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1 Charité – Universitätsmedizin Berlin, Augustenburger Pl. 1, 13353 Berlin, Germany
matthias.ivantsits@charite.de

2 Fraunhofer MEVIS, Am Fallturm 1, 28359 Bremen, Germany
3 German Heart Center Berlin, Augustenburger Pl. 1, 13353 Berlin, Germany

4 DZHK (German Centre for Cardiovascular Research), Berlin, Germany

Abstract. Mitral valve insufficiency is a condition in which the valve
does not close properly, and blood leaks back into the atrium from the
ventricle. Valve assessment for surgery planning is typically performed
with 3D transesophageal echocardiography (TEE). The simulation of
the resulting valve dynamics can support selecting the most promising
surgery strategy. These simulations require an accurate reconstruction
of the open valve as a 3D surface model. 3D mitral valve reconstruction
from image data is challenging due to the fast-moving and thin valve
leaflets, which might appear blurred and covered by very few voxels
depending and spatio-temporal resolution. State-of-the-art voxel-based
CNN segmentation methods need an additional processing step to recon-
struct a 3D surface from this voxel-based representation which can intro-
duce unwanted artifacts. We propose an end-to-end deep-learning-based
method to reconstruct a 3D surface model of the mitral valve directly
from 3D TEE images. The suggested method consists of a CNN-based
voxel encoder and decoder inter-weaved with a graph neural network-
based (GNN) multi-resolution mesh decoder. This GNN samples feature
vectors from the CNN-decoder at different resolutions to deform a pro-
totype mesh. The model was trained on 80 sparsely annotated 3D TEE
images (1 mm3 voxel resolution) of the valve during end-diastole. Each
time frame was annotated by two cardiovascular experts on nine planes
rotated around the axis through the apex of the left ventricle and the
center of the mitral valve. Our method’s average bidirectional point-to-
point distance is 1.1 mm, outperforming the inter-observer point-to-point
distance of 1.8 mm.

Keywords: Mitral valve reconstruction · Deep learning · Graph
neural network

1 Introduction

The mitral valve regulates blood flow between the left atrium and left ventricle. It
consists of the anterior and posterior leaflet, separated by two indentations—the
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anterior and posterior commissure (Fig. 1A). These two leaflets are attached to
the annulus and are pulled down during the diastole via thin chords attached to
the papillary muscles, which are connected to the left myocardium. During sys-
tole, the myocardium contracts, and the mitral valve closes (Fig. 1A). Mitral
valve regurgitation is the most common mitral valve disease—with approxi-
mately 2% affected people worldwide [1]—causing blood flow from the ventricle
into the atrium during systole. This regurgitation can be classified into three
main types—type I, II, III—defined by Carpentier [2,3]. These mitral valve
regurgitation types need different methods for repair, or replacement [4]. A com-
mon method to assess the pathology of the mitral valve is via 3D transesophageal
echocardiography (TEE) [5,6]. Commercially available 3D TEE mitral valve
tools typically analyze the mitral valve pathology or morphology in a closed
state [7–9]. This allows the calculation of the annulus perimeter, annulus area,
anterior and posterior leaflet area and length, and tenting height [10] (Fig. 1B).
Assessing the mitral valve leaflets in a closed state is challenging due to their
connection in the coaptation area. To enable the assessment of the valve leaflets
and the characteristics of the closed valve, recent approaches reconstruct the
valve model in an open state and propagate the valve model to the closed state
[11,12]. The model can be changed according to different treatment strategies to
select the most promising surgery procedure. This approach requires an initial
reconstruction of the mitral valve from image data as a 3D surface. This recon-
struction is challenging because the fast-moving and thin valve leaflets might
be covered by only 1–2 voxels and blurred depending on the spatiotemporal
sampling. State-of-the-art voxel-based CNN approaches [13–16] or interactive
methods to delineate the valve [17,18] need an additional processing step to
reconstruct a 3D surface from this voxel-based representation, which can intro-
duce unwanted artifacts. We propose an end-to-end deep-learning-based method
to reconstruct a 3D surface model of the open mitral valve directly from 3D TEE
images.

2 Materials and Method

2.1 Dataset

The dataset was acquired utilizing the GE Vingmed Ultrasound Vivid E9 system
in the German Heart Centre Berlin (DHZB). The dataset consists of 3D TEE
images of 38 patients examined before and after surgery. 81 end-diastolic image
volumes were used for model training and validation. The temporal resolution
is between 12 and 65 ms in-plane resolution between 0.47 and 1.43 mm, and
through-plane resolution between 0.33 and 0.98 mm. The image volumes were
sparsely annotated by two cardiologists with four and 17 years of experience as a
cardiologist, utilizing the method proposed by Tautz et al. [19]. The leaflets were
annotated on nine planes rotated around the axis through the apex of the left
ventricle and the center of the mitral valve (Fig. 1B). Additionally, the annulus
and the orifice of the mitral valve were annotated. From these leaflet poly-lines,
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Fig. 1. An illustration of the relevant anatomical structures of the mitral valve and
supporting structures (A). B illustrates relevant anatomical structures plus clinically
important parameters.

a full 3D surface mesh was reconstructed for the final valve geometry, with each
mesh consisting of 280 to 1200 nodes.

