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Hedge Ratio Variation Under Different 
Energy Market Conditions: New Evidence 
by Using Quantile–Quantile Approach

Karim Barati, Arshian Sharif, and Korhan K. Gökmenoğlu

Abstract  In this research, we investigated the long-run and causal relationships 
between spot and futures prices of crude oil, natural gas, and gasoline using monthly 
data and considering the variables’ distribution. The quantile co-integration and 
quantile causality tests provided strong evidence for the long-run and causal rela-
tionships among the variables. Furthermore, we examined the optimal hedge ratio 
(OHR) at different quantiles of the series using the recently developed quantile on 
the quantile approach. For all three commodities, our results confirmed the asym-
metric response of the spot market to the futures market. Furthermore, our findings 
show that in a bullish market and for a large positive shock, the value of OHR is 
significantly greater than one. We observed lower fluctuations in the OHR as the 
maturities of the futures contracts increased. We discuss the policy implications of 
our research in detail in the Conclusion section.
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�Introduction

Price movements in the energy market are crucial because energy plays a vital role 
in the world’s economies and human life. The high volatility in energy prices since 
the 1990s is due to several historical developments, including the deregulation of 
energy markets, the Asian financial crisis in 1997, and the 2008 global financial 
crisis (Lien et al., 2016; Lang & Auer, 2019) have increased the need for an appro-
priate protection strategy. Hedging by using futures contracts makes the problem of 
“finding an appropriate hedge ratio” vital. In calculating the optimal hedge ratio 
(OHR), estimations are mostly based on the average (expected) relationship between 
spot and futures prices. This approach ignores the tail distribution of the variables 
(Lien et  al., 2016; Shrestha et  al., 2018). However, the widely documented non-
normal distribution of financial variables makes considering the quantiles of the 
variables essential. To fill this gap, we used the recently developed quantile-on-
quantile (Q-Q) (Sim & Zhou, 2015) approach to estimate the minimum-variance 
(MV) hedge ratio for crude oil, natural gas, and gasoline markets. Besides, to have 
a better understanding of the relationship between these variables, we examined 
long-run and causal relationships by using methods that consider the distribution of 
the variables.

Crude oil, natural gas, and gasoline are the major energy market commodities. 
Crude oil is one of the most strategic resources which has substantial effects on 
many macroeconomic variables, including economic growth (Cheng et al., 2019; 
Gupta & Banerjee, 2019; Wang et al., 2019; Wang & Wang, 2019), currency fluctua-
tions, and inflation (Lang & Auer, 2019). Due to its high energy density and rela-
tively more convenient transportation, it has been the primary energy source for 
many industries. The energy used for transportation has been satisfied in large with 
petroleum products. Besides, it is a raw material for many other products (Wang & 
Wang, 2019). Although crude oil remains the most critical energy source, the ever-
increasing concerns about environmental degradation have enhanced natural gas’s 
importance as a cleaner alternative (Li et al., 2019; Lin et al., 2019). The US has 
used thirty trillion cubic feet (TCF) of natural gas in 2018, which equals 31% of 
total US primary energy consumption. It is an important energy source for electric 
power generation, industry, residential use, and transportation (Energy Information 
Administration [EIA], 2019a, b). Gasoline is the most consumed petroleum product 
in the US, with 392 million gallons per day, equal to about 45% of total US petro-
leum consumption (EIA, 2019a, b).

The significant role of these energy commodities makes their price fluctuations 
quite essential. Many factors, such as natural disasters, extraction costs, inventory 
costs, exchange rates, geopolitical instability, climate change, and military conflicts, 
can cause significant volatility in energy prices. Energy price fluctuations can have 
substantial impacts on the global economy, and even they may lead to economic and 
political instability (Wu & Zhang, 2014; Zhang et al., 2015; Billio et al., 2018; Lang 
& Auer, 2019). Hence, it is essential to hedge in the energy market (Shrestha et al., 
2018; Halkos & Tsirivis, 2019).
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Futures contracts are among the most important financial instruments, with 17.15 
billion trades globally in 2018. A notable feature of the futures market is that it is 
where price discovery takes place. Futures contracts are widely used to hedge 
against energy price volatility because of their useful characteristics such as low 
transaction costs, high liquidity, low counterparty risk, and low margin require-
ments. Determining the optimal number of futures positions be held to reduce the 
risk associated with spot price fluctuations is one of the most critical challenges in 
hedging and has been widely discussed in the theoretical and empirical literature.

