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Abstract. We propose an end-to-end learning based method to estimate
irradiance in real-time given a single input limited field of view image
from a mobile phone camera. We further develop a technique inspired by
physically based rendering to take advantage of spatially varying environ-
ment to illuminate virtual objects in augmented reality sessions to make
them look more realistic. We integrate the Inertial Measurement Unit
sensor to dynamically estimate illumination, making the mixed reality
experience interactive. Our solution runs in real-time on mobile phones,
with significantly lower computational requirements and enhanced real-
ism in comparison to state-of-the-art methods.

Keywords: Illumination estimation + Augmented reality + Mobile
mixed reality

1 Introduction

One of the main challenges in making augmented reality accessible is to make it
seem as realistic as possible. Virtual objects should be indistinguishable from the
real world in AR sessions. Lighting plays a major role in rendering objects real-
istically. While direct light is important in rendering shadows, indirect light is
essential for realistic renders. The environment surrounding an object acts as an
indirect light source and hence contributes to the illumination of the object. It is
extremely important to estimate this diffuse lighting accurately for realistic render-
ing to enhance augmented reality experiences. Image-based lighting is a physically-
based rendering method to illuminate objects using an environment map.

In the context of AR, a panorama surrounding the AR object can be used
as an environment map. However, on a mobile phone, the camera captures only
a small fraction of the panorama. Therefore, it is very difficult to predict the
complete environment map from camera images. Recent works propose a learning
based method to predict illumination using a single input image from the rear
camera. However, most of these methods assume that the mobile phone is at the
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(a) Ground truth model (b) Model with
spatially-aware illumination

Fig. 1. The environmentally-aware illumination of the object enhances its realism in
an AR scene.

centre of the environment and thus predict an environment map surrounding the
phone. While this may work for most cases, it is not necessarily true as often the
virtual object to be placed in an AR session is placed away from the mobile phone
camera. Sometimes the real-world objects surrounding the virtual object may
alter the environment map. Thus, for realistic rendering it is essential to take into
account the immediate environment surrounding the virtual object. Figure 1(b)
shows how the environmentally aware illumination enhances the realism of a
virtual object in Fig. 1(a).
Our contribution includes,

1. A framework to estimate illumination in real-time for augmented reality expe-
riences on mobile phones by representing the dynamically changing irradiance
map as a set of spherical harmonics and training a light-weight neural network
on the same.

2. Utilizing scene geometry estimation to update the object’s local environment
and using this information to enhance object illumination for realism.

3. Use of the Inertial Measurement Unit (IMU) sensor present in the phone to
update lighting instead of relying on calling the neural network per frame,
which in turn reduces computational cost while achieving realistic illumina-
tion.

2 Related Work

After demonstrating a way to capture illumination using a mirrored sphere, ear-
lier works in illumination estimation use a light probe to predict scene lighting.
Debevec [5] presented a way to construct an omnidirectional HDR using multi-
ple photographs of a mirrored sphere taken under varying exposures. This HDR
can in turn be used to render additional objects in the scene. Prakash et al. [17]
use a specular sphere to sample radiance for mobile augmented reality. Debevec
presented a way to capture illumination using hybrid 3D spheres [6]. Beyond
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mirrored balls, known 3D objects have also been used to estimate illumination.
Mandl [15] used a combination of pose estimation and illumination estimation
neural networks to accurately estimate lighting using a light probe. Calian et
al. [2] made use of human faces to predict illumination. However, for mobile AR
experiences, the necessity of having a known light probe in the environment ruins
the user experience. Thus, we need a probeless illumination estimation method.

Apart from using single object probes, scene properties have also been used
to explore illumination estimation. The scene appearance is determined by a
variety of factors like the scene geometry, material properties, lighting, etc. One
way to estimate scene illumination is to optimize these properties to find the best
representation of the scene. However, with limited inputs, the problem becomes
an under-constrained optimization problem, and thus the probability of the error
multiplying is high. Thus, when using an optimization method, the work either
makes certain assumptions about the scene or expects the user to manually
provide ground truth. Karsch et al. [11] expect user annotations to estimate
initial geometry and lighting. Zhang et al. [22] require depth information and
expect users to manually provide ground truth for lightsource locations. One
more method matches the image to the most similar cropped image from a
database of panoramas, assuming that similar images share illumination esti-
mates. Although probe based techniques produce good results, they are not
practical for commercial mobile augmented reality since they require the pres-
ence of a light probe in the scene. Recent work has explored end-to-end neural
network based solutions to estimate illumination based on input images and
additional information.

