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2 Université de Paris-Sud, Laboratoire d’Analyse Numérique,

Bâtiment 425, Orsay, France

Abstract. In this paper, we present a pipeline to reconstruct the mem-
brane surface of single neuron. Based on the abstract skeleton described
by points with diameter information, a surface mesh representation is
generated to approximate the neuronal membrane. The neuron has multi-
branches (called neurites) connected together. Using a pushing-forward
way, the algorithm computes a series of non-parallel contour lines along
the extension direction of each neurite. These contours are self-adaptive
to the neurite’s cross-sectional shape size and then be connected sequen-
tially to form the surface. The soma is a unique part for the nerve cell
but is usually detached to the neurites when reconstructed previously.
The algorithm creates a suitable point set and obtains its surface mesh
by triangulation, which can be combined with the surface of different
neurite branches exactly to get the whole mesh model. Compared with
the measurements, experiments show that our method is conducive to
reconstruct high quality and density surface for single neuron.
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1 Introduction

Individual neuron is the starting point during the exploration of the brain in
modern neuroscience [1]. It is recognized to be the basic functional unit of ner-
vous system. The immediate study for single neuron is its morphological struc-
ture, which mainly consists of a cell body (also called soma) and the neurites.
However, the neuron is hard to be observed directly by human eyes because it is
microscale, having tiny geometry, and is semitransparent. Visualizing the neuron
is therefore not trivial.

Modern electron microscope can clearly observe biological specimens and save
them as images, while state of the art laser microscope even can directly image
living brain tissue with super-resolution. Forming the images achieves persistent
preservation of neuronal structure. An advanced computer technology, known as
neuron tracing [2,3], allows researchers to extract the neuron from microscopy
images. The tracing actually converts the image data sets into a much more
parsimonious representation of neuronal topology and geometry, described as a
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set of sample points. These points with their intrinsic connectivity express the
morphology of single neuron as 3D skeleton, i.e. the medial axis lines generated
by inward contraction of the neurites.

The skeleton representation keeps a well-behaved abstraction of neuronal
structure, but the lack of neurite’s thickness brings some limitations. The most
drawback is that the skeleton does not provide a continuous surface representa-
tion. Nevertheless, the neuron is the cell with smooth and continuous membrane
surface. The membrane separates both inside and outside of the neuron, which
gives a particular 3D appearance of the nerve cell. Reconstructing the corre-
sponding surface allows perceiving the neurite thickness (and therefore volume)
immediately. Here we describe a simple and general method to provide a surface
reconstruction pipeline of neuronal membrane. This approach results in a sur-
face mesh representation, which is made up of triangles with high quality and
density. For one thing, the reconstruction in this paper can further improve the
visual presentation power of the neuron and be a supplement to the ball-and-stick
model in some visualization software [4]. For another, the 3D representation may
benefit neuroscience researches, such as helping the computational neuroscien-
tists to build brain function model, simulating electrophysiological experiments
of voltage dynamics [5] and so on.

The rest of the paper is structured as follows. Section 2 reviews some related
works. In Sect. 3, we describe our method in detail and Sect. 4 shows the exper-
imental results. The paper ends with a conclusion.

2 Related Work

Creating an accurate closed surface based on a skeleton is a significant research
topic in computer graphics. It has been applied in various modeling domains,
such as trees [6–8] and blood vessels [9–11]. The relevant techniques usually are
divided into implicit and explicit, corresponding to implicit surface and explicit
surface [12].

An implicit surface is defined as an isosurface that all of the points have the
same given scalar field, satisfying a specific implicit field function [13]. The implicit
surface-based modeling is able to reconstruct surfaces for any objects theoretically.
However, its modeling potential is limited by the exact definition of an implicit
function, which is closely related the shape of the object. Yet neurons are diverse
and it is impossible to find one or several functions to describe all neurons. Addi-
tional, an implicit surface needs to be polygonized through isosurface extraction
algorithms (like marching cube [14]) for visualizing and rendering. In contrast,
the explicit surface is rendered directly in computer’s graphic system. The basic
explicit element is isolated point. For example, point clouds obtained by 3D scan-
ning can be observed immediately as long as they are input. They are regarded
the original data in many cases as well for surface reconstruction [15]. The sur-
face for explicit form is represented by polygonal mesh, which is widely applied to
approximate geometric objects in computer graphics.

