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Abstract. Segmentation of anatomical structures from Cardiac Mag-
netic Resonance (CMR) is central to the non-invasive quantitative assess-
ment of cardiac function and structure, and deep-learning-based auto-
matic segmentation models prove to have satisfying performance. How-
ever, patients’ respiratory motion during the scanning process can greatly
degenerate the quality of CMR images, resulting in a serious perfor-
mance drop for deep learning algorithms. Building a robust cardiac MRI
segmentation model is one of the keys to facilitating the use of deep
learning in practical clinic scenarios. To this end, we experiment with sev-
eral network architectures and compare their segmentation accuracy and
robustness to respiratory motion. We further pre-train our network on
large publicly available CMR datasets and augment our training set with
adversarial augmentation, both methods bring significant improvement.
We evaluate our methods on the cine MRI dataset of the CMRxMotion
challenge and obtain promising performance for the segmentation of the
left ventricle, left ventricular myocardium, and right ventricle.

Keywords: Cardiac segmentation · Network pre-train · Robust
learning

1 Introduction

Cardiac Magnetic Resonance (CMR) imaging is the golden standard sequence for
non-invasive evaluation of cardiac anatomical structures and functionalities [1].
Anatomical segmentation allows for analysis of what is of interest to the clinicians.
By discarding irrelevant information, the images can be smaller in size, which can
reduce the post-processing time and computing power for the downstream analy-
sis. It is also a crucial pre-requisite for the calculation of several image-based bio-
markers [2–4] with diagnostic value. Recently, with the development of artificial
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intelligence, fully-automatic segmentation algorithms based on deep learning start
to surpass manual segmentation with faster speed, less subjective bias, and compa-
rable or even higher accuracy. However, in clinical practice, the model performance
highly relies on image qualities. For CMR acquisition, respiration motion is one of
the major causes of degenerated image qualities, as it may be difficult for certain
patients with acute symptoms to follow the instructions and hold their breath for
a long time during the scan. Images contaminated by respiratory motion have seen
a significant drop in model performance and result in obvious failure cases.

Currently, most automatic cardiac segmentation models are based on deep
learning methods, which learn a function to map the input images to the seg-
mentation masks. This method highly relies on the quantity and quality of the
training data, and is based on the assumption that the hold-out data has alike
distribution to the training data. In practical clinic scenarios, the number of
available training data is limited, and the quality of most images is high to
guarantee diagnostic value. With such training data as supervision, the model
is trained to only perform well on clean images and can easily fail when encoun-
tering images with low quality.

Pre-training and data augmentation are two important data-driven meth-
ods which have proven effect in improving model robustness. These two meth-
ods focus on enlarging the training data and better utilizing the existing data
respectively. Pre-training exposes the model to a large dataset other than the
training set, so as to broaden the model’s horizon. It is recognized to yield
better results than training from scratch [21,22]. Although some researchers
argue that pre-training offers little benefit for certain tasks or light weight archi-
tectures [23,24], it is still undeniable that pre-training can enhance the model
robustness and improve its performance on hold-out individuals [25,26]. Data
augmentation is another standard trial to build robust segmentation models. It
exposes the network to higher variability through perturbations of the training
data. This includes native approaches such as cropping, rotation, and flipping. As
respiration motion will cause spatial transformation of the anatomic structure,
deformation-based augmentation [6] is also rewarding for training. A recently
proposed adversarial data augmentation method [5] can generate plausible and
realistic signal corruptions that are difficult for the models to analyze and there-
fore increase the model’s adversarial robustness.

In this work, we explore these two data-driven approaches in the context of
the CMRxMotion challenge [32]. The main goal of this challenge is to build a
model for segmentation of the left ventricle (LV), left ventricular myocardium
(MYO), and right ventricle (RV), based on limited training data. This model
should be robust under different levels of respiration motion as the test data
composes of images with diverse quality levels. We pre-train our model on large
publicly available datasets with the same tasks, and increase the data variability
through both random augmentation and adversarial augmentation. We find that,
through intensive pre-training and strong data augmentation, even without novel
DCNN architectures, the model can still reveal high robustness towards the
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qualities of the images, regardless of reasons for low-quality images, such as
respiration motion.

2 Methods

We first give a brief introduction to the dataset of the CMRxMotion challenge
and then explain our proposed approaches in detail.