Most recently, learning based methods have been found to produce seam-
less augmented reality experiences. Gardner et al. [7] proposed a learning-based
method that predicts indoor illumination based on a single image. Their net-
work contained global and local branches and was trained on LDR panoramas
of indoor scenes. They further used 2100 HDR panoramas to fine tune the model.
They do not take into consideration depth data, and therefore they fail to cap-
ture spatially varying lighting information. However, their method is considered
state-of-the-art for indoor illumination estimation. Cheng et al. [4] utilize views
from both the front and rear cameras of mobile devices to train a neural net-
work with two different branches concatenating to produce spherical harmonics.
However, the model is not optimized and is not suitable to run in real-time.
Legendre et al. [12] create their own dataset by capturing illumination informa-
tion through a mirrored ball along with the image from the rear camera. They
formulate the problem so as to output the HDR image containing lighting infor-
mation using the cropped input image from the rear camera. They use L2 loss
and discriminatory loss to fine tune the network. Deeplight et al. [12] capture
illumination using a mirrored sphere placed 60 cm in front of the camera. How-
ever, the placement of the virtual objects rarely coincides with that. Often, they
are placed on surfaces visible in the scene and are closely surrounded by other
real objects. They do not take into consideration spatially varying lighting and
therefore fail to capture true illumination at the local position.
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Song et al. [19] proposed a fully differential modular network consisting of 4
components, namely: geometry estimation, scene completion, and LDR-to-HDR
estimation. By splitting the network into four components, it becomes easier to
optimize the modules individually and, consequently, the whole network. How-
ever, the complete model becomes bulky and it is difficult to run in real-time on
a mobile phone. Zhao et al. [23] calculate spherical harmonics directly from point
cloud data [14] inspired from Monte Carlo integration [18]. They expect rgb-d
data as input and warp the point cloud data to a global panorama. Although
predicting SH directly from point cloud data reduces the complexity of the
model, the model requires RGB-D input, which in itself is sparse in nature.

Other recent works for immersion during interaction in VR include tracking
and rendering of contacts with tangible objects in VR [20], Recently mixture
graphs [1] have been designed to compute correctly pre-filtered volume lighting.
An efficient approach for high quality GPU-based rendering of line data with
ambient occlusion and transparency effects has been discussed in [9].

Considering the existing methods for estimating illumination, they are still
far from solving the illumination estimation problem for augmented reality scenes
for mobile environment. The probe base method ruins the user experience for
mobile AR users and hence is impractical. The scene-property based illumina-
tion estimation methods expect user intervention in terms of initial geometry
and light source estimations. Some of the learning based methods do produce
seamless augmented reality experiences. However, the majority of them are not
suitable for real-time operation or are not practical for mobile augmented real-
ity experiences. Learning based methods rely on neural networks to dynamically
update lighting. However, depending on the complexity of the model, using a
neural network might not be suitable to run per frame because of the required
computational power. When considering mixed reality applications for mobile,
we can also make use of other sensors present in the device to make the process
computationally lighter. We propose a learning based method that integrates
depth sensors and IMU sensors for dynamic lighting.

3 Illumination Estimation

Figure 2 illustrates the complete proposed pipeline for illumination estimation
for mobile augmented reality. The input module has three streams, one each
for camera input, which is passed through a neural network to produce global
spherical harmonics; depth input, which is used to update lighting based on the
local environment of the virtual object; and the angle of rotation of the phone
about the vertical axis whenever the user rotates the phone. The input data
from the camera is processed to estimate global spherical harmonics by passing
it through the neural network model trained using the Matterport 3D dataset
[3]. A depth image is used to obtain point cloud data, which is further used to
update global spherical harmonics based on the immediate local environment
surrounding the virtual object. We also keep track of the rotation of the mobile
phone to update spherical harmonics using fast spherical harmonics rotation.



