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Abstract. Grocery recognition aims to classify items by visual features
of the image. The intention is to improve retailing experience, manage
inventory and help visually impaired people. It is an important task in
computer vision. Most previous works utilize global image features with a
unique decision rule to recognize groceries and products via convolutional
neural network (CNN) models. Such methods work on different CNN
architectures to explore more accurate and representative features. How-
ever, fine-grained characteristics are not considered in feature extraction.
Recently, vision transformer (ViT) models achieve success in multiple
computer vision tasks. And fine-grained visual categorization is leverag-
ing self-attention mechanism of ViT to learn discriminative regions and
features. In this paper, we propose a novel ViT based framework named
grocery recognition vision transformer (GRVT). It integrates multiple
granularity scales of patches by multi-scale patch embedding to intro-
duce robust image representation without incurring excessive computa-
tion cost. The mixed attention selection module guides the network to
choose these discriminative patches and crucial regions for fine-grained
feature extraction. Our GRVT achieves the state-of-the-art performance
on Freiburg Groceries Dataset and Grocery Store Dataset.

Keywords: Grocery recognition + Fine-grained visual categorization -
Vision transformer - Multi-scale patch embedding - Mixed attention
selection

1 Introduction

Grocery recognition is a novel and practical research topic in computer vision and
deep learning area. It plays a vital role in many applications in retail. Automatic
grocery recognition is beneficial for retail and on-shelf product management.
On the one hand, grocery recognition based on deep learning can be used for
an automatic checkout system and improves customers’ shopping experience
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by reducing waiting time [1]. On the other hand, it is able to develop better
replenishment and planogram by monitors and to improve turnover and profits.
For customers who are visually impaired, grocery recognition on mobile devices
can assist them to distinguish products and accomplish shopping independently
in their daily life [2].

Generally, grocery recognition is a classification task of computer vision.
Its target is to distinguish different images into corresponding labels correctly.
A classification system includes image capturing, image preprocessing, feature
extraction, feature classification and the output of recognition [3]. Traditional
feature extraction needs hand-crafted features which are not suitable for prod-
ucts that are changing day by day and also suffer from low accuracy. With the
development of deep learning, the convolutional neural network (CNN) based
image classification method obtains great success in recent years [4]. And pro-
moted the development of related research fields such as object detection [5]
and segmentation [6]. Recently, vision transformer (ViT) [7] shows better per-
formance in image classification. ViT and its variants also achieve great success
in popular tasks and further exceeds CNNs in particular aspects [8-10]. That
shows the potential of transformer in capturing global and local information.

However, there is still a blank for transformer in grocery recognition. In
this paper, we explore the capabilities of ViT in such task. An effective grocery
recognition framework based on ViT, named GRVT, is presented. To be spe-
cific, to enhance generalizability on the patches of ViT, we propose a multi-scale
patch embedding (MSPE) module to enable the network to integrate multiple
scales of input. Moreover, mixed attention selection (MAS) module calculates
attention scores across different sets of patch embeddings to choose discrimina-
tive and crucial regions. We evaluate our model on popular datasets including
Freiburg Groceries Dataset [11] and Grocery Store Dataset [12], and our GRVT
outperforms existing methods on these benchmarks. The main contributions are
summarized as follows:

— To the best of our knowledge, we are the first to implement ViT model on
grocery recognition task and explore its transfer learning performance. And
ViT produces competitive results with CNN models.

— We introduce GRVT, a novel and compact architecture for grocery recognition
that fuses multi-scale patch embeddings and computes mixed attention to
choose crucial local regions.

— We verify the effectiveness of our framework on grocery datasets, and the
experiment results show our GRVT achieves better performance than existing
public works.

