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Abstract. Multi-view stereo is an important research task in computer
vision while still keeping challenging. In recent years, deep learning-based
methods have shown superior performance on this task. Cost volume
pyramid network-based methods which progressively refine depth map
in coarse-to-fine manner, have yielded promising results while consum-
ing less memory. However, these methods fail to take fully considera-
tion of the characteristics of the cost volumes in each stage, leading to
adopt similar range search strategies for each cost volume stage. In this
work, we present a novel cost volume pyramid based network with dif-
ferent searching strategies for multi-view stereo. By choosing different
depth range sampling strategies and applying adaptive unimodal filter-
ing, we are able to obtain more accurate depth estimation in low resolu-
tion stages and iteratively upsample depth map to arbitrary resolution.
We conducted extensive experiments on both DTU and BlendedMVS
datasets, and results show that our method outperforms most state-
of-the-art methods. Code is available at: https://github.com/SibylGao/
MSCVP-MVSNet.git.

Keywords: Multi-view stereo · 3D reconstruction · Cost volume ·
Coarse-to-fine

1 Introduction

Multi-view stereo is one of the fundamental computer vision tasks which is widely
used in augmented reality, 3D modeling and autonomous driving. In deep learn-
ing era, deep CNNs used for cost regularization and extracting representative
image features have achieved promising performance. Yao et al. [2] first proposed
an end-to-end MVS pipeline that constructs cost volume based on plane sweep-
ing algorithm and aggregates different views by minimizing differential variance.
However, this method consumes huge memory because that 3D CNN used for
regularization is cubically proportional to image resolution. As a result, subse-
quent methods like [2,3] downsample high resolution images to regularize cost
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volume in a smaller resolution. To this end, methods designed in coarse-to-fine
manner [7–10] are put forward, which iteratively refine depth map based on cost
volume pyramid and consume less memory.

However, current coarse-to-fine methods suffer from two limitations. First,
the accuracy of the predicted depth map is highly dependent on the initial low-
resolution depth map, since it is difficult to correct the depth of ill-posed and
occluded pixels in the following narrow range. Second, current coarse-to-fine
methods use same searching strategies in refinement stages after gaining initial
depth map, which, however, not fully considered the characteristics of the cost
volumes in each stage.

Fig. 1. Our method during training and evaluation.

In this work, we propose a multi-strategies cost volume pyramid multi-view
stereo network (MSCVP-MVSNet). Instead of single depth range searching strat-
egy, we utilize multi-dimensional information to calculate depth searching range
for each layer. To further utilize the information contained in the cost volume,
we introduce unimodal distribution as a training label at second stage during
the training process.

Our main contributions can be summarized as follows:
We present multiple depth range searching methods in different stages of

pyramid structure, leveraging multi-dimension information. On the second stage,
variance-based strategy is applied to exploit previous predicted probabilities
for each pixel. For the succeeding refinement stage, we employ parameter-free
method to propagate neighboring information to an arbitrary resolution during
upsampling.

To further exploit information in cost volume of deep MVS and obtain more
accurate predictions in low-resolution stage before refinement, we propose uni-
modal assumption as a training label in second stage.

Quantitative results show that our method obtains SOTA results on DTU
dataset and satisfactory qualitative results on BlendedMVS.
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2 Related Work

2.1 Coarse-to-Fine MVS Methods

Deep MVS methods [3,4] based on pipeline of MVSNet [2] build cost volume at
the resolution of output images, which usually occupy large memory dealing with
high resolution dataset such as DTU [5] or Tanks and Temples [6]. In order to
save memory and computation consumption, coarse-to-fine methods [8–10]are
put forward. For example, CVP-MVSNet [9] and Cascade-MVSNet [10] build
cost volume across the entire depth range in the coarsest resolution, after that,
a narrowed sampling range is calculated based on previous depth predictions.
Based on these works [9,10], Yu et al. [11] propose AACVP-MVSNet, which
introduces attention mechanism to CVP-MVSNet [9] framework. Zhang et al.
[12] took into account the visibility between different views based on Cascade-
MVSNet [10].

2.2 Depth Sampling Range

Coarse-to-fine pyramid networks uniformly sample the entire depth range in the
first stage. In the following stage, they iteratively narrow depth searching range
by various strategies. CVP-MVSNet [9] determines the local sampling range
around the current depth by back projecting the corresponding pixels along
epipolar line in source views. Cas-MVSNet [10] narrows sampling range of each
stage by hand-crafted range with specific decay ratio. For the first time, Cheng
et al. [16] utilized variance of probability distribution to describe the uncertainty
of depth estimation.

