
Normal Equilibrium Fluctuations from Chaotic
Trajectories: Coupled Logistic Maps

Kyle Taljan1 and J. S. Olafsen2(B)

1 Case Western Reserve University, Yost Hall 2049 Martin Luther King Jr. Drive,
OH 44106-7058 Cleveland, USA

2 Department of Physics, Baylor University, TX 76798 Waco, USA
Jeffrey_Olafsen@baylor.edu

Abstract. We report results of a numerical algorithm to examine coupling of two
logistic maps where the mixing is chosen to maintain the stability of one map at
the loss of the other. The long-term behavior of the coupling is found to contain
windows in which the mixing results in Gaussian fluctuations about a fixed point
for the stabilized map. This deterministic behavior is the result of the destabilized
map simultaneously being driven into a chaotic regime and not noise. The results
are applicable to both chaotic encryption of data and recapturing equilibrium
behavior in a non-equilibrium system.
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1 Introduction

Chaotic maps can be thought of as simple systems that demonstrate non-equilibrium
behavior: deterministic systems that nonetheless take an essentially infinite amount of
time to repeat themselves. Chaotic behavior can thus be classified as a certain type of
steady-state dynamics that is the result of a small number of inputs. This picture is
particularly beneficial in using the logistic map

Zn + 1 = μzn(1 − zn) (1)

as a simple system that at low values of the parameter μ demonstrates equilibrium
behavior in the long-term mapping to a single point and demonstrates a period doubling
path to chaos as μ is increased [1]. Studying non-equilibrium systems contributes to
a better physical description of their poorly understood thermostatistics. While it has
been demonstrated that a proper selection of coarse graining [2] or particular control of
the type of non-equilibrium balance between energy injection and dissipation [3] can
result in a recapturing of equilibrium-like behavior and Maxwell-Boltzmann statisti-
cal fluctuations, a fundamental picture of the laws of non-equilibrium thermodynamics
remains elusive. Chaotic maps, which themselves may be thought of as a subset of
non-equilibrium systems [4], can also potentially aid in the encryption of information
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for security purposes [5]. A set of coupled chaotic maps demonstrating an underlying
Gaussian dynamic would also be beneficial for use as a deterministic manner in which
to hide information in a signal that appears random [6].

Motivated by recent observations of a granular dimer on a vertically shaken plate
[7], a set of coupled logistic maps were proposed as a potentially simple model of a
two-component system with both a stable and unstable dynamic. This choice is because
a single particle on an oscillating plate demonstrates a period doubling path to chaotic
behavior. The shaken dimer demonstrates a breaking of symmetry where one sphere of
the dimer appears to remain nearly stable with the shaken plate while the other chatters
with a phase coherence that may demonstrate chaotic instability [8]. To model this
dynamic, we proposed a specific pair of coupled logistic maps:

xn+1 = μxxn(1 − xn) + εxnyn (2)

yn+1=μyn(1−yn)−εxnyn (3)

where the ± ε xn yn term provides the mixing between the two maps, x and y, via the
small positive parameter, ε. Since the two uncoupled maps are independent and exist in
a regime of [0,1], the positive mixing term effectively increases the value of μX in Eq. 2
and destabilizes the x map by driving it further along the period doubling path to chaos
while at the same time effectively decreases μY in Eq. 3 and stabilizes the y map for
small values of ε. This is an example of a “master-slave” system [9, 10].

While the results will demonstrate a more immediate application to the encryption
of data, initially this mixing was developed as a potential model of the effective cross
term responsible for the anisotropic behavior observed in a dimer on a vertically shaken
plate [11]. Because of this motivation, the μY values studied here were limited to a
range over which the logistic map demonstrates a single stable fixed point, and μX was
allowed to vary over a wider range of values. However, because the logistic map is only
properly defined on the range of [0, 1], the mixing parameter εwas purposely kept small
in this study and limited to values in the range of [0, 0.075]. In this regime, the x map is
destabilizedwhile the net effect on the ymap is tomaintain the stability in awindowabout
the fixed point. These choices also avoided errors with the double-precision calculation
of the trajectories [12].

For ε = 0, the two maps are uncoupled and the typical logistic map behavior is of
course recovered for each of x(ε = 0) = y(ε = 0) = z as shown in Fig. 1. The squares
in the range of 2.8 ≤ μ ≤ 3.05 denote the values for μY used in this study and the blue
region centered about μ ~ 3.8 the values of interest for μX that will be discussed later
along with specific values of μX and μY indicated by the arrows. For comparison, when
the mixing is turned on by allowing ε > 0, the behavior is quite different as demonstrated
in Fig. 2(a) and (b) for the long-term trajectories of x and y, respectively, as a function
of μX. (For the rest of this letter, the prescription was to select a value of μY that kept
y at or near a stable fixed point, as shown as boxes in Fig. 1 for the uncoupled logistic
map, and then to examine the coupled equations as a function of the parameter μX.) In
Fig. 2, the value of μY is 2.95 and ε is 0.05. Careful examination of Fig. 2(a) for the
coupled x map compared to the uncoupled z map of Fig. 1 confirms the general behavior
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of ε for the x map is to effectively increase the value of μX. Note that the bifurcation
to period 2 behavior that occurs in the uncoupled map for μ = 3.0 in Fig. 1 occurs for
the coupled x map in Fig. 2(a) at a slightly lower value of μX ~ 2.975. In nearly every
regard, the bifurcation diagram of x is simply the same as the uncoupled logistic map
shifted slightly lower in μX (made more unstable) by the addition of the mixing term.
(As an additional guide to the eye, the vertical arrow to the right side of Fig. 1 is at the
same μ value as the vertical arrow in Fig. 2(a).) In Fig. 2(a) and 2(b), the long-term
behavior of each trajectory at each μX is demonstrated by iterating the maps for 30,000
steps and plotting the last 20,000 iterations of each trajectory.

