
Buggy Pinball: A Novel Single-point
Meta-heuristic for Global Continuous

Optimization

Vasileios Lymperakis1(B) and Athanasios Aris Panagopoulos2

1 Technical University of Crete, Chania, Greece
vasilis@lyberakis.gr

2 California State University, Fresno, CA, USA

Abstract. In this work, we propose a fundamentally novel single-point
meta-heuristic designed for continuous optimization. Our algorithm con-
tinuously improves on a solution via a trajectory-based search inspired by
the pinball arcade game in an anytime optimization manner. We evaluate
our algorithm against widely employed meta-heuristics on several stan-
dard test-bed functions and various dimensions. Our algorithm exhibits
high precision, and superior accuracy compared to the benchmark, espe-
cially when complex configuration spaces are considered.

1 Introduction

Continuous optimization problems rely on optimization variables that draw their
values from a non-countable set—typically a range of real numbers [20]. This is
in contrast to discrete (combinatorial) optimization where the optimization vari-
ables draw values from a countable set. Many problems in various domains can be
formulated and tackled as continuous optimization tasks. These range from image
processing [4], and chemical engineering [27] to finance [24], and biology [26]. Addi-
tionally, machine learning techniques heavily rely on continuous optimization to
optimize model parameters in order to, typically, minimize an error function [22].
Continuous optimization has drawn considerable attention [13].

Continuous optimization methods can be classified into either local or global
ones. Local methods, such as naive Gradient Descent and Continuous Hill Climb-
ing, move locally over the optimization space and aim to precisely locate the
locally optimal solution. As such, they tend to be quite fast and have been
used widely in numerous applications (e.g.,[3,12]). However, despite the afore-
mentioned advantages, such methods converge to local optima when operating
on non-convex configuration spaces. On the other hand, global methods aim to
find the global solution, typically by moving in a less restricted manner over
the optimization space. Such approaches range from meta-heuristics to modified
local search, such as gradient descent using momentum [21] and adaptive sub-
gradient methods such as Adagrad [6]. In the absence of analytical solutions,
such methods approximate the global optimum—in contrast to local methods

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13589, pp. 264–276, 2023.
https://doi.org/10.1007/978-3-031-23480-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23480-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-23480-4_22

Buggy Pinball 265

Fig. 1. Search trajectory (blue line) and coalitions (red dots) of BP on Rastrigin 3D
(Color figure online)

that precisely locate a local one. Given that the objective space is usually non-
convex and that one is typically interested in an approximation of the optimal
solution, global methods are of great interest and widely used in practice [2].

Meta-heuristics have long been used for global continuous optimization tasks
(e.g.,[5,25]). They can avoid convergence to local optima and scale to multidi-
mensional problems, while typically not requiring a derivative of the objective
function, which is a restrictive requirement of gradient-based optimization. Meta-
heuristics can be broadly classified into single-point or population-based ones. The
former focus on improving a single solution, while the latter on improving a col-
lection of points based on population characteristics. Single-point meta-heuristics
are generally regarded as less-fit for continuous optimization and related research
is limited when compared to population-based approaches. Most single-point
meta-heuristics—such as simulated annealing (SA) [15] and threshold accepting
(TA) [7]—have been developed for discrete optimization problems. As such, their
deployment in continuous optimization often requires non-straightforward tun-
ing. On the other hand, population-based approaches have received considerably
more attention for continuous optimization. Many such approaches have been pro-
posed for continuous optimization over the past years, such as grey wolf optimizer
[18], whale optimization [17] and particle swarm optimization (PSO) [14]. Such
approaches typically demonstrate fast convergence and an ability to converge to
the global optima with high precision. Nevertheless, they can still fall into local
optima especially in complex configuration spaces.

