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Abstract. Single-cell RNA sequencing (scRNA-seq) technology furnishes us
with a certainly forceful tool for exploring biological mechanisms from the per-
spective of single-cell. By clustering scRNA-seq data, different types of cells can
be effectively distinguished, which is helpful for disease treatment and the discov-
ery of new cell types. Nevertheless, the existing clustering methods still cannot
achieve satisfactory results attributed to the complexity of high-dimensional noisy
scRNA-seq data. Therefore, we propose a clustering method called Hypergraph
regularization sparse low-rank representation with similarity constraint based on
tired random walk (THSLRR). Specifically, the sparse low-rank model rebuilds
spatial information from a suite of high-dimensional subspaces by mapping data
into subspaces, and removes superfluous information and errors in scRNA-seq
data. The hypergraph regularization explores the higher-order manifold structure
embedded in the scRNA-seq data. Meanwhile, the similarity constraint based
on tired random walk can farther upgrade the learning ability and interpretabil-
ity of the model. Then, the learned similarity matrix could be for spectral clus-
tering, visualization and identification of marker genes. Compared with other
advanced methods, the clustering results of the THSLRR method are more robust
and accurate.

Keywords: scRNA-seq · Single-cell type identification · Hypergraph
regularization · Similarity constraint

1 Introduction

In the past few years, advances in single-cell RNA sequencing (scRNA-seq) technology
have provided a new window of opportunity to learn about biological mechanisms at
the single-cell level, and guide scientists in exploring gene expression profiles at the
single-cell level [1, 2]. By mining and analyzing scRNA-seq data, we can research cell
heterogeneity and identify subgroups. The identification of cell types from scRNA-
seq data facilitates the extraction of meaningful biological information, as a matter of
unsupervised clustering. With the clustering model, cells that are highly similar will be
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grouped into the same cluster. Because of biological factors and technical limitations,
however, scRNA-seq data tend to be high-dimensional, sparse and noisy. Consequently,
classical clustering methods like K-means [3] and Spectral Clustering (SC) [4] are no
longer suitable for scRNA-seq data, and reliable clustering cannot always be used for
downstream analysis.

At present, in order to iron out the difficulties existing in scRNA-seq data clus-
tering research, scholars have put forward numerous clustering methods. For instance,
through the in-depth research of shared nearest neighbors, Xu and Su came up with a
quasi-cluster-based clustering method (SNN-Cliq), which shows greater superiority in
clustering high-dimensional single-cell data [5]. Based on the profound study of multi-
kernal learning, Wang et al. proposed the SIMLR method, working out dimensionality
reduction as well as clustering of data [6]. Park et al. proposed the MPSSC method,
in which the SC framework is modified by adding sparse structure constraint, and the
similarity matrix is constructed by using multiple double random affinity matrices [7].
Jiang et al. took into account paired cell differentiability correlation and variance, then
proposed the Corr model [8].

At the same time, researchers have also proposed a number of subspace clustering
methods and proved that the similarity obtained by the subspace clustering method
based on low-rank representation (LRR) is more robust than the pairwise similarity
involved in the methods mentioned above [9, 10]. For example, Liu et al. proposed
the LatLRR method, integrating feature extraction and subspace learning into a unified
framework to better cope with severely corrupted observation data [11]. Zheng et al.
presented the SinNLRR method, a low-rank based clustering method, that fully exploits
the global information of the data by imposing low-rank and non-negative constraints
on the similarity matrix [10]. In order to explore the local information of the data, Zhang
et al. proposed the SCCLRRmethod based onSinNLRRwith the addition of local feature
descriptions to capture both global and local information of the data [9]. Zheng et al.
proposed the AdaptiveSSC method based on subspace learning to figure out the matters
of noise and high dimensionality in single-cell data, achieving improved performance
on multiple experimental data sets [12].