LiteAR: A Framework to Estimate Lighting for Mixed Reality Sessions 411

/ -
llg

Rotation angle input from Input Image from Depth Image Acquisition
the IMU sensor the c?mera |
I I I
Fast Spherical Harmonics Global SH Prediction Local SH calculation from
Rotation the Point Cloud Data

/ \\ uonewnsq HS / \\ nduy ereqq /

o
/

~
; ]
a
L ‘ :
o o
Relighting the model Lighting the model using Relighting the model
using updated SH updated SH using updated SH /

Fig. 2. Complete data pipeline showcasing all the modules and the flow of the proposed
process

Table 1. Standard variables

Symbol | Variable

SHim | Spherical harmonics coefficient [ of band [

L Radiance at the point
R Radius of the sphere we query points from
r Distance of a point from the center of the sphere

sign(d) | sign(d) function outputs —1 or 1 depending on which side of
the center the point lies along axis d

SH, Global Spherical harmonics coeflicients

SH, Local Spherical harmonics coefficients

D Maximum distance between any two points in the point cloud
dataset

Y SH band 2 with 5 componentes that we want to rotate

P A function which projects a normal vector into the second band

of spherical harmonics. It takes a normalized three dimensional
vector as input and outputs a 5 dimensional SH vector

M 3 x 3 rotation matrix. It’s the rotation that we want to
somehow apply to our SH vector

g

The 5 x 5 (unknown) rotation matrix that want to apply to y

N Set of five three-dimensional normalized vectors
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5x5 CONV 3x3 CONV 3x3 CONV 3x3 CONV 3x3 CONV 3x3CONV  FC FC
MAX-POOL  MAX-POOL MAX-POOL MAX-POOL MAX-POOL MAX-POOL Tanh
RelU RelU RelU RelU RelU RelU

Fig. 3. Network diagram to predict global spherical harmonics. We use blocks of con-
volutional and max-pool layers along with ReLLU activation function followed by two
fully connected layers. We use Tanh activation function before the last layer to restrict
output between —1 and 1.

We explain each step in detail in this section using four subsections, namely:
data preparation, global spherical harmonics prediction, spatially varying envi-
ronment, and spherical harmonics rotation. We define standard variables and
their symbols in Table 1.

3.1 Data Preparation

We use publicly available Matterport 3D dataset [3] consisting of panoramas
of indoor scenes and viewpoint images (rear camera images) for the same. One
set of observations consists of a rear camera image and a panorama. There are
a total of 10,800 panoramic scenes in the dataset. Each panorama contains 18
viewpoint images taken from multiple angles. For training purposes we choose 6
viewpoints separated by 60° each with vertical camera alignment.

Fig. 4. Input from rear camera and corresponding panorama
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Figure 4 depicts one instance of the dataset containing the rear camera input
image used as training data and the corresponding panorama from which we
calculate spherical harmonics. We split the data into training and validation
sets with a ratio of 3:1. To enhance the dataset, we add color tints so that there
is enough variance in the dataset.

3.2 Global Spherical Harmonics Prediction

We use an image captured using the rear camera as the input and produce nine
spherical harmonics for each channel. We formulate this as a regression problem
and utilize convolutional neural network followed by fully connected layers. We
begin by resizing the image to 480320 pixels. We design a block of convolutional
layer followed by a max-pool layer with ReLU activation function. We increase
the depth of each layer to extract more features in subsequent layers. Then,
afterward, to reduce the output to 27 components, we use fully connected layers.
Finally, we pass the output through the Tanh function to restrict predicted
coefficients between —1 and 1. Figure 3 demonstrates the model architecture.

(a) Sphere $ using (b) Sphere S rendered
predicted SH coefficients using ground truth SH
coefficients.

Fig. 5. We calculate 12 loss between these images and aim to minimize it along with
minimizing the 12 loss between SH coefficients themselves.

