable for a given problem, numerous
works concerning surrogate-assisted optimization have been proposed recently.
Predominantly, the utilization of meta-models assumes an expensive optimiza-
tion scenario, in which the number of function evaluations is relatively small
(e.g. [5,6,13]). At the same time, many low-complexity algorithms are extended
with selected surrogate approaches, however, the resulting increase in complexity
is generally noticeable.

In particular, the CMA-ES family of algorithms has been extended with com-
plex meta-models (e.g. Gaussian Process [4]), as well as less computationally
intensive linear and quadratic models [3,12]. Nevertheless, frequent parameter
values estimation of, even low-complexity, meta-model can visibly increase com-
putational load, and therefore the recently proposed LQ-CMA-ES method [9]
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utilizes global surrogate meta-models of simple forms: linear, quadratic, or quad-
ratic with interaction. This approach has inspired us in designing LQ-R-SHADE.

Likewise, the family of DE-like algorithms can be augmented with meta-
models (e.g. Gaussian Process [15]). M-GAPSO [22] hybridizes PSO, DE, and
meta-models. Moreover, M-GAPSO utilizes modified surrogate-assisted initial
sampling, which has also been incorporated into the LQ-R-SHADE method pro-
posed in this paper. Another algorithm that directly integrates R-SHADE and
meta-models is computationally-efficient SHADE-LM [14], which uses a linear
model and does not apply any prescreening component.

The related work [21] presents an in-depth analysis of psLSHADE – another
LSHADE extension that utilizes a pre-screening mechanism whose initialization
in not supported by the meta-model, and which is not in the form of a model
cascade. Furthermore, the meta-model employed in psLSHADE’s pre-screening
mechanism is more complex than that of LQ-R-SHADE and includes inverse
transformations of variables.

2.1 R-SHADE

R-SHADE is a population-based optimization method that extends the SHADE
algorithm with the restart mechanism. R-SHADE, like SHADE, adapts its con-
trol parameters during the optimization run and, similarly to its predecessor
JADE [23], utilizes an external archive. R-SHADE has multiple variants differ-
ing mainly in the mutation phase implementation. Its version presented in this
section refers to current-to-pbest/1 variant.

In each iteration g, R-SHADE maintains a population P g = [xxxg
i , . . . ,xxx

g
N ] of N

individuals. Each individual xxxg
i = [xg

i,1, . . . , x
g
i,D] is represented by a vector of D

coordinates. The external archive A preserves parent vectors that were replaced
with successful trial vectors. The archive’s size |A| equals a·N (a is a parameter).
A randomly selected element is removed from A if the size is exceeded.

In the mutation phase, each individual xxxg
i is transformed to vvvgi according to

the following equation:

vvvgi = xxxg
i + F g

i (xxxg
pbesti

− xxxg
i ) + F g

i (xxxg
r1i

− xxxg
r2i

) (1)

where xxxg
pbesti

is selected randomly from the best N · p individuals in the current
iteration g (p is a parameter). F g

i is a scaling factor designated independently
for each individual i, in each iteration g, using Couchy distribution (4). Indices
r1i ∈ {1, . . . , N} and r2i ∈ {1, . . . , N + |A|} are selected randomly assuming
that r1i �= r2i (r1i corresponds to an individual from the population P , r2i to
an individual from the union of population P and external archive A). Both r1i
and r2i are designated independently in each iteration g, for each individual i.

The crossover phase is responsible for recombining the mutated vector vvvg
i with

the parent vector xxxg
i to obtain a trial vector uuug

i . Each coordinate d ∈ {1, . . . , D}
in the trial vector is randomly chosen from either the mutated individual or the
parent one. Crossover rate (CRg

i ) denotes the probability of crossover and is
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designated independently for each individual i in each iteration g, using Nor-
mal distribution (5). Moreover, one coordinate drand ∈ {1, . . . , D} is randomly
selected for crossover with probability 1. Precisely, each coordinate of the trial
vector uuug

i = [ug
i,1, . . . , u

g
i,D] is described by the following equation:

ug
i,d =

{
vg
i,d, if rand(0, 1) ≤ CRg

i or d = drand

xg
i,d, otherwise

(2)

Finally, the trial vector uuug
i is evaluated by the fitness function f , and its value

f(uuug
i ) is compared with the corresponding value f(xxxg

i ) of the parent vector xxxg
i

to select the next generation population:

xxxg+1
i =

{
uuug
i , if f(uuug

i ) < f(xxxg
i )

xxxg
i , otherwise

(3)

Parameter adaptation in R-SHADE promotes scaling factor and crossover
rate values that have led to solution improvement in previous iterations. The
memory consists of H scaling factor entries Mg

F,m and H crossover rate entries
Mg

CR,m (m ∈ {1, . . . , H}) [17].
According to Eq. (1) and Eq. (2), each individual i, in each iteration g has its

own parameter values F g
i and CRg

i assigned. Both of them are generated ran-
domly (using Cauchy distribution and Normal distribution, resp.). Distribution
parameters are randomly sampled (from memory) pair (Mg

F,ri
,Mg

CR,ri
), where

ri ∈ {1, . . . , H} (cf. Eqs. (4)–(5)). Besides, if the obtained value of F g
i is smaller

than 0, the random generation is repeated. If it is greater than 1, it is truncated
to 1. The value of CRg

i is truncated from both sides to the range [0, 1].

F g
i = randCauchy(M

g
F,ri

, 0.1) (4)

CRg
i = randNormal(M

g
CR,ri

, 0.1) (5)

In each iteration, all pairs of (F g
k , CRg

k), k ∈ S, S = {1, . . . , N} that suc-
ceeded in the trial vectors generation are recorded. Then, the weighted Lehmer
mean (6) of these values is determined and placed in memory. Sk denotes the
recorded value of either F g

k or CRg
k. The improvement Δfk (or Δfl) is under-

stood as |f(uuug
k) − f(xxxg

k)|. A round-robin algorithm is applied to determine the
pair of elements in memory to be replaced by a new pair.

meanWL
(S) =

∑|S|
k=1 wkS

2
k∑|S|

k=1 wkSk

, wk =
Δfk∑|S|
l=1 Δfl

(6)

R-SHADE is restarted when at least one of the following three condi-
tions occurs: (1) population convergence, (2) population values convergence, (3)
stagnation of the best-so-far solution. The first condition takes place if there
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exists dimension d′ ∈ {1, . . . , D} for which the following inequality is fulfilled
(εx = 10−12):

max
i=1,...,N

{xg
i,d′} − min

i=1,...,N
{xg

i,d′} < εx max
i=1,...,N

{|xg
i,d′ |} (7)

The second one occurs when the following inequality is fulfilled (εf = 10−12):

max
i=1,...,N

{f(xxxg
i )} − min

i=1,...,N
{f(xxxg

i )} < εf max
i=1,...,N

{|f(xxxg
i )|} (8)

The third condition is fulfilled if the best-so-far solution has not been updated
in the last 500 · D fitness function evaluations.

2.2 Contribution

The main contribution of the paper is the proposition of a novel continuous
optimization algorithm LQ-R-SHADE that improves R-SHADE performance on
expensive optimization problems.

There are three claims underlying the LQ-R-SHADE design: (1) the com-
putational cost of the meta-model usage should be nearly constant during the
entire optimization run; (2) the meta-model should be relatively simple and not
over-parameterized; (3) the meta-model should not affect the baseline R-SHADE
parameter adaptation scheme.

3 LQ-R-SHADE: Surrogate Assisted R-SHADE

LQ-R-SHADE1 (Algorithm 1) is an extension of the R-SHADE algorithm pre-
sented in Sect. 2.1. It utilizes a meta-model that operates in the background
and prescreens trial vectors, so as only those with the best surrogate values are
further evaluated. Additionally, a meta-model supported initialization is incor-
porated into LQ-R-SHADE to guide the population to promising regions in the
first iteration. Both meta-model related components: supporting initialization
and prescreening require the use of an archive of previously evaluated samples.
These three key components of the proposed solution are further described in
Sects. 3.1, 3.2, and 3.3.

3.1 Archive of Samples

An archive of samples stores already evaluated samples, starting right from the
beginning of the algorithm’s execution. Coordinates xxxg

i and the respective func-
tion values f(xxxg

i ) are inserted into the archive after each fitness function (f.f.)
evaluation.

If the archive reaches its maximum capacity, the worst sample (in terms of
f.f. value) is removed. If the currently considered (just evaluated) sample is worse
1 LQ-R-RSHADE is maintained as an open source project available at: https://

bitbucket.org/mateuszzaborski/lqrshade/.

https://bitbucket.org/mateuszzaborski/lqrshade/
https://bitbucket.org/mateuszzaborski/lqrshade/
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Algorithm 1. LQ-R-SHADE high–level pseudocode
1: Set all parameter values N, MF , MCR, p, a, H, Na, Ns (see Table 2)
2: while evaluation budget left do
3: Initialize Mg

F,m and Mg
CR,m memory entries with default values of MF and MCR

4: P 0 = [xxx0
1, . . . ,xxx

0
N ] � Population initialization using Algorithm 2

5: g = 1
6: while evaluation budget left do
7: Generate N · Ns mutated vectors vvvg,j

i using Eq. (9)
8: Generate N · Ns trial vectors uuug,j

i using Eq. (10)
9: Estimate meta-model parameter values (see Table 1)

10: Calculate N · Ns surrogate values fsurr(uuug,j
i )

11: For each individual i designate the best trial vector uuug,best
i

12: for i = 1 to N do
13: Do selection of uuug,best

i using Eq. (11)
14: Add uuug,best

i and f(uuug,best
i ) to the archive using rules from Sec. 3.1

15: end for
16: Update memory with Mg

F,m and Mg
CR,m using Eq. (6)

17: if restart required then break
18: end if
19: g = g + 1
20: end while
21: end while

than the worst one in the archive, it is not inserted. In addition, the insertion
procedure checks whether a sample with exactly the same coordinates or f.f. value
already exists in the archive. In either case, the currently considered sample is
not inserted.

3.2 Prescreening Meta-model

The prescreening meta-model is a cascade structure composed of the three mod-
els, summarized in Table 1, whose parameter values are estimated using Ordinary
Least Squares [19]. The simplest model is linear and requires at least dflin sam-
ples to be estimated. Then, a quadratic model without interactions is used if
the number of samples is equal to at least dfquad. The most complex one is a
full quadratic model with interactions that requires at least dffull samples to be
constructed.

Table 1. A description of the prescreening meta-model cascade.

Name Form Degrees of freedom

Linear Xlin = [1, x1, . . . , xD] dflin = D + 1

Quadratic Xquad = [Xlin, x2
1, . . . , x

2
D] dfquad = 2D + 1

Full quadratic Xfull = [Xquad, x1x2, x1x3, . . . , xD−1xD] dffull = 2D + D(D−1)
2

+ 1



LQ-R-SHADE: R-SHADE with Quadratic Surrogate Model 271

In LQ-R-SHADE the mutation phase is altered compared to R-SHADE.
Each individual i, randomly generates Ns mutated vectors vvvg,ji , j ∈ {1, . . . , Ns}
according to Eq. (4) but with different F g,j

i , r1i, r2i, and pbesti values, i.e.

vvvg,ji = xxxg
i + F g,j

i (xxxg,j
pbesti

− xxxg
i ) + F g,j

i (xxxg,j
r1i

− xxxg,j
r2i

) (9)

Then, in each iteration g, each of the Ns mutated vectors vvvg,ji coming from a
given individual i uses the same CRg

i value in the crossover phase. Finally, the
trial vector uuug,j

i = [ug,j
i,1 , . . . , ug,j

i,D] is obtained as:

ug,j
i,d =

{
vg,j
i,d , if rand(0, 1) ≤ CRg

i or d = drand

xg
i,d, otherwise

(10)

where ∀j∈{1,...,Ns} rand(0, 1) = const. and drand = const.
A meta-model is built just before the selection phase. For each individual i,

the surrogate values fsurr(uuug,j
i ) of all Ns trial vectors uuug,j

i are determined and
only the best trial vector uuug,best

i in terms of surrogate function value fsurr(uuug,j
i ) is

evaluated using a true f.f., what boils down to the following selection procedure:

xxxg+1
i =

{
uuug,best
i , if f(uuug,best

i ) < f(xxxg
i )

xxxg
i , otherwise

(11)

Utilization of the prescreening meta-model does not affect the scaling factor
and the crossover rate adaptation procedures. F g,best

i and CRg
i values associated

with the trial vector uuug,best
i are treated in the same manner as those associated

with uuug
i in R-SHADE. Therefore, the solution improvement in the selection phase

requires exactly the same actions to be performed as in the R-SHADE algorithm.

3.3 Initialization Supported by the Meta-model

Initial sampling is not purely random. In the first iteration (g = 0), two indi-
viduals’ coordinates (xxx0

dflin+1 and xxx0
dfquad+1) are replaced with the meta-model

optima (linear and quadratic). Parameter estimation is performed in the same
way as in the prescreening meta-model. In the case of a linear model, each coor-
dinate takes the value of either the lower or the upper search boundary. In the
case of a quadratic model, the search boundary points and a parabola peak are
considered. Algorithm 2 describes the modified initial sampling procedure.

4 Experimental Results

The performance of LQ-R-SHADE is evaluated using the well-known Black-Box
Optimization Benchmarks (BBOB) testbed from the COmparing Continuous
Optimizers (COCO) platform [10]. The benchmark contains 24 continuous noise-
less functions for D = {2, 3, 5, 10, 20, 40}. The assumed search space is [−5, 5]D

for all problems. Functions are divided into 5 classes based on their proper-
ties: (1) separable functions, (2) functions with low or moderate conditioning,
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Algorithm 2. LQ-R-SHADE model initialization
1: g = 0
2: P 0 = [xxx0

1, . . . ,xxx
0
N ],xxx0

i ∼ U(xmin, xmax)
3: for i = 1 to N do
4: if i == dflin + 1 then
5: Build linear model (using samples from the archive)
6: Set xxx0

i to linear model optimum, x0
lin,d ∈ {xmin, xmax}

7: else if i == dfquad + 1 then
8: Build quadratic model (using samples from the archive)
9: Set xxx0

i to the quadratic model optimum, x0
quad,d ∈ {xmin, xmax, xpeak}

10: end if
11: Evaluate xxx0

i using the fitness function
12: Add xxx0

i and f(xxx0
i ) to the archive

13: end for

(3) functions with high conditioning and unimodal, (4) multi-modal functions
with adequate global structure, and (5) multi-modal functions with weak global
structure. All test problems are described in detail in [7].

In the experiments, LQ-R-SHADE is compared with the baseline R-SHADE
and SHADE-LM. To ensure a meaningful comparison, all parameter values not
related to the surrogate model are the same in both algorithms – see Table 2,
and follow the original R-SHADE parameterization [18].

Expected Running Time (ERT) is the performance measure used by default
for this benchmark. ERT is understood as the time needed to reach the target
fitness function value for the first time. The time is expressed in the number
of fitness function evaluations. For a better presentation, the final number of
evaluations is divided by the problem dimension D and then logarithmized. The
target fitness function value is defined using the absolute difference Δf from
the fitness function optimumfopt. The lower Δf is, the more difficult the target
f target = fopt ± Δf is to achieve.

Table 2. R-SHADE and LQ-R-SHADE parameters. r(·) returns the argument rounded
to the nearest integer.

R-SHADE & LQ-R-SHADE LQ-R-SHADE only

Population size N r(3.96 · D) Archive size Na max(N, 2dffull)

Initial MF 0.38 Surrogates per individual Ns 10

Initial MCR 0.94

Best rate p 0.09

Archive rate a 0.12

Memory size H 11

Experimental results for all 24 functions f1 − f24 are jointly presented in
Fig. 1. The plots show empirical cumulative distribution functions (ECDF) of
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Fig. 1. Cumulative results of LQ-R-SHADE (denoted as LQ-R-SH) and init-R-SHADE
(denoted as init-R-SH) versus R-SHADE (denoted as R-SH) and SHADE-LM (denoted
as SH-LM) for all 24 functions on 2D, 3D, 5D, 10D, 20D and 40D, resp., with 103 · D
optimization budget.

ERT. ECDF value of 1 means that all targets f target have been achieved at the
given ERT level. The best 2009 line represents the best ERT observed during
BBOB 2009 competition(best 2009 is a baseline result used in the current COCO
version 2.4). It is computed for each selected target independently. The evalu-
ation was made using an expensive scenario, i.e. evaluation budget was limited
to 103 · D evaluations.

In addition, the performance of LQ-R-SHADE with initialization supported
with the meta-model but without the use of the prescreening meta-model is
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checked. This configuration is marked as init-R-SHADE. Experimental results
of SHADE-LM are obtained from the COCO BBOB web data archive [1].

In the context of the entire evaluation budget (103·D), LQ-R-SHADE outper-
forms all other algorithms in 5, 10, 20 and 40 dimensions. For 2 and 3 dimensions,
all algorithms end up with comparable performance. More importantly, LQ-R-
SHADE is noticeably more efficient between 101 · D and 102 · D optimization
budgets in all dimensions. The meta-model initialization alone (init-R-SHADE
results) improves the performance in the early optimization phase compared to
the original R-SHADE. However, incorporating the prescreening meta-model is
crucial for performance improvement from the perspective of the entire opti-
mization run. SHADE-LM is designed for experiments with greater numbers of
evaluations (non-expensive scenarios), what explains its noticeably poorer per-
formance compared to LQ-R-SHADE under the assumed experiment conditions.

5 Conclusions

In this work, we propose the LQ-R-SHADE algorithm which is a surrogate-
assisted version of the well-known R-SHADE method. LQ-R-SHADE extends
R-SHADE with the archive of samples, the initialization supported by the meta-
model, and the prescreening meta-model. The method scales quasi-linearly in
time with the number of fitness function evaluations.

LQ-R-SHADE distinctly outperforms the baseline R-SHADE and its exten-
sion SHADE-LM in the expensive scenario. Furthermore, experimental results
proved that both meta-model components (prescreening and initialization) are
relevant, but the prescreening part is essential for the performance improvement.

The future work concerns finding more effective meta-model parametriza-
tions, including the archive size (Na) and the number of surrogates per individual
(Ns). Temporary deactivation of meta-model in case of inaccurate predictions
seems to be a promising direction, as well.
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Abstract. Overloading is one of the faults that occur very often in the operation
of electrical machines. Therefore, a continuous monitoring and diagnosis for this
is necessary in safety-critical applications. This paper presents a sound analysis
system used for detecting and classifying induction motor and power transformer
overload levels with a microphone. Three acoustic features and six classification
models are evaluated. The obtained results show that this is a promising way to
monitor electrical machines overload.

Keywords: Sound analysis · Electrical machine overload ·Machine learning

1 Introduction

Electrical machines, including electric motors, generators, and transformers, can be
found from homes to industries, transportation, agriculture, etc. Because of their wide
diffusion and popularity, electrical machines’ stable and smooth operations are very
essential. For example, the total cost of the Hydro-Quebec incidents is estimated to be
USD 6 billion [1], or an eight-hour interruption can result in an average loss of nearly
USD 94,000 for medium and large industrial manufactures in the United States [2].

Unfortunately, there are many factors causing the failures of transformers, such as
electrical breakdown (caused mainly by contaminated oil, thermal ageing, repetitive
excessive voltage, mechanical deformation), lightning, insulation, loose connection,
improper maintenance, moisture, overload, and other. For induction motors, they are
bearing (e.g., wear out of bearings), stator (insulation damages, for instance), rotor (bro-
ken rotor bars or cracked rotor end-rings), and other faults (eccentricity, for example).
Readers can refer to [3] for a literature review on methods for assessing the condition of
power transformer. Another literature review about condition monitoring of induction
motors can be found in [4].

Amongpower transformer and inductionmotor failures, overloading canhave serious
consequences. Power transformer overload can result in overheating for the oil and the
core which in turn accelerate the aging process, cause internal damage, or even lead to
the outage. When a motor is overloaded, it can draw more current, causing excessive
temperatures. A too high temperature may burn motors. Besides, overload can result in
tooth breakage, or wear in roller bearings and gears.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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An overloadmonitoring system for inductionmotorswas proposed in [4] and another
one for power transformers in [3]. Both are based on sound analysis. In this research, the
two systems are combined into a unified system. This new one is to detect and classify
levels of power transformer overload and induction motor overload. The advantage of
the combination is that we do not have to switch manually to electric motor mode or
transformer mode, especially if a telemonitoring is needed. The levels to be classified
of power transformer are 90% of load (underload), 100% of load (full load), and 110%
of load (10% overload). Those of induction motor are 100%, 110%, 120%, 150%, and
200%. It should be mentioned that an induction motor with 10% overload can still run
about 30 min, while a 100% overload can last 10 min only. The approach of using
sound analysis has three advantages. Firstly, sounds of overload appear earlier than its
consequences (excessive temperatures, tooth breakage, etc.), so detecting an abnormal
sound can prevent these consequences. Secondly, a sound sensor and its installation and
maintenance are inexpensive compared to other sensors, such as dissolved gas sensor.
Andfinally, it does not need to stop themotor during the detection, therefore, a continuous
and online monitoring system is available.

The organization of the paper is as follows. Section 2 informs the studies recently
presented in the literature that refer to induction motor and power transformer overload
detectionmethods. Section 3 is about the corpus used in this research. Section 4 describes
in detail the proposed method, experiments, and results. Section 5 concludes the paper
and presents future developments.

2 Related Works

Sounds can be used to detect somemechanical and electrical problems of electricmotors,
such as unbalance, bearing, broken rotor bars, eccentricity, soft foot, shorted rotor coils,
tooth damage in the gearbox. Transformer overload can be detected by monitoring
current, temperature, water content of oil, vibration signal. These signals are usually
processed by artificial intelligence. For more details on published works concerning
induction motor overload and power transformer overload, readers can refer to [4] and
[3], respectively.

To our best knowledge, no study of using sounds to recognize induction motor and
power transformer overload levels has been published so far. Sample Heading (Third
Level). Only two levels of headings should be numbered. Lower level headings remain
unnumbered; they are formatted as run-in headings.

3 The Database

The object of our study is a 63MVA power transformer and a 4kW three-phase induc-
tion motor. Sounds of underload, full load and overload operations are recorded by a
microphone. This microphone is connected directly to the audio input of a laptop, so
the recorder is the laptop’s sound card. The distance between the electrical machine
and the microphone is about 2 m. Nonstop soundtracks are acquired with the following
parameters: sampling frequency is 44.1 kHz, bit resolution is 16, and mono channel.
Levels of overload and durations of recorded sounds are in Table 1 and Table 2.
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Table 1. Power transformer overload sound corpus.

Overload level 90% (Underload) 100% (Full load) 110% (10% overload)

Duration (s) 292 306 305

Table 2. Induction motor overload sound corpus.

Overload
level

100% (Full
load)

110% (10%
overload)

120% (20%
overload)

150% (50%
overload)

200% (100%
overload)

Duration
(s)

137 131 142 146 112

4 The Experiments

4.1 The 8-Class Classifier

Fig. 1. Average accuracy rate plots (n-o-f varying from 1 to 10) of six models. Horizontal axes
are n-o-f. Vertical axes are accuracy (in %). Vertical bars are standard deviations.

In the first phase, we try to categorize sound signals directly into 8 classes mentioned
in Sect. 3. Therefore, an eight-class classifier should be used. It includes a set of dis-
criminant features and a classification model. Our discriminant features consist of F0,
Mel-Frequency Cepstral Coefficients (MFCC, 12 coefficients, [5]), and Band Energy
Ratio (BER, 4 bands, [6]). These very popular features in audio signal processing form
a starting feature set of 17 elements. Then the Principal Component Analysis (PCA,
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[7]) is applied to reduce the dimension of our feature vector without losing too much
information. Essentially, the PCA extracts the important information from the original
feature set to rebuild them as a set of new orthogonal features (principal components),
and hence to gain a better representation of classes by reducing the number of features
(n-o-f). To find the appropriate number of new features, we test six classification models
for frame classification: artificial neural network (ANN [8]), decision tree (DT [9]), fuzzy
inference system (FIS [10]), Gaussian mixture model (GMM [11]), k-nearest neighbors
(kNN [12]), and support vector machine (SVM [13]).

Table 3. Parameters of classification models.

Model Parameter(s)

ANN 20 hidden neurons, feedforward network, gradient descent training algorithm

DT At least 10 observations

FIS Backpropagation

GMM 2 mixtures, diagonal covariance matrices

kNN 10 neighbors

SVM Error – correcting output codes

Fig. 2. Average accuracy rate plot of GMM. Vertical bars are standard deviations.

For each classification model, the n-o-f varies from 1 to 10, and the 10-fold cross
validation is applied to find the best n-o-f for that model. The accuracy rate is employed
in model evaluation for 1024-sample frames. This criterion is also used to select best
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parameter(s), if any, for each model. The chosen parameters are the ones resulting in
highest accuracy rates. Those parameters are in Table 3. Plots of average accuracy rates
depending on n-o-f are in Fig. 1. It is noticeable that these plots are of the same trend:
start at a very low rate (corresponding to one feature), then rise rapidly when the n-o-f
increases to 5, and finally go nearly horizontally. The operations of these models are
stable, because the standard deviations are rather small for each n-o-f. Of these models,
GMM performs the best, so we keep experimenting with it by increasing n-o-f.

Table 4. Confusion matrix of GMM with 12 features.

Induction motor Power transformer
100% 110% 120% 150% 200% 90% 100% 110%

Tr
ue

 c
la

ss

In
du

ct
io

n
m

ot
or

100% 56.73 29.69 9.84 4.09 0.062 0 0 0 
110% 25.73 53.06 10.28 8.23 0.25 0 0 0
120% 29.70 30.74 21.80 19.27 1.21 0 0 0
150% 3.20 7.09 8.35 76.22 8.25 0 0 0
200% 0 0.13 0.80 8.01 88.35 0 0 0

Po
w

.
tra

ns
. 90% 0 0.017 0.057 0.024 0 99.88 0.072 0 

100% 0 0 0 0 0 0.008 99.99 0
110% 0 0 0 0 0 0 0 100

Predicted class

Table 5. Standard deviation.

Induction motor Power transformer
100% 110% 120% 150% 200% 90% 100% 110%

Tr
ue

 c
la

ss

In
du

ct
io

n
m

ot
or

100% 1.54 2.20 1.01 0.37 0.10 0 0 0
110% 1.26 1.11 0.86 0.44 0.18 0 0 0 
120% 1.09 0.93 0.71 1.06 0.36 0 0 0
150% 0.54 1.19 0.91 1.65 1.43 0 0 0
200% 0 0.14 0.32 0.45 0.96 0 0 0

Po
w

.
tra

ns
. 90% 0 0.036 0.055 0.039 0 0.051 0.052 0

100% 0 0 0 0 0 0.017 0.016 0 
110% 0 0 0 0 0 0 0 0

Predicted class
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To improve the performance of GMM, the evaluation is conducted with n-o-f varying
from 11 to 17. The outcomes (Fig. 2) show that the best n-o-f is 12, resulting in an accu-
racy of 74.50%, although the effect of this value is not so outstanding compared to others.
But this is just the average accuracy of 8 classes. To better understand the efficiency of
this model for each class, we consider the confusion matrix (Table 4) corresponding to
the n-o-f of 12. The standard deviations of elements in Table 4 are shown in Table 5.
The first thing we notice is that this classifier works very well for power transformer. In
particular, the accuracy of the 110% class of this electrical machine is 100% with zero
standard deviation. Out of 36 off-diagonal elements of power transformer, 31 are equal
to 0. As for induction motor, the story is not so good. Its diagonal elements vary from
21.80 to 88.35. The greatest off-diagonal element reaches 30.74 (the 110–120 element).
It can be seen that the accuracy of power transformer’s signals contributes mainly to the
average accuracy of this 8-class classifier. In short, this model is not suitable for the task
of directly categorizing 8 sound classes.

Fig. 3. The two-stage classifier.

A new classifier is needed to get better results. Because power transformer sounds
are classified very well, the classification should be divided into two stages (illustrated
in Fig. 3). In the first stage, the unknown sound is classified as induction motor or power
transformer. In the second stage, if it comes from induction motor, it is further classified
by the motor sound classifier in [4]. Otherwise, the transformer sound classifier in [3] is
employed. The first stage therefore needs a motor/transformer discriminator.

4.2 The Motor/Transformer Discriminator

A discriminator is actually a two – class classifier. Because the motor sound classifier
[4] and the transformer sound classifier [3] do not use PCA, we do not apply PCA to
this discriminator either. The full set of discriminant features (MFCC, BER, and F0) is
evaluated first. Then each feature is evaluated separately. Among the six classification
models mentioned in Sect. 4.1, DT is the simplest one in terms of testing. So, this model
(with at least 10 observations) is tested first using the 10-fold cross validation. The
obtained results are provided in Table 6.
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Table 6. DT-based discriminator’s performance.

Feature set MFCC, BER, & F0 MFCC BER F0

Accuracy (%) 100 100 93.65 82.18

Standard deviation (%) 0 0 3.22 2.40

If all three discriminant features are used, the accuracy is 100%and the accompanying
standard deviation is 0%. These results are still the same if only MFCC is used. If less
features are used (BER only or F0 only), the discriminant efficiency reduces. And the
corresponding standard deviations increase, but are still quite small, without affecting
the stability of this discriminator. Since 12 MFCC features are less than 17 features of
the full set (MFCC, BER, and F0), while their performance is the same, only MFCC is
chosen for the discriminator. It should be noted that fewer featuresmake the discriminator
simpler.

Since the results obtained with DT are already good enough, the other five models do
not need to be evaluated anymore. Finally, the chosen motor/transformer discriminator
is based on MFCC and DT.

4.3 The Overload Monitoring System

This system is expected to monitor electrical machines every one second, so the clas-
sification of one-second segments is evaluated in the final phase. The number of 1-s
segments is fewer than that of frames of 1024 samples, so in this stage, the “leave-one-
out” cross validation is applied to classify 1-s segments. Because the sampling frequency
is 44100 Hz and the overlap is 512 samples, each 1-s segment includes 86 frames of
1024 samples. To categorize a 1-s segment, “the winner takes it all” tactic is applied.
For example, if a 1-s segment of a motor sound has 30 frames of 100%, 10 of 110%, 25
of 120%, 15 of 150%, and 6 of 200%, it will be recognized as an 100% one.

The confusion matrix of classification performed by our system (Fig. 3) is presented
in Fig. 4. It is obvious that the system gains an error rate of 0: all off-diagonal entries
are zero. Based on this excellent performance, the classifier in Fig. 3 is selected for our
overload monitoring system. To classify overloads, sounds of the electrical machines are
collected by amicrophone. For each sound signal, aHanningwindow is applied to frames
of 1024 samples, the overlap is 512 samples, then F0, MFCC, and BER are computed
from each frame and fed to the input of the proposed system. One second of sound takes
our algorithm (installed in a laptop with Intel Core i5 and 8 GB of RAM) about 0.1 s
to process. The output of this system will tell that the recorded signal came from one
of eight levels of overload of electrical machines. By detecting and classifying overload
condition, this system can come to the root of some problems of electricalmachines, such
as tooth breakage, overheating or internal damage. It is difficult to compare the accuracy
of our approach to the other ones, because we cannot find any published reports of
accuracy of electrical machine overload sound classification so far.



286 N. Cong-Phuong and N. T. Ninh

Fig. 4. Confusion matrix of the overload monitoring system. M: motor; T: transformer.

5 Conclusions

This paper presents a method for classifying sounds of electrical machine overload using
sound analysis. Audio signals are recorded by a microphone placed near an electrical
machine to monitor its overload. A feature set (including F0, MFCC, and BER) and six
classification models are evaluated. Experiments prove that DT, kNN, and SVM fit our
two-stage classifier. Our proposed system can be an online monitoring method because
it does not need to stop electrical machines. This system requires a microphone, so it is
inexpensive. It is also flexible, meaning that if we can collect sounds of other faults, we
can upgrade it by retraining it. Filtering techniques should be applied if this method is
moved to industrial environment to reduce noises. Future developments can be related
to other levels of overload and other faults, such as eccentricity, bearing, rotor bars, etc.
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Department of Systems and Computer Networks, Wroc�law University of Science
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Abstract. The main motivation for the presented research was to inves-
tigate the behavior of different convolutional neural network architec-
tures in the analysis of non-stationary data streams. Learning a model
on continuously incoming data is different from learning where a com-
plete learning set is immediately available. However, streaming data is
definitely closer to reality, as nowadays, most data needs to be analyzed
as soon as it arrives (e.g., in the case of anti-fraud systems, cybersecurity,
and analysis of images from on-board cameras and other sensors). Besides
the vital aspect related to the limitations of computational and memory
resources that the proposed algorithms must consider, one of the critical
difficulties is the possibility of concept drift. This phenomenon means that
the probabilistic characteristics of the considered task change, and this,
in consequence, may lead to a significant decrease in classification accu-
racy. This paper pays special attention to models of convolutional neu-
ral networks based on probabilistic methods: Monte Carlo dropout and
Bayesian convolutional neural networks. Of particular interest was the
aspect related to the uncertainty of predictions returned by the model.
Such a situation may occur mainly during the classification of drifting
data streams. Under such conditions, the prediction system should be
able to return information about the high uncertainty of predictions and
the need to take action to update the model used. This paper aims to
study the behavior of the network of the models mentioned above in
the task of classification of non-stationary data streams and to deter-
mine the impact of the occurrence of a sudden drift on the accuracy and
uncertainty of the predictions.

Keywords: Continous learning · Concept drift · Bayesian
convolutional neural network · Deep learning

1 Introduction

One of the still current problems of continual learning is the classification of non-
stationary data streams [3]. Methods dedicated to their analysis require efficient
classifiers, which will identify the occurrence of the so-called concept drift on the
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one hand, and on the other hand, correctly respond to emerging changes in prob-
abilistic characteristics of the classification task [2]. It is also worth mentioning
the need for restoration analysis [13], which aims to assess the speed of model
adjustment to the new probability characteristics - restoration time and maxi-
mum performance loss, which measures the prediction performance degradation
after the drift. This paper focuses on analyzing the behavior of convolutional neu-
ral networks based on probabilistic methods (Monte Carlo dropout and Bayesian
convolutional neural networks) in case of concept drift occurrence.

Let us first briefly characterize the techniques used in this work. The Bayesian
neural network describes a model in which probability distribution parameters
replace the real-number weights of individual neurons. In the traditional view,
a neural network model N represents some function y = N(x), where y is the
output of the model’s prediction based on input x. Each layer of the network per-
forms a linear transformation of the previous layer’s output using the weights
in that layer and then a nonlinear transformation of the result of this opera-
tion using an activation function. The process of learning the network involves
matching weights and biases in the layers using a backpropagation algorithm
to minimize the cost function [11]. From a statistical point of view, this pro-
cess corresponds to the use of the point-estimate method. A Bayesian neural
network is a network in which, instead of point-estimate, interval estimation of
model parameters is performed, and point values of parameters are replaced by
parameters of probability distribution [10]. The process of learning such a net-
work takes place using the rules of Bayesian inference. The method of learning
Bayesian neural networks known as Bayes by Backprop was proposed by Charles
Blundell in [1]. Like a neural network using Monte Carlo dropout, inference using
a Bayesian neural network can be treated as inference using an ensemble of clas-
sifiers. However, a single model is trained. By replacing point values with distri-
bution parameters, each prediction made with a Bayesian model will result from
a model with different weight values in the layers, again allowing a large number
of predictions to be collected and acted upon. The need for regularization mech-
anisms in the learning process of neural networks arises from their tendency to
overfit the training data. To this end, many methods are used to prevent net-
works from overfitting, one of the most popular of which is a dropout. G. E.
Hinton proposed this technique in [6]. Dropout also finds application in aspects
of deep learning other than preventing overfitting. It has been successfully used
in classifying data streams with recursive drift [5]. Monte Carlo dropout is a
method proposed by Yarin Gal and Zoubin Ghahramani in [4]. According to the
original concept, dropout is based on randomly switching off neurons in selected
network layers during the model learning process on training data. The method
proposed by the authors assumes leaving the dropout active also during the clas-
sification of new samples. The paper’s authors demonstrated that the method
”can be interpreted as a Bayesian approximation of another well-known proba-
bilistic model: the deep Gaussian process.” Leaving neurons to drop out when
inferring new, previously unseen samples actively allows multiple, potentially
different prediction results to be obtained with a single model without explicitly
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modifying it-performing a prediction on given sample dozens or even hundreds
of times using such neural network results in each prediction being the result of
a model with a different internal structure (with a different set of active neu-
rons), which corresponds to a situation where a set of different neural networks
makes the predictions. This method provides information on the uncertainty of
the predictions without making trade-offs between computational efficiency and
time and classification quality. Bayesian machine learning approaches seem to
be particularly relevant in image processing and image classification tasks. In
medicine, for example, information about the uncertainty of model prediction
results is crucial. However, due to its mode of operation, Bayesian inference in
neural networks leads to at least a doubling of the number of model parameters
(replacing the point value with the mean and variance or standard deviation of
the distribution). This resulted in the need for a new approach to model train-
ing and a backpropagation algorithm that considers the problem of a very large
number of parameters.

This paper aims to study the behavior of conventional neural networks in the
task of classifying nonstationary data streams and to determine the effect of the
occurrence of a sudden drift on the accuracy and uncertainty of the predictions.
It is particularly important to evaluate the decision uncertainty, which can be
helpful when designing concept drift detectors for the mentioned models.

2 Experimental Evaluation

The study was conducted to investigate the behavior of conventional neural
networks in classifying non-stationary data streams and determine the effect of
the occurrence of a sudden drift in the stream on the accuracy and uncertainty
of the predictions. In particular, the experiments are designed to answer the
following research questions:

RQ1: What effect does a sudden drift have on convolutional networks’ classifi-
cation accuracy and behavior?

RQ2: How high is the prediction uncertainty, as determined by the measured
prediction entropy, mean value and variance of the softmax function response?

RQ3: What effect does the choice of optimizer have on model learning and the
consequences of drift?

