
EB-FedAvg: Personalized and Training Efficient
Federated Learning with Early-Bird Tickets

Dongdong Li(B)

School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510000, GD, China

201910106942@mail.scut.edu.cn

Abstract. Federated learning is a well-known way to improve privacy in dis-
tributed machine learning. Its major goal is to learn a global model that provides
good performance to the broadest number of participants. Statistical heterogeneity
(also known as non-IID) and training efficiency are two key unresolved concerns
in the rapidly developing field of technology. In this paper, we propose Early-
Bird FedAvg (EB-FedAvg), a customized federated learning architecture with
personalization and training effects based on Early-Bird Tickets. By applying
for the early-bird tickets, each client learns an early-bird ticket network (i.e., a
sub-network of the base model), and only these early-bird ticket networks are
communicated between the server and clients. Instead of learning a shared global
model as in traditional federated learning, each client learns a personalized model
with EB-FedAvg; communication costs can be greatly reduced due to the com-
pact size of the early-bird ticket network. Experiments on these datasets show
that EB-FedAvg outperforms existing systems in personalization, training, and
communication cost.

Keywords: Personalization · Efficient federated learning systems · Data
heterogeneity

1 Introduction

Federated learning (FL) is a well-liked distributed machine learning framework that
enables several clients to train a common global model cooperatively without transmit-
ting their local data [1]. The FL process is coordinated by a central server, and each
participating client exchanges only the model parameters with the central server while
maintaining local data privacy. By overcoming privacy issues, FL enablesmachine learn-
ing models to learn from decentralized data. FL has been used in numerous real-world
situations when data is dispersed across clients and is too delicate to be collected in one
location. For instance, FL has been shown to work well when it is used to predict the
next word on a smartphone [2].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Han and E. Baker (Eds.): SDSC 2022, CCIS 1725, pp. 213–226, 2022.
https://doi.org/10.1007/978-3-031-23387-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23387-6_16&domain=pdf
http://orcid.org/0000-0003-1409-2623
https://doi.org/10.1007/978-3-031-23387-6_16

214 D. Li

Participating clients want a shared global model that performs better than their mod-
els. Data distribution between clients is non-IID [1, 3]. Due to statistical unpredictability,
it’s difficult to design a worldwide model that works for all clients. Several research
has used FL personalization techniques like meta-learning, multi-task learning, transfer
learning, etc. to decrease statistical heterogeneity [4–10].

These solutions frequently entail two steps: 1) developing a global model together,
and 2) adapting it for each customer using local data. Two-step customization increases
costs. FL’s computational cost and diverse devices cause the central server to wait while
clients are trained, consuming a lot of energy. Inference speedup and model compres-
sion are important FL training advancements. The progressive pruning and training
practice involves training a large model, pruning it, and then retraining it to increase
performance (the process can be iterated several times). This is a conventional model
compression strategy, but recent research links it to more effective training [11]. New
research reveals that dense, randomly begun networks contain microscopic subnetworks
that, when trained independently, can approach the test accuracy of original networks
[12, 13].

Unpredictability in the communication channel between the central server and partic-
ipating clients might cause transmission delays owing to bandwidth limits. Compressing
data between the server and client solves the bottleneck. Sparsification, quantization, etc.
[14, 15]. Are common methods. Few efforts have been made to solve both challenges
at once. LG-FedAvg may be the only exception [16]. LG-FedAvg was developed with
an unreasonable FL configuration, despite each client having enough training data (300
images per class for MNIST and 250 for CIFAR-10).

Our work:We construct EB-FedAvg utilizing Early-Bird Tickets, a bespoke FL frame-
work for training and communication [17]. The Early-Bird Ticket phenomenon helps
locate sparse subnetworks within a large base model (EBTNs). Given the same train-
ing, EBTNs often outperform a non-sparse base model. Inspired by this fact, we sug-
gest communicating only EBTN parameters between clients and servers in FL after
collecting each client’s EBTN during each communication round. After adding all of
the clients’ EBTNs, the server displays the modified EBTN parameters to each client.
Finally, each client will learn a tailored model, not a shared global model. The EBTN
includes data-dependent features because it’s built by trimming the underlying model
using local client data. One client’s EBTN may not overlap with others when non-IID
data is included. After the server completes the aggregate, each EBTN’s customization
is preserved. Due to the lower EBTN, the required model parameters are also smaller.
So, FL’s communication efficacy can be boosted.