There is a complex linkage between spot and futures prices. The spot market 
may react asymmetrically to the changes in the futures market. For instance, futures 
price shocks may have different effects on the spot market, depending on whether 
the spot market is bearish or bullish. Besides, the impact of a large futures price 
shock on the spot market may differ from that of a smaller shock. Also, spot prices 
may respond asymmetrically to adverse versus positive futures price shocks. The 
effect of futures price shocks on the spot market may vary depending on the market 
conditions, the nature, and the magnitude of the shocks; thus, it is heterogeneous. 
These asymmetric impacts may cause diverse co-movement behaviors or condi-
tional covariance among spot and futures prices (Meneu & Torro, 2003; Chang 
et al., 2010b). Therefore, while investigating the spot-futures market relationship to 
consider the potential non-linear characteristics is a necessity. The complicated rela-
tionship between the spot and futures market also affects the OHR as well. This 
implies that the OHR may vary depending on the factors mentioned above. Hence, 
conventional frameworks, like OLS, are not suitable to determine the OHR. Although 
comparatively more recent approaches have some desirable characteristics than 
OLS, they cannot capture the overall dependence structure.

In this study, we investigated the relationship between spot and futures prices for 
three major energy commodities. Our research contributes to the literature in several 
ways. While exploring the cointegration and causal relationship, literature mostly 
ignores the distribution of the variables and focuses on the average relationship. We 
employed quantile cointegration (Xiao, 2009) and quantile Granger causality tests 
to have a better understanding of the relationship between the energy market spot 
and futures prices by considering the distribution of these variables. In the OHR 
investigation, choices of the appropriate objective function and methodology are 
vital. Regarding the first issue, following Lien et  al. (2016) and Shrestha et  al. 
(2018), we employed the MV hedge ratio. Regarding the second issue, considering 
the previous literature’s deficiencies, we engaged the recently developed QQ 
approach (Sim & Zhou, 2015) to uncover state-dependent OHR variations under 
different market conditions. The OHR has many advantages over the other methods 
employed in the literature. This model is an amalgam of quantile regression and 
nonparametric estimation techniques and enables us to regress each quantile of spot 
returns against the entire distribution of futures returns (Gupta et  al., 2018; Han 
et al., 2019; Mallick et al., 2019; Mo et al., 2019; Shahzad et al., 2019). Hence, it 
can capture a non-linear relationship and provides dynamic OHR throughout the 
entire distribution of spot and futures prices. The QQ approach enables us to pro-
vide a more inclusive measure of the relationship between spot and futures prices 
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for three major energy commodities considering the performance of the markets and 
the sign and size of these shocks. These findings can be used to establish more effi-
cient hedging strategies. We also examined the effect of time on the maturity of the 
futures contract on the OHR, which provides valuable information for portfolio 
managers.

The rest of the study includes the literature review, data, methodology, empirical 
findings, and conclusion.

�Literature Review

Discovering the OHR for futures contracts has been one of the most discussed areas 
in the finance literature. Regarding the discovery of the OHR, two strands of studies 
have been mainly considered in the literature. The first group of studies aims to 
discover the OHR based on different objective functions. Reducing the volatility of 
the hedged portfolio; increasing the expected utility of the hedged portfolio, mini-
mizing the mean extended-Gini (MEG), minimizing the generalized semivariance 
(GSV), and minimizing the Value-at-Risk (VaR) are examples of different objective 
functions that have been discussed in exploring the OHR (Shalit, 1995; De Jong 
et al., 1997; Lien & Tse, 2000; Hung et al., 2006). The performance of each of these 
objective functions has been tested extensively.

Among several objective functions, the most popular one has been the MV hedge 
ratio. Many researchers documented the desirable characteristics of the MV hedge 
ratio (Johnson, 1960; Ederington & Salas, 2008). This approach is based on mini-
mizing the variance of the hedged portfolio and is quite simple to understand and 
estimate. To derive the MV hedge ratio, the underlying commodity spot returns are 
regressed on futures returns, where the slope coefficient represents the MV hedge 
ratio (Ederington, 1979). MV is the most widely used hedging strategy in the litera-
ture (Hung et al., 2011; Cotter & Hanly, 2015; Turner & Lim, 2015; Wang et al., 
2015; Markopoulou et al., 2016; Park & Shi, 2017; Chun et al., 2019; Wang et al., 
2019). Due to its desirable properties and wide use in the literature, we used the MV 
hedge ratio as our objective function.

