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Abstract. Image denoising is a fundamental but critical task. Previ-
ous works based on deep networks have made great progress, but suffer
from the problem of computational overload. This paper addresses the
demands by (1) a lightweight denoising network and (2) a novel knowl-
edge distillation algorithm. The experimental results show the usefulness
of the RS-KD on the proposed lightweight network and consistent gains
that can be obtained on both synthetic and real-world datasets. Espe-
cially, benefiting from the retargeting supervision, our proposed distilla-
tion framework allows for arbitrary high-performance teacher networks.
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Arbitrary teacher · Knowledge distillation

1 Introduction

Image denoising, restoring the latent clean images from the observed noisy
images, is a classic and long-lasting task in image processing. With the wide
application of cameras, manufacturers such as smartphones and industrial cam-
eras are desperately trying to upgrade their products with efficient denoising
models. As a result, it is an urgent and challenging matter to implement effi-
cient image denoising on resource-constrained devices.

In recent years, deep-learning based image denoising approaches have shown
considerable success [1–4]. In contrast, to design sophisticated handcrafts, DnCNN
[1] achieves impressive performance by stacking multiple convolutional layers. To
take sufficient advantage of the image priors, NLRN [2] and NBNet [4] incorporates
the non-local modules. Besides, the attention mechanisms have also been incorpo-
rated into the current network architecture design [3]. However, these methods are
still computationally intensive and even more impractical to integrate into prac-
tice than some traditional methods. Fortunately, some techniques are proposed to
overcome the computing problem, typically knowledge distillation (KD) [5]. They
accomplish the model compression and computational cost reduction through the
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teaching paradigm between high-performance teacher networks usually with mas-
sive computational costs and lightweight student networks. However, these dis-
tillation methods are specifically designed for high-level tasks, and they bring no
performance gains when applied to image denoising.

In this paper, we address the foregoing concerns by a lightweight network
and a novel distillation algorithm with the retargeting supervision for efficient
image denoising. Considering the absence of a lightweight network for RGB
image denoising, we establish a lightweight deep denoising network, LUNet, by
carefully considering the challenging trade-off between denoising performance
and efficiency, resulting in a 14× reduction in computation cost and 10× fewer
parameters. We further propose a novel distillation algorithm to improve LUNet.
We first present a theoretical analysis of the image-level distillation algorithm
in image denoising by modeling the distillation process as a probabilistic model.
Then, we propose the retargeting supervision-driven knowledge distillation (RS-
KD) algorithm to pick up the missing randomness. Specifically, we find that
since the naive distillation algorithm assumes that the restored images by the
teacher network are completely trustworthy, they discard randomness in the
real distillation process inducing distillation failure. To overcome the deficiency,
we propose the RS-KD algorithm for student networks. In contrast, to directly
utilize the output of teacher networks as the supervision, we construct a multi-
variate Gaussian distribution with a data-adaptive variance for the prediction of
teacher networks. It is tough to enable the network to learn complex distribu-
tions directly. To address this issue, we simplify the complex distribution with
sampling operation. In this way, the samples shall keep moving closer to the real
complex distribution as the iterations increase, hence maintaining the validity of
distillation. We conduct extensive experiments to demonstrate the effectiveness
of our proposed distillation methods on multiple synthetic and realistic datasets.
Especially, benefiting from the retargeting supervision, our proposed distillation
framework allows for arbitrary high-performance teacher networks.

In summary, our main contributions are as follows:

(1) We design a lightweight image denoising network (LUNet) for RGB image
denoising, providing a baseline for the next distillation algorithm.

(2) We analyze the distillation process via a probabilistic model, theoretically
uncovering the essence of the image distillation.

(3) We present a novel and flexible distillation algorithm with retargeting super-
vision for efficient image denoising.

(4) Extensive experiments on multiple synthetic and real-world datasets demon-
strate the effectiveness of our distillation algorithm for the single image
denoising task.