Against this background, we propose a fundamentally novel single-point
meta-heuristic algorithm, namely buggy pinball (BP), designed specifically for
global continuous optimization. Our algorithm is inspired by the movement of a
ball’s collision and descent in the well-known pinball arcade game. Importantly,
BP, is an anytime algorithm: it always improves over the solution while ensur-
ing exploration. We evaluate our approach against three well-known single-point
and population-based meta-heuristics on several commonly employed optimiza-
tion test-bed functions and a number of dimensions. We show that BP is able to
find the global optima with high accuracy and precision and in a shorter time
than the benchmark. Especially, when more complex functions are considered,

266 V. Lymperakis and A. A. Panagopoulos

we show consistency on high performance, unlike any other meta-heuristic in our
experiments. We believe that the superiority of our approach, and the fact that
a solution is guaranteed to improve over time makes it a better choice compared
to the benchmark for continuous optimization tasks, and especially those of high
complexity, such as the ones that typically emerge in machine learning optimiza-
tion tasks. Notably, BP’s superior performance also highlights the potential of
single-point meta-heuristics compared to population-based ones for continuous
optimization. We sum up our main contributions as follows:

– We propose BP, a fundamentally novel single-point anytime meta-heuristic,
inspired by the pinball game, which is tailored for continuous optimization.

– We experimentally show that BP ensures exploration without having to
accept worse solutions, which is a common practice in meta-heuristic search.

– We evaluate our approach against widely employed meta-heuristics, on several
test-bed functions and a number of dimensions.

– We show that BP performs better than both the single-point and population-
based approaches considered, especially in complex configuration spaces—
which proves the efficiency of our novel way of searching.

The rest of the paper is structured as follows. We first discuss background
material and related work. Then, we detail our approach and discuss core moti-
vational aspects. Subsequently, we conduct a systematic evaluation, discuss the
evaluation results, and finally, conclude and present directions for future work.

2 The Buggy Pinball (BP) Algorithm

Our work is motivated by the ball’s movement in the pinball game. In this game,
a ball is thrown to the highest point, and by moving inside a glass-covered cabi-
net, it heads towards the lowest point. The player uses paddles to evade the ball
from falling at the lowest point and collects points by hitting various targets. The
main challenge originates from the multiple collisions of the ball, which eventu-
ally lead the ball to the lowest point. We imitated this movement by creating a
trajectory-based search method, where the “ball” is moving until a collision with
the objective function takes place, which occurs at the common point between
the objective function and the trajectory segment—see Fig. 1. The trajectory
segments start almost horizontally and become steeper with time. A trajectory
segment corresponds to one round of our search algorithm. The intuition behind
this movement is that when the ball is moving almost horizontally, the proba-
bility of getting into a local optimum is small, as shown in Fig. 2a, while steeper
segments speed up convergence to an optimum as time progresses. Anytime algo-
rithms are algorithms that increase the quality of the output as time progresses
[10]. In BP, the trajectory segments that are progressively created, direct the
search towards values that can only better optimize the cost axis. So, every new
point that is detected, is guaranteed to be better than the current. Thus, Buggy
Pinball is anytime, since every new segment can only provide a better solution.

Buggy Pinball 267

Fig. 2. Description of trajectory movement

Why Buggy? Even though there is a chance of getting into a local optimum
solution, it is existent. To significantly decrease the possibility of converging to
a local optimum, we identified the need for the pinball game to be “buggy".
Instead of bouncing away, as in the real pinball, the “ball" in our algorithm is
capable of continuing the search underneath the configuration space. This way,
not only are local optima effectively escaped, but there is also no need to accept
worse solutions to ensure exploration, unlike most meta-heuristic approaches.
Thus, BP is an any-time algorithm. An illustration of being trapped into a
local minimum is shown in Fig. 2b. In Fig. 2c, we can also see how BP creates
trajectories underneath the configuration space and avoids convergence to a
local minimum. This behavior allows BP to reduce significantly the probability
of getting stuck into local optima. The BP effectiveness in avoiding local optima
is verified empirically by its increased accuracy, demonstrated in our results.