2.1 Dataset

The CMRxMotion dataset [32] consists of short-axis (SA) cine MRI acquisitions
of 45 healthy volunteers. Each volunteer is trained to act in 4 manners during the
scanning process, namely a) stick to the breath-hold instructions, b) halve the
breath-hold period, c) breathe freely, and d) conduct intensive breathing. The
pixel sizes vary from ∼0.66 to ∼0.76mm, the image resolution ranges from 400 to
512 pixels, the number of slices is between 9 and 13, and the slice thickness ranges
from ∼9.6mm to 10mm. For images with diagnostic qualities, LV, MYO, and
RV at the end of systole (ES) and end of diastole (ED) are manually segmented
by radiologists. Exams of 20 volunteers with both images and ground-truth seg-
mentation as well as 5 volunteers with only images are released for training and
validation respectively. The remaining 20 volunteers are withheld for testing.

2.2 Network Architecture

We try three variants of U-Net: nnU-Net [14], Swin-UNETR [13], Swin-UNet [8].
nnU-Net [14] is a pure CNN-based method, which is good at catching the

local pattern of the image. One modification we make is to replace convolution
operation at the bottleneck layer with deformable convolution [10], which has
shown increases in performance since it allows for a flexible receptive field [20].
The sampling offset learned by deformable convolutions is expected to counteract
some of the shifts caused by respiratory motion.

On the contrary, Swin-UNet [8] is a pure transformer-based network, which
is better at capturing global features through self-attention and shifted win-
dows [11]. However, the segmentation result of raw Swin-UNet usually contains
zigzag margins since Swin-UNet uses patch rather than pixel as the smallest
unit to operate on. To overcome this limitation, we add two convolutional layers
with layer normalization and leaky-relu at the end of the network, which helps
produce smooth segmentation results.

Swin-UNETR [13] is a combination of transformer-based encoder and CNN-
based decoder. which is expected to utilize the global information of the images
and generate a refined segmentation map.

The input volumes only contain around 10 slices, which is not enough to
be divided into multiple patches and windows. Therefore, for nnU-Net, we try
both 2D and 3D variants, while for Swin-UNETR and Swin-UNet, only the 2D
version is used.
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2.3 Pre-training

Our training data is only composed of 20 healthy volunteers, which is too few for
the model to even exhibit strong robustness towards the inherent variations of
anatomical structures among different people, let alone unstable image quality
or perturbations. Pre-training has proven to be effective in improving model per-
formance as well as enhancing its robustness. To increase the model robustness
towards unseen data with different appearances and qualities, we collect five pub-
lic datasets of cine MRI with the same segmentation tasks listed in Table 1 for
pre-training. We fuse these datasets and use labeled images from both the train-
ing phase and testing phase for pre-training. As transformer-based methods can
benefit more from pre-training, the Swin-Unet is additionally pre-trained with
ImageNet [19]. The encoder of Swin-UNETR is pre-trained with extra public
CMR datasets without labels [28–31], following multi-task self-supervised learn-
ing manners [27]. Although no deliberate respiration motion is conducted during
the acquisition of these images, they exhibit significant variations in many other
aspects including but not limited to scanner type, acquisition center, protocols,
and health condition of the subjects. We believe these variations allow the model
to ignore pixel-wise noisy signals and turn to catch the essential and high-level
features useful for cardiac segmentation.

Table 1. Public CMR dataset used for pre-training

Dataset Number of cases Number of labeled SA
images per case

Note

ACDC [15] 100 2

M&Ms [16] 344 2

M&Ms-2 [16] 360 2 Use only SA images

MyoPS [17,18] 25 1 Use only bSSFP

MS-CMRSeg [17,18] 45 1 Use only bSSFP

2.4 Data Augmentation

We use both random data augmentation and adversarial data augmentation.
For random data augmentation, we follow the same schema as the default

mode of nnU-Net [14], which contains rotation, scaling, Gaussian noise, Gaussian
blur, brightness, contrast, simulation of low resolution, gamma correction, and
mirroring.