The second group of studies aims to discover the OHR by using different models. 
Early literature claimed that the slope coefficient in OLS regression is the OHR 
(Johnson, 1960; Stein, 1961; Ederington, 1979). Although the conventional ordi-
nary least squares (OLS) has been the most widely used method, it ignores several 
problems such as long-term relationship (cointegration), conditional heteroscedas-
ticity, and the time-varying structure of the hedge portfolio. Due to the OLS meth-
od’s insufficiency, later, to solve the specified problems, many other econometric 
methods have been employed in the estimation of OHR. The methods that have 
been used to discover the hedge ratio includes constant conditional correlation 
(CCC), dynamic conditional correlation (DCC) (Lanza et  al., 2006), diagonal 
BEKK (Chang et al., 2010b), bivariate error correction framework with a GARCH 
error structure (Kroner & Sultan, 1993), VARMA-GARCH, VARMA asymmetric 
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(Manera et al., 2006), regime-switching GARCH (Hung et al., 2011), and Bayesian 
multi-chain Markov switching GARCH (Billio et  al., 2018). These studies have 
contradictory claims on the performance of the econometric methods employed. For 
example, Chang et al. (2010b) stated that the CCC-GARCH model is superior to the 
other multivariate GARCH frameworks; however, Chang et al. (2011) found that 
the performance of multivariate GARCH models is better in exploring the OHR.

In the conventional regression framework, the central focus is on the nexus 
between spot market returns and futures market returns on average to get the OHR, 
which leaves us with no information about the changes in hedge ratio at various 
quantiles of the distributions of the two variables (Shrestha et al., 2018). Although, 
until recently, many different methods were used to estimate the OHR, none of them 
targets the mentioned fundamental problem and is not flexible enough to provide a 
complete picture of the relationship among the variables under investigation. Chang 
et al. (2010b) found that the OHR might be different for different market states, 
which calls for taking different market states into account while analyzing the 
OHR. Lien et al. (2016) proposed a linear conditional quantile model that estimates 
different hedge ratios for different quantiles of spot returns, which is named the 
quantile hedge ratio. They found that OHR depends on various quantiles like upper 
and lower tails of spot returns distribution.

Many studies have investigated the OHR for energy market commodities. Some 
researchers argued that the OHR between spot and futures prices might depend on 
several factors such as the holding period of the hedger, maturity of the futures con-
tract, and price discovery level. Chen et al. (1987) analyzed the differences in hedg-
ing effectiveness with different holding periods and maturities. They found that the 
longer hedger’s horizon and nearer futures contract maturity lead to a more effective 
hedging strategy for crude oil, leaded gasoline, and heating oil. Conlon and Cotter 
(2013) demonstrated that as the hedging horizon increases, hedging effectiveness 
increases in the heating oil market. They also revealed that hedging effectiveness is 
not sensitive to different objective functions. However, until recently, researchers 
did not consider the effect of the market state on the OHR.

Several studies related to the energy market have recently utilized quantile 
regression (Reboredo & Ugolini, 2016; Zhu et al., 2016; Khalifa et al., 2017). In 
their recent research, Shrestha et al. (2018) applied the method of Lien et al. (2016) 
to the energy market. They found that the quantile hedge ratio has an inverted 
U-shape for crude oil and heating oil. Besides, they discovered that OHR could vary 
according to the level of price discovery in the futures market. Their findings con-
firmed the idea that the hedge ratio strongly depends on the different spot market 
states for crude oil, heating oil, and natural gas. However, there is still one area of 
study that is neglected, in which the effects of various futures market conditions on 
the OHR have not been explored in the hedge ratio literature annals. In this study, 
we extended the literature on the exploration of hedge ratios with the use of a new 
method proposed by Sim and Zhou (2015), referred to as the QQ approach, which 
allows us to investigate in detail the variation of hedge ratio in different quantiles of 
spot and future returns simultaneously.
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�Data

We used monthly data covering the periods February 1986 to March 2019 for crude 
oil, February 1997 to March 2019 for natural gas, and January 2006 to March 2019 
for gasoline. Cushing, OK crude oil 1, 2, 3, and 4 months’ future contracts (Dollars 
per Barrel), Natural Gas 1, 2, 3, and 4 months’ futures contracts (Dollars per Million 
Btu) and New York Harbor Reformulated RBOB Gasoline 1, 2, 3, and 4 months’ 
future contracts (Dollars per Gallon) were used as proxies for oil, natural gas, and 
gasoline futures prices, respectively. For spot prices of these commodities, we used 
Cushing, OK WTI Spot Price FOB (Dollars per Barrel), Henry Hub Natural Gas 
Spot Price (Dollars per Million Btu), and Los Angeles Reformulated RBOB Regular 
Gasoline Spot Price (Dollars per Gallon) as proxies. We collected data from 
Independent Statistics & Analysis US Energy Information Administration database 
and converted them into logarithmic form.