All these methods mentioned above employ identical sampling range search-
ing strategies in each stage of three- or four-layer pyramid. In order to leverage
both variance and neighbouring contextual information without adding compli-
cated neural network modules, we apply different sampling range calculation
strategies in different stage of coarse-to-fine MVS framework.

2.3 Cost Volume

Recently, cost volume is widely used in MVS and stereo matching methods.
MVSNet [2] first introduces cost volume for end-to-end MVS pipeline by calcu-
lating photometric matching cost of each pixel in different fronto-parallel planes
hypothesis. A standard cost volume has a resolution of H × W × D × F , where
H, W , D, F are height, width, number of plane hypothesis and feature channels,
respectively. While cost volume indicates matching cost of each depth hypothesis
of each pixel intuitively, it is regularized by 3D UNet to generate an estimated
probability value and indirectly supervised as an intermediate layer. In order to
integrate multi-scale information of cost volume, Shen et al. [18] proposed cost
volume fusion module to obtain better initial disparity map. Like CFNet [18], we
further utilize cost volume to obtain better initial depth map before refinement.
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Fig. 2. The network structure of MSCVP-MVSNet.

3 Methods

3.1 Overview

In this section, we introduce our multi-strategies cost volume pyramid network
for high-resolution MVS reconstruction in details. The overview of the network
is shown in Fig. 2. We assume the input reference image denoted by I0 ∈ R

H×W ,
and source images represented by {Ii}N−1

i=1 . To build a pyramidal structure, we
downsample input images L times to obtain images pyramid {Ij

i }L
j=1, where

i ∈ {0, 1, · · · , N}. Feature pyramid {F j
i }L

j=1 are build by weights-shared feature
extraction module.

As shown in Fig. 2, three different sampling strategies and two separated
UNets are employed in our framework.

Inspired by GwcNet [14], we build cost volume by group-wise correlation
instead of calculating feature volume variance over all views proposed by Yao et
al. [2].

3.2 Depth Sampling Range Estimation

As introduced in related work, previous methods [9,11,18] employ single strategy
in each stage to calculate depth range, which either ignore statistical properties of
each pixel or neighbouring information. To solve this, we fuse multi-dimensional
information by simply combine different uncertainty estimation strategies in dif-
ferent stage without any additional neural network modules and achieve satis-
factory results.

In this section, we present our depth hypothesis sampling strategies in details.
As shown in Fig. 1, the number of pyramid layers in our framework is flexible,
we train 3 different layers while evaluate with arbitrary number of stages.
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Fig. 3. Depth searching range visualization.

In the first stage, we uniformly sampled depth hypothesis over the entire
range to obtain a coarsest initial depth map. Due to the large sampling range,
we sampled more depth hypothesis (D1 = 48) in this stage.

For second stage, we take advantage of probability distributions to calculate
specific depth sampling range of each pixel. Previous methods [13,18] indicate
that texture-less and occluded pixels tend to have multiple or wrong matches,
as a result, the expectation of the per-pixel distributions can not depict the
properties of multimodality and dispersion. To solve this issue, we leverage the
variance of the probability distribution as well as adaptive unimodal constraints
(Sect. 3.3) to estimate per-pixel uncertainty and reduce local maxima of proba-
bilities. We set the number of depth hypothesis, D2 = 32 in this stage. For stage
l, the variance at pixel i is defined as:

V̂ l
i =

Dl∑

j=1

P l
i,j(d

l
i,j − d̂l

i)
2, (1)

where P l
i,j is the probability of pixel i at sampled depth j,dl

i,j is the depth of

sampled plane j, d̂l
i is the estimated depth of pixel i at current stage.

Different from UCSNet [16], we adopt the idea of CFNet [18] that originally
proposed in stereo matching task, which use learned instead of hand-crafted scale
parameters to determine confidence interval:

dl+1
max(i) = d̂l

i + αl

√
V̂ l

i + βl,

dl+1
min(i) = d̂l

i − αl

√
V̂ l

i − βl,

(2)

where αl and βl are learned parameters in stage l. Same as CFNet [18], we initial
αl and βl as 0 at the beginning of training. In texture-less regions with multi-
modal distributions, the variances tend to be large, and adaptive uncertainty
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range estimation algorithm adjust depth hypothesis to a larger range so as not
to miss the truth depth value before small-range refinement. Depth searching
ranges in Fig. 3 show the effectiveness of our variance-based method in 2nd stage.

