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Abstract. Recently, facial priors have been widely used to improve the
quality of super-resolution (SR) facial images, but it is underutilized in
existing methods. On the one hand, facial priors such as semantic maps
may be inaccurately estimated on low-resolution (LR) images or low-
scale feature maps with L1 loss. On the other hand, it is inefficient to
guide SR features with constant prior knowledge via concatenation at
only one intermediate layer of the guidance network. In this paper, we
focus on face super-resolution (FSR) based on semantic maps guidance
and propose two simple and efficient designs to address the above two
limitations respectively. In particular, to address the first limitation, we
propose a novel one-hot supervision strategy to pursue accurate semantic
maps, which focuses more on penalizing misclassified pixels by relaxing
the regression constraint. In addition, a semantic progressive guidance
network (SPGN) is proposed that uses semantic maps to learn modula-
tion parameters in normalization layers to efficiently guide SR features
layer by layer. Extensive experiments on two benchmark datasets show
that the proposed method improves the state-of-the-art in both quanti-
tative and qualitative results at ×8 scale.

Keywords: Face super-resolution · One-hot supervision strategy ·
Semantic progressive guidance

1 Introduction

Face super-resolution aims to generate high-resolution (HR) facial images from
low-resolution observations, which is a challenging problem since it is highly
ill-posed due to the ambiguity of the super-resolved pixels. It is a fundamental
problem in face analysis and can make a significant contribution to face-related
work [1–9].

In contrast to Single Image Super-Resolution (SISR), FSR only focuses on the
recovery of facial images. Since different faces share the same components, these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Magnenat-Thalmann et al. (Eds.): CGI 2022, LNCS 13443, pp. 53–64, 2022.
https://doi.org/10.1007/978-3-031-23473-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23473-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-23473-6_5


54 J. Chen et al.

Fig. 1. (a) shows ground truth image, (b) and (c) are parsing maps with resolution of
64 and 128 pixel predicted by L1 loss supervision, (d) shows the predicted parsing map
of the SPN via the proposed supervision strategy, (e) shows a ground truth parsing
map.

specific facial configurations are a strong prior knowledge that is very useful for
FSR. Many FSR methods based on facial priors have been proposed and achieved
impressive performance [10–20]. CBN [10] estimates dense correspondence fields
as structure prior to guide FSR. Facial component heatmaps are predicted in [11]
to provide structure prior to improve the SR quality. SuperFAN [12] uses facial
component heatmaps as structure prior to supervise SR network training. In
addition, PFSR [13] improves the quality of SR images via a progressive train-
ing strategy and multi-scale heatmaps supervision. FSRNet [14] simultaneously
estimates landmark heatmaps and semantic maps to improve the details of SR
images. JASRNet [17] makes the two mutually reinforcing by jointly learning
the SR task and the face alignment task, and using a shared encoder to extract
complementary features.

To fully utilize semantic prior knowledge to assist FSR, there exist two
key challenges: how to extract accurate semantic prior knowledge and how to
effectively use semantic prior knowledge to guide FSR. However, most exist-
ing FSR methods do not fully address these issues. On the one hand, previous
approaches [14,15] used L1 loss to supervise the estimation of semantic maps on
LR images or low-scale feature maps. However, the semantic maps are difficult
to be estimated accurately at the LR level using L1 loss directly. As shown in
Fig. 1(b), when the resolution of the output of semantic maps is 64, the seman-
tic prior network pays more attention to large semantic components (e.g., skin,
hair) while small semantic components (e.g., eyes, eyebrows) are easily ignored
in the estimation due to the averaging effect of L1 loss. Therefore, the estimated
semantic maps are not accurate enough. On the other hand, in terms of guidance,
the semantic maps are simply concatenated with SR features at an intermediate
layer of the guidance network and then followed by a convolution layer in [14].
Due to the domain gap effect between SR features and semantic maps, it is
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inefficient to capture collaborative knowledge using single-layer guidance. There-
fore, it weakens the role of semantic maps in guiding SR features.

In this paper, we propose two simple and efficient designs to address the
above two limitations respectively. First, we propose a novel one-hot supervi-
sion strategy to pursue accurate semantic maps. Unlike previous approaches
that directly use L1 loss to accurately regress all dimensions of semantic label,
the proposed supervision strategy relaxes this constraint by only guaranteeing
that the corresponding dimension of the true semantic label has the maximum
prediction output. With this relaxation, the semantic prior network can focus
more on penalizing misclassified pixels to improve the accuracy of the predicted
semantic maps. Second, considering the inadequacy of single-layer guidance, we
design a progressive guidance strategy. Also, since different feature layers in the
guidance network have different characteristics, different layers should be guided
by layer-adaptive semantic prior. Based on these two considerations, we design a
semantic progressive guidance network that makes full use of the semantic maps
to guide SR features adaptively layer by layer.