We report the descriptive statistics of the variables in Table  1. Skewness and 
kurtosis are far from 0 and 3, respectively, which indicate the skewed distribution 
and fat tails. These are typical characteristics of much financial time series. A nota-
ble finding in Table 1 is the results of the Jarque-Bera (Jarque and Bera, 1980) test, 
which reveals the non-normality of all of the variables. These findings indicate the 
benefit of using the QQ method to investigate the relationship between spot and 
futures prices.

To investigate the stochastic properties of our variables, we applied the 
Augmented Dickey-Fuller (ADF) (Dickey & Fuller, 1979) unit root test. To confirm 
our findings, we also employed Zivot and Andrews (ZA) (Zivot & Andrews, 1992) 

Table 1  Descriptive statistics

Variables Mean Minimum Maximum
Std. 
Dev. Skewness Kurtosis

Jarque-
Bera Probability

OIL 0.002 −0.394 0.392 0.087 −0.449 5.622 127.414 0.000
 �� Futures-1 0.002 −0.396 0.377 0.087 −0.443 5.453 112.848 0.000
 �� Futures-2 0.002 −0.353 0.320 0.081 −0.505 5.084 88.911 0.000
 �� Futures-3 0.002 −0.326 0.283 0.077 −0.564 5.014 88.369 0.000
 �� Futures-4 0.003 −0.307 0.263 0.073 −0.620 5.017 92.968 0.000
NGAS −0.001 −0.473 0.478 0.134 −0.003 4.357 20.420 0.000
 �� Futures-1 0.000 −0.396 0.406 0.121 0.030 3.752 6.305 0.043
 �� Futures-2 0.000 −0.377 0.362 0.113 0.019 3.538 16.254 0.000
 �� Futures-3 0.001 −0.372 0.296 0.104 0.020 3.473 22.496 0.000
 �� Futures-4 0.001 −0.231 0.256 0.089 0.020 3.068 29.069 0.000
RBOB 0.001 −0.516 0.454 0.119 −0.295 6.301 74.489 0.000
 �� Futures-1 0.001 −0.384 0.353 0.102 −0.554 5.126 38.082 0.000
 �� Futures-2 0.001 −0.364 0.284 0.095 −0.798 5.001 43.420 0.000
 �� Futures-3 0.001 −0.342 0.212 0.088 −0.842 4.885 42.305 0.000
 �� Futures-4 0.000 −0.332 0.245 0.082 −0.803 5.081 45.770 0.000

Source: Author estimations
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Table 2  Results of unit root tests

Variables ADF (level) ADF (Δ) ZA (level) Break period ZA (Δ) Break period

OIL −0.382 −6.483*** −1.283 2006 M02 −9.493*** 2008 M08
 �� Futures-1 −1.042 −9.723*** −1.958 2010 M10 −11.592*** 2011 M01
 �� Futures-2 −1.583 −6.402*** −2.495 2015 M03 −10.583*** 2015 M03
 �� Futures-3 0.258 −5.763*** −0.522 2010 M02 −7.448*** 2010 M02
 �� Futures-4 0.781 −7.535*** 0.854 2012 M11 −10.421*** 2012 M11
NGAS 0.876 −5.321*** −2.471 2009 M07 −12.581*** 2005 M05
 �� Futures-1 −1.294 −5.631*** −1.448 2004 M07 −8.664*** 2011 M07
 �� Futures-2 −0.993 −3.491*** −1.341 2013 M12 −9.315*** 2017 M09
 �� Futures-3 −0.251 −9.597*** −0.472 2007 M05 −6.942*** 2019 M01
 �� Futures-4 −1.335 −7.625*** −1.003 2005 M11 −8.593*** 2016 M05
RBOB −2.044 −4.592*** −2.045 2016 M10 −10.615*** 2009 M07
 �� Futures-1 −1.448 −3.842*** −1.753 2009 M03 −11.374*** 2011 M04
 �� Futures-2 −0.921 −6.414*** 0.515 2013 M01 −9.329*** 2018 M06
 �� Futures-3 −0.337 −6.097*** 0.994 2007 M08 −8.624*** 2015 M10
 �� Futures-4 1.475 −5.669*** −0.551 2017 M04 −9.553*** 2008 M12

Note: The values in the table specify the test statists of the ADF and ZA tests
The asterisk ***, **, and * represent the significance level at 1%, 5%, and 10%, respectively

unit root test, which incorporates one endogenous structural break. Table 2 illus-
trates the results of these unit root tests. Both ADF and ZA unit root tests indicate 
that the natural logarithm of oil, natural gas, and gasoline and four futures contracts 
returns series are not stationary at their levels, while the first difference forms of all 
these variables are stationary. This finding requires the investigation of the cointe-
grating relationship between the variables.