2.2 Method

Our proposed method is derived from the Voxel2Mesh [20] architecture, which is
an extension to Pixel2Mesh [21] and Pixel2Mesh++ [22]. This method takes a 3D
image in the voxel domain as input and produces the valve as a 3D surface model
without any post-processing steps. The model consists of three main blocks—a
voxel encoder and decoder and a mesh decoder—which are illustrated in Fig. 2.
The voxel encoder and decoder are basic blocks, as proposed in the UNet paper
[23], which compress the data into a latent space and reverse the process. The
mesh decoder takes a prototype mesh as additional input, which is successively
deformed. During each step of the mesh decoder, features around a fixed sphere
of the mesh node positions are sampled and aggregated by 1D convolution. These
latent node features plus the actual mesh node positions are concatenated and
passed to a graph neural network [24], which produces a 3D offset vector for each
mesh node. This delta is added to the previous mesh to produce an intermediate,
low-resolution mesh. Next, this mesh is up-sampled by adding mesh nodes in
each edge’s center, creating four new faces. This process is repeated until the
full resolution of the voxel representation is reached.

We extended the Voxel2Mesh architecture by adapting the mesh decoder
to deform a topological annulus (we are referring to a topological/geometrical
object here) instead of a sphere, which is, aside from a torus, the only feasi-
ble topology for a mitral valve surface reconstruction, due to the preservation
of the prototype topology. The proposed method uses a uniform up-sampling
strategy instead of the adaptive unpooling method suggested in the Voxel2Mesh
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Fig. 2. An overview of the proposed architecture, including the three main blocks—
a voxel-encoder, a voxel-decoder, and a mesh-decoder. The model takes a 3D TEE
image as input and produces a 3D surface model of the mitral valve. The mesh-decoder
samples features from the latent voxel-space and successively refines the prototype mesh
at increasing resolutions. During the deformation, the orientation of the edge vertices is
preserved, thus reconstructing the mitral valve with known annulus and orifice vertices.
(Color figure online)

architecture [20], which does not preserve the topology of an annulus. Further-
more, we implement a dedicated loss function for mitral valve reconstruction.
This loss function ensures an unfolded 3D surface and guarantees a valve model
with labeled nodes, where the annulus and the orifices of the final mesh are
known. This assignment of anatomical structures is illustrated in Fig. 2, where
the annulus vertices (yellow) and orifice vertices (blue) are known in the proto-
type mesh, as well as in the final reconstructed mitral valve surface, resulting in
a known orientation.

The final loss function L is a linear combination of multiple loss terms γ
weighted with their respective hyperparameters λ at different resolutions R plus
the binary cross-entropy loss (illustrated in Eq. 1.6). The set of loss terms Γ
includes the chamfer loss γMV, defined as the average minimum distance between
two point clouds. Furthermore, the same loss function is applied to the annulus
and orifice vertices to ensure the correct orientation of the final 3D surface. Addi-
tionally, the loss contains constraints for the edge length γE, normal consistency
of neighboring faces γNC, Laplacian smoothing objective γL, and a face normal
loss γMVN, which ensures similar normal vectors of the predicted and ground-
truth faces. These additional constraints ensure a smooth and non-self-folding
solution to the 3D surface reconstruction.

γMV =
∑

vpεSp

min
vgεSg

‖vp − vg‖2
2 +

∑

vpεSg

min
vgεSp

‖vp − vg‖2
2 (1)

Equation 1: The chamfer loss function used for the mitral valve, the annulus,
and the orifices. Sp and Sg denote the predicted and ground-truth mitral valve
surface models, where vp and vg designate vertices sampled from the surface.
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γE =
1

|E|
∑

(v0,v1)εE

(‖v0 − v1‖2 − Lt)2 (2)

Equation 2: The edge length loss, where E denotes the set of edges of a mesh.
v0 and v1 are the vertices composing the edge, and Lt is defined as a constant
target length.

γNC =
1

|NF |
∑

(n0,n1)εNF

1 − n0 · n1

‖n0‖ · ‖n1‖ (3)

Equation 3: The normal consistency loss, where NF denotes the set of neighbor-
ing faces of the predicted mesh. n0 and n1 designate the normal vectors of these
neighboring faces.

γL =
1

|V |
∑

vεV

‖
∑

v′εN(v)

v − v′‖ (4)

Equation 4: The Laplacian smoothing constraint, where V denotes the set of
vertices of the predicted mitral valve surface. N(v) depicts the set of neighboring
vertices of vertex v.

γMVN =
1

|Fp|
∑

fpεFp

1 − np · ng

‖np‖ · ‖ng‖ (5)

Equation 5: The face normal loss, where Fp depicts the set of faces of the pre-
dicted mitral valve. np denotes the normal vector of face fp and ng the normal
vector of the closest face fg to the predicted face fp.

L = λCEγCE +
∑

γεΓ

∑

rεR

λγrγr (6)

Equation 6: The loss function of the proposed method, including terms for the
cross-entropy loss γCE, the chamfer loss of the mitral valve γMV, the edge length
loss γE, the normal consistency loss γNC, the Laplacian smoothing objective
γL, and a face normal loss γMVN. Additionally, each loss term is weighted by a
hyperparameter λ.