RQ4: What is the maximum decrease in classification accuracy, and how long
does it take for the model to reach prediction accuracy before drift occurs?

2.1 Setup

Data Streams. In order to perform the experimental evaluation two datasets
were used for the experiments to form data streams: CIFAR10 [9] and MNIST
[12]. Each stream consists of 6000 samples. Drift in the data stream produced
from the CIFAR10 dataset was induced by switching samples from the automo-
bile and deer classes to samples from the truck and horse classes at a given point
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in time (with switching back to the first set of classes for recurrent drift), while
drift in the data stream from the MNIST dataset was simulated by introducing
significant random noise in the samples.

Analyzed Methods. During the experiments, the following neural network
configurations were compared:

– CNN with SGD and Adam optimizers (Normal CNN)
– CNN using Monte Carlo dropout with SGD and Adam optimizers (Monte

Carlo CNN)
– Bayesian CNN with SGD and Adam optimizers (Bayesian CNN)

Hyperparameters of Models and Experimental Environment. The fol-
lowing values were set for the hyperparameters of the models under study and
the testing environment itself: the group size of samples taken from the stream
was set to 32, while the number of model learning epochs on a single group was
set to 50. These determinations were made keeping in mind the characteristics of
learning from stream data regarding the speed of data processing by the model.
SGD and Adam methods were chosen as optimizers for the convolutional net-
works. The default value of the optimizers parameter of 0.001 was used during
the experiments. The ReLU function was used as the activation function in the
convolutional layers.

Reproducibility. The research was conducted in the Python environment ver-
sion 3.6.5, using the TensorFlow (v. 1.15.0) and Keras (v. 2.3.1) libraries. The
Bayesian convolutional network was implemented using the TensorFlow Proba-
bility library (v. 0.8.0). Code written by Robert Romijnders was used to imple-
ment metrics related to the uncertainty of the network predictions: entropy,
variance, and mean response of the softmax function1. All experiments presented
in this article can be replicated independently using the code available in the
GitHub repository2.

Experimental Protocol. All experiments were based on the Test-Than-
Train [8] evaluation protocol. The estimation of the classification accuracy and
the parameters determining the prediction uncertainty (entropy, mean value,
and variance of the softmax function response) consisted of performing the pre-
diction with the tested model 100 times on the current group of samples. The
tested parameters were then calculated for each sample in the group, and in
the next step the results were averaged over the entire group. This approach,
based on performing the prediction multiple times, made it possible to study
the behavior of the models taking into account the properties of Monte Carlo
dropout-based and Bayesian neural networks.

2.2 Results

Three experiments were conducted during the study. In the first, a data stream
generated from the CIFAR-10 database with one injected sudden drift was ana-
lyzed. In the second, two sudden drifts were added. The third one analyzed
1 https://github.com/RobRomijnders/weight uncertainty.
2 https://github.com/marcin-jasinski/cnn data streams.

https://github.com/RobRomijnders/weight_uncertainty
https://github.com/marcin-jasinski/cnn_data_streams
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Fig. 1. Results for CIFAR-10 with single drift. From top to botom: average prediction
accuracy, prediction entropy, average softmax response values, softmax variance for
SGD (left) and Adam (right) optimizers.

the data stream generated from the MNIST database. For each experiment, the
results of mean accuracy, entropy, mean value, and variance of the softmax func-
tion response for two Bayesian network models with Stochastic Gradient Descent
(SGD) [14], and Adam [7] optimizers are presented. The detailed results of the
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Fig. 2. Results for CIFAR-10 with double drift. From top to botom: average prediction
accuracy, prediction entropy, average softmax response values, softmax variance for
SGD (left) and Adam (right) optimizers.

experiments are included in Fig. 1, 2 and 3, while the aggregated results are
summarized in Tab. 1.
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Fig. 3. Results for MNIST dataset. From top to botom: average prediction accuracy,
prediction entropy, average softmax response values, softmax variance for SGD (left)
and Adam (right) optimizers.

2.3 Lessons Learned

Based on the results of the experiments, let’s try to answer the formulated
research questions.
RQ1: What effect does a sudden drift have on convolutional networks’
classification accuracy and behavior?
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Table 1. Maximum loss and restoration time [%]

Maximum loss [%] Restoration time (s)

Bayesian (Adam) 93,75 0,0909

Bayesian (SGD) 100,00 0,1230

Monte Carlo (Adam) 84,38 0,0053

Monte Carlo (SGD) 87,50 0,1337

Normal (Adam) 75,00 0,5508

Normal (SGD) 84,38 0,1390

The sudden drift resulted in a rapid decrease in classification accuracy and an
equally rapid increase in prediction uncertainty. However, the models tested were
able to readjust to the new probabilistic characteristics quickly for both single
and double drift, with the jumps in accuracy and increase in model uncertainty
being smaller for the recursive data stream.
RQ2: How high is the prediction uncertainty, as determined by the
measured prediction entropy, mean value, and variance of the softmax
function response?

The concept drift caused a spike in the uncertainty of the predictions provided
by the models. Conclusions regarding prediction uncertainty should be based
on a synthesis of information from all three parameters discussed. The results
of the research indicate a much higher prediction uncertainty of the Bayesian
convolutional network model compared to the network based on Monte Carlo
dropout. It results from the fact that the network learning process is approached
differently, and twice as many parameters have to be fitted under the same
learning conditions on streaming data. The predictions were very accurate with
low uncertainty for the Monte Carlo network using the Adam optimizer. The
sudden change in entropy and the response values of the softmax function when
drift occurs indicate a high potential for their use in constructing drift detectors
for models operating on streaming data.
RQ3: What effect does the choice of optimizer have on model learning
and the consequences of drift?

The selection of an appropriate optimizer has a key impact on the learn-
ing behavior of the model on dynamic streaming data. Convolutional networks
using the Adam optimizer had higher classification accuracy and lower predic-
tion uncertainty. It should be noted that this effect is less pronounced in the case
of the Bayesian network, where changing the optimizer during learning on the
set of CIFAR10 did not significantly affect the classification accuracy. However,
the model behaved more stable and reacted faster to changes resulting from the
occurrence of drift. An exception to this is a study conducted on the MNIST
dataset, during which the Bayesian network quickly overfitted. This indicates
the likely need for additional model regularization methods in this application.
In addition, the models using the SGD optimizer underperformed when learned
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on the data stream from the MNIST set. A possible improvement in the perfor-
mance of these models could be achieved by increasing the number of samples
in the group or increasing the number of model learning epochs.
RQ4: What is the maximum decrease in classification accuracy, and
how long does it take for the model to reach prediction accuracy before
drift occurs?

A sudden drift led to a rapid drop in the classification accuracy of the models,
whose measured values for a single drift ranged from 75% for a simple convo-
lutional network, about 85% for a Monte Carlo network to as much as 100%
for a Bayesian network. When drift occurred, the models almost completely lost
their ability to generate correct predictions about new data. At the same time,
this effect was very short-lived – the models under study were able to adjust to
the unknown samples extremely quickly, ultimately causing the moment of drift
occurrence to show up as a slight drop in the average prediction accuracy plot
of the models, with no significant effect on the overall accuracy of the models,
again – this effect is smaller for the network with the Adam optimizer.

3 Conclusion

This article aimed to investigate conventional neural networks’ behavior in clas-
sifying non-stationary data streams. We would also determine the impact of a
sudden drift on the accuracy and uncertainty of the predictions. The experi-
ments conducted allowed us to analyze the behavior of neural networks in the
classification of non-stationary data streams, both with single and recursive drift.
Based on the measured entropy of the predictions, the mean value, and the vari-
ance of the softmax function response, the level of uncertainty in the predictions
generated by the models was determined, and the maximum decrease in clas-
sification accuracy and the time required to restore the model were estimated.
The behavior of networks using different optimizers was also compared. The
analysis of the obtained results indicates that the study of the obtained char-
acteristics could provide a solid basis for proposing a new unsupervised drift
detector, which would consider prediction entropy or softmax response for the
analysis in terms of drift occurrence. The authors identified this issue as the
most important direction for further work.

However, realizing the study’s limited scope, it may be pointed out that con-
volutional networks using Monte Carlo dropout with Adam optimizer may be
the best model for classifying non-stationary data streams. The average classi-
fication accuracy obtained by this model was higher than that of the Bayesian
convolutional network model with the same optimizer, and the obtained predic-
tions were subject to much lower uncertainty. At the same time, due to the way
the model was constructed, it had a lower cost and speed of data processing
(half the number of parameters compared to the Bayesian network), which is an
additional advantage in applications for stream data analysis.
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Abstract. As the war against cybercrime continues, security experts
and attackers improve their skills and tools to accomplish their desired
goal. Botnets have been the method of choice for a majority of cyber
attacks, from phishing and spam campaigns to full scale distributed
denial of service (DDoS) attacks. The application of machine learning
methods to help fight cybercrime has shown promising results. Unlike
other domains where machine learning (ML) has been applied, there is
another human being capable of using the same tools to counter the secu-
rity experts. ML models are more effective at analyzing a large amount
of traffic than human beings, but providing a black box response is not
sustainable against dynamic human opponents. In this paper we begin
to describe a method that presents the underlying patterns discovered
by ML methods that allow researchers and experts to gain the insight
needed to effectively design more robust responses to the ever-changing
threats with which they are faced.

Keywords: Machine learning · Botnets · Cyber security

1 Introduction

1.1 Machine Learning and Botnets

Machine learning approaches have been applied to various problems in mul-
tiple domains. These applications have been met with varying success [1]. As
researchers employ these widely successful models to cybersecurity, their ability
to identify patterns in data proved to be quite effective in recognizing threats.
However, unlike most other fields where machine learning has been applied,
cybersecurity has one unpredictable and resourceful variable, the attacker. Being
able to access similar tools, hardware, software and now artificial intelligence,
getting a high accuracy on a model is not a solid indicator of whether or not
this system will be able to defend against new unseen threats or even withstand
updated versions of the malware from the attackers.

Despite their outstanding performances in various fields, machine learning
models are quite susceptible to adversarial learners as exemplified in [2]. These
adversarial learners can generate examples for which the model will almost
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always produce the incorrect classification. For some datasets, the adversar-
ial examples are so close to the actual examples that even the human eye is
unable to distinguish between them [3]. There is no exception to this fact when
applied to cybersecurity. Classifiers designed to detect malware, are easily fooled
by well-crafted adversarial examples [2]. With attackers also having these tools
at their disposal and new malware specimens being released into the wild, the
effects of adversarial examples have raised questions about the applicability of
these algorithms. Researchers in one study suggest that although learning tech-
niques obtain excellent performance on the test set, they are not learning the
true underlying concepts that relate to the correct label [3]. In a 2016 study [4],
researchers showed how two different high scoring algorithms on the same data
set arrive at their decisions. Even though both used the same data set, the set of
features selected as the most influential was quite different. Other limitations of
developing machine learning models for cybersecurity include data, the length
of time and how frequent a model would have to be retrained [5].

Models alone will not be sufficient in fighting cyber threats [6]. Though more
effective than some rule-based approaches of the past [7], AI will not provide
a silver bullet to solve our security needs. Our approach aims to give security
experts and researchers the ability to interact and learn from the algorithms they
implement. With the ability for models to explain their results, it is anticipated
that security experts will be able to gain insight into the structure and behavior
of the data set and this will thereby lead to the creation of stronger and more
robust models.

In the sections that follow, Sect. 2 presents related work in the area of explain-
ing machine learning models applied in various fields. In Sect. 3 we propose the
theoretical framework for our approach to explaining models related to botnets.
Section 3.2 we discuss the work done thus far in implementing our proposed
method. Finally in Sect. 4 we conclude with a summary and future work.

2 Related Work

The application of machine learning techniques has proven to be quite successful
in several fields over the years. The major limitation to the widespread applica-
tion of these methods in some fields is as a result of their black-boxed nature,
their inability to be easily interpreted [8]. Some researchers have done work to
remove this limitation and have identified many benefits to interpretable models.
In 2016 Ribeiro et al. [8] proposed a technique LIME that explains the prediction
of any classifier. This method learns an interpretable model based on the one
created from the original classifier which is said to be easy to understand and
locally faithful.

A decision boundary is learned by a non-linear model, that is the original
classifier f . It does this by sampling instances in close proximity to the target
instance. It then uses the classifier f to get the predictions of the surrounding
instances. The main difference between our proposed method and LIME is the
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implementation and how explanations are generated. LIME creates an inter-
pretable model, our method creates an ensemble of classifiers. LIME is inter-
preted based on features and how they relate to the instances sampled. Our
method explains a model based on the impact different features have on a given
instance.

Robnik-Šikonja and Kononenko [10] suggested two levels of explanation, the
domain level, and the model level. The domain level explanation was not achiev-
able unless true causal relationships and probability distributions were known
in advance. The EXPLAIN method takes the i-th input variable and calculates
its importance, by comparing the difference in the model’s prediction with and
without that variable. The size of the difference indicates the importance of that
feature. Unlike EXPLAIN, IME considers all subsets of the selected attribute.
This results in an infeasible time complexity requiring 2a steps increasing expo-
nentially. However, this can be practically implemented by sampling the feature
space.

Bohanec et al. [9] applied two different model interpretation techniques to
a real-world business problem. This study shows just how useful interpretable
models are to help make decisions. With this, human experts were able to eval-
uate and update their beliefs as they interact with these models. EXPLAIN and
IME were the two models used in this study originally presented by [10] in 2008.
Both methods determine the significance of an attribute in similar ways. They
did this by simulating the absence of the target attribute after which estimation
is made based on the results of the simulation. The result of the method is a
break down of the contribution of each attribute.

In 2016 Lou et al. [11] proposed an explanation method for automatic expla-
nation without losing prediction accuracy. They used this explanation method
for predicting whether or not patients will develop type 2 diabetes within the
next year. The authors used a champion machine learning predictive model, from
the practice fusion diabetes classification competition. This model was formed
by combining eight boosted regression trees and four random forests using a
generalized additive model with cubic splines. Using the model produced by this
setup and the diabetes patents dataset, the authors then applied an associative
rule classifier to learn associations between variables, based on the output of
the model. The association classifier did this without affecting the accuracy of
the model and without consideration for its accuracy. This method creates an
explanatory method from an existing non-explanatory method. Building on the
MPML method our model is able to explain the output it produced without
creating another model.

3 Proposal - Model Explanation via MPML

The foundation of our approach finds its root in multi-perspective machine learn-
ing (MPML). MPML is primarily supported by two concepts in the machine
learning literature, Ensemble learning, and Multi-view learning. We will build on
these concepts to explain the MPML approach and thereby effectively describe
its application in explaining predictions.
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3.1 Multi-perspective Machine Learning

The perspective is the core concept of MPML. A clear definition of perspectives
is required for it to be applied effectively. A perspective is a group of related fea-
tures, a subset taken from the set of all features. In [11] the authors describe the
benefits of what they call a multi-view learning strategy. This learning strategy
describes how the learning problem is split. The perspective selected will define
the learning strategy for any MPML task.

Let T be a specific learning problem. Where each element tx is a feature of
the learning problem T .

T = {t1, t2, t3...tn}
Let P be the set of perspectives of problem task T

P = {p1, p2, p3...pn}
where px ⊂ T

for example p1 = t1, t4, t7, t9
Let L be the set of learning strategies that can be applied to solving problem

task T using one or more perspectives.

L = {l1, l2, l3...ln}

l1 = {p1, p2, p3...pn}

lx ⊂ P

These perspectives are selected based on the preference of the researcher
(if they are created manually) or the bias of the method describing feature
relations (if it is done automatically). Two learning strategies may arise simply
based on how the problem is viewed. If, for example, we are looking at botnet
detection, one may decide or the algorithm may find correlation between time-
related features, such as; t1 - the number of times a particular server connection is
attempted within a given time period and t2 - the number of times a particular
service is requested within a given time period. Another correlation may be
found between host-based features, such as; t3 - number of data bytes transferred
from source to destination in a single connection and t4 - number of data bytes
transferred from destination to source in a single connection. For one type of bot
it may be that t1 and t2 find themselves in the same perspective, simply because
of how this bot (botx) was designed to operate, the relation between these two
features is strong and the same can be said for t3 and t4.
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However, bots may operate completely differently, we may find that the con-
nection to a particular server is quite in sync with the number of bytes transferred
from source to destination. We may then find t1 and t3 being in one perspective
and t2 and t4 in another. Hence the learning strategy defines the foundation of
the approach. The aim of this method is to be able to capture and explain these
differences.

3.2 Proposed Method

The structure of the proposed method is seen in Fig. 1. A typical MPML setup
with the explanation being possible at each level. For any given instance the
system is able to explain why the given prediction was made, by identifying the
perspective with the greatest impact score and by suggesting a combination of
features that had the highest individual impact score on each perspective. Each
perspective focuses on a single aspect of the learning problem. Understanding
how each perspective affects the prediction y gives a general explanation of that
particular instance. For example (see Fig. 2) if perspective one (p1) is the most
influential perspective for predicting a particular type bot and this perspective
(p1) is made up of time-related features, then this would provide good insight
into the core function or behavioral pattern for that bot.

Fig. 1. Model overview

By going deeper than the perspective level we can identify what features are
most influential inside the most influential perspective. This now provides deeper
insight into what type of time-based feature is most suited for predicting this



Explaining Machine Learning Predictions in Botnet Detection 303

threat. Understanding how the individual features relate to each other is crucial
to understanding the underlying behavior of the threat.

Fig. 2. A single Perspective p1

P is the set of all perspectives for a given learning Task T .

P = {p1, p2, p3...pn}
Each perspective px contains a subset of features tx from the learning task

T .
px = {t1, t2, t3...tn}

The model generated by applying a learning algorithm S to any perspective
px is represented as:

Sx(px)

The set of all models S produced from each perspective in P is denoted by:

Q = {S1(p1), S2(p2), S3(p3)...Sn(pn)}
These models are then combined using a combination method C and the final

result (the prediction) is represented by y

y = C(S1(p1), S2(p2), S3(p3)...Sn(pn))

y = C(Q)

We then attempt to explain y using a technique similar to the EXPLAIN
method by identifying which perspective, when removed, produces the greatest
change in y. To calculate the change in y we use the confidence of the model for
the predicted value of y. For instance, in the case of botnet detection the result
y can be either BOT or NOT. We record the confidence of the model for each
class. If the model (with all perspectives) produces a y with 90% confidence that
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it is a bot (BOT) and 10% that it is not (NOT) the confidence of the correct
class is noted, in this case 90%. The result after removing a perspective (Sx(px))
would be stored in ŷ. If the confidence of ŷ is 70% that it is a bot and 30% it
is not a bot, then the change in y stored in d would be 90 - 70 = 20. Sx(px)
has the greatest impact on y if the resulting ŷ produced with the exception of
Sx(px) has the greatest difference from y ∀px ∈ P .

ŷ = C(Q − {Sx(px)})

y − ŷ = d

This is done recursively from the output y until the strongest feature in the
strongest perspective is identified. The value of d also denotes the direction the
model is heading in when Sx(px) is removed. If removing Sx(px) brings ŷ closer
to the correct prediction, then Sx(px) has a negative impact on the result y for
that particular instance, if the opposite is true then Sx(px) has a positive impact
on y. Both impacts are useful in guiding a user to a greater understanding of
the nature of the problem being studied.

What knowledge can be gained from -ve impact vs +ve impact? Let’s look
at an actual example. The botnet dataset used was provided by the Canadian
Institute for Cybersecurity [12]. The details of how the data was cleaned and
assembled can be found in [13]. We start by generating the relationship between
the features. The relationship score describes the correlation between two fea-
tures and is useful in grouping similar features into a perspective. The details
of generating perspectives can be found in [14]. The aim was to generate an
explanation of the prediction for a single instance.

Table 1. Test sets

Test Set # No. of Inst ML Algo # of
Perspectives

Majority Vote
Accuracy

Combination
ML Accuracy

Perspective Accuracy Accuracy without
PerspectivesP0 P1 P2 P3

Testset#1 9,000 GNB 2 82.647% 82.756% 82.756% 58.469% – – 81.693%

Testset#2 1,000 GNB 4 75.2% 93.939% 76.969% 54.545% 86.363% 60% 83.636%

Testset#3 1,000 SVM 4 97% 94.545% 93.303% 62.424% 94.545% 76.969% 92.727%

Testset#4 9,000 SVM 2 96.813% 94.231% 94.231 71.311% – – 93.776%

In the following series of tests (Table 1), we will run the model with the
following variables. The aim of these tests is to see whether or not the conclusions
drawn by the model will remain consistent across the various changes in these
variables:

– The number of instances used in preparing the model.
– The specific learning algorithm used.
– The particular instance being focused on.
– The number of perspectives generated.
– The method used to combine the perspectives.
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The number of instances indicates the number of flows included in the test.
With this variable we observed how the model behaved with different numbers of
training instances. The number of instances given was split into train and test set,
thirty-three percent (33%) was used for testing and the rest (67%) for training.
The learning algorithm is an important factor in the learning process with each
method having it’s own strengths and weakness and specific characteristics that
affect how the data is interpreted. The instance being focused on remained in the
same position throughout each test. The number of perspectives generated was
dependent on the MPML method of grouping features, varying the number of
instances will influence how features relate and the effects of these perspectives
on the model was an important observation. How the perspectives are combined
to obtain the final result was also taken into consideration.

Table 2. Test results from test set 1

Test # Instance # Highest +ve Impact
Perspective

Highest −ve Impact
Perspective

Highest +ve
Impact Feature

Highest −ve
Impact Feature

Prediction Class

1 497 (RBot) P1 (88.964%) P0 (64.347%) var byte
(+22.807)

byte exc
(−31.394)

BOT BOT

2 342 (RBot) P1 (90.280%) P0 (0.053%) var byte
(+20.352)

src port
(−98.241)

NOT BOT

3 345 (RBot) P1 (88.810%) P0 (0.00025%) var byte
(+23.014)

dst port
(−99.978)

NOT BOT

4 27 (Virut) P0 (99.685%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.024)

BOT BOT

5 218 (Virut) P0 (99.685%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.024)

BOT BOT

6 227 (Virut) P0 (99.257%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.101)

BOT BOT

7 29 (Neris) P0 (97.610%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.187)

BOT BOT

8 28 (Neris) P0 (99.292%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.097)

BOT BOT

9 54 (Neris) P0 (99.296%) P1 (90.246%) var byte
(+28.028)

percent push
(−0.096)

BOT BOT

10 8 (Normal) P0 (99.990%) P1 (9.662%) src port
(+89.731)

var byte
(−20.346)

NOT NOT

11 112 (Normal) P0 (94.405%) P1 (99.999%) std byte
(+89.731)

src port
(−11.145)

NOT NOT

12 620 (Normal) P1 (10.691%) P0 (0.521%) pack push
(+0.023)

var byte
(−22.311)

BOT NOT

From the list of randomly selected instances in Table 2 we examine instance
#29 from test set 1 (Table 1) in detail. By applying the Gaussian Naive Bayes
algorithm in a traditional manner the model generated produced an accuracy
of 81.693%. Test case 1 used 9,000 instances and produced two perspectives.
Using the majority vote method we combined the resulting models from these
2 perspectives which produced an accuracy of 82.647%. Both perspectives are
listed below along with their individual accuracy.

Perspective #0 - 82.756%

– Average byte per packet per flow (avg byte)
– The protocol used in the flow (protocol)
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– The number of packets exchanged in the flow (pack exc)
– Source port (src port)
– Destination port (dst port)
– The number of bytes exchanged in flow (byte exc)
– Packets with the push flag set to 1 (pack push)
– The percent of packets pushed (percent push)

Perspective #1 - 58.469%

– Standard deviation of number of bytes per packet in flow(std byte)
– Variance of bytes per packet per flow (var byte)

We also record the confidence of the predictor on each class for the instance.
The confidence of the combined perspectives are:

– Confidence for Not - 6.071440117785192%
– Confidence for Bot - 93.92855988221498%

By removing one perspective at a time we obtain the impact score d for each
perspective. The impact score was determined based on the increase or decrease
in the confidence of the entire model for the correct class. This was done by
calculating the difference between the confidence level of the model with (y) and
without that perspective (ŷ).

y − ŷ = d

Result without Perspective #0: With both perspectives, the confidence that
instance #29 is a bot was - 93.928%, without perspective p0 (Fig. 3) the confi-
dence fell to - 90.246%.

y − ŷ = d

93.928 − 90.2466 = +3.681

The impact Perspective 0 (p0) has on the model is a positive one shown by
the impact score of +3.681. The same is done for Prospective 1 (p1) to obtain
its impact score on this instance.

y − ŷ = d

93.610 − 97.610 = −4

After examining the perspectives the impact score for each was obtained.
Perspective #0 - +3.681 and Perspective #1 - (−4)

After the perspectives are examined the features are analyzed to find the most
influential feature in each perspective. The confidence of p0 with all features is,
1.33159871% confident that it is not a bot (NOT) and 98.66840129% confident
it is a bot (BOT). The impact of each feature is determined by removing each
feature and observing the changes to the confidence level of that perspective for
the correct class.
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Fig. 3. Examining instance #29 - Removing p0

We obtained results by running multiple tests using different test sets. With
each test set, there were 12 tests, the same 12 (Table 2) instances were used in
each test set. A test is carried out on a single instance to obtain the model’s
explanation for the class predicted. Instances were randomly chosen from differ-
ent types of bots and also non-bot traffic flows. The aim of this experiment was
to observe the results produced by the model across different flows and if any
patterns emerge among the explanations.

We designed a tool that traverses the layers of the MPML model reporting
on the impact scores of perspectives and the impact scores of features in each
perspective for a given instance. Using instance #29 as an example from the
test set 1 we saw where the perspective p0 had a higher impact on prediction for
that particular instance. Looking further into that perspective we saw that the
most influential features turned out to be source port (src port) with an impact
score of +4.248, destination port (dst port) with an impact score of +1.004, and
the number of packets exchanged in the flow (pack exc) with an impact score of
+1.223.

Examining the other instances that were marked as Neris bots (instance #28
and #54) similar patterns were found for the features that had the most impact
on the decision. And when done for bot traffic of similar types such as the ones
marked Virut, similar patterns emerged. Observing the impact score for features
of multiple instances of the same type, revealed similarities in the impact score,
we refer to this as the impact signature for those set of instances. We observed
that similar bot types recorded comparable impact signatures, irrespective of
the machine learning algorithm used. Examining the results of this tool revealed
subtle patterns emerging between the consistency of impact scores for features
and the correctness of the predictions made. For instances that were labeled
RBot the model was less confident in its prediction and even got some predictions
wrong. For these instances, we observed no discernible patterns in the impact
scores reported. The consistency of the impact signatures has a relation to the
confidence of the prediction, which is important to us because a model with
high accuracy and high confidence on the correct labels is more desirable and
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demonstrates a more stable nature than a model with even higher accuracy but
low confidence on the correct label.

Although p1 had a lower impact on the correct prediction of this instance,
across different test sets and instance types, the variations in bytes per packet
per flow consistently had a very high impact score. This raises a question as to
the true impact of the feature on the entire model versus the impact it has on
the perspective it is in.

4 Conclusion and Future Work

This paper proposed a method for explaining botnet prediction using MPML.
The results demonstrate the model’s ability to identify patterns in specific bot-
net traffic and the ability to present features that contribute to those specific
patterns. Understanding what features greatly impact specific bot traffic can
help researchers and security experts alike defend against bots. At this point,
the method is able to identify the features with the highest impact on a specific
instance. Simply presenting these features would not prove to be fully inter-
pretable or complete, but it is definitely a stepping stone towards these goals.
The patterns observed across perspectives within the model demonstrate the
potential of this method and the promise of providing truly intelligible results.

There is still much work to be done on this technique. Such work includes:
How do the patterns change based on the phase the bot is in. The change in the
number of instances affected the number of perspectives created, with perspec-
tives being integral to the process in future work we aim to understand exactly
why this occurs. Additionally, more work is needed to establish the best method
for scoring feature relations, methods such as correlation matrix will be explored.
How does the impact score change with different features in a single perspective?
Another aspect for more work is looking into what role the relationship between
features play in the interpretability and the completeness of the explanation.
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9. Bohanec, M., Borštnar, M.K., Robnik-Šikonja, M.: Explaining machine learning
models in sales predictions. Expert Syst. Appli. 71, 416–428 (2017)
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1 Faculty of Information and Comunication Technology, Wroclaw University
of Science and Technology, Wyb. Wyspianskiego 27, 50 370 Wroc�law, Poland

{wojciech.rafajlowicz,jedrzej.wieckowski}@pwr.edu.pl
2 Faculty of Mechanical Engineering, Wroclaw University of Science and Technology,

Wyb. Wyspianskiego 27, 50 370 Wroc�law, Poland
ewaryst.rafajlowicz@pwr.edu.pl

Abstract. We propose a new method of constructing and estimating
descriptors for classifying functional data. These descriptors are based
on Bernstein polynomials and their estimation is based on noisy samples
of a function (signal) to be classified.

The next step is to select an appropriate classifier, well suited to these
descriptors. Although the result can be case dependent, we provide the
methodology of running comparisons. As a vehicle for presenting the
results, we choose benchmark data published in [32]. They represent
shocks and vibrations of the operator’s cabin in a large mechanical struc-
ture.

Keywords: Functional data classification · Machine learning ·
Estimating descriptors · Bernstein polynomials

1 Introduction

Descriptors of functional data, for example signals and curves, are created to
extract features from the data to provide high-quality classification. At the same
time, the descriptors should provide a significant degree of compression of the
functional data, allowing it to be stored in computer memory in a cost-effective
manner.

Approaches to creating descriptors can be divided into two large groups.
The first includes methods tailored to a specific class of signals. These methods
make significant use of specialized knowledge about a particular class of signals
and their specific characteristics. A classic example of this class of methods is the
recognition of electrocardiogram (ECG) signals based on so-called Q, R, S wave-
forms. We refer the reader to the following recent papers [1,17] [3] on classifying
ECG signals. Specialized methods, dedicated to feature selection from electroen-
cephalogram (EEG) signals, are developed and surveyed in [10,11], while in [2]
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one can find the survey on electromyography signals. In [33] a representative
artificial intelligence (AI) method applied to acoustic signals is described. A
common feature of application-specific feature extraction methods is that they
are highly labour intensive, which is justified mainly by applications in sensi-
tive fields such as medicine. The second group of descriptor generation methods
aims to significantly automate the feature extraction process for pattern, signal
and image recognition. The expected result is a significant reduction in labor
intensity, while maintaining satisfactorily high classification quality that is suf-
ficient for applications in less demanding areas, for example, in technology and
manufacturing processes.

Descriptors for Functional Data. The first examples of applications of meth-
ods from this group date back to the 1960 s s and are related to the development
of algorithms known collectively as Fast Fourier Transform (FFT). In recent
years, there has been renewed interest in this class of feature extraction meth-
ods due to the emergence of functional data classification methods. A special
subclass within this group of methods are approaches that require the classifier
to be sensitive to the shapes of the functions (signals) being classified. We refer
the reader to [12,16,29,34] for more details on such approaches and to [23] for
the latest contribution.

In these papers, the primary tool for obtaining the sensitivity of algorithms
to the shape of signals is to consider the waveforms of their derivatives.

Advantages of Applying Bernstein Polynomials. In contrast, the approach
proposed in this work is based on obtaining shape-sensitive descriptors of signals
by comparing them with elements of the function space basis that have shape-
preserving features. The best-known basis with these properties is that spanned
by Bernstein polynomials. In the theoretical version of the proposed method, this
comparison is implemented by computing scalar products between the signal to
be classified and successive Bernstein polynomials. These products attain high
values when individual signal (function) fragments are well matched to successive
Bernstein polynomials and, conversely, the values are small when a given signal
fragment is orthogonal to successive polynomial Bernsteins. For this reason, we
choose these products (after possible normalization) as descriptors sensitive to
signal shapes.

The question of whether to normalize descriptors or to use only non-
normalized scalar products has no clear answer. In situations where the signal
amplitudes vary considerably between classes, normalization is not advisable.
On the other hand, when membership of a signal to a given class is determined
only by its shape, the use of normalization will be useful.

Why is Learning Needed? In practice, we usually do not have a signal at
all points of the observation interval, but only its samples, taken most often at
equidistant moments of time, and observed with random disturbances. For these
reasons, the process of learning the features of this signal is needed. In fact, we
need to apply descriptor learning in two situations. The first one appears when
we extract signal descriptors contained in the training sequence. The second one
is needed when – after learning the classifier – we acquire new signals to be
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classified. In the first case, a learning process can be more accurate, since it is
usually performed off-line. In the second one, it can be desirable (or necessary)
to learn descriptors on-line.

Assumptions. A common feature of all approaches to the construction of clas-
sifiers for functional data is the assumption of statistical repeatability of signals
and their (dis-)similarities when they come from the same or different classes.
Since the description of probability distributions in function spaces is complex,
in this paper we will make the simplifying assumption that we describe the prob-
ability distributions of signals of particular classes as finite-dimensional distribu-
tions of the coefficients of the expansion of that signal into a series of Bernstein
polynomials of given degree N > 1. We refer the reader to [23,24] and [28] for a
more advanced model of imposing a probability structure on random functions.

The well-known Weierstrass theorem on the approximation of a continuous
function on a finite interval by a polynomial of a sufficiently high degree can
serve as a justification of this assumption. Bernstein polynomials form the basis
of a constructive proof of this theorem.

We emphasize that knowledge of these probability distributions is not
assumed in this paper. On the contrary, we only assume their existence and
the complete lack of knowledge about them. Thus, the proposed approach is
non-parametric, even though it deals with a finite number (N + 1) of parame-
ters, since this number can be chosen depending on the number of observations
n and can grow with it.

Our Approach. In summary, the method proposed in this work to construct
classifiers for functional data consists of two steps. In the first one, we learn
vectors of Bernstein descriptors for each class, based on the learning sequence.
In the second stage, we select a descriptor classification method from among
known algorithms in such a way that it gives a satisfactory classification quality
for a given application.

Other Approaches Based on Bernstein Polynomials. Another approach to
constructing classifiers based on Bernstein polynomials was proposed in [21]. The
difference is that in [21] Bernstein polynomials were used to estimate the proba-
bility densities of the classes. Classifiers or predictors acting as neural networks
based on Bernstein polynomials are constructed in a similar way (cf. [18,30]).
Advantages of using Bernstein polynomials occurred to be useful in estimating
quantile functions [19]. Recently, an interesting application of Bernstein polyno-
mials to modeling Covid-19 growth was proposed in [25].

Paper Organization. The paper is organized as follows. The next section
presents the basic properties of Bernstein polynomials that are needed later
in the paper. In Sect. 3, we formulate the assumptions and pose the descriptor
learning problem. We present the learning algorithm itself and its elementary
properties in Sect. 4. In that section we also describe the interaction of this algo-
rithm with the decision function of the classifier. We then illustrate the selection
of the decision function using the example of classification of the acceleration
signals of the excavator operator’s cab as a function of ground hardness.
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2 Descriptors Based on the Bernstein Polynomials

We refer the reader to [5,7,14] for classic and more recent results on Bernstein
polynomials (BP) and to [6] for their application to nonparametric estimation
of probability density functions (p.d.f.).

It should be emphasized that Bernstein polynomials do not form an orthog-
onal basis, but many formulas are similar to those typical for nonparametric
estimation methods based on orthogonal expanssions (see, e.g., [20,26,27] and
the bibliography cited therein).

Definition and Elementary Properties of Bernstein Polynomials
Bernstein polynomials are usually defined on the interval X = [0, 1]. Further
in this paper we will assume that also all other functions considered here are
defined on X.

For x ∈ X k-th of order N ≥ k the Bernstein polynomial, denoted as B
(N)
k (x),

is defined as follows

B
(N)
k (x) =

(
N

k

)
xk(1 − x)N−k, k = 0, 1, . . . , N.

We extend this definition by setting B
(N)
k (x) ≡ 0, if k < 0 or k > N .

We summarize and comment on the following, well-known, properties of the
BPs.

∀x ∈ X

N∑
k=0

B
(N)
k (x) = 1, 0 ≤ B

(N)
k (x) ≤ 1. (BP 1)

Observe that (BP 1), being a partition of the unity, implies the ability of the
BPs to restore constants exactly. Indeed, it suffices to set ak = 1 for all k in
formula (1) below.

For each sequence ak ∈ R, k = 0, 1, . . . , N the following function

wN (x) =
N∑

k=0

ak · B
(N)
k (x) (1)

is an N - th order polynomial in x. Let f be a continuous function on X. Then,
it is well known that selecting ak = f(k/(N + 1)), k = 0, 1, . . . , N in (1) we
obtain wN (x) → f(x), uniformly in X, as N → ∞.

The following expression is of importance for a proper scaling of integrals
containing the BPs∫

X

B
(N)
k (x)dx = (N + 1)−1

, k = 0, 1, . . . , N. (BP 2)

Proposed Descriptors
Let Cp(X), p = 0, 1, 2 . . . denote the space of p-times differentiable functions in
X with the convention that C(X) = C0(X) is the space of all functions that are
continuous in X. Define the inner product

∀f, g ∈ C(X) < f, g >=
∫
X

f(x) g(x) dx. (2)
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As descriptors of function (signal) f ∈ C(X), denoted further as dk(f) (or dk
for brevity), we propose to take

dk(f) = (N + 1) < f,B
(N)
k >= (3)

= (N + 1)
∫
X

f(x)B
(N)
k (x) dx, k = 0, 1, . . . , N.

Note that dk(f)’s depend also on N , but this dependence is not displayed, unless
necessary.