In this paper, we propose a single-cell clustering method called Hypergraph regular-
ization sparse low-rank representation with similarity constraint based on tired random
walk (THSLRR), which aims to capture the global structure and local information of
scRNA-seq data simultaneously in subspace learning. Concretely, on the basis of the
sparse LRR model, the hypergraph regularization based on manifold learning is intro-
duced to mine the complex high-order relationship in scRNA-seq data. At the same
time, the similarity constraint based on tired random walk (TRW) further improves the
learning ability of model. The final sparse low-rank symmetric matrix Z∗ obtained by
THSLRR is further operated to learn the affinity matrix H , then H is used for single-
cell spectral clustering, t-distributed stochastic neighbor embedding (t-SNE) [13] visual
analysis of cells and genes prioritization. Figure 1 illustrates the specific process and
applications of THSLRR.
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Fig. 1. The framework of THSLRR for scRNA-seq data analysis.

2 Method

2.1 Sparse Low-Rank Representation

The LRR model is a progressive subspace clustering method, which is widely used in
data mining, machine learning and other fields. Finding the lowest rank representation
of data on the basis of the given data dictionary is the central objective of LRR [14].
Given the scRNA-seq data matrix X = [X1,X2, . . . ,Xn] ∈ Rm×n, where m represents
the number of genes and n is the number of cells, its LRR formula is expressed as follows:

min
Z,E

‖Z‖∗ + γ ‖E‖2,1 s.t. X = XZ + E. (1)

There, ‖ ∗ ‖∗ represents the kernel norm of the matrix, ‖ ∗ ‖2,1 is the l2,1 norm. E is the
error item and Z is the coefficient matrix that demands to be optimized to achieve the
lowest rank. γ > 0 is the parameter to coordinate the influence of errors.

The sparse representation model obtains the sparse coefficient matrix that unravels
the close relationship between the data points, what is equivalent to solving the following
optimization problem:

min
Z

‖Z‖1 s.t. X = XZ, (2)
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where ‖ ∗ ‖1 is the l1 norm. We further combine sparse and low-rank constraints for the
extraction of salient features and noise removal to obtain the sparse LRR of the matrix,
as follows:

min
Z,E

‖Z‖∗ + λ‖Z‖1 + γ ‖E‖2,1 s.t. X = XZ + E. (3)

Here, λ and γ are regularization parameters.

2.2 Hypergraph Regularization

Extracting local information from high-dimensional sparse noisy data is also a problem
worth considering. Therefore, we exploit the hypergraph to encode higher-order geo-
metric relationships among multiple sample points, which can more fully extract the
underlying local information of scRNA-seq data.

For a given hypergraph G = (V ,E,W ), V = {v1, v2, . . . , vn} is the collection of
vertexes,E = {e1, e2, . . . , er} is the collection of hyperedges,W is the hyperedgeweight
matrix. The incidence matrix R of the hypergraph G is calculated as follows:

R(v, e) =
{
1 if v ∈ e
0 others

(4)

The weight w(ei) of hyperedge ei is obtained by the following formula:

w(ei) =
∑

{vi,vj}∈ei
exp− ‖vi−vj‖22

δ2 , (5)

where δ = ∑
{vi,vj}∈ei ‖vi − vj‖22/k, and k represents the number of nearest neighbors

of each vertex. The degree d(v) of vertex v is as follows:

d(v) =
∑
e∈E

w(e)R(v, e). (6)

The degree g(e) of hyperedge e is as follows:

g(e) =
∑
v∈V

R(v, e). (7)

Then, we obtain the non-normalized hypergraph Laplacian matrix Lhyper , as shown
below:

Lhyper = Dv − RWH (DH )−1RT . (8)

where vertex degree matrix Dv, hyperedge degree matrix DH and hyperedge weight
matrix WH are diagonal matrices, and the elements on the diagonal are d(v), g(e) and
w(e) respectively.
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Under certain conditions of the mapping, zi and zj are the mapping representations
of the original data points xi and xj under the new basis, then the target formula of the
hypergraph regularization constraint is as follows:

min
Z

1

2

∑
e∈E

∑
(i,j)∈e

w(e)

g(e)
‖zi − zj‖2 = min

Z
tr

(
Z
(
Dv − RWH (DH )−1RT

)
ZT

)

= min
Z

tr
(
ZLhyperZ

T
)

(9)

2.3 Tired Random Walk

The TRW model was proposed in [15] and proved to be a practical measurement of
nonlinear manifold [16]. Therefore, the similarity constraint can not only improve the
learning ability of the model for the overall geometric information of the data, but also
ensure the symmetry of the similaritymatrix, so that themodel has better interpretability.

