
Layout and Display of Network Graphs
on a Sphere

Anshul Guha1 and Eliot Feibush2(B)

1 Yale University, New Haven, USA
2 Princeton Plasma Physics Laboratory, Princeton, NJ, USA

efeibush@pppl.gov

Abstract. There are many advantages to displaying a network graph
on a sphere instead of on a plane. For instance, 3D models can be rotated
so that any node is in the center of the user’s field of view. Moreover,
an opaque sphere provides a natural filtering mechanism for selecting a
small subset of data to display. However, the spherical geometry presents
some challenges to modeling and displaying a graph, and the literature
for 3D layout algorithms is not as rich as that of 2D layout algorithms.
We developed a Visualization Pipeline to parse input data and visualize
it on a 3D sphere. Within this pipeline, we have developed a 3D ver-
sion of the Fruchterman-Reingold Layout Algorithm, and also present
a method for creating 3D arcs that connect the nodes on a sphere. We
created four modified force-directed algorithms, and determined which of
their objective functions produced graphs with more evenly-distributed
nodes. Our implementation functions in readily available 3D visualiza-
tion programs and our browser-based display functions on all common
operating systems and devices.

Keyword: 3D force directed graph algorithm

1 Introduction

Graphs are formally defined as an ordered pair (V,E), where V is a set of vertices
and E is a set of edges that connect pairs of vertices. Node-link diagrams, which
display vertices as points and edges as straight lines connecting vertices, are the
most common method for visualizing graphs. Currently, most graph visualization
research assumes that:

1. All vertices lie on a plane.
2. All edges are straight or curved lines in the same plane as the vertices.

These assumptions are quite reasonable since they ensure that the graphs can be
printed on a flat 2D surface (paper) without distortion. Furthermore, research
into 3D graphs has often focused on graphs where vertices are arbitrarily allowed

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-23473-6 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Magnenat-Thalmann et al. (Eds.): CGI 2022, LNCS 13443, pp. 67–78, 2022.
https://doi.org/10.1007/978-3-031-23473-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23473-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-23473-6_6
https://doi.org/10.1007/978-3-031-23473-6_6


68 A. Guha and E. Feibush

to lie anywhere in the 3D space. Although some graphs are better visualized in
higher dimensions, or in non-euclidean geometries. This research is motivated by
the need to show the influence of one research paper on subsequent papers. Even
a modest 2D graph with 50 nodes and 200 edges can be cluttered so it is difficult
to follow the connections. Modeling the graph in three dimensions significantly
expands the space for locating nodes. Positioning the nodes on a sphere provides
a strong visual context that is very familiar to people exploring a graph.

We developed a Visualization Pipeline to parse raw data and display the
graphs on a sphere. Within this visualization pipeline we explore a variety of
algorithms to display graphs on a sphere.

We implement four different force-directed algorithms for displaying graphs,
all of which are inspired by the original Fruchterman-Reingold algorithm [6].
These algorithms have been adapted to address several problems which arise
when force-directed diagrams are carried over to convex surfaces (like the
sphere). For example,

1. Unlike planes, vectors which lie in a tangent plane to a sphere and have a
head on the sphere do not have a tail on the sphere.

2. If two vertices repel each other with too much force, they can actually end
up closer to each other on the other side of the sphere.

In this paper we analyze citation maps - graphs where each node corresponds
to a separate scientific paper and each edge represents the event of one paper
citing another - as our input data. However, the algorithms and software written
apply generally to all graphs. Modeling graphs on a sphere requires connecting
the nodes in each edge pair using curves that lie on the 3D sphere. As a simplify-
ing assumption, we chose to connect these nodes with a 3D arc along the unique
great circle path that connects them, since the great circle path is the shortest
distance between any two points on the sphere. However connecting nodes with
non-great-circle curves is possible, particularly if these paths are uniquely suited
to avoid node and edge crossings.

The rest of the paper proceeds as follows: In Sect. 2 we give an overview
of related work on force-directed algorithms and spherical graph visualization.
Section 3 provides a high-level overview of the pipeline that transforms raw data
into a spherical visualization in either Paraview or a browser. In Sect. 4 we
describe the force-directed algorithms that calculate the final locations of the
nodes on the sphere and provide the mathematical basis for drawing arcs on a
sphere. Section 5 has an overview of the implementation of the browser-based
visualization, followed by conclusions in Sect. 6.