2 Related Work

Fine-grained visual categorization (FGVC) is a challenging task because of high
intra-class variances and low inter-class variances. Datasets are mainly weakly-
supervised with only class labels. Methods on FGVC are focusing on local regions
to capture discriminative features as a categorization basis. Hu et al. [13] proposed
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weakly supervised data augmentation network (WS-DAN) to generate attention
maps with discriminative parts, and then utilized data augmentations to reinforce
the learning procedure. Chen et al. [14] proposed a destruction and construction
learning (DCL) by region confusion mechanism and injected more discriminative
local details into the classification network. Muktabb et al. [15] integrated a local
concepts accumulation layer emphasize local features and showed effect gains. Ji
et al. [16] proposed an attention convolutional binary neural tree which character-
izes the coarse-to-fine hierarchical feature learning process, and used the attention
transformer module to enforce the network to capture discriminative features. He
et al. [17] firstly introduced ViT to fine-grained recognition, transformer architec-
ture for fine-grained recognition (TransFG) selects discriminative image patches
and adopts contrastive loss to enlarge the distance between sub-classes.

Grocery recognition aims at classifying objects in supermarket scenarios, like
fruits, milk, and snacks. It could be considered a FGVC task. There is low inter-
class variance, for example, apples come in a great many varieties, and their
color and shape are familiar even if customers can not distinguish them easily.
Furthermore, there is also high intra-class variance, a Golden-Delicious apple in
different angles or lighting conditions can vary much in vision. Besides, it has
some other characteristics which make the task more challenging. In grocery
shops, products can be put on the shelf or piled up in a container. The object
scale is not definite, the background could be other products and environment
conditions are unconstrained. In recent studies, grocery recognition methods
exploit deep neural networks (DNN) models as a feature extractor. The unique
decision rule is adopted to classify low-dimensional vectors such as support vec-
tor machines (SVM) to identify retail goods [12]. Ciocca et al. [18] proposed a
multi-task learning network to leverage hierarchical annotations based on the
CNN feature extractor. Noy et al. [19] and Nayman et al. [20] adopted neural
architecture search (NAS) on grocery product recognition by introducing expert
advice and architecture pruning. Wei et al. [1] proposed a retail product check-
out (RPC) dataset and an automatic checkout (ACO) task. Wang et al. [21]
proposed self attention based DCL to learn crucial region information to classify
retail product images in the laboratory environment. Leo et al. [22] systemat-
ically study DNNs and ensemble DNNs on grocery recognition and found that
model ensemble shows significant improvement.

3 Method

Here we explore the model performance in the application of grocery recognition.
To better elaborate our framework, we first reviewed the ViT model design, and
the overall GRVT architecture and its two modules are then introduced.

3.1 Vision Transformer

Transformer [23] has achieved outstanding performance in natural language pro-
cessing due to its capacity and superiority in multi-head attention mechanism.
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Due to the potential of transformer-based vision models, the number of ViT vari-
ants is increasing, such as data-efficient image transformer (DeiT) [24], pyramid
vision transformer (PVT) [25], Swin Transformer [26].

Vision transformer applies a standard transformer [23] directly into images
with least modifications [7]. For an image of X € RT*W*C where H,W are
the original resolution of image and C' is the number of channels, flatten it into
patches X, € RV*C where P denotes the size of each patch and N = HW/P2.
The patches as a sequence are linearly projected F into a D-dimention latent
embedding space. The linear projection can be written as

T =[X,E,XE, - X)E] (1)

In bidirectional encoder representations from transformers (BERT) [27]
model, the first token is [cls], it is a randomly initialized vector and represents
classification result of the whole sequence after the encoder layer. Similar to
BERT’s class token, a learnable embedding vector X ;s and position embedding
Epos are extended. In Eq.2, the final sequence Z; serves as the input of the
transformer encoder.

ZO = [Xcl.%T} + Epos (2)

The transformer encoder consists of a series of multi-head self-attention
(MSA) and multi-layer perceptron (MLP) blocks. Before every block, layer nor-
malization (LN) is applied. MSA consists of several attention layers in parallel to
learn from different spaces, and the number of layers in MSA is K. The encoding
procedure can be described as Eq.3 and Eq.4, where Z; denotes the encoded
image representation. After multi layers’ encoding, X is the global feature
representation for final classification.