For an undirected weight graph with n vertexes, the transition probability matrix
of the random walk is P = D−1W , W represents the affinity matrix of the graph, D
represents the diagonal matrix with Dii = ∑n

j=1Wij. According to [17], the cumulative
transition probability matrix is PTRW = ∑∞

s=0 (τP)s for all vertices, where τ ∈ (0, 1)
and the eigenvalue of P is at [0, 1], so the TRW matrix is as follows:

PTRW =
∞∑
s=0

(τP)s = (1 − τP)−1. (10)

In order to weaken the effect of errors existing in the primary samples and ensure
that the paired sample points have consistent correlation weights, we further symmetrize
PTRW to obtain final TRW similarity matrix S ∈ Rn×n as follows:

S
(
xi, xj

) = (PTRW )ij + (PTRW )ji

2
. (11)

2.4 Objective Function of THSLRR

THSLRR learns the expression matrix Z ∈ Rn×n from the scRNA-seq data matrix
X = [X1,X2, . . . ,Xn] ∈ Rm×n with m genes and n cells by the following objective
function (12):

min
Z,E

‖Z‖∗ + λ1‖Z‖1 + λ2tr
(
ZLhyperZT

) + β‖Z − S‖2F + γ ‖E‖2,1
s.t. X = XZ + E,Z ≥ 0,

(12)

where Z is the coefficient matrix to be optimized, Lhyper ∈ Rn×n is the hypergraph
Laplacian matrix, S ∈ Rn×n is the symmetric cell similarity matrix generated by TRW,
E ∈ Rm×n represents the errors term, ‖ ∗ ‖F is the Frobenius norm of the matrix, λ1, λ2,
β and γ are the penalty parameters.
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2.5 Optimization Process and Spectral Clustering of THSLRR Method

The objective function that hasmultiple constraints of THSLRR is a convex optimization
problem. In order to effectively work out the problem (12), we adopt the Linearized
Adaptive Direction Method with Adaptive Penalty (LADMAP) [18].

Initially, to separate the objective function (12) by using an auxiliary variable J , and
then obtain formula (13):

min
Z,E,J

‖Z‖∗ + λ1‖J‖1 + λ2tr
(
ZLhyperZT

) + β‖Z − S‖2F + γ ‖E‖2,1
s.t. X = XZ + E,Z = J ,Z ≥ 0.

(13)

Then, the augmented lagrangian multiplier method is introduced to eliminate the
linear constraints existing in (13). Therefore, we get the following formula:

L(Z,E, J ,Y1,Y2) = ‖Z‖∗ + λ1‖J‖1 + λ2tr
(
ZLhyperZ

T
)

+ β‖Z − S‖2F + γ ‖E‖2,1
+ 〈Y1,X − XZ − E〉 + 〈Y2,Z − J 〉
+ μ

2

(
‖X − XZ − E‖2F + ‖Z − J‖2F

)
. (14)

Here, μ is a penalty parameter, Y1 and Y2 are lagrangian multipliers.
Finally, the optimization problem is ironed out by updating one of the variables by

turn while fixing the other variables. Therefore, the update rules of Z , E, and J are as
follows:

Zk+1 = θ 1
ημ

(
Zk − ∇Zq(Zk)

η

)
. (15)

Ek+1(i, :) =
{ ‖pi‖− γ

μk‖pi‖ pi
0, otherwise

,
γ

μk
< ‖pi‖. (16)

Jk+1 = max

{
θ λ

μk

(
Zk+1 + Y k

2 /μk

)
, 0

}
. (17)

The sparse low-rank symmetric matrix Z∗ is obtained with our THSLRR method,
and the elements on both sides of the main diagonal of the matrix Z∗ correspond to the
similarity weights of the data sample points. Inspired by [19], we use the main direction
angle information of matrix Z∗ to learn the affinity matrix H . Finally, we use learned
matrix H as the input of SC method to obtain the clustering results.