�Methodology

We further examined the long-run relationship among the variables using the quan-
tile cointegration model developed by Xiao (2009). This model can capture the 
variation of quantile coefficients. To create the critical values, we used 1000 Monte 
Carlo simulations. We also used 19 equal quantiles from 0.05 to 0.95 to find the test 
statistic of the quantile cointegration model. Furthermore, to test the causality 
among variables’ conditional distributions, hence, to check whether the information 
regarding the relationships between variables could help the decision-making pro-
cess, the Granger causality test (Granger, 1969) was incorporated.

We used the QQ approach (Sim & Zhou, 2015), which enables one to examine 
the effect of quantiles of the explanatory variable on the quantiles of the other vari-
able, thus providing more comprehensive information compared to conventional 
models. The QQ approach generalizes the standard quantile regression method 
(Koenker & Bassett, 1978). More specifically, it is a combination of quantile 
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regression and nonparametric estimations. First, quantile regression is used to find 
the effects of the independent variable on the quantiles of the dependent variable. 
Second, local linear regression (Stone, 1977; Cleveland, 1979) is utilized to find a 
linear regression locally around the neighborhood of each data point in the sample 
by giving more weights to closer neighbors.

We start with the following nonparametric quantile regression equation:

	
Spot Futurest t tU� � � ��� �

	
(1)

where Spott denotes the spot market returns of a given commodity in period t, 
Futurest represents the futures market returns for that commodity in period t, θ is the 
θth quantile of the conditional distribution of the spot returns, and Ut

θ  is a quantile 
error term whose conditional θth quantile is equal to zero. βθ(.) is an unknown func-
tion because we have no prior information about the nexus between spot and futures 
returns.

Although quantile regression enables us to explore the varying effects of futures 
market returns on conditional quantiles of spot market returns, it doesn’t consider 
the effects of quantiles of futures returns on spot returns. Hence, it doesn’t provide 
information about the relationship between spot and futures returns when there are 
largely positive or negative shocks in the futures market that may also affect the 
OHR. To capture the relationship between the θth quantile of spot returns and τth 
quantile of the futures returns represented by Futuresτ, Eq. (1) is examined in the 
neighborhood of the Futuresτ by utilizing the local linear regression. We can expand 
βθ(.) with the first-order Taylor expansion around a quantile of Futuresτ with the help 
of the following equation:

	
� � �� � � � � �Futures Futures Futures Futures Futurest t� � � � � � � � �� �„

	
(2)

where βθ′ is the partial derivative of βθ (Futurest) with respect to Futures, which 
is the marginal response. This coefficient has a similar interpretation as the slope 
coefficient in a linear regression framework. The main feature of Eq. (2) is that it 
considers both θ and τ as doubled indexed parameters that are illustrated as 
βθ(Futuresτ) and βθ′(Futuresτ). Moreover, βθ(Futuresτ) and βθ′(Futuresτ) are both 
functions of θ and Futuresτ, and Futuresτ is a function of τ. Thus βθ(Futuresτ) and 
βθ′(Futuresτ) are both functions of θ and τ. It is also possible to rename βθ(Futuresτ) 
and βθ′(Futuresτ) as β0(θ,τ) and β1(θ,τ), respectively. Based on that, the modified ver-
sion of eq. (2) can be rewritten as:

	
� � � � � � �� �Futures , , Futures Futurest t� � � � � � � � �� �0 1 	

(3)

We derive Eq. (4) by substituting Eq. (3) in Eq. (1):

	

Spot , , Futures Futurest t t t
qb q t b q t U� � � � � � �� ��

� �

0 1

* 	

(4)
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The part (*) in eq. (4) represents the θth conditional quantile of the spot returns. 
However, since β0 and β1 are dual indexed in θ and τ, (*) shows the relationship 
between the θ quantile of spot returns and τ quantile of futures returns. Next, Futurest 
and Futuresτ need to be replaced by their estimated counterparts Futures

t  and 
Futures

τ
 in Eq. (4) so that the local linear regression estimation of the parameters 

β0 and β1, which are b0 and b1 can be obtained through minimizing the following 
equation:

	

min ,b b
n

i

q t t

t n
r b b K

F
0 1

1

0 1

�

� � � �� ��
��

�
��
�Spot Futures Futures

F
 

uutures

t t

h

� � ��

�

�
��

�

�

�
��

	

(5)

Where ρθ is the quantile loss function, interpreted as ρθ(u) = u(θ − I(u < 1)); I is the 
usual indicator function; K(.) represents the Kernel function, and the parameter h in 
the denominator is the bandwidth of the Kernel.