2 Related Work

Force-directed algorithms were first explored by Tutte [14], whose algorithm
relied on the barycentric representations of vertices on a 2D plane. His idea was
revisited in 1984 by Eades [5] and in 1991 by Fruchterman and Reingold [6]. Both
of these papers define attractive and repulsive forces, modeling the interactions
between every pair of vertices by Hooke’s Law. These papers paved the way for



Layout and Display of Network Graphs on a Sphere 69

more force-directed layout algorithms to be proposed. For instance, ForceAtlas
and ForceAtlas2 were published by the creators of the 2D graph visualization
software Gephi [2].

Spherical graph visualization has been most recently studied by Perry, Yin,
Gray, and Kobourov [10]. They propose two algorithms for spherical visualiza-
tion; one which computes a 2D visualization and another which uses spherical
multi-dimensional scaling. In addition, they have also constructed a pipeline to
parse data and create an in-browser spherical visualization.

Some other authors have also experimented with spherical visualization. For
example, Munzner [9] has constructed many spherical and hyperbolic tree visu-
alizations, and Sprenger [7] has used concentric spheres in graph visualization
in the past.

Additionally, Brath and MacMurchy [3] have conducted a user study on how
individuals (stock brokers) react to graph visualizations on a sphere. Moreover,
in [12], Schulz presents a spherical graph layout algorithm for graphs with large
numbers of nodes. He applies his layout algorithm to a citation map of Web
of Science sociology papers. Similar papers have largely concluded that while
spherical visualization has some drawbacks (such as being harder to implement),
it also have many advantages, such as being able to rotate any vertex to the
center of the screen.

Finally, some research has been conducted into 3D force-directed algorithms
as well. For instance, Lu and Si [8] propose four clustering-based graph layout
algorithms which are successful in reducing edge crossings in 3D graphs.

3 Visualization Pipeline

Fig. 1. A flowchart of the steps to convert input data into three separate VTK files
representing a spherical graph layout: one to model the unit sphere, another to describe
a small sphere for each node, and the third file that models each great circle arc that
connects two nodes.

The first step of the pipeline is to run the data through a parser that stores
the vertex and edge data as lists. (In our specific implementation, we wrote a



70 A. Guha and E. Feibush

Parser that reads and interprets Bibtex files, so that the nodes of the graph are
individual papers and the edges represent instances of papers referencing each
other.) Call these lists V and E. Then V and E are passed into the Layout
Algorithm, which returns a dictionary S of spherical coordinates - one for each
node of the graph (Fig. 1).

S is then passed into a function called CreateNodes. CreateNodes generates
a Nodes file containing instructions for the 3D visualization software to create
a polygonal mesh approximating a sphere with radius 0.02 around each element
of S, thereby creating a set of 3D spheres that represent each node in the final
graph G. The points and polygonal mesh associated with these 3D spheres are
written out to Nodes.

Next, S and E are passed into the CreateEdges algorithm. Each edge is
actually an arc of a great circle of G. Because VTK has no function to automat-
ically create arcs of spheres, each edge between two nodes at points A and B
is approximated by equally spaced points along the arc connecting A and B. In
typical views, connecting these points with short line segments renders curved
arcs along the surface of the unit sphere.

Finally, a polygonal mesh is generated to model the unit sphere. Separat-
ing the components of the graph enables controlling the display and applying
selection filters to the data.

Our implementation produces data sets that can be displayed in scientific
visualization tools such as Paraview [1] and VisIt [4] which are both based on
the Visualization Toolkit software [11]. These programs provide 3D viewing tech-
niques and operators for filtering the nodes and edges in the graph. Both pro-
grams are freely available for Windows, Mac OS, and Linux. This approach to
interoperability handles 3D viewing across platforms.

For added portability, our implementation generates Javascript files that can
be displayed interactively in a browser.