3 Results and Discussion

3.1 Evaluation Measurements

In the experiment, two commonly used indicators are used to assess the effectiveness of
THSLRR, namely adjusted rand index (ARI) [20] and normalized mutual information
(NMI) [21]. The value of ARI belongs to [−1, 1] while the value of NMI is [0, 1].
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Given the real cluster label T = {T1,T2, . . . ,TK } and the predicted cluster label
Y = {Y1,Y2, . . . ,YK } of n sample points. The formula of ARI is as follows:

ARI(T ,Y ) =
( n
2

)(
aty + a

) − [(
aty + at

)(
aty + ay

) + (at + a)
(
ay + a

)]
( n
2

) − [(
aty + at

)(
aty + ay

) + (at + a)
(
ay + a

)] . (18)

Here, aty denotes the number of data points put in the same class, whereas at denotes
the number of data points in the same class T but separate Y classes. ay represents the
number of data point pairs that are in the same cluster in Y but not in the same cluster
in T , whereas a is the number of data point pairs that are neither in the same cluster of
Y nor in the same cluster of T .

NMI is defined as follows:

NMI(T ,Y ) =

∑
t∈T

∑
y∈Y

p(t, y)ln
(

p(t,y)
p(t)p(y)

)
√
H (T ) · H (Y )

, (19)

Here, H (T ) and H (Y ) represent the information entropy of the tags T and Y , respec-
tively. p(t) and p(y) are the marginal distribution of t and y, p(t, y) represents the joint
distribution function of t and y.

3.2 scRNA-seq Datasets

In this paper, nine different scRNA-seq datasetswere used to do the relevant experimental
analysis. The datasets involved in the experiment includeTreutlein [22], Ting [23], Pollen
[24], Deng [25], Goolam [26], Kolod [27], mECS, Engel4 [28] and Darmanis [29]. The
detailed information of the nine scRNA-seq data sets are shown in Table 1.

3.3 Parameters Setting

In this part, we specifically discuss the influence of different parameterswith regard to the
effectiveness of THSLRR method. We make use of the grid search method to determine

Table 1. The scRNA-seq data sets used in experiments.

Data set Cells Genes Cell type Species

Treutlein 80 959 5 Homo sapiens

Ting 114 14405 5 Mus musculus

Deng 135 12548 7 Mus musculus

Pollen 249 14805 11 Homo sapiens

Goolam 124 40315 5 Mus musculus

Kolod 704 10685 3 Mus musculus

mECS 182 8989 3 Mus musculus

Engel4 203 23337 4 Homo sapiens

Darmanis 420 22085 8 Homo sapiens
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Table 2. The optimal values of four parameters for scRNA-seq data sets.

Data sets λ1 λ2 β γ

Treutlein 100.5 101 10–1 101

Ting 101 101 10–4 101

Deng 100.7 101.1 10–2 10–2.3

Pollen 100 101 103 10–1.5

Goolam 100.1 101 10–2 10–1.1

Kolod 100.5 101 10–2 10–1.1

mECS 100.9 102 102 10–2.2

Engel4 100.8 10–1 102.6 10–1.2

Darmanis 100.2 101 10–1.9 10–0.2

Fig. 2. Sensitivity of different parameters to clustering performance of nine scRNA-seq data sets.
(a) λ1 varying. (b) λ2 varying. (c) β varying. (d) γ varying.

the optimal combination of parameters. The four parameters change in separate intervals
[10−5, 105], and when one of the parameters changes, the other parameters are fixed,
and then we get Fig. 2. In Fig. 2, the clustering results are insensitive to different λ1,
while λ2, β and γ have a greater impact on the model performance. Fortunately, within
a certain range, we can choose the appropriate combination of parameters to achieve
the optimal clustering result. Therefore, we obtain the optimal parameters of different
datasets, as shown in Table 2.
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3.4 Comparative Analysis of Clustering