2 Proposed Method

2.1 Lightweight U-shaped Denoising Network: LUNet

Since a lightweight model is still absent for RGB image denoising, we present a
lightweight U-shaped network, LUNet. It will also serve as a baseline model for
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Fig. 1. Overall architecture of LUNet and structure of key building blocks. LUNet is
based on UNet architecture with a depth of 4 and depth-wise separable convolutions.
LUNet takes only 1.08 GMAC to process 256 × 256 inputs.

the subsequent distillation algorithm. LUNet has an encoder-decoder structure,
where the input image is a noisy image and the output image is a clean image.
As shown in Fig. 1, LUNet has four encoding stages and corresponding decoding
stages. Given an input noisy image I ∈ R

W×H×3, the network first applies a
3 × 3 convolutional layer with step size 1 to project the input image into the
feature space. Then, the subsequent encoders encode the projected features. In
the latter step of each encoding stage, the downsample block subsamples the
feature maps to reduce the memory consumption. Specifically, the input feature
X ∈ R

W×H×C of each encoder is downsampled to X ∈ R
1
2W× 1

2H×2C. After
encoding, the feature map with the smallest spatial size feature is gradually
decoded to the original size. The input feature map is up-sampled by a 2 × 2
deconvolutional layer, which up-samples the spatial resolution by a factor of
2, and then compresses the number of channels of the feature map. The input
and output of the downsampling operation are exactly opposite to the input
and output of the upsampling operation so that the upsampled feature map
at the decoder shall be decoded together with the input feature map from the
encoder. After decoding, we obtain a feature map of the same size as the input
map. Finally, the feature map is projected into the pixel space using a 3 × 3
convolutional kernel layer with step size 1 and output by adding the input noise
image. Practically, for 256 × 256 inputs, LUNet only takes 1.08 GMAC, which
is 14× lesser than the original UNet [6].
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2.2 Retargeting Supervision Driven Knowledge Distillation

Analysis. Given an image pair, (x, y), where x is the corrupted image with
noise and y is the ground truth, x,y ∈ R

W×H×3. Here, we denote the restored
images of the student and teacher networks as ŷ, ȳ, respectively.

The naive distillation algorithm usually take the L1 loss for the teaching
process, i.e., ||ŷ − ȳ||1, which is based on the assumption that the teacher can
perfectly reconstruct the degraded image. However, image denoising is a typical
ill-posed task, which means that the optimal solution is not singular. Therefore,
it is too ideal and intuitive to use only a single image as the optimal recovery. In
contrast, we leave this assumption behind and turn to the probabilistic approach
to explore the real principle.

From a statistical viewpoint, the images recovered by both the teacher net-
work and the student network are typically random variables. The primary goal
is to maximize the joint probability distribution:

P (ŷ, ȳ|x) = P (ŷ|ȳ)P (ŷ|x) (1)

where ȳ serves as the given knowledge and plays a crucial role in (1). It was noted
that the naive knowledge distillation algorithm supposes that we have got a per-
fect image restored by the teacher network. In other words, the images recovered
by the teacher network subject to a probability P (ȳ|x)) = 1. The desperation
they strive for is merely a matter of simplification i.e., maxP (ŷ|ȳ). As we have
discussed above, it is unreasonable and also is the essential explanation for the
failure of naive knowledge distillation.

In contrast, we consider the recovered image of the teacher network as a
true random variable with probability density P (ŷ|x̄). According to the central
limit theorem, we shall model the image restored by the teach-er network as a
multivariate Gaussian distribution:

P (ȳ|x) ∼ N (μ,Σ) (2)

where μ is the mean value, which is equivalent to the output of the teacher
output. Σ is the variance term and it needs to be set delicately. It is worth
noting that the distribution of P (ȳ|x̄) is not required to be Gaussian. Actually,
it is more close to Laplace. Fortunately, the Laplace distribution might be re-
parameterized as ȳ − Σ ∗ sgn(z) ∗ ln(1 − 2|z|), where z ∼ N (0,1). For ease of
illustration, we use the Gasussian distribution as a typical example.

Our goal is to allow the student network to learn from this distribution of
teachers. According to [7,8], P (ŷ|ȳ) can be modeled as Boltzmann distribution:

p(ŷ|ȳ) ∝ exp(−|ŷ − ȳ|
kT

) (3)

where the kT is a constant, and it is the product of Boltzmann’s constant k and
thermodynamic temperature T .