BP Overview. As discussed, BP searches the space by creating trajectories.
These progress via steps in a continuous simulation manner until a collision
between the function and the ball occurs. Once we find that a collision occurs
between two steps, a routine to precisely locate the point of collision begins.
When the exact point is identified, we create a new trajectory segment starting
from that point and repeat the procedure. The trajectories are created with a
random direction to ensure that the configuration space is searched adequately.
The elevation angle though, (i.e., the angle of descent or ascent of the segment,
depending on whether we minimize or maximize a function) follows a predefined
schedule: it starts at an almost horizontal level, in order to avoid local optima
and becomes steeper over time to achieve faster convergence rates. By contrast,
the step size is reduced over time, to achieve higher precision. As we get to
bigger configuration spaces, we choose higher starting step values and smaller
elevation angles. As mentioned, the trajectories are even able to advance the ball
underneath the configuration space of the function. An example of a BP search
on the 3D version of the Rastrigin function (Fig. 1.h in the Appendix) can be
seen in Fig. 1. Each blue line represents one trajectory segment, while each red
point is the common point between the function and the segment.

The BP in Detail. BP (Algorithm 1) is composed of five main parts: (1) ini-
tialization, (2) trajectory segment creation, (3) stepping forward, (4) recursive

268 V. Lymperakis and A. A. Panagopoulos

refining, and (5) cooling schedules. We note that each round corresponds to
one trajectory segment, which progresses in steps. Also, an objective function is
characterized by its cost (i.e. the y values) and its variables (i.e. the xi values).
Every xi is an axis in the configuration space (see Fig. 1 for an example with
two xi variables).

Initialization. The first part (i.e., Algorithm 1, lines 1-2) is that of initializing
our hyper-parameters. First, we set the original step and elevation angle, a.
The original step size should be set in such a way, that we do not make too
large steps in the configuration space at the beginning of the process. We have
empirically found that the choice of an original step size at ∼10% of the average
variable range performs well (in general, the step size should be bigger as the
configuration space becomes bigger). We note here that the sign of the step
(variable stepSize in Algorithm 1) should be negative for minimization tasks
and positive for maximization.

The elevation angle is defined with respect to the plane perpendicular to the
y axis. For the elevation angle we always begin with a value close to 0 (e.g., 0.1)
in order to perform a near-horizontal movement.1 We have also identified that
its value should be smaller in large spaces (in contrast to that for step) since
a more horizontal movement is required, to effectively avoid local optima. The
same “smaller values" rule applies as the number of dimensions increases.

In line 1, we also set the number of rounds, which corresponds to the number
of trajectory segments to be created as well as the number of steps to be executed
in each segment. The number of rounds should be set as high as possible, consid-
ering the optimization time constraints. With respect to the number of steps, we
have found that a reasonable choice is one such as the product of the number of
steps and the step size is three to five times bigger than the average variable range.
Finally, the initialization of a random starting point takes place in line 2, and the
procedure of the algorithm begins from line 3. As BP is able to escape local optima
the algorithm is not very sensitive on the initial points selected regarding the con-
vergence to a global solution. Nevertheless, a convenient initial solution can still
speed up the algorithm, as further discussed in Results.

Trajectory Segment Creation. Each round corresponds to the creation and execu-
tion of a trajectory segment, starting from the current point and ending when the
maximum number of steps is reached or a collision is detected. At the beginning
of each round, the segment’s direction is set randomly,2 in order to ensure the
best exploration of the configuration space with only the elevation angle being
fixed and following a predetermined schedule. Thus, the step component for each
variable is set randomly to a value within [-1, 1]. The step-towards-optimum
component for the y axis that respects the elevation angle can be computed as:

ystep =
√

sin2 a
∑d

j=1 x2
step,j

1−sin2 a
where d is the number of variables—i.e., the problem’s

1 The sign of the elevation angle is irrelevant as the square of its sin value is considered.
2 We experimented with trajectories alternating from one direction to another; how-

ever we found this took a toll in exploration. Thus, the algorithm does not behave
exactly like a pinball, however, the final trajectories do resemble a pinball movement.