In recent years, there are a few research studies creating surface meshes
from neuronal skeleton. Lasserre et al. [16] used mesh extrusion starting from
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a fixed soma to obtain a coarse mesh with quadrilateral faces and refined it
by subdivision for a detailed mesh. Carcia-Cantero et al. [17] also extruded the
meshes of neurites but applied an improved Finite Element Method [18] to the
fixed soma, making it more realistic. Abdellah et al. [19] developed a tool named
Skin Modifiers for high fidelity neuronal meshes but they even need to complete
reconstruction in Blender software.

However, in this current work, the method inputs the skeleton and directly
outputs a refined surface mesh with high quality. It is simple and intuitive,
without subdivision operation or other software.

3 Method

The main goal of the method presented here is reconstructing a 3D polygonal
model that represents the neuronal membrane surface approximately. The first
step takes as input a single neuron and divides it into individual neurite branches.
The second step computes adaptive contours and connects them sequentially to
form the surface mesh for each branch, together with saving the connectivity
information that makes for the surface of different branches to be spliced subse-
quently. As for the soma, the algorithm constructs a suitable point set used to
triangulate and the triangulation result can be combined exactly to the branches’
surface. The following sections describe above steps in detail.

3.1 Branch Identification

The source of neuronal morphologies is from a public and online database Neu-
roMorpho.Org [20]. Each digital neuron in this repository is stored in text file
with SWC format (Fig. 1(a)), which contains a hierarchical morphology skeleton
described as a set of connected sample points (Fig. 1(b)). Each point provides
several components, including its sample number (id), type (t), coordinates (x,
y, z), local thickness (r) and connectivity information (p) which links this point
to a parent one.

Fig. 1. a Example of a SWC file. b The skeleton abstraction of single neuron
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In Fig. 1(b), the abstract skeleton shows that the neuronal morphology is
multi-branches structure. Here a branch is defined as successive samples from
a starting point to an ending point. However, the bifurcation point will bring
ambiguous during dividing different branches, because there are two child points
connected to it in most cases. Thus, the process of branch identification need to
determine which child point is the best successor of the bifurcation point.

The selection of the best successor is in light of the potential that brings
convenience to the contour connection between the bifurcation point and its
child. There are two constraints to be considered. First, the algorithm priorities
the largest angle condition. For instance, point B in Fig. 2(a) is selected due to
α1 < α2. If the difference value between those two angles is less than a given
threshold t, the algorithm considers the selected child whose r-component is
closer to the bifurcation point (see point D in Fig. 2(b)). Unselected child as a
starting point radiates a new branch.

Fig. 2. Selection of the best successor. α and r represent the angle and the local
thickness, respectively

Currently the neuronal morphology can be regarded as a collection of individ-
ual branches. For convenience of description later, the primary branch is used to
signify a branch that includes the bifurcation point, while the secondary branch
means a new branch starting from a child point. The concept of those two cate-
gories is relatively changing, especially during the process of mesh splicing. That
is, a primary branch in one case may be a secondary branch in another case. In
addition, the soma branch is used to signify a branch that radiates from the soma.

3.2 Surface Reconstruction of Neurites

This section describes that how to obtain the surface mesh for individual neurite
branch and splice different branches, including four subsections in the following.

Resampling. Original sample points of each branch are lower density and cannot
meet the requirements of surface reconstruction in this article. This leads to resam-
pling operation for original data. The resampling utilizes the thoughts of interpo-
lation curve fitting. It not only increases the data’s density while preserving the
old points but also maintains the consistency of neuronal shape before and later.

The Catmull-Rom [21] fitting method is adopted to construct a spline curve
for every branch. This method is piecewise fitting, so it is necessary to calculate
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the interpolation precision (i.e., the number of resampling points) for each two
original adjacent points. Assuming that an individual branch is denoted as B =
{(Pi, ri)|i = 1, 2, . . . , n}, where Pi = (xi, yi, zi). The interpolation precision δ
between Pi and Pi+1 is calculated as follows:

δ(Pi,Pi+1) =
D(Pi, Pi+1)

ravg
+ k1, i ∈ [1, n) (1)

In formula 1, D(Pi, Pi+1) represents the Euclidean distance and ravg rep-
resents the average value of r-component of n points on branch B. A control
parameter k1 is used due to the Catmull-Rom method needs to consider end-
point condition during piecewise calculation. If Pi is the starting point of B, the
value of k1 equals to number 2; otherwise, it equals to number 1.