As the inherent property of our data is that it is contaminated by respiratory
motion, which can result in diffeomorphic deformation or spatial transformation
of the raw image. Adversarial data augmentation proves to be more effective than
random data augmentation in terms of improving model robustness towards
a certain type of perturbations [7]. In adversarial data augmentation, given a
model, the optimal perturbation of certain types is learned which will impair
the model performance to the utmost extent. The model is then trained to resist



498 S. Gong et al.

this perturbation, which in our case, can be deformation caused by respiration
motion. In this work, we apply AdvChain [5] to improve our model’s robustness
towards diffeomorphic deformation and spatial transformation. To be more spe-
cific, we first train the network with random data augmentation, then fine-tune it
with AdvChain. In each iteration of the fine-tuning phase, we turn off Gaussian
noise, rotation, and scaling from the random data augmentation while keeping
the rest. A perturbation consists of a series of Gaussian noise, spatial transforma-
tion, and diffeomorphic deformation is randomly generated, whose parameters
are trainable. We freeze the network parameters and optimize the perturbation
parameters to increase the consistency loss (MSE and contour loss [9] in our
case) between two predicted segmentation maps before and after the perturba-
tion. Finally, we fix this perturbation and update the network parameters by
propagating supervised loss together with consistency loss. The above steps are
conducted for multiple iterations until convergence.

2.5 Training Protocol

Pre-processing methods follow a similar framework to the default mode of nnU-
Net [14], which consists of adjusting the pixel size of all images to ∼0.66 with
third-order spline interpolation, cropping or padding the resulting images to the
resolution of 512 × 512 pixels, normalization, and intensity clipping (0.5 and 99.5
percentiles). For transformer-based methods, we crop the images to the same res-
olution of 224 × 224 pixels. We posit the heart in the middle of the images using
ground-truth segmentation labels (training set) or pseudo labels predicted by
nnU-Net (validation and test set) as reference. We also apply min-max normal-
ization to each image. For inference, we apply test time augmentation by mirror-
ing along all axes. In post-processing steps, we select only the largest connected
component of each structure in the predicted segmentation mask. We conduct
this operation twice, in both a slice-wise manner and a volume-wise manner.
And then we remove the RV from slices predicted to have no LV nor MYO. We
train our model on an NVIDIA A100 GPU with 80GB memory. All networks are
implemented using the PyTorch framework. The optimization of nnU-Net fol-
lows its default setting. The Swin-UNETR is trained using the AdamW optimizer
with initial learning rate of 0.0004 and weight decay of 0.00005. The Swin-UNet
is trained using the SGD optimizer with initial learning rate of 0.05, weight decay
of 0.0001 and momentum of 0.9. A weighted sum of cross-entropy loss and dice
loss is used for back-propagation to optimize our model.

3 Experiments

We conduct a series of comparison and ablation studies so as to select the best
network architecture (Sect. 3.1) and evaluate the effectiveness of different data-
driven approaches (Sect. 3.2). We randomly split the 20 volunteers in the training
set into five non-overlapping folders. For quick comparisons of proposed methods,
we use four folders to train networks and use the rest folder to determine the
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convergence of the training process. The Dice coefficients and 95% Hausdorff
distance for three anatomical structures of the online validation set are reported.

3.1 Architectural Variants

We first compare the performance of 2D nnU-Net, 3D nnU-Net, Swin-UNETR,
and Swin-UNet. For a fair comparison, all models are pre-trained with public
datasets. The results on the hold-out dataset are depicted in Table 2.

From the results, we find that 2D nnU-Net performs better than 3D nnU-Net,
which agrees with existing literature and may be due to the large between-slice
distance of the SA sequence [12]. We also find that transformer-based methods
have comparable (slightly lower) results to CNN-based methods on LV segmen-
tation and RV segmentation, but are inferior to CNN on MYO segmentation.
Through assessing the performance on individual cases and slices, we further
observe that the segmentation map generated by nnU-Net is very smooth and
regular, while the results of the transformer have twisted margins, especially
when the edge in the raw image is vague. We infer that the patch division and
window partition process of the swin-transformer is the reason for rough seg-
mentation maps. As the raw input is discretized into multiple windows, it can
perform well in segmenting large and convex-shaped structures such as LV and
RV but is hard to segment exquisite structures such as MYO.

Moreover, when comparing results of different respiratory motion intensities,
we find that nnU-Net is more robust. The respiratory motion can result in an
unclear margin between RV and its adjacent tissue, to which transformer-based
methods are more vulnerable. The transformer is prone to include nearby objects
with similar pixel intensities in the predicted RV segmentation map. In addition,
when the margin of MYO is ambiguous, nnU-Net seems to follow a population-
based prior to give a smooth and rounded segmentation map, while the results
of transformation and be more distorted and angular, which are more faithful
to the raw pixel intensities (Fig. 1).