To weigh the observations in the neighborhood of Futuresτ, we used the Gaussian 
Kernel function. Gaussian Kernel is symmetric around zero and therefore assigns 
the least weights to observations farther away. Moreover, there is an inverse rela-
tionship between these weights and the distance of the observations among the dis-
tribution function of Futures

t  defined by:

	
F

n
In t

n

k

k tFutures Futures Futures  � � � �� �
�

�1
1

	

and eventually generates the value from the distribution function corresponding to 
the Futuresτ, representing as τ.

The bandwidth parameter in Kernel function is one of the most important factors 
as it represents the size of the neighborhood around the target point in which choos-
ing a large number for h can lead to estimation bias, and a small number can gener-
ate a greater variance in our estimation. In this study, we set the bandwidth parameter 
as h = 0.09.

�Empirical Findings

In Table 3, the results of the quantile cointegration are reported. Tabulated results 
confirm the long-run relationship between oil, natural gas, and gasoline spot and 
four futures contract returns. Therefore, they show that the variations among the 
coefficients vary throughout the quantiles of the variables. The critical values gener-
ated by 1000 Monte Carlo simulations in which CV1, CV5, and CV10 are the criti-
cal values for the significance level of 0.01, 0.05, and 0.1, respectively.

We provide the Quantile Granger Causality test results in Table 4. Probability 
values for the test statistics indicate that for all these energy market commodities, 
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Table 3  Quantile cointegration test results

Model Coeff. Supτ | Vn(τ) | CV1 CV5 CV10

OIL vs. Futures (OIL)

OILt vs. Futures-1t β 4831.288*** 3715.224 3089.316 2831.001
γ 1537.026*** 1102.441 896.315 715.308

OILt vs. Futures-2t β 59,463.215*** 46,318.157 34,361.058 23,135.251
γ 18,302.088*** 16,328.048 13,841.554 10,846.213

OILt vs. Futures-3t β 3460.587*** 2893.046 2147.315 1836.149
γ 1635.548*** 1205.687 951.089 831.356

OILt vs. Futures-4t β 230.006* 349.010 239.887 133.041
γ 143.353* 259.703 155.975 105.115

NGAS vs. Futures (NGAS)

NGASt vs. Futures-1t β 2974.368*** 2204.007 1346.648 593.872
γ 1815.187*** 1345.054 821.828 362.426

NGASt vs. Futures-2t β 3089.004*** 2288.952 1398.550 616.760
γ 1189.146*** 881.157 538.387 237.429

NGASt vs. Futures-3t β 4899.108*** 3630.239 2218.076 978.172
γ 1960.387*** 1452.647 887.567 391.417

NGASt vs. Futures-4t β 6571.316*** 4869.345 2975.170 1312.050
γ 2502.894*** 1854.644 1133.188 499.736

RBOB vs. Futures (RBOB)

RBOBt vs. Futures-1t β 7328.842*** 5430.672 3318.141 1463.300
γ 4472.620*** 3314.212 2024.984 893.018

RBOBt vs. Futures-2t β 7611.305*** 5639.978 3446.026 1519.698
γ 2930.055*** 2171.171 1326.586 585.024

RBOBt vs. Futures-3t β 12,071.402*** 8944.909 5465.339 2410.215
γ 4830.393*** 3579.322 2186.966 964.452

RBOBt vs. Futures-4t β 16191.722** 19,998.066 7330.819 3232.891
γ 6167.130** 7569.844 2792.175 1231.349

Note: This table presents the results of the quantile cointegration test of Xiao (2009) for the loga-
rithm of the Oil price, natural gas, gasoline, and all proxies of the Futures market. CV1, CV5, and 
CV10 are the critical values of statistical significance at 1%, 5%, and 10%, respectively. We use 
1000 Monte Carlo simulations to generate critical values. We use an equally spaced grid of 19 
quantiles, [0.05–0.95], to calculate the test statistic of the quantile cointegration model

there is bidirectional Granger causality between the spot market and 1, 2, 3, and 
4  months’ futures contracts. This finding is relevant for all the quantiles, which 
shows that the relationship between spot and futures returns is persistent for each 
point of the distribution of the variables. Hence, it is possible to employ the data for 
the spot (futures) market to make better predictions about the futures (spot) returns. 
Either upward or downward movements in spot returns and futures returns promul-
gate the movements in each other.