Besides, the tangent vector is calculated by the first-order derivative of the
fitting curve, determining the contour’s orientation of each sampling point.

Contour Generation. The contour characterizes the cross-sectional shape of
a neurite branch at some local position. At point Pi, it is defined as an inscribed
polygon of the circle whose center is Pi and radius is ri. The contour’s vertices are
the sampling points on the circle so that the contour approximates gradually to
the circle as the number of vertices growing. This is consistent with the cognition
that neurites are tubular branches with circular cross-section. The plane in which
the contour lies is stated by Pi ·oi, where oi represents the orientation vector of
Pi’s contour.

A pushing-forward way is used to calculate the contour for each point on the
same branch and every contour is self-adaptive to its own radius and orienta-
tion. A contour at point Pi with mi vertices can be written as Ci = {Cj

i |j =
1, 2, . . . ,mi}, where C1

i is the first vertex on it. Then, the corresponding vertex
C1

i+1 on the contour at Pi+1 can be obtained according to the following steps
(see Fig. 3(a)).

Fig. 3. a The computation of the first sample vertex on each contour. b The schematic
view of contour generation using the pushing-forward way

–Step 1 Vector P iC
1
i from point Pi to its contour’s vertex C1

i is translated to
point Pi+1 along the direction of P iP i+1;

–Step 2 The vector after translation is projected onto the plane Pi+1 · oi+1;
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–Step 3 The vector after projection is normalized, and then is multiplied by the
radius of point Pi+1 to obtain the vector P i+1C

1
i+1.

Similarly, the first vertex of the other contours can be obtained in the same
manner. The rest vertices on the same contour can be calculated using the
Rodrigues rotation formula [22].

vrot = v cos θ + (k × v) sin θ + k(k · v)(1 − cos θ) (2)

Given a vector v in R3, formula 2 rotates it with a specific angle θ around
a fixed rotation axis k to get a new vector vrot. For Pi’s contour Ci, the vector
P iC

1
i is regarded as v and Ci’s orientation vector oi is regarded as k. The angle

θ starts from zero and increases 2π
mi

for each rotation. Figure 3(b) depicts the
pushing-forward way and rotation process.

The contour adheres that the bigger the point’s r-component is, the more
the number of vertices is. The vertices’ number of Pi’s contour is calculated as
follows:

mi = ceil(
2π

arccos 1−r2
avg

2r2
i

) + k2, k2 = 0, 1 (3)

where ceil() is a rounding function to obtain an integer and k2 is another control
parameter to ensure that the number mi keeps an even all the time.

Adjacent contour may intersect with each other causing self-intersection in
the resulting mesh. The algorithm marks and ignores these intersected contours
when contour connection. Additionally, each contour keeps track of its center
point so that associated information (like orientation) can be accessed in the
following stage conveniently.

Contour Connection. The surface of an individual branch is reconstructed by
contour connection. This technique sequentially connects the vertices on adja-
cent contours of a branch. The contours obtained above are non-parallel in 3D
space and have different number of vertices. The algorithm converts adjacent
contours from non-parallel to parallel state temporarily before connecting them.
For adjacent contours Ci and Ci+1, the former is projected on to the plane
Pi ·oi+1. Now the connection process between Ci and Ci+1 is converted to Ci pro

and Ci+1.
The connection here belongs to one-to-one case [23], which needs to select a

vertex on adjacent contours respectively as initial condition for starting the gen-
eration process of mesh triangle. Traditional method selects arbitrary vertex on
one contour and uses “shortest distance” principle to select the other on another
contour [24]. They may make mistakes for 3D contours (Fig. 4). In contrast, our
pushing-forward way to calculate contours makes the 1–1 correspondence among
contour’s first vertex, avoiding the potential errors.