4 Graph Visualization Algorithms

Our overarching goal with the graph layouts was to develop an algorithm that
created evenly-distributed nodes with no node overlaps and minimal “dense”
edge crossing. Usually, this meant some combination of:

1. Nodes are equally distributed across the sphere.
2. High-degree nodes are far away from each other.

4.1 Layout - Adaptation of Fruchterman-Reingold Algorithm

The Fruchterman-Reingold algorithm (FR) is a well-known layout algorithm
which produces high-quality 2D graph layouts. To study the effectiveness of an
FR-like algorithm on spheres, we developed four different algorithms for spherical
graph visualization, each of which is modeled after the original 2-dimensional
FR-algorithm. These spherical algorithms have not been previously studied.

The Spherical-FR-Layout Algorithm can be described as follows:



Layout and Display of Network Graphs on a Sphere 71

1. Define a static constant k = 4π
number of nodes

2. Assign a random Cartesian coordinate to every node in V .
3. Run the Update Algorithm until the coordinates converge. (We ran the

update algorithm for 50 iterations.)

(Note: Within the code, all rotations are performed by converting Cartesian
coordinates to Spherical coordinates, carrying out the necessary rotation, and
then converting back to Cartesian coordinates. Cartesian coordinates are used
primarily to simplify the vector addition operations, and also because Paraview
and THREE.js require Cartesian input.)

The Update-Algorithm can be described as follows:

1. For each node N in V , let N.pos be the the original Cartesian coordinates of
the point N . Additionally, for each N , create a vector called N.update with
an initial value of [0, 0, 0].

2. Iterate through every pair of nodes (N1, N2), where both N1 and N2 are
in V . Both N1 and N2 are modeled as positive electric charges which repel
each other with a force proportional to the distance between them. N1.update
and N2.update are modified so that the coordinates N1.pos + N1.update and
N2.pos + N2.update move apart from each other.

3. Iterate through every pair of nodes (N3, N4), where both N3 and N4 are in V .
N3 and N4 can be imagined to be connected by a spring with an equilibrium
length of 0, so that the attractive force is directly proportional to the distance
between them. Again, N1.update and N2.update are modified to move the
N1.pos+N1.update and N2.pos+N2.update coordinates closer to each other.

The difference between the standard FR algorithm and our modified FR
algorithm is encapsulated in two details. First, how is the distance between any
two nodes calculated? There are two options:

1. The distance between two nodes can be defined to be equal to the Euclidean
distance between them.

2. The distance between two nodes can be defined to be equal to the length of
the shortest (great-circle) arc on the sphere that connects them.

Another important detail to consider is that if N.pos is on a sphere of radius
1, then N.pos+N.update may no longer be on the sphere of radius 1. There are
two ways to correct this:

1. Move N.pos + N.update along the ’true‘ update vector and then to scale N
up or down so that its coordinates once again have a radius of 1.

2. Move the point N.pos along the unit sphere in the same direction as N.update
and for the same distance as the length of N.update.

After implementing all four variations on the FR algorithm, we judged that
the graphs that were produced when we defined distance as the minimal arc
length and strictly moved the nodes along the unit sphere itself were the most



72 A. Guha and E. Feibush

aesthetically pleasing. A quantitative evaluation of this graph algorithm is pro-
vided in Sect. 4.2. These graphs tended to be the most evenly distributed and
also contained the least number of node overlaps.

We have created an animation of the movement of nodes showing 50 steps
of the Spherical-FR Layout Algorithm. It is available in the supplemental file.
In the animation the nodes are initially arranged along lines of latitude and
longitude, compared to the random starting locations in Fig. 2a. Both starting
arrangements converge to the same final layout shown in Fig. 2b. After varying
the relative strength of the attractive and repulsive forces, we found that the
vertices always converge to some final location, unlike the 2D Fruchterman-
Reingold algorithm, where the locations of the nodes sometimes oscillate or
enter a chaotic state after many iterations.

(a) A Random Starting
configuration for the
Spherical-FR-Layout Algorithm.

(b) Final positions of the nodes
after 50 iterations. At this point,
the node positions have converged
to their final locations.

Fig. 2. The movement of nodes in Spherical-FR-Layout Algorithm. This particular
dataset contains 186 nodes and 791 edges. The edges are omitted from this example
for the sake of clarity.