Buggy Pinball 269

Algorithm 1. Buggy Pinball
1: set stepSize = stepmax; a = amin; #rounds,#steps
2: x , y ← initialize randomly
3: while i in #rounds do
4: x step = random(-1,1)

5: ystep =

√
sin2 a

∑d
j=1 x2

step,j

1−sin2(a)

6: x step = zx step; ystep = zystep

7: while j in #steps do
8: if crossing_detected(x , y, x step, ystep,j) then
9: x , y = recursive_refining(x , y, x step, ystep, j)

10: break
11: a =elevation_cooling(amin, i,#rounds)
12: stepSize =stepSize_cooling(stepmax, i,#rounds)
13: return x , y

Algorithm 2. crossing_detected (x , y,x step, ystep,j)
1: A = y + (j − 1)ystep − f(x + (j − 1)x step)
2: B = y + jystep − f(x + jx step)
3: return (A > 0 ∧ B < 0) ∨ (A < 0 ∧ B > 0)

dimensions. It is easy to derive this equation with the following procedure. We
know for the elevation angle that: sin a = |nu|

|n||u| , where n is the vector perpen-
dicular to the fundamental plane, i.e. parallel to the y axis (0, 0, ...0, 1). Vector u
is the trajectory’s segment vector (x0, x1, ..., xd−1, y). Values x0, x1, ..., xd−1 and
the elevation angle are known. Solving for y gives us the ystep equation above.

With the above procedure, we have set the direction of the segment. What
remains is to readjust the dimension-wise step components to respect the pre-
determined overall step size. In order to achieve this, we multiply all step com-
ponents with a common factor, z, calculated as z = stepSize√

x2
0+x2

1...+x2
d−1+y2

step

(used

in line 6 of Algorithm 1). Once we have completed this procedure, our step for
the current round is ready. We then apply it for the number of steps stated or
until a crossing of the objective function is detected.3

Stepping Forward. In this part (i.e. Algorithm 1, lines 7-10 and Algorithm 2 and
3), we start our trajectory segment search by applying the step’s values on each
axis, and we continue until one of the two conditions of stopping is met. As the
segment proceeds in the configuration space, it moves downwards concerning the
y axis, as the segment value of y decreases in every step. This results in accepting
only better values (i.e. closer to the global optimum) of the current position. The
crossing of the objective function by the segment is determined by checking the
last two steps taken. As shown in the crossing detected function (Algorithm 2), if

3 Crossing of the objective function means that a common point of the objective
function and the current trajectory segment has been detected.

270 V. Lymperakis and A. A. Panagopoulos

Algorithm 3. recursive_refining (x , y,x step, ystep,j)
1: x = x + x stepj; y = y + ystepj
2: if y − f(x) ≈ 0 then
3: return x , f(x)
4: else
5: x step =

xstep

2
; ystep =

ystep

2

6: x = x − x step; y = y − ystep

7: if crossing_detected(x , y, x step, ystep,0) then
8: return recursive_refining(x , y, x step, ystep, 0)
9: else

10: return recursive_refining(x , y, x step, ystep, 1)

the difference between the y value and the function evaluation is of different sign
between these steps, we know that a point on the objective function is “internal”
to the last trajectory segment drawn—and “recursive refining" is triggered.

Recursive Refining. This is a process of iterative refinement, shown also in
pseudo-code in Algorithm 3, used to locate the exact point where a trajectory
segment crosses the objective function. It is activated only when a crossing of
the configuration space is detected, otherwise, that part is skipped. In that case,
a loop begins, where the point in the middle between the last two steps is exam-
ined, to determine whether this is the common point between the segment and
the function (or a very good approximation). If it is not, then we choose whether
we continue the loop on the upper or the lower half of the examined part, depend-
ing on where the crossing is identified, according to the signs of the points. We
continue by examining the point in the middle of that part as before, and the
same process is repeated until the exact location of the common point is found.
Once we find this point, we stop the iteration of the current round, as we have
reached the closest point to the global optimum so far.

Cooling Schedules. The last part takes place at the end of each round (i.e.
Algorithm 1, lines 11–12). It determines the values of the desired step size
and the angle for the upcoming round. It simply applies the cooling schedule
function determined for each of the parameters. In our experiments, we used
a simple linear cooling schedule, where the final values are a fraction of 1 for
the step size, so we have increased precision no matter the structure of the
problem, and from 0.1◦ for highly complex many-local-optima functions up to
89◦ for simple slope no-local-optima functions. This seems to work satisfactorily
for each problem tested so far, but further research on the topic is desirable for
future work.