We conduct experiments on nine scRNA-seq data sets recounted in Table 1 to discuss
the clustering performance of THSLRR. t-SNE, K-means, SIMLR, SC, Corr, MPSSC
and SinNLRR are selected as comparison methods. In order to ensure the fairness and
objectivity of the comparison, we furnish the real number of classes to THSLRR as well
as the other seven methods, and their parameters are all set to the optimal parameters.
The comparison results are shown in Fig. 3 and Table 3.

By observing Fig. 3 and Table 3, we can draw the following conclusions:

1) In Fig. 3(a), the median ARI for comparison methods in all datasets is below 0.7,
while the median value of THSLRR is greater than 0.9. Furthermore, it is the flattest
compared to the box plots of the other sevenmethods, indicating that the performance
of THSLRR is more stable. Similar results can be found in Fig. 3(b).

2) In Table 3, SinNLRR outperforms SIMLR, MPSSC, and Corr on most datasets, and
the average ARI for SinNLRR is approximately 11%, 6% and 20% higher, respec-
tively. THSLRR exceeds SIMLR, MPSSC and Corr on all datasets except mECS,
and outperforms SIMLR, MPSSC and Corr in terms of average ARI by about 27%,
22% and 36% respectively. As can be seen, the low-rank based clustering methods
SinNLRR and THSLRR achieve satisfactory clustering results on most of the data
sets, indicating the critical contribution of global information to improve the clus-
tering performance once again. In contrast, SIMLR,MPSSC and Corr only take into
consideration the local information between samples, their clustering performance
is not as impressive as SinNLRR and THSLRR on most of the datasets.

3) It can also be seen fromTable 3 that THSLRRexceeds theSinNLRRmethodby about
16% inARI score. There are twomain factors. First, theTHSLRRmethod utilizes the
hypergraph regularization to thoroughly mine the complex high-order relationships
of scRNA-seq data, while sinNLRR simply considers the overall information of the
data. Secondly, the similarity based on TRW captures the global manifold structure
information of the data and improves the learning ability of the model.

Fig. 3. Clustering results of eight clustering methods on nine scRNA-seq data sets. (a) ARI. (b)
NMI
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In conclusion, THSLRR achieves the best results on most data sets. Moreover, the
average ARI and NMI of THSLRR increase by approximately 12% and 22% compared
with comparison methods. Therefore, the THSLRR method is rational and it has certain
advantages in cell type identification.

Table 3. The clustering performance on the scRNA-seq data

Method ARI

t-SNE K-means SIMLR SC Corr MPSSC SinNLRR THSLRR

Treutlein 0.5473 0.6172 0.5114 0.6191 0.5919 0.6117 0.6419 0.8722

Ting 0.6384 0.8567 0.9803 0.9592 0.6302 0.9784 0.8943 1.0000

Deng 0.5301 0.4914 0.4565 0.3917 0.4753 0.4783 0.4706 0.5553

Pollen 0.8055 0.8378 0.9415 0.9013 0.7553 0.9328 0.9051 0.9448

Goolam 0.5255 0.4182 0.2991 0.4445 0.3046 0.402 0.9097 0.9727

Kolod 0.7265 0.5462 0.2991 0.4974 0.6928 0.8306 0.7291 0.9727

mECS 0.2408 0.2824 0.9186 0.8028 0.2385 0.8347 0.6263 0.8857

Engel4 0.5725 0.3453 0.6682 0.5258 0.4377 0.4821 0.6533 0.8554

Darmnis 0.5725 0.3453 0.5069 0.5258 0.6183 0.4593 0.6057 0.9452

average 0.5732 0.5494 0.6202 0.6427 0.5269 0.6678 0.7288 0.8893

3.5 Visualize Cells Using t-SNE

According to [6], wemake use of the improved t-SNE tomap the learned matrixH to the
two-dimensional space to observe the structure representation performance of THSLRR
method. We only analyze the visualization results for the Ting and Darmanis datasets
because of space limitations.