It is worth mentioning also the normalized version of these descriptors,
denoted further as d̆k(f), that for f ∈ C(X) is defined as follows

d̆k(f) =
(N + 1) < f,B

(N)
k >

maxx∈X |f(x)| , k = 0, 1, . . . , N. (4)

Note that d̆k(f) is well defined, since for f ∈ C(X) the maximum in the compact
set X is attained. Furthermore,

∀ f ∈ C(X) − 1 ≤ d̆k(f) ≤ 1 (5)

and d̆k(f) = ±1 for f(x) = ±1, x ∈ X. To prove this fact, it suffices to observe
that

| < f,B
(N)
k > | = |

∫
X

f(x)B
(N)
k (x) dx| ≤

∫
X

|f(x)|B(N)
k (x) dx ≤ (6)

≤ max
x∈X

|f(x)|
∫
X

B
(N)
k (x) dx = max

x∈X
|f(x)|/(N + 1),

due to (BP1) and (BP2).
Additionally, d̆k(f) = 0, if f is orthogonal to B

(N)
k . Thus, d̆k(f)’s are descrip-

tors that are well suited for classification problems. One can interpret descriptors
dk(f) and d̆k(f) as indicators to what extent f is close to (or fits) B

(N)
k . Note

that dk(f) and d̆k(f) depend also on N , but this dependence is not displayed,
unless necessary.

Sensitivity of Descriptors to Function Shapes
These descriptors are – to some extent – shape sensitive in the sense that is
explained below. Our starting point is the following well-known – formula for
iterative calculations of the derivative, denoted as Dx, of B

(N)
k (x)

DxB
(N)
k (x) = N · [B(N−1)

k−1 (x) − B
(N−1)
k (x)], k = 0, 1, .., N. (BP 3)

Then, multiplying both sides of (BP 3) by f ∈ C1(X), integrating over X

with the aid of the integration by parts (for 1 ≤ k ≤ (N − 1) we have B
(N)
k (0) =

B
(N)
k (1) = 0) and shifting index k we immediately obtain

< Dxf,B
(N+1)
k+1 > = dk+1(f) − dk(f) k = 0, 1, . . . , (N − 1). (7)
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These relationships can be interpreted as follows: if f is strictly increasing
(decreasing) in X, then the left-hand side of (7) is positive (negative). Thus
also the difference dk+1(f) − dk(f) retains this property. In other words, if
f is strictly increasing (decreasing) in X then also the sequence of dk(f) is,
and this statement holds in a natural way, i.e., without having a priori knowl-
edge or our intervention by imposing constraints. Dividing both sides of (7)
by maxx∈X |f(x)| we conclude that this monotonicity preserving property holds
also for the normalized descriptors d̆k(f)’s.

Assuming that f ∈ C2(X) and repeating the similar reasoning for D2
xf(x), we

come to the conclusion that if D2
xf(x) > 0, x ∈ X, which implies the convexity

of f , then also sequences dk(f)’s and d̆k(f)’s are also convex in the sense that
their second order differences are positive.

These properties, important for classification of the descriptor sequence, are
illustrated in Fig. 1.

0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.5

1.0

y t

Fig. 1. Descriptors dk(f)’s (dots) for N = 50 of function f(x) = sin(2 π x), x ∈ X.

3 Learning Descriptors from Noisy Samples of Functional
Data

In practice, the data is not available in functional form f ∈ C(X), which means
that the proposed descriptors cannot be computed directly. Most often we only
have samples of f values, observed with noise. We adopt a standard description of
this type of sampling, assuming that the samples are taken at equidistant points
xi (e.g., instants of time or spatial variables), with random additive perturbations
εi, i = 1, 2, . . . , n. We assume that these disturbances have zero expected values
and finite variances. For simplicity, we assume that these variances are equal,
and denote them by 0 < σ2 < ∞. In summary, the functional data samples yi,
i = 1, 2, . . . , n are of the form

yi = f(xi) + εi, Eεi = 0, Eε2i = σ2 < ∞, i = 1, 2, . . . , n, (8)

E[εi εj ] = 0 for i 	= j, where E is the expectation of a random variable.
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Problem statement: having observations (xi, yi), i = 1, 2, . . . , n at our disposal,
our aim is to propose a learning algorithm for estimating descriptors dk(f),
k = 0, 1, . . . , N . For the sake of simplicity we assume that the original sample
points are already transformed to xi ∈ [0, 1] and Δn

def
= xi+1 − xi = 1/n.

In the remainder of this paper, we will denote the descriptor estimates as
d̂
(n)
k (ȳ), k = 0, 1, . . . , N , where ȳ is a column vector of ordered observations yi,

i = 1, 2, . . . , n with possible upper indices when several functional elements f
are considered.

According to (3), a natural and simple algorithm for d̂
(n)
k (ȳ) is of the form

d̂
(n)
k (ȳ) =

N + 1
n

n∑
i=1

yi B
(N)
k (xi), k = 0, 1, . . . , N. (9)

Notice that noisy observations yi’s are directly inserted into (9) without any
prefiltering (see [22] for a discussion on the advantages of using pre- or post-
filtering). Nevertheless, d̂

(n)
k (ȳ) still have satisfactory statistical properties, as

stated below. One can consider more robust estimators of the expectation, e.g.,
the median or the trimmed mean in (9), but here we confine our attention to
the classic mean, since Bernstein polynomials have a hidden ability to mitigate
large errors.

Notice that for the bias δkn
def
= dk(f) − E[d̂(n)k (ȳ)] we have

δkn = (N + 1) Δn

n∑
i=1

[f(x̃ki)B
(N)
k (x̃ki) − f(xi)B

(N)
k (xi)], (10)

where x̃ki’s are intermediate points in Ii
def
= [xi − Δn/2, xi + Δn/2] when the

mean value theorem is applied to the integrals∫
Ii

f(x)B
(N)
k (x) dx = Δn f(x̃ki)B

(N)
k (x̃ki).

Lemma 1. If f has a continuous derivative in [0, 1], then |δkn| = O(N/n) and
the learning algorithm d̂

(n)
k (ȳ) is asymptotically unbiased, as n → ∞, for each

finite and fixed N , k = 0, 1, . . . , N .

Indeed, the modulus of each summand in (1) is bounded by Δn multiplied by
by the maximum over [0, 1] of the modulus of the derivative of f(x)B

(N)
k (x),

which – in turn – is bounded by

max
x

|f(x)| + N max
x

|f ′(x)|.

due to BP3). This finishes the proof, since this bound is uniform in k.
For the variance of d̂

(n)
k (ȳ) we have for k = 0, 1, . . . , N

VAR[d̂(n)k (ȳ)] =
(

N + 1
n

)2

E

[
n∑

i=1

εi B
(N)
k (xi)

]2

≤ σ2 (N + 1)2

n
, (11)
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due to the uncorrelatedness of εi’s and the fact that 0 ≤ B
(N)
k (x) ≤ 1.

Lemma 2. Under the assumptions of Lemma 1, d̂
(n)
k (ȳ)’s are consistent in the

mean squared error (MSE) sense as n → ∞, for each finite and fixed N , k =
0, 1, . . . , N .

Indeed, it is well known that the MSE can be expressed as the sum of the variance
and the squared bias. Thus, the result follows directly for Lemma 1 and (11).

Notice that the above results hold also in the case when f is a random element
and descriptors dk(f)’s are random variables. To this end, it suffices to consider
the expectations as conditional ones, given dk(f)’s.

4 Learning Classifiers Based on Bernstein Descriptors

We assume that random element f is drawn from a (sub-)class of continuously
differentiable functions F : X → R. Two nonempty subsets FI and FII are
distinguished in F and f is drawn from one of them with a priori probabilities
pI > 0, pII > 0, respectively, and pI +pII = 1. These probabilities are unknown,
but their estimation by fractions in the learning sequence is a simple task, unless
there is no large imbalance between samples from class I and II in a learning
sequence.

f is represented by random vector vector d̄(f) of its descriptors dk(f), k =
0, 1, . . . , N , assuming fixed N > 1. Its choice is discussed later on. Probability
distributions of d̄(f) depend on whether f is from class I or II, but they are
unknown. Also d̄(f) is not directly available.

The only information that we have at our disposal is contained in a learning
sequence, which is of the form:

LL
def
= {(ȳ(1), j1), (ȳ(2), j2), . . . , (ȳ(L), jL)}, (12)

where jk ∈ {I, II} are class labels, assumed to be correct, while ȳ(k) are vectors
of equidistant samples from random elements f (k), drawn either from FI or FII .
These samples are taken at xi, i = 1, 2, . . . , n, according to (8), k = 1, 2, . . . , L.

Now, our aim is to present an algorithm of learning, tuning, testing and
selecting a classifier that classifies a random element f to classes I or II, based
on its random samples ȳ and using the estimates of the Bernstein descriptors.

To this end, let us denote by

cl. parameters = LEARN[cl. name, learning seq.]

a generic learning procedure that takes a classifier name and a learning sequence
as its inputs and provides tuning parameters of the classifier after learning as its
outputs.

As cl. name one may select, e.g., one of the frequently used classifiers listed
in Table 1 or even an ensemble of classifiers. We denote such a class of considered
classifiers as CL. The second tool that we need is a testing procedure:
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Table 1. Examples of frequently used classifiers.

Acronym Classifier

LogR The logistic regression classifier

SVM The support vector machine

DecT The decision tree classifier

gbTr The gradient boosted trees

RFor The random forests classifier

k-NN The k nearest neighbors classifier

{accuracy, precision, . . .} = TEST[cl. name, parameters, testing seq.]

that takes the classifier name, its parameters and a testing sequence as inputs.
Its output is a list of commonly used indicators of classifiers’ quality, e.g., the
accuracy, precision, recall, specificity, F1 and possibly many others. The TEST

runs in a standard way, namely, it the selected classifier (with parameters from
the learning procedure) on a supplied testing sequence and calculates the quality
indicators. In a more advanced version, the testing inside TEST is performed
many times on randomly selected subsequences of the testing sequence and the
resulting indicators are averaged. It is further assumed that the TEST procedure
is used in this more advanced version.

Selection and Learning a Classifier Based on Bernstein Descriptors

Data acquisition Collect samples of random elements, ask an expert to classify
them and form learning sequence LL

Learning descriptors Select the order N of Bernstein descriptors. For the
vector of samples ȳ(l) in LL estimate the elements of the following list:

d̄(ȳ(l))
def
= {d̂

(n)
k (ȳ(l)), k = 0, 1, . . . , N}, (13)

using (9). To each d̄(ȳ(l)) attach label jl that corresponds to ȳ(l) in LL

and form a transformed learning sequence DL from pairs (d̄(ȳ(l)), jl), l =
1, 2, . . . , , L.

Optional step DL augmentation. Extend DL by copying each of its elements
η > 1 times and replacing d̄(ȳ(l)) vectors by their randomly perturbed copies
with zero mean, but keeping the same class label. Perturbations by additive
Gaussian random vectors are the first choice. Slightly abusing the notation,
we shall further denote this extended learning sequence again by DL.

Preparations Select classifier CLcur from CL and split at random DL into
two disjoint and covering DL sets: tuning set DLL1 and testing set DT L2,
L1 + L2 = L.

Learning Run CLcur parameters = LEARN[CLcur, DLL1].



Descriptors for Classification of Functional Data 319

Testing and Validation. Run the testing procedure:

{accuracy, precision, . . .} = TEST[CLcur, CLcur parameters, DT L2]

and decide whether the quality indicators are satisfactory.
IF YES – STOP and provide CLcur, CLcur parameters as the final result.
OTHERWISE
IF the admissible number of trials to select a proper classifier is not reached,
then GO TO the Preparations step.
OTHERWISE
IF N < n increase N and GO TO the Learning descriptors step.
OTHERWISE
Declare the failure of the learning process and STOP.

If failure occurred, one may consider enlarging the number of observations n
and/or extending the set of considered classifiers.

Testing on Samples from Shocks and Vibrations
Operators’ cabins of large working machines repetitively undergo shocks and
vibrations (see [31] for examples of signals of this kind and [32] for their inter-
pretation). The data in [31] consists of N = 43 curves, sampled at n = 1024
equidistant points each. An expert assigned label I (light working conditions) or
II (heavy working conditions) to each series of signal samples.

An optional step – data augmentation was applied, providing DL with L =
43000. This was done by adding the Gaussian noise with zero mean and the
disperssion 0.05 to the estimates obtained in the learning descriptors step of the
algorithm.

The algorithm of learning and selecting good classifiers was run on the aug-
mented data. The list of tested classifiers is presented in Table 1. Only two of
them, namely the logistic regression and the SVM provided accuracy larger than
0.95 (for the LogR – 0.98 and for the SVM –0.951 were obtained). Other quality
indicators of these classieifers were high: the recall was larger than 0.98 in both
cases, the precision attained by the LogR was 0.98 and 0.93, respectively, by the
SVM. The Cohen kappa coefficient was equal to 0.96 for the LogR and 0.9 for
the SVM.

Conclusions and Possible Extensions. Summarizing, the proposed approach
of selecting the descriptors based on Bernstein polynomials and testing an ade-
quate classifier occurred to be successful in classifying functional data from their
noisy samples.

These descriptors can also be used for estimating an observed signal by apply-
ing the following kernel K(x, x′)

def
= (N + 1)

∑N
k=0 B

(N)
k (x)B

(N)
k (x′), x, x′ ∈

X. Although kernel K has different properties than those typically used in non-
parametric regression estimation by Parzen kernel methods, it can be applied for
change detection problems in a similar way as it was recently proposed in [8,9].
Our descriptors can also be used as a part of generating signature hybrid descrip-
tors in a way similar to the one proposed recently in [35]. Another way of their
applications include novelty detection in ways found fruitful in [13] and [24].



320 W. Rafaj�lowicz et al.

References

1. Abdulla, L., Al-Ani, M.: A review study for electrocardiogram signal classification.
UHD J. Sci. Technol. 4(1), 103–117 (2020) https://doi.org/10.21928/uhdjst.v4n1y

2. Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O., et al.: EMG signal classification for
human computer interaction: a review. Eur. J. Sci. Res. 33(3), 480–501 (2009)

3. Augustyniak, P., Tadeusiewicz, R.: Optimization of ECG procedures chain for reli-
ability and data reduction. In: Ubiquitous Cardiology: Emerging Wireless Telemed-
ical Appl. pp. 202–227. IGI Global (2009)

4. Azlan, W.A., Low, Y.F.: Feature extraction of electroencephalogram (EEG) signal
- a review. In: 2014 IEEE Conference on Biomedical Engineering and Sciences
(IECBES), pp. 801–806 (2014). https://doi.org/10.1109/IECBES.2014.7047620

5. Chen, W.. Ditzian, Z.: Best polynomial and Durrmeyer approximation in Lp(S)
Indagationes Mathematicae 2, 437–452 (1991)

6. Ciesielski, Z.: Nonparametric polynomial density estimation. Probab. Math. Stat.
9(1), 1–10 (1988)

7. Derrienic, M.M.: On multivariate approximation by Bernstein-type polynomials.
J. Approxim. Theory 45, 155–166 (1985)

8. Galkowski, T., Krzyzak, A., Filutowicz, Z.: A new approach to detection of changes
in multidimensional patterns. J. Artifi. Intell. Soft Comput. Res. 10(2), 125–136
(2020). https://doi.org/10.2478/jaiscr-2020-0009

9. Galkowski, T., Krzyzak, A., Patora-Wysocka, Z., Filutowicz, Z., Wang, L.: A new
approach to detection of changes in multidimensional patterns - Part II. J. Artifi.
Intell. Soft Comput. Res. 11(3), 217–227 (2021). https://doi.org/10.2478/jaiscr-
2021-0013

10. Gandhi, T., Panigrahi, B.K., Anand, S.: A comparative study of wavelet families
for EEG signal classification. Neurocomputing 74(17), 3051–3057 (2011)

11. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of lin-
ear, nonlinear, and feature selection methods for EEG signal classification. IEEE
Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003). https://doi.org/10.1109/
TNSRE.2003.814441

12. Harris, T., Tucker, J.D., Li, B., Shand, L.: Elastic depths for detecting shape
anomalies in functional data. Technometrics 63(4), 466–476 (2020)

13. Homenda, W., Jastrzebska, A., Pedrycz, W., Yu, F.: Combining classifiers for for-
eign pattern rejection. J. Artifi. Intell. Soft Comput. Res. 10(2), 75–94 (2020).
https://doi.org/10.2478/jaiscr-2020-0006

14. Lorentz, G.G.: Bernstein Polynomials. American Mathematical Soc. (2013)
15. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classi-

fication algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2),
R1–R13 (2007). https://doi.org/10.1088/1741-2560/4/2/r01

16. Marron, J.S., Ramsay, J.O., Sangalli, L.M., Srivastava, A.: Functional data analysis
of amplitude and phase variation. Stat. Sci. 30(4), 468–484 (2015). https://doi.org/
10.1214/15-STS524

17. Mironovova, M., B́ıla, J.: Fast Fourier transform for feature extraction and neural
network for classification of electrocardiogram signals. In: 2015 Fourth Interna-
tional Conference on Future Generation Communication Technology (FGCT), pp.
1–6 (2015) https://doi.org/10.1109/FGCT.2015.7300244

18. Mohammad, A.J., Mohammad, I.J.: Summation-Integral Bernstein Type Of Neural
Network Operators. Asian J. Math. Comput. Res. 74–86 (2017)

https://doi.org/10.21928/uhdjst.v4n1y
https://doi.org/10.1109/IECBES.2014.7047620
https://doi.org/10.2478/jaiscr-2020-0009
https://doi.org/10.2478/jaiscr-2021-0013
https://doi.org/10.2478/jaiscr-2021-0013
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.2478/jaiscr-2020-0006
https://doi.org/10.1088/1741-2560/4/2/r01
https://doi.org/10.1214/15-STS524
https://doi.org/10.1214/15-STS524
https://doi.org/10.1109/FGCT.2015.7300244


Descriptors for Classification of Functional Data 321

19. Pepelyshev, A., Rafaj�l�lowicz, E., Steland, A.: Estimation of the quantile function
using Bernstein-Durrmeyer polynomials. J. Nonpara. Stat. 26(1), 1–20 (2014)

20. Rafajlowicz, E.: Nonparametric least squares estimation of a regression function.
Statistics 19(3), 349–358 (1988)

21. Rafaj�lowicz, E., Skubalska-Rafaj�lowicz, E.: Nonparametric regression estimation
by Bernstein-Durrmeyer polynomials. Tatra Mt. Math. Publ. 17, 227–239 (1999)

22. Pawlak, M., Rafajlowicz, E., Krzyzak, A.: Postfiltering versus prefiltering for signal
recovery from noisy samples. IEEE Trans. Inf. Theory 49(12), 3195–3212 (2003)

23. Rafaj�lowicz, W., Rafaj�lowicz, E.: Learning shape sensitive descriptors for classify-
ing functional data. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12854, pp.
485–495. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87986-0 43

24. Rafaj�lowicz, W.: Learning novelty detection outside a class of random curves with
application to covid-19 growth. J. Artifi. Intell. Soft Comput. Res. 11(3), 195–215
(2021)

25. Rafaj�lowicz, W.: Learning Decision Sequences For Repetitive Processes—Selected
Algorithms. SSDC, vol. 401. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-88396-6

26. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Trans. Circ.
Syst. 33(8), 812–818 (1986). https://doi.org/10.1109/TCS.1986.1086001

27. Rutkowski, L., Rafaj�lowicz, E.: On optimal global rate of convergence of some
nonparametric identification procedures. IEEE Trans. Autom. Control AC-34,
1089–1091 (1989)

28. Skubalska-Rafaj�lowicz, E., Rafaj�lowicz, E.: Classifying functional data from
orthogonal projections – model, properties and fast implementation. In: Paszyn-
ski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A.
(eds.) ICCS 2021. LNCS, vol. 12744, pp. 26–39. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77967-2 3

29. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic
curves in euclidean spaces. IEEE J. Sel. Areas Commun. 10(2), 391–400 (1992).
https://doi.org/10.1109/49.126990

30. Wang, C., Zhang, H., Fan, W., Fan, X.: A new wind power prediction method based
on chaotic theory and Bernstein Neural Network. Energy 117, 259–271 (2016)
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Abstract. Cryptocurrencies have drawn the interest of both scholars and profes-
sionals due to their decentralised, unique payment system supported by blockchain
technology and their autonomy from sovereign governments, centralised organ-
isations, and banking systems. Numerous works have studied, on the one hand,
the behavior of cryptocurrencies, and on the other hand, the multifractal model
in financial markets. Nevertheless, the limitations of existing models exist, and
the literature calls for more research into multifractal analysis techniques applied
to finance, as the methodology widely used in previous research is the regression
model and machine learning methods. This study introduces a new model for pre-
dicting unexpected situations of speculative attacks in the cryptocurrency market,
applying the method of Multiscale Multifractal Detrended Fluctuation Analysis,
which shows excellent precision results. Our approach has a high impact potential
on the forecast of possible speculative actions over the value of cryptocurren-
cies and against the risks derived from the control of cryptocurrencies by private
entities, so the question of the possible effect on the financial system is of great
importance.
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1 Introduction

Following the onset of the financial crisisworldwide and the associated lack of credibility
of the current financial sector, cryptocurrencies have attracted a great deal of interest
since their emergence in 2009, since they are becoming more and more significant in
the international finance market. Cryptocurrencies are virtual currencies based on the
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Internet that employ cryptographic features to process and carry out payment transactions
securely [1, 2]. Unlike other financial assets, cryptocurrencies are not subject to any
higher authority, they are infinitely divisible and their value is supported by the safety
of an algorithm that makes it possible to track all transactions [3]. The key benefits of
cryptocurrencies are that they are transparent and accessible 24 h a day. Cryptocurrency
transactions are recorded in an open, public accounting ledger known as the blockchain.
This decentralized structure provides cryptocurrencieswith unprecedented transparency,
making them an exception to traditional government policies [4].

In a decentralized framework such as Bitcoin or Ethereum, each member must per-
form mining activities. These activities take place on a chain of blocks (blockchain),
which is an associated open record of every exchange that happens in the system for a
particular intention and which is available to everyone. This avoids the need for a central
regulator and gives the authorities directly involved in the transaction control [5]. For
this reason, the cryptocurrency market is a volatile market that has been characterized
in recent years by its strong ups and downs, with price volatility being, therefore, one
of the main problems of decentralized cryptocurrencies [6, 7]. It is important to clearly
understand the volatility changes in cryptocurrencies because such changes can affect
investors’ risk, altering their respective cryptocurrency investments. Various investiga-
tions have attempted to both interpret and forecast the Bitcoin price, thus [8] shows that
it is complicated to justify Bitcoin prices by conventional financial analysis, and [9]
concluded that the Bitcoin price is unforeseeable, although its volatility can be forecast
by its historical data. This misunderstanding of Bitcoin’s price formulation has sparked a
discussion about its future role in the Bitcoin market. The research by [10] detected that
during the period 2011–2020 the price of bitcoin fluctuated violently due to speculative
activities, and concluded that the prices in the Bitcoin market are very volatile since
they show nonstationary behavior, in which the distribution of the statistical data differs
across time. This is because it is politically sensitive, engaging in speculative behaviour
and political risk.

An important characteristic of a cryptocurrency is that it is particularly prone to price
speculation, caused by investors who exploit the exchange rate to make a profit [11].
Some authors have investigated price speculation in the market for cryptocurrencies
[12–15]. For their part, [12] determined that because the blockchain system has an open
nature without permissions, the 51% attack is a typical threat in the cryptocurrency
market. They concluded that an attacker performing a 51% attack can perform a double-
spending attack and prevent any further transactions from being confirmed. Therefore,
early detection of a speculative attack is very relevant to restrict the potential damage it
may cause. The greater the investment in cryptocurrencies, the greater the risk that price
speculation in the cryptocurrency markets might influence to other financial trainings
and ultimately to the world economy [16–18]. Therefore, financial organisations and
policymakers need to understand how the cryptocurrency market works to formulate the
regulation in this system and estimate potential systemic risks.

Cryptocurrencies have a definite impact when planning investments in the financial
markets, given their consideration as investment assets and the speculative attacks that
the cryptocurrency market can suffer. Many works have demonstrated that financial
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markets are dynamic non-linear complex systems with chaotic and fractal patterns [19–
21]. To research multifractality in non-linear time series, [22–24], apply the Multifractal
Detrended Fluctuations Analysis (MF-DFA), themost often used approach to investigate
it. [24] establishes that the multifractal model has been shown to correctly measure the
complexity of economic systems since it can describe a financial time series through its
multifractal spectrum; Thus, this type of analysis offers the possibility of studying the
local regularity of the time series, which is useful in detecting speculative attacks on the
markets. Likewise, [23] proposes that the analysis with multifractal analysis techniques
could be extended to other markets such as currencies and government bonds, and
contribute to the prior and timely detection of financial falls, that is, serve as a risk
management tool.

Finally, many researchers have been attracted by the multi-fractal characteristics of
financial systems. Previously,methods of fractal analysis, like detrendedfluctuation anal-
ysis (DFA) [25] and multifractal detrended fluctuation analysis (MF-DFA) [22, 26, 27]
have been established to identify long-range autocorrelation and to explore the efficiency
of the market. Others models have explored the volatility of the market and described
the market’s non-linear characteristics [19, 20, 23]. For their side, [28] developed the
multiscale multifractal analysis (MMA) method, providing new ways to measure the
non-linearity of time series and analysing heart rate variability. So, the MF-DFA and
MMA methods are well used for studying the multifractality of time series, as they are
a powerful tool for investigating multifractal characteristics in an unstable time series,
and have been also established for multiplicity series [22, 28]. Remarkable studies [29,
30] exhibit the multi-fractality of the foreign exchange market, supporting evidence that
suggests the adoption of the MF-DFA technique. Finally, [26, 27] state that in future
researches should be applied in financial markets, including foreign exchange markets,
trade, commodities, and predictability of cryptocurrency time series; since it demon-
strates that the level of multifractality for a wide range of foreign exchange markets is
linked to the phase of the evolution of the market.

The objective of this study is to apply a speculative attack model to demonstrate
that this attack mechanism can also occur in the cryptocurrency market, specifically
with Bitcoin and Ethereum. The method used is that of MF-DFA and MMA, verifying
that it may be the best methodology to detect and predict this type of unexpected situa-
tion. Recently, the MF-DFA has been used extensively in many sophisticated dynamical
structures, for example, geophysical [31], traffic control [32], and financial market [33].
Numerous works of multifractal analysis have been applied to economics and finance,
such as stock markets, interest, and exchange rates, as they exhibit a multifractal nature,
often accompanied by the existence of long-term temporal interactions and robust tailed
likelihood distributions [22, 26]. On the other hand, several authors have introduced
the method MMA in others fields like traffic signals [20, 34] introduce the MMA to
examine the characteristics of short- and long-range financial time series and to offer
new tools to monitor the non-linearity of the time series. They state that future research
into improving the performance of this method is desirable, as there is a demand for an
increasing number of financial time series to be studied worldwide, as financial markets.
The contribution to the literature that we are making with our study is the application
of two methodologies, MF-DFA and MMA, which complement each other and have
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not been used together in previous research on cryptocurrency markets, obtaining very
precise results. Most of the previous research has applied statistical methods, especially
the regression model and machine learning methods, but the literature demands future
research into combating speculative attacks on cryptocurrencies with different method-
ologies, as regardless of the technique chosen, there is a potential need for a method to
combat speculative attacks on cryptocurrencies [4, 6]. In addition, the literature calls for
techniques that can further refine the blockchain’s function, potentially improving cyber-
security in the digital world. This cyber security improvement would greatly decrease
cyber attacks [5]. Also, previous studies require the multifractal analysis techniques
applied to finance [20]. Finally, most of the research on the behavior of cryptocurrencies
has focused on Bitcoin. [35] and [2] propose as future lines of research to extend the
analysis of market behavior to other cryptocurrencies. Thus our study has also covered
Ethereum, these currencies representing 70% of the total flow in 2018. In addition, each
cryptocurrency follows its specific global financial market trend and is unrelated to stock
markets, which makes it adequate for incorporation into global investment strategies [5].
This study is structured as described below. Section 2 outlines the methodology used.
Section 3 analyzes the results achieved. The article finishes by outlining the conclusions
of the study.

2 Methodology

2.1 Speculative Attacks’ Model

Since the success of the attack is decided in period 2, we first consider the small players’
action from period 1, and then consider the big player’s decision whether or not to start
an early attack. A possible delayed strike by the big investor would be the rest of his
L-credit following any speculation advanced on.

According [36], we will suppose that the small players play an activation strategy
where agents assail the coin if the signal drops under a certain critical value x∗. Like in
this approach of the equilibrium unique to the model is defined by two crucial variables:
x∗ and a fundamental minus crucial parameter for early speculation by the big investor,
(θ − λ). If θ − λ ≤ (θ − λ)∗, the coin would collapse.

We first discuss the equilibrium of the given activation strategies, we, therefore,
examine the optimal strategies for activation. Certainly, if the approach is activated, a
minor agent i would attempt to raid the coin if his signal xi ≤ x∗. The likelihood of
occurrence depends on the true economic situation, θ − λ, as described below

prob
[
xi ≤ x∗|θ − λ

] = prob
[
θ − λ + σεi ≤ x∗] = prob

[
εi ≤ x∗ − (θ − λ)

σ

]

= F

(
x∗ − (θ − λ)

σ

) (1)

Because there is a small-agent continum, and their noise conditions are separate,
a joint confusion about the conduct of little actors is absent. Therefore, the density of
attacking minor agents, ξ, is the same as this likelihood. Since F (.) is tightly rising, the
impact of a speculative attack is narrowly declining in θ-λ; the lower the force of the
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economic fundamentals, the weaker the big investor’s early speculation, the further little
agents will strike.

A successful speculative attack would occur if the aggregate of minor speculative
actors outweighs the power of the economic principles, minus the speculation early on
by the big actor, i.e., if

F

(
x∗ − (θ − λ)

σ

)
≥ θ − λ (2)

Hence, the crucial variable (θ − λ)∗, for the set of minor actors attacking is enough
to provoke a devaluation, as follow

F

(
x∗ − (θ − λ)∗

σ

)
= (θ − λ)∗ (3)

For smaller amounts, in which θ − λ ≤ (θ − λ)∗, the impact of speculation (the left-
handed of (3)) is higher, and the force of the fixed exchange rate (the right-handed of
(3)) smaller, which implies that aggression has more success. Consequently, for higher
parameters, where θ − λ > (θ − λ)∗, the occurrence of speculation is shorter and the
fixed exchange rate strength higher, so an assault will not have success.

We, therefore, obtain the activation-optimal approaches of the minor actors. An
investor notices a signal xi and, for this signal, the likelihood of a successful offense is
denoted by

prob
[
θ − λ ≤ (θ − λ)∗|xi

] = prob
[
xi − σεi ≤ (θ − λ)∗

]

= prob

[
εi ≥ xi − (θ − λ)∗

σ

]
= 1 − F

(
xi − (θ − λ)∗

σ

)
= F

(
(θ − λ)∗ − xi

σ

)
(4)

where the last equation is derived from f(.), F(ν) = 1 − F (−ν). The reward requested
from hitting the coin for agent i, by speculation unit, is therefore

(1 − t)F

(
(θ − λ)∗ − xi

σ

)
− t

(
1 − F

(
(θ − λ)∗ − xi

σ

))
= F

(
(θ − λ)∗ − xi

σ

)
− t

(5)

In an activation optimal strategy, the reward anticipated of the coin attack for the
marginal player has to be zero, i.e. the optimal cut x∗ in the activation, strategy is provided
by

F

(
(θ − λ)∗ − x∗

σ

)
= t (6)

To resolve the balance, we redesign (6) to get (θ − λ)∗ = x∗ + σF−1(t). Replacing
into (3), we obtain

(θ − λ)∗ = F

(
x∗ − (

x∗ + σF−1(t)
)

σ

)

, or(θ − λ)∗ = F
(
−F−1(t)

)

= 1 − F
(
−F−1(t)

)
= 1 − t

(7)
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So, the crucial parameters are

(θ − λ)∗ = 1 − t, and (8a)

x∗ = 1 − t − σF−1(t) (8b)

These crucial parameters match with the only novelty being the speculation of the
major agent λ.

Next, we consider the big player’s decision whether or not to speculate in period
1, and, if so, to what extent. There is no incertitude in the small players’ combined
behaviour, hence the large player can perfectly predict its speculation, save for the noise
of its signal. From (8), a devaluation will occur if the fundamental θ ≤ θ∗ ≡ 1− t + λ.

The likelihood of aggression being successful can be expressed as

prob
[
θ ≤ 1 − t + λ|y ] = prob

[
y − τη ≤ 1 − t + λ|y ] = prob

[
y − λ − (1 − t)

τ
≤ η|y

]

= G

(
1 − t + λ − y

τ

)
(9)

where we once again employ the distribution symmetry. If the attack is successful, the
major investor alsowishes to speculate in period 3, so that the total amount of speculation
is L. But we also have the risk, which occurs with likelihood q, that speculation in period
3 is much excessively delayed, hence the big investor benefits only from his speculating
early λ. The payoff desired to attack in quantity λ ≥ 0 in an early phase is therefore

Eπ = G

(
1 − t + λ − y

τ

)
(L(1 − q) + λq) − tλ (10)

The first requirement for an indoor solution λ∗ is

∂Eπ

∂λ
= g

(
1 − t + λ∗ − y

τ

)
1

τ

(
L(1 − q) + λ∗q

) + G

(
1 − t + λ∗ − y

τ

)
q − t = 0

(11)

Since Eπ is a function continuous of λ, which is fixed on the closed interval [0,L],
we assume the existence of an early optimum quantity of speculation λ, which max-
imises the profit expectation. Otherwise, the optimal λ is neither single nor necessarily
internal. Indeed, if the charges of early speculation, t, are low enough, the efficient early
speculation is the same as the credit restriction L.

Proposition 1. Requirements for speculation at an early stage by major investors.

i. There is a value critical to the charges of early speculation t > 0 as if 0 < t < t, for
certain values of the other parameters, indicating that the efficient early speculation
is the higher restriction, λ = L.

ii. For some variables of other parameters, there is a crucial value for the charges of
early speculation t > 0 as if t > t, so the efficient early speculation is zero, λ = 0.
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The second condition if the solution is internal is

∂2Eπ

∂2λ
= g′

(
1 − t + λ∗ − y

τ

)
1

τ 2

(
L(1 − q) + λ∗q

) + 2g

(
1 − t + λ∗ − y

τ

)
q

τ
< 0

(12)

The second term of (12) is a positive term, which implies that the first term should
be contradictory, i.e. that g′(.) < 0 in an internal solution. To investigate the impact
of rising costs of speculation t on efficient early speculation, note that (11) could be
denoted by H(λ,t) = 0, which implies the definition of the efficient early speculation λ∗
to be a function of costs of speculation. Deferring concerning t, we getH1

dλ∗
dt +H2 = 0,

or dλ∗/
dt = −H2

/
H1

, where H2 ≡ ∂2Eπ
∂λ∂t and H1 ≡ ∂2Eπ

∂2λ
< 0 from the second

requirement. It deduces, thus, that the sign of dλ∗
dt is the same as the sign of H2 ≡ ∂2Eπ

∂λ∂t .
We distinguish the first-order condition (11) about t, leading to

∂2Eπ

∂λ∂t
= −g′

(
1 − t + λ∗ − y

τ

)
1

τ 2

(
L(1 − q) + λ∗q

) − g

(
1 − t + λ∗ − y

τ

)
q

τ
− 1

(13)

A rise in speculation charges t concerns efficient early speculation through the three
terms in (13), with the second and third terms being negative. The second term reflects
the reduction in speculation by minor investors due to upper charges of speculation.
The third term incorporates the direct impact of higher speculation charges, making
speculation more costly, and leading to minus early speculation.

For the very first term, though, we assume that it is affirmative, since g′(.) < 0. As
greater speculation costs decrease speculation by minor agents, the projected impact of
greater early speculation by the major player on the probability of success rises.

The model might be changed to accept N > 1 major traders as described below.
First, for tractability reasons, we will disregard information imbalances between the
large investors, under the assumption that all of them are observing the identical sig-
nal y. Next, we presume that the costs of speculation funds are convex, implying that
the charges of early speculation λj for agent, j is tc(λj), for which c(.) is convex and
strongly positive. The estimated profit from early speculation of player j would be

Eπj = G
(
1−t+λ−y

τ

)(
Lj(1 − q) + λjq

) − tc
(
λj

)
where λ = ∑

j
λj, and Lj is player

j’s credit limit. However, similar results to Proposition 1 can be deduced, which implies
that if costs are not above a critical value, there will be no early speculation. The first
requirement for efficient indoor early speculation λ∗

j of agent j is

∂Eπ

∂λj
= g

(
1 − t + λ∗ − y

τ

)
1

τ

(
Lj(1 − q) + λ∗

j q
)

+ G

(
1 − t + λ∗ − y

τ

)
q

− tc′(λ∗
j

)
= 0 (14)

In an equilibrium interior in pure strategies, all major traders would soon speculate
in the quantity shown by (14).



332 D. Alaminos and M. Belén Salas

2.2 Multifractal Detrended Fluctuation Analysis (MF-DFA)

MF-DFA is an efficient numbermethodology that examines the scaling characteristics of
oscillations through the computation of a set of multifractal fluctuation functions Fq(s)
[37, 38]. First, we must split the time series of length N into a series of adjacent windows
of distance s [the number of adjacent windows is Ns ≡ int(N/s)]. As s is normally not
a factor of the longitude of the time series, parts at the end of the time series could be
ignored. To evade this, we once more construct a series of adjacent windows of distance
s, but from the very end of the time series. Fluctuations are aggregates of squares of
the local differences among the time series interlinked through time and a deviation
polynomial adjusted to the data inside the window provided.

The MF-DFA method is a generalisation of the DFA one for analysing the charac-
terization of multifractal nonstationary time series [20]. Suppose X(i) (i) = 1,2,…,N is
a time series of dimension N and the MF-DFA method is written in the next stages.