The first vertex C1
i pro on contour Ci pro and C1

i+1 on contour Ci+1 can be
regarded as the initial condition directly for constructing the first triangular
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Fig. 4. Point a should correspond to point C, but may to point B

patch. There are two choices to select the third vertex of this triangle. The
“minimum included-angle” criterion is used to determine whether the third ver-
tex is C2

i pro or C2
i+1. If the included angle formed by C1

i proC
2
i+1 and P iP i+1

is smaller than the angle formed by C2
i proC

1
i+1 and P iP i+1, the third vertex

is C2
i+1; otherwise, it is C2

i pro. Then, the vertices C1
i pro and C2

i+1 or C2
i pro and

C1
i+1 are regarded as new initial condition to construct the next triangular patch.

The local surface mesh between two contours is reconstructed by traversing the
vertices in the same winding order and connecting them. Finally, the vertex
coordinates of the projected contour Ci pro are replaced back to the coordinates
of the contour Ci correspondingly.

Following the same procedure, the algorithm processes all of the adaptive con-
tours in sequence to complete the surface reconstruction for individual branch.

Mesh Splicing. The transition surface between different branches is formed
by mesh splicing. But the surface of a secondary branch may intersect with the
surface of the corresponding primary branch near the bifurcation area (Fig. 5(a)).
This problem is handled before the real surface generation of the secondary
branch. If any vertex of a contour of the secondary branch is situated in the

Fig. 5. Preprocessing intersection. a Mesh intersection. b Excluding dashed contours
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Fig. 6. a Splicing area determination. b Splicing example

volume of the primary branch, the algorithm does not deal with this contour
when performing contour connection for the secondary branch (Fig. 5(b)).

The algorithm selects from the surface of the primary branch a suitable area
Q, which orients toward to the starting point’s contour of the secondary branch.
As shown in Fig. 6(a), a ray is emitted from the starting point P1 sec of the
secondary branch to the bifurcation point. Along the ray path, there exists some
intersection points on the surface of the primary branch. The triangle where the
closest intersection to point P1 sec is marked as target. The algorithm finds other
triangles around the target to form the area Q. The splicing in this part is hence
to form the transition mesh between the border of Q (denoted as CQ) and the
contour of P1 sec (denoted as C1 sec). The distance from CQ to C1 sec may be
so large that directly connecting them may cause lower quality mesh. Therefore,
the algorithm inserts some middle contours between CQ to C1 sec.

To begin with, the algorithm determines a middle contour for locating, denoted
as Cloc whose center Ploc and orientation oloc are same with the barycenter and
normal of the marked triangle. The center of each middle contour is positioned
on the line from Ploc to P1 sec, and the vertices are obtained by performing vec-
tor operations (such as projection, multiplication) for C1 sec’s vertices. Secondly,
the algorithm computes the distance of each pair of vertices on contours Cloc and
C1 sec separately and records the minimum value. This value is used to make
modulus operation with Eave to get the number of middle contours (denoted as
Nmids). The Eave represents an average edge-length of the polygon CQ. The plane
in which each middle contour lies is represented by Pt · ot, where Pt is this con-
tour’s center (Pt = Pt−1 + 1

Nmids
· |P locP 1 sec|) and ot is the orientation vector

(ot = ot−1+P locP 1 sec

2 ). The parameter t is from 0 to Nmids − 1 and when t = 0,
P0 = Ploc, o0 = oloc. Finally, CQ and those middle contours as well as C1 sec are
connected to each other based on the contour connection algorithm described in
previous subsection. Figure 6(b) gives an example of mesh splicing between two
branches.

3.3 Surface Reconstruction of the Soma

The soma is only a point in original SWC data, without other more detailed infor-
mation to describe its geometry. For generating its surface, the solution presented
here constructs a suitable point set to be the input of Delaunay triangulation.
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Fig. 7. Both A and B have the same projection on the plane in which Ctrans lies. Point
A is removed because of A ∈ Sup

In the beginning, a collection of discrete points sampled uniformly on a sphere
is as the initial point set, denoted as S with its center Ps. For a soma branch, the
first contour C1 sec and its orientation vector o1 sec as well as center point P1 sec

are known. A copy (denoted as Ctrans with its center Ptrans) of contour C1 sec

is translated along the direction of vector P 1 secP S until the copy is equivalent
to a small circle on the sphere. The plane in which the Ctrans lies divides S into
two subsets (Sup and Sdown). Then, the algorithm removes from S the points
that belong to Sup (Fig. 7) and inserts to S the points of the copy.