Our contribution can be summarized as follow:

1. We propose a revolutionary FL framework, namely, EB-FedAvg, that can achieve
personalization, more effective training, and effective communication in both IID
and non-IID settings;

2. We conduct experiments to compare EB-FedAvg with standalone, FedAvg, Per-
FedAvg, and LG-FedAvg [1, 16, 18]. The results of the experiments show that EB-
FedAvg is much better than the other methods in terms of personalization, cost of
communication, and effectiveness of training.

EB-FedAvg: Personalized and Training Efficient Federated Learning 215

2 Related Works

Personalization. To achieve personalization, the global model must be modified due to
statistical heterogeneity (i.e., the distribution of non-IID data between clients). Personal-
ization is accomplished in existing work by meta-learning, multi-task learning, transfer
learning, etc. [4–10]. However, all of the current attempts to achieve personalization
through two distinct phases come with additional overhead: 1) A federated global model
is learned, and 2) the global model is tailored to each client based on local data.

TheWinning Ticket Theory. According to the lottery ticket hypothesis, a fully trained
dense network can be pruned to identify a small subnetwork called the winning ticket
[12]. By training the isolated winning ticket with the same weight initialization as the
dense network’s corresponding weights, the dense network can then be trained to have
a test accuracy that is comparable to that of the isolated subnetwork. Finding winning
tickets requires pricey (iterative) pruning and retraining, though.Morcos et al. investigate
the transferability of winning tickets across several datasets [19].

Communication Efficiency. The main barrier for FL is communication because the
links between clients and the server frequently function at low rates and can be expen-
sive. Several studies try to lower FL’s communication expenses [14, 15]. By combining
FedAvg with data compression methods like sparsification, quantization, sketching, etc.,
the main goal is to reduce the amount of data that is sent between the server and clients.

Efficient Inference andTraining.Model compression has been thoroughly investigated
for the inference that it is lighter weight. Popular methods include pruning, weight
factorization, weight sharing, quantization, dynamic inference, and network architecture
search [20–32]. On the other hand, it seems like there is significantly less research on
effective training. A small number of studies focus on reducing the total amount of time
spent training in situations where people are working in parallel and communicating
well [35–37].

3 Design of EB-fedAvg

Early-Bird FedAvg (EB-FedAvg) is an end-to-end combination of Early-Bird Tickets
and FedAvg. Figure 1 illustrates an overview of EB-FedAvg. By applying for the Early-
Bird Tickets, each participating client discovers an Early-Bird Ticket Network (EBTN).
In particular, the EBTN is trained by trimming the basemodel using the local data of each
client. The basemodel will not be transmitted between the clients and the server, only the
parameters of EBTNs. The server will only do the aggregate on the incoming EBTNs
after that, and each client will receive the updated parameters for the corresponding
EBTNs as a result. After the EBTNs’ parameters have been updated, the clients resume
their training. Before we explain how to learn local EBTNs and run the global aggregate,
we define the following notations that we use in our paper.

216 D. Li

Fig. 1. The EB-FedAvg workflow diagram is displayed. It makes use of Early Bird Tickets to
identify the Early Bird Network and, as a result, establish the network structure for Early Learning.
Second, sparse weight masks are employed to keep the client personalized during model updates
and to increase the effectiveness of data transmission between the client and the server.

Notations:We define S ⊂ C as a group of clients chosen at random during each training
cycle, with C = {C1, · · · ,CN } representing the N available clients, where Ci signifies
the i-th client. St denotes the group of clients selected in the t-th round. K denotes the
sampling ratio of each round. Let θi(i �= g) represent the local model parameters on
each clientCi, and let θg represent the parameters of the base model on the global server.
To represent the model parameters of the Early-Bird Ticket Network (EBTN) found in
round t, we additionally use the superscript t, θ ti . And creates a local early bird ticket

binary mask mt
i ∈ {0, 1}|θ ti |. Therefore, the parameters of the relevant weight mask for

the client Ci are indicated by the symbol θ ti
⊙

mt
i . Given the data Di held by Ci. we

splitDi into the training dataDTrain
i , and test dataDTest

i . Pruning probability is p, and the
scaling factor for structured pruning is r. The FIFO queue Q has a length of l.