As shown in Fig. 4(a), THSLRR does not distinguish class 1 from class 4 on the
Treutlein data, but the boundaries among other types of cells aremore obvious. SinNLRR
does not distinguish the three cell types 1, 3 and 4, the boundary between classes 2 and
5 is also very blurred. The distribution of t-SNE, SIMLR and MPSSC cells are also
scattered. In Fig. 4(b), the result of t-SNE is the worst, SIMLR divides cells belonging
to the same class into two clusters, SinNLRR and MPSSC fail to separate the two types
of cells and THSLRR can correctly separate five cell types. All methods do not show
promising results on the Pollen and Darmanis datasets in Fig. 4(c) and Fig. 4(d), while
THSLRR performed best overall because almost all cells belonging to the same cluster
are segregated into the same group and the boundaries between clusters were relatively
clear.

3.6 Gene Markers Prioritization

In this section, the affinity matrix H learned from THSLRR is used to prioritize genes.
First, the bootstrap Laplacian score that is proposed in [6] is used for identifying gene
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Fig. 4. Visualization results of the cells on (a) Treutlein, (b) Ting, (c) Pollen, and (d) Darmanis
datasets.

markers on the matrix H . Then, the genes are placed in descending order in the light
of their importance in distinguishing cell subpopulations. Finally, the top ten genes are
selected for visual analysis. We use Engel4 and Darmanis data sets for gene markers
analysis.

On Darmanis and Engel4 data sets, we select the top 10 gene markers as shown in
Fig. 5(a) and Fig. 5(b) respectively. The color of the ring indicates the mean expression
level of the gene, and the darker the color, the higher the average expression level of the
gene. The size of the ring means the percentage of gene expression in the cell.

Figure 5(a) shows the top ten genes of Darmanis data set. The genes SLC1A3,
SLC1A2, SPARCL1 and AQP4 have a high level of expression in astrocytes, and they
play an essential part in early development of astrocytes. In fetal quiescent, SOX4,
SOX11, TUBA1A and MAP1B have a high level of expression and have been proven to
be marker genes with specific roles [30–33]. MAP1B in neurons is also highly expressed
PLP12 and CLDND1 with high expression in oligodendrocytes can be regarded as gene
markers of oligodendrocytes [34]. In the Engel4 data, as shown in Fig. 5(b), Engel et al.
have been confirmed for Serpinb1a, Tmsb10, Hmgb2 and Malta1 [28]. The remaining
genes have also been selected as marker genes in related literature [35, 36].
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Fig. 5. The top ten gene markers. (a) Darmanis data set. (b) Engel4 data set.

4 Conclusion

In this paper, we propose a clustering method based on subspace learning, named
THSLRR. There are mainly two differences where our method differs from other sub-
space clustering methods. The first aspect is the introduction of hypergraph regulariza-
tion, which is used to encode higher-order geometric relationships among data and to
mine the internal information of data. Comparedwith other subspace clusteringmethods,
the complex relationships of data can be extracted by our method. Another aspect is the
similarity constraint based on TRW, it can mine the global nonlinear manifold structure
information of the data and improve the clustering performance and the interpretability
of the model. Comparative experiments prove the effectiveness of the THSLRRmethod.
Moreover, the THSLRR method can also provide guidance for data mining as well as
be employed in other related domains.

Now, we would like to discuss the limitations of our model. Primarily, although the
optimal combination of parameters can be searched by the grid search method, it would
be helpful if the optimal parameters could be determined automatically based on some
strategy. Second, we use the single similarity criterion in our model, which may not be
comprehensive for capturing similarity information from the data. So we can try to use
measurement fusion to capture more accurate prior information in the next work.

Funding. This work was supported in part by the National Science Foundation of China under
Grant Nos. 62172253 , 61972226 and 62172254.
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