Our first two layers have yielded fair results at the low resolution stage, and
the depth values of high-resolution depth maps are obtained via upsampling
operation. Specifically, we apply parameters-free method to determine sampling
range, which takes advantage of contextual information provided by neighboring
pixels along epipolar line [9].

3.3 Supervise on Cost Volume

As shown in Fig. 3, it is hard to correct misestimated depth in refinement stages.
To attain better predictions before neighboring-based refinement, we further
utilize the information in cost volume at 2nd stage.

Cost volume is defined to reflect the similarity between different views, where
the true depth value should have the lowest cost, which means the probability
distribution should be unimodal and peaked at the true depth hypothesis under
ideal circumstances. Based on this assumption, we construct unimodal distribu-
tions as reference distributions which directly constraint on the cost volume to
reduce errors introduced by multi-modal distributions. Following [13], we defined
reference unimodal distribution as:

P l(i) = softmax(−|dl(i) − dl
gt(i)|

σi
), (3)

where σi is variance of reference distribution for pixel i, which controls the
sharpness of peak and it is defined as:

σl
i = αl

c(1 − f l
i ) + βl

c, (4)

where f l
i is confidence value of pixel i in stage l. We estimate confidence value

for each pixel by a 2D confidence estimation network. αl
c and βl

c are scale factor
and lower bound, respectively. Different from [13], we use learned neural net-
work parameters instead of hand-crafted factors to adapt different properties of
probability distributions for different datasets. Large σ indicates low confidence
of pixel, which usually caused by mismatch in textureless regions.

We leverage stereo focal loss proposed by AcfNet [13] to guide network to
generate unimodal distributions for each pixel. The stereo focal loss is defined
as:

LSF =
1

|P|
∑

i∈P
(
D−1∑

d=0

(1 − Pi(d))−γ · (−Pi(d) · logP̂i(d))), (5)

where Pi(d) is probability value of reference unimodal distribution at depth d of
pixel i, and P̂i(d) is estimated probability of pixel i at depth d given by our UNet.
Instead of simple cross entropy loss, we set γ ≥ 0 to force unimodal guidance to
focus on high-confidence regions.
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After adaptive unimodal filtering (AUF), some local maximas are eliminated,
and the errors in stage 2 are decreased. Figure 3(left) presents depth searching
range of our method with and without AUF, respectively. The depth sampling
range in 2nd stage indicates that AUF narrows down the sampling range and
contributes to a more accurate initial depth map before refinement.

3.4 Loss Function

Our total loss consists of three parts: regression loss in each stage, stereo focal
loss and confidence loss, which is denoted as:

L =λSF LSF + λCLC +
L∑

l=1

ωlLl
regression (6)

where λSF and λC are two factors to balance stereo focal loss and confidence
loss on second stage. The confidence loss LC is defined as:

LC =
1

|P|
∑

i∈P
−logfi (7)

We apply negative log-likelihood function as confidence loss to encourage confi-
dence estimation network to predict high confidence values for each pixel.

Regression loss Ll
regression is defined to reflect the difference between the

predicted depth map and ground-truth at stage l. We use hand-crafted weight
ω at each stage. For stage l, the L1 norm is defined as:

Ll
regression =

∑

i∈P
‖dl

i − d̂l
i‖1 (8)

4 Experiment

4.1 Dataset

DTU Dataset. We train and evaluate our network on DTU dataset [5] to
obtain quantitative results. DTU dataset [5] consists of 124 large scale of scenes
in 49 or 64 different views and 7 different light conditions, with the evaluation
reference obtained by a structured light scanner. We use the same splited training
and evaluation sets with [3,9,11]. While the original size of evaluation image is
1600 × 1200, we crop it to 1600 × 1184 to fit the upsample process.