Therefore, we have obtained the explicit probability densities of all the
demanded distributions, P (ȳ|x) and P (ŷ|ȳ), in Eq. 1. It would be quite prefer-
able to optimize the above joint probability density distribution directly, however
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it is still intractable to enable the network to learn the probability density func-
tion. To solve this problem, we propose a simplified method to ease the learning
process. In each iteration, we approximate the conditional probability distribu-
tion P (ȳ|x) by some instances in it. Specifically, we first sample some variables
in the distribution P (ȳ|x), replacing the whole distribution in P (ŷ, (̄y)). For-
tunately, with the increasing number of training iterations, this approximation
would be safe because this approximation keeps getting closer to the real dis-
tribution. Thus, we shall use the sampled joint probability density function,
P (ŷ|ȳ), as supervision for the student network. It should be emphasized that
the ȳ here is randomly sampled, which is intrinsically dissimilar to the one in
naive KD. Finally, we apply the negative log-likelihood as our optimization goal:

min Eȳ∼N (μ,Σ )[‖ŷ − ȳ‖1] (4)

We shall denote Eq. 4 as Ldistil for notation convenience. In addition, according
to the Jensen’s inequality, we have E[f(x)] ≥ f(E[x]) for any convex function
f(·). Because the p-norm is convex and thus we shall get

Eȳ[‖ŷ − ȳ‖1] ≥ ‖Eȳ[ŷ − ȳ]‖1 = ‖ŷ − ȳ‖1 (5)

which suggests that our optimization objective is an upper bound for naive
knowledge distillation. In other words, naive knowledge distillation suffers from
a degraded problem. It loses the randomness during training and the supervision
of the student network is unfortunately restricted to the output of the teacher
network. Therefore, to solve this problem, we take the sampled joint probability
distribution described in the last section as a new learning objective for the
student network.

The Retargeting Supervision. The analysis demonstrates an probabilistic
model for Knowledge distillation. The prior distribution P (ȳ) determines the
supervision quality of the students’ network, especially the variance term. An
intuitive idea is to set the Σ as a small constant value, kI, only for introducing
randomness. I is the identity matrix. However, such an operation is equivalent to
adding a small random noise z ∼ N (0, kI) to the output of the teacher network,
which leads to worse results. In contrast, we introduce retargeting supervision
to help the student network learning efficiently. Especially, we propose a data-
adaptive Σ to acquire randomness.

Σ = |ȳ − y| (6)

where | · | refers to element-wise absolute function. In particular, as shown in
Fig. 2. We introduce an auxiliary network branch attached to the student net-
work to learn the variance. This would allow the student network to capture
the distribution completely. Especially, Eq. 6 may introduce a denoising bias.
However, the sampling of multivariate Gaussian distributions can alleviate the
problem to some extent. We use L1 loss to enable the auxiliary network to cap-
ture the data-adaptive variance

Laux =‖|ȳ − y| − σ‖1 (7)
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Fig. 2. The pipeline of our proposed Retargeting Supervisionis driven Knowledge Dis-
tillation (RS-KD) framework. During training, RS-KD distills the student network via
retargeting supervision with the assistance of an auxiliary network. For testing, the
only required network is the original student network, leaving no auxiliary network.

where σ is the output of the auxiliary network. Incorporating Eq. 4 and Eq. 7,
the final loss function is formulated as:

min Ltotal = Ldistil + αLaux (8)

where α is the hyper-parameter to balance different aspects of loss. As a result,
the multivariate Gaussian distribution composed by the output of the teacher
network and the data-dependent variance term forms the new retargeting super-
vision.

Note that, in Eq. 8, we do not directly apply the given ground truth as
the supervision. This brings an advantage in that we do not have to carefully
weigh the ground truth and the output of the teacher while training the student
network. In addition, since |ȳ − y| contains the information passed by both
ground truth and the teacher, the supervision from teachers dominates Eq. 8.
This enables an arbitrary high-performance teacher network to be selected in
our distillation framework. This paper uses MIRNet [9] as the teacher. After
training, we only need to keep the original student network, LUNet, for testing.
Therefore, we do not introduce additional computation in the student network.
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3 Experimental Results

3.1 Experimental Settings

Implementation Details. We train all the models with the Adam optimizer
with momentum terms (0.9, 0.999). During training, we crop images into 256 ×
256 patches and training networks with a batch size of 32 for 400, 000 iterations.
The initial learning rate is 2×10−4, and it steps at 240, 000 and 360, 000 iterations
with scale 0.1. We apply random rotation and flipping to augment the training
data. For distillation experiments, we do not perform a pretraining process on
LUNet. We perform all experiments on Nvidia 2080Ti GPUs. Specifically, we
take PSNR and SSIM as the metrics.