Figure 1a–l illustrates the QQ relationship and estimates the slope coefficient 
β1(θ, τ), which captures the effect of futures τth quantile return on the θth quantile 
return of the spots at different values of τ and θ of three energy market commodities 
under investigation. Four exciting results emerged from the figures. First, all the 
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Fig. 1  Quantile-on-Quantile 3-D surface view
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figures show a positive relationship for the entire quantiles of spot and futures 
returns for all commodities. This result is consistent with the positive nexus between 
spot and futures market that has been documented by the prior literature, and it 
sheds light on the fact that the futures market plays a vital role in price discovery 
(Shrestha, 2014; Chang & Lee, 2015; Shrestha et al., 2018). Second, we observed 
heterogeneity across crude oil, gasoline, and natural gas regarding the association 
between spot and futures returns. Third, there are considerable variations in the 
OHR across the distributions of spot and futures returns for all three commodities. 
This result suggests that across quantiles, the relationship between spot and futures 
return is not uniform, but this relationship depends on the size and sign of futures 
market shocks and, at the same time, the particular states of the spot market. 
Additionally, we found the most variations of the OHR for three commodities at the 
highest and the lowest quantiles of the spot and futures returns distributions, that is, 
when there are extreme events in the spot and futures market. Finally, as the time to 
maturity in futures contracts increases, the fluctuations in the OHR decrease consid-
erably. The mentioned result shows that a three to four-month time span is enough 
for spot prices to converge to future prices, and the new information is reflected in 
the crude oil, natural gas, and gasoline market.

Among the three commodities investigated, we observed the lowest variation in 
the OHR for the natural gas market. Figure 1e–h shows the results generated from 
the QQ approach for natural gas spot returns and 1, 2, 3, and 4 months’ futures 
returns, respectively. We found positive and close to one OHR for medium quantiles 
(the central points of the distributions) for both variable distributions for all maturi-
ties of futures contracts. However, the OHR tends to strengthen or weaken at the 
highest or lowest quantiles of the spot and futures returns. For instance, the OHR is 
significantly lower than one at the highest quantiles (0.7–0.9) of the spot and lowest 
quantiles (0.1–0.2) of the futures market. The results are the opposite at low quan-
tiles (0.1–0.2) of the spot and high quantiles (0.7–0.9) of the futures market. The 
OHR is significantly higher than one at high quantiles of both spot and futures 
returns (0.7–0.9), which corresponds to the bullish spot market and a futures market 
that experienced a large positive shock. Finally, natural gas graphs became smoother 
as we shift from one-month time to maturity to four-months’ time to maturity.

In the case of crude oil, Fig. 1a–d illustrates spot returns distributions for 1, 2, 3, 
and 4 months’ futures returns, respectively. The OHR is positive and close to one for 
the combination of medium quantiles (0.4–0.6) of both variables. Nevertheless, we 

Fig. 1.1  (continued)
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observed a significant variation in the OHR at the extreme quantiles. More pre-
cisely, we found that the OHR is higher than one at the lowest quantiles (0.1–0.3) of 
both spot and futures returns, that is, when the spot market is bearish and when there 
is a large negative shock in the futures market. However, we observed notably low 
values of the OHR in the area that combines high quantiles of spot returns (0.7–0.9) 
with low quantiles of futures returns (0.1–0.3). The OHR is higher than one at rela-
tively low quantiles of spot returns (0.1–0.3) and high tails of futures returns 
(0.8–0.9). The highest value of the OHR was found at intermediate to high quantiles 
(0.6–0.9) of both spot and futures returns, which corresponds to the combination of 
a bullish spot market and positive shock in the futures market. Again, as we move 
from 1 month to maturity futures contracts to longer maturities, we observe smoother 
changes and a lower OHR variation for crude oil.