3 Experiments

Background and Related Work. As discussed, in our experiments we consider var-
ious widely-employed meta-heuristics, both single-point and population-based,

Buggy Pinball 271

Fig. 3. Objective functions’ graphs

in order to thoroughly evaluate our approach. Simulated annealing, SA, [15] is
a famous single-point, commonly employed meta-heuristic (e.g., [1,16]). Numer-
ous SA variants have also been proposed [23]. Threshold accepting (TA) [7] is
proposed as a variant of SA that is also receiving recent attention (e.g., [8,9]).
One of the most famous population-based meta-heuristic approaches is particle
swarm optimization, PSO [14], initially designed for continuous optimization.

To evaluate our approach, we compare BP against SA, TA, and PSO into the
minimization of several benchmark optimization functions that are commonly
employed in optimization evaluation [19], and on different dimensions. In more
detail, the benchmark functions consider a range that spans from relatively sim-
ple uni-modal ones (i.e., Sphere and Easom) to more complex multi-modal ones
(i.e., Rastrigin, Ackley, Eggholder, Schwefel, Shubert, Holdertable, Langermann,
and Dropwave). As such, all algorithms are evaluated on a diverse range of opti-
mization spaces. The function graphs and equations are reported in Fig. 3 and
Table 1 of the Appendix, respectively, for concreteness. All benchmark functions
are considered in three dimensions to support straightforward visualization of
the results. The benchmark functions, which are also directly defined on a higher
number of dimensions (i.e., Sphere, Rastrigin, Ackley, and Schwefel), have also
been considered in two, four, five, and six dimensions. This range allowed us to
evaluate the scalability of all approaches, while still ensuring fairness and statis-
tical significance. To ensure statistical significance, each algorithm was executed
for each function and dimension one hundred times.

In order to ensure a fair comparison, a predefined time allowance was selected
and was made available for all approaches, while all experiments were run on
the same machine (a 40-CPU Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz
processor, with 64GB RAM). The predefined time allowance was selected to be
one second, five seconds, one minute, five minutes and twenty minutes for two,
three, four, five and six dimensions respectively. This time allowance was selected
before the experiments were executed to avoid favoring any approach.

Ensuring fairness is a particularly prominent challenge when comparing dif-
ferent meta-heuristics, as they operate differently and typically depend on a
number of different hyper-parameters [11]. A fair comparison should consider
the “same level” of optimization/calibration with respect to the hyper-parameters
for all meta-heuristics considered (e.g., the cooling schedule for SA and TA). In
order to ensure fairness among all approaches, we performed a thorough exhaus-
tive grid search—for each algorithm, on every benchmark function, and on every
dimension—to identify the best hyper-parameters for every setting (i.e., the

272 V. Lymperakis and A. A. Panagopoulos

Table 1. Testbed functions

Function Equation

Dropwave − 1+cos (12
√

x2
1+x2

2)

0.5(x2
1+x2

2)+2

Eggholder −(x2 + 47) sin (
√

|x2 + x1
2

+ 47|)
−x1 sin (

√|x1 − x2 − 47|)

Holdertable −| sin (x1) cos (x2)e
|1−

√
x2
1+x2

2
π

||
Langermann*

∑5
i=1 cie

− 1
π

∑d
j=1(xj−Aij)

2

cos (π
∑d

j=1(xj − Aij)
2)

Shubert (
∑5

i=1 i cos ((i + 1)x1 + i))

(
∑5

i=1 i cos ((i + 1)x2 + i))

Easom − cos (x1) cos (x2)e−(x1−π)2−(x2−π)2

Ackley −20e
−0.2

√
1
d

∑d
i=1 x2

i

−e

√
1
d

∑d
i=1 cos (2πxi) + 20 + e1

Rastrigin 10d +
∑d

i=1(x
2
i − 10 cos (2πxi))

Schwefel 418.9829d − ∑d
i=1 xi sin (

√|xi|)
Sphere

∑d
i=1 x2

i

*where c = (1, 2, 5, 2, 3) and AT =

(
3 5 2 1 7

5 2 1 4 9

)

hyper-parameters that lead to the best performance within the predefined time
allowance). The optimal hyper-parameters were used for our evaluations, ensur-
ing a fair comparison among all approaches. The dimension range used in our
evaluation enabled us to evaluate the scalability of all approaches while perform-
ing this demanding search in feasible time.