BlendedMVS. BlendedMVS [22] is a collection of images captured from dif-
ferent views of 113 various scenarios. It contains 17K training samples in low-
resolution (768 × 576) as well as high-resolution (2048 × 1536). Following the
official training and validation list given by the released dataset files, we divided
106 scenes for training and the other 7 for validation in low-resolution Blended-
MVS. We train our model on low-resolution BlendedMVS and evaluate on both
low-resolution and high-resolution.
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Table 1. Quantitative results on DTU

Methods acc. comp. overall

MVSNet [2] 0.396 0.527 0.462

R-MVSNet [3] 0.383 0.452 0.418

MVSCRF [4] 0.371 0.426 0.398

PointMVSNet [7] 0.361 0.421 0.391

CVP-MVSNet [9] 0.296 0.406 0.351

AACVP-MVSNet [11] 0.357 0.326 0.341

Vis-MVSNet [12] 0.369 0.361 0.365

USCNet [16] 0.338 0.349 0.344

PVSNet [21] 0.337 0.315 0.326

Ours 0.379 0.278 0.328

Table 2. Different strategies

Strategies acc. comp. overall

DHS1 0.444 0.361 0.402

DHS1+DHS2 0.338 0.349 0.344

DHS1+DHS3 0.404 0.321 0.362

DHS1+DHS2+DHS3 0.389 0.279 0.334

Note: DHS1 denotes uniformly sampling the

whole range, DHS2 denotes variance-based

method, and DHS3 back-projects pixels

along epipolar line to calculate depth

searching range.

4.2 Implementation Details

Training. We train and evaluate our model on DTU dataset and low-resolution
BlendedMVS. For first stage, we uniformly sample the whole depth range
[425, 1065] with D1 = 48, while for 2nd and 3rd stage, we choose D2 = 32
and D3 = 8, respectively. As the training process with high-resolution inputs
is memory and time consuming, we downsample the training set into a size of
320× 256, and the coarsest resolution is 40× 32 in the first stage. We set hyper-
parameters λSF = 10, λC = 80 in equation (6) and choose ω1 = 0.5, ω2 = 1,
ω3 = 2 to balance L1 loss in each stage. As for the reference unimodal distribu-
tion, the scale factors are initialized as α2

c = 13 and β2
c = 9, respectively, based

on empirical evidence from [13]. We use 3 different views as inputs and Adam
[19] as optimizer in the training stage of the proposed network. We set batch
size as 16 and train our model on 2 Nvidia GeForce RTX 3090 for 40 epoches
with initial learning rate 0.001 multiplied by 0.5 at 10th, 12th, 14th, 20th epoch.

Evaluation. For DTU dataset, we crop the original images to 1600 × 1184 for
evaluation. We set L = 5 for image feature pyramid to maintain a similar size
with training stage at the coarsest stage (50 × 37). Similar to [2,3,9], we choose
5 views in evaluation for fair comparison. The depth sampling numbers D in
each stage the same as training process. As for BlendedMVS, we evaluate our
proposed method on both low-resolution and high-resolution dataset.

Post processing and Metrics. After estimating the depth map, we fuse all
views into a dense point cloud model for each scene. For fair comparison, we
follow the common post processing method used by [2,3,9], which is a fusion
method provided by Galliani et al. [20]. We run the official evaluation code
provided by DTU dataset [5] to obtain quantitative results of mean accuracy
(acc.), mean completeness (com.) and overall score (overall). The evaluation
results are listed in Table 1.
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Fig. 4. Reconstruction results on DTU dataset.

4.3 Results on DTU Dataset

We train and evaluate our method on DTU dataset to conduct quantitative
results in comparison with other learning based methods. As shown in Table 1,
our method achieves state-of-the-art results in overall score, which is comparable
to PVSNet [21]. Especially, our method outperforms all methods in Table 1 in
terms of completeness. As shown in Fig. 4, We visualize several reconstructed
3D models constructed by CVP-MVSNet [9], AACVP-MVSNet [11] and our
proposed method.

4.4 Results on BlendedMVS

As BlendedMVS dataset does not provide any reference point clouds for quan-
titative evaluation, we conduct the visual comparison with CVP-MVSNet [9].
L = 3 in training process, while for evaluation, we set L = 5 and L = 6 for low
and high resolution evaluation sets, respectively. In the same way, we compare
our method with CVP-MVSNet [9] and the results of low- and high-resolution
dataset are shown in Fig. 5. On high-resolution data sets, the superiority of our
method in terms of completeness is even more evident.