Datasets. For synthetic datasets, the training dataset are consisted of 432
images from BSD [10], 400 images from the validation set of ImageNet [11] and
4,774 images from the Waterloo dataset [12]. We follow the same setting in [13]
to generate non-i.i.d Gaussian noise as following,

n = M ∗ n1,n1
ij ∼ N (0, 1) (9)

where M is a spatially variant mask with the same size as the clean image.
In this paper, we choose a Gaussian window function with a variance being
10. We utilize the above generated data as training data and test models with
regular Gaussian noise. While testing, we consider three noise levels, namely
sigma = 15, 25, 50. Then we evaluate on Set5 [14], LIVE1 [15] and BSD68 [16].

For real-world datasets, we conduct experiments on Smartphone Image
Denoising Dataset (SIDD) [17]. SIDD is composed of about 30,000 noisy images
from 10 scenes under different lighting conditions. It employs five representa-
tive smartphone cameras and generates their gro-und truth images through a
systematic procedure. SIDD is available to measure the denoising performance
of smartphone cameras. As a benchmark, SIDD splits 1280 color images for
validation.

3.2 Quantitative and Qualitative Results

Comparisons of Efficient Denoising. We report the quantitative results on
both synthetic and real-world datasets. The real-world denoising performance on
SIDD presents in Table 1. We also compare the computational complexity of the
latest methods, including the model parameters as well as the practical running
time. FAN is chosen as the efficient baseline model. It is worth noting that our
LUNet has a higher performance, nearly 2 dB. Our LUNet effectively weighs
computational cost and performance. In comparison with the original UNet [6],
LUNet has comparable performance with less computation.
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Table 1. Quantitative results on real-world dataset SIDD [17]. LUNet† is the LUNet
trained in the standard fashion. LUNet∗ means the LUNet is trained with our dis-
tillation scheme. The time tests perform on all performed on a single Nvidia 2080Ti
GPU.

Method MAC(G) ↓ Param(G) ↓ Runtime(ms) ↓ PSNR ↑ SSIM ↑
DnCNN [1] 68.15 0.56 21.69 23.66 0.583

BM3D [18] - - 41.56 25.65 0.685

WNNM [19] - - - 25.78 0.809

NLM [20] - - - 26.76 0.699

KSVD [21] - - - 26.88 0.842

CBDNet [22] 40.38 4.37 80.76 30.78 0.754

RIDNet [23] 40.34 1.49 98.13 38.71 0.914

VDN [13] 41.88 7.70 99.00 39.28 0.909

DANet+ [24] 14.85 9.15 65.62 39.47 0.918

MIRNet [9] 786.43 31.79 192.61 39.72 0.959

MPRNet [3] 588.14 15.74 180.00 39.71 0.958

NBNet [4] 354.80 13.3 37.44 39.75 0.973

UNet [6] 14.85 9.15 4.1 36.71 0.913

FAN [25] 2.67 0.26 3.6 34.59 0.901

LUNet† 1.08 0.95 3.6 36.39 0.912

LUNet∗ 1.08 0.95 3.6 36.56 0.914

Table 2. Quantitative results PSNR on synthetic datasets with i.i.d Gaussian noise.
LUNet† is the LUNet trained in the standard fashion. LUNet∗ means the LUNet is
trained with our distillation scheme.

Dataset sigmaCBM3DWNNMDnCNNMemNetFFDNetUDNetVDNNBNetUNetFAN LUNet†LUNet∗

[26] [19] [1] [27] [28] [29] [13] [4] [6] [25] [25] ours

Set5 [14] 15 33.42 32.92 34.04 34.18 34.30 34.19 34.3434.64 32.3030.2830.27 31.52