Step 1. Calculate the appropriate time series profile X(i) by the equation below

X(i) = log
∑i

k=1
(xk − 〈x〉), i = 1, 2, . . . ,N , (15)

where 〈x〉 are the average values of all-time series elements X(i).
Step 2. Divide X(i) into t = N/s equal-length non-overlapping divisions s, where the
mathematical operator 	 obtains the first integrate that is greater than or equaN/s. In
most cases, there will be a small section left at the end of the time series because the
dimension N of the time series is usually not a multiple of the time scale s. Likewise,
the same operation is used again to consider the residual portion at the end of the time
series, from the other end. In this way, we can get 2t segments together.
Step 3. Compute the local tendencies for every section of the 2t ones by a q-order
adjustment of each series with the coming equation.

Fm(s, v) = 1

s

∑s

k=1
(X ((v − 1)s + k) − Xv(k))

m, k = 1, 2, . . . , t (16)

and

Fm(s, v) = 1

s

∑s

k=1
(X ((N − (v − t)s + k) − Xv(k))

m, k = 1, 2, . . . , t (17)

whereas Xv(k) is the polynomial adjusted in the vth section and m is the order number of
the fitting polynomial of the MF-DFA. MF-DFAs of different order vary in the deviation
capacity of the time series, although the value of m has a small effect on the time series
of the multifractal. Therefore, in our study, we employ the quadratic MF-DFA, i.e. the
m is equal to 2.
Step 4. Mean of all sections to derive the alternation of order q.

F(s, q) =
{
1

2t

∑2t

k=1

[
F2(s, k)

] q
2
} 1

q

, k = 1, 2, . . . , 2t, (18)
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where index parameter q may be any non-zero real number. If the parameter q is 0, we
apply the next oscillation function:

F(s, q) = exp

{
1

4t

∑2t

k=1
ln

[
F2(s, k)

]}
, k = 1, 2, . . . , 2t, (19)

Step 5. Establish the scaling behaviour of the oscillation function by analysing the
logarithmic plots of F(s, q) versus time scale s as below.

F(s, q) ∼ sh(q).

h(q) is referred to as the generalised Hurst exponent and is the so-called Hurst exponent
h while q is 2. Usually, the time series is monofractal whereas the h(q) is independent
of q, the time series is multifractal meanwhile the h(q) is dependent of q.

The generalizedHurst exponent h(q) is a function of themagnitude of the oscillations.
The interpretation of the values of h is as shown below [37, 38] h ε(0, 0.5) indicates
antipersistency of the time series, to say, the long-term anti-correlations, which means
that big values are more probable to be traced by little values and vice versa. h = 0.5
denotes non-correlated noise, where no correlations exists. h ∈ (0.5,1) represents the
persistence of the time series, i.e. the long-term correlation, implying that high values
are susceptible to being tracked by big data and the other way around. The greater the
h, the more strongly the correlations in the time series are. H = 1 indicates that the
time series is 1/f noise. h > 1 denotes that the time series is unsteady. h = 1.5 suggests
Brownian action (integrated white noise). h ≥ 2 indicates black noise.

2.3 Multiscale Multifractal Analysis (MMA)

MMA method was introduced in [38], and is a method of time series analysis, aimed at
describing the scaling characteristics of the fluctuations in the signal under analysis. The
central output of the process is obtention of the so-called Hurst surface h (q, s), defined
by the local Hurst exponent h (fluctuation scale exponent) the multifractal parameter q
[27] and the observation scale s (data window width).

The MMA is a standard generalisation of MF-DFA method [39] and provides a
broader analysis of the properties of the fluctuations including more worldwide and
robust results. The method, as a generalisation, correlates directly with prior fractal
signal analysis methods. The results of the basic MF-DFAmethod [25] are expressed on
theHurst surface h (q, s) by one (or two) single points belonging to the exponent (or 1 and
2). The MMA obviates the requirement to make initial suppositions about the time scale
of the research difficulty. This novelmethodology is likely to simultaneously characterise
the monofractality or multifractality of time series over a large variety of scales and can
easily be implemented to cross-data It can recognise fractal properties of time series
correctly for even relatively small scales, and is capable of recognising different fractal
characteristics at small and large scales at the same time. The implementation of the
method requires mentioning the following considerations. First, the fluctuation function
Fq (s) is calculated and its graph is constructed in the log-log plane. From knowing Fq
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(s), the dependence h (q) of the generalized Hurst exponents in order q is determined,
and lastly, the spectrum of singularity f (α) can be estimated with a Legendre transform
this last part not required for MMA. The MF-DFA’s final results are highly dependent
on various user decisions in the initial step [34]. The first decision to consider is the
mean reduction in calculating the profile of the data, as it has been pointed out that this
step could be redundant with the trend reduction procedure. The second decision is the
selection of the order of the trend polynomial implemented in every data window to
derive Fq (s). The third decision is the proper range of degrees s, where the family of
curves Fq (s) should be computed, too small degrees make the trend action run on a set
of only a few points and scales too large could skew the calculation due to the small
number of values in Fq (s) for large s. So, to estimate correctly the scales and describe
the real information on the fractal properties for each time scale associated with the
signal, a multifractal frequency spectrum with a varying scale range is calculated using
a moving window of adjustment, sweeping the entire range of the scales along with the
graph Fq (s).

3 Results

We use daily USD exchange rates for Bitcoin (BTC) and Ethereum (ETH) from Kraken
Cryptocurrency exchange. Daily data on cryptocurrencies were gathered from the Coin-
marketcap.com and CryproCompare.com websites. The observation data used in this
study were collected during February 1st 2011 to December 1st 2020.

The oscillating parts of various frequency scales can be defined as central mode
functions (IMFs), that is, nonlinear stationary signals, showing the amplitudes of the
time-varying oscillations of different characteristic scales.We extracted 10 IMFs (IMF1-
IMF10) and a r residue, and subsequently generated the Hurst analysis for every IMF
and the residue. Table 1 reports the Hurst exponent, corresponding to the log-log plot
slope of (R/S) and the fractional size in D = 2-H of each IMF and the r-residue. Based
on it, we notice the components’ various characteristics. The IMF1-IMF10 dual linear
association responds to the two Hurst exponents shown in Table 1. H1, derived from the
fine-scale ln(n), is higher than 0.5, showing far-reaching correspondence and consistent
behaviour. In contrast, H2, which is obtained from the large-scale slope ln(n), is smaller
than 0.5, indicating dynamic antipersistence. Despite the similar dual fractal behaviour
of IMF1-IMF10, they have different breakpoints concerning their fractal condition and
different long-term period. The Hurst exponents of IMF10 and the residual r are both
close to 1, revealing their consistent behaviour and their long-range characteristics of
correlation.

The Hurst exponents and fractal dimensions are recomputed and shown in Table 2,
which represent their various long-term properties of correspondence. The Hurst expo-
nent of Large Players (Bitcoin-USD Dollar) and Small Players (Ethereum-USD Dollar)
is lower than 0.5, suggesting the existence of anti-persistence correlations. In the case
of Large Players (Ethereum-USD Dollar) and Small Players (Bitcoin-USD Dollar) are
higher than 0.5, stating that the two sub-sequences correspondence are significant and
assiduous. The other statistical indices of the four sub-sequences are also given inTable 2.
Large Players (Bitcoin-USDDollar) have the highest variance contribution rate 61.52%,
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Table 1. Hurst exponents and fractal dimensions of the elements

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 r

H1 0.6342 0.6450 0.6684 0.7073 0.7823 0.8631 0.8835 0.9084 0.9229 0.9793 0.9862

H2 0.0573 0.2123 0.2736 0.1545 0.2416 0.2721 0.2644 0.2082 0.0702 0.3203 0.1431

D1 3.8264 7.6101 7.8280 8.6292 7.5387 4.8890 5.7437 6.8900 2.1579 5.4947 8.9180

D2 5.8539 8.0401 11.5514 8.7597 7.9766 8.2374 7.1293 9.2422 5.9321 9.4161 10.6411

indicating that it is the predominant driver of the fluctuation and dynamic behaviour of
the cryptocurrency market.

Table 2. Hurst exponents, fractal dimension, and other statistical indices of four subsequences.

H D Mean Variance Variance
contribution rate

Large players
(Bitcoin-USD
Dollar)

0.45278149 14.529 0.058789179 0.74034347 61.52%

Large players
(Ethereum-USD
Dollar)

0.79258158 14.639 0.04180298 0.45419066 37.75%

Small players
(Bitcoin-USD
Dollar)

0.58127372 18.652 0.075472619 0.95044125 0.7898%

Small players
(Ethereum-USD
Dollar)

0.42134992 13.474 0.054519784 0.68657815 57.06%

In addition, Table 3 is given the parameter �S and �α of the multifractal features
of the four sub-sequences of scale. The value �S was determined by R-L to measure
numerically the amount of shift of the singularity spectrum, where R = αmax − α0,L =
α0−αmin; remark that α0 is the maximum value concerning to the multifractal spectrum.
The �S of the Small Players (Ethereum-USD Dollar) and the Small Players (Bitcoin-
USD Dollar) are 0.05678804 and 0.086605 respectively, whereas the �S of the Large
Players (Ethereum-USDDollar) is 0.17512579, indicating that the spectrum of the Large
Players (Ethereum-USDDollar) hasmore asymmetry than the Small Players (Ethereum-
USDDollar) and the Small Players (Bitcoin-USD Dollar), and this means that the Large
Players (Ethereum-USDDollar) ismore unaffected by largemagnitude fluctuations [40].
The index �α stands for strength of the multifractal characteristic. The �α of the Large
Players (Ethereum-USD Dollar) is the highest of the four ones, meaning that it has the
highest multifractality strength. The Small Players (Ethereum-USD Dollar) have the
smallest �α, which implies that the multifractality of this is the mildest among the four
subsequences.
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Table 3. Indices of the multifractal characteristics of the four scale subsequences.

�α R L �S

Large players (Bitcoin-USD
Dollar)

0.39508023 0.16484096 0.230239262 −0.0653983

Large players (Ethereum-USD
Dollar)

1.05795926 0.44141674 0.386303262 0.17512579

Small players (Bitcoin-USD
Dollar)

0.52319289 0.21829394 0.304898947 0.086605

Small players (Ethereum-USD
Dollar)

0.343064 0.14313821 0.125266559 0.05678804

4 Conclusions

This study has developed a speculative attack model of the cryptocurrency market,
Bitcoin andEthereum.The selected period has been fromFebruary 1st 2011 toDecember
1st 2020. The method used was MF-DFA and MMA, verifying that it may be the best
methodology for detecting and predicting such unexpected situations of speculative
attacks. Specifically, the goal has been to demonstrate that this attack mechanism can
also occur in the cryptocurrencymarket by improving accuracy levelswith theMultiscale
multifractal analysis methodology.

The results achieved show that the various frequency-time components IMFs of the
collected magnitude series exhibit anti-persistent and persistent behavior. From there,
four different scaling sub-sequences are identified and overlaid: Large Players (Bitcoin-
USD Dollar), Large Players (Ethereum-USD Dollar), Small Players (Bitcoin-USD Dol-
lar), and Small Players (Ethereum-USD Dollar). The Large Players (Bitcoin-USD Dol-
lar) subsequence, which has the greatest variance contribution rate, is the key factor
pushing the dynamic fluctuation and behaviour of the cryptocurrency market, therefore,
major investors in Bitcoin dominate the market. However, the MF-DFA method shows
that the four subsequences are marked by varying multifractality, which suggests that
they have diverse heterogeneity: the Large Players (Ethereum-USDDollar) possesses the
strongest multifractality, the Small Players (Bitcoin-USD Dollar) and the Large Players
(Bitcoin-USDDollar) are the following two and the Small Players (Ethereum-USDDol-
lar) has the mildest multifractality. This indicates that the Large Players (Ethereum-USD
Dollar) subsequence is more heterogeneous than the others.

In comparison to prior investigations, this research has developed a speculative attack
model applying the methodology Multiscale MF-DFA, which complement each other
and have not been used together in previous studies of cryptocurrencies. Most previous
works have applied statistical and deep learning methods.

This research offers an important contribution to the international financial markets
field, as the findings have significant implications for investors, market participants, and
policymakers, who seek to derive economic and financial benefits from cryptocurren-
cies and to understand the properties of this market. Our research analyzes the behavior
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of cryptocurrencies under uncertainty and helps to improve market volatility forecast-
ing in the face of potential speculative attacks by cryptocurrencies, potentially enabling
investors to improve the risk-adjusted performance of their portfolios. In addition, inter-
ested market players will gain valuable insights into whether cryptocurrencies could
be used to guide monetary policy and portfolio construction in a global environment.
Finally, some future directions of researchmay be oriented to the study of different strate-
gies of speculative attacks on cryptocurrencies in situations of severe liquidity drops and
the possible contagions that can influence other cryptocurrencies or currencies.

Acknowledgement. This research was funded by Universitat de Barcelona (Convocatòria
d’Àrees Emergents, Project Code: AS017634).
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14. Li, Z.-Z., Tao, R., Su, C.-W., Lobonţ, O.-R.: Does Bitcoin bubble burst? Qual. Quant. 53(1),
91–105 (2018). https://doi.org/10.1007/s11135-018-0728-3

15. Cheah, E.T., Fry, J.: Speculative bubbles in bitcoin markets? an empirical investigation into
the fundamental value of bitcoin. Econ. Lett. 130, 32–36 (2015). https://doi.org/10.1016/j.
econlet.2015.02.029

16. Lambrecht, M., Sofianos, A., Xu, Y.: Does mining fuel bubbles? an experimental study on
cryptocurrency markets. AWI Discussion Paper Series No. 703. University of Heidelberg,
Department of Economics, Heidelberg (2021). https://doi.org/10.11588/heidok.00030059

17. Manaa, M., et al.: Crypto-Assets: Implications for financial stability, monetary policy, and
payments and market infrastructures. ECB Occasional Paper, No. 223 (2019)

18. Guo, F., Chen, C.R.Huang,Y.S:Markets contagion during financial crisis: a regime-switching
approach. Int. Rev. Econ. Finance 20, 95–109 (2011)

19. Wang, H.Y., Wang, T.T.: Multifractal analysis of the Chinese stock, bond and fund markets.
Phys. A 512, 280–292 (2018). https://doi.org/10.1016/j.physa.2018.08.067

20. Yujun, Y., Jianping, L., Yimei, Y.: Multiscale multifractal multiproperty analysis of financial
time series based on Rényi entropy. Int. J. Mod. Phys. C 28(2), 1750028 (2017). https://doi.
org/10.1142/S0129183117500280

21. Zeng, Y., Wang, J., Xu, K.: Complexity and multifractal behaviors of multiscale-continuum
percolation financial system for Chinese stock markets. Phys. A 471, 364–376 (2017)

22. Fernandes, L.H.S., De Araújo, F.H.A., Silva, I.E.M.: The (in) efficiency of NYMEX energy
futures: a multifractal analysis. Phys. 556, 124783 (2020). https://doi.org/10.1016/j.physa.
2020.124783

23. Shahzad, S.J.H., Nor, S.M., Mensi, W., Kumar, R.R.: Examining the efficiency and interde-
pendence of US credit and stock markets through MF-DFA and MF-DXA approaches. Phys.
A 417, 351–363 (2017)

24. Rendón, S.: Stock crack detection using multifractal analysis (local and pointwise Hölder
exponents): Stock Index ofMexico IPC and FXUSD/MXN.MPRA (Munich Personal RePEc
Archive) Paper No. 47699 (2013). https://mpra.ub.uni-muenchen.de/47699/

25. Peng, C.K., Buldyrev, S.V., Havlin, S., Simon, M., Stanley, H.E., Goldberger, A.L.: Mosaic
organization of DNA nucleotides. Phys. Rev E49, 1685–1689 (1994)

26. Figliola A., Rosenblatt M., Serrano, E.P.: Local regularity analysis of market index for the
2008 economical crisis. Revista de Matemática: Teoría y Aplicaciones,19 (1), 65–78 (2012).
(ISSN 1409–2433)

27. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley,
H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316,
87–114 (2002). https://doi.org/10.1016/S0378-4371(02)01383-3

28. Aijing, L., Hui, M., Pengjian, S.: The scaling properties of stock markets based on modified
multifractal detrended fluctuation analysis. Phys. A 436, 525 (2015)

29. Wang, Y., Liu, L., Gu, R.: Analysis of efficiency for Shenzhen stock market based on
multifractal detrended fluctuation analysis. Int. Rev. Financ. Anal. 18, 271–276 (2009)

30. Yuan, Y., Zhuang, X.T., Jin, X.: Measuring multifractality of stock price fluctuation using
multifractal detrended fluctuation analysis. Phys. A 388, 2189–2197 (2009)

31. Subhakar, D., Chandrasekhar, E.: Reservoir characterization using multifractal detrended
fluctuation analysis of geophysical well-log data. Phys. A 445, 57–65 (2016). https://doi.org/
10.1016/j.physa.2015.10.103

32. Xu, Y., Feng, H.: Revisiting multifractality of TCP traffic using multifractal detrended fluctu-
ation analysis. J. Stat. Mech. Theory Exp. 2014(2), P02007 (2014). https://doi.org/10.1088/
1742-5468/2014/02/P02007

33. Tiwari, A.K., Albulescu, C.T., Yoon, S.M.: A multifractal detrended fluctuation analysis of
financial market efficiency: comparison using dow jones sector ETF indices. Phys. A 483,
182–192 (2017). https://doi.org/10.1016/j.physa.2017.05.007

https://doi.org/10.1007/s11135-018-0728-3
https://doi.org/10.1016/j.econlet.2015.02.029
https://doi.org/10.11588/heidok.00030059
https://doi.org/10.1016/j.physa.2018.08.067
https://doi.org/10.1142/S0129183117500280
https://doi.org/10.1016/j.physa.2020.124783
https://mpra.ub.uni-muenchen.de/47699/
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/j.physa.2015.10.103
https://doi.org/10.1088/1742-5468/2014/02/P02007
https://doi.org/10.1016/j.physa.2017.05.007


Multiscale Multifractal Detrended Analysis of Speculative Attacks Dynamics 339

34. Wang, J., Shang, P., Cui, X.: Multiscale multifractal analysis of traffic signals to uncover
richer structures Phys. Rev. E 89, 032916 (2014)

35. Scharnowski, S.: Understanding bitcoin liquidity. Finance Res. Lett. 38, 101477 (2021). ISSN
1544–6123. https://doi.org/10.1016/j.frl.2020.101477

36. Corsetti, G., Dasgupta, A., Morris, S., Shin, H.S.: Does one Soros make a difference? a theory
of currency crises with large and small traders. Rev. Econ. Stud. 71(1), 87–114 (2004)

37. Liu, H., Zhang, X., Zhang, X.: Multiscale multifractal analyisis on air traffic flow time series:
a single airport departure flight case. Phys. A (2019). https://doi.org/10.1016/j.physa.2019.
123585

38. Gierałtowski, J., Zebrowski, J.J., Baranowski, R.: Multiscale multifractal analysis of heart
rate variability recordings with a large number of occurrences of arrhythmia. Phys. Rev. E
85, 021915 (2012). https://doi.org/10.1103/PhysRevE.85.021915

39. Alaminos, D., Aguilar-Vijande, F., Sánchez-Serrano, J.R.: Neural networks for estimating
speculative attacks models. Entropy 23(1), 106 (2021)

40. Goldberger, A., et al.: PhysioBank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000).
https://doi.org/10.1161/01.CIR.101.23.e215

https://doi.org/10.1016/j.frl.2020.101477
https://doi.org/10.1016/j.physa.2019.123585
https://doi.org/10.1103/PhysRevE.85.021915
https://doi.org/10.1161/01.CIR.101.23.e215


A Heuristic Repair Algorithm
for the Hospitals/Residents Problem

with Ties

Son Thanh Cao, Le Quoc Anh, and Hoang Huu Viet(B)

School of Engineering and Technology, Vinh University, Vinh City, Vietnam
{sonct,anhlq,viethh}@vinhuni.edu.vn

Abstract. The Hospitals/Residents problem with Ties is a many-to-
one stable matching problem and it has several practical applications.
In this paper, we present a heuristic repair algorithm to find a stable
matching with maximal size for this problem. Our approach is to apply
a random-restart algorithm used commonly to deal with constraint sat-
isfaction problems. At each iteration, our algorithm finds and removes
the conflicted pairs in terms of preference ranks between hospitals and
residents to improve rapidly the stability of the matching. Experimental
results show that our approach is efficient in terms of execution time and
solution quality for the problem of large sizes.

Keywords: Hospitals/residents with ties · Heuristic repair ·
Undominated blocking pair · Weakly stable matching

1 Introduction

In 1962, Gale and Shapley introduced the Hospitals/Residents problem (HR)
under the name “College Admissions Problem” [3]. An instance of the HR
involves a set of residents and a set of hospitals, in which each of them ranks
a subset of the other set in a strict order of preference and each hospital has a
capacity to indicate the maximum number of residents that can be assigned to
it. Solving such a problem is to find a matching of residents and hospitals, in
which each resident is assigned to at most one hospital and each hospital does
not exceed its capacity. Moreover, the matching must be stable or it admits no
blocking pair, where a blocking pair (r, h) for the matching is a resident r and a
hospital h such that (i) r and h rank each other; (ii) r either is unassigned or
prefers h to the hospital assigned to it; and (iii) h either is under-subscribed or
prefers r to the worst resident assigned to it. HR can be found in applications
such as the National Resident Matching Program (NRMP) in the US [18], the
Scottish Pre-registration house officer Allocations (SPA) matching scheme [7],
or the Canadian Resident Matching Service (CaRMS) in Canada [1].

Recently, there are several variations of HR have been proposed by
researchers [2,8,13,15]. The most popular one is a natural generalization of HR
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known as the Hospitals/Residents problem with Ties (HRT) [8,13], where both
residents and hospitals can rank a subset of the other set with ties. Accordingly,
there are three criteria of stable matchings consisting of weak stability, strong
stability, and super-stability [8]. Among these criteria, the problem of finding
weakly stable matchings has been an active field of researchers for several years
since its practical applications. Irving et al. [8] showed that an instance of HR
may have more than one stable matching and every stable matching is the same
size, while an instance of HRT may have more than one weakly stable matching
with different sizes. The problem of finding a weakly stable matching with the
maximum number of residents assigned to hospitals is known as MAX-HRT
and shown to be NP-hard [8].

In the last few years, several algorithms to solve MAX-HRT were introduced
in the literature. Manlove et al. [14] proved that the size of the largest stable
matching was at most twice the size of the smallest one for any HRT instance.
Kwanashie et al. [12] presented an integer programming approach to find a stable
matching. Munera et al. [16] proposed an adaptive search algorithm for the stable
matching with ties and incomplete lists (SMTI) [10,14] and its extension to deal
with MAX-HRT. Kir’aly [11] described ingenious approximation algorithms for
MAX-HRT. However, all the algorithms mentioned above are inefficient to solve
MAX-HRT of large sizes.

In this paper, we propose a heuristic repair algorithm to solve MAX-HRT.
For brevity, hereinafter, we refer to a weakly stable matching as a stable matching
and MAX-HRT as HRT. Our idea is to improve the stability of a randomly
generated matching. At each iteration, our algorithm finds a set of undominated
blocking pairs of a matching from the residents’ point of view, then it removes
the best blocking pair for each hospital such that it does not only remove as many
blocking pairs from the residents’ point of view as possible but also removes as
many blocking pairs as possible from the hospitals’ point of view. Experimental
results show that our algorithm is efficient in solving HRT of large sizes.

The remainder of this paper is structured as follows. Section 2 reminds the
main definitions for HRT, Sect. 3 presents our proposed algorithm, Sect. 4 dis-
cusses our experimental results, and Sect. 5 concludes our work.

2 Background

In this section, we remind the background for HRT [4,8]. An instance I of HRT
involves a set of residents, denoted by R = {r1, r2, · · · , rn}, and a set of hospitals,
denoted by H = {h1, h2, · · · , hm}, in which each ri ∈ R ranks a subset of H
in its preference list and each hj ∈ H ranks a subset of R in its preference list.
Moreover, each hj has a capacity cj ∈ Z

+ to indicate the maximum number
of residents that can be assigned to it. We denote a set of acceptable pairs by
A = {(ri, hj) ∈ R × H}, where ri and hj must rank each other.

An assignment M is a subset of A. If (ri, hj) ∈ M , we say that ri is assigned
to hj and hj is assigned ri, and we denote M(hj) by the set of residents assigned
to hj and M(ri) = hj , respectively. If ri is unassigned in M , then we denote by
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M(ri) = ∅. A hospital hj ∈ H is called under-subscribed, full, or over-subscribed
if |M(hj)| < cj , |M(hj)| = cj , or |M(hj)| > cj , respectively.

Definition 1 (matching). A matching is an assignment M such that
|M(ri)| ≤ 1 for each ri ∈ R, and |M(hj)| ≤ cj for each hj ∈ H, meaning
that each resident is assigned to at most one hospital, and no hospital is over-
subscribed.

Given a matching M and a pair (ri, hj) ∈ A, if ri strictly prefers hj to M(ri),
then we denote by hj ≺ri M(ri); if hj strictly prefers ri to the worst resident in
M(hj), then we denote by ri ≺hj

M(hj).

Definition 2 (blocking pair). A pair (ri, hj) ∈ R × H is a blocking pair for
a matching M if (i) (ri, hj) ∈ A; (ii) M(ri) = ∅ or hj ≺ri M(ri); and (iii)
|M(hj)| < cj or ri ≺hj

M(hj).

Definition 3 (stable matching). A matching M is called stable if it admits
no blocking pairs, otherwise, it is called unstable.

Definition 4 (matching size). The size of a stable matching M , denoted by
|M |, is the number of residents assigned to hospitals in M . If |M | = n, then M
is called perfect. Otherwise, M is called non-perfect.

Definition 5 (dominated blocking pair). A blocking pair (ri, hj) ∈ R × H
dominates a blocking pair (ri, hk) ∈ R × H from the residents’ point of view if
ri prefers hj to hk.

Definition 6 (undominated blocking pair). A blocking pair (ri, hj) ∈ R×H
is called an undominated blocking pair (UBP) if there exists no other blocking
pair that dominates it from the residents’ point of view.

The concepts of the dominated and undominated blocking pairs were given
in [4] and then they were applied to solve efficiently the SMTI problem [5,17].
In this paper, we apply these concepts to solve HRT. Given a matching M and
a blocking pair (ri, hj) ∈ R×H for M , we call an operation of removing (ri, hj)
for M means that ri is assigned to hj , or M(ri) = hj . We assume that there
exist two blocking pairs, denoted by (ri, hj) ∈ R × H and (ri, hk) ∈ R × H,
for M , where (ri, hj) dominates (ri, hk) from the residents’ point of view. If we
remove (ri, hj) for M to obtain a matching M ′ from M , i.e. M ′(ri) = hj , and
the other pairs of M ′ are the same as those of M , except if M ′(hj) > cj , then
the worst resident in M ′(hj) becomes unassigned. As a result, the blocking pair
(ri, hk) is removed for M ′. Otherwise, if we remove (ri, hk) for M to obtain a
matching M ′ from M , then the blocking pair (ri, hj) still remains for M ′. This
follows that if we remove an UBP (ri, hj) for a matching M , then all the blocking
pairs formed by ri from the residents’ point of view will be removed for M . We
have equivalent concepts of the dominated and undominated blocking pairs from
the hospitals’ point of view. Accordingly, if we remove an UBP (ri, hj) from the
hospitals’ point of view, then all the blocking pairs formed by hj will be removed
for M .
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Table 1. An instance of HRT of eight residents and four hospitals

Residents Preference lists Hospitals Preference lists Capacities

r1 h1 (h2 h3) h4 h1 r8 r2 r7 r1 r6 r5 r3 r4 c1 = 3

r2 h4 h1 h2 h3 h2 r6 r2 r1 r4 r3 r7 c2 = 6

r3 h1 h3 h4 h2 h3 r6 r2 r1 r4 r5 r8 r7 r3 c3 = 3

r4 (h1 h4) h2 h3 h4 r2 r5 r4 (r7 r8) r1 r3 c4 = 4

r5 h3 h1 h4

r6 h2 h1 h3

r7 h2 h4 h1 h3

r8 h1 h3 h4

We consider an HRT instance consisting of 8 residents and 4 hospitals shown
in Table 1. In residents’ preference lists, for example, the notation r1: h1 (h2 h3)
h4 means r1 strictly prefers h1 to h2 and h3, which are equally preferred. We have
similar notations in the hospitals’ preference lists. The matching M = {(r1,∅),
(r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1), (r7, h3), (r8,∅)} is unstable because
there exist blocking pairs such as (r1, h1), (r1, h2), (r1, h3), (r1, h4), (r2, h1) for
M . The blocking pair (r1, h1) dominates the blocking pair (r1, h4) from the
residents’ point of view and the blocking pair (r1, h1) is undominated since there
exists no blocking pairs dominating it from the residents’ point of view. If we
remove (r1, h1) for M to obtain a matching M ′, i.e. M ′ = {(r1, h1), (r2,∅),
(r3, h1), (r4,∅), (r5, h3), (r6, h1), (r7, h3), (r8,∅)}, then all the UBPs formed
by r1 from the residents’ point of view are removed for M ′. The matching M =
{(r1, h1), (r2, h4), (r3, h1), (r4, h4), (r5, h3), (r6, h2), (r7, h2), (r8, h1)} is perfect
since M is stable and |M | = 8.

3 Algorithm for HRT

In this section, we propose an algorithm of repairing undominated blocking
pairs, called heuristic repair algorithm, to solve MAX-HRT. Given an arbi-
trary matching M of an instance I of HRT, we assume that there exists a set
X = {(ri, hj)|(ri, hj) ∈ R × H} of UBPs from the residents’ point of view for
M . As we mentioned above, if we remove only an UBP (ri, hj) ∈ X for M (i.e.
M(ri) = hj), then all the blocking pairs formed by ri will be removed for M .
If so, we were wasted time in finding the remaining pairs in X. Obviously, we
cannot remove every pair (ri, hj) ∈ X, since if there exist two pairs (ri, hj) ∈ X
and (rk, hj) ∈ X, then we remove (ri, hj) or (rk, hj) for M (i.e. M(ri) = hj or
M(rk) = hj)? Our question is that which pairs (ri, hj) ∈ X should be removed in
M such that we can rapidly obtain the stability of M . To answer this question,
we first analyze the instance of HRT given in Table 1. We assume that given
an unstable matching M = {(r1,∅), (r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1),
(r7, h3), (r8,∅)}, then the set of UBPs from the residents’ point of view for M
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is X = {(r1, h1), (r2, h4), (r6, h2), (r7, h2), (r8, h1)}. Since X is a set of UBPs
from the residents’ point of view, each ri ∈ X belongs to only one element of X,
while each hj ∈ X is not so. This means that we can partition X = X1∪X2∪X3,
where X1 = {(r1, h1), (r8, h1)}, X2 = {(r2, h4)}, and X3 = {(r6, h2), (r7, h2)}. If
we remove a pair (ri, hj) ∈ Xt(t = 1, 2, 3) that (ri, hj) dominates all the other
(rk, hj) ∈ Xt from the hospitals’ point of view, then all (rk, hj) formed by hj

from the hospitals’ point of view are removed for M .
As with the analysis above, our idea to solve HRT is that at each iteration of

our algorithm, we do the following: (i) finding a set X of UBPs for an unstable
matching M from the residents’ point of view; (ii) partitioning X = X1 ∪ X2 ∪
· · · ∪ Xl such that each Xt(t = 1, 2, · · · , l) consists of blocking pairs (ri, hj) ∈
X formed by a unique hj ∈ X; and (iii) removing a pair (ri, hj) ∈ Xt(t =
1, 2, · · · , l) that (ri, hj) dominates all the other (rk, hj) ∈ Xt from the hospitals’
point of view. By doing so, our idea is not to remove all the blocking pairs formed
by ri from the residents’ point of view but also reject as many blocking pairs
formed by hj from the hospitals’ point of view as possible to obtain a stable
matching of an HRT instance as quickly as possible.

Our algorithm is shown in Algorithm 1. To avoid getting stuck in local max-
ima, we use the mechanism of the random-restart hill climbing algorithm [19].
Specifically, our algorithm finds a maximum stable matching, denoted by Mbest,
from a randomly generated matching M . At each iteration, our algorithm runs
as follows. First, the algorithm finds a set X of UBPs for M from the residents’
point of view (line 4). Second, the algorithm checks if X is empty, then if Mbest

is worse than M in terms of the matching size, M is assigned to Mbest (lines 6-8).
Next, the algorithm checks if Mbest is perfect, then it returns Mbest (lines 9-11),
otherwise, it restarts at a randomly generated matching M and continues the
next iteration (lines 12-13). Third, the algorithm checks if a small probability of
p is accepted, it chooses a random pair (ri, hj) ∈ X and removes it for M (lines
15-22). Otherwise, it iterates for each hj ∈ X to select a pair (ri, hj) ∈ X that
hj prefers ri to rk for all (rk, hj) ∈ X and removes (ri, hj) for M (lines 24-25).
When the algorithm removes a blocking pair (ri, hj) for M , i.e. M(ri) = hj , and
if hj is over-subscribed, then it removes the pair (rz, hj) ∈ M such that hj is
full, where rz is the worst resident assigned to hj in M (lines 26-29). Finally,
the algorithm repeats until either Mbest is a perfect matching or a maximum
number of iterations is reached. In the latter case, the algorithm returns either a
maximum stable matching found so far or an unstable matching. We note that
to find an UBP (ri, hj) ∈ X from the residents’ point of view for M , the algo-
rithm runs an iteration for each hospital hj in ascending order of ranks in ri’s
preference list and returns the first blocking pair encountered, then (ri, hj) is an
undominated blocking pair.

An execution of our algorithm for the HRT instance shown in Table 1 is
illustrated as in Table 2. We assume that the probability to choose a random pair
in X is p = 0 and the algorithm starts from a random matching M0 = {(r1,∅),
(r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1), (r7, h3), (r8,∅)}. At the first iteration,
the algorithm finds a set X0 = {(r1, h1), (r2, h4), (r6, h2), (r7, h2), (r8, h1)}
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Algorithm 1: Heuristic Repair Algorithm
Input: - An HRT instance I of size n × m

- A small probability p.
- The maximum iterations max iters.

Output: A matching Mbest.
1. M := a randomly generated matching;
2. Mbest := M ;
3. for iter := 1 to max iters do
4. X := a set of undominated blocking pairs for M ;
5. if (X = ∅) then
6. if (|Mbest| < |M |) then
7. Mbest := M ;
8. end
9. if (|Mbest| = n) then

10. break;
11. end
12. M := a randomly generated matching;
13. continue;

14. end
15. if (a small probability of p) then
16. take a random pair (ri, hj) ∈ X;
17. M(ri) := hj ;
18. if (hj is over-subscribed ) then
19. rz := worst resident in M(hj);
20. M(rz) := ∅;

21. end

22. else
23. for (each hj ∈ X) do
24. select (ri, hj) ∈ X such that hj prefers rj to rk, ∀(rk, hj) ∈ X;
25. M(ri) := hj ;
26. if (hj is over-subscribed ) then
27. rz := worst resident in M(hj);
28. M(rz) := ∅;

29. end

30. end

31. end

32. end
33. return Mbest;

of UBPs from the residents’ point of view for M0. Since (r8, h1) dominates
(r1, h1) from the hospitals’ point of view (i.e. h1 prefers r8 to r1) and (r6, h2)
dominates (r7, h2) from the hospitals’ point of view (i.e. h2 prefers r6 to r7),
the algorithm removes (r2, h4), (r6, h2) and (r8, h1) to obtain a matching M1 =
{(r1,∅), (r2, h4), (r3, h1), (r4,∅), (r5, h3), (r6, h2), (r7, h3), (r8, h1)}. At the
second iteration, the algorithm finds a set X1 = {(r1, h1), (r4, h1), (r7, h2)} of
UBPs from the residents’ point of view for M1. It should be noted that at
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the first iteration, (r8, h1) dominated (r1, h1) and we removed (r8, h1) for M0,
but there exists (r1, h1) ∈ X1 for M1, since (r1, h1) ∈ X1 is an UBP found
from the residents’ point of view. It is explained similarly for (r7, h2) ∈ X1.
Since (r1, h1) dominates (r4, h1) from the hospitals’ point of view, the algorithm
removes (r1, h1) and (r7, h2) to obtain a matching M2. The algorithm repeats
until the fourth iteration, where X3 = {∅}, and it returns a perfect matching
M3.

Table 2. An execution of the algorithm for HRT in Table 1

Iter. Input UBPs Remove Output

1 M0 X0 = {(r1, h1),
(r2, h4), (r6, h2),
(r7, h2), (r8, h1)}

{(r2, h4),
(r6, h2),
(r8, h1)}

M1 = {(r1,∅), (r2, h4), (r3, h1),
(r4,∅), (r5, h3), (r6, h2), (r7, h3),
(r8, h1)}

2 M1 X1 = {(r1, h1),
(r4, h1), (r7, h2)}

{(r1, h1),
(r7, h2)}

M2 = {(r1, h1), (r2, h4), (r3, h1),
(r4,∅), (r5, h3), (r6, h2), (r7, h2),
(r8, h1)}

3 M2 X2 = {(r4, h4)} {(r4, h4)} M3 = {(r1, h1), (r2, h4), (r3, h1),
(r4, h4), (r5, h3), (r6, h2), (r7, h2),
(r8, h1)}

4 M3 X3 = {∅}

4 Experiments

In this section, we evaluate the performance of our heuristic repair algorithm,
namely HR, for HRT. To do this, we applied the SMTI generator [6] to generate
HRT instances with parameters (n,m, p1, p2), where n is the number of residents,
m is the number of hospitals, p1 is the probability of incompleteness, and p2 is the
probability of ties. Without loss of generality, we assume that in each generated
instance, the preference lists of residents and hospitals consist of acceptance
pairs. Otherwise, we run a preprocessing procedure to remove unacceptance
pairs in HRT instances. We implemented all experiments by Matlab 2019a on a
personal computer with a Core i7-8550U CPU 1.8GHz and 16 GB memory.

4.1 Comparison with Local Search

In this section, we present an experiment to compare the execution time and
solution quality found by HR with those found by Local Search (LS) [4]. We set
the probability p = 0.03 and the maximum number of iterations to 500 in both
HR and LS algorithms.