In summary, the main contributions of the proposed method are as follows:
(i) We propose a novel one-hot supervision strategy to pursue accurate seman-
tic maps by relaxing the regression constraint and focusing more on penalizing
misclassified pixels; (ii) We design a semantic progressive guidance network to
guide SR features by adaptively learning the modulation parameters of different
layers of SR features with semantic maps.

2 Method

2.1 Overview of the Proposed Framework

As shown in Fig. 2, the proposed framework consists of three parts: the Coarse
SR Network (CSN), the Semantic Prior Network (SPN), and the Semantic Pro-
gressive Guidance Network (SPGN). Given an LR input Ilr, we first use the CSN
to produce a rough SR facial image Ic to recover the facial structure. Then, the
Ic is sent to the SPN to extract semantic maps M̂ . Finally, both M̂ and Ic are
sent to the SPGN to progressively guide SR features and recover the final SR
facial image Isr.

2.2 Better Semantic Prior

It is crucial to extract accurate semantic maps to guide SR features in the follow-
ing process. To extract semantic maps, the L1 loss is usually used to supervise
the learning of SPN [14,15]. Due to the averaging effect of L1 loss, the large
semantic components with more pixels seem to dominate the training resulting
in small semantic components that are easily ignored in the estimation. As a
result, the extracted semantic maps are inaccurate, especially for small semantic
components shown in Fig. 1(b)–(c).

Since the L1 loss aims at regressing all dimensions of semantic label accu-
rately. Given a pixel with semantic label Mgt ∈ RN , and the predicted semantic
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Fig. 2. Overview of the proposed framework. The framework consists of three parts:
the CSN is used to recover the coarse SR facial image Ic. The SPN aims at pursuing
accurate semantic maps M̂ . The SPGN focuses on guiding SR features progressively
with semantic maps and recovering the final SR facial image Isr.

label is Mp ∈ RN , and N is the number of semantic class. The L1 loss of the
pixel can be calculated as:

L1 =
N∑

i=1

|Mi,p − Mi,gt|, (1)

If the true semantic class dimension of a pixel is the j-th dimension, the
L1 loss can be further decomposed into two parts: the loss of semantic-related
dimension and other semantic-uncorrelated dimensions. Then the L1 loss can be
further represented as:

L1 = |Mj,p − Mj,gt|1︸ ︷︷ ︸
semantic−related

+
N∑

i=1,i �=j

|Mi,p − Mi,gt|1
︸ ︷︷ ︸

semantic−unrelated

, (2)

If we directly use L1 loss to supervise SPN, there are two drawbacks. On
the one hand, it increases the difficulty of network optimization. The result is
that when the predicted semantic label has sufficient semantic information, but
semantic-unrelated part still causes a loss that cannot be ignored. For example,
the true semantic label of a pixel is [0, 0, 1, 0], and when the predicted seman-
tic label is [0.1, 0.1, 0.8, 0.0], we can easily achieve the correct semantic label
via argmax operation. However, the loss of semantic-unrelated part still brings
about 0.2 cost (0.2 = 0.1 + 0.1). We argue that the loss of semantic-unrelated
part is unnecessary when the true semantic class dimension has the maximum
predicted value. On the other hand, due to the exclusiveness of semantic class
definitions, if we try to regress all semantic dimensions accurately, we will ignore
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the correlation between different semantic classes. For example, the texture of
the skin is closer to the texture of the nose than to the texture of the hair. If we
treat the semantic class of hair and nose’s equally, it also confuses the network
training to some extent.