3.1 Training Algorithm

The main distinction between EB-FedAvg and FedAvg is that EBTNs are the only form
of communication between clients and the FL server. In each communication round, the
EBTNs alone are therefore the only ones used in the server’s aggregate. In Algorithm 1,
the specifics of the EB-FedAvg training algorithm are described. In general, the training
algorithm has the following steps:

EB-FedAvg: Personalized and Training Efficient Federated Learning 217

Algorithm 1: Training Algorithm of EB-FedAvg
Data: where is the local data on
Server Executes:

1 initialize the global model with
2
3 for in parallel do
4 download from Global Server

initialize the client mask
5 end for
6 for each round t =1,2,…do
7
8 { }
9 for each client in parallel do
10
11 end for
12
13 end for

:
14
15
16 for each local epoch, i from 1 to Epoch do
17 for batch do
18
19 end for
20 Perform structured pruning based on r towards the target ratio p, and generate the mask

;
21 Calculate the mask distance between the current and last subnetworks and add to Q;
22 if then
23 Updating the early bird ticket binary mask
24 return to server
25 end if
26 end for
27 return to server

Step I: Send the global server initialization weights θg to the client Ci and initialize
the client Ci’s mask m0

k .
Step II: The server randomly selects a group of clients St given the t-th communi-

cation round.
Step III: From the server, each Ck ∈ St client downloads its matching EBTN θ tk ,

where θ tk = θ tg
⊙

mt
k .

Step IV: Each client Ck start training the local model with θ tk . To create a mask mt
k ,

structured pruning using the scaling factor r and the pruning probability p. And to store
the successively generated subnetworks into a first-in-first-out (FIFO) queue Q with a
length of l = 5, and calculate the mask mt

k distances between them.
Step V: Exits when the greatest mask mt

k distance in the FIFO falls below a
predetermined criterion (default 0.1 with normalized distances of [0,1]).

218 D. Li

3.2 Structured Pruning

Since it is hardware-friendly and best connects to our objective of effective training
and performance enhancement, we use the same channel pruning as Liu et al. [21]. To
use the scaling factor r in batch normalization (BN) layers as an indicator of channel
importance, we follow Liu et al. We generate a mask for each filter separately, and filter
channels are pruned under the pruning threshold. To make the pruning threshold easy to
use, a percentile of all scaling factors, such as p% of channels, is used to figure it out.

3.3 Early Bird Ticket Masked Weights

The main distinction between EB-FedAvg and existing FL methods is that only the
learned weight masks are sent to the central server by each device, which learns an
EBTN that only belongs to itself. Figure 2 illustrates how structured pruning can be
used to obtain each device’s respective EBTN. We can obtain the pruned network mask
in response, which we refer to as the Early Bird Ticket Binary Mask (EBTB Mask). To
send the mask weights to the central server, we can then use the learned EBTB Mask to
perform a real-time structured pruning of the EBTN.

Fig. 2. Theprocess ofmaskweight.Using theEBTNnetwork,which canbe acquired after training
or updating, we can produce the corresponding early bird ticket binary masks. A mask calculation
between the early bird ticket binary mask and the EBTN network can be used to determine the
weight mask.

3.4 Aggregate Heterogeneous Weight Masks

Themajority of FLmethods aggregate data using the FedAvg aggregation strategy,which
involves averaging. Instead of updating the full weights in EB-FedAvg, aggregation is
done on the weight masks. Additionally, not all elements are overlapped due to the
heterogeneity of the weight masks across devices. Because of this, we can’t just use an
averaging strategy to do aggregation in EB-FedAvg.

Our objective in developing the aggregation strategy is to maximize the retention of
personalized data contained in the heterogeneous weight masks. We propose a weighted
mask aggregation scheme that accomplishes this goal by independently aggregating
each element of the weight mask. As Fig. 3 shows, only elements that appear in two
or more weight masks are averaged by the central server. The central server then uses
the aggregated values to update these elements in the corresponding weight masks. The
central server ignores elements that are not shared in the weight masks and do not
aggregate them. Finally, the device will receive the updated weight mask.