Experiment 1. We chose n = 100, m = 10, p1 ∈ [0.1, 0.8] with step 0.1, and
p2 ∈ [0.0, 1.0] with step 0.1. For each combination of parameters (n,m, p1, p2),
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we randomly generated 100 HRT instances, in which the capacity cj of each
hospital hj ∈ H is generated randomly and cj ∈ [1, q], where q is the total
number of residents ranked by hospital hj ∈ H. Then, we ran HR, LS and
averaged results. Figure 1(a) shows the percentage of perfect matchings found
by HR and LS. When p1 varies from 0.1 to 0.4, both HR and LS always find
100% of perfect matchings (therefore, they are not depicted in Fig. 1(a)), while
p1 varies from 0.5 to 0.8, the percentage of perfect matchings found by HR is
slightly higher than that found by LS. Figure 1(b) shows the average execution
time of HR and LS. The experimental results show that HR runs about 100
times faster than LS for any p1 and p2. On average, the execution time of HR
increases from about 0.008(s) to 0.02(s), while that of LS increases from about
0.5(s) to 43.5(s) for any value of p2. In contrast, when p2 varies from 0.0 to 1.0,
the execution time of both HR and LS decreases slightly for any value of p1.
This can be explained as follows. Although LS considers only UBPs, the number
of such UBPs is very large, i.e. the number of neighbor matchings is very large
because a neighbor is generated by removing a blocking pair in the set of UBPs.
This increases significantly the execution time of LS. However, HR finds the set
of UBPs and removes many blocking pairs in the set of UBPs to generate a new
matching for the next iteration without evaluating the cost of matchings as in
LS and therefore, HR runs much faster than LS.

Fig. 1. Comparing solution quality and execution time of HR and LS algorithms

4.2 Experiments for HRT of Large Sizes

In this section, we present experimental results for HRT instances of large sizes
to consider the behavior of our algorithm. We set p = 0.03 and max iters = 1000
in HR.

Experiment 2. We chose n = 1000, m = 50, p1 ∈ [0.1, 0.8] with step 0.1, and
p2 ∈ [0.0, 1.0] with step 0.1. For each combination of parameters (n,m, p1, p2),
we randomly generated 100 HRT instances, in which cj of each hospital hj ∈ H
is generated randomly and cj ∈ [1, q], where q is the total number of residents
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ranked by hospital hj ∈ H. Our experimental results show that when p1 = 0.8,
HR finds 98% of perfect matchings for p2 ∈ {0.0, 0.2, 0.3} and 99% of perfect
matchings for p2 ∈ {0.4, 0.8}. For the remaining values of p1 and p2, HR finds
100% of perfect matchings. Figure 2(a) shows the average capacity in generated
instances. For each p1 ∈ [0.1, 0.8], the average capacity of hospitals is about
0.5n(1−p1) residents (i.e. from 450 residents to 100 residents). When p2 increases
from 0.0 to 1.0, the average capacity of hospitals remains unchanged. When
p1 = 0.8, meaning that hj has the smallest capacity cj , and therefore some
instances may have no perfect matchings and HR cannot find perfect matchings
for these instances. Figure 2(b) shows the average number of iterations used by
HR. When p1 increases from 0.1 to 0.8, the number of iterations used by HR
slightly decreases. When p2 increases from 0.0 to 0.9, the number of iterations
used by HR increases. However, when p2 = 1.0, the number of iterations used by
HR decreases rapidly because the probability of ties is 100%, meaning that the
ranks of hospitals in residents’ preference lists are the same. Therefore, HR only
considers the first accepted hospital instead of all hospitals in order to find an
UBP from the resident’s point of view. We can see that although the generated
instances have large sizes, HR used a small number of iterations, about 40 to
100, to find perfect matchings.

(a) Average capacity (b) Average number of iterations

Fig. 2. Average capacity of instances and average number of iterations used by HR for
n = 1000 and m = 50

Experiment 3. In this experiment, we chose n ∈ [100, 1000] with step 100,
m ∈ [10, 50] with step 5, p1 = 0.5, and p2 = 0.5. For each combination of
parameters (n,m, p1, p2), we randomly generated 100 HRT instances, in which
the capacity of each hospital is chosen as in Experiment 2. Figure 3(a) shows the
percentage of perfect matchings found by HR. We see that when m ∈ [20, 50],
HR always finds 100% of perfect matchings. When m = 10 and n increases
from 100 to 1000, HR finds about from 85% down to 47% of perfect matchings,
respectively, and the number of unassigned residents in stable matchings is about
from 1 to 2 unassigned residents as shown in Fig. 3(b). When m = 15, HR finds
about 98% of perfect matchings for all values of n ∈ [100, 1000].
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Fig. 3. Percentage of perfect matchings and average unassigned residents for n ∈
[100, 1000] and m ∈ [10, 50]

Experiment 4. In this last experiment, we evaluated the effect of capacities of
hospitals on perfect matchings found by HR. To do this, we chose the values of
n, m, p1 and p2 as in Experiment 3. We changed the capacity of each hospital
as follows.

First, we considered a popular case, where cj = n/m, meaning that the
total capacity of hospitals is equal to the number of residents. The experimental
results, depicted in Fig. 4(a), show that HR finds 90% of perfect matchings for
n ∈ [100, 1000] and m ∈ [20, 50]. When m = 10, HR finds about from 85% (at
n = 100) down to 1% (at n = 1000) of perfect matchings. Figure 4(b) shows
the average execution time found by HR. When m increases from 20 to 50 and
n increases from 100 to 1000, the execution time found by HR increases about
from 0.01(s) to 1.5(s). However, when m = 10 and n increases from 100 to 1000,
the execution time found by HR increases about from 0.02(s) to 4.5(s), since the
percentage of perfect matchings found by HR decreases, meaning that HR used
many iterations to find perfect matchings for generated instances.

Fig. 4. Percentage of perfect matchings and average execution time found by HR,
where cj = n/m
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Fig. 5. Percentage of perfect matchings and average execution time found by HR,
where cj = [0.2q, 0.6q]

Second, we randomly generated cj ∈ [0.2q, 0.6q], where q is the total number
of residents ranked by hospital hj ∈ H. This means that each hospital ranks
about 50% of residents (since p1 = 0.5), but selects only about from 10% to 30%
of the total of ranked residents. Figure 5(a) shows that when (n,m) = (700, 10),
HR finds 99% of perfect matchings, and when (n,m) = (900, 10), HR finds 97%
of perfect matchings. For the remaining values of n and m, HR finds 100% of
perfect matchings. In this case, the percentage of perfect matchings found by
HR is higher than that when cj = n/m, meaning that the capacity for each
hospital strongly affects the solution quality of HRT. Figure 5(b) shows the
average execution time found by HR. When n increases from 100 to 1000, the
average execution time of HR increases only about from 0.01(s) to 0.4(s). We see
that when n = 1000 and m ∈ [10, 50], the execution time of HR is very small,
about 0.4(s), meaning that HR is efficient for solving HRT instances of large
sizes.

5 Conclusions

In this paper, we proposed a heuristic repair algorithm to solve HRT. The algo-
rithm starts to search a solution of the problem from a random matching. At
each iteration, the algorithm finds a set of undominated blocking pairs from the
residents’ point of view for the matching. Then, the algorithm removes the best
undominated blocking pair for each hospital such that it does not only remove
many blocking pairs from the residents’ of view as possible but also removes
as many blocking pairs as possible from the hospitals’ point of view. The algo-
rithm repeats until it finds a perfect matching or reaches a maximum number of
iterations. Experiments showed that our algorithm is efficient in terms of execu-
tion time and solution quality for HRT of large sizes. In the future, we plan to
extend this approach to find strongly stable matchings or super-stable matchings
for HRT [8,9].
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Abstract. This study considers a very important issue, which is the
impact of preprocessing on model performance. On the example of data
describing taxicab trips in New York City, a model predicting the aver-
age speed of a trip was built. The effectiveness of the obtained model
was examined using relative error. The results were compared with the
models obtained after prior data cleaning from the records containing
missing data. Additionally, the effect of removing outliers on model
quality was examined. An integral part of the paper is the description
of a new method of anomaly detection. The author’s method involves
fuzzy classification of the declared distance into three classes. As an
indicator to allow for classification, the percentage of redundant dis-
tance with respect to Manhattan distance was selected. The results of
a wide range of numerical experiments confirm the necessity of prepro-
cessing. Comparison of a number of competing anomaly detection and
prediction model building methods allows for reasonable generalization
of the obtained conclusions. Additionally, the skillful use of fuzzy sets
for anomaly detection allowed the development of a method that can be
generalized to other transportation issues.

Keywords: Preprocessing · Prediction model · Outlier detection ·
Anomaly detection · Filling gaps

1 Introduction

A key component of the prediction process, as well as other advanced data anal-
ysis methods, is proper preprocessing [2,9,25,27]. The most important steps in
data preparation include removing/filling data gaps [15,19,20,28], and detecting
outliers and anomalies [10–12,14,17,26].

Most methods in the prediction process build models [3,23] that have coincide
to varying degrees with empirical values. A number of model building meth-
ods and techniques are considered [4,6,8,21,22]. The performance differences
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between the methods are comparable, and in many cases, the quality of the
model is determined by the training set [16].

In this study, a novel approach for detecting anomalies in transportation data
is presented. Using operations on fuzzy sets, a method allowing the detection of
anomalies in taxicab trip distances is proposed. The method enables the iden-
tification of courses that are, with a high probability, an attempt to cheat the
customers or the taxicab corporation. In the process of anomaly detection the
author’s fuzzy modification of the three sigma rule is used [13,14].

Additionally, the effect of preprocessing on the effectiveness of taxicab travel
speed prediction is presented. A series of numerical experiments were conducted
demonstrating the impact of data preprocessing on the effectiveness of the travel
time prediction model.

The work is organised as follows. Section 2 provides a theoretical description
of the proposed method. In the next Sect. 3, the results of numerical experiments
are presented. Finally, Sect. 4 contains conclusions and future work directions.

2 Prerequisites

For travel in an urban area, the route length is usually longer than a straight line
connecting the beginning and end of the trip. When considering trip distance,
it is important to take into account the nature of the city and the arrangement
of the streets with each other. In the case of newly developed U.S. cities, we are
usually dealing with a grid of streets and blocks. In this case, it is advisable to
use a dedicated taxicab metric (1), also called the Manhattan distance.

dM ((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2| (1)

If the declared (empirical) trip distance de significantly deviates from the
value determined by the Manhattan metric dM , we can assume that there is an
anomaly. As an indicator to determine the level of redundant distance can be
one given by Eq. (2).

δ =
de − dM

de
(2)

The proposed novel indicator differs from the classical relative error in that
it omits an absolute value. This is a deliberate action dictated by the fact that in
some cases the declared trip distance is smaller than the value obtained using the
Manhattan metric. In order to determine the direction and degree of deviation
from the norm, fuzzy descriptors describing the three phenomena were proposed.
The membership functions for each descriptor are given by the formulas (3), (4),
(5).

μlow(δ) =

⎧
⎨

⎩

1, δ ∈ (−∞; 0)
0.05−δ
0.05 , δ ∈ [0; 0.05]

0, δ ∈ (0.05;∞)
(3)
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μnormal(δ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, δ ∈ (−∞; 0) ∨ (1;∞)
δ

0.05 , δ ∈ [0; 0.05]
1, δ ∈ (0.05; 0.5]

1−δ
0.5 , δ ∈ (0.5; 1]

(4)

μhight(δ) =

⎧
⎨

⎩

0, δ ∈ (−∞; 0.5)
δ−0.5
0.5 , δ ∈ [0.5; 1]

1, δ ∈ (1;∞)
(5)

The membership degree to particular descriptors determines the anomaly
level of a given trip. The membership degree to particular descriptors determines
the anomaly level of a given trip. If the degree of membership in the “high”
descriptor is dominant, then it is most probably an attempt to defraud the client
and deliberately extend the trip distance by the driver. On the other hand, if
the membership degree of the “low” descriptor is prevalent, it can be assumed
that it is an attempt to defraud the cab company or the tax authorities.

3 Numerical Experiments

The numerical experiments were limited to the analysis of a subset of data
describing single taxicab trips in New York City [7]. For the clarity of the pre-
sented results, the analysis was limited to 100,000 randomly selected trips. Even
a brief analysis of the considered data allows us to conclude that the data are
not free from outliers. This is clearly evidenced by the visualization of points
representing the beginnings of individual trips (cf. Fig. 1).

In many cases, the beginning and the end coordinates of the trip were incor-
rectly recorded as points with coordinates (0,0). In the analyzed dataset, there
were 1953 such entries. Additionally, in a number of cases, there were missing
data in trip distance and time or it was incorrectly indicated that these val-
ues were equal to zero. 592 such items were found. A novel anomaly detection
method presented in the theoretical section was used to detect more sophisti-
cated anomalies involving unreasonably declared trip distances (Fig. 2).

It is easy to observe that the coordinates of the start of a trip do not predefine
whether a trip is suspected of being anomalous. It turns out that a significant
proportion of the anomaly elements are those that fall into the “low” category
with the highest degree. Moreover, it appears that more than one-third of the
trips fall into this category to a degree that exceeds the membership degree in
the “normal” category.

For the purpose of testing the effect of preprocessing on model quality, it was
proposed to consider three well-known prediction methods, namely Gradient
Boosted Tree (GBT), Tree Ensamble (TE) and Random Forest (RF). Based on
each of these methods, an average travel speed model is created.

As part of the numerical experiments, the available dataset was randomly
divided into a training and a testing set. Different number of elements (in per-
centage) were assigned to the training set. The quality of the model was exam-
ined on the elements of the training set by calculating the relative error. For each
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Fig. 1. The location of the beginning of the trips

percentage of elements in the training set, the entire experiment was indepen-
dently repeated 10 times. The results of basic relative error statistics for different
methods and different sizes of the training set are shown in Table 1.

By analyzing the results presented in Table 1, it can be observed that the
smallest error of just over 2% is obtained using the GBT method. However, it
should be noted that this method has a tendency to overtraining. In the case of
too large training set (at the level of 80 and 90% of elements) we obtain worse
values of statistics than for the model built on the basis of 70% of available
elements. For other methods, the value of median and quartiles decreases as the
number of elements in the training set increases. This is a correct relation which
proves stability of a given method.

After applying a simple preprocessing based on rejecting elements with incor-
rect start and end trip coordinates, we obtain slightly different error statistics
for each method (cf. Table 2).

It can be clearly observed that after discarding the invalid data, the TE
method has gained the most. By comparing the median values, a slight improve-
ment of the model can be noted. Additionally, if records with zero values for
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Fig. 2. Visualization of normal (green) and abnormal (red) records (Color figure online)

travel time and travel distance are removed (see Table 3), the effectiveness of the
model increases when using 80% of the elements in the training set. At the same
time, at 90%, one can observe an overtraining of the analysed methods.

Simple preprocessing methods consisting of removing records with incomplete
data and records with obvious incorrect values can slightly improve the quality
of the model. Additionally, if outliers are taken into account in the analysis, it
is possible to significantly improve individual models.

Four popular outlier detection methods, namely Elliptical Envelope (EE)
[24], Gaussian Mixture (GM) [1], Isolation Forest (IF) [18], and Local Out-
lier Factor (LOF) [5], were proposed for outlier detection. Based on the results
obtained from each method, 1% of the elements with the highest degree of
anomaly were rejected. For the remaining elements, a split was made between
the training and testing set. Table 4 presents the basic relative error statistics
with 90% of the elements in the training set.
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Table 1. Relative error statistics when considering all records in the dataset

The
percentage of
elements in
the training
set

Statistic GBT relative error TE relative error RF relative error

90 Average 0.024 0.062 0.063

Median 0.014 0.024 0.025

Quartile 1 0.007 0.010 0.011

Quartile 3 0.025 0.051 0.053

80 Average 0.024 0.063 0.061

Median 0.013 0.027 0.026

Quartile 1 0.006 0.011 0.012

Quartile 3 0.025 0.057 0.056

70 Average 0.024 0.067 0.064

Median 0.013 0.028 0.027

Quartile 1 0.006 0.012 0.011

Quartile 3 0.024 0.060 0.057

60 Average 0.025 0.067 0.067

Median 0.014 0.029 0.028

Quartile 1 0.007 0.012 0.012

Quartile 3 0.026 0.060 0.061

50 Average 0.025 0.071 0.074

Median 0.014 0.029 0.030

Quartile 1 0.006 0.013 0.013

Quartile 3 0.025 0.062 0.064

The analysis of the values of the basic statistics in Table 4 leads to very
interesting conclusions. Undoubtedly, removing outliers significantly increases
the efficiency of the model. The differences between the individual ones are
noticeable especially in the case of the mean, which we know to be very sensitive
to outliers. The median values for individual outlier detection methods strongly
confirm that proper preprocessing is an essential part of model preparation.

Applying the author’s method of detecting anomalies in trip distance also
improves the quality of the model (cf. Table 5). Skillful detection of anomalies
using fuzzy techniques allowed to increase the stability of the prediction. It
should be noted that 3/4 of the modeled values have a relative error smaller
than 0.00051, which is practically negligible.
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Table 2. Relative error statistics for dropping records with zero start or end trip
coordinates

The
percentage of
elements in
the training
set

Statistic GBT relative error TE relative error RF relative error

90 Average 0.025 0.061 0.061

Median 0.013 0.024 0.024

Quartile 1 0.006 0.010 0.010

Quartile 3 0.025 0.051 0.053

80 Average 0.025 0.065 0.063

Median 0.014 0.027 0.026

Quartile 1 0.007 0.012 0.011

Quartile 3 0.026 0.057 0.054

Table 3. Relative error statistics when considering only records with both positive
time and trip distance values

The
percentage of
elements in
the training
set

Statistic GBT relative error TE relative error RF relative error

90 Average 0.029 0.064 0.063

Median 0.014 0.025 0.024

Quartile 1 0.006 0.011 0.011

Quartile 3 0.026 0.053 0.051

80 Average 0.026 0.063 0.062

Median 0.014 0.026 0.025

Minimum 0 0 0

Quartile 1 0.006 0.011 0.011

Quartile 3 0.025 0.055 0.055
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Table 4. Relative error statistics after removing the top 1% outliers within each outlier
detection method

Method Statistic GBT relative error TE relative error RF relative error

EE Average 0.00162 0.00590 0.00640

Median 0.00024 0.00071 0.00074

Quartile 1 0.00006 0.00013 0.00015

Quartile 3 0.00075 0.00293 0.00305

GM Average 0.00492 0.00196 0.00225

Median 0.00018 0.00009 0.00008

Quartile 1 0.00004 0.00001 0.00001

Quartile 3 0.00062 0.00048 0.00047

IF Average 0.00680 0.00875 0.00882

Median 0.00013 0.00083 0.00081

Quartile 1 0.00003 0.00016 0.00016

Quartile 3 0.00042 0.00338 0.00348

LOF Average 0.03399 0.02754 0.02477

Median 0.00016 0.00117 0.00114

Quartile 1 0.00004 0.00022 0.00021

Quartile 3 0.00055 0.00488 0.00483

Table 5. Relative error statistics of models for records where the membership degree
of the “normal” class exceeds 0.5

The
percentage of
elements in
the training
set

Statistic GBT relative error TE relative error RF relative error

90 Average 0.00338 0.00973 0.00967

Median 0.00015 0.00063 0.00065

Quartile 1 0.00003 0.00013 0.00013

Quartile 3 0.00051 0.00272 0.00295

80 Average 0.01180 0.01011 0.00920

Median 0.00017 0.00063 0.00061

Quartile 1 0.00004 0.00012 0.00011

Quartile 3 0.00053 0.00273 0.00261

4 Conclusions and Future Work

In a series of numerical experiments, it was shown that proper preprocessing
is an essential part of the process of building predictive models. Comparison
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of selected prediction methods confirms the fact that detection and removing
outliers improves model quality. Additionally, appropriate reaction to obviously
incorrect values and missing data allows to increase model efficiency.

The proposed innovative method of detecting anomalies in the declared trip
distance makes it possible to catch unusual dependencies. These relationships
cannot be discovered by typical outlier detection methods. The use of fuzzy
descriptors describing selected categories of relationships between the declared
trip distance and the distance on the map allows to significantly improve the
efficiency of the model estimating the average trip speed.

It is planned to conduct analyses using more descriptors describing a larger
number of features. Moreover, it is intended to verify the conclusions on a larger
number of databases and to transfer the obtained results to other related issues.

References

1. Aitkin, M., Wilson, G.T.: Mixture models, outliers, and the EM algorithm. Tech-
nometrics 22(3), 325–331 (1980)

2. Alasadi, S.A., Bhaya, W.S.: Review of data preprocessing techniques in data min-
ing. J. Eng. Appl. Sci. 12(16), 4102–4107 (2017)

3. Arabameri, A., Pradhan, B., Rezaei, K., Sohrabi, M., Kalantari, Z.: Gis-based
landslide susceptibility mapping using numerical risk factor bivariate model and
its ensemble with linear multivariate regression and boosted regression tree algo-
rithms. J. Mt. Sci. 16(3), 595–618 (2019)

4. Berthold, M.R.: Mixed fuzzy rule formation. Int. J. Approx. Reason. 32(2–3), 67–
84 (2003)

5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, pp. 93–104 (2000). https://doi.org/10.1145/342009.
335388

6. Coppersmith, D., Hong, S.J., Hosking, J.R.: Partitioning nominal attributes in
decision trees. Data Min. Knowl. Discov. 3(2), 197–217 (1999)

7. Donovan, B., Work, D.: New York city taxi trip data (2010–2013) (2014). https://
doi.org/10.13012/J8PN93H8

8. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

9. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without
discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012)

10. Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Fuzzy set-based isolation forest. In:
2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6.
IEEE (2020)

11. Karczmarek, P., Kiersztyn, A., Pedrycz, W., Al, E.: K-means-based isolation forest.
Knowl.-Based Syst. 195, 105659 (2020)

12. Karczmarek, P., Kiersztyn, A., Pedrycz, W., Czerwiński, D.: Fuzzy c-means-based
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Abstract. In the paper convergence of the RBF network regression esti-
mates and classifiers with so-called regular radial kernels is investigated.
The parameters of the network are trained by minimizing the empirical
risk on the training data. We analyze MISE convergence by utilizing the
machine learning theory techniques such as VC dimension and covering
numbers and the error bounds involving them. The performance of the
normalized RBF network regression estimates is also tested in simula-
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1 Introduction

Artificial neural network have been applied in machine learning from early days
of the field starting with two layer perceptrons of Rosenblatt perceptrons, fol-
lowed by multilayer perceptrons Duda, Hart and Stork [16] and finally entering
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into the domain of deep learning [20]. In the literature on classical neural net-
works several types of feed-forward neural networks have been discussed. They
include: multilayer perceptrons (MLP), radial basis function (RBF) networks,
normalized radial basis function (NRBF) networks and deep networks. These
neural network models have been applied in different application areas including
interpolation, classification, data smoothing and regression. Convergence anal-
ysis of MLP has been studied by Cybenko [9], White [64], Hornik et al. [29],
Barron [2], Anthony and Bartlett [1], Devroye et al. [11], Györfi et al. [25], Rip-
ley [53], Haykin [27], Hastie et al. [26]. Deep networks have been thoroughly
surveyed in Bengio et al. [20] and their convergence properties were recently
investigated by Kohler and Krzyżak [31] and Bauer and Kohler [3]. These two
latter papers are one of the first papers to analyze convergence properties of deep
multilayer networks. RBF networks have been introduced by Moody and Darken
[45] and their properties investigated by Park and Sandberg [48,49], Girosi and
Anzellotti [18], Girosi et al. [19], Xu et al. [66], Krzyżak et al. [34], Krzyżak and
Linder [35], Krzyżak and Niemann [36], Györfi et al. [25], Krzyżak and Schäfer
[41] and Krzyżak and Partyka [37,39].

In this paper we consider the radial basis function (RBF) networks with one
hidden layer consisting of k hidden nodes with a fixed kernel φ : R+ → R:

fk(x) =
k∑

i=1

wiφ (||x − ci||Ai
) (1)

where
‖x − ci‖2Ai

= [x − ci]T Ai[x − ci]

These networks form a of functions satisfying the following conditions:

(i) radial basis function condition: φ : R+
0 → R+ is a left-continuous, mono-

tone decreasing function, the so-called kernel.
(ii) centre condition: c1, ..., ck ∈ Rd are the so-called centre vectors with ‖ci‖ ≤

R for all i = 1, ..., k.
(iii) receptive field condition: A1, ..., Ak are symmetric, positive definite,

real d × d-matrices each of which satisfies the eigenvalue inequalities � ≤
λmin(Ai) ≤ λmax(Ai) ≤ L. Here, λmin(Ai) and λmax(Ai) are the minimal
and the maximal eigenvalue of Ai, respectively. Ai specifies the receptive field
about the centre ci.

(iv) weight condition: w1, ..., wk ∈ R are the weights satisfying
∑k

i=1 |wi| ≤ b
for all i = 1, ..., k.

Throughout the paper we use the convention 0/0 = 0. Popular kernels satisfying
(i) are:

– Window-type kernels. These are kernels for which some δ > 0 exists such
that φ(t) �∈ (0, δ) for all t ∈ R+

0 . The classical naive kernel φ(t) = 1[0,1](t) is
a member of this class.
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– Non-window-type kernels with bounded support. These comprise all
kernels with support of the form [0, s] which are right-continuous in s. For
example, for φ(t) = max{1 − t, 0}, φ(xT x) is the Epanechnikov kernel.

– Regular radial kernels. These kernels are nonnegative, monotonically
decreasing, left continuous,

∫
Rd φ(||x||)dx �= 0, and

∫
Rd φ(||x||)dx < ∞, where

|| · || is the Euclidean norm on Rd. Regular kernels include naive kernels,
Epanechnikov kernels, exponential kernels and the Gaussian kernels. Note
that the regular kernels are bounded.

Let us denote the parameter vector (w0, . . . , wk, c1, . . . , ck, A1, . . . , Ak) by θ.
It is assumed that the kernel is fixed, while network parameters wi, ci, Ai, i =
1, . . . , k are learned from the data. The most popular radial functions φ are:

– φ(x) = e−x2
(Gaussian kernel)

– φ(x) = e−x (exponential kernel)
– φ(x) = (1 − x2)+ (truncated parabolic or Epanechnikov kernel)
– φ(x) = 1√

x2+c2
(inverse multiquadratic)

All these kernels are nonincreasing. In the literature on approximation by means
of radial basis functions the following monotonically increasing kernels were con-
sidered

– φ(x) =
√

x2 + c2 (multiquadratic)
– φ(x) = x2n log x (thin plate spline)

They play important role in interpolation and approximation with radial func-
tions [19], but are not considered in this paper.

Standard RBF networks have been introduced by Broomhead and Lowe [8]
and Moody and Darken [45]. Their approximation error was studied by Park
and Sandberg [48,49]. These result have been generalized by Krzyżak, Linder
and Lugosi [34], who also showed weak and strong universal consistency of RBF
networks for a large class of radial kernels in the least squares estimation prob-
lem and classification. The rate of approximation of RBF networks was investi-
gated by Girosi and Anzellotti [18]. The rates of convergence of RBF networks
trained by complexity regularization have been investigated in regression esti-
mation problem by Krzyżak and Linder [35].

Normalized RBF networks are generalizations of standard RBF networks and
are defined by

fk(x) =
∑k

i=1 wiφ (||x − ci||Ai
)

∑k
i=1 φ (||x − ci||Ai

)
. (2)

Normalized RBF networks (2) have been originally investigated by Moody and
Darken [45] and Specht [59]. Further results were obtained by Shorten and
Murray-Smith [58]. Normalized RBF networks (NRBF) are related to the clas-
sical nonparametric kernel regression estimate also called the Nadaraya-Watson
estimate (3):

rn(x) =

∑n
i=1 YiK(x−Xi

hn
)

∑n
i=1 K(x−Xi

hn
)

(3)
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where K : Rd → R is a kernel and hn is a smoothing sequence (bandwidth) of
positive real numbers. The estimate has been introduced by Nadaraya [46] and
Watson [63] and studied by Devroye and Wagner [14], Krzyżak [32], Krzyżak
and Pawlak [40] and Györfi et al. [25]. Its recursive versions were investigated in
[24,25]. Kernel methods have been applied in regression estimation and classifica-
tion [15,25,50,54,55] and also in change detection [17]. For parametric methods
for novelty detection in COVID-19 prognosis curves refer to [52]. Other non-
parametric regression estimation techniques include nearest-neighbor estimate
[10,12,25], partitioning estimate [4,25], orthogonal series estimate [23,25], tree
estimate [7,26] and Breiman random forest [6,30,57]. Alternative classification
techniques have been discussed in [28,44,47].

In the analysis of the NRBF nets (2) presented in [66] and in [37,38] the
authors analyzed convergence of the normalized RBF by exploiting the relation-
ship between their mean integrated square error (MISE) and MISE of the kernel
regression estimate, however these results were valid only on the training data,
i.e., no generalization was shown. Generalization ability of NRBF networks and
their convergence was investigated in [41].

This paper investigates generalization ability and weak convergence of the
RBF network (1) with parameters trained by the empirical risk minimization
with applications in nonlinear function learning and classification. In this paper
we will use specialized tools from computational learning theory such as VC
dimension and covering numbers to analyze generalization ability of RBF net-
works with so-called regular kernels. The paper is organized as follows. In Sect. 2
the algorithm for nonlinear function learning is presented. In Sect. 3 the RBF
network classifier is discussed. In Sect. 4 convergence properties of the classi-
cal RBF net regression estimates and classification rules are discussed. Some
simulation results are presented in Sect. 5 and conclusions are given in Sect. 6.

2 Nonlinear Regression Estimation

Let (X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent, identically dis-
tributed, Rd × R–valued random variables with EY 2 < ∞, and let m(x) =
E(Y |X = x) be the corresponding nonlinear regression function. Let μ denote
the distribution of X. It is well-known that regression function R minimizes L2

error:

E|m(X) − Y |2 = min
f :Rd→R

E|f(X) − Y |2.

Our aim is to estimate m from the i.i.d. observations of random vector (X,Y )

Dn = {(X1, Y1), . . . , (Xn, Yn)}
using RBF network (1). We train the network using so-called empirical risk
minimization by choosing its parameters that minimize the empirical L2 risk

1
n

n∑

j=1

|f(Xj) − Yj |2 (4)
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on the training data Dn, that is we choose RBF network mn in the class

Fn = {fk = fθ : θ ∈ Θn} =

{
k∑

i=1

wiφ (||x − ci||Ai
) :

kn∑

i=0

|wi| ≤ bn

}
(5)

where
Θn = {θ = (w1, . . . , wkn

, c1, . . . , ckn
, A1, . . . , Akn

)} .

so that

1
n

n∑

j=1

|mn(Xj) − Yj |2 = min
f∈Fn

1
n

n∑

j=1

|fθ(Xj) − Yj |2. (6)

We measure the performance of the RBF network estimates by the mean squared
error

E
[|mn(X) − m(X)|2] = E

[∫
|mn(x) − m(x)|2μ(dx)

]
.

This approach has been investigated among others by Zeger and Lugosi [43] and
by Györfi et al. [25].

Initial analysis of convergence of mn was carried out in [34] using Vapnik-
Chervonenkis dimension concept introduced by Vapnik and Chervonenkis [60,61]
and covering numbers which are basic tools of computational learning theory
(CLT) and of machine learning. They were applied in nonparametric regression
learning by many researchers (for in-depth survey of the main results in CLT and
their applications in nonparametric regression refer to [25]). In this paper we use
machine learning tools of CLT to analyze generalization ability and convergence
of the RBF networks with regular kernels. In our analysis we are motivated by
the results of presented in [34,41] and [25].

3 RBF Classification Rules

Let (Y,X) be a pair of random variables taking values in the set {1, ...,M},
whose elements are called classes, and in Rd, respectively. The problem is to
classify X, i.e. to decide on Y . Let us define a posteriori class probabilities

pi(x) = P{Y = i|X = x}, i = 1, · · · ,M, x ∈ Rd.

The Bayes classification rule

Ψ∗(X) = i if pi(X) > pj(X), j < i, and pi(X) > pj(X), j > i

minimizes the probability of error. The Bayes risk L∗ is defined by

P{Ψ∗(X) �= Y } = inf
Ψ :Rd→{1,...,M}

P{Ψ(X) �= Y }.

The local Bayes risk is equal to P{Ψ∗(X) �= Y | X = x}. Observe that pi(x) =
E{I{Y =i} | X = x} may be viewed as a regression function of the indicator of
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the event {Y = i}. Given the learning sequence Vn = {(Y1,X1), ..., (Yn,Xn)} of
independent observations of the pair (Y,X), we may learn pi(x) using RBF nets
mimicking (6), i.e.,

1
n

n∑

j=1

|p̂in(Xj) − I{Yj=i}|2 = min
f∈Fn

1
n

n∑

j=1

|fY (Xj) − I{Yj=i}|2. (7)

We propose plug-in RBF classifier with parameters learned by (7) resulting
in the classification rule Ψn which classifies every x ∈ Rd to any class maximizing
p̂in(x). The global performance of Ψn is measured by Ln = P{Ψn(X) �= θ | Vn}
and the local performance by Ln(x) = P{Ψn(x) �= θ | Vn}. A rule is said to
be weakly, strongly, or completely Bayes risk consistent (BRC) if Ln → L∗,
in probability, almost surely, or completely, respectively, as n → ∞, see, e.g.,
Wolverton and Wagner [65] and Greblicki [21].

In the next section we discuss convergence of the RBF regression estimate
mn as well as plug-in classification rule induced by it.

4 Convergence

In this section we present convergence results for the RBF regression estimates
and resulting plug-in classification rules.

4.1 Convergence Results

We have the following convergence results for the RBF network mn and classi-
fication rule Ψn with regular radial kernels.

Theorem 1. Let |Y | ≤ L < ∞ a.s.. Consider a family Fn of RBF networks
defined by (5), with kn ≥ 1, and let K be a regular radial kernel. If

kn, bn → ∞

and
knb4n log(knb2n)/n → 0

as n → ∞, then the RBF network mn minimizing the empirical L2 risk over
Fn = {fθ : θ ∈ Θn} is is consistent, i.e.,

E
[|mn(X) − m(X)|2] → 0 as n → ∞ (8)

and consequently
E

[|Ln(X) − L∗(X)|2] → 0 as n → ∞ (9)

for all distributions of (X,Y ) with |Y | ≤ L < ∞.
Theorem 1 provides conditions for mean square convergence of the RBF

regression estimates mn and classifiers Ψn for all distributions of the data with
bounded Y . The latter condition is naturally satisfied in classification.
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4.2 Survey of Main Tools Used in Convergence Analysis

We will first introduce basic tools from CLT required in the analysis of conver-
gence of algorithms mn and Ψn discussed in this paper, see [25].

We will start with the definition of the ε − cover and the covering numbers.

Definition 1. Let ε > 0 and let G be a set of functions Rd → R. Every finite
collection of functions g1, . . . , gN : Rd → R with the property that for every
g ∈ G there is a j = j(g) ∈ {1, . . . , N} such that

‖g − gj‖∞ := sup
z

|g(z) − gj(z)| < ε

is called an ε-cover of G with respect to ‖ · ‖∞.

Definition 2. Let ε > 0 and let G be a set of functions Rd → R. Let
N (ε,G, ‖ · ‖∞) be the size of the smallest ε-cover of G w.r.t. ‖ · ‖∞. Take
N (ε,G, ‖ · ‖∞) = ∞ if no finite ε-cover exists. Then N (ε,G, ‖ · ‖∞) is called
an ε-covering number of G w.r.t. ‖ · ‖∞ and will be abbreviated to N∞(ε,G).

Next we define the VC dimension. We begin with the shatter coefficient.

Definition 3. Let A be a class of subsets of Rd and let n ∈ N .
(a) For z1, . . . , zn ∈ Rd define

s (A, {z1, . . . , zn}) = |{A ∩ {z1, . . . , zn} : A ∈ A}| ,

that is, s(A, {z1, . . . , zn}) is the number of different subsets of {z1, . . . , zn} of the
form A ∩ {z1, . . . , zn}, A ∈ A.
(b) Let G be a subset of Rd of size n. One says that A shatters G if s(A, G) =
2n, i.e., if each subset of G can be represented in the form A∩G for some A ∈ A.
(c) The nth shatter coefficient of A is

S(A, n) = max
{z1,...,zn}⊆Rd

s (A, {z1, . . . , zn}) .

That is, the shatter coefficient is the maximal number of different subsets of n
points that can be picked out by sets from A.

We can now define the VC dimension.

Definition 4. Let A be a class of subsets of Rd with A �= ∅. The VC dimen-
sion (or Vapnik–Chervonenkis dimension) VA of A is defined by

VA = sup {n ∈ N : S(A, n) = 2n} ,

i.e., the VC dimension VA is the largest integer n such that there exists a set of
n points in Rd which can be shattered by A.
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Convergence of mn also implies convergence of Ψn thanks to plug-in scheme and
therefore we will only discuss convergence of mn. To show convergence of (8) it
is sufficient to show for bounded Y that

inf
f∈Fn

∫
|f(x) − m(x)|2μ(dx) → 0 (n → ∞) (10)

and

E

{
sup

f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

|f(Xi) − Yi|2 − E{|f(X) − Y |2}
∣∣∣∣∣

}
→ 0 (n → ∞). (11)

Approximation error consistency (10) follows from the Lemma 1 below (stated
without proof), which implies that

⋃∞
k=1 Fk is dense in L2(μ) for any probability

measure μ on Rd and for RBF networks with regular radial kernels [34]. It is
sufficient to restrict the class RBF nets to a subset of the family Fn of RBF
networks by constraining the receptive field matrices Ai to be diagonal with the
equal elements, i.e., Ai = h−2

i I. Consequently Fn becomes

fθ(x) =
k∑

i=1

wiK

(∥∥∥∥
x − ci

hi

∥∥∥∥
2
)

+ w0, (12)

where θ = (w0, . . . , wk, c1, . . . , ck, h1, . . . , hk) is the vector of parameters,
w0, . . . , wk ∈ R, h1, . . . , hk ∈ R, and c1, . . . , ck ∈ Rd.