Z, = MSA(LN(Z,_1)) + Zi—1,l=1,---,L (3)
Z, = MLP(LN(Z))+ Z,,l =1, L (4)

3.2 GRVT Architecture

The pretrained ViT model on high resolution and large datasets could facil-
itate to better transfer learning results on middle and small benchmarks [7].
In this sense, ViT could achieve promising performance in grocery recognition.
However, the granularity of the patch scale is single, and it is unable to adapt
the requirements for scenarios of stores where objects can vary a lot in images.
To this end, we propose a simple but effective GRVT architecture that utilizes
multi-scale patch embedding and mixed attention selection module to filter out
high-confidence patches for final encoding. The overview of our framework is
illustrated in Fig. 1.

3.3 Multi-scale Patch Embedding

Multi-scale feature representation can help networks better detect and recog-
nize objects [8,25]. Chen et al. [28] proposed a dual-branch transformer called
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Fig. 1. The architecture of GRVT framework. Images are firstly split into a differ-
ent scale of patches which are projected with their position embeddings and class
embeddings. Image tokens are concatenated subsequently and input to the transformer
encoder. Crucial and discriminative regions used for final classification are filtered by
calculated attention weights from transformer encoder layers.

CrossViT that integrates different sizes of patches. Because the patch sizes are
different in resolution, image patches are processed by separate encoder branches.
Our MSPE module aims to integrate different granularity scales of patches as
the input of the transformer encoder, with the same backbone architecture and
very low computational cost. As shown in Fig.2, let an image firstly be resized
to Hg x Ws and Hy, x Wr. Patch number in each branch is Ng = HsWg/P?,
Np = HWp/P?. For each patch embedding, we extend linear projection with
their corresponding X; and Ej,.s following Eq.1 and Eq. 2. Then we concate-
nate Z5 and Z¥ as the final embedding of the encoder as Eq. 5. Dual granularities
of token representations are complemented with each other.

Zy = [ng Z(ﬂ (5)

3.4 Mixed Attention Selection

ViT feeds forward all patches across transformer encoder layer. Patch usually
plays a different role in an image, it could be a part of the object, or invalid
background. Noises can be harmful to the result if background patches are not
filtered. The discriminative and crucial parts can guide the model to achieve
better performance [17]. Here we propose a mixed attention selection module
that fuses dual tokens’ information and utilizes attention results across layers to
filter out important parts. Figure 3 illustrates the design of MAS. The input of
the encoder layers remains unchanged except for the last one. Multi-head self-
attentions are calculated layer by layer, and N means the number of patches and
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Fig. 2. Illustration of MSPE module. Images are divided into different scales of patches
which are projected with position embedding and class embedding subsequently.
Embeddings are concatenated into a sequence of tokens for the input of transformer
encoder.

class tokens in Eq. 6. The attention weights a in every layer are accumulated by
K attention heads in Eq.7 and Eq. 8.

N=1+Ns+1+N, (6)
a; = [a§17a§2a"'7a§N]7i S Oala' "7K (7)
a;=[al,a}, - af],l€1,2,--- L -1 (8)

Different tokens get mixed step by step across layers of the encoder, and
the class token can guide the model to capture global representation. We follow
TransFG [17] to obtain unified weights @jfinq by recursively multiplying raw
attention matrix. The calculation can be written as

L—1
QAfinal = H a, (9)
1=0

The part selection of TransFG [17] selects index of maximum value in @ fina
for each attention heads, which does not adapt for the characteristics of multi-
scale patch embedding. The MSPE introduces two sets of patch tokens. Ng and
Ny, are not quantitatively equal and single attention selection is not robust. To
solve these problems, we develop the MAS module to handle mixed attention
and conduct a balanced selecting strategy to choose crucial patches. As Eq. 10,
I denotes the balanced sampled top M indexes of K attention heads in different
sets of patches respectively.

I=A} AL AL, AR AR AK (10)

Then we concatenate corresponding patches in Z;_; as the final tokens in
Eq.11. GRVT focuses on the principle part to discover subtle differences with
selected tokens. After the final layer, we integrate X5 and X% as the final class
token.

