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Abstract. We present an efficient dense depth map estimation algo-
rithm using patch-based direct stereo matching for ultra-wide-angle
images. Our algorithm takes account of the fact that the neighboring
pixels inside a local patch are likely to lie on the same plane. Our algo-
rithm propagates the “good” initial guesses to the neighboring pixels by
spatial propagation, followed by a random refinement process. Therefore,
this allows finding precise depth value for each point in an infinite space
using a random search strategy. Our algorithm can be used to perform
3D reconstruction using the dense depth maps directly generated from
ultra-wide-angle images, especially from stereo camera pairs.

Keywords: Ultra-wide-angle camera · Depth map · Patch-based
stereo matching

1 Introduction

To understand and reconstruct surrounding environments, cameras play a cru-
cial role in many applications due to the rich and comprehensive information in
images [1–3]. Among various cameras, ultra-wide-angle lenses capture the large
views of a surrounding environment and expect to benefit many applications
like augmented reality and robotics [4,5]. For example, in virtual/augmented
reality, panoramic cameras often use a combination of multiple ultra-wide-angle
lenses to capture immersive environments [6]. Mounting ultra-wide-angle cam-
eras on the vehicle also becomes a standard option for environmental percep-
tion in autonomous driving [7] and mobile robots [8]. Depth cues of the cap-
turing scene can benefit many computer vision tasks, such as post-processing
approaches of depth-of-field rendering [2,9] and image deblurring [10].

Unlike the image features generated using sparse depth cues [11,12], dense
depth map estimation aims at leveraging the large field of view to perform
3D reconstruction for the entire surrounding environment. Estimating depth
from a monocular ultra-wide-angle camera is considered as a challenging and
ill-posed problem. Therefore, in virtual/augmented reality, multiple ultra-wide-
angle lenses are often used to perform stereo matching to generate immersive
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depth maps. There still exhibit a few challenges for stereo matching using ultra-
wide-angle lenses. First, ultra-wide-angle cameras have severe geometric distor-
tions. Many standard stereo matching algorithms like image rectification may
undergo perspective projection [13], spherical model projection [14] or equirect-
angular projection [15]. These projections exhibit severe distortions in the result-
ing depth maps and therefore this may significantly reduce the view coverage
provided by the ultra-wide-angle cameras. Second, estimating correct depth val-
ues is non-trivial especially for ultra-wide-angle cameras. For example, plane
sweeping [16] searches pre-defined plane hypotheses for depth values of each
pixel and often leads to inaccurate depth values for pixels located at the planes
that are not included in the pre-defined plane set. Note that the pre-defined
possible planes are limited, though the number of candidate planes is infinite.
Third, many studies can only handle ultra-wide-angle stereo pairs undergoing
small displacements [17], but they may not suit for rapid movement.

Main Result: In this paper, we present a new efficient patch-based stereo
matching algorithm for the ultra-wide-angle lens. We introduce the PatchMatch
randomized searching method [18], which is proved to be efficient on search-
ing the matching patch in image domain [2,19]. Patch matching stereo allows
finding accurate depth values for each point in an infinite space with a random
search strategy. Intuitively, patch match stereo efficiently traverses the infinite
candidate planes and performs a one-shot optimization in which the planes and
pixel assignments to corresponding planes are determined at the same time. This
avoids the problem of missing correct planes. Our algorithm has the following
novel aspects.

– The algorithm can be directly applied to ultra-wide-angle image pairs without
rectification, thus providing dense depth maps for the entire environment
captured by cameras.

– Using patch-based stereo matching, our algorithm can locate correct planes
for each pixel with a random search strategy, which avoids missing the accu-
rate depth values.

– Our algorithm deals with stereo pairs with an arbitrary baseline. This allows
handle the rapid camera movement and perform reconstruction from stereo
pairs with large displacements.

– Our algorithm is applicable for any camera projection model, as long as it
has a closed-form inverse.

2 Patch Matching Stereo

In this section, we first introduce the double sphere camera projection model
for ultra-wide-angle lenses. Then we demonstrate adopting the double sphere
camera model in patch-based stereo matching.