25 30.92 30.61 31.88 31.98 32.10 31.82 32.2432.51 27.4326.2426.34 28.40

50 28.16 27.58 28.95 29.10 29.25 28.87 29.4729.70 23.6021.0621.02 21.50

LIVE1 [15] 15 32.85 31.70 33.72 33.84 33.96 33.74 33.9434.25 31.1230.8730.93 31.42

25 30.05 29.15 31.23 31.26 31.37 31.09 31.5031.73 27.3827.5027.43 27.85

50 26.98 26.07 27.95 27.99 28.10 27.82 28.3628.55 23.4420.9020.99 21.85

BSD68 [16]15 32.67 31.27 33.87 33.76 33.85 33.76 33.9034.15 31.7431.1631.07 31.97

25 29.83 28.62 31.22 31.17 31.21 31.02 31.3531.54 28.6227.1527.27 27.79

50 26.81 25.86 27.91 27.91 27.95 27.76 28.1928.35 22.6421.8521.68 22.48

Average - 30.18 29.30 31.19 31.24 31.34 31.11 31.4731.71 27.5826.3426.33 27.19

The Effectiveness of RS-KD. Our distillation algorithm can enhance the
performance of LUNet on both synthetic and real-world datasets. As shown in
Table 1, the distilled LUNet has a higher SSIM value compared to the origi-
nal UNet, which means that the proposed optimization introduces a trade-off
between quality and speed. We suppose that the introduced randomness allows
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Fig. 3. Qualitative results on SIDD [17]. Our distillation algorithm enables LUNet to
produce visual-pleasing denoised images. Please enlarge the screen for more detailed
information.

Table 3. Ablation study of the KD methods. Naive KD is shown in the bottom left in
Fig. 2. RS means our proposed retargeting supervision driven KD.

KD methods Loss PSNR SSIM

Naive L1 36.41(+0.02) 0.9120(+0.0001)

RS Eq. 8 36.56(+0.17) 0.9141(+0.0022)

the student network to capture more probable textures in the learning process.
This further demonstrates the effectiveness of our proposed distillation algo-
rithm. As shown in Table 2, our RS-KD algorithm an average gain of 0.85 dB to
LUNet for synthetic experiments on Gaussian noise. This further demonstrates
the superior performance of our method for simple noise.

Qualitative Results. We show the visual comparisons in Fig. 3. Compared
with the results of FAN, LUNet can produce favorable recovery results. Moreover,
our distillation algorithm makes the original LUNet more effective in recovering
texture information without color distortion.
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3.3 Ablation Studies

We present the ablation studies to analyze the contribution of each component
of our model. The evaluations are performed on the intractable SIDD dataset.

Comparison with the KD Methods. As shown in Table 3, compared to the
naive KD supervision, our retargeting supervision drive KD design can provide
effective enhancement to the baseline. This phenomenon is consistent with that
in the classification task, meaning that naive KD do not convey the knowledge
of teachers properly.

The Hyperparameter α. We explore the importance of the information in
the retargeting supervision. As shown in Table 4, when α = 0.0001, the perfor-
mance is optimal. In particular, when α = 0, i.e., using only the naive KD for
the distillation supervision, the results are also relatively poor. This shows the
necessity of the existence of the auxiliary network.

The Variance Term. We further explore the different choices of the variance
item. We generate them in two ways, i.e., |y − ȳ| and |y − ˆ̄y| respectively.
As shown in Table 5, |y − ȳ| performs better for PSNR. We suppose that this
approach enables the student network to identify the shortcomings of the teacher
network and thereby learn the teacher network thoroughly. Besides, both of
them have higher SSIM than that of the original UNet. This may means that
our approach can effectively leverage the knowledge of the teacher network to
enhance the performance of the student network.

Table 4. Ablation study of the hyperparameter α.

α 0.01 0.005 0.001 0.0001 0.00001 0

PSNR 36.39 36.5 36.51 36.56 36.46 36.45

SSIM 0.9097 0.9119 0.9137 0.9141 0.9109 0.9119

Table 5. Ablation study of the variance item.

Variance α PSNR SSIM

Σ = |y − ȳ| 0.0001 36.56 0.9141

Σ = |y − ˆ̄y| 0.0001 36.50 0.9138
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The Teacher Network. We explore the contribution of different teacher net-
works in the proposed distillation framework as shown in Table 6. In contrast
to previous studies [30,31], our distillation algorithm has no restrictions on the
teacher network, offering considerable flexibility.

Table 6. Ablation study of the teacher model.

Teacher model Student model Baseline Distilled

VDN [13] LUNet 36.39 36.52(+0.13)

DANet+ [24] LUNet 36.39 36.51(+0.12)

MPRNet [3] LUNet 36.39 36.49(+0.10)

MIRNet [9] LUNet 36.39 36.56(+0.17)

4 Conclusions

In this paper, we make contributions for efficient image denoising from two
aspects, efficient network structure and distillation algorithm respectively. We
first design a lightweight U-shaped network, LUNet, which has 14× lower compu-
tation cost and 10× fewer parameters than the original UNet. Then, we propose
a novel distillation algorithm to improve the performance of LUNet. Finally,
supported by the RS-KD algorithm, LUNet accomplishes efficient image denois-
ing. We expect that our work will encourage further research on the knowledge
distillation algorithms for other low-level vision tasks.
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