Tmiw = [ X5, X5 \ZE _Jiel (11)

clsy “>cls

Zers = mean(X5,, X5 ) (12)

clsy“>cls
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4 Experiments

4.1 Datasets and Implementation Details

Freiburg Groceries Dataset (FGD) [11] is a challenging dataset due to the variety
of objects and consists of 25 classes of groceries. The dataset mainly considers
real-life scenes which include multi viewpoints of individual objects and packed
shelves. Photos are taken in sophisticated lighting conditions with reflections
and shadows at different stores. Grocery Store Dataset (GSD) [12] contains nat-
ural grocery items and refrigerated product images. The labels include coarse-
grained and fine-grained classes with a hierarchical structure. It mainly includes
vegetables, fruits, and packages. The coarse-grained class number is 43 and the
fine-grained class number is 81. Furthermore, there are product descriptions with
nutrition values to help visually impaired users in shops.

GRVT models are trained on 224 x 224 resolution images for fair comparison.
Firstly, images are resized to 300 x 300 and then cropped to 224 x 224 for model
inputs. For the MSPE module, images are resized 112 x 112 for another scale.
The patch size P = 16 as the standard ViT-B-16 model. The learning rate is set
to 0.03 with cosine annealing and the optimizer is stochastic gradient descent
with a momentum of 0.9 and 0.0001 weight decay. The attention dropout rate
is 0.1 and attention head number K = 12. The loss function is cross entropy
loss and training iterations are 15,000. All experiments are performed with two
Nvidia RTX 3090 GPUs, using Pytorch 1.9.0 with CUDA 11.1 and APEX with
FP16 training.

4.2 Comparison with the State of the Art

We compare our GRVT against recent works, which are mostly based on CNN
models that are trained end-to-end to classify images, or used as feature extrac-
tors for the subsequent decision rule. Table 1 shows the comparison results on
FGD. VIiT [7] performs better than public works’ best result [20], and is closed
to that of fine-grained approaches [14,17]. GRVT improves 0.63% accuracy than
the standard ViT and exceeds the fine-grained approaches, which indicates the
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Table 1. Comparison of different methods on FGD.

Method Backbone | Acc
Baseline [11] | AlexNet |78.9
ASAP [19] NAS 89.3
XNAS [20] | NAS 93.7
ResNet50 [4] | ResNet 91.94
ResNet101 [4] | ResNet 92.04
WS-DAN [13] | Inception | 91.26
DCL [14] ResNet 94.70
ViT [7] ViT 94.53
Swin-B [26] | ViT 95.25
PVT-M [25] | ViT 93.02
TransFG [17] | ViT 94.92
GRVT ViT 95.16
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effectiveness of our method. As for comparison on GSD in Table2, ViT out-
performs the ensemble CNN models [22] and CNN based fine-grained methods
[13,14] in both label structures. Nevertheless, our GRVT further achieves 0.66%
and 0.4% improvement. Compared to TansFG [17], ours also shows the superi-
ority. GRVT brings multi-scale patch representation and makes the model learn
more diverse, robust patches from the different granularity of tokens. Besides,
the MAS module makes regions with discriminative information can be focused
on the last transformer encoder layer. Although Swin Transformer [26] performs
best on FGD, but falls behind our GRVT on GSD, mainly because the GSD
category is more closed to a FGVC task. PVT [25] needs fewer parameters and
computation but suffers from accuracy results.

Table 2. Comparison of different methods on GSD.