The 2D Fruchterman-Reingold Algorithm described in [6] differs in one key
respect from our 3D adaptation. In particular, the 2D algorithm relies on a
“cooling” function that limits the maximum displacement of every node after
each iteration of the Update algorithm. This cooling function approaches zero
as the number of iterations increases, which effectively forces the convergence
of the 2D Fruchterman-Reingold algorithm. Without the cooling function the
2D Fruchterman-Reingold algorithm can lead to oscillating or chaotic behav-
ior, depending on the relative strength of the attractive and repulsive forces.
Our algorithm does not depend on a cooling function to ensure that all the
nodes converge to a final location. This is because repeated testing with dif-
ferent parameters for the strength of the attractive and repulsive forces in our



Layout and Display of Network Graphs on a Sphere 73

algorithms all resulted in the vertices of the graph converging to a stable posi-
tion. A theoretical explanation of this phenomenon (which is not true in the
2-dimensional case) is a potential avenue for future research.

4.2 Quantitative Evaluation

A quantitative consideration for graph quality is the length of the edges between
the nodes. The goal is to eliminate long edges and increase the uniformity of
edge length. We calculated the arc length of each edge in the citation graph and
plotted histograms of the lengths in Fig. 4. The histogram at an early iteration of
the algorithm shows some very long arcs greater than 5 rad. In the final iteration
the very long arcs have been eliminated and a larger number of arcs are less than
1 rad. This indicates the progress of the Update Algorithm as it iterates through
each pair of nodes.

Fig. 3. Histogram of arc lengths (edges between nodes) at early and late iterations of
the Update Algorithm.

4.3 Visualizing Spheres in Paraview

VTK files do not have a built-in specification for spheres but a polygonal mesh
can be created to model our unit sphere. The points of the polygonal mesh are
located at all spherical coordinates of the following forms:

1. (ϕ, θ) =
(

πm
16 , πn

8

)
with 1 ≤ m ≤ 15, 0 ≤ n ≤ 15.

2. (ϕ, θ) = (0, 0) or (0, π).

After generating this list of 242 vertices, the UnitSphere.vtk file also defines
which coordinates to connect in order to create the 256 polygons of the mesh. For
typical visualizations at 1920 × 1080 resolution, the resulting discrete polygonal
mesh is visually indistinguishable from a continuous sphere representation.

Each node in the Nodes file is also created using a modified version of this
method, where the spherical coordinates are converted to Cartesian coordinates,
scaled down by a factor of 50, and then translated to their correct position.
Ideally the spheres in the nodes file would be instances of a single master defi-
nition. Unfortunately VTK files do not have this capability. This approach can
be implemented through Paraview’s Python programming interface in a future
version of our visualization pipeline.



74 A. Guha and E. Feibush

4.4 Mathematical Basis for Visualizing Arcs in Paraview

Our method relies on spherical coordinates and rotation matrices to simplify
the problem of drawing great-circle arcs on a sphere. To our knowledge, this
method has not been described in the previous literature. However, we note
that an alternate method for spherical interpolation can be derived by using
quaternions to express rotations, as mentioned by Ken Shoemake in [13].

In order to model an arc between any two points A and B on a unit sphere,
the key step is to calculate the coordinates of N equidistant points along the arc
from A to B. We achieved good results with 64 points per arc.

Let the spherical coordinates of A and B be (ϕ1, θ1) and (ϕ2, θ2). The Carte-
sian coordinates (a1, a2, a3) and (b1, b2, b3) for A and B respectively can be
calculated by the well-known equations, where i ∈ {1, 2}:

xi = cos ϕi sin θi

yi = sinϕi sin θi

zi = cos θi

(1)

Given the points A = (a1, a2, a3) and B = (b1, b2, b3), the shortest arc A
on a unit sphere that connects A and B will be contained entirely in the great
circle S that passes through both A and B. S, in turn, will be contained entirely
within the plane P passing through A, B, and O = (0, 0, 0).