To alleviate the learning difficulty of SPN and achieve accurate semantic
maps, we propose a novel one-hot supervision strategy that relaxes the constraint
of regressing all dimensions of semantic label accurately and only guarantees
that the corresponding dimension of the true semantic label has the maximum
prediction output. An intuitive solution is to transform the predicted semantic
maps into one-hot semantic maps using the argmax operation before computing
the loss. Let’s look at the above example again. When the true semantic class
dimension of the predicted label has the maximum output, the predicted label
[0.1, 0.1, 0.8, 0.0] is first transformed into a one-hot label [0, 0, 1, 0] via argmax
operation, and since the transformed one-hot label is the same as the true label,
there is no loss in updating the network, thus reducing the focus of the SPN
on pixels with correctly predicted semantic class. When the predicted label [0.1,
0.5, 0.4, 0.0] has no maximum output for the true semantic dimension. After it is
converted to a one-hot label [0, 1, 0, 0], the loss of semantic-related part increases
from 0.6 to 1 cost, and it forces the SPN to focus more on penalizing misclassified
pixels (e.g., small semantic components), resulting in a more accurate semantic
maps.

Due to the argmax operation is not differentiable, to achieve one-hot maps
while enabling the SPN to be optimized end-to-end, we introduce the Gumbel
Softmax trick [31] for this purpose. As shown at the top of Fig. 2, in the forward
process, the SPN first extracts semantic maps M ∈ RN×H×W with an input
Ic, then the M is transformed to one-hot semantic maps M̂ ∈ RN×H×W , N is
the number of semantic class. The one-hot semantic maps M̂ can be computed
as:

M̂ = one hot(argmax
n

Mn), (3)

Then, we use one-hot semantic maps M̂ to compute L1 loss. In the back-
ward process, we compute the gradient of M̂ by the following formula:

M̂ =
exp((M + g)/τ)

∑N
n=1 exp((Mn + gn)/τ)

, (4)

where g is drawn from Gumbel(0,1), τ is a temperature value and set as 1 in our
experiments. And the optimization process of the one-hot semantic maps M̂ in
the training stage can be summarized as follows:

M̂ =
{

(3), forward,
(4), backward.

(5)

2.3 More Efficient Guidance

After extracting accurate semantic maps, the key here is how to exploit the
semantic maps to guide SR features and further improve the quality of SR
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images. To make full use of semantic maps for SR guidance, we design an SPGN.
Different from single-layer guidance in previous works [14,15], the SPGN guides
SR features at each intermediate layer in the guidance network. Also, since dif-
ferent layers in the guidance network have different characteristics, so SR fea-
tures of different intermediate layers should be guided by layer-adaptive semantic
prior. Motivated by the success of SPADE [25] in the semantic image synthesis
task by learning to adaptively modulate the normalization layer, we employ the
SpadeRBIk as a unit module to adaptively guide SR features.

As shown at the bottom of Fig. 2, the SPGN starts with a convolution layer
(Conv) of stride 2, and followed by twelve SpadeRBIk blocks to progressively
guide SR features with semantic maps adaptively, then a Conv, an Upsample
block of factor 2, three ResBlock blocks and a Conv to reconstruct the final
facial image. A SpadeRBIk [25] block stacks two SPADE blocks and two Conv
together and ends with a skip connection. In SPADE, given an SR features
f i ∈ RCi×Hi×W i

, the activation value at site (c ∈ Ci, y ∈ Hi, x ∈ W i) is given
by,

f̂ i
c,y,x = γi

c,y,x

f i
c,y,x − μi

c

σi
c

+ βi
c,y,x, (6)

where f i
c,y,x and f̂ i

c,y,x are the input and modulated activation at site (c,y,x ),
respectively. μi

c and σi
c are the mean and standard deviation of f i

c,y,x in channel
c. The variables γi

c,y,x and βi
c,y,x are the learned modulation parameters of the

normalization layer using a two-layer convolutional network with semantic maps
as input. All convolutions in the SPGN are 3 × 3 kernel size with 64 channels.
The UpSample block and the ResBlock block are described in [14].

2.4 Loss Functions

To make the recovered facial images are of similar visual quality as the origin
HR versions, we use L1 loss as the content loss. The total loss for training can
be defined as:

Ltotal = ‖Ihr − Isr‖1 + α‖Ihr − Ic‖1 + λ
∥∥∥Mgt − M̂

∥∥∥
1
, (7)

where Ic, Isr, Ihr, M̂ , Mgt are the coarse SR facial image, the final SR facial
image, the origin HR image, the predicted semantic maps and the ground truth
semantic maps respectively. α and λ are weights of individual loss terms and we
set α = 0.5, λ = 1.0 in our experiments empirically.

3 Experiments

3.1 Implementation Details

The proposed method is based on the framework of FSRNet [14], but our Coarse
SR Network contains more ResBlock blocks. And the Semantic Prior Network
can be replaced by a state-of-the-art parsing network.
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Fig. 3. Visual comparison with state-of-the-art methods. The resolution of input is 16
× 16 and the upscale factor is 8. Other SISR or FSR methods may either produce struc-
tural distortions on key facial parts or present undesirable artifacts. The qualitative
comparison indicated the proposed method outperforms other SISR or FSR methods.