Method Backbone | Acc/Fine | Acc/Coarse
DenseNet169 [12] | DenseNet | 85.0 85.2
DN+MTL [18] | DenseNet | 89.13 | 94.33
ResNet50 [22] ResNet 90.58 93.61
ResNet101 [22] ResNet 92.55 94.87
Ensemble [22] | CNNs | 93.48 | 95.84
WS-DAN [13] Inception | 87.67 91.43
DCL [14] ResNet | 93.36 | 95.25
ViT [7] ViT 9459 | 96.70
Swin-B [26] ViT 93.12 95.58
PVT-M [25] ViT 91.50 | 94.19
TransFG [17] ViT 94.85 95.78
GRVT ViT 95.25 97.10
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Table 3 tabulates the model efficiency, measured by the number of parameters
(#Params) and computational costs (FLOPs). Generally, the ViT-based models
have more parameters, with better performance than ResNet models. TransFG
[17] introduces an overlapping patch sampling method to avoid information loss
around patch edges, however, the total number of the patch is increased a lot.
Compared to ViT [7], for the same image resolution 224 x 224, TransFG brings
65% more patches to calculate, while GRVT needs 25% more computational cost.

Table 3. Comparison of computational efficiency.

Method #Params | FLOPs
ResNet50 [4] | 26M 4.1G
ResNet101 [4] | 45M 7.9G
ViT [7] 87M 17.6G
Swin-B [26] | 88M 15.1G
PVT-M [25] |44M 6.7G
TransFG [17] | 87TM 27.8G
GRVT 87M 21.0G

4.3 Ablation Study

In order to investigate the effectiveness of MSPE and MAS modules, as well as
the impact of parameter M in MAS, we conduct ablation studies in the following.

Effect of MSPE. MSPE introduces dual granularities of image patches. As
shown in Table4, it improves 0.31% and 0.42% evaluation result on FGD and
GSD, respectively. The diversity of image patches improves the model’s robust-
ness and generalization capability.

Effect of MAS. MAS calculates attentions in encoder layers and samples those
with high attention scores in a balanced way. Without considering noisy back-
grounds, GRVT can focus on informative regions and capture important local
features. Table4 shows that MAS further achieves 0.32% and 0.24% improve-
ment on two datasets.

Impact of Parameter M. MAS selects Top M patch indexes according to the
result of @yinar, where M refers the number of patches to be chosen in each
attention head. As shown in Table 5, the best accuracy is achieved when M = 3.
If M is too small, only a few patches can be selected for final encoding and
predicting, which are not robust enough. If M is too big, each attention head
produces too many indexes which would be redundant and the result becomes
inconspicuous.
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Table 4. Ablation studies of MSPE and Table 5. Quantitative results of parame-

MAS. ter M in MAS module.
ViT |MSPE |MAS|FGD |GSD Method FGD |GSD
v 94.53 94.59 GRVT (M = 1)|94.68 |95.17
v v 94.84 195.01 GRVT (M = 3)|95.16|95.25
v v v 95.16|95.25 GRVT (M = 5) 94.91 |95.21

(a) Attention visualization on FGD (b) Attention visualization on GSD

Fig. 4. Examples of visualization results on (a) Freiburg Grocery Dataset and (b)
Grocery Store Dataset. The first row is the original image, the second row is the single
branch attention map, and the third row is the attention map fused from two branches.
Attention maps are overlaid on raw images for better visualization. (Color figure online)

4.4 Visualization

Figure 4 shows our visualization results on randomly selected images from both
datasets. Attention maps from backbone encoder are transformed into the input
space for better visualization. It can be observed that GRVT successfully cap-
tures discriminative regions such as product packages, edges, logos, and patterns,
and also recognizes fruits and vegetables’ shape, corners, and color. The back-
ground and shelf are purple and blue, while the important parts of products
get more attention. For comparison of single branch and fused multi-scale atten-
tion maps, the latter shows more red and yellow regions on body of products,
indicating the effectiveness of our GRVT.

5 Conclusion

In this work, we investigate the effectiveness of ViT on grocery recognition task,
and demonstrate it can get better performance than CNN models. Furthermore,
we propose a novel fine-grained grocery recognition framework named GRVT
without introducing much computational cost, which outperforms recent works
on grocery datasets. As GRVT achieves encouraging results, we believe that the
transformer-based models have great potential for computer vision tasks, espe-
cially on grocery recognition. However, ViT models require more memory and
computational resources, which may not suitable for lightweight needs and reality
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applications. In the future, we will further study transformer-based lightweight
and efficient models that are possible for deployment on mobile devices.
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