Lemma 1. Assume that K is a regular radial kernel. Let μ be an arbitrary
probability measure on Rd. Then the RBF networks given by (12) are dense in
L2(μ). In particular, if m ∈ L2(μ), then, for any ε > 0, there exist parameters
θ = (w0, . . . , wk, c1, . . . , ck, h1, . . . , hk) such that

∫

Rd

|fθ(x) − m(x)|2μ(dx) < ε. (13)

In the next lemma we consider convergence of estimation error (11).

Lemma 2. Assume |Y | ≤ L < ∞ a.s. Consider a family of RBF networks
defined by (5), with k = kn ≥ 1. Assume that K is a regular radial kernel. If

kn, bn → ∞
and

knb4n log(knb2n)/n → 0

as n → ∞, then

E

{
sup

f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

|f(Xi) − Yi|2 − E{|f(X) − Y |2}
∣∣∣∣∣

}
→ 0 (n → ∞)

for all distributions of (X,Y ) with Y bounded.

Proof Outline. The outline of proof of Theorem 1 is presented in [39] and is
omitted.
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5 Simulation Results

We applied the Nadaraya-Watson-type RBF function estimate given by (3) to
estimate the regression function given by:

R(x) = 0.3 + 0.3 ∗ x + exp(−2 ∗ x+0.5) ∗ sin(4 ∗ (x + 2.0)) ∗ cos(12 ∗ (x− 1.0)) ∗ log(x + 1.1)

(black line in the Figures). We generated 400 testing pairs (Xi, Yi), i = 1, ..., 400
in the interval [0, 1]. Additive random noise was generated from normal (Gaus-
sian) distribution with zero mean and variance 1 (red points in the Figures).
The regression function estimates produced by the Nadaraya-Watson regression
estimate (3) are displayed as blue pluses. The Epanechnikov (parabolic) kernel
was applied (Figs 1, 2, 3 and 4).

Fig. 1. Estimated function (black line), measurement pairs - additive noise (red points)
and estimates (blue pluses). Main parameters of simulation: noise variance = 0.1;
smoothing factor hn = 0.02. (Color figure online)

In our simulations the bandwidth in Watson-Nadaraya regression estimate
was selected arbitrarily. For techniques for automatic bandwidth selection we
refer the reader to [22,42,56].
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Fig. 2. Estimated function (black line), measurement pairs - additive noise (red points)
and estimates (blue pluses). Main parameters of simulation: noise variance = 0.1;
smoothing factor hn = 0.04. (Color figure online)

Fig. 3. Estimated function (black line), measurement pairs - additive noise (red points)
and estimates (blue pluses). Main parameters of simulation: noise variance = 0.2;
smoothing factor hn = 0.02. (Color figure online)
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Fig. 4. Estimated function (black line), measurement pairs - additive noise (red points)
and estimates (blue pluses). Main parameters of simulation: noise variance = 0.2;
smoothing factor hn = 0.04. (Color figure online)

6 Conclusions

In the paper we discussed convergence of classical and normalized RBF function
regression estimates and classifiers. Simulation results for regression estimation
by the normalized RBF networks are also presented. Further experimental stud-
ies for both classical and normalized RBF regression estimates and classification
rules using data-dependent techniques for parameter selection will be presented
in the future work.
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Abstract. Genetic programming tends to optimize complicated struc-
tures producing human-competitive results; therefore, it is applied to
a wide range of problems such as classification and regression. This
work experimentally performs a comparative study of Genetic program-
ming variants, namely gene expression, grammatical evolution, Carte-
sian, multi-expression programming, and stacked-based as general regres-
sion and classification solvers. The analyses will help to understand the
strengths of each variant and identify the relative performance of variants
that stand relative to each other for the given problem domains. To deter-
mine the performance difference between selected GP variants, hyper-
parameter tuning was performed on each GP variant for each dataset to
minimize the performance difference due to implementation. A total of 11
datasets were used in the experiments, seven from the regression bench-
mark suite, and four from the classification. The obtained results indicate
that the choice of Genetic programming variant has an impact on the
performance of regression and classification problems. Multi-expression
programming exhibits outstanding performance as a regression and clas-
sification solver which scales graciously with problem size and complexity
whereas other variants were problem-dependent. Future work could con-
sider implementing a multi-expression paradigm with other Genetic pro-
gramming variants such as grammatical evolution and gene expression
programming.

Keywords: Genetic programming · Prediction · Classification

1 Introduction

Genetic programming (GP) is a population-based evolutionary algorithm that
breeds computer programs intended to evolve stochastically to produce better
programs as the algorithm iterates [1]. GP is based on the concept of ‘survival
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of the fittest’ and uses evolutionary operators such as selection, mutation, and
crossover to evolve programs. Computer programs are expressed as symbolic
structures, usual as trees, tailored to achieve a favorable goal, governed by the
execution of the program’s instruction for given input data [2].

GP tends to optimize complicated structures producing human-competitive
results; therefore, it is applied to a wide range of problems such as classification
and regression [3]. Also, the development of GP is on the rise which is catalyzed
by emerging of new ideas and continual advancement of the existing applica-
tions [4]. However, several variants of GP are still yet to be extensively explored
as general regression and classification problem solvers.

A canonical GP (tree-based) exhibits several limitations such as domain
knowledge being incorporated only through evolutionary operators such as
crossover and mutation though knowledge-based issues are widely acknowledged
in evolutionary computation [5]. Furthermore, GP is considered computational
expensive due to the bloat phenomenon (growth of non-coding branches in a
program), even if the search space is properly constrained [6]. Usually, a canoni-
cal GP predicts a single variable at a time, hence it is multi-input single-output
in nature. The GP variants which include Cartesian and Grammatical evolution
among many others were developed to address some of the drawbacks of the
canonical GP.

This work experimentally performs a comparative study of GP variants,
namely Gene expression, Grammatical evolution, Cartesian, Multi-expression
programming, and Stacked-based GP as general regression and classification
solvers. The scalability of the GP variants is analyzed on datasets of varying
sizes and complexity. Thus, the relationship between the number of iterations,
population size, and success rate are analyzed for the given benchmark problems.
A canonical GP is used to benchmark the performance of each variant.

This paper is structured as follows: Sect. 2 provides an overview of the
GP variants; Sect. 3 discusses the experimental set-up and Sect. 4 presents the
results. Section 5 concludes the work and suggests future work.

2 Genetic Programming

This section discusses GP variants used in this work, namely canonical GP,
Cartesian GP, Grammatical Evolution, Gene Expression Programming, Stacked
GP, and Multi-Expression Program. The GP variants used in this work were
selected based on the literature in which they were used as either predictors or
classifiers: GEP [7,8], GE [9,10], CGP [11,12], MEP [13,14], SGP [15,16].

The function set used in each variant consists of {−, +, *, protected div} and
the terminal set consists of attributes from input data. Each variant uses a fitness
function: mean square error for regression problems or precision for classification
problems. A general stopping criterion, termination after convergence is used for
each variant. As such, each algorithm runs until it converges, thus, no further
improvement in fitness.
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2.1 Canonical Genetic Programming

The canonical GP implemented in this work uses a parse tree to represent the
solution in which the internal nodes are program primitives whereas terminal
nodes are the data inputs. An arithmetic tree classifier is used for classifica-
tion. Individuals are created using the ramp half-and-half technique. A one-point
crossover and uniform point mutation are used. The parsimony pressure of 0.1
per node is applied. Selection is performed using the tournament selection tech-
nique.

2.2 Cartesian Genetic Programming

Individuals in Cartesian GP (CGP) are created by randomly selecting nodes to
fill out the grid to have individuals with 20 layers of width 3 [4]. The crossover
operation uses a uniform crossover whereas the mutation operation replaces
nodes randomly at a set rate. Selection is performed using the tournament selec-
tion technique.

2.3 Grammatical Evolution

Individuals are created iteratively using a random search baseline model which
is based on the tree-grow method in which the best individual found in all trials
is recorded. The parsimony pressure of 0.1 per expansion is implemented as
well as a max size of 50 expansions. A one-point crossover and a generational
replacement are used. The mutation uses the integer flip per codon technique.
Selection is performed using the tournament selection technique. The following
grammar template is used:

< e >::= (< e > + < e >) |(< e > − < e >) | (< e > ∗ < e >) |
pdiv(< e >,< e >) |

x[:, < varidx >] |< c >

< varidx >::= GE_ RANGE : dataset_ n_ vars
< c >::=< d > . < d >| − < d > . < d >

< d >::= GE_ RANGE : n

2.4 Gene Expression Programming

Individuals in Gene Expression Programming (GEP) are created using the
ramped half-and-half technique. The user-defined parameters, the length of the
head, and the number of the genes are tuned for all datasets. Function symbol:
addition is used as gene linking operator. A uniform point mutation and the fol-
lowing crossover operators are used: one-point, two-point, and a gene-crossover.
A gene-crossover operator exchanges the entire gene between two chromosomes.
Transposition is realized through the use of the insertion sequence in which a
segment across the chromosome is chosen randomly and inserted at another posi-
tion (except the start position) in the head of the gene. Selection is performed
using the tournament selection technique.
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2.5 Stacked-Based Genetic Programming

Individuals in Stacked-based GP (SGP) consist of genomes that are linear Push
programs. The mutation operator replaces a random subsection of the program
with another one of a similar size to the original using a Gaussian random
offset. The crossover operator selects a random subsection of a donor and places
it randomly into the parent, overwriting anything already using that section
and increasing the program length if necessary. Selection is performed using the
lexicase selection technique, and a size-neutral variation is used.

2.6 Multi-expression Program

The representation in the Multi-expression program (MEP) is linear. The length
of the chromosome is constant and consists of a given number of genes. Genes
are sub-strings of variable length in which a gene encodes either a function or
a terminal. The first symbol in the chromosome is supposed to be a terminal.
A uniform crossover is used. In mutation, there is no restriction in symbols
changing for other genes - the terminal symbol can be changed to either a func-
tion or another terminal symbol and likewise for a function symbol. Selection is
performed using the binary tournament selection technique.

3 Experimental Set-Up

It may be very challenging to achieve a numerical comparison of GP variants
due to several reasons such as fairness since the same parameters are expected
to be used among the variants. Also, the quality of the results can be affected by
minor parameters such as the probability of applying various operators. As such,
a feasible way is to come up with the optimal settings for each variant to make
the comparison fair though promoting the uneven qualities of implementation.

Eleven datasets are used in the experiments, three are from the symbolic
regression benchmark suite (S R), four from predictions (R), and four from clas-
sifications (C) [17]. The selected datasets are of varying sizes and complexity.
Real-world datasets are standardized. Table 1 presents a summarized description
of the datasets.

The mean square error (MSE) is used to ascertain the prediction perfor-
mance for regression problems. The precision metric is used to ascertain the
classification performance which is computed as (TP/TP+FP) in which TP is
a true positive and FP is a false positive. Lower values of MSE are favorable
while higher values of precision are favorable. The runtime for each GP variant
is measured as the time taken between the start and end of the evolutionary pro-
cess. Hyper-parameter tuning is performed on each GP variant for each dataset
to minimize the performance difference due to implementation. As such, the
intrinsic capability of each variant is measured. For each variant, the following
metrics were measured: the model’s accuracy, computation time, the number of
generations, and population size. Each variant is executed until it converges.



A Comparative Study of Genetic Programming Variants 381

Table 1. Regression and classification datasets.

Name Type Data source Vars - Training set
- Testing set

Vladislavleva-4 S R y = 10
5+

∑5
i=1(xi−3)2

5 U[0.05, 6.05, 1024]
U[−0.25, 6.35, 5000]

Pagie-1 S R y = 1

1+x−4
1

+ 1

1+x−4
2

2 E[−5, 5, 0.4]
E[−5,5,0.1]

Keijzer-6 S R y =
∑x

i
1
i

1 E[1, 50, 1]
E[1, 120, 1]

Dow R Dow Chemical 57 596
150

Housing R Housing Values 13 354
152

Tower R Gas Chromatography data 5 4721
278

PowerPlant R Combined cycle power plant 5 7654
1914

Bank Notes C Identification of Banknotes 5 2080
520

SpamBase C Classification of Spam in Emails 58 3680
920

Credit Card C Credit Card Defaulters 25 320
80

Wine Quality C Red and white variants of wine 13 5198
1300

The statistical analysis is performed on six populations (GP variants) at
α = 0.05 significance level. The Kruskal-Wallis nonparametric test was used to
perform statistical tests owing to the data characteristics and varying initial pop-
ulation for each variant [16]. The Mann-Whitney posthoc test with Bonferroni
correction was used to perform the pairwise comparisons given that there exist
statistically significant differences.

The experiments are executed in a python environment. The hyper-parameter
tuning is done using GridSearchCV in sklearn’s model selection package which
uses cross-validation on the dataset [18]. The experiments are carried out in two
mainstream research areas: regression and classification summarized in Table 1.

4 Results and Discussion

Table 2 presents the obtained average results on generalization for the evaluation
of six GP variants discussed in Sect. 2 using MSE for regression and precision
(prec) for classification problems.

The optimal values of population size (pop), number of iterations (gen),
and runtime (in seconds) when the algorithm converged were also reported in
Table 2. Each variant was run 30 times for each dataset and the obtained results
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Table 2. Results for GP variants on regression and classification problems.

Dataset Measure Cano GP GE GEP CGP MEP SGP

Vlas MSE 1.6846 0.1729 2.8893 0.0410 0.034 0.0467

Time 0.6561 0.3864 0.021 0.6397 30.9 7908.1

Pop 100 200.00 5 10 200 50

Gen 300 500 10 80 500 100

Keij MSE 0.0099 0.0045 0.2177 0.0170 0.0034 7.3902

Time 0.1685 0.1586 0.021 6.5344 1.8 201.7

Pop 50 200.00 5 10 200 100

Gen 50 500 10 80 500 100

Paige MSE 9.2292 3.0001 8.6807 0.2296 0.1091 0.5683

Time 2.2426 0.5936 0.023 0.6620 2.8 52.1

Pop 100 200.00 5 10 100 50

Gen 300 500 10 100 100 100

Dow MSE 0.3478 0.1042 0.0793 1.3396 0.1401 0.1183

Time 0.3871 0.3006 1210.9 424.6 2.4 6032.17

Pop 300 255.00 100 100 200 100

Gen 350 350 120 200 200 400

Housing MSE 0.1106 0.0992 0.0056 0.0163 0.0080 0.0117

Time 0.9718 0.8591 46.6 108.3 1.3 102.8

Pop 300 255.00 80 100 200 100

Gen 380 400 100 100 100 200

Tower MSE 3548.96 0.0863 988.7 5043.8 32.63 8753.8

Time 1997.2 9.238 2197.3 483.5 40.6 51846.6

Pop 300 255.00 80 100 100 100

Gen 300 350 180 200 200 100

P Plant MSE 214.4 0.7375 18.24 3864.3 29.03 0.1183

Time 8.3928 6.2831 2192.8 462.3 63.8 6032.17

Pop 350 500.00 90 200 200 100

Gen 1000 1000 500 100 600 500

B Notes Prec 0.6437 0.9025 0.8077 0.5699 0.9993 0.3776

Time 2.2963 1.5494 83.63 12.08 38.2 1831.9

Pop 300 255.00 70 100 100 100

Gen 1000 1000 250 100 100 100

SpamBase Prec 0.9103 0.7884 0.8974 0.4179 0.9247 0.8293

Time 3.1837 2.9387 162.7 14.41 79.0 27854.1

Pop 350 255.00 80 100 100 100

Gen 500 500 100 100 100 50

C Card Prec 0.9317 0.7358 0.8007 0.2298 0.8160 0.8031

Time 8.7 10.206 266.7 258.6 83.6 9992.9

Pop 300 255.00 80 100 100 20

Gen 700 1000 100 100 100 100

W Quality Prec 0.8473 0.8674 0.8496 0.5394 0.9989 0.8377

Time 4.0 4.3 99.67 106.4 42.3 4455.9

Pop 350 255.00 80 100 100 100

Gen 500 500 300 100 100 100
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for the best-found individual for each run were averaged. Statistical analysis
of the obtained results through the use of the Kruskal-Wallis non-parametric
test and Mann-Whitney post-hoc test indicates that there was a statistically
significant difference between the pairwise comparisons of GP variants for all
datasets presented in Table 1. As such, the choice of GP variant has an impact
on the performance of regression and classification problems.

From the results presented in Table 2, MEP exhibits the best MSE values on
symbolic regression problems. The lowest population size and number of itera-
tions were obtained by GEP. For prediction problems, GEP exhibits outstanding
performance in terms of MSE on Housing and Dow datasets, GE exhibits the
best MSE on Tower whereas SGP on the PowerPlant datasets. However, GE
had the highest population size and number of iterations. MEP exhibits the
best MSE values on classification problems with very few exceptions. Canonical
GP and GE exhibit the best runtime whereas GEP had the lowest population
size.

Figure 1 depicts the performance of the GP variants on varying problem sizes
and levels of complexity of datasets. As illustrated in Fig. 1, Keijzer 6 dataset
was the simplest to model for all the techniques except SGP. The performance of
GEP and Canonical GP deteriorated exponentially when the level of complex-
ity increased whereas MEP and CGP scaled gracious. For prediction problems,
Housing and Dow datasets were predicted with ease by all techniques.

However, there was a sharp spike in performance deterioration for the Power-
Plant dataset, especially for SGP and GEP. Conversely, SGP scaled gracious as
the problem size and level of complexity increased and GE tends to be scalable
for prediction problems whereas CGP exhibits the worst performance. The per-
formance of canonical GP improves to yield outstanding performance for credit
data.

The experimental results revealed the following: MEP exhibits the best over-
all performance in terms of MSE and precision, ranked the first in two problem
domains. GEP has the least iterations and population sizes for all symbolic
regression problems though the algorithm may have been trapped in local min-
ima in which the algorithm converged in the first 10 iterations.

The outstanding performance of MEP could have been attributed to its abil-
ity to represent multi-expression giving it a higher chance of finding a solution
and also, its code-reuse ability. However, the major drawback of MEP is on
computational time. An outstanding performance of GEP in prediction prob-
lems could have been attributed to the concept of separating the individual into
a head and tail which could have provided an effective way of encoding syntac-
tically correct computer programs. It can be concluded that GP variants, MEP
and GEP, that use chromosomes of variable length perform better compared to
GP variants that use fixed lengths.

The poor performance of SGP could have been attributed to the issue of the
low locality that could have possibly destroyed the good sub-trees created by the
crossover. The worst performance of CGP on both regression and classification
problems could have been attributed to the wasted evaluation and the effect the
genetic operator had on traversing the search space.
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Fig. 1. Scalability performance of GP variants.
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5 Conclusion and Future Work

The obtained results suggest that the choice of GP variant has an impact on the
performance of regression and classification problems. Generally, the number of
iterations, runtime, and population size are directly proportional to the success
rate. MEP exhibits an outstanding performance as a regressor and classifier
solver while CGP is the worst. GE exhibits exceptional performance on real-
world regression problems which are characterized by numerous input variables.

Future work could consider hybridizing GP variants with one another to
improve both performance and scalability. Implementing a multi-expression
paradigm with other GP variants such as GE and GEP, and algorithm-specific
features to other algorithms like having variable chromosome length can also be
considered.
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Abstract. Introduction of Behavior Trees (BTs) impacted the field of
Artificial Intelligence (AI) in games, by providing flexible and natural
representation of non-player characters (NPCs) logic, manageable by
game-designers. Recent trends in the field focused on automatic creation
of AI-agents: from deep- and reinforcement-learning techniques to combi-
natorial (constrained) optimization and evolution of BTs. In this paper,
we present a novel approach to semi-automatic construction of AI-agents,
that mimic and generalize given human gameplays by adapting and tun-
ing of expert-created BT under a developed similarity metric between
source and BT gameplays. To this end, we formulated mixed discrete-
continuous optimization problem, in which topological and functional
changes of the BT are reflected in numerical variables, and constructed a
dedicated hybrid-metaheuristic. The performance of presented approach
was verified experimentally in a prototype real-time strategy game. Car-
ried out experiments confirmed efficiency and perspectives of presented
approach, which is going to be applied in a commercial game.

Keywords: Real-time strategy · Behavior Tree · Multivariate time
series · Optimization · Metaheuristic

1 Introduction

Artificial Intelligence (AI) in computer games is attributed with great impor-
tance and responsibility - at the same time it can breathe life into an other-
wise procedural, predictable and recurrent game-world, but can also make it
unplayable and unnatural. Therefore, a vast body of research has been carried
out to model behaviors of Non-Player Characters (NPCs) in games, e.g., [2,14],
providing many representations and algorithms. One of them, Behavior Trees
(BTs), impacted the field by providing flexible and natural representation of
NPCs logic, manageable by game-designers [3,24]. Their success in commercial
games made them implemented either as a part of game engines (CryEngine,
Unreal Engine) or as plugins (Unity) [19]. Nevertheless, increased pressure on
ever better NPCs AI-agents forced complexity of hand-crafted BTs to became
barely-tractable and error-prone, if not created by experienced AI-engineers.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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On the other hand, while many just-launched on-line games suffer from player-
shortage, the existence of AI with a broad-range of experience and capabilities
could increase players retention [4]. Therefore, to handle above challenges, recent
trends in the field focused on automatic creation of AI-agents: from deep- and
reinforcement-learning techniques [6,9,13,16,21] to combinatorial (constrained)
optimization and evolution of BTs [11,18,22].

Although, obtained results are impressive, they still leave room for fur-
ther development and improvements. While a milestone has been reached with
AlphaStar [23], achieving a grandmaster level in StarCraft II and beating over
99% of players, obtaining such results demand excessive resources involved in
development, i.e., a lot of effort and training data.

The contribution of this paper is twofold. On the expository side we present
a novel approach to semi-automatic construction of AI-agents, that mimic and
generalize given human gameplays by adapting and tuning an expert-created
BT, comprising a predefined options of topological and functional changes as
parameterized nodes. To this end, we formulated mixed discrete-continuous opti-
mization problem, in which parameters of the BT are reflected in numerical
variables, and constructed a dedicated hybrid-metaheuristic, guided by devel-
oped similarity metric, comparing source and BT gameplays. The performance
of presented approach was confirmed experimentally in a prototype Real-Time
Strategy (RTS) game.

The proposed approach is well-suited for small gamedev teams, which, with
moderate effort of AI-engineers, are enabled to generate different AI-agent
instances without resources needed by other methods, and, not less importantly,
which are easily interpretable - by nature. In the case of considered game stu-
dio, example gameplays, defining playstyle to imitate, were directed by game-
designers with use of a special tool, aiding a careful design of gameplays - with
play, stop, rewind and post in-game action functionalities.

The rest of the paper is organized as follows. The next section describes
the rules of considered real-time strategy (RTS) game. Details of the presented
approach are given in Sect. 3, whereas in Sect. 4 settings and results of numerical
experiment are presented. The last section concludes the paper.

2 The Game

The prototype game, provided by BAAD Games Studio, is an RTS game, in
which two players (red and green) manage their resources to find such a balance
between battle and development, that either the other player is destroyed or the
player acquired more resources at the end of a 15 min gameplay.

The game is played on a two-dimensional grid of hexagonal cells. Each cell
has its position on a map, and is either enabled or disabled for the game.

Players manage their game entities under limited gold resource. Each game
entity has an unique identifier (id), state describing its current activity (eg., idle,
moving, etc.), health points and a class. There are two classes of game entities -
units and buildings. A unit represents a quantity of movable forces of the same
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type, where type (peasant, knight, archer) determines its combat characteristics.
Buildings are able to produce resources or entities (at the expense of gold).
Each building has its type: castle (can settle other buildings), farm (continuously
delivers gold unless under attack), barracks (continuously trains assigned forces,
up to its capacity limit, unless under attack), and tower (defends cells in the
predefined radius by performing distanced attack on enemy units). Quantity,
speed and available subset of produced entities depend on a type and a level of
a building.

During the game, all entities are controlled by issuing actions with proper
parameters. On the engine side, the game consists in rounds of 1/10 s. During
each round, actions issued by each player are scheduled to be performed at the
end of a round (in the order of red-green player).

A move (id, position, proportion) action commands a proportion of the unit
id to move to the destination position, where proportion ∈ {0.25, 0.5, 0.75, 1.0}
(a new splitted unit is generated if proportion < 1.0). The unit performs its
movement along the path, given by the pathfinding module, precomputed with
avoidance of cells disabled or occupied by enemy entities. In the case when
destination position is occupied by an unit of the same player, units are merged
if both are of the same type, or the unit stops at the last feasible cell on a path,
otherwise.

In each round, every unit executes tasks, ordered by their priority: discovery
of enemy unit in the attack range (same cell in the case of peasant and knight,
or adjacent cell in the case of archer) and performing an attack; discovery and
attack of enemy’s building (while encountered on the same cell); continuation of
movement along a given path; response to an attack with own attack, resulting
in an uninterruptible battle.

A spawn unit (id, type, quantity) action purchases a unit of quantity and
type from already trained in the building id. A settle building (id, type, position)
action commands the castle id to settle type building at position on the map.
Upgrade (id) and repair (id) actions raise the level or repair of building id,
respectively.

The game engine provides full determinism given the same initial seed value.
Therefore, a gameplay can be recorded and later replayed as an Action Time-List
(ATL) for each player - an ordered collection of actions with their parameters
for each round. Based on this property of the game, there are three types of
players:

– Human-players - issuing their actions through user interface - only feasible
actions are triggered in ths case.

– ATL-players - precisely replaying a given ATL. In this case, triggering an
infeasible action results in failure status of the game.

– BHT-players - AI-based players, performing actions according to a logic
encoded in a Behavior Tree. A special query action provides a data struc-
ture describing a current state of the game-world.

The prototype game is targeted to mobile market and has the complete set of
features, but is limited in a variety of entity types. Note, that even such defined
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game poses a real challenge for AI developers to construct an algorithm guiding
and managing game entities throughout the whole game.

3 The Methodology

Let G(a, b) denote a gameplay of red (a) and green (b) players, where a and b are
either ATLs or BTs, and let A and B be ATLs of a context (source) gameplay
between red and green players, respectively. The goal is to construct a BT T ,
that mimics and generalizes a playstyle of the red player, i.e., while T could
be autonomous AI-player, gameplays G(A,B) and G(T,B) should be similar
(according to some metric).

Apart from similarity metric, a BT T is said to be infeasible, if its corre-
sponding BHT-player disrupts a game reproduced by its ATL opponent, i.e.,
during the G(T,B) there is an action issued by B that breaks the game with
failure status; T is feasible otherwise.

3.1 Behavior Trees

Classical Behavior Tree is a hierarchical structure of nodes, where each node is
associated either with a task in game-world (leaf node) or performs a control-
flow logic (internal node), executed in a depth-first search fashion. Execution of
a node returns either success or failure status to its parent, depending whether
its goal was achieved. This status is then used by the parent to execute or prune
its remaining children.

Leaf nodes (called actions) interact with a game-world by issuing game-
actions, described in the previous section. We assume that leaves issue only a
valid game-actions, and therefore always return success status.

Internal tree nodes control execution flow of their children. A selector node
sequentially executes its children; if any child returns with success, the node
stops execution and returns with success, otherwise it returns failure. A
sequence node also sequentially executes its children; the node returns with
success if all its children succeeded, and returns failure as soon as any of them
fails.

In classical BT leaf nodes called conditions are used to check whether a
given condition is satisfied in the game-world. As issuing many queries into
the game may be inefficient, we developed a caching technique. Let BlackBoard
(BB) be a set of (key, value) pairs, accessible to all the nodes of a BT, used as a
persistent shared memory. Then, a special action node (GameQuery) issues the
query game-action and fills BB with the current state of the game-world, to be
read by the other nodes as needed.

3.2 Adaptive Behavior Trees

In the design of the methodology, we abandoned methods constructing BT from
scratch, by iteratively evolving its topology, as they were not able to produce,
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in general, a reasonable BT. Note, while such a solution space can be used in
searching for “the best” BT, it is still unsuitable for the considered problem, with
almost all solutions evaluated as infeasible. Therefore, we adopt the approach
of [20], in which a BT is pre-created by expert AI-designer in such a way, that
functional changes to the BT are controlled by node parameters, i.e., nodes logic
can be parameterized by discrete or continuous values. Such created BT forms
then a general domain to be adaptively tuned, either algorithmically or by a
game-designer, to meet the expectations.

To this end, we developed BT nodes that reflect topological BT changes as
theirs parameters:

– time-dependent selector - executes one of its children c1, . . . , cj (phases)
according to the current game time and lengths of their time intervals
l1, . . . , lj−1, respectively.

– switching selector - executes one of its children c1, . . . , cj according to the
value v ∈ {1, . . . , j} of its parameter.

– leaf-nodes with parameterized logic.

Let Adaptive Behavior Tree (ABT) T (p) be a BT with parameterized nodes,
where p = {p1, . . . , pk} is a vector of BT parameters, P = P1 × . . . × Pk is a
domain of T (p) (p ∈ P ) and Pi is a domain of pi (pi ∈ Pi), i ∈ {1, . . . , k}. Note,
all T (p), p ∈ P , are feasible, i.e., each of them can be fully-functional AI-agent.

3.3 Strategy

In RTS games, the problem of developing advanced AI is particularly compli-
cated, because of the necessity to observe a large area and to react to occurring
events [17]. The AI must also simultaneously manage many units of different
specifications. In addition, all decisions cannot be a mere consequence of a map
situation, but must be result of a long-term strategy, dynamically updated dur-
ing a gameplay.

We call an ABT a strategy, if it can be used as an AI-player, able to complete
the game while competing with a player. To this end we developed an adaptive
strategy, consisting of almost 300 nodes, for the considered RTS game. Strategy’s
main idea is its ability to change the playstyle over time, due to multiple sub-
strategies, i.e., initially AI can be focused on the development and defence, to
become more aggressive later.

3.4 Similarity Metric

For the purpose of measuring similarity between two gameplays, a context game-
play GC and an evaluated gameplay GE , we developed a metric, which heuris-
tically assesses similarity between two multivariate time series, representing a
generalized views on corresponding gameplays, from the evaluated player per-
spective.

Let SG = (S1
G , . . . , Sn

G ) be a Snapshot Time-Line of a gameplay G, where
Si

G = (Si,1
G , . . . , Si,k

G ) (a game snapshot at time i) describes a state of player’s
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resources Si,1
G , . . . , Si,k

G at time i, i ∈ {1, . . . , n} and n is a number of snapshots,
assuming they are sampled with a constant interval throughout the gameplay.
In the presented approach, we sampled the amount of gold, the total number of
units, the total number of buildings and numbers of entities of the same type as
a representation of a game-state.

Let SGC
and SGE

be min-max normalized to [−1, 1] interval. Then, a sim-
ilarity matrix d, inspired by Self-Similarity matrix, often used recently and in
the past in sequential data processing research [7,8], is computed in such a way,
that each element di,j represents similarity between Si

GC
and Sj

GE
computed as

averaged Manhattan distance, i.e.,

di,j =
1
k

‖Si
GC

, Sj
GE

‖
1
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Fig. 1. Similarity metric values for different parameters of ABT.

The main idea of the presented approach is to promote similarities, in which
pairs of non-distant snapshots are appearing after each other in the matrix d. To
this end, let a trend t be a series of diagonal elements of matrix d, i.e., a trend
t starting on di,j of length ‖t‖ = l is defined as

t = (di,j , di+1,j+1, . . . , di+l,j+l).

Let v(t), an evaluation of t, equal

v(t) = (
∑

x∈t

x) ∗ ‖t‖2.

We defined a trend-series T = {t1, . . . , tz} as a set of trends, for which the
following conditions hold:
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– there is exactly one cell in each column of d belonging to some trend in T ,
– no two trends from T can be merged to form a longer trend.

Let an evaluation of T , denoted as V (T ), equal

V (T ) =
∑

t∈T v(t)
(
∑

t∈T ‖t‖)3
.

Then, a similarity metric S
(
GC ,GE

)
between GC and GE gameplays is equal to

a maximum value of trend-series over similarity matrix d obtained from GC and
GE . Corresponding value can be computed by a simple algorithm, utilizing prefix-
sums and dynamic programming, of time complexity O(max(m,n)3), where m
and n are length of two Snapshot Time-Lines.

An example application of developed metric is presented in Fig. 1, showing
values of similarity between a context game of TA and TB with fixed parameters,
and gameplays in which values of two TA parameters were changed, i.e., for the
context gameplay the lengths of the first and third phases in the time-dependent
selector node was set to 2500 rounds, while for evaluated gameplays their value
was changed from 0 to 5000 rounds.

A distinct gradient can be seen, with peak reached at the point (2500, 2500),
reflecting comparison with target match. Similarity greatly differs in the verti-
cal axis, the length of first phase - similarity metric appropriately distinguishes
games varying in this parameter, because length of this phase strongly affects
later course of the game. The metric has more difficulty in differentiating games
varying in length of the third phase, that is justified by its similarity with the
fourth phase, which complements the remaining game, up to 15 min (10000
rounds).

A similarity landscape, generated by developed metric, exhibits properties
desirable by gradient-based optimization techniques. It properly reflects contin-
uous changes in parameters values in the neighborhood of the global optimum
- around values of context gameplay. On the other hand, discontinuities and
small local extrema are to be dealt with design of metaheuristic optimization
algorithm.

3.5 Optimization Problem

Given an ABT T (p), its domain P and a context ATLs A and B, the goal is to
find such p∗ ∈ P , that p∗ is feasible and similarity metric S between G(A,B)
and G(T (p∗), B) is maximized, i.e.,

p∗ = arg max
p∈P ′

S
(
G(A,B),G(T (p), B)

)
,

where P ′ = {p ∈ P |T (p) is feasible} (G(T (p), B) does not end with a failure
status).
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4 Experimental Evaluation

The methodology developed in Sect. 3 allows to cast a problem of automatic
construction of AI-agents, that mimic and generalize given human gameplay,
as an optimization problem. Let P , a domain of parameters of a given ABT,
be a solution space to be searched for a solution p∗ ∈ P solving (Sect. 3.5).
Such an optimization problem is characterized by a nontrivial objective function,
requiring simulation of a gameplay for each solution p ∈ P .

To solve formulated optimization problem, in this section a hybrid meta-
heuristic [1] based on Memetic Search [15] is developed, to verify applicability
and performance of the presented approach. Note, the presented algorithm is not
constructed with time efficiency in mind. It is a proof of concept and a hint of
promising optimization techniques, since in a solution to be deployed, the opti-
mization problem is solved by a cloud-based parallel algorithm, tackling many
Behaviour Trees at once with hierarchical optimization techniques, and using a
scalable pool of game simulators.

4.1 Metaheuristic Optimization Algorithm

As a solution search environment we constructed an algorithm based on the
Memetic Search hybrid-metaheuristic, which combines the strength of evolu-
tionary algorithms in diversification of the search space exploration with com-
plementary search intensification property of driven trajectory-method.

Criterion. The solution search process is obviously driven by the similarity
metric S between context and evaluated gameplays, defined in Sect. 3.4. Never-
theless, not all solutions from P are feasible. In this case, we introduced a penalty
for infeasible solutions:

penalty =
∣∣∣1 − ‖GE‖

‖GC‖

∣∣∣,

where GC is a context gameplay, GE is an evaluated gameplay and ‖G‖ denotes
the length of a gameplay G (the number of rounds). Note, the less rounds were
performed in an evaluated gameplay the greater a penalty value.

Finally, the criterion value f(p) of a solution p used in the presented algorithm
equals

f(p) = S
(
G(A,B),G(T (p), B)

)
−

∣∣∣1 − ‖G(T (p), B)‖
‖G(A,B)‖

∣∣∣, (1)

where A and B are ATLs of a context gameplay and T (p) is evaluated ABT.
Since computation of a similarity measure between context and evaluated

gameplays is a computationally demanding task, we implemented the algorithm
in such a way, that once a solution is evaluated, its corresponding criterion value
is cached for future usage.
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Memetic Search. The Memetic Algorithm [15] in its basic form is a classic
evolutionary algorithm, iteratively managing a set of solutions (a population) by
applying crossover and mutation operators, additionally using an improvement
algorithm as an intensification strategy.

To model and implement the algorithm we developed a Heuristics Composi-
tion Engine, in which algorithms are modeled as directed acyclic graphs. Nodes
of such graphs represent some tasks performed on populations of solutions, and
edges represent control and population flows. Nodes are executed in a topological
order. An executed node forms its input population by merging output popula-
tions of its predecessors in a graph, and then computes its output population by
performing its task.

Consider an initial population consisting of m solutions. The first node has
an empty task - it only transfers initial population to subsequent nodes. In node
4 an input population, created from the best 5 solutions from initial population
(node 2) and from 2m − 5 solutions selected using roulette wheel rule (node 3),
is shuffled. In node 5 a crossover operator is applied to consecutive pairs of solu-
tions. Recombined solutions are mutated (with a small probability) in node 6.
Node 7 applies an improvement algorithm to each solution from the input popu-
lation, and finally node 8 selects the best m solutions from initial and improved
populations. The procedure is repeated for n iterations.

Intensification Strategy. As an intensification strategy we used a Simulated
Annealing (SA) [10]. The SA starts the search process from a given initial solu-
tion p. Then, at each iteration a new solution p′ is randomly sampled from a
neighborhood. The new solution p′ replaces the old solution p either with a proba-
bility computed following the Boltzmann distribution e− f(p)−f(p′)

τ if f(p′) ≤ f(p),
or without a draw if f(p′) > f(p). The so-called temperature τ is decreased after
each iteration i = 1, 2, . . . , imax by a geometric cooling schedule, i.e., τi = ατi−1,
α ∈ (0, 1).