EB-FedAvg: Personalized and Training Efficient Federated Learning 219

Fig. 3. Weightmask aggregation process. To the server, each device sends its uniqueweightmask.
On the server side, overlapping nodes are aggregated rather than using a strategy that distributes
weights evenly as FedAvg does.

3.5 Generate Personalized Model

The weight mask is updated once the weight mask aggregation operation is completed,
as shown in Fig. 4. After theweightmasks have finished training, the EBTBmask of each
device is applied to the updated weight masks one at a time to create a unique model.
The EBTB mask makes it more likely that devices will be able to share information
while also giving a sparse, personalized model and resolving statistical heterogeneity.

Fig. 4. Personalization via EBTB mask. The client does not update the model immediately after
receiving it from the server, unlike FedAvg, in order to preserve the model’s personalized nature.
The client will choose the received weights using the early bird ticket binary mask to maintain
personalization while ensuring information sharing.

4 Evaluation

4.1 Datasets, and Models

In our investigations, we employ theMNIST andCIFAR-10 datasets [38, 40].We sample
the non-IID dataset using the Dirichlet distribution and allocate it to each client with
an alpha of 0.2. All of the test sets for the training dataset labels for each client are
used to create the evaluation data. We utilized LeNet-5 and AlexNet as our architectures
for MNIST and CIFAR-10. In the LeNet-5 and AlexNet designs, we also include a
batch-normalization layer after each convolutional layer.

220 D. Li

4.2 Hyper-Parameter Setting

We built up 100 clients with local batch sizes of 32, and 50 for local epochs, and an
SGD optimizer with a 0.1 learning rate and 0.9 momentum for all experiments. Between
the server and the client, there are 50 communication rounds. For structured pruning
methods, the threshold for mask distance is 0.1 as well. Additionally, we used a pruning
rate of 0.3 and a scale sparse factor of 10−4.

4.3 Compared Methods

Baselines. To comprehensively evaluate the performance of EB-FedAvg, we compare
EB-FedAvg against four baselines:

Standalone: each device trains a model independently using only local data without
collaborating with other devices [39]. Be aware that using the Standalone technique
won’t incur any communication costs.
FedAvg is the most classic FL method, and it is employed in commercial products.
Devices talk to the central server to send updated local parameters and download the
global model so that local training can happen all the time.
Per-FedAvg adds MAML, a prominent meta-learning approach, with FedAvg for
customization [18, 41].
LG-FedAvg is a cutting-edge FL method that lets you customize it and improves the
efficiency of communication while decreasing the efficiency of computing [16].

4.4 Evaluation Metrics

To evaluate the performance of EB-FedAvg during the training process, we use the
following evaluation metrics:

(1) Inference Accuracy: We assess the inference accuracy of the test data for each
device and report the overall average accuracy for evaluations.

(2) Communication Cost: The total number of parameters the model uploads and
downloads during training serves as our proxy for the communication cost, which
is a significant bottleneck in federal learning.

(3) Computation Cost: We quantify the computation time spent on devices for 50
training rounds.

4.5 Training Performance

Inference Accuracy vs. Computation Cost: we compare EB-FedAvg with the base-
lines in terms of the accuracy-computation tradeoff. Table 1 shows that EB-FedAvg can
improve the accuracy of inferences by a lot while reducing the cost of computations by
a lot.

First, compared to LG-FedAvg, EB-FedAvg can improve inference accuracy and
training computation cost simultaneously. In particular, EB-FedAvg improves infer-
ence accuracy by 1.17×, 1.78×, 1.11×, 1.67× on LeNet-5-MNIST, LeNet-5-CIFAR-
10, AlexNet-MNIST, and AlexNet-CIFAR-10 in IID, respectively. Inference accuracy

EB-FedAvg: Personalized and Training Efficient Federated Learning 221

improves by 2.96×, 2.23×, 1.79×, and 1.96× on LeNet-5-MNIST, LeNet-5-CIFAR-10,
AlexNet-MNIST, and AlexNet-CIFAR-10 in non-IID, respectively.

Second, EB-FedAvg can dramatically reduce computation costs compared to Per-
FedAvg, which is specifically designed for personalization. In particular, EB-FedAvg
reduces the computation costs of LeNet-5-MNIST, LeNet-5-CIFAR-10, AlexNet-
MNIST, and AlexNet-CIFAR-10 in IID by 1.79×, 1.53×, 1.46×, and 1.36×, respec-
tively. In non-IID, EB-FedAvg reduces computation costs by 1.43× and 1.53× on
LeNet-5-CIFAR-10 and AlexNet-CIFAR-10, respectively.