We use mean squared error on predicted SH coefficients as our loss function
and ADAM as our optimizer. A small difference in SH coefficients can lead
to a significant change in illumination. Using only 27 coefficients might be an
under-constrained problem that can lead to errors in illumination estimation.
As shown in Fig.5, we introduce render loss as an additional loss function in
which we render a sphere hatS using predicted SH coefficients and calculate 12
loss with respect to the sphere S rendered using ground truth SH coefficients.
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3.3 Spatially Varying Environment

We must take into account the spatially varying environment, especially around
the virtual object, to make the augmented reality experience more realistic.
Another popular problem in mixed reality is geometric estimation of the scene.
A lot of newer mobile devices have an integrated Lidar sensor to capture depth
images. For devices without a depth sensor, several approaches like estimating
structure from motion with the help of camera images from multiple angles and
sensor data [21], estimating depth from a single image [10,13] have filled in the
role of depth estimation. Since most mixed reality sessions devote certain com-
putational power to geometry estimation, we can leverage the same for realistic
relighting of the virtual objects placed in the scene.

The inspiration for relighting the object from local point cloud data comes
from Monte Carlo integration, wherein we treat every point queried from a sphere
of certain radius surrounding the virtual object as a point light source. However,
since the distance between these points and the virtual object is less, we approx-
imate integration to summation. We first downsample the data uniformly. We
arranged the point cloud data in a K-Dimensional tree (KDTree) data structure
[8]. The time complexity for querying neighbours is reduced from N to logN.
We query all the points lying in a sphere of a certain radius. We experiment
with different values of this radius.

We focus on updating the spherical harmonic coefficients of the first two
bands. We calculate irradiance in the form of spherical harmonic coefficients
using the colour of the point and its distance from the object. To obtain the
local SH coefficient, we integrate weighted irradiance based on distance over all
of the points in the ball point query. Equations 1-3 use queried points and their
radiance values to update the local spherical harmonics of band 1.

SHyp = Z(L* (R —1)/R) * sign(x) (1)
SHy = Z(L *x (R —r)/R) * sign(y) (2)
SHyy =Y (L*(R—r)/R) * sign(z) (3)

where R is the radius of the sphere we query points from. r is the distance of a
point from the centre of the sphere. These local coefficients are used to update
global SH coefficients based on a distance measure, as shown in Eq.5. We use
alpha as the measure of distance, which is calculated using Eq. 4.

Alpha = R/D (4)

SH, = alpha « SHy + (1 — alpha) * SH; (5)
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3.4 Spherical Harmonics Rotation

Panoramic images capture more details in the horizontal direction since the
distribution of radiance varies more in the horizontal direction. In a mobile
mixed reality session, the user places a virtual object in the scene captured by
the camera. After placing the object, the user might move around the object,
but the surrounding environment would remain the same. Thus, the only way
object illumination would change is if the object is moved and placed somewhere
else or if there is some change in the environment. To keep track of the scene,
we use sparse optical flow. Even if the scene itself does not change, if the user
moves around the object, the illumination would change because of the rotation.

Table 2. LiteAR renders of various models (a) bunny, (b) dragon, (c) teapot, and (d)
Lucy in various environments. The model takes the image as an input and produces
27 spherical harmonics coefficients as irradiance.

Bunny Dragon Teapot Lucy

Scene 1

Scene 2

Scene 3

Scene 4
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We track the rotation around the vertical axis and update spherical harmon-
ics accordingly. We utilize the IMU sensor present in mobile phones to track
rotation. Thus, instead of calling the neural network every frame, we rotate the
environment map whenever the user rotates the phone about the vertical axis
triggered by the IMU sensor. We implement zonal harmonics for fast spherical
harmonics rotation calculation [16]. Using zonal harmonics, the total number of
multiplication operations required for spherical harmonics rotation per channel
is 118, which is significantly less than the 120 million multiplication operations
required in a neural network. Furthermore, since we do not care about zonal
harmonics themselves and only care about spherical harmonics rotation, we can
make use of sparse data and formulate the rotation problem as finding the rota-
tion matrices for each spherical harmonics band.

1. The first band does not change with rotation as its value remains constant.

2. The second band can be treated as a vector, which can be rotated by pre-
multiplying by a rotation matrix corresponding to the angle of rotation.