When comparing the performance of meta-heuristic approaches, it is crucial
to use appropriate metrics. In this work, we use both a precision and accu-
racy. We calculate the accuracy percentage as the ratio of the trials, where the
algorithm converged to an approximation of the global minimum over the total
number of trials. We consider an algorithm to have converged to an approx-
imation of the global minimum, if the solution discovered is better than the
second-best (local) minimum. To evaluate precision, for those solutions that
have converged to an approximation of the global optimum, we calculated the
difference between that approximation and the global optimum itself. That is,
we calculated the Mean Absolute Error (MAE) as: MAE =

∑n
i=1 |y−xi|

n —where
n is the number of trials, y the global minimum, and xi the proposed solution
on a given trial.

4 Results

Our results are shown in Table 2 for each function, algorithm, and dimension con-
sidered, with the best results in each occasion noted in bold. A higher accuracy

Buggy Pinball 273

Table 2. Evaluation Results

Function Accuracy (%) Precision (MAE)
BP SA TA PSO BP SA TA PSO

Dropwave 3D 100% 84% 100% 100% 1e-4 0.008 0.002 1e-17
Eggholder 3D 100% 73% 77% 48% 0.872 0.454 4.634 1e-5
Holdertable 3D 100% 100% 100% 56% 0.006 0.01 0.008 1e-6
Langermann 3D 100% 5% 59% 41% 2e-6 0.001 0.007 2e-15
Shubert 3D 100% 100% 100% 88% 0.032 0.021 0.274 8e-6
Easom 3D 100% 100% 100% 99% 0.002 0.001 7e-4 5e-17
Ackley 2D 100% 100% 100% 100% 2e-4 0.009 0.002 4e-16

3D 100% 100% 100% 100% 7e-5 0.017 0.013 4e-16
4D 100% 100% 100% 100% 8e-5 0.03 0.026 0.021
5D 100% 100% 100% 100% 9e-5 0.044 0.07 2e-15
6D 100% 100% 100% 100% 3e-4 0.062 0.115 0.063

Rastrigin 2D 100% 100% 100% 100% 7e-7 0.005 5e-4 ∼0
3D 100% 100% 100% 100% 8e-7 0.01 0.01 ∼0
4D 100% 100% 100% 99% 6e-7 0.035 0.044 ∼0
5D 100% 100% 100% 82% 7e-7 0.116 0.139 ∼0
6D 100% 100% 100% 46% 7e-7 0.331 0.36 ∼0

Schwefel 2D 100% 95% 100% 95% 2e-4 6e-3 0.11 1e-5
3D 100% 90% 93% 91% 3e-4 0.02 0.9 2e-5
4D 100% 81% 91% 84% 3e-4 0.142 3.634 3e-5
5D 100% 72% 86% 62% 4e-4 0.875 8.69 3e-5
6D 94% 71% 77% 60% 3e-4 2.68 16.72 4e-5

Sphere 2D 100% 100% 100% 100% 0.036 5e-6 2e-12 1e-117
3D 100% 100% 100% 100% 0.003 1e-6 2e-7 4e-16
4D 100% 100% 100% 100% 8e-4 2e-5 9e-6 ∼0
5D 100% 100% 100% 100% 7e-4 1e-4 6e-5 ∼0
6D 100% 100% 100% 100% 7e-4 3e-4 2e-4 ∼0

percentage indicates better performance (the algorithm discovers and approxi-
mates the global optimum more often compared to the rest of the algorithms
evaluated), while lower MAE indicates better precision. An MAE of ∼0 is prac-
tically zero. Visual inspection indicated that the evaluation results are not nor-
mally distributed. A Shapiro Wilk Test with a p-value of 0.05 confirmed that we
cannot assume a normal distribution. The statistical significance of all results
is tested using a non-parametric Kruskal-Wallis H test and follow-up Conover’s

274 V. Lymperakis and A. A. Panagopoulos

tests (along with the step-down method using Bonferroni adjustment for p-value
adjustment). A p-value threshold of 0.05 is used for statistical significance. All
statistical significance results are included in the Appendix.