We conduct experiments on both CelebA [26] and Helen [27]. For both
datasets, we use the face parsing model based on EHANet [28] to parse seman-
tic labels as ground truth. For a fair comparison with FSRNet, we merge 19
classes of semantic labels into 11 classes to be consistent with the setup in [14].
Following the experimental setup in [19], we use about 169k images for training
and 1k images for testing on the CelebA dataset. For the Helen dataset, we use
about 2k images for training and 50 images for testing. All face images in the
training and testing stages are resized to 128 × 128 pixels as HR ground truth.
The LR faces are obtained by downsampling the HR images to 16 × 16 pixels
by bicubic interpolation. To avoid over-fitting, we perform data augmentation
on training images with random rotation (90◦, 180◦, 270◦), horizontal flipping
and image rescaling in [0.7, 1.3]. PSNR and SSIM [29] are used to quantitatively
evaluate SR results. They are computed on the Y channel of transformed YCbCr
space. For the quantitative evaluation of semantic maps, the mean of class-wise
intersection over union (mIoU) is applied to investigate the accuracy.

For optimization, we set the batch size to 16 and use Adam [30] to optimize
the network with β1 = 0.9 and β2 = 0.999. We first train the SPN separately
with the learning rate of 1e–4 on HR facial images for 80 epochs, then we jointly
train other networks and fine-tune the SPN with fixed learning rate of 1e–5. For
CelebA, we train the whole network for 30 epochs with the initial learning rate
of 2e–4, divided by 2 at the epoch of [5, 15, 20, 25]. For Helen, we train the
whole network for 250 epochs with the learning rate of 2e–4, divided by 2 at the
epoch of [40, 120, 200, 220].

3.2 Comparisons with the State-of-the-Arts

We compare our method with state-of-the-art methods general image SR meth-
ods, including SRResNet [21], VSDR [22] and RCAN [23], and FSR methods,
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Table 1. Comparison of PSNR and SSIM performance with state-of-the-art general
SR methods and FSR methods on CelebA and Helen.

Method CelebA ×8 Helen ×8 Params(M)

PSNR↑ SSIM↑ PSNR↑ SSIM↑
Bicubic 23.58 0.6285 23.89 0.6751 –

VDSR [22] 25.68 0.7219 25.24 0.7253 0.67

SRResNet [21] 25.82 0.7369 25.30 0.7297 0.88

RCAN [23] 26.90 0.7779 26.10 0.7599 15.74

URDGN [24] 24.63 0.6851 24.22 0.6909 1.05

SuperFAN [12] 26.69 0.7679 25.61 0.7545 1.49

FSRNet [14] 26.48 0.7718 25.90 0.7759 3.42

FSRGAN [14] 25.06 0.7311 24.99 0.7424 3.42

PFSR [13] 24.43 0.6991 24.73 0.7323 8.97

JASRNet [17] 27.04 0.7833 25.96 0.7565 19.88

Baseline 26.77 0.7740 25.82 0.7555 1.9

Map×64 26.98 0.7836 26.32 0.7779 5.63

Map×128 27.06 0.7860 26.41 0.7815 6.07

Proposed 27.16 0.7904 26.49 0.7858 6.07

including URDGN [24], FSRNet [14], SuperFAN [12], PFSR [13] and JASR-
Net [17]. As shown in Table 1, these general image SR methods improve perfor-
mance by optimizing the network architecture or introducing attention design,
however, those methods which not fully exploit facial prior knowledge result in
sub-optimal performance. Compared with FSRNet, our method improves PSNR
performance from 26.48 dB to 27.16 dB. Compared with JASRNet, our method
has a 0.53 dB improvement is achieved on the small-scale dataset (Helen). And
our method achieves the best PSNR and SSIM performance on both datasets.
Unlike some previous FSR methods are guided via concatenation, the proposed
method uses semantic maps to adaptively learn the modulation parameters of
different semantic components in different feature layers of the guidance network
to better represent the characteristics of different semantic components and thus
better recover the details of semantic components(e.g., eyes, mouth). Figure 3
shows the visual comparison at scale ×8, and we observe that the proposed
method recovers the best quality in fine details.