3. The third band has five components. To find a rotation matrix for this band,
we make use of the fact that rotation followed by projection is the same as
projection followed by rotation. We demonstrate this using Eq. 6.

U+ P(N) = P(M % N) (6)
Usxy=[P(MxN)*xP(N) sy (7)

We have to solve for U. We can choose N to be a set of five unit vectors as
long as the projections of those vectors are linearly independent in order to solve
for U. U xy gives us the value of rotated spherical harmonics in the second band
as shown in Eq. 7.

3.5 Computational Analysis

The model is designed to have less than 120M multiplication and accumulation
functions to make it mobile friendly. Spherical Harmonics rotation only requires
118 multiplication operation thus is very cheap computationally. Updating local
lighting based on the immediate environment depends on the density of point
cloud data. We first down sample the point cloud data since reducing density
eliminates redundancy with negligible change in the results. Our neural network
model runs at 30 FPS using Intel(R) Core(TM) i7-6700HQ CPU.
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Table 3. Comparison of global illumination estimation by different models with the
ground truth. We use various learning based methods to render the Stanford bunny
and demonstrate the same to compare realism.

Scene 1

Input Image

Ground Truth

Gardner|[7]

Deeplight[12]

LiteAR (ours)

Scene 2

Scene 3

4 Results and Discussion

With 10,800 panoramic scenes and 6 viewpoints for each scene, we have 64,000
distinct observations in our dataset. To improve the illumination variance, we
add color tints to produce two more sets of observations for every one set of
observations. We split the dataset into training and testing data respectively,
with a 756%-25% split. We train our model LiteAR on this data and evaluate
the results. Table 2 shows renders of different models rendered using spherical
harmonics produced by our model. We compare the results to recent state-of-the-
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Table 4. Comparison of rendering based on global illumination and spatially aware
illumination. We use depth image to obtain point cloud data which is further used to
update global spherical harmonics.

Scene 1 Scene 2 Scene 3

Input image

Depth Image

Global SH Prediction

Global SH
Lighting

Updated SH

Updated SH
Lighting

Table 5. L2 loss on global spherical harmonics for different models

Model 12 loss
Gardner (7] 0.18
Deeplight [12] | 0.28
PointAR [23] | 0.21
LiteAR (ours) | 0.24
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Table 6. Computational complexity in terms of the number of parameters and multiply
accumulates (MACs) where M stands for million

Number of parameters (M) | MACs (M)
Gardner [7] 20 3800
Deeplight [12] | 3.5 300
PointAR [23] |1.4 790
LiteAR (ours) | 2.2 120

(a) Global SH Render (b) Spatially Aware SH
Render

0 2

Fig. 6. (a) depicts rendering of Stanford bunny using spherical harmonics predicted by
the neural network and (b) depicts the same using updated spherical harmonics after
taking into consideration the immediate local environment

art lighting estimation research in Table 3. It is important to note that we target
mobile AR applications and, thus, model complexity is as important a metric
as accuracy. Furthermore, the objective is to improve realism. Thus, making the
model look more realistic is essential as opposed to only improving the model to
minimize errors on global lighting information.

Table 3 compares bunny renderings using different models. Each model only
uses a single input image to predict illumination. Deeplight and LiteAR produce
similar results when getting the ambient lighting right. Gardner’s [7] method
fails to estimate indirect lighting correctly when there is a light source present
in the image, as can be seen in the second example. For evaluation, we use (2 loss
to compare model accuracy for global lighting information. We calculate {2 loss
by computing the average [2 distance between spherical harmonics coefficients
produced by our model (SH,) and ground truth spherical harmonics coefficients
(s Hgt)~

Our neural network model for global spherical harmonics prediction produces
better results, i.e., less 12 loss than deeplight [12] and comparable results to that
of Gardner [7] as shown in Table5 and PointAR [23] while being 40 times less
computationally expensive than Gardner’s [7] method and 6 times less computa-
tionally expensive than PointAR [23]. Table 6 compares the model complexities
for our method against the state of the art. The model proposed by Gardner