As seen in Table 2, BP shows higher or equal accuracy rates compared to
all other algorithms in all settings. The starting point for each trial and each
algorithm is random. BP has no trouble approximating the global minimum
from any possible starting position. Notably, it is the algorithm with the most
times to achieve a 100% accuracy ratio. There are some cases, however, where
all algorithms achieve almost 100% accuracy. This occurs for the “less complex”
functions Ackley, Easom, Rastrigin, Schwefel (2D), Sphere, Holdertable, Shubert,
and Dropwave, where all or almost all algorithms exhibit almost 100% accuracy
(we elaborate below). The more “complex” functions are Schwefel (3D, 4D, 5D,
6D), Eggholder, Langermann. In those, BP always outperforms its competitors.
BP reaches 100% accuracy in all these results, and its superiority to others is
statistically significant, except results against TA for the Schwefel 3D, 4D cases.

Now, regarding precision, we clarify that it is calculated only for the points
that have converged to an approximation of the global minimum. Thus, high
precision demonstrates how well the global optimum is approximated, if the
algorithm did not get stuck to a local optimum in the first place. As such, a
high precision-low accuracy performance is not suitable for global optimization—
since, although precise, the algorithm is not discovering the global optima often
enough. That said, an adequate performance concerning precision is definitely
required for global optimization algorithms. As can be seen, BP’s precision is
high; and it is higher than that of the other two single-point algorithms con-
sidered (SA, TA) in most cases. Follow-up tests confirm statistically significant
better BP precision against SA and TA in all cases. The precision of BP seems to
be lower than that of PSO (which is also developed for continuous optimization
tasks), and follow-up tests indicate that this difference is statistically significant.
Notably, however, PSO frequently has the worst accuracy among all algorithms,
and thus is a poor choice for global optimization in these cases.

As noted already, the advantage of BP becomes greater when the more com-
plex functions are considered, i.e., Eggholder, Schwefel and Langermann, and
when we move to higher dimensions. These functions have many and deep local
minima, but only a single global one. The Eggholder and Langermann are also
non-symmetric. These facts make them harder to optimize in a global optimiza-
tion manner, while not getting stuck in a local minimum. The higher dimen-
sionality introduces further challenges for global optimization. That said, BP
manages to achieve a 100% accuracy in all occasions except Schwefel for 6D
(where an 94% is achieved). The accuracy results are also always better com-
pared to the rest of the algorithms considered and the improvement ranges to
up to 20 times better (i.e., compared to SA for Langermann 3D). When simpler
functions and lower dimensions are considered the differences between the algo-
rithms become less prominent. For instance, the Dropwave, Ackley, and Rastrigin
have few local minima that are relatively shallow, while Shubert and Holdertable
have many global optima. As such, most algorithms reach 100% accuracy except

Buggy Pinball 275

SA in Dropwave 3D, PSO in Rastrigin 4D, 5D and 6D, and PSO in Holdertable
3D and Shubert 3D. Finally, when the unimodal functions, Sphere and Easom
are considered, not surprisingly, all algorithms achieve a 100% accuracy.

5 Conclusions and Future Work

In this paper, we introduced a fundamentally novel single-point meta-heuristic
tailored for global continuous optimization problems. Our algorithm, buggy pin-
ball, is inspired by the pinball arcade game and is able to discover the global opti-
mum in an any-time optimization manner. We evaluated our algorithm against
widely-employed meta-heuristics on standard test-beds. We showed that it has
a better performance compared to all benchmark approaches, especially when
complex optimization functions and multiple dimensions are considered.

Future and ongoing work includes various extensions of the Buggy Pinball
algorithm. For instance, investigating different cooling schedules for the step
length and elevation angle parameters could improve the algorithm’s effective-
ness. Another valuable extension could be adapting BP for discrete optimization
problems, to benefit from the perquisites of the algorithm in that domain as well.