2.1 Camera Projection Model

In this paper, we demonstrate the proposed algorithm with the double sphere
camera model [20] since it has a closed-form inversion (unprojection) and can
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avoid high computational costs. Note that our algorithm works for any ultra-
wide-angle lens model that has a closed-form inversion. As shown in Sect. 3, we
demonstrate some results under the unified camera model.

In the double sphere model, a point in the world space are projected onto
two unit spheres consecutively. We assume that the distance between the centers
of the two unit spheres is ξ. Then the point is projected onto the image plane
shifted by α

1−α under perspective projection. Let the camera intrinsic parameters
be K = [fx, fy, cx, cy, ξ, α]T , where [fx, fy] are focal lengths and [cx, cy] is the
principal point given in a perspective projection. They can be typically estimated
using camera calibration.

For a 3D point x and its corresponding image pixel u, the function u =
π(x,K) represents the map from a 3D point onto the corresponding image plane.
The unprojection function x = π−1(u,K) maps an image pixel to its correspond-
ing viewing ray. Here, we omit the details of the double sphere camera model.
We refer the readers to [20] for more explanation.

2.2 Patch Matching Stereo for Ultra-Wide-Angle Images

Patch matching stereo has been proven efficient and accurate for 3D recon-
struction under perspective projection [21,22]. Here, we propose adopting an
ultra-wide-angle lens projection model on patch-based stereo matching.

The proposed algorithm aims at estimating depth value based on the ultra-
wide-angle stereo pair. The patch matching stereo algorithm takes input image
pairs I = {Ii, Ij}, together with the associating camera parameters {Ki,Ri,Ci}
and {Kj ,Rj ,Cj}, where K stands for camera intrinsics and [R,C] are camera
pose parameters. For a given pixel, its support plane is denoted as [xi,ni], where
xi is a 3D point on the plane and ni is the plane normal.

To generate the depth map for image Ii, we first perform a random initializa-
tion by assigning a random plane to each pixel in Ii. From the probability point
of view, there must be some pixels assigned a plane very close to the correct one.
Later, these good guesses will be able to propagate to the neighboring pixels by
spatial propagation. The 3D point xi on the random plane is defined by the scale
factor of the viewing ray and can be obtained from inverse projection function
given in Eq. (1).

xi = diπ
−1
i (ui,Ki). (1)

We assign a random depth value di for xi, and the plane normal is defined in
spherical coordinates

ni =

⎡
⎣

cosθsinφ
sinθsinφ

cosφ

⎤
⎦ . (2)

where θ ∈ [0, 360◦] is the angle between the plane’s normal and the x axis.
φ ∈ [0, 180◦] is the angle between ni and the z axis.

After initializing the random candidate plane to each pixel, we propagate
initial guesses to neighboring pixels and add random perturbations. Here, we
aim to find the support plane with the minimal aggregated matching cost for
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each pixel. We first map a pixel to other view to find its corresponding patch
using the assigned plane parameter. Then the matching cost is evaluated between
two corresponding patches.

More specifically, for an input image Ii, each pixel ui is mapped to a random
plane and then is rendered onto the other view Ii

j . We use homography to perform
planar mapping [23] defined in Eq. (3) with the plane parameters. To find the
corresponding pixel in the other image Ii

j , we apply the projection function
and transformation homography Hji to each pixel’s homogeneous coordinates
ui(ui, vi, 1) as Eq. (4). To obtain the direct dense matching on wide-angle images,
we use the double sphere camera model given in Eqs. (3) and (4).

Hji = RT
j Ri +

1
nT

i xi
RT

j (Cj − Ci)nT
i (3)

[ui
j , v

i
j , 1] = πjHjiπ

−1
i [ui, vi, 1] (4)

Using the above equation, we locate the corresponding patch on Ij . We check
the image variance between the corresponding patches centered at the given
pixel. For a pixel u(u, v) in Ii, we select a correlation window W centered on
that pixel position (u, v) and warp all the pixels in W to reference image Ij in
order to find its corresponding patch Ii

j using Eq. 4. To evaluate image variance,
we compute negative zero mean normalized cross correlation (ZNCC) over the
window W. A negative ZNCC between two corresponding patches at a given
pixel position can be written as Eq. (5).