3.3 Ablation Study

To verify the effectiveness of each module in our method, we further implement
a series of ablation studies.

Effect of Semantic Maps. We remove the SPN and replace all SpadeRBIk blocks
with ResBlock blocks in the SPGN while keeping the CSN unchanged, denoted
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by Baseline. As shown in Table 1, compared with Baseline, the proposed method
is superior in SR performance on both test sets, which proves that semantic
maps are beneficial for FSR.

Table 2. Ablation study of the parsing performance of different parsing strategies on
Celeba dataset.

Method x64 x128 one-hot mIoU

Map×64 � 52.42

Map×128 � 53.85

Proposed � � 57.31

Scale of the Predicted Semantic Maps. We predict semantic maps at 64 pixels
and 128 pixels, denoted by Map×64 and Map×128 respectively. And we study
the effect of the scale of the predicted semantic maps on parsing performance
and SR performance. As shown in Table 2, compared with Map×64, Map×128
achieves a better parsing performance. As shown in Fig. 1(c), Map×128 achieves
a more accurate parsing result. It indicates that it is easier to predict accurate
semantic maps in HR level. Furthermore, as shown in Table 1, compared with
Map×64, Map×128 achieves a better SR performance on both datasets, which
suggests that semantic maps are more accurate and more beneficial for FSR.

Efficiency of the One-Hot Supervision Strategy. We evaluate the effect of the
one hot supervision strategy on parsing performance and SR performance fur-
ther. As shown in Table 2, compared with Map×128, the proposed strategy can
achieve a 3.46 mIoU performance improvement. As shown in Fig. 1(d), it achieves
a more accurate parsing result, especially on small components like eyes and
brows. In Table 1, we show that the SR performance is further improved as well.
These performance improvements demonstrate the effectiveness of the proposed
one hot supervision strategy.

Table 3. Ablation study of different semantic prior on Helen dataset.

Prior S M̂

PSNR/SSIM 26.24/0.7768 26.49/0.7858

Choice of Semantic Prior. We define the output and the last convolution layer
of the SPN as two types of semantic prior, denoted by M̂ and S, and study the
efficiency of different semantic prior. As shown in Table 3, it achieves a better
SR performance by guidance with M̂ , which indicates that the one-hot semantic
maps M̂ is more suitable for semantic guidance here.
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Table 4. Ablation study of the progressive guidance on Helen dataset.

Num 0 1 2 4 8 Proposed

PSNR 25.82 26.06 26.28 26.38 26.44 26.49

SSIM 0.7555 0.7659 0.7764 0.7787 0.7845 0.7858

Progressive Guidance Strategy. To evaluate the effectiveness of progressive guid-
ance strategy in the SPGN, we keep the depth of the SPGN constant, replace
SpadeRBIk block with ResBlock block, and gradually increasing the number of
SpadeRBIk blocks from the backend. As shown in Table 4, the SR performance
gradually improves as the number of SpadeRBIk blocks increases. Compared
with single-layer guidance, the proposed progressive guidance strategy achieves
a 0.33dB SR performance improvement. It indicates that the progressive guid-
ance strategy is more effective.

Table 5. Ablation study of the adaptive guidance on Helen dataset.

Strategy SPGN-SHARED SPGN

PSNR/SSIM 26.22/0.7730 26.49/0.7858

Adaptive Guidance Strategy. To evaluate the effectiveness of adaptive guidance
strategy in each SPADE, we design a new guidance network, denoted by SPGN-
SHARED. Different from SPGN which adaptively learns modulation parameters
in all SPADE blocks independently, the SPGN-SHARED uses a shared modula-
tion parameters in all SPADE blocks. As shown in Table 5, The SPGN achieves
a higher SR performance, which indicates that the adaptive guidance strategy
that learns to modulate SR features each layer independently is more effective.

Limitations. Although semantic prior knowledge improves the quality of super-
resolution face images, the parameters of the semantic prior network and the
semantic guidance network are large. As shown in Table 1, compared with Base-
line, the parameters of the proposed method are increased more than three times.
So, how to design lightweight semantic prior network and semantic guidance net-
work is the direction of our future research.

4 Conclusion

In this letter, we propose two simple and efficient designs to improve the qual-
ity of SR facial images. Specifically, we propose a novel one-hot supervision
strategy to pursue accurate semantic maps and design a semantic progressive
guidance network to more efficiently guide SR features. Quantitative and quali-
tative results of FSR on two benchmark datasets demonstrate the effectiveness
of the proposed method.
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