References

1. Abdel-Basset, M., Ding, W., El-Shahat, D.: A hybrid harris hawks optimization
algorithm with simulated annealing for feature selection. Artif. Intell. Rev. 54(1),
593–637 (2021)

2. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems. J.
Global Optim. 31(4), 635–672 (2005)

3. Biehl, M., Schwarze, H.: Learning by on-line gradient descent. J. Phys. A: Math.
Gen. 28(3), 643 (1995)

4. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging.
Acta Numer 25, 161–319 (2016)

5. Dhouib, S., Kharrat, A., Chabchoub, H.: A multi-start threshold accepting algo-
rithm for multiple objective continuous optimization problems. Int. J. Numer.
Meth. Eng. 83(11), 1498–1517 (2010)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011)

7. Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization algo-
rithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175
(1990)

8. Frausto-Solis, J., Hernández-Ramírez, L., Castilla-Valdez, G., González-Barbosa,
J.J., Sánchez-Hernández, J.P.: Chaotic multi-objective simulated annealing and
threshold accepting for job shop scheduling problem. Math. Comput. Appli. 26(1),
8 (2021)

9. Geiger, M.J.: Pace solver description: A simplified threshold accepting approach
for the cluster editing problem. In: 16th International Symposium on Parameter-
ized and Exact Computation (IPEC 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2021)

276 V. Lymperakis and A. A. Panagopoulos

10. Grass, J., Zilberstein, S.: Anytime algorithm development tools. ACM SIGART
Bulletin 7(2), 20–27 (1996)

11. Halim, A.H., Ismail, I., Das, S.: Performance assessment of the metaheuristic opti-
mization algorithms: an exhaustive review. Artif. Intell. Rev. 54(3), 2323–2409
(2021)

12. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient
descent. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS,
vol. 2130, pp. 87–94. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44668-0_13

13. Jeyakumar, V., Rubinov, A.M.: Continuous Optimization: Current Trends and
Modern Applications, vol. 99. Springer Science & Business Media (2006). https://
doi.org/10.1007/b137941

14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference On Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

16. Lin, S.W., Cheng, C.Y., Pourhejazy, P., Ying, K.C.: Multi-temperature simulated
annealing for optimizing mixed-blocking permutation flowshop scheduling prob-
lems. Expert Syst. Appl. 165, 113837 (2021)

17. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95,
51–67 (2016)

18. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

19. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Funct.
Optim. Needs 101, 48 (2005)

20. Munoz, M.A., Kirley, M., Halgamuge, S.K.: The algorithm selection problem on
the continuous optimization domain. In: Computational Intelligence In Intelli-
gent Data Analysis, pp. 75–89. Springer (2013). https://doi.org/10.1007/978-3-
642-32378-2_6

21. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Netw. 12(1), 145–151 (1999)

22. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge University Press (2014)

23. Siddique, N., Adeli, H.: Simulated annealing, its variants and engineering applica-
tions. Int. J. Artif. Intell. Tools 25(06), 1630001 (2016)

24. Taylan, P., Weber, G.W., Yerlikaya, F.: Continuous optimization applied in mars
for modern applications in finance, science and technology. In: ISI Proceedings of
20th Mini-euro Conference Continuous Optimization and Knowledge-based Tech-
nologies, pp. 317–322. Citeseer (2008)

25. Vanderbilt, D., Louie, S.G.: A monte carlo simulated annealing approach to opti-
mization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)

26. Weber, G.W., Özöğür-Akyüz, S., Kropat, E.: A review on data mining and con-
tinuous optimization applications in computational biology and medicine. Birth
Defects Res. C Embryo Today 87(2), 165–181 (2009)

27. Xiong, Q., Jutan, A.: Continuous optimization using a dynamic simplex method.
Chem. Eng. Sci. 58(16), 3817–3828 (2003)

https://doi.org/10.1007/3-540-44668-0_13
https://doi.org/10.1007/3-540-44668-0_13
https://doi.org/10.1007/b137941
https://doi.org/10.1007/b137941
https://doi.org/10.1007/978-3-642-32378-2_6
https://doi.org/10.1007/978-3-642-32378-2_6

	Buggy Pinball: A Novel Single-point Meta-heuristic for Global Continuous Optimization
	1 Introduction
	2 The Buggy Pinball (BP) Algorithm
	3 Experiments
	4 Results
	5 Conclusions and Future Work
	References