M(u, f) =

− ∑
(x,y)∈W

{Ii(x, y) − Ii(x, y)}{Ii
j(x, y) − Ii

j(x, y)}
√ ∑

(x,y)∈W
{Ii(x, y) − Ii(x, y)}2 ∑

(x,y)∈W
{Ii

j(x, y) − Ii
j(x, y)}2

(5)

We traverse the given image in a row-wise order and optimize the parame-
ters for each pixel. Then we perform propagation and random refinement. This
optimization process is performed in many iterations for a single image. In the
odd-numbered iterations, we start at the top left corner of the image and end
at the bottom right corner. In the even-numbered iterations, we start at the
bottom right corner until we reach the top left corner.

We examine whether the plane parameters of four neighboring pixels are bet-
ter choices for the given pixel in spatial propagation. Here, we take the fact that
neighboring pixels are more likely to lie on the same plane. In an odd-numbered
iteration, we check the left pixel and the top pixel in spatial propagation. In an
even-numbered iteration, we check the right pixel and the bottom pixel. Let the
current pixel denoted by p and its plane denoted by fp. We assign its neighbor-
ing pixel q’s plane fq to p. We check the condition M(p, fq) < M(p, fp), and
if it holds, update p with fp = fq.

The random refinement searches for the plane parameters exhibiting a smaller
matching cost. In this step, we alter the plane parameters within a wide range
in the early stage. It is reasonable if the current parameters are completely
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wrong. Then we reduce the search region, so the planes are close to the opti-
mal one. Let the plane at point p be defined by the depth value d and the
normal vector n. We set the maximum change for the plane’s depth Δdmax

and the normal Δn(Δθmax, Δφmax). Then we randomly choose values Δd from
[−Δdmax,Δdmax], and Δn(Δθ,Δφ). We can generate a new plane by adding
those random values to p’s plane f ′

p = [d + Δd,n + Δn]. In our work, the vari-
ation range is set Δdmax = 1

4 (dmax − dmin), Δθ ∈ [0, 180◦], Δφ ∈ [0, 90◦]. If the
condition M(p, f ′

p) < M(p, fp) holds, we update the plane in p.
We perform the random refinement for a few iterations (e.g. 4) at each pixel

and decrease the variation range by half in each iteration. This strategy effec-
tively narrows the search space. It is essential to search a wide range in the early
optimization stages, for there might be a false plane assignment. In later itera-
tions, a compact variation range leads to precise exploration and allows accurate
depth values for points on a smooth surface.

3 Experimental Results

We implemented our patch-based stereo algorithm using CUDA. Our algorithm
can run effectively both on Windows and Linux. The performance of our algo-
rithm was evaluated on a PC with NVIDIA GeForce GTX 2080Ti and 32GB
main memory. We perform quantitative and qualitative comparisons against the
state of the art fisheye stereo matching methods on public datasets. We perform
the evaluations on two datasets: the TUM VI Benchmark [24] and the Oxford
RobotCar dataset [25–27].

3.1 The TUM VI Benchmark

Fig. 1. Left: The average computational time per depth map under three camera mod-
els and various matching window. Middle: The pixel percentage of matching cost (<0.1)
in terms of the number of iterations under various matching window. Right: MAE of
four methods for the Oxford RobotCar dataset. The orange lines indicate the median
values of the depth difference between the estimation and the LiDAR data. The purple
dash lines highlight the mean values.
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Fig. 2. Top Row: Input ultra-wide-angle images; Bottom Row: The corresponding
ultra-wide-angle depth maps generated using our algorithm using double sphere cam-
era model. Depth maps of the first and second columns are computed with the double
sphere camera model, and the third and fourth columns use the unified camera model.