4.5 Effectiveness of Multi-strategies

As shown in Table 2, we compare our proposed multi-strategies with other com-
binations of strategies. For strategy “DHS1”, we apply DHS1 and uniformly
sample at each stage with handcrafted searching range [40, 20, 10, 5] from 2nd to
5th stage (range 1 corresponds to stage 2). “DHS1+DHS2” and “DHS1+DHS3”
perform results of single strategy DHS2 and DHS3 from 2nd to 5th stage, respec-
tively.

As shown in Fig. 3, CVPMVSNet [9] applies DHS3 in each stage and fails to
locate an interval which contains true depth value from 2nd to the last stage. Its
single and inflexible range searching strategy makes it hard to jump out of the
pattern and rectify mismatch in previous stage. We believe that DHS2 which is
based on the variance of previous prediction is more accurate and effective to
locate true depth value (see (b) range 1 in Fig. 3), but proper scale factors are
needed in each specific stage. Our proposed multi-strategies method combines
both DHS2 and DHS3, in the second stage, DHS2 gives a reasonable searching
range based on previous predicted probabilities, while for the rest stages, DHS3
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which is parameter-free provides an effective way to propagate depth of neigh-
boring pixels along epipolar line to an arbitrary resolution during upsampling
refinement. Noteworthy, multi-strategies method works better when it combines
with two separated UNets (see CVP-MS and CVP-MS-U2Net in Table 2).

Fig. 5. Reconstruction results on BlendedMVS dataset.

4.6 Ablation Study

In this section, we perform ablation experiments on DTU dataset to validate the
effectiveness of each component of our proposed network. Results are shown in
Table 3. Below we analyse each component in details.

Table 3. Ablation study on DTU dataset

Methods Variance Epipolar line U2Net Auf acc. comp. overall

CVP (baseline) � � � � 0.313 0.394 0.354

CVP-MS � � � � 0.343 0.439 0.391

CVP-U2Net � � � � 0.330 0.379 0.355

CVP-MS-Auf � � � � 0.321 0.398 0.360

CVP-MS-U2Net � � � � 0.389 0.279 0.334

Ours � � � � 0.379 0.278 0.328

• Non-parameter-sharing UNet. 3D UNet is designed for cost volume reg-
ularisation and explore cost volume information in three dimensions. Quanti-
tative results on DTU dataset show that our two parameter-separating UNets
gain better results (0.328 vs.0.360) than parameter-sharing UNet. The huge
gap indicates that former stages which search in a wider range have differ-
ent characteristics with refinement stages in the cost volume regularization
process.

• Supervise on cost volume. While multi-strategies with two non-
parameter-sharing UNet framework has achieve promising results (see CVP-
MS-U2Net in Table 3), we obtain even better results when further adding
adaptive unimodal filtering (AUF) on 2nd stage. As shown in Fig. 3, the depth
sampling range in 2nd stage is narrowed after adding AUF module. Interest-
ingly, quantitative results of CVP-MS-Auf and CVP-MS in Table 3 show that
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adaptive unimodal filtering gives a greater boost when parameter-sharing
UNet is adopted.

• Image resolution during training and evaluation. Table 4 shows that
the performance of the model trained with higher resolution input is better
than that with lower resolution input. To discover the relationship between
pyramid levels and quality of output depth map, we also evaluate our method
with different pyramid levels on DTU dataset. As shown in Table 4, coarse-
to-fine network with 5 pyramid stages achieves the best overall score.

Table 4. Quantitative results on DTU dataset with different training and evaluation
resolution.

Coarsest ResT Coarsest ResE LevelsE mem. (M) runtime (s) acc. comp. overall

40 × 32 25 × 18 6 6809 2.543 0.372 0.292 0.332

20 × 16 25 × 18 6 0.382 0.324 0.353

40 × 32 50 × 37 5 7863 2.550 0.379 0.278 0.328

20 × 16 50 × 37 5 0.371 0.328 0.349

40 × 32 100 × 74 4 6935 2.483 0.360 0.311 0.335

20 × 16 100 × 74 4 0.349 0.478 0.413

40 × 32 200 × 148 3 7861 2.366 0.375 0.530 0.452

20 × 16 200 × 148 3 0.531 1.959 1.245

5 Conclusion

In this paper, we present an efficient deep-learning based cost volume pyramid
network for MVS. By combining different sampling range estimation strategies
for each stage, we integrate multi-dimensional information without additional
neural network modules. Then, we apply adaptive unimodal filters to further
improve the low-resolution depth map before refinement. Results on different
datasets show the effectiveness and generalisability of our method.
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