Table 1. Comparison between EB-FedAvg and baselines in inference accuracy-computation cost
space.

IID non-IID

Models Algorithm Acc.(%) Computation cost.
(s)

Acc. (%) Computation cost.
(s)

LeNet-5
MNIST

EB-FedAvg 96.31 673 89.56 780

FedAvg 96.1 683 89.32 775

LG- FedAvg 82.31 1281 30.28 703

Per- FedAvg 94.79 1204 83.87 695

Standalone 92.14 225 50.14 283

LeNet-5
CIFAR-10

EB-FedAvg 46.67 794 29.31 839

FedAvg 46.59 792 27.93 766

LG- FedAvg 26.2 1409 13.06 1410

Per- FedAvg 36.2 1214 28.2 1200

Standalone 38.01 353 24.52 372

AlexNet
MNIST

EB-FedAvg 95.09 1435 88.22 1369

FedAvg 94.48 1436 85.57 1305

LG- FedAvg 85.79 2143 49.11 1408

Per- FedAvg 91.69 2097 83.62 1346

Standalone 90.29 516 49.89 418

AlexNet
CIFAR-10

EB-FedAvg 49.75 1292 30.09 1377

FedAvg 48.42 1312 31.1 1360

LG- FedAvg 29.73 2007 15.38 2447

Per- FedAvg 40.77 1762 18.29 2100

Standalone 36.2 514 24.07 788

222 D. Li

Second, EB-FedAvg can dramatically reduce computation costs compared to Per-
FedAvg, which is specifically designed for personalization. In particular, EB-FedAvg
reduces the computation costs of LeNet-5-MNIST, LeNet-5-CIFAR-10, AlexNet-
MNIST, and AlexNet-CIFAR-10 in IID by 1.79×, 1.53×, 1.46×, and 1.36×, respec-
tively. In non-IID, EB-FedAvg reduces computation costs by 1.43x and 1.53x on
LeNet-5-CIFAR-10 and AlexNet-CIFAR-10, respectively.

Third, it’s not surprising that EB-FedAvg does a lot better than FedAvg in terms of
how well it makes inferences and how much it costs to compute. FedAvg is a general
FL method that isn’t optimized for computation or personalization.

Even though Standalone doesn’t have any communication costs, EB-FedAvg does
a better job than Standalone because it uses all local data instead of only a few training
samples on each device.

Low Communication Cost: Fig. 5 illustrates the comparison of communication costs
between EB-FedAvg and the baselines.

Fig. 5. In terms of communication costs, EB-FedAvg is compared to baselines. LeNet-5 and
AlexNet architectures for sending are shown in (a) and (b), respectively. Data sent is measured in
megabytes (MB).

As Fig. 5 shows, EB-FedAvg is more communication-efficient in all applications
when compared to baselines because of the structured sparsity. Specifically, EB-FedAvg
can save 8×, 8.06×, and per-FedAvg on LeNet communication costs, respectively. EB-
FedAvg can save 27×, 27.86×, and per-FedAvg on AlexNet communication costs,
respectively. EB-FedAvg can save 0.47× and 23.18× in communication costs on LeNet-
5-LG-FedAvg and AlexNet-Per-FedAvg, respectively.

The number of Participating Devices: Table 2 shows the BE-FedAvg, which we use to
figure out how adding more devices affects how well each communication round works.

We experiment on MNIST and CIFAR10 and change the quantities of participating
devices by 5, 20, and 40. As Table 2 illustrates, with more devices participating in
each communication round, the inference accuracy marginally improves. For instance,
increasing the number of participating devices from 5 to 40 on IID and non-IID enhances
the inference accuracy on MNIST-LeNet-5 by 1% and 1.02%, respectively. When the
number of devices in IID and non-IID goes from 5 to 40, the inference accuracy on
CIFAR-10-LeNet-5 goes up by 1.03% and 1.11%, respectively.

EB-FedAvg: Personalized and Training Efficient Federated Learning 223

Table 2. The impact of the number of participating devices on EB-FedAvg performance.