420 C. Raut et al.

Table 7. Comparison of illumination estimation predicted by the neural network to
those estimated by rotating initially predicted spherical harmonics. We use spherical
harmonics predicted using one frame and perform SH rotation on them. We then use
rotated frames to predict spherical harmonics using the neural network. We compare
renderings obtained by both the methods. We also demonstrate the visual difference
in illumination and structural similarity index measure (SSIM)

0 60 120 180

Input image

Predicted SH

Rotated SH

SSIM| Difference

0.91 0.94 0.96

et al. [7] has more than 20M parameters, resulting in more than 3800M multi-
ply accumulates (MACSs). This makes it unsuitable for mobile augmented reality
applications. LiteAR has 3 times and 6 times fewer MACs compared to Deep-
light and PointAR [23] respectively, therefore making it suitable to run in real
time even on mobile phones. Table5 demonstrates the 12 loss for each model.
LiteAR produces better results than Deeplight for global illumination estima-
tion and comparable results to PointAR. However, the 12 loss on global lighting
estimation is not a direct metric of measuring realism as the local environment
can greatly influence lighting. Spatially varying environmental lighting modules
visibly improve the realism of the model. Thus, even with less accurate global
lighting prediction compared to other models, LiteAR produces results that are
more realistic.
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Table4 demonstrates lighting estimation after taking into account the spa-
tially variable environment. In the first and second examples, point cloud data
samples consists of the green-coloured sofa and purple-coloured bed, respectively.
These points are located beneath the model, affecting primarily the SH; har-
monic. Wherein, in the third example, the stairs and walls affect every spherical
harmonic in the first band, more so SHig because of the proximity of the stairs.
The visual appearance of the model is enhanced greatly and thus helps make the
mixed reality experience feel more realistic. Figure 6 demonstrates the improve-
ment in lighting with a closer look at Scene 2 from Table4. The purple color of
the bedsheet affects the lighting of the bunny from below. The updated lighting
demonstrates the purple shade on the chest and legs of the bunny, thus making
it more realistic.

With a light neural network combined with spherical harmonics rotation
based on the input from the IMU sensor, the whole pipeline is mobile-friendly
being able to render models at high frame rates. Instead of calling a neural
network every frame, in order to make the pipeline even lighter, we use spherical
harmonics rotation based on IMU sensor input. Table7 demonstrates bunny
rendering with spherical harmonics predicted by a neural network for every image
and compares it to bunny rendering with spherical harmonics predicted once
and then rotated by a given angle. The comparison showed a high structural
similarity index between lighting estimated using the neural network directly and
using SH rotation after estimating once. The rotation operation only requires
less than 120 multiply accumulates compared to millions for calling the neural
network, therefore reducing the computational load.

5 Conclusion and Future Work

In conclusion, the LiteAR pipeline operates much faster than the state-of-the-art
methods while slightly compromising the global illumination estimation accu-
racy. However, the dataset used to train the model did not have enough variance
with respect to illumination. Therefore, the accuracy could be improved with a
more varied dataset. Moreover, after updating lighting based on the local spatial
environment, the renders look more realistic. Using integrated sensors like the
IMU sensor makes the process much faster with minimal visual compromise in
estimating illumination.

The dataset to train the model to predict global spherical harmonics con-
sisted of indoor images taken from multiple angles. Most of the photographed
rooms share similar lighting for multiple photos. Thus, there is little variation
in labels in the form of spherical harmonics. This may lead to over-fitting, as
the model would try to find an optimal solution. We solve this problem using
data augmentation by introducing colour tints. However, the dataset could be
naturally enriched by introducing pictures taken with different mobile phone
cameras and of different places under varying lighting.
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For considering the local environment to update lighting, experimenting with
different values for the radius to sample points and alpha coefficient to update
global spherical harmonics gives varying results. Thus, a method could be devel-
oped to dynamically select values for the radius and alpha coefficient.

A confidence score along with the spherical harmonics would be helpful to
determine the best set of spherical harmonic coefficients predicted by the model.
Thus, the most accurate SH prediction could be used along with the input from
the IMU sensor instead of calling the neural network model every few frames.
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