Notice that the cross product

�C = �OA × �OB =

⎡

⎣
î ĵ k̂
a1 a2 a3

b1 b2 b3

⎤

⎦

=(a2b3 − a3b2)̂i + (a3b1 − b3a1)ĵ

+ (a1b2 − a2b1)k̂

(2)

is perpendicular to P . So, P can be characterized as the set of all points (x, y, z)
such that

0 = 〈a2b3 − a3b2, a3b1

− b3a1, a1b2 − a2b1〉 · 〈x, y, z〉
=⇒ 0 = (a2b3 − a3b2)x + (a3b1 − a1b3)y

+ (a1b2 − a2b1)z

(3)

We now attempt to rotate the plane OAB so that it coincides with the xy-
plane, in order to eliminate the z-coordinate and simplify the problem. This is
equivalent to rotating �C until it becomes parallel to the z-axis. Therefore we can
let C = (c1, c2, c3) = (a2b3 − a3b2, a3b1 − b3a1, a1b2 − a2b1).

Now, applying the equations

θC = arccos
(

c3√
c12 + c22 + c32

)

ϕC = atan2 (c2, c1)
(4)



Layout and Display of Network Graphs on a Sphere 75

yields the spherical coordinates (ϕC , θC) of C. Let Ry,−θC
and Rz,−ϕC

be
the rotation matrices that rotate vectors by −θC degrees clockwise around
the y-axis and by −ϕC clockwise around the z-axis respectively. Then
C ′ = Ry,−θC

Rz,−ϕC
CT will have x and y-coordinates of 0. Similarly, A′ =

Ry,−θC
Rz,−ϕC

AT and B′ = Ry,−θC
Rz,−ϕC

BT have z-coordinates of 0. Let

A′ =

⎡

⎣
a′
1

a′
2

0

⎤

⎦ and B′ =

⎡

⎣
b′
1

b′
2

0

⎤

⎦ (5)

Then one can define θA = atan2(a′
2, a

′
1) and θB = atan2(b′

2, b
′
1). The coordi-

nates of N evenly spaced points from A′ to B′ are now much easier to parame-
terize:

1. In the case where θ1 < θ2 and θ1 + π > θ2, the points are of the form

Si =

⎡

⎢
⎢
⎣

cos
(
θ1 + (θ2−θ1)i

N

)

sin
(
θ1 + (θ2−θ1)i

N

)

0

⎤

⎥
⎥
⎦ with 0 ≤ i < N (6)

2. In the case where θ1 < θ2 and θ1 + π < θ2, let θ3 = θ1 + 2π. Then the points
are of the form

Si =

⎡

⎢
⎢
⎣

cos
(
θ2 + (θ3−θ2)i

N

)

sin
(
θ2 + (θ3−θ2)i

N

)

0

⎤

⎥
⎥
⎦ with 0 ≤ i < N (7)

3. In the case where θ1 > θ2 and θ2 + π < θ2, the points are of the form

Si =

⎡

⎢
⎢
⎣

cos
(
θ2 + (θ1−θ2)i

N

)

sin
(
θ2 + (θ1−θ2)i

N

)

0

⎤

⎥
⎥
⎦ with 0 ≤ i < N (8)

4. In the case where θ1 > θ2 and θ2 + π > θ1, let θ3 = θ2 ∗ 2π. Then the points
are of the form

Si =

⎡

⎢
⎢
⎣

cos
(
θ1 + (θ3−θ1)i

N

)

sin
(
θ1 + (θ3−θ1)i

N

)

0

⎤

⎥
⎥
⎦ with 0 ≤ i < N (9)

The final step is to rotate A′ and B′ back to A and B. Notice that A =
Ry,ϕC

Rx,θC
A′, and B = Ry,ϕC

Rx,θC
B′, as well as all points of the form Si for

0 ≤ i < 64. Let S′
i = Ry,ϕC

Rx,θC
Si. Then the set of S′

i are the coordinates of
N equidistant points on the shortest arc from A to B. Adding S′

i to the list of
points in ArcEdges.txt allows these points to be rendered by Paraview, giving
the appearance of a solid spherical arc connecting A and B, as in Fig. 4.