Fig. 3. The first and third images are input images, and the second and fourth images
show the 3D point clouds constructed from our depth maps. Pay attention to the
highlighted regions.

We tested our algorithm using the TUM VI Benchmark [24]. The bench-
mark contains an ultra-wide-angle stereo camera pair and provides calibration
sequences. We first perform calibration to obtain the cameras intrinsics and
extrinsics using Kalibr calibration toolbox [28]. In this experiment, the images
have 512 × 512 pixels and 195◦ FOV. The matching window has 9 × 9 pixels.
A larger window results in fewer noises (errors) in the resulting depth map. We
first generate the depth map for one image and then take the output depth map
as the initial guess for another. This greatly reduces the computational costs
compared with random initialization for both images.

Figure 1-(Left) shows the computational time of generating a depth map
under various matching window sizes. We implemented our patch-based stereo
matching algorithm under three camera models: double sphere (DS), unified
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camera model (UCM) and pinhole camera model. Note that we refer to the
algorithm in [22] for rectified fisheye image under the pinhole camera model. In
Fig. 1-(Middle), we also evaluated the matching cost in terms of the number of
iterations. A larger matching window has a lower matching cost while taking
more computational time.

In our experiment, the first image takes 60–80 iterations, while the second
only takes 5–10 iterations. In addition, the depth result in successive frames can
also be used as the initial guess for acceleration. Figure 2 show our experimental
results. Our algorithm can generate continuous depth maps with clear object
boundaries. Note that those images were taken in various lighting conditions. Our
algorithm is less sensitive to illumination changes. In Fig. 3, we also show a few
dense point clouds constructed from our depth maps. Moreover, our algorithm
can work for any camera projection model, as long as it has a closed-form inverse.
We tested our algorithm using the unified camera model. The third and fourth
columns of Fig. 2 show some promising depth maps.

Input Rectif.-Pinhole Plane-Sweeping[16] VFS [17] Ours

Fig. 4. Comparisons under the TUM VI dataset. Each row shows from left to right:
input image, patch match stereo under the pinhole camera model [22], plane-sweeping
[16], VFS [17] and our algorithm.

3.2 Comparisons

In Fig. 4, we compare our algorithm against the related work, including rec-
tified wide-angle images under the pinhole camera model [22] (2nd column),
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plane-sweeping stereo1 [16] (3rd column), variational fisheye stereo (VFS)2 [17]
(fourth column). Plane-sweeping stereo and VFS directly perform stereo match-
ing on wide-angle images. Plane-sweeping stereo searches for depth value from
pre-defined hypotheses, and VFS searches for the correspondence along the
epipolar curve using a trajectory field induced by camera motion. Note that
the Kannala-Brandt camera model was used in VFS [29]. The last column in
Fig. 4 shows the results using our algorithm. In these comparisons, the number
of candidate planes is 256 in plane-sweeping. The number of iterations in the
patch matching algorithm is 60. The matching window is 11 × 11. The compu-
tational performance and comparison are shown in Table 1.

Patch matching using the rectified images under the pinhole camera model
exhibits clear noises near image boundaries. These boundary areas have to be
cropped and therefore significantly reduce the valid coverage. Plane sweeping
also generates a large number of inaccurate (noisy) depth values in the resulting
depth maps. Besides the comparison results shown in Fig. 4, Fig. 5 shows another
comparison against VFS. VFS generates depth maps with fewer noises, but the
objects near the boundary are blended with the background. Our algorithm gen-
erates high-quality depth maps with clear and sharp object boundaries. Due to a
large matching window, the objects may expand slightly along their boundaries.

We also perform quantitative comparison in terms of matching accuracy. For
each pixel u in image Ii, we project the pixel into the world space x using the
obtained depth di. Then, we map the pixel u onto the other image Ij to get its
corresponding point ui

j , and project the point ui
j into the space x′ according to

the depth map of Ij . Then we check if the condition |x − x′| > ε holds. If it
holds, the depth value at u is considered invalid. We set ε = 2. Table 1 shows the
percentage of pixels that have depth errors less than ε = 2. We also evaluate the
matching cost in Eq. 5 for the resulting depth map. Our algorithm outperforms
other algorithms in terms of depth error and matching cost (see Table 1).