For gasoline, Fig. 1i–l shows that high variation in the OHR is mostly at the high-
est and lowest quantiles of the spot and futures returns. Similar to the natural gas 
and crude oil graphs, the OHR for the gasoline market is close to one when the spot 
and futures market condition is normal; which is, at medium quantiles of spot and 
futures returns (0.4–0.6). The changes in the OHR are more prominent at higher 
quantiles. We observed that the OHR is significantly higher than one at the interme-
diate to upper quantiles of both variables (0.7–0.9). In the case of a bearish spot 
market (0.1–0.3) and large adverse shocks in the futures market (0.1–0.3), the OHR 
is higher than one, but not as strong as the highest quantiles of both variables. At the 
high tails of the spot (0.7–0.9) and low tails of futures returns (0.1–0.3), OHR is 
higher. However, this effect flattens out as the time to maturity of the futures con-
tract gets longer. These results indicate that the hedging strategy should be adjusted 
according to the change in spot market states and whether there are positive or nega-
tive shocks in the futures market.

The QQ approach decomposes the findings of the standard quantile regression. 
In this paper, we regressed the θ quantiles of the spot market returns on the futures 
market returns using the quantile regression model. Thus, the estimates of the quan-
tile regression parameters are only indexed by the θ. Although, as we mentioned in 
the methodology part, the QQ approach regresses the θth quantile of the spot returns 
on the τth quantile of the futures returns. Thus, we can consider θ and τ as indexes 
for QQ approach parameters. It is possible to recover the estimates of the quantile 
regression by taking the average of the QQ coefficients along τ. As an example, the 
slope coefficient of the standard quantile regression method, which captures the 
effect of futures returns on the distribution of the spot returns and is denoted γ1(θ) 
can be generated as follows:

	
� � � � � � � �

�
1

1� � � � � � ��ˆ ˆ
s

,
	

where S = 19 is the number of quantiles τ = [0.05, 0.10, …, 0.95] considered.
In this regard, one way to check the QQ approach’s validity is to compare the 

estimates obtained by taking the averages of the QQ coefficients with those of the 
standard quantile regression model. Figure 2a–l illustrates that the averaged QQ 
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Fig. 2  Comparison of quantile regression and QQ estimates
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estimates and the quantile regression estimates are quite identical for all three vari-
ables. Referring to these graphs, we can provide validation for the QQ findings by 
showing that it is possible to recover the estimates of the quantile regression by 
taking the averages of the parameters estimated from the QQ approach.

�Conclusion and Policy Implications

This study empirically examined the long-run and causal relationship and the OHR 
between spot and futures prices for crude oil, natural gas, and gasoline. In contrast 
to most previous empirical studies, we consider the distribution of variables under 
investigation. Obtained findings confirm the long-run and causal relationship among 
the variables, although coefficients and significance levels differ among different 
quantiles of the variables. Our empirical evidence highlights that the OHR can sig-
nificantly vary across the distribution of spot and futures prices. According to the 
results, the OHR is higher than the one-to-one naive hedge ratio at high quantiles of 
both spot and futures prices for all three commodities. Obtained findings also con-
firmed the decrease in the OHR variation as the time to maturity in futures contracts 
increased from 1 month to 4 months. This result indicates that 4 months is long 
enough for spot prices to reflect the new information in the futures market.

Our findings indicate that hedging strategy should be calibrated due to the change 
in spot market states and when there are positive or negative shocks in the futures 
market. The findings of this study are valuable for policymakers, portfolio manag-
ers, and companies. These agents should know the variation of the OHR at different 
spot and futures market conditions such as bullish, bearish, contango, and back-
wardation and also at the entire market distributions for a more efficient diversifica-
tion and policy formation. The empirical results are beneficial for portfolio managers 
as they provide clear and comprehensive information about the linkage between 
spot and futures prices so that managers can reduce the risk associated with the 
portfolio under management using futures contracts. In particular, energy market 
companies can take advantage of our findings through the pattern of dynamic hedge 
ratios among spot and futures prices. During the different market states, they need 

Fig. 1.2  (continued)
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to follow dynamic hedging strategies and change their positions accordingly. In the 
case of practitioners involved in the energy market, it is crucial to know how to 
modify their derivatives market positions to avoid adverse price movements. They 
should consider that for the shorter time to maturities, the hedge ratio is signifi-
cantly dependent on the quantiles of both spot and futures prices. However, this 
dependency flattens out for longer futures contract maturities such as 3 and 4 months. 
For instance, during the extreme spot market condition, and when there is a large 
positive shock in the futures market, they need to increase their short position in the 
futures market compared with their commodity holding. Furthermore, policymak-
ers can benefit from this study, as our results show the critical role of the futures 
market in price discovery. However, this role can vary according to the change in the 
commodity.
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