76 A. Guha and E. Feibush

Fig. 4. A network graph created using the variant of the Fruchterman-Reingold algo-
rithm described in Sect. 4.1. This particular graph is a directed citation graph of a set
of research papers in gyrokinetics. The arc lines are shaded from blue to white. The
node at the white end of the arc is the paper being referenced. (Color figure online)

5 Browser-Based Visualization

Displaying the visualization in a browser increases access and portability for
researchers, as mentioned in [6]. We provide some implementation details.
We used THREE.js, a JavaScript 3D library that is freely available online.
(All imports linked to websites at www.unpkg.com, so our programs are not

Fig. 5. To increase understanding we programmed two dialog boxes that were not
present in the original Paraview visualization. When a node on the graph is clicked,
it changes from red to green, and its name is displayed in the dialog box titled “Node
Information”. Furthermore, all edges containing the green node are also displayed in
the dialog box titled “Node Edges”. (Color figure online)

www.unpkg.com


Layout and Display of Network Graphs on a Sphere 77

dependent on the host computer’s local version of THREE.js.) Furthermore,
using THREE.js (a wrapper for WEBGL) as well as Javascript allows displaying
our visualizations on any device with a Javascript-enabled browser. The source
code and a sample dataset are available at https://github.com/Bhombal/NGV.

6 Conclusion

In our research we created a visualization pipeline to parse raw data and dis-
play graphs on a 3D sphere. We built on the work of [10] and [6] by developing
new versions of the Fruchterman-Reingold Algorithm for layout on a 3D sphere.
Defining node distance as the minimal arc length and moving nodes along the
unit sphere succeeded in producing graphs with reduced edge length. Our imple-
mentation enables the graphs to be viewed and manipulated within the Paraview
application or within a web browser.

In the future, the possibility of connecting nodes with non-great-circle edges
is vital to explore reduced edge crossings. Additionally, a theoretical explanation
for why the modified Fruchterman-Reingold algorithm seems to always converge
regardless of the relative strengths of the attractive and repulsive forces (instead
of settling into an oscillating or chaotic pattern) will be informative.

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: an end-user tool for large-data visual-
ization. Vis. Handb. 717(8) (2005)

2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Proceedings of the International AAAI Con-
ference on Web and Social Media, vol. 3, no. 1, pp. 361–362 (2009)

3. Brath, R., Macmurchy, P.: Sphere-based information visualization: challenges and
benefits. In: 2012 16th International Conference on Information Visualisation, pp.
1–6 (2012)

4. Childs, H.: Visit: an end-user tool for visualizing and analyzing very large data.
In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp.
357–372 (2012)

5. Eades, P.: A heuristic for graph drawing (1984)
6. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement.

Softw. Pract. Exper. 21(11), 1129–1164 (1991)
7. Gross, M.H., Sprenger, T.C., Finger, J.: Visualizing information on a sphere. In:

Proceedings of VIZ 1997: Visualization Conference, Information Visualization Sym-
posium and Parallel Rendering Symposium, pp. 11–16 (1997)

8. Jiawei Lu and Yain Whar Si: Clustering-based force-directed algorithms for 3D
graph visualization. J. Supercomput. 76, 12 (2020)

9. Munzner, T.: Exploring large graphs in 3D hyperbolic space. IEEE Comput.
Graph. Appl. 18(4), 18–23 (1998)

10. Perry, S., Yin, M.S., Gray, K., Kobourov, S.: Drawing Graphs on the Sphere.
Association for Computing Machinery, New York, NY, USA (2020)

11. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit. Kitware (2006)
12. Schulz, C.: Visualizing Spreading Phenomena on Complex Networks (2018)

https://github.com/Bhombal/NGV


78 A. Guha and E. Feibush

13. Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH 1885,
(1985)

14. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. s3–13(1), 743–767
(1963)


	Layout and Display of Network Graphs on a Sphere*-12pt
	1 Introduction
	2 Related Work
	3 Visualization Pipeline
	4 Graph Visualization Algorithms
	4.1 Layout - Adaptation of Fruchterman-Reingold Algorithm
	4.2 Quantitative Evaluation
	4.3 Visualizing Spheres in Paraview
	4.4 Mathematical Basis for Visualizing Arcs in Paraview

	5 Browser-Based Visualization
	6 Conclusion
	References