The planes in which the translated copies of different soma branches lies
may lead to intersection. The algorithm removes the vertices in Sup of them
respectively. After that, the algorithm removes the vertices after projection that
belong to the common area formed by the intersected copies and inserts the
remaining vertices.

Fig. 8. The basic idea for updating the S set and the triangulation

For achieving a better appearance after triangulation, point interpolation
is used to add extra points between the vertices of the first contour of each
soma branch and the vertices of its translated copy. Finally, the vertices of every
soma branch’s first contour and those extra points are inserted to update the
S set (Fig. 8(a)). Furthermore, the vertices of the first contours and of their
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copies have a new attribute to signify that they are boundary points. During
Triangulation, no triangles are formed inside the area enclosed by the boundary
points (Fig. 8(b)). Figure 8(c) shows the triangulation result, which can be merge
exactly into the surface mesh of the branches.

4 Experiments and Results

The experiments are implemented by C++ language in this paper and the results
are exported as OBJ format to visualize and render through a famous visualiza-
tion software MeshLab [25]. Figure 9 shows part of a neurite branch, from the
discrete points to its surface mesh representation, including the original points
in (a), the spline curve in (b), the resampling in (c) and their adaptive contours
in (d) as well as the surface mesh in (e).

Figure 10 shows the whole reconstructions of three neurons, which belong to
the brain stem of the mouse. We evaluate the quality and validity of the recon-
structed mesh through comparing with the provided measurement information.
The measurements from NeuroMorpho.Org are the Soma Surface, the Total Sur-
face and the Total Volume. The comparison results are listed in Table 1. It is
obvious that there are some errors between our computations and the measure-
ments. As approximated representations, the mesh model allows these errors.
But performing some extra-processing operations like smooth on the mesh may
help to improve and reduce these errors probably.

Fig. 9. Surface reconstruction of a neurite branch

Fig. 10. Examples. a NMO 45929. b NMO 45928. c NMO 45927
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Table 1. Comparing with the measurements. M (measurement); O (ours); E (error)

ID Soma surface Total surface Total volume

M O E M O E M O E

NMO 45927 899.92 849.44 5.61% 8310.37 8766.53 5.49% 6398.93 7211.06 12.69%

NMO 45928 1287.75 1246.71 3.18% 13449.30 13299.55 1.11% 10517.60 11142.51 5.94%

NMO 45929 1256.04 1207.07 3.90% 8659.32 9379.83 8.32% 8080.25 8923.37 10.43%

Average – – 4.23% – – 4.97% – – 9.69%

5 Conclusion

In this paper, we have proposed a surface reconstruction pipeline to generate a
mesh representation, which approximates the membrane of single neuron. The
method converts the discrete points with radius and position information into
a manifold mesh model with high density and good quality. For one thing, con-
sidering the differences of each points, our method uses a pushing-forward way
to calculate adaptive contours for those points so that simplifying the branch’s
mesh generation based on contour connection. However, the splicing does not
involve the uncommon case where there are more than two children point at the
bifurcation point. For another, the surface reconstruction for complex topology
near the soma is solved to a certain extent. This is accomplished by constructing
a suitable point set and then performing the 3D triangulation directly. Neverthe-
less, the construction relies on the assumption that the soma is a sphere. In fact,
the real shape of the soma is diverse, like star, cone or pear, etc. Additionally,
original SWC data lacks detailed information about the soma. As a result, how
to represent the soma precisely is a challenge task all the time.

When reviewing relevant literatures, we found that the convolution surfaces
have great potential for modelling objects with complex geometries and are well
suited to surface reconstruction of neuronal soma consequently. But we need to
solve the problem that the convolution surface are not easily control as a kind of
implicit surface. Even if it solved, we still have to consider how the convolution
surface merges with the surface mesh of neurites. All these questions are the
main directions in our future work.
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