Table 2. Quantitative comparison of proposed architectures on the online validation
set of 5 volunteers, in terms of Dice and Hausdorff distance

Methods Dice score 95% Hausdorff distance
LV MYO RV LV MYO RV

2D nnU-Net [14] 0.9184 0.8284 0.8994 8.4581 4.3903 5.0750
3D nnU-Net [14] 0.9164 0.8295 0.8879 9.1120 3.9550 6.9939
Swin-UNETR [13] 0.9145 0.8133 0.8925 9.1525 4.9728 5.2112
Swin-UNet [8] 0.9167 0.8206 0.8962 8.5567 4.3373 5.4207
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Fig. 1. Qualitative segmentation results of different network architectures. From top
to bottom are images from a single volunteer with breath-holding, half breath-holding,
regular breathe and intensive breathe. Cases are selected from online validation set.

3.2 Data-Driven Methods with Pre-training and Augmentation

To evaluate the effectiveness of pre-training and adversarial data augmentations,
we choose the vanilla 2D nnU-Net as our baseline. We then compare it to both
a nnU-Net pre-trained on the public dataset (Sect. 2.3) and a nnU-Net with
AdvChain (Sect. 2.4). The results are reported in Table 3.

From the results, we can conclude that both pre-training and adversarial aug-
mentations improve performance compared to the baseline. Pre-training can sig-
nificantly improve the segmentation accuracy of LV and MYO, while AdvChain
promises considerable gain in RV segmentation. Composition of both methods
can further enhance the segmentation accuracy.

3.3 Ensemble

Based on the above comparison and analysis, we combine the network archi-
tecture and data-driven methods proven to bring out improvements over their
baseline in an ensemble manner as our final submission to the CMRxMotion
challenge. To this end, we train four networks mentioned in Sect. 3.1 with pre-
training and adversarial augmentations in a 5-fold cross-validation setting on the
training dataset, and average the outputs of each network to obtain the ensemble
prediction. Finally, in the online validation set, our model achieves dice scores of
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Table 3. Segmentation performance of baseline, pre-training, and AdvChain, in terms
of Dice and Hausdorff distance.

Methods Dice score 95% Hausdorff distance
LV MYO RV LV MYO RV

Baseline 0.9141 0.8264 0.8915 8.4561 4.2720 5.2156
+Pre-training 0.9184 0.8284 0.8994 8.4781 4.3903 5.0750
+AdvChain [5] 0.9160 0.8296 0.9019 8.6097 4.0094 4.8959
+Both 0.9201 0.8306 0.9062 8.0947 4.0088 4.6297

0.9220, 0.8352, and 0.9069 for segmentation of LV, MYO, and RV respectively,
and 95% Hausdorff distance of 8.07, 3.70, and 4.69. And in the test phase, our
model achieves dice scores of 0.9372, 0.8738, and 0.9239 for segmentation of LV,
MYO, and RV respectively, and 95% Hausdorff distance of 3.13, 2.57, and 3.59,
which is ranked the first place among all participants.

4 Discussion and Conclusion

In this work, we propose a data-centric model for the tasks of cardiac seg-
mentation which can achieve high performance even when the image quality
is degenerated by intensive repository motion. We compare multiple networks
or methods and find that pre-training and adversarial augmentation are two
effective data-driven approaches that can significantly improve the model per-
formance. Deep learning is essentially a data-driven methodology, whose per-
formance highly relies on data quantity and quality. Collecting sufficient data
and making utmost use of the data is second to nothing in terms of improving
model performance and robustness. We believe this philosophy can guide the
real application of deep learning. Instead of designing novel DCNN architectures
or fancy training schema, rethinking how to utilize the data can be far more
important.

Intensive respiratory motion impairs the images by making its margin indis-
tinct so that it becomes hard for the model to decide which structure each pixel
belongs to. During the experiments, we find even if the boundary between LV
and MYO or between MYO and RV is ambiguous, the model can always predict
it well. However, it is hard for the model to delineate the boundary between
MYO, RV, and their surrounding tissues, especially for RV, which shows great
irregularity and variability in terms of shape and pixel intensity. Currently, we
are mainly using some common data augmentations such as rotation or flip. In
the future, we may design some exclusive perturbations that can better reflect
this fuzzy-boundary property.

Another future direction entails the use of inter-slice information. Although
the performance of 3D nnU-Net is inferior to that of 2D nnU-Net due to dis-
continuity between slices, we find that the ensemble of both models results in a
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better performance. Therefore, we believe the inter-slice information is benefi-
cial for the cardiac segmentation task. Furthermore, the influence of respiratory
motion on slices may differ from each other. A well-designed architecture may
utilize the information of clean slices to help do segmentation on dirty slices.
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