Table 1. Performance and accuracy comparison

– TUM VI Oxford RobotCar

Time Depth error Matching cost MAE σ

(ms) <2(%) <0.2(%)

Rectif. 28.5 63.12 85.88 3.483 2.923

Plane sweeping [16] 38.6 74.59 90.59 2.593 2.933

VFS [17] 207.8 80.92 40.68 2.962 2.763

Ours 39.4 83.56 92.49 2.169 2.552

1 https://www.cvg.ethz.ch/research/planeSweepLib/.
2 https://github.com/menandro/vfs.

https://www.cvg.ethz.ch/research/planeSweepLib/
https://github.com/menandro/vfs


Direct Stereo Matching for Ultra-Wide-Angle Images 125

Fig. 5. Left: input images; Middle: depth maps generated using VFS; Right: our results.
Pay attention to the rectangular areas. Our algorithm shows a clear object boundary
compared with VFS.

Fig. 6. Left: input image with LiDAR data projected; Middle: The resulting depth
map computed by our algorithm. Right: The depth error per pixel where the LiDAR
data are available.

3.3 The Oxford RobotCar Dataset

We further evaluated our algorithm using the Oxford RobotCar dataset with
LiDAR, GPS and INS ground truth. The wide-angle image sequences are col-
lected from three wide-angle cameras mounted on the left, the right and the
rear. We use the left-mounted global shutter camera images with a 180◦ FOV.
We calibrate the camera with the Kalibr toolbox to obtain the intrinsic param-
eters. For the extrinsic of each image, we apply the unified camera model to
ORB-SLAM2 [30] to get the keyframe poses. Then we compute the depth maps

Fig. 7. The point cloud generated using our algorithm.
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Fig. 8. Depth maps generated using four methods. The patch match stereo on rectified
wide-angle images generated noise(inaccurate depth values), and the plane sweeping
fails at the background sky area. VFS does not work well on images with significant
displacement. Our method can generate high-quality depth maps with clear object
boundaries.

for these keyframes. All the stereo matching algorithms are performed for two
consecutive images. We compare our algorithm with point clouds scanned using
LiDAR, as shown in Fig. 6. We observe that the depth maps generated using our
algorithm are close to the depth resulted from the LiDAR. Figure 7 shows the
point clouds generated by the proposed algorithm.

We also performed a comparison against other algorithms using the Oxford
Radar RobotCar Dataset. The comparison results are given in Fig. 8. The match-
ing window is 9×9 and 11×11 for evaluating the matching cost. The maximum
number of iterations for patch match stereo is 60. The number of candidate
planes for plane sweeping is 256.

We also compare the depth maps using the Velodyne HDL-32E LiDAR scans
on the dataset. We evaluate the mean absolute error (MAE) on every depth map
for the pixels whose depth is less than 20 m. We calculate the scale factor for
every depth map. We take 50 keyframes and evaluate the dense stereo matching
algorithms. The comparison result is shown in Table 1 and Fig. 1-(Right). The
experimental results indicate that our algorithm has the best performance in
comparison.

4 Conclusion

In this paper, we demonstrate that patch-based stereo matching can be directly
applied to ultra-wide-angle images. Our algorithm can directly estimate depth
values at each pixel for the given ultra-wide-angle images and generates high-
quality depth maps with clear object boundaries. We further accelerate our algo-
rithm using GPUs.
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Our work has some limitations. For texture-less or shining surfaces, there
exhibit false matches due to insufficient local evidence. This may cause obvious
noises in the resulting depth maps.

In future, we would like to investigate the patch-based stereo matching algo-
rithm in the stereoscopic 360 camera rig in order to generate a full range of
depth maps for the surrounding environment. In addition, we would like to con-
sider mounting stereo ultra-wide-angle cameras onto our mobile robot platform.
Robot path planning is expected to greatly benefit from the resulting depth
maps.
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