4.2 Numerical Experiment

Taking into account limits induced by utilized delay-manager BT node, to show
applicability of the presented approach, we designed a synthetic experiment
setup as follows.

A gameplay G(TA(pA), TB(pB)) of two ABTs TA(p) and TB(p) with fixed
parameters pA ∈ PA and pB ∈ PB was recorded as a context gameplay. The
ABTs represented two different strategies, described in Sect. 3.3.

The goal of the Memetic Search algorithm is to (re)discover of the parameters
of a BHT-player. In the experiment, we use three ABT-driven players:

– Player 1 - TA(p), p ∈ PA - the ABT from the context gameplay,
– Player 2 - TA(p), p ∈ P ′

A - the domain P ′
A of TA(p) was limited for one

parameter in such a way, that pA /∈ P ′
A,

– Player 3 - TB(p), p ∈ PB - the ABT of the opponent in the context gameplay.
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As a by-product of such a setup, we eliminated the need for estimating delays
between actions performed by human players, as in both context and evaluated
gameplays delays are managed in the same way. On the other hand, since the
constructed ABTs limit the rate of performed actions to at most one per second,
the frequency of changes observed in the game-world is about 1 Hz. Therefore,
based on the Sampling Theorem [12], we set the sampling frequency of game
snapshots to 2 Hz1.

Algorithms were coded in C# and simulations were run on a PC with CPU
Intel Core i7-3610QM 2.30 GHz and 16 GB RAM. Parameters of algorithms were
chosen empirically as follows: for the Memetic Search algorithm we set m = 12
and n = 20, and for subordinate SA we set τ0 = 50, α = 0.998 and imax = 5.
The initial population was drawn randomly from the domains of corresponding
ABTs. Due to non-deterministic nature of developed algorithms, each was ran
100 times, yielding 1 h per run on the average.
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Fig. 2. Results of numerical experiment.

Figure 2 presents average values of similarity metric for the best found solu-
tion in subsequent iterations of the Memetic Search algorithm. It can be seen,
that developed heuristic similarity metric properly assess likelihood and differ-
ences between gameplays - parameters of Player 1 was determined correctly,
reaching almost perfect similarity, for Player 2 the similarity saturated at the
smaller value (0.93) - but reached limitations of its domain, and the value
obtained for Player 3 clearly renders his playstyle dissimilar.
1 In a performed experiment (not showed here) we obtain 4 Hz sampling rate had no

effect on the convergence of the presented algorithm, while it dramatically increased
its run-time, due to O(n3) complexity of similarity metric. On the other hand,
with 1 Hz sampling frequency the algorithm was not able to find a good solution.
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5 Conclusions

In this paper, we presented a novel approach to automatic construction of AI-
agents, that mimic and generalize given human gameplays by adapting and tun-
ing of ABTs - parameterized BTs, characterized by varying behaviors, diverse
strategies and a range of skills and capabilities. To this end, we formulated
mixed discrete-continuous optimization problem, in which topological and func-
tional changes of the BT are reflected in numerical variables, and constructed
a dedicated hybrid-metaheuristic, driven by developed similarity metric between
source and BT gameplays. The performance of presented approach was confirmed
experimentally on a prototype RTS game - ABT can be tuned so that it mimics
human gameplay, given that it covers his playstyle.

The future work will be concentrated on mathematical models of delays
in human gameplays [5]. In the presented approach, evaluated trees share the
same simple model, therefore, it does not impact achievable similarity between
parameterized BTs gameplays. On the other hand, adequate human-delay model,
together with growing set of ABTs, covering a wide repertoire of playstyles, will
enable on-demand generation of “ghost-players” - AI-agents mimicking requested
human opponents, and in turn, monetization of such a feature.

Acknowledgments. The work was financially supported by the National Centre of
Research and Development in Poland within GameINN programme under grant no.
POIR.01.02.00-00-0108/16.
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17. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.:
RTS AI problems and techniques. In: Lee, N. (ed.) Encyclopedia of Computer
Graphics and Games. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
08234-9 17-1

18. Robertson, G., Watson, I.: Building behavior trees from observations in real-time
strategy games. In: 2015 International Symposium on Innovations in Intelligent
Systems and Applications (INISTA), pp. 1–7. IEEE (2015)
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Abstract. Sensor network lifetime maximization can be solved using
heuristic methods, but they produce only suboptimal sensor activity
schedules. However, knowing the quality of these solutions, we can use
methods for solving decision problems to find better solutions than these
suboptimal ones. We apply an answer set programming (ASP) system to
answer the question, “Is there a schedule of length k?” where k is at least
one unit higher than the best schedule returned by the heuristic method.
First, we convert the problem’s constraints and a particular data instance
into a high-level constraint language theory. Then we use a grounder for
this language and a solver for the language of grounder’s output to find a
more extended schedule or determine that no such schedule exists. The
paper presents the conversion rules and the experiments’ results with
one of the ASP tools for selected classes of the SCP1 benchmark.

Keywords: Target coverage problems · Sensor network scheduling ·
Maximum lifetime optimization · Answer set programming

1 Introduction

Lifetime maximization of wireless sensor networks remains a subject of research
interest. There are many variants of the problem depending on the real-world
applications like, for example, border surveillance, monitoring of wildlife activity
in hard-to-reach regions, or traffic control. Among them, we focus on the case
where immobile battery-powered devices deployed within the target area gather
and transfer information from the monitored field. Sensors have uniform limited
battery capacity and sensing range, and the area contains a set of points of inter-
est (POIs) to cover. The minimum level of coverage, that is, the percentage of
POIs, located in the range of at least one working sensor, represents a necessary
condition of feasible monitoring.

In the sensor network scheduling, we first identify coverage sets from the
sensors, which satisfy the requested level of coverage, and then arrange them in
a sequence, building a schedule for the sensor network. Because the maximum
coverage sets scheduling problem is NP-hard [4], the application of heuristic
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methods is justified. Numerous heuristic methods have been proposed, which
successfully find suboptimal solutions for the problem.

In this paper, we start where earlier methods end their work. The question
is whether it is possible to improve the heuristic results. We want to identify
classes of problems for which longer schedules can be found at a reasonable
computational cost. To this end, we apply methods for solving decision problems.

The main contribution of this paper is encoding the problem in the language
of one of the answer set programming (ASP) systems and using this ASP system
to improve the results returned by heuristic methods. Our experiments show
that this improvement in schedule length can be obtained when caring about
the search space’s size. This space expands rapidly as the numbers of sensors
and POIs, and battery capacities grow. One could ask whether the improvement
is worth additional computational efforts. The answer to this question depends
on a particular application.

The paper consists of five sections. The Maximum Lifetime Coverage Problem
is described in Sect. 2. Section 3 presents our representation of a sensor network,
and application of an ASP system clingo to improve solutions obtained from
heuristic methods. The experimental part of the research is described in Sect. 4.
Section 5 concludes the paper.

2 Maximum Lifetime Coverage Problem (MLCP)

As a problem instance, we assume NS immobile sensors randomly distributed
over the network area to monitor NP Points of Interest (POI). Every sensor
of this network has the same sensing range and battery capacity Tbatt. Battery
usage is described with the discrete-time model of the sensor’s activity. A sensor
consumes one energy unit for every time slot it spends in its active state. For
simplicity, the tiny energy consumption of a dormant sensor is ignored. For each
time slot, an active sensor monitors all POIs within its sensing range. Effective
monitoring of the network does not require every POI to be monitored at the
same time. Usually, coverage (cov) of 80 to 90% is sufficient. In this case, we
consider a single POI as covered if it is in the range of at least one active sensor.

In the model of the problem, we introduced some simplifications concerning
energy consumption and communication. We assume that the sensors’ activity
control update is computed outside the network. A central computational unit
has contact with all the sensors through mobile sinks moving around in the sen-
sor field to collect data via short-distance radio communication. Therefore, we
assume that the communication between the nodes is never disturbed. The use
of mobile sinks and the exclusion of sinks from the scheduled set of sensors also
allows assuming that communication evenly consumes sensors’ energy. Hence,
this consumption may be negligible from the point of view of the schedule opti-
mization. Another reason for uneven energy consumption may be varying ambi-
ent temperature and frequent switching between states off and on. We decided
to ignore their influence and allow sensors to switch between states without any
additional cost, as the topic in question is not the focus of our studies.
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Our goal is to find a sensor activity schedule that ensures a sufficient level
of coverage every time step as long as possible for the model described above.
This class of problems is referred to as the Maximum Lifetime Coverage Problem
(MLCP) [1,2,7,8].

3 The ASP Approach

3.1 Sensor Activity Schedule Representation

We represent a schedule as a 0-1 matrix H. Its rows define the activity of the
corresponding sensors over time. The columns define the state of all sensors
during the corresponding time units (called slots). The Hj denotes the j-th
column of H. Hj [i] = 1 (Hj [i] = 0, resp.) means that the i-th sensor is active
(not active, resp.) at time j. For every column, all its active sensors cover the
appropriate percentage of POIs, called the required level of coverage. Since every
slot takes one unit of time, the number of slots is equal to the network’s lifetime.
The number of ones in a row of a schedule represents the working time of a
sensor. Thus, it should not be higher than Tbatt.

3.2 Adaptation to ASP Systems

Heuristic methods based on the matrix schedule representation produce a sched-
ule where its length k represents its score. However, such schedules are subopti-
mal; that is, there is no guarantee that they are the longest possible schedules.
Thus, the following question arises: “Is there a schedule of length k + 1?”. To
get an answer, we use a method for solving decision problems. In the case of a
positive answer, we increment the value of k by one and repeat the question. As
long as the answer is positive, we continue this process. This approach makes
it theoretically possible to find an optimal solution to MLCP. However, there is
a practical question of how long it takes to find a solution for a given problem
instance and a specific value of k. The answer depends on the size of data and
the efficiency of the software and hardware used for computations. If the data
size is too big, the problem cannot be solved in a reasonable time. What is a
reasonable time? It depends on a specific application.

Finding for a given network a schedule of a specific length can be solved
using ASP systems. To do this, one needs to represent the constraints of a search
problem as a theory P in a high-level constraint language. A specific instance of
the problem has to be encoded separately as data D. Next, a specialized program
called grounder compiles the pair (D,P ) into a theory TP,D in some propositional
target logic. The solutions to the problem instance must correspond to models of
TP,D and be obtained from them quickly. Finally, a solver for this propositional
target logic finds a model of TP,D or determines that no models exist.

If the target logic is classical propositional logic, one can use an off-the-shelf
standard SAT solver to find solutions to the grounded theory. Another possibility
is to use a logic allowing pseudo-boolean (PB) constraints and a SAT(PB) solver.
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PB constraints such as cardinality constraints allow a more concise encoding of
the problem. Moreover, using solvers dealing directly with PB constraints may
be more effective than rewriting a ground theory to eliminate such constraints
(which usually makes the theory larger) and using standard SAT solvers on
the rewritten theory. The choice between a standard SAT solver and a SAT(PB)
solver is arbitrary. Both types of solvers are the subject of intensive research and
become more and more efficient. In the future, one could repeat all computations
using a better solver.

3.3 Hypergraph Model Approach

The hypergraph model of the sensor network and the set of POI, as well as
the matrix representation of a schedule are the basis for encoding the problem
of finding a sensor network schedule as a logic program. In this model, sensors
form the node set of the hypergraph while POIs correspond to its hyperedges.
A hyperedge joins the set of nodes (i.e., sensors), which can monitor the corre-
sponding POI. Figure 1 shows a small sensor network and its hypergraph model
represented as a set of pairs c(node, hyperedge) (node belongs to hyperedge).
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Fig. 1. Example of an operating sensor network: POIs 0, 1, 2, 3, and 4 (squares)
and sensors 0, 1, 2, and 3 (circles) with their monitoring regions (gray disks around
sensors)—on the left, and its representation as a set of data ready for clingo—on the
right

Using this model, we can reduce the problem of finding a set of sensors
covering a given set of POIs to finding a vertex cover set of a hypergraph, i.e.,
a set of nodes covering all the hyperedges.

3.4 Programming in Clingo

In our research, we decided to use a tool called clingo [3] (version 5.3.0), as it com-
bines both (grounder and solver) functionalities for theories in a language of logic
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programs. This language allows aggregates, including cardinality constraints. As
mentioned in Sect. 3.2, to use such a tool, we need to encode problem constraints
and a particular problem instance separately.

Encoding Problem Constraints as a Logic Program. Finding a schedule
for a sensor network was encoded by the logic program prog.lp presented in Algo-
rithm 1. Constants t, ns, np, bat, and mincov must be provided as the command
line arguments when the program is called from a terminal, for example:

$ clingo prog.lp data.txt -c t=10 -c ns=9 -c np=4 -c bat=2

-c mincov =4

Data instance is encoded in file data.txt and the constants denote respectively:
t the length of the schedule searched for, ns the maximal id of a sensor, equal
to NS − 1, np the maximal id of a POI, equal to NP − 1, bat the initial battery
load Tbatt, and mincov the minimal number of POIs which must be monitored
in every time slot, equal to NP × cov.

The program begins with definitions of domains of data predicates time,
sensor, poi, and load (lines 1–4). For example, line 2 means that valid sensor
numbers are from 0 to ns. After these definitions, there are rules defining pro-
gram predicates. The predicate battery(S, T, L) means that sensor S’s battery
load at the beginning of time slot T is L. This predicate is defined in lines 6, 8,
and 10. For every sensor, its battery load is initialized to bat (line 6). When a
sensor is active in slot T , its battery load decreases (line 8); otherwise, its battery
load does not change (line 10). The predicate cvrd(P, T ) means that POI P is
covered during time slot T . P is covered if it is in the range of an active sensor
(line 12). The predicate on(S, T ) (off (S, T ), resp.) means that sensor S is in an
active (inactive, resp.) state during time slot T . A sensor with an empty battery
is never active (line 14). At any time T , every sensor must be in an active or
inactive state (line 16) but cannot be in both states at the same time (line 18).

Rules without a head enforce problem constraints. Their purpose is to elim-
inate unintended solution candidates. The first such rule appears in line 18. Its
purpose is to filter out schedules in which a sensor is both active and inactive
during the same time slot. Another rule without a head is in line 20. Its purpose
is to eliminate candidates in which the number of monitored POI is below the
required level of coverage at any time. The line contains the cardinality atom
{cvrd(P, T ) : poi(P )}, which represents the set of POIs covered in slot T . The
inequality {cvrd(P, T ) : poi(P )} < mincov means that the cardinality of this set
is smaller than mincov.

The last line in the program instructs clingo to output all atoms of the form
on(S, T ) in the solution.

c(0,0). c(0,1). c(1,1). c(1,2). c(2,2). c(2,3). c(3,3). c(3,4). c(4,4). c(4,0).
c(5,0). c(5,2). c(6,1). c(6,3). c(7,2). c(7,4). c(8,0). c(8,3). c(9,1). c(9,4).

Fig. 2. File data.txt with a particular problem instance
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Algorithm 1. A program for clingo.
1: time(0..t).
2: sensor(0..ns).
3: poi(0..np).
4: load(0..bat).
5: % initially all sensors have fully loaded batteries
6: battery(S, 0, bat) :- sensor(S).
7: % if a sensor is on, its battery load decreases
8: battery(S, T+1, L-1) :- battery(S, T, L), on(S, T), load(L), sensor(S), time(T),

T<t.
9: % if a sensor is off, its battery load does not change

10: battery(S, T+1, L) :- battery(S, T, L), off(S, T), load(L), sensor(S), time(T), T<t.
11: % if S is on at time T and S covers P then P is covered at time T
12: cvrd(P, T) :- on(S, T), c(S, P), poi(P), sensor(S), time(T).
13: % a sensor with an empty battery cannot be on
14: off(S, T) :- battery(S, T, 0), sensor(S), time(T).
15: % a sensor can be on or off
16: on(S,T) ; off(S,T) :- sensor(S), time(T).
17: % but not both
18: :- on(S, T), off(S, T), sensor(S), time(T).
19: % the number of poi covered at time T cannot be less than mincov
20: :- {cvrd(P, T) : poi(P)} < mincov, time(T), T<t.
21: % Display
22: #show on/2.

Encoding a Problem Instance as Data. File data.txt (Fig. 2) contains an
example problem instance encoded by statements of the form c(s, p) meaning
that sensor s covers POI p. We have a set of 10 sensors {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
monitoring 5 POIs {0, 1, 2, 3, 4}. In this network each sensor can monitor exactly
two POIs and every POI is monitored by four sensors. For i = 0, . . . , 4, sensor i
monitors POIs i and i+1. For i = 5, . . . , 9, sensor i monitors POIs (i−5) mod 5
and (i − 3) mod 5.

Output Produced by Clingo. Once we encoded general problem constraints
as a logic program and a particular problem instance as a data set, we are ready
to execute clingo in the way shown above.

For the program prog.lp from Algorithm 1 and the data set data.txt from
Fig. 2, we invoked clingo with the following constants: the schedule length t = 10,
the maximal sensor id ns = 9, the maximal POI id np = 4, the battery capacity
bat = 2, and the number of POI that must be covered during every time slot
mincov = 4 (i.e. cov = 0.8). We obtained the output schedule presented in Fig. 3.
This schedule is represented by the extension of the predicate on(S, T ), meaning
that sensor S is active at time slot T .

In addition to printing positive atoms as directed by the instruction #show
in the last line of prog.lp, clingo also displays additional information, including
CPU time used during computations.
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on(0,5) on(0,9) on(1,2) on(1,3) on(2,0) on(2,1) on(3,5) on(3,9) on(4,1) on(4,2)
on(5,7) on(5,8) on(6,6) on(6,8) on(7,4) on(7,6) on(8,3) on(8,4) on(9,0) on(9,7)

Fig. 3. A solution found by clingo.

As mentioned in Sect. 3.2, when we find a schedule of length k, we increase
k by one and repeat the exercise. In this case, we increased t to 11 and executed
clingo with the remaining command-line arguments as before. This time we got
a message that the problem is unsatisfiable. Thus, we found out that for the
instance of the problem in question, the maximum length of a schedule is 10—
we have an optimal solution.

If a search problem has no solution, we need a much longer time to get
the answer. The solver has to look through the whole search space to confirm
this. In the opposite case, when at least one solution exists, the solver stops
earlier—when the first solution is found. In our case, the order of the slots does
not influence the schedule feasibility. Therefore, we get families of schedules
consisting of the slots permutations. Chances to find any of those schedules are
relatively high.

4 Experiments

4.1 Benchmark

To test the viability of the given method, we used the SCP1 dataset [5]. A
single instance from this dataset is described as a rectangular or triangular grid
of POIs with a constraint of a square area with sides of 13, 16, 19, 22, 25, or
28 abstract units. To introduce irregularities between instances, each grid node
inside the square has an 80% chance to act as a POI for the network. As a
result, triangular grids consisted of 199 to 240 POIs. And rectangular of 166 to
221 POIs. For each network, exactly 2000 sensors were placed inside the network
area. Their placement was determined with the help of a random or a Halton
generator. Exactly eight classes were specified as a combination of the area side,
grid shape, and a generator used to define the network. For each of them, 40
instances have been generated. In our experiments we assumed the minimal
satisfiable level of network coverage cov as 80%.

4.2 Methodology and Plan of Experiments

The computational complexity of the SAT problem is an issue when we use a
solver for MLCP. In the first experimental tests, we observed that application
of clingo to SCP1 problem instances with battery sizes as in experiments with
heuristic methods described in [5] never found solutions in a reasonable time.
Therefore, we decided to reduce the size of the search space by decreasing the
sensor battery capacity. A new set of schedules was constructed for batteries of
3–10 units.
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This reduction has no particular impact on the adjustment of this model
to real-world circumstances. Since the battery capacity is expressed in abstract
units, we can use for experiments the same battery as was used by [5] but assume
longer time slots. It means that if the working time is, for example, 150 min, and
we assume a battery load of 30 abstract units, one unit has to last 5 min. If we
assume a battery load of three abstract units, one unit has to last 50 min.

As the method explained in previous sections can be considered a brute
force approach to judge the quality of the heuristic results, we decided to set
an additional constraint. Clingo was given precisely three days to solve each
problem instance. Such cut-off was an arbitrary decision, but it was motivated
by the increase of uncertainty in weather forecasts for extended time-frames. We
assume that the weather conditions impact the network performance, even if our
model does not take them into account.

For each instance of the problem, we have the length k of the best–found
schedule returned by the heuristic method LSHMA from [6]. This method was
selected because it usually gives results better than many other heuristic methods
(see [5]). Clingo was first tasked to find a schedule of the length k + 1. If it was
able to find a solution, the instance was fed back with a task to find a schedule
longer by one more unit (and so on). Otherwise, the previous result was saved.
This way, we kept track of just the last successful execution of each problem.
The timer was reset for each additional iteration.

The obtained results are grouped in regards to used battery capacity and
input SCP1 class in three tables. Table 1 depicts the average length of schedules
obtained by LSHMA (the column “base”) and the average increase of the schedule
length (the column “incr.”). The averages are calculated only for the instances
where clingo answered the question in a specified time at least once.

The overall completion rate of each class is presented in Table 2, which con-
tains the number of both successful clingo executions (the column “ans.”) and
the time constraint-based terminations of the process (the column “no ans.”).
In no case clingo returned the result that the theory is unsatisfiable. All fail-
ures were due to exceeding the time limit. Using a more powerful computer or
allowing a longer time for computation could increase the success rate.

Table 3 presents the average completion time (CPU time spent on the pro-
cess) of the final successful clingo iteration for each instance. Figure 5 shows the
same data in a graphical form. All experiments were conducted on a machine
equipped with Intel R© Xeon R© Processor E5-2660 v3.

4.3 The Results

SCP1 consists of eight classes of problems. However clingo was able to find a
solution within the given time limit for only four of them, namely Classes 4, 5,
7, and 8, according to the numbering given in [5].

Class 4 consists of instances generated over a square area of 19× 19 distance
units. Sensors were placed within that area using a random generator while POIs
formed a rectangular grid. Classes 7 and 8 both consist of a triangular grid of
POIs, but the square areas have different side lengths: 25 distance units for Class
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7, and 28—for Class 8. Additionally, for sensor distribution in Class 8, a Halton
generator was used instead.

In this paper, the aforementioned classes are referred to as sq r 19 (Class 4),
tr r 25 (Class 7), and tr h 28 (Class 8), respectively. Class 5, labeled as tr r 19
(triangle grid of POIs, random generator for sensor placement and the area of
size 19 × 19), proved to be too difficult for clingo. It was able to produce a
result for only a single instance of this class, for the lowest considered battery
capacity. Therefore, we decided to omit this class along with the other four from
the following summary.

Table 1. Schedule length gain

Battery
3 4 5 6

base incr base incr base incr base incr

tr h 28 26.38 1.00 35.35 1.29 44.38 1.38 53.30 1.44

tr r 25 30.00 1.57 40.15 1.77 50.08 2.11 60.15 2.09

sq r 19 47.79 1.58 63.28 1.78 78.85 1.77 92.60 1.80

Battery
7 8 9 10

base incr base incr base incr base incr

tr h 28 62.21 1.50 71.13 1.39 80.10 1.00 89.00 1.00

tr r 25 70.00 2.12 80.00 1.80 89.64 1.64 99.37 1.47

sq r 19 – – – – – – – –

Table 1 shows absolute schedule length gains for various battery capacities for
classes tr h 28, tr r 25, and sq r 19. Figure 4 illustrates percentage length gains
for these classes. One can see that an average improvement found in each case
is relatively low, usually by one or two time slots, that is, 1–5% of the original
result.

Table 2. Scheduled tasks’ success rates

Battery
3 4 5 6

ans. no ans. ans. no ans. ans. no ans. ans. no ans.

tr h 28 32 8 31 9 32 8 27 13

tr r 25 40 0 39 1 38 2 34 6

sq r 19 24 16 18 22 13 27 5 35

Battery
7 8 9 10

ans. no ans. ans. no ans. ans. no ans. ans. no ans.

tr h 28 24 16 23 17 21 19 13 27

tr r 25 33 7 30 10 28 12 19 21

sq r 19 – – – – – – – –
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Since there were only five positive results in class sq r 19 for the battery
capacity of 6 units (see Table 2), we did not perform computations for higher
battery capacities.

Even if we can see in Table 1 that in some cases, for larger battery capacity,
the gain grows, the base schedule length grows in these cases even more. Thus,
the percentage length gain continuously decreases as the battery capacity grows,
as shown in Fig. 4.

 1

 2

 3

 4

 5

3 4 5 6 7 8 9 10

(a) class tr h 28

 1

 2

 3

 4

 5

3 4 5 6 7 8 9 10

(b) class tr r 25

 1

 2

 3
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3 4 5 6 7 8 9 10

(c) class sq r 19

Fig. 4. Average schedule length increase (percentage) for the sensor battery capacity
from 3 to 10
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Fig. 5. Average CPU time (in seconds) spent on the final successfull clingo execution
for the sensor battery capacity from 3 to 10

Table 2 shows that when the battery capacity grows, the completion rate
decreases (there is one exception to this rule). The reason is obvious—the larger
battery capacity, the longer base schedule. Consequently, the grounded theory
for clingo becomes larger and requires more time for processing. Therefore, the
computations for more instances exceed given time limit.

However, it is interesting that for the class tr r 25 we got a higher comple-
tion rate than for the class tr h 28. It is surprising because the former one has
longer base schedules and larger grounded theories for clingo. We have a simi-
lar observation for Classes 4 and 6 (according to the numbering from [5], Class
4 is sq r 19; Class 6 has a triangular grid of POIs, the square area with side
size 22, and a Halton generator was used for sensor placement). For Class 4, we
obtained many positive results. In contrast, Class 6 has got zero completion rate
even if base schedules are shorter and grounded theories smaller than in Class 4.
Maybe these counter–intuitive results are related to the application of different
generators for sensor placement (random generators for Classes 4 and 7, Halton
generators for Classes 6 and 8).
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Table 3. Average CPU time

Battery
Time [s]

3 4 5 6

tr h 28 13193.35 37011.04 50564.68 72068.46

tr r 25 8663.52 31153.81 56766.13 99389.61

sq r 19 47934.54 110696.50 178439.49 223236.20

Battery 7 8 9 10

tr h 28 115988.15 142643.89 147235.82 177781.64

tr r 25 138407.59 164017.78 189885.76 219544.08

sq r 19 – – – –

As seen in Table 3 and Fig. 5, the average completion time varies a lot between
the data categories. It is higher for larger battery capacities.

Moreover, for the classes with smaller monitored area, that is, with the higher
coverage redundancy and thus longer base schedules, we have a longer average
completion time.

However, there is an exception. When we compare results for classes tr r 25
and tr h 28, we notice that for lower battery capacities the time is shorter for
the instances of the former class.

With the presented results, it is safe to assume that the more time-consuming
categories could be improved even further if given more time.

5 Conclusions

In this research, we apply the ASP system clingo to sensor network lifetime
maximization. The network consists of immobile sensors monitoring a set of
POIs in a given area. Sensors have a homogeneous nature in terms of sensing
and communication capabilities, and the sensors’ connectivity is not a part of
the solved problem. Time is discrete. Therefore every schedule defines sensors’
activity for time units of the same length called slots. Previous research used
heuristic methods, which returned suboptimal schedules. The presented research
shows that the representation of a schedule as a collection of fixed-interval slots
containing sensors control allows defining the problem in the language of ASP
tools. The novelty also lies in showing that ASP systems can improve results
obtained by heuristic methods, and in many cases, the system finds schedules
more than one slot longer.

A disadvantage of the ASP approach could be the computational cost nec-
essary to get the answer. We use a threshold for the acceptable computational
time. In every case, when the time is longer than the threshold, the computations
break, and the question remains unanswered. As a result of this procedure, the
obtained tables show the range of improvements in the worst-case scenario and
leave chances that they may be even better.
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It is worth noting that in all cases clingo either found a solution or the
execution was interrupted due to exceeding the time limit. In other words, for
none of the requested schedule lengths, the problem was proven to be unsatisfi-
able. Therefore, there is no proof that the optimal solutions have already been
found—further improvement is still possible.

The experiments conducted for three out of eight classes of the SCP1 bench-
mark show that the schedule length returned by heuristic methods from [5] can
be improved by one to three slots or by 1–5%. For one more class, we found a
solution just once for the lowest battery capacity, while for the remaining four
classes, all computations were terminated due to exceeded time limit.
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Abstract. In the pharmaceutical industry, dissolution testing is part of
the target product quality that is essential in the approval of new prod-
ucts. The prediction of the dissolution profile based on spectroscopic data
is an alternative to the current destructive and time-consuming method.
Raman and near-infrared (NIR) spectroscopies are two complementary
methods, that provide information on the physical and chemical prop-
erties of the tablets and can help in predicting their dissolution profiles.
This work aims to use the information collected by these methods by
creating partial least squares models to predict the content of the pills.
The predicted values are then used along with the measured compres-
sion force as input data to Random Decision Forests in order to predict
the dissolution profiles of the scanned tablets. It was found that Ran-
dom Decision Forests models were able to predict the dissolution profile
within the acceptance limit of the f2 factor.

Keywords: Random Decision Forests · Partial least squares · PLS ·
Dissolution prediction · Raman spectroscopy · NIR spectroscopy

1 Introduction

In the pharmaceutical industry, a target product quality profile is a term used
for the quality characteristics that a drug product should process to satisfy the
promised benefit from the usage and are essential in the approval of new prod-
ucts or the post-approval changes. A target product quality profile would include
different important characteristics, very often one of these is the in vitro (taking
place outside of the body) dissolution profile [1]. A dissolution profile represents
the concentration rate at which capsules and tablets emit their drugs into the
bloodstream over time. It is especially important in the case of tablets that yield
a controlled release into the bloodstream over several hours. That offers many
advantages over immediate release drugs like reducing the side effects due to the
reduced peak dosage and better therapeutic results due to the balanced drug
release [2]. In vitro dissolution testing has been a subject of scientific research
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13588, pp. 411–422, 2023.
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for several years and became a vital tool for accessing product quality perfor-
mance [3]. However, this method is destructive since it requires immersing the
tablets in a solution simulating the human body and is time-consuming as the
measurements usually take several hours. As a result, the tablets measured repre-
sent only a small amount of the tablets produced, also called a batch. Therefore,
there is a need to find different methods that do not have the limitations of the in
vitro dissolution testing. The prediction of the dissolution profile based on spec-
troscopic data is an alternative on which many articles have been published and
showed promising results. Raman and near-infrared (NIR) spectroscopies are
two complementary methods that are applied in the pharmaceutical industry.
They offer the opportunity to obtain information on the physical and chemical
properties of the tablets that can help predict their dissolution profiles in a few
minutes without destroying them. Hence, Raman and NIR are recognized as
straightforward, cost-effective alternatives and non-destructive tools in the qual-
ity control process [4,5]. However, these spectroscopies produce a large amount
of data as they consist of measurements of hundreds of wavelengths. This data
can be filtered out or maintained depending on how much useful information can
be extracted from it. This can be achieved using multivariate data analysis tech-
niques such as Principal Component Analysis (PCA). Several researchers have
used the spectroscopies data along with the multivariate data analysis techniques
in order to predict the dissolution profiles. Zan-nikos et al. worked on a model
that permits hundreds of NIR wavelengths to be used in the determination of
the dissolution rate [6]. Donoso et al. used the NIR reflectance spectroscopy to
measure the percentage of drug dissolution from a series of tablets compacted
at different compressional forces using linear regression, nonlinear regression,
and partial least square (PLS) models [7]. Freitas et al. created a PLS calibra-
tion model to predict drug dissolution profiles at different time intervals and
for media with different pH using NIR reflectance spectra [8]. Hernandez et al.
used PCA to study the sources of variation in NIR spectra and a PLS-2 model
to predict the dissolution of tablets subjected to different levels of strain [9].
Galata et al. developed a PLS model to predict the contained drotaverine (DR)
and the hydroxypropyl methylcellulose (HPMC) content of the tablets which
are respectively the drug itself and a jelling material that slows down the disso-
lution, based on both Raman and NIR Spectra, and used the predicted values
along with the measured compression force as input to an ANN model in order to
predict the dissolution profiles of the tablets defined in 53-time points [10]. Mrad
et al. used NIR and RAMAN spectroscopy data reduced using PCA along with
compression force to predict dissolution profiles using Artificial neural network
models [11]. Random decision forests are suitable for complex problems and have
been used in the pharmaceutical industry in many aspects, such as predicting
the drug activity against cancer cells based on minimal genomic information
and chemical properties [12], Identifying predictive markers of chemosensitivity
of breast cancer [13]. Random forests have been also used in the pharmaceutical
industry for learning drug functions from chemical structures [14] and also to
predict drug vehicles that are most suited to reduce a drug’s toxicity [15]. In all



Spectroscopy-Based Prediction of In Vitro Dissolution Profile Using RDF 413

these papers, Random decision forests showed great and promising results. Using
NIR and Raman spectra to predict the DR and HPMC content of the tablets
then along with the concentration force predicting the dissolution profile is a
fast method that requires a minimal amount of human labor and which makes it
easier to evaluate a larger amount of the batch. Our goal was to extract the use-
ful information directly from the NIR and RAMAN spectra using a multivariate
data analysis technique and use it as an input for PLS models to predict the DR
and HPMC content of the tablets, then use the predicted values along with the
measured compression force as an input for the Random Decision Forests model
in order to predict the dissolution profiles of the tablets.

2 Data and Methods

In this section, the data used will be described, and the methods used for the
data pre-processing will be presented. The PLS and the Random Forests models
created will be presented and finally the error measurement methods adopted to
evaluate the results.

2.1 Data Description

Fig. 1. Dataset

We have been provided with the measurements of the NIR and RAMAN spec-
troscopy, along with the pressure curves extracted during the compression of the
tablets. The data consists of the NIR reflection and transmission, Raman reflec-
tion and transmission spectra, the compression force-time curve, and the dissolu-
tion profile of 148 tablets. The tablets were produced with a total of 37 different
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settings. Three parameters were varied: drotaverine content, HPMC content, and
the compression force. From each setting, four tablets were selected for analy-
sis (37 * 4). The spectral range for NIR reflection spectra was 4000–10,000 cm−1,
with a resolution of 8 cm−1, which represents 1556 wavelength points. NIR trans-
mission spectra were collected in the 4000–15,000 cm−1 wavenumber range with
32 cm−1 spectral resolution, which represents 714 wavelength points. Raman
spectra were recorded in the range of 200–1890 cm−1 with 4 cm−1 spectral reso-
lution for both transmission and reflection measurements which represents 1691
points. Two spectra were recorded for each tablet in both NIR and Raman. The
pressure during the compression of the pill was recorded in 6037 time points.
The dissolution profiles of the tablets were recorded using an in vitro dissolution
tester. The length of the dissolution run was 24 h. During this period, samples
were taken at 53 time points (at 2, 5, 10, 15, 30, 45 and 60 min, after that once
in every 30 min until 1440 min) (Fig. 1).

2.2 Data Analysis

The collected data were visualized and analyzed using MATLAB and Excel
in order to detect and fix missed and wrong values: Setting first point of the
dissolution curves to zero, detecting missed values, and fixing negative values
found due to error of calibration, etc. Specifically, the data is represented in
matrices Nn

i for NIR transmission data and Mn
j for NIR Reflection data, where

i = 1556, j = 714. Rn
k and Qn

k respectively for Raman reflection and transmission
data where k = 1691. Cn

l for the compression force data where l = 6037 and
Pn
s for the dissolution profiles where s = 54. The DR and HPMC contents

of the tablets are represented in matrice V n
2 . With n representing the number

of samples which is equal to 148. All the different NIR and RAMAN matrices
have been standardized using scikit-learn preprocessing method: StandardScaler.
StandardScaler fits the data by computing the mean and standard deviation and
then centers the data following the equation Stdr(NS) = (NS −u)/s, where NS
is the non-standardized data, u is the mean of the data to be standardized, and s
is the standard deviation. All the spectroscopy data matrices (NIR and Raman
both in transmission and reflection) have been row-wise concatenated to form
a new matrix Dn

m where n = 148 and m is the sum of their columns as follow:
Dn

m = (Nn
i |Mn

j |Rn
k |Qn

k ). After standardization, PCA was applied to the different
standardized matrices as well as the merged data Dn

m and in order to reduce
the dimension of the data while extracting and maintaining the most useful
variations. Basically, taking Dn

m as an example we construct a symmetric m*m
dimensional covariance matrix Σ that stores the pairwise covariances between
the different features calculated as follow:

σj,k =
1
n

n∑

i=1

(x(i)
j − μj)(x

(i)
k − μk) (1)

With μj and μk are the sample means of features j and k. The eigenvectors
of Σ represent the principal components, while the corresponding eigenvalues
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define their magnitude. The eigenvalues were sorted by decreasing magnitude
in order to find the eigenpairs that contains most of the variances. Variance
explained ratios represents the variances explained by every principal compo-
nents (eigenvectors), it is the fraction of an eigenvalue λj and the sum of all
the eigenvalues. The following plot Fig. 2 shows the variance explained rations
and the cumulative sum of explained variances. It indicates that the first princi-
pal components alone accounts for 63% of the variance. The second component
account for approximately 18% of the variance. The plot indicates that the seven
five principal components combined explain more than 96% of the variance in D.
These components are used to create a projection matrix W which we can use
to map D to a lower dimensional PCA subspace D’ consisting of less features:

Fig. 2. PCA explained and cumulative variances (x :n components, y :% explained)

D = [d1, d2, d3, . . . dm], d ∈ Rm → D′ = DW,W ∈ Rm∗v (2)

D′ = [d1, d2, d3, . . . dm], d ∈ Rm (3)

However, for the compression force the maximum value for each row was identi-
fied as it is the most important feature to be extracted.