3 Results

We performed all experiments on an Intel(R) Core(TM) i7-8700K CPU @
3.70 GHz with 16 GBs RAM and an Nvidia RTX 2080 Ti GPU with 11 GB
memory. 63 3D TEE volumes were used for model training, and the remaining
18 for model testing. We performed a 5-fold cross-validation (CV) to find optimal
hyperparameters for the number of down- and up-sampling steps R and the loss
weights λ. Before model training and testing, all images were re-sampled to an
isotropic voxel-spacing of 1 mm3. We performed random affine, blur, and Gaus-
sian noise augmentation during model training. Furthermore, a grid search on
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the loss hyperparameters was performed, combined with visual examinations, to
avoid folded surface reconstructions. The final loss hyperparameters were uni-
formly weighted across all resolutions and weighted with: λMV = 1, λA = 1,
λO = 1, λMVN = 0.2, λL = 0.2, λNC = 0.2, λE = 0.2, and λCE = 1.

We performed an interobserver variability analysis for the 81 3D volumes
annotated by both experts. Figure 3 illustrates the average and 95th-percentile
bidirectional point-to-point distance of the annotations to the reconstructed
mitral valve mesh. We observe an average distance of 1.1 mm and 95th-percentile
of 2.13 mm outperforming the inter-observer metrics of 1.86 mm and 3.82 mm.
This figure highlights the average and 95th-percentile distance of the annulus
and orifices, with an average distance of 1.29 mm and an average distance of
the orifices of 1.67 mm, compared to the inter-observer metrics of 2.45 mm and
3.29 mm. The 95th-percentile results in 2.23 mm for the annulus and 3.19 mm
for the orifices compared to the experts’ variability of 4.06 mm and 6.71 mm.

Fig. 3. An illustration of the bidirectional inter-observer and surface reconstruction
metrics. This comparison includes the average and 95th-percentile point-to-point dis-
tance of the reconstructed valve to the ground truth and the distances for the annulus
and orifices.

Additionally, we performed a linear regression on the target and predicted
mitral valve area plus the maximum annulus diameter to identify any bias in the
proposed model. We observe an R2 value of 0.91 for the mitral valve area and
0.88 for the annulus diameter. The average difference in the mitral valve area
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Fig. 4. An illustration of the linear regression of the mitral valve surface area and the
maximum annulus diameter. The linear regression of the surface area results in an R2

value of 0.91 and a bias of −103 mm2. The linear regression of the maximum annulus
diameter results in an R2 value of 0.88 and a bias of −1.9 mm.

Fig. 5. An illustration of two 3D surface mitral valve reconstructions produced by our
model. The orange contours represent the reconstructed mitral valves produced by the
proposed method, and the red contours the reconstruction created by the cardiologists.
Row A depicts a result with an average point-to-point distance of 0.37 mm. Row B
illustrates a reconstruction with an average point-to-point distance of 1.23 mm. (Color
figure online)

is −103 mm2. The average difference of the maximum annulus diameter results
−1.9 mm.

Figure 5 illustrates two 3D surface reconstruction results of the proposed
method. Row A illustrates a mitral valve reconstruction that aligns very well
with the reconstruction by the cardiologist. The average bidirectional point-to-
point distance of this result is 0.37 mm. The sagittal, coronal, and axial planes
show almost perfect alignment. Row B depicts an example with an average point-
to-point distance of 1.23 mm, where the sagittal and coronal planes reveal large



3D Mitral Valve Surface Reconstruction 337

deviations towards the orifices. The axial plane illustrates a large discrepancy in
the annulus.

4 Discussion and Conclusion

We have presented an end-to-end deep-learning method to reconstruct a 3D sur-
face model of the mitral valve from 3D TEE images without post-processing. By
directly reconstructing the 3D surface, we avoid artifacts introduced in conven-
tional approaches. The inter-observer study performed and illustrated in Fig. 3
exhibits an average bidirectional point-to-point distance of 1.1 mm, surpassing
the average distance by two cardiologists of 1.86 mm. The analysis shown in
Fig. 4 reveals a bias with an under-estimation of the reconstructed surface area
of −103 mm2 and −1.9 mm of the maximum annulus diameter. Furthermore,
Fig. 5 B illustrates an reconstruction with an average point-to-point distance of
1.23 mm. The sagittal and coronal views reveal large discrepancies towards the
orifices of the annulus.

To improve the proposed method, it is very likely that an increase in sample
size can help better reconstruct the 3D surface model of the mitral valve. The
inter-observer variability analysis highlights that an accurate annotation of the
mitral valve from 3D TEE images is complex, especially the distinction between
the chordae tendineae and the leaflets. Since acquiring ground truths for the
valve is difficult, an extension of the training set with synthetic data might
be advantageous. Future extensions to this method might also include a vertex
classification of the reconstructed 3D surface. This extension will lead to an
extended semi-registered model, where the individual segments of the leaflets
are learned end-to-end.
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