Models Number of devices IID Acc. (%) non-IID Acc. (%)

MNIST-LeNet-5 5 96.31 89.56

20 96.28 90.69

40 96.49 91.74

CIFAR-10-LeNet-5 5 46.67 29.31

20 48.78 31.36

40 47.93 32.57

Data Imbalance Ratio: The amount and type of data on the device have a big effect
on how well the FL method works. In practice, there are several bad situations when
the data amount is constrained. In addition to having limited data, data on a device
frequently displays an imbalance between different classifications. It is challenging for
FL strategies to train customized models that perform as well across classes as they
do within them. To figure out how the amount of data and the degree of different data
types affect the way EB-FedAvg works. We conducted experiments on the MNIST and
CIFAR-10 datasets to compare the performance of both datasets on LeNet and AlexNet.
The Dirichlet distribution’s alpha value, whose greater value roughly equates to a more
uniform distribution of data types and amounts among clients, allows us to control the
data imbalance rate. The alpha values selected are 0.0001, 0.001, 0.01, and 0.1. As
Fig. 6 illustrates, for a fixed number of participating training clients, the accuracy of an
inference decreases slightly for smaller alpha values.With the participation of 20 clients,

Fig. 6. The impact of the data imbalance rate on EB-FedAvg performance. Three factors are
combined in this: data heterogeneity, device heterogeneity, and model heterogeneity. Data hetero-
geneity refers to data with various balance rates; device heterogeneity refers to the various training
devices, and model heterogeneity refers to the utilization of various two models.

224 D. Li

the value in Fig. 6(a) dropped from 96.86% to 96.72% when the alpha dropped from
0.1 to 0.0001. In several additional comparisons, the situation is similar. In addition,
the increase in the number of clients participating in the training when setting the same
alpha value can reduce the impact of the data imbalance degree, in addition to improving
the effectiveness of the training. In Fig. 6(a), for example, the accuracy varies between
2% and 4%.

5 Conclusion

We created EB-FedAvg, a customized, effective training and communication FL frame-
work that is motivated by Early-Bird Tickets. The technique removes the generic model
parameters from clients’ models while maintaining the customized ones by iteratively
pruning the neural network channels. Our results show that obtaining the winning ticket
at a very early stage, i.e., EB, can achieve the same or better performance than standard
training and other personalized architectures. The EBTN obtained through EB-FedAvg
not only ensures personalized training but also greatly reduces the consumption during
the communication process in the transmission of FL. We assume there are still a lot
of promising issues that need to be solved. Testing low-precision EB Train methods on
larger models and datasets is an immediate future task. We are also interested in finding
out if EB Train could be connected to any further less expensive training methods.

References

1. McMahan, B.,Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient
learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics,
pp. 1273–1282 (2017)

2. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., .Ramage, D.:
Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604. (2018)

3. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, methods, and
future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

4. Jiang, Y., Konečný, J., Rush, K., Kannan, S.: Improving federated learning personalization
via model agnostic meta learning. arXiv preprint arXiv:1909.12488. (2019)

5. Khodak, M., Balcan, M.F.F., Talwalkar, A.S.: Adaptive gradient-based meta-learning
methods. In: Advances in Neural Information Processing Systems, 32 (2019)

6. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence
and efficient communication. arXiv preprint arXiv:1802.07876. (2018)

7. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In:
Advances in Neural Information Processing Systems, 30 (2017)

8. Zantedeschi, V., Bellet, A., Tommasi, M.: Fully decentralized joint learning of personalized
models and collaboration graphs. In: International Conference on Artificial Intelligence and
Statistics, pp. 864–874 (2020)

9. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated
evaluation of on-device personalization. arXiv preprint arXiv:1910.10252. (2019)

10. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:2002.10619. (2020)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149. (2015)

http://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1909.12488
http://arxiv.org/abs/1802.07876
http://arxiv.org/abs/1910.10252
http://arxiv.org/abs/2002.10619
http://arxiv.org/abs/1510.00149

EB-FedAvg: Personalized and Training Efficient Federated Learning 225

12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635. (2018)

13. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270. (2018)

14. Konečný, J.,McMahan,H.B., Yu, F.X., Richtárik, P., Suresh,A.T., Bacon,D.: Federated learn-
ing: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
(2016)

15. Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: Communication-efficient
SGD via gradient quantization and encoding. In: Advances in Neural Information Processing
Systems, 30 (2017)

16. Liang, P.P., et al.: Think locally, act globally: Federated learning with local and global
representations. arXiv preprint arXiv:2001.01523. (2020)

17. You, H., et al.: Drawing early-bird tickets: Towards more efficient training of deep networks.
arXiv preprint arXiv:1909.11957. (2019)

18. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948. (2020)

19. Morcos, A., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: generalizing lot-
tery ticket initializations across datasets and optimizers. In: Advances in Neural Information
Processing Systems, 32 (2019)

20. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710. (2016)

21. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional
networks through network slimming. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 2736–2744 (2017)

22. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep
convolutional neural networks. arXiv preprint arXiv:1808.06866. (2018)

23. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural
networks. In: Advances in Neural Information Processing Systems, 29 (2016)

24. Luo, J. H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural network
compression. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 5058–5066 (2017)

25. Liu, S., Lin, Y., Zhou, Z., Nan, K., Liu, H., Du, J.: On-demand deep model compression
for mobile devices: A usage-driven model selection framework. In: Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and Services, pp. 389–
400. (2018)

26. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure
within convolutional networks for efficient evaluation. In: Advances in Neural Information
Processing Systems, 27 (2014)

27. Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A., Lin, Y.: Deep k-means: Re-training
and parameter sharing with harder cluster assignments for compressing deep convolutions.
In: International Conference on Machine Learning, pp. 5363–5372. (2018)

28. Hubara, I., Courbariaux,M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks:
training neural networks with low precision weights and activations. J. Mach. Learn. Res.
18(1), 6869–6898 (2017)

29. Wang, Y., Nguyen, T., Zhao, Y., Wang, Z., Lin, Y., Baraniuk, R.: Energynet: Energy-efficient
dynamic inference (2018)

30. Wang, Y., et al: Dual dynamic inference: Enabling more efficient, adaptive, and controllable
deep inference. IEEE J. Selected Topics Signal Process. 14(4), 623–633 (2020)

31. Shen, J.,Wang,Y.,Xu, P., Fu,Y.,Wang, Z., Lin,Y.: Fractional skipping: Towards finer-grained
dynamic cnn inference. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34(4), pp. 5700–5708 (2020)

http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/2001.01523
http://arxiv.org/abs/1909.11957
http://arxiv.org/abs/2002.07948
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1808.06866

226 D. Li

32. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578. (2016)

33. Wang, Y., Xu, C., Xu, C., Xu, C., Tao, D.: Learning versatile filters for efficient convolutional
neural networks. In: Advances in Neural Information Processing Systems, 31 (2018)

34. Wang, Y., Xu, C., Xu, C., Tao, D.: Packing convolutional neural networks in the frequency
domain. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2495–2510 (2018)

35. Goyal, P., et al.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677. (2017)

36. Cho, M., Finkler, U., Kumar, S., Kung, D., Saxena, V., Sreedhar, D.: Powerai ddl. arXiv
preprint arXiv:1708.02188. (2017)

37. You, Y., Zhang, Z., Hsieh, C.J., Demmel, J., Keutzer, K.: Imagenet training in minutes. In:
Proceedings of the 47th International Conference on Parallel Processing, pp. 1–10. (2018)

38. Deng, L.: The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

39. Ang, L., Jingwei, S., Xiao, Z., Mi, Z., Hai, L., Yiran, C.: Fedmask: Joint computation
and communication-efficient personalized federated learning via heterogeneous masking. In:
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (2021)

40. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
41. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep

networks. In: International Conference on Machine Learning, pp. 1126–1135. (2017)

http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1708.02188

	EB-FedAvg: Personalized and Training Efficient Federated Learning with Early-Bird Tickets
	1 Introduction
	2 Related Works
	3 Design of EB-fedAvg
	3.1 Training Algorithm
	3.2 Structured Pruning
	3.3 Early Bird Ticket Masked Weights
	3.4 Aggregate Heterogeneous Weight Masks
	3.5 Generate Personalized Model

	4 Evaluation
	4.1 Datasets, and Models
	4.2 Hyper-Parameter Setting
	4.3 Compared Methods
	4.4 Evaluation Metrics
	4.5 Training Performance

	5 Conclusion
	References