2.3 PLS and Random Decision Forests

PLS model was used to predict the DR and HPMC contents of the pills. The
model was created using the python library sklearn. The input for the model
was the extracted information which are described later in this paper and the
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target was the DR and HPMC contents of the tablets (matrix V n
2 ). The predicted

values along with the maximum values of the compression force curves were used
for Random decision forests (RF) created also using the python library sklearn
(RandomForestRegressor). The target for the RF models were the measured
dissolution profiles described in 54 dissolution curve points and represented in
Pn
s . The number of estimators used for the RF model was 100, the criterion was

MSE (mean squared error) and the maximum depth of the tree was not specified.
While fitting both PLS and RF models, 111 samples have been used for the
fitting corresponding to three pills out of every setting the pill was created with,
while the remaining pill from each setting was used for validation corresponding
to 37 samples. The accuracy of the PLS model was represented by Percentage
error between the predicted content and the real one. The Accuracy of the RF
model prediction was calculated by evaluating the similarity of the predicted
and measured dissolution profiles using the f2 value.

2.4 Error Measurement

Two mathematical methods are described in the literature to compare dissolu-
tion profiles [16]. A difference factor f1 which is the sum of the absolute values
of the vertical distances between the test and reference mean values at each dis-
solution time point, expressed as a percentage of the sum of the mean fractions
released from the reference at each time point. This difference factor f1 is zero
when the mean profiles are identical and increases as the difference between the
mean profiles increases.

f1 =
∑n

t=1 |Rt − Tt|∑n
t=1 |Rt| ∗ 100 (4)

where Rt and Tt are the reference and test dissolution values at time t.
The other mathematical method is the similarity function known as the f2

measure, it performs a logarithmic transformation of the squared vertical dis-
tances between the measured and the predicted values at each time point. The
value of f2 is 100 when the test and reference mean profiles are identical and
decreases as the similarity decreases.

f2 = 50log10[(1 +
1
n

n∑

t=1

(Rt − Tt)
2]−0.5) ∗ 100 (5)

Values of f1 between zero and 15 and of f2 between 50 and 100 ensure the
equivalence of the two dissolution profiles. The two methods are accepted by the
FDA (U.S. Food and Drug Administration) for dissolution profile comparison,
however the f2 equation is preferred, thus in this paper maximizing the f2 will
be used.
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3 Results and Discussions

In this section the results after the PCA decompositions will be discussed. The
results of the PLS Prediction and the performance of the Random Decision
Forests models created will also be presented in this part.

3.1 Dimensionality Reduction Using PCA

Principal component analysis transformation was applied in a first step to the
training samples of the standardized NIR and Raman spectra recorded in reflec-
tion and transmission mode (Nn

i , Mn
j , Rn

k , Qn
k matrices), and in a second step

on all training samples of the spectroscopy data merged in matrix Dn
m in order

to investigate the effect of the transformation on the merged and the separated
data. The resulting PCA decompositions, showed that in the case of NIR reflec-
tion, three principal components explaining 82.46%, 9.34% and 7.29% of the
total variance in the data, respectively, leading to a cumulative explained vari-
ance of more than 99%. Five principal components explained around 75% of
the total variances of the NIR transmission data. However, for Raman transmis-
sion and Raman Reflection, only the first principal components explain 99.85%
and 98.85% of the variance in the data, respectively. For the training samples
in matrix Dn

m, 80 principal components explain more than 99% of the merged
standardized data. The extracted information from the PCA dimension reduc-
tion of all the spectroscopy data merged (Dn

m) were used as the input for fitting
the PLS model created to predict the DR and HPMC contents of the tablets
(Fig. 3).

Fig. 3. Explained variance of each spectral data and all of them merged
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3.2 Predicting the Dissolution Profile Using PLS and Random
Forests

The PLS model was able to fit the training spectroscopy data and to predict the
DR contents with an accuracy of 92.40% and to predict the HPMC contents with
an accuracy of 88.51%. On the other side, the Random Decision Forests model
was able to predict the dissolution profiles of the different tablets represented
in 54 dissolution points using the predicted DR and HPMC contents along with
the measured maximum value of the compression force curves as an input. The
average f2 value out of 1000 fittings was f2 = 68.99 and the best performing model
had an f2 = 69.86. These f2 results ensure the equivalence of the predicted and
measured dissolution profiles (between 50 and 100) and thus are accepted in
the pharmaceutical industry. As a result, using PLS models along with Random
Decision Forests model is a valuable method for the prediction of dissolution
profiles (Table 1 and Fig. 4).

Table 1. Example of some PLS Predictions of DR and HPMC contents

Formulation DR Real/Predicted HPMC Real/Predicted

8 8/8.24602334 30/29.75093989

11 8/8.13028671 10/11.18509565

13 6/5.95800699 20/17.56516425

18 10/10.30174923 30/28.7375516

28 7/7.54732992 20/22.86372352

29 7.5/7.20805507 20/21.99106006

30 8.5/7.86280624 20/22.56387168

32 8/8.44795391 5/4.82566509

33 8/7.32268229 15/16.556136

34 8/7.33666094 25/25.16244172

35 8/8.24012551 35/35.81103737

The method used in this paper presents a novel approach in the prediction
of the dissolution profiles as the combination of PLS, Random decision forests
and PCA for data analysis was not applied previously for this purpose. The
results were promising and improved the previous achieved results of when using
Artificial neural networks for the prediction of the dissolution profiles [11]. The
results during this experiment are reproducible, as the models created could be
reused or trained if the used features are remeasured.
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Fig. 4. Sample predicted dissolution curves using Random Decision Forests (x : disso-
lution points, y : dissolution rate)
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Fig. 4. (continued)

4 Conclusion

The current work aimed to utilize the recorded NIR and Raman spectroscopy
data along with the compression force to predict the dissolution profiles of
tablets produced with 37 different settings. The spectroscopy data was merged
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together, standardized then dimensionality of the data was reduced using PCA.
The resulted data was then fitted to a PLS model to predict the DR and HPMC
contents of the tablets. The PLS model was able to predict the content of the
pills using the extracted data from the NIR and RAMAN spectroscopy data.
Using the predicted values along with the maximum value of the compression
force curve. Random Decision forests model was able to predict the dissolution
profiles withing the acceptance range of the f2 factor. The results show that
the in vitro dissolution testing can be replaced by more advanced methods such
as Random Decision Forests that use similar data providing a large amount of
information about the tablets.
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Abstract. An abstract argumentation framework (af for short) is a pair
(A, R) where A is a set of abstract arguments and R ⊆ A×A is the attack
relation. Let H = (A, R) be an af, S ⊆ A be a set of arguments and
S+ = {y | ∃x ∈ S with (x, y) ∈ R}. Then, S is a stable extension in H
if and only if S+ = A\S. In this paper, we present a thorough, formal
validation of a known labelling algorithm for listing all stable extensions
in a given af.

Keywords: Nonmonotonic reasoning · Abstract argumentation ·
Stable semantics · Labelling algorithm · Backtracking algorithm ·
np-hard

1 Introduction

An abstract argumentation framework (af for short) is a pair (A,R) where A is
a set of abstract arguments and R ⊆ A × A is the attack relation between them.
Let H = (A,R) be an af, S ⊆ A be a subset of arguments and S+ = {y | ∃x ∈
S with (x, y) ∈ R}. Then, S is a stable extension in H if and only if S+ = A\S.

Since introduced in [8] as a formalism for nonmonotonic reasoning, afs have
attracted a substantial body of research (see e.g. [1,2,13]) due to their promis-
ing applications in different domains such as medicine, agriculture, law, and
e-government. Stable extension enumeration is a fundamental computational
problem within the context of afs. Listing all stable extensions in an af is an
np-hard problem, see for example the complexity results presented in [9,10]. In
the literature one can find different proposed methods for listing all stable exten-
sions in a given af, such as dynamic programming and reduction-based methods,
see for example [4,5] for a fuller review. However, this paper is centered around
backtracking algorithms for listing stable extensions in an af.

In related work, backtracking algorithms are often called labelling algorithms.
From now on, we may use “backtracking” and “labelling” interchageably. The
work of [6] proposed a backtracking algorithm that can be used for generating
stable extensions of afs. Later, the work of [14] enhanced the algorithm of [6]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13588, pp. 423–435, 2023.
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by a look-ahead mechanism. Most recently, the system of [12] implemented a
backtracking algorithm that is similar to the essence of the algorithm of [14];
however, [12] made use of heuristics to examine their effects on the practical
efficiency of listing stable extensions. All these works (i.e. [6,12,14]) presented
experimental backtracking algorithms.

Generally, there are several empirical studies on algorithmic methods in
abstract argumentation research, see e.g. [3,11,15]. However, we do not see in
the literature a comprehensive, formal demonstration of a backtracking algo-
rithm for listing stable extensions in a given af. Therefore, in Sect. 2, we give a
rigorous, formal validation of a backtracking algorithm (which is comparable to
the core structure of the algorithm of [14]) for listing all stable extensions in an
af. We close the paper with some concluding remarks in Sect. 3.

2 Our Validation

Let H = (A,R) be an af and T ⊆ A be a subset of arguments. Then,

T+ def= {y | ∃x ∈ T with (x, y) ∈ R},

T− def= {y | ∃x ∈ T with (y, x) ∈ R}.

For the purpose of enumerating all stable extensions in H, let S denote
an under-construction stable extension of H. Thus, we start with S = ∅ and
then let S grow to a stable extension (if any exists) incrementally by choosing
arguments from A to join S. For this, we denote by choice a set of arguments
eligible to join S. More precisely, take S ⊆ A such that S ∩ S+ = ∅, then
choice ⊆ A\(S ∪ S− ∪ S+). Additionally, we denote by tabu the arguments
that do not belong to S ∪ S+ ∪ choice. More specifically, take S ⊆ A such that
S ∩ S+ = ∅, and choice ⊆ A\(S ∪ S− ∪ S+). Then, tabu = A\(S ∪ S+ ∪ choice).
The next example shows these structures in action.

Example 1. To list the stable extensions in the af H1 depicted in Fig. 1, apply
the following steps:

1. Initially, S = ∅, S+ = ∅, choice = {a, b, c, d, e, f}, and tabu = ∅.
2. Select an argument, say a, to join S. Then, S = {a}, S+ = {b}, choice =

{c, d} and tabu = {e, f}.
3. As {c, d}− ⊆ S+ ∪ tabu, {c, d} must join S. Otherwise, S = {a} without

{c, d} will never expand to a stable extension since c and d never join S+.
Thus, S = {a, c, d}, S+ = {b, e, f}, choice = ∅ and tabu = ∅. As S+ = A\S,
S is stable.

4. To find another stable extension, backtrack to the state of step 1 and then
try to build a stable extension without a. Hence, S = ∅, S+ = ∅, choice =
{b, c, d, e, f} and tabu = {a}.

5. Select an argument, say b, to join S. Then, S = {b}, S+ = {c, d}, choice =
{e, f} and tabu = {a}.
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6. As {e}− ⊆ S+, e must join S. Otherwise, S = {b} without e will not grow to
a stable extension since e never joins S+. Hence, S = {b, e}, S+ = {a, c, d, f},
choice = ∅ and tabu = ∅. Since S+ = A\S, S is stable.

7. Backtrack to the state of step 4 and then attempt to build a stable extension
excluding b. Thus, S = ∅, S+ = ∅, choice = {c, d, e, f} and tabu = {a, b}.

8. Since {d}− ⊆ tabu, d must join S. Otherwise, S = ∅ without d will never
grow to a stable extension because d never joins S+. Subsequently, S = {d},
S+ = {b, e, f}, choice = {c} and tabu = {a}.

9. As {a}− ⊆ S+ and a ∈ tabu, a will never join S+ and so S = {d} will never
grow to a stable extension.

10. At this point, we confirm that there are no more stable extensions to find.
This is because the state of step 7, being analyzed in steps 8 & 9, an assertion
is concluded that trying to build a stable extension from choice = {c, d, e, f}
(i.e. excluding tabu = {a, b}) will never be successful. Note, we already tried
to build a stable extension including a (step 2), and later (step 5) we tried
to construct a stable extension including b but without a.

Fig. 1. Argumentation framework H1.

Our first proposition captures stable extensions when choice = tabu = ∅.

Proposition 1. Let H = (A,R) be an af, S ⊆ A, S ∩ S+ = ∅, choice ⊆
A\(S ∪ S+ ∪ S−), tabu = A\(S ∪ S+ ∪ choice). Then, S is a stable extension in
H if and only if choice = ∅ and tabu = ∅.
Proof. If tabu = ∅ and choice = ∅, then ∅ = A\(S ∪ S+ ∪ ∅) because tabu =
A\(S ∪ S+ ∪ choice). Thus, S ∪ S+ = A. As S ∩ S+ = ∅, then S+ = A\S.
On the other hand, if S is stable, then S+ = A\S and so S ∪ S+ = A. Thus,
tabu = A\(S ∪ S+ ∪ choice) = A\(A ∪ choice) = ∅. Further, choice = ∅ since
choice ⊆ A\(S ∪ S+ ∪ S−) and S ∪ S+ = A. �

Now, we present three propositions that are essential for efficiently listing
stable extensions. These propositions are inspired by the excellent work of [7],
which presented a backtracking algorithm for solving a different computational
problem in afs.

Proposition 2. Let H = (A,R) be an af, S ⊆ A, S ∩ S+ = ∅, choice ⊆
A\(S∪S+∪S−), tabu = A\(S∪S+∪choice), and x ∈ choice be an argument with
{x}− ⊆ S+ ∪ tabu. If there is a stable extension T ⊇ S such that T\S ⊆ choice,
then x ∈ T .
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Proof. Suppose x /∈ T . Then, x ∈ T+ because T is stable. Thus,

∃y ∈ {x}− such that y ∈ T. (2.1)

As {x}− ⊆ S+ ∪ tabu,

∀y ∈ {x}− it is the case that y ∈ S+ ∪ tabu. (2.2)

Hence, (2.1) together with (2.2) imply that

T ∩ (S+ ∪ tabu) 
= ∅. (2.3)

Observe, T ⊆ S ∪ choice since T ⊇ S and T\S ⊆ choice. As S ∩ (S+ ∪ tabu) = ∅
and choice ∩ (S+ ∪ tabu) = ∅, it holds that

T ∩ (S+ ∪ tabu) = ∅. (2.4)

Note the contradiction between (2.3) and (2.4). �

Proposition 3. Let H = (A,R) be an af, S ⊆ A, S ∩ S+ = ∅, choice ⊆
A\(S ∪ S+ ∪ S−), tabu = A\(S ∪ S+ ∪ choice), and x ∈ choice be an argument
such that for some y ∈ tabu it is the case that {y}− ∩ choice = {x}. If there is
a stable extension T ⊇ S such that T\S ⊆ choice, then x ∈ T .

Proof. Suppose x /∈ T . As x ∈ choice,

T\S ⊆ choice\{x}. (3.1)

As T ⊇ S and T\S ⊆ choice, it is the case that T ⊆ S ∪ choice. Because
tabu ∩ (S ∪ choice) = ∅, it holds that

T ∩ tabu = ∅. (3.2)

Referring to the premise of this proposition, as y ∈ tabu, y /∈ T . Subsequently,
y ∈ T+ since T is stable. Thus,

{y}− ∩ T 
= ∅. (3.3)

Since y ∈ tabu and tabu ∩ S+ = ∅, y /∈ S+. Thus,

{y}− ∩ S = ∅. (3.4)

Due to (3.1), (3.3), and (3.4), it holds that {y}− ∩ (choice\{x}) 
= ∅, which is a
contradiction with {y}− ∩ choice = {x}, see the premise of this proposition. �

Proposition 4. Let H = (A,R) be an af, S ⊆ A, S ∩ S+ = ∅, choice ⊆
A\(S ∪ S+ ∪ S−), tabu = A\(S ∪ S+ ∪ choice), and x ∈ tabu be an argument
with {x}− ⊆ S+ ∪ tabu. Then, there does not exist a stable extension T ⊇ S
such that T\S ⊆ choice.
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Proof. Assume there exists a stable extension T ⊇ S with T\S ⊆ choice. Since
(S ∪ choice) ∩ (S+ ∪ tabu) = ∅,

T ∩ (S+ ∪ tabu) = ∅. (4.1)

As x ∈ tabu and due to (4.1), x /∈ T . Thus, x ∈ T+ because T is stable.
Subsequently,

T ∩ {x}− 
= ∅. (4.2)

Because {x}− ⊆ S+ ∪ tabu,

T ∩ (S+ ∪ tabu) 
= ∅ (4.3)

Note the contradiction between (4.1) and (4.3). �

We now give Algorithm 1 for listing all stable extensions in a given af. Before
presenting its proof, we demonstrate the execution of Algorithm 1.

Algorithm 1: stb(S, choice, tabu)
1 repeat
2 if there is x ∈ tabu with {x}− ⊆ S+ ∪ tabu then return;
3 α ← {x ∈ choice | {x}− ⊆ S+ ∪ tabu};
4 S ← S ∪ α;
5 choice ← choice\(α ∪ α+ ∪ α−);
6 tabu ← (tabu ∪ α−)\S+;
7 if ¬(∃y ∈ choice, ∃x ∈ tabu, {x}− ∩ choice = {y}) then β ← ∅ else
8 β ← {y} ;
9 S ← S ∪ β;

10 choice ← choice\(β ∪ β+ ∪ β−);
11 tabu ← (tabu ∪ β−)\S+;

12 until α = ∅ and β = ∅;
13 if choice = ∅ then
14 if tabu = ∅ then S is stable;
15 return;

// For some x ∈ choice.
16 stb(S ∪ {x}, choice\({x} ∪ {x}+ ∪ {x}−), (tabu ∪ {x}−)\(S+ ∪ {x}+));
17 stb(S, choice\{x}, tabu ∪ {x});

Example 2. Apply Algorithm 1 to list the stable extensions in H1:

1. Initially, call stb(∅, {a, b, c, d, e, f}, ∅).
2. Perform the repeat-until block of Algorithm 1 to get S = ∅, choice =

{a, b, c, d, e, f}, and tabu = ∅.
3. Call stb({a}, {c, d}, {e, f}), see line 16 in the algorithm.
4. Now, execute the repeat-until block to get S = {a, c, d}, choice = ∅, and

tabu = ∅. Applying line 14, S is stable. Now, apply line 15 and return to
the state: S = ∅, choice = {a, b, c, d, e, f}, and tabu = ∅.
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5. Call stb(∅, {b, c, d, e, f}, {a}), see line 17 in the algorithm.
6. After performing the repeat-until block, S = ∅, choice = {b, c, d, e, f}, and

tabu = {a}.
7. Call stb({b}, {e, f}, {a}), see line 16.
8. Apply the repeat-until block to get S = {b, e}, choice = ∅, and tabu = ∅.

Performing line 14, we find S stable. Now apply line 15, and so return to
the state: S = ∅, choice = {b, c, d, e, f}, and tabu = {a}.

9. Call stb(∅, {c, d, e, f}, {a, b}), see line 17.
10. Perform a first round of the repeat-until block. Thus, S = {d}, choice = {c},

and tabu = {a}. In a second round of the repeat-until block, the algorithm
returns (see line 2), and eventually the algorithm halts.

In what follows we give another set of propositions that together with the
previous ones will establish the validity of Algorithm 1. Thus, we denote by Ti

the elements of a set T at the algorithm’s state i. The algorithm enters a new
state whenever S is updated. In other words, the algorithm enters a new state
whenever lines 4, 9, 16, or 17 are executed. Focusing on the under-construction
stable extension S and consistently with the algorithm’s actions, in the initial
state of the algorithm we let

S1 = ∅, (1)

and for every state i it is the case that

Si+1 = Si, or
Si+1 = Si ∪ δi with δi ∈ {αi, βi, {x}i}; (2)

see respectively lines 17, 4, 9, and 16 in the algorithm.

Proposition 5. Let H = (A,R) be an af and Algorithm 1 be started with

stb(∅, A\{x | (x, x) ∈ R}, {x | (x, x) ∈ R}).

For every state i, Si ∩ S+
i = ∅.

Proof. As S1 = ∅, S1 ∩ S+
1 = ∅. We now show that for every state i

Si ∩ S+
i = ∅ =⇒ Si+1 ∩ S+

i+1 = ∅. (5.1)

Suppose Si ∩ S+
i = ∅. Using (2) we write

Si+1 ∩ S+
i+1 = (Si ∪ δi) ∩ (S+

i ∪ δ+i )
= (Si ∩ S+

i ) ∪ (Si ∩ δ+i ) ∪ (S+
i ∩ δi) ∪ (δi ∩ δ+i ).

(5.2)

In fact, δi ⊆ choicei, recall (2) and lines 3, 7, and 16. Considering (5.2), we
proceed the proof by showing that

(Si ∩ S+
i ) ∪ (Si ∩ choice+i ) ∪ (S+

i ∩ choicei) ∪ (δi ∩ δ+i ) = ∅. (5.3)

In other words, we need to prove that for every state i

Si ∩ choice+i = ∅, (5.4)
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S+
i ∩ choicei = ∅, (5.5)

δi ∩ δ+i = ∅. (5.6)

Now we prove (5.4). For i = 1, S1 ∩ choice+1 = ∅ since S1 = ∅. Then, we will
show that

∀i (Si ∩ choice+i = ∅ =⇒ Si+1 ∩ choice+i+1 = ∅). (5.7)

Suppose Si ∩ choice+i = ∅. Referring to lines 5, 10 and 16, it holds that
choicei+1 = choicei\(δi ∪ δ−

i ∪ δ+i ). And using (2), we note that

Si+1 ∩ choice+i+1 = (Si ∪ δi) ∩ (choicei\(δi ∪ δ−
i ∪ δ+i ))+. (5.8)

Since Si ∩ choice+i = ∅, it holds that Si ∩ (choicei\(δi ∪ δ−
i ∪ δ+i ))+ = ∅. Addi-

tionally, we note that

δi ∩ (choicei\(δi ∪ δ−
i ∪ δ+i ))+ = ∅ ⇐⇒ δ−

i ∩ (choicei\(δi ∪ δ−
i ∪ δ+i )) = ∅. (5.9)

As δ−
i ∩ (choicei\(δi ∪ δ−

i ∪ δ+i )) = ∅, (5.8) holds. For the case of line 17 in the
algorithm, where Si+1 = Si, note that

Si+1 ∩ choice+i+1 = Si ∩ (choicei\{x}i)+ = ∅ (5.10)

since Si ∩ choice+i = ∅. That concludes the proof of (5.4). Now we prove (5.5).
For i = 1, it holds that choice1 ∩ S+

1 = ∅ since S1 = ∅. Then, we need to show
that for every state i

choicei ∩ S+
i = ∅ =⇒ choicei+1 ∩ S+

i+1 = ∅. (5.11)

Referring to line 5, 10, and 16, it is the case that choicei+1 = choicei\(δi ∪ δ+i ∪
δ−
i ). Considering (2), observe that

choicei+1 ∩ S+
i+1 = (choicei\(δi ∪ δ+i ∪ δ−

i )) ∩ (Si ∪ δi)+

= (choicei\(δi ∪ δ+i ∪ δ−
i )) ∩ (S+

i ∪ δ+i ).
(5.12)

Thus, (5.11) holds. Likewise, for the case of line 17 in the algorithm,

choicei+1 ∩ S+
i+1 = (choicei\{x}i) ∩ S+

i = ∅ (5.13)

since choicei ∩ S+
i = ∅, see the premise of (5.11). That completes the proof of

(5.5). Now we prove (5.6). From (2), for all i, if Si+1 = Si ∪ δi, then it holds
that δi ∈ {αi, βi, {x}i}. Considering the algorithm’s actions (lines 3, 7 and 16),
δi ⊆ choicei. If δi ∈ {βi, {x}i}, then |δi| = 1, and so δi ∩ δ+i = ∅ holds since
{x | (x, x) ∈ R} 
⊆ choicei. If δi = αi, then from line 3 in the algorithm we note
that

δi = {x ∈ choicei | {x}− ⊆ tabui ∪ S+
i }. (5.14)

Therefore,
δ−
i ⊆ tabui ∪ S+

i . (5.15)
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To establish δi ∩ δ+i = ∅ it suffices to show that

δi ∩ δ−
i = ∅. (5.16)

Thus, given (5.15) with the fact that δi ⊆ choicei, we will prove (5.16) by showing
that

choicei ∩ (tabui ∪ S+
i ) = ∅. (5.17)

Because we already showed that choicei ∩ S+
i = ∅, recall (5.5), the focus now is

on demonstrating that for all i

choicei ∩ tabui = ∅. (5.18)

For i = 1, (5.18) holds since choice1 = A\{x | (x, x) ∈ R} and tabu1 = {x |
(x, x) ∈ R}. Now we will show that

∀i (choicei ∩ tabui = ∅ =⇒ choicei+1 ∩ tabui+1 = ∅). (5.19)

Let choicei ∩ tabui = ∅. Observe that

choicei+1 = choicei\(δi ∪ δ−
i ∪ δ+i ) (lines 5, 10, and 16)

tabui+1 = (tabui ∪ δ−
i )\(S+

i ∪ δ+i ) (lines 6, 11, and 16)
(5.20)

Thus,

choicei+1 ∩ tabui+1 = (choicei\(δi ∪ δ−
i ∪ δ+i )) ∩ ((tabui ∪ δ−

i )\(S+
i ∪ δ+i )) = ∅.

(5.21)
For the case of line 17, observe that

choicei+1 ∩ tabui+1 = (choicei\{x}i) ∩ (tabui ∪ {x}i) = ∅. (5.22)

That concludes the demonstration of (5.6), and so the proof of (5.1) is now
complete. �

Proposition 6. Let H = (A,R) be an af and Algorithm 1 be started with

stb(∅, A\{x | (x, x) ∈ R}, {x | (x, x) ∈ R}).

For every state i, choicei ⊆ A\(Si ∪ S+
i ∪ S−

i ).

Proof. We note that choice1 ⊆ A\(S1 ∪ S+
1 ∪ S−

1 ). This is because choice1 =
A\{x | (x, x) ∈ R} and, S1 = ∅. Now, we show that for every state i

choicei ⊆ A\(Si ∪ S+
i ∪ S−

i ) =⇒ choicei+1 ⊆ A\(Si+1 ∪ S+
i+1 ∪ S−

i+1). (6.1)

Given the premise of (6.1), we write

choicei\(δi ∪ δ−
i ∪ δ+i ) ⊆ A\(Si ∪ S+

i ∪ S−
i ∪ δi ∪ δ−

i ∪ δ+i ). (6.2)

According to lines 5, 10 and 16 in the algorithm we observe that

choicei+1 = choicei\(δi ∪ δ+i ∪ δ−
i ). (6.3)
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Hence, using (6.3) along with (2) we rewrite (6.2) as

choicei+1 ⊆ A\(Si+1 ∪ S+
i+1 ∪ S−

i+1), (6.4)

which is the consequence of (6.1). But to complete the proof of (6.1) we need to
illustrate the case of line 17 in the algorithm where for some x ∈ choicei it holds
that

choicei+1 = choicei\{x}i, (6.5)

and
Si+1 = Si. (6.6)

Given the premise of (6.1), observe that

choicei\{x}i ⊆ A\(Si ∪ S+
i ∪ S−

i ). (6.7)

Using (6.5) with (6.6), we note that choicei+1 ⊆ A\(Si+1 ∪ S+
i+1 ∪ S−

i+1). �

Proposition 7. Let H = (A,R) be an af and Algorithm 1 be started with

stb(∅, A\{x | (x, x) ∈ R}, {x | (x, x) ∈ R}).

For every state i, tabui = A\(Si ∪ S+
i ∪ choicei).

Proof. We note that tabu1 = A\(S1 ∪S+
1 ∪ choice1). Observe, S1 = ∅, choice1 =

A\{x | (x, x) ∈ R} and tabu1 = {x | (x, x) ∈ R}. Now we prove that for every
state i,

tabui = A\(Si∪S+
i ∪choicei) =⇒ tabui+1 = A\(Si+1∪S+

i+1∪choicei+1). (7.1)

Considering lines 6, 11, and 16 we note that

tabui+1 = (tabui ∪ δ−
i )\(S+

i ∪ δ+i ). (7.2)

Given the premise of (7.1), rewrite (7.2) as

tabui+1 = ((A\(Si ∪ S+
i ∪ choicei)) ∪ δ−

i )\(S+
i ∪ δ+i ). (7.3)

According to lines 5, 10 and 16 in the algorithm we observe that

choicei+1 = choicei\(δi ∪ δ+i ∪ δ−
i ). (7.4)

Note that δi ⊆ choicei, see (2). For the case where δ+i ∪δ−
i ⊆ choicei, using (7.4)

and (2), we rewrite (7.3) as

tabui+1 = ((A\(Si ∪ S+
i ∪ choicei+1 ∪ δi ∪ δ+i ∪ δ−

i )) ∪ δ−
i )\(S+

i ∪ δ+i )
= ((A\(Si+1 ∪ S+

i+1 ∪ choicei+1 ∪ δ−
i ))\(S+

i ∪ δ+i )) ∪ (δ−
i \(S+

i ∪ δ+i ))
= ((A\(Si+1 ∪ S+

i+1 ∪ choicei+1 ∪ δ−
i ))\S+

i+1) ∪ (δ−
i \S+

i+1)
= (A\(Si+1 ∪ S+

i+1 ∪ choicei+1 ∪ δ−
i )) ∪ (δ−

i \S+
i+1)

(7.5)
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Note, it is always the case that δ−
i ∩ (choicei+1 ∪ Si+1) = ∅, see Proposition 5

and (7.4). Thus, (7.5) can be rewritten as

tabui+1 = (A\(Si+1 ∪ S+
i+1 ∪ choicei+1 ∪ (δ−

i \S+
i+1))) ∪ (δ−

i \S+
i+1)

= A\(Si+1 ∪ S+
i+1 ∪ choicei+1).

(7.6)

For the case where (δ+i ∪ δ−
i ) ∩ choicei = ∅ with δ+i ∪ δ−

i ⊆ S+
i ∪ tabui, we write

(7.2) using the premise of (7.1) as

tabui+1 = (tabui ∪ δ−
i )\(S+

i ∪ δ+i ) = tabui\δ+i = (A\(Si ∪ S+
i ∪ choicei))\δ+i .

(7.7)
Using (7.4) we rewrite (7.7) as

tabui+1 = (A\(Si ∪S+
i ∪ choicei+1 ∪ δi))\δ+i = A\(Si ∪ δi ∪S+

i ∪ δ+i ∪ choicei+1).
(7.8)

Using (2), (7.8) is equivalent to

tabui+1 = A\(Si+1 ∪ S+
i+1 ∪ choicei+1). (7.9)

For the case where δ+i ∪ δ−
i ⊆ S+

i ∪ tabui ∪ choicei, let δ+i = δ+it ∪ δ+ic ∪ δ+is
and δ−

i = δ−
it ∪ δ−

ic ∪ δ−
is such that δ+it ∪ δ−

it ⊆ tabui, δ+ic ∪ δ−
ic ⊆ choicei, and

δ+is ∪ δ−
is ⊆ S+

i . Then, we rewrite (7.2) as

tabui+1 = (tabui ∪ δ−
ic ∪ δ−

is ∪ δ−
it )\(S+

i ∪ δ+ic ∪ δ+it ∪ δ+is)
= (tabui ∪ δ−

ic ∪ δ−
is)\(S+

i ∪ δ+ic ∪ δ+it)
= ((A\(Si ∪ S+

i ∪ choicei)) ∪ δ−
ic ∪ δ−

is)\(S+
i ∪ δ+ic ∪ δ+it )

= ((A\(Si ∪ S+
i ∪ choicei)) ∪ δ−

ic)\(S+
i ∪ δ+ic ∪ δ+it )

= ((A\(Si ∪ S+
i ∪ choicei)) ∪ δ−

ic)\(δ+ic ∪ δ+it )
= ((A\(Si ∪ S+

i ∪ choicei+1 ∪ δi ∪ δ+ic ∪ δ−
ic)) ∪ δ−

ic)\(δ+ic ∪ δ+it )
= (A\(Si ∪ S+

i ∪ choicei+1 ∪ δi ∪ δ+ic))\(δ+ic ∪ δ+it )
= (A\(Si ∪ S+

i ∪ choicei+1 ∪ δi ∪ δ+ic))\δ+it
= A\(Si ∪ S+

i ∪ choicei+1 ∪ δi ∪ δ+ic ∪ δ+it )
= A\(Si ∪ S+

i ∪ choicei+1 ∪ δi ∪ δ+i )
= A\(Si+1 ∪ S+

i+1 ∪ choicei+1).

(7.10)

For the special case of line 17 in the algorithm, which indicates that tabui+1 =
tabui ∪ {x}i, Si+1 = Si, and choicei+1 = choicei\{x}i, we write

tabui+1 = tabui ∪ {x}i
= (A\(Si ∪ S+

i ∪ choicei)) ∪ {x}i
= (A\(Si+1 ∪ S+

i+1 ∪ choicei)) ∪ {x}i
= (A\(Si+1 ∪ S+

i+1 ∪ choicei+1 ∪ {x}i)) ∪ {x}i
= A\(Si+1 ∪ S+

i+1 ∪ choicei+1).

(7.11)

This concludes our proof of Proposition 7. �

Proposition 8. Let H = (A,R) be an af and Algorithm 1 be started with

stb(∅, A\{x | (x, x) ∈ R}, {x | (x, x) ∈ R}).

The algorithm computes exactly the stable extensions of H.
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Proof. We will show that the following two statements (P1 & P2 ) hold.

P1. For every set, Si, reported by Algorithm 1 at line 14 at some state i, Si is
a stable extension in H.

P2. For all Q, if Q is a stable extension in H and Algorithm 1 is sound (i.e. P1 is
established), then there is a stable extension Si, reported by the algorithm
at line 14 at some state i, such that Si = Q.

Regarding P1, to show that S+
i = A\Si we need to prove that

Si ∩ S+
i = ∅, (8.1)

and
Si ∪ S+

i = A. (8.2)

Note, (8.1) is proved in Proposition 5. For (8.2), it can be easily established by
using Proposition 1 if we prove that for every state i

choicei ⊆ A\(Si ∪ S+
i ∪ S−

i ), (8.3)

and
tabui = A\(Si ∪ S+

i ∪ choicei). (8.4)

However, (8.3) and (8.4) are proved in Proposition 6 and 7 respectively. Thus,
referring to line 14 in the algorithm, we note that Si is reported stable if and
only if tabui = choicei = ∅. Considering (8.4), we note that ∅ = A\(Si ∪S+

i ∪∅),
and hence (8.2) holds. The proof of P1 is complete.

Regarding P2, we rewrite P2 (by modifying the consequence) into Ṕ2.
Ṕ2 : For all Q, if Q is a stable extension in H and Algorithm 1 is sound, then

there is a stable extension Si, reported by the algorithm at line 14 at some state
i, such that for all a ∈ Q it holds that a ∈ Si.

We establish Ṕ2 by contradiction. Later, we show that the consequence of
Ṕ2 is equivalent to the consequence of P2. Now, assume that Ṕ2 is false.

Negation of Ṕ2 : There is Q such that Q is a stable extension in H, Algorithm 1
is sound, and for every Si reported by the algorithm at line 14 at some state i,
there is a ∈ Q such that a /∈ Si.

We identify four cases.

Case 1. For a ∈ choice1, if the algorithm terminates at line 2 during the very
first execution of the repeat-until block (but not necessarily from the first round),
then, since the algorithm is sound, H has no stable extensions. This contradicts
the assumption that Q ⊇ {a} is a stable extension in H. Hence, Ṕ2 holds.

Case 2. If (a, a) ∈ R, then this is a contradiction with the assumption that
Q ⊇ {a} is a stable extension in H. Hence, Ṕ2 holds.
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Case 3. With a ∈ choice1, assume that after the very first execution of the
repeat-until block (i.e. including one or more rounds), a ∈ choicek for some
state k ≥ 1. Then, for a state i ≥ k, let x = a (see line 16 in Algorithm 1). If
for all subsequent states j > i, the set Sj ⊇ {a} is not reported stable by the
algorithm, then, since the algorithm is sound, a does not belong to any stable
extension. This contradicts the assumption that Q ⊇ {a} is a stable extension
in H. Hence, Ṕ2 holds.

Case 4. With a ∈ choice1, assume that after the very first execution of the
repeat-until block (i.e. including one or more rounds), a /∈ choicei for some state
i > 1. This implies, according to the repeat-until block’s actions, that {a} ⊆
Si ∪S+

i ∪ tabui. For {a} ⊆ Si, if for all subsequent states j > i, the set Sj ⊇ {a}
is not reported stable by the algorithm, then, since the algorithm is sound, a
does not belong to any stable extension. This contradicts the assumption that
Q ⊇ {a} is a stable extension in H. Likewise, for {a} ⊆ S+

i ∪ tabui, since the
algorithm’s actions are sound, this implies that a does not belong to any stable
extension. This contradicts the assumption that Q ⊇ {a} is a stable extension
in H. Hence, Ṕ2 holds.

Now we rewrite the consequence of Ṕ2.

The Consequence of Ṕ2 : There is a stable extension Si, reported by the algorithm
at line 14 at some state i, such that Q ⊆ Si.

Q being a proper subset of Si is impossible because otherwise it contradicts
that the algorithm is sound or that Q is stable. Therefore, the consequence of
Ṕ2 can be rewritten as next.

The Consequence of Ṕ2 : There is a stable extension Si, reported by the algorithm
at line 14 at some state i, such that Q = Si.

This is exactly the consequence of P2. �

3 Conclusion

We presented formal validation of a known backtracking algorithm for listing all
stable extensions in a given abstract argumentation framework. Our validation
process given in this paper may encourage more investigations in the research
arena of abstract argumentation. Despite being experimentally verified, several
existing backtracking algorithms for abstract argumentation can be reinforced
with formal validation, which might be done in the spirit of this article. A natu-
ral extension to this work is to apply formal validation to a finer-implementation
level of Algorithm 1 where set operations are implemented using characteristic
functions (or labellings as referred to in the literature). More broadly, we note
that since np-hard problems can be solved using backtracking procedures, this
paper might stimulate further work to validate backtracking procedures for solv-
ing np-hard problems that occasionally arise in the field of artificial intelligence.
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