Fig. 1. The long-term behavior of the logistic map as a function of the parameter μ. The boxes
on the left denote the μY values used for the coupled y-map, while the shaded region on the right
denotes the parameter space of interest for μX of the coupled x-map.

Far more interesting is the effect the mixing term has on the behavior of the y map.
Even though μY for the y map is held fixed at 2.95, and the lowest order effect of
the – ε xn yn term is to maintain that stability by effectively reducing μY, the coupling
adds fluctuations (from the x map) about what would be a stable fixed point without
the coupling. In the periodic regions, these fluctuations simply behave as a self-similar
version of the logistic map superimposed upon the stable fixed point of the uncoupled
y map for μY = 2.95. One will also note that while the value of the fixed point moves
for μ values in the range between 2.6 and 2.9 in Figs. 1 and 2 (a), the fixed point in the
y map is stationary in Fig. 2(b). Yet, in the chaotic regions of the x map, the mixing
term produces fluctuations that are different from the uncoupled logistic map in that they
remain in a small window (of approximate size ± 0.05) about the stable fixed point for
the uncoupled y map. The width of this window is determined by the value of ε.
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Fig. 2. The long-term behavior for the coupled maps (a) xn and (b) yn as a function of μX with
μY = 2.95 and ε = 0.050. The arrows denote the value of μX of interest discussed in Figs. 3 and
4.

2 Discussion

To characterize the fluctuations of the coupled y map about the fixed point from its
uncoupled counterpart, one can examine the flatness of the distribution. The flatness of
a set of values, v, is defined as the ratio of the fourth moment of the fluctuations from
the mean of v to the square of the variance, or second moment, of the fluctuations of v:

F = <v4> / <v2>2 (4)
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where a flatness F = 3 is the result for a Gaussian (normal) distribution [13]. Figure 3
is a plot of the flatness as determined by the second and fourth moments of the last
20,000 iterations of the long-term behavior of the coupled maps. (Note: The value of
F – 3, demonstrating the deviation from Gaussian or the kurtosis, is what is plotted.)
The lighter (blue) line is the result for the coupled x map, which is simply a shifted
version of the uncoupled logistic map, while the darker (black) line is the result for the
coupled y map. For both the x and y maps, in regions where the maps are single valued,
the fourth and second moments are equal, resulting in a flatness of unity, so F – 3 = –2.
The relative behavior of the flatness for the x and y maps in the range of 3.4 < μX <

3.7 also underscores that the y map is more stable than the x map by introduction of the
mixing term.

Fig. 3. The flatness of the distribution of xn (blue) and yn (black) points from the long-term
behavior of the maps. The box and arrow denotes a situation where the yn points form a Gaussian
distribution.

Yet, in the regime of μX where the coupled y map exhibits period doubling, the
flatness of the y map is generally closer to Gaussian than that for either the coupled x
map or the uncoupled logistic map (not shown). Indeed, at just above μX = 3.8, the
plot of F – 3 of the fluctuations about the mean value for the y map rises above zero,
before passing back through zero and becoming negative. The point where this occurs
is denoted by the box and arrow in Fig. 3 as well as the vertical arrow in Fig. 2(b). This
is a dynamic result of the mixing that occurs for a particular value of the parameters and
is not due to additive noise [14] or computational imprecision [12].

AtμX = 3.832, the flatness of the fluctuations for the y map about its mean indicates
that the tails of the distribution are nearly Gaussian. Further work was done to investigate
whether this was a simple happenstance or if there were other parameter values for which
the deterministic fluctuations about the mean value of the y map were Gaussian. Table 1
lists several values of the parameters μX, μY, and for which Gaussian fluctuations about
the mean of the long-term behavior of the y map were obtained.
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Fig. 4. The behavior (represented as a pdf) of the (a) uncoupled and (b) coupled xn (blue/grey)
and yn (black) maps at their values of μX = 3.832 and μY = 2.95 respectively, for an ε = 0.050.

The effect of the mixing trajectories for one set of parameters is demonstrated in
Fig. 4. Part (a) of Fig. 4 shows the long term behavior of the uncoupled (ε = 0) x and y
maps for μX = 3.832 and μY = 2.95 by plotting the long term behavior of the z map at
values of μ = μX and μ = μY, respectively, as a probability distribution function (pdf).
Once the uncoupled y map (z for μ = 2.95) reaches its equilibrium value (dark/black
line), there is a 100% chance of finding it at the fixed point. Likewise, the uncoupled x
map (z for μ = 3.832) has reached its period-3 orbit after a few iterations and so there
is a 1/3 probability of finding it at any of the three locations (light/blue lines) in its long
term behavior when the maps are uncoupled (ε = 0). Part (b) of Fig. 4 demonstrates the
pdf behavior in terms of P(x) and P(y) when ε = 0.050. The consequence of mixing for
the x map is to effectively push μX higher and into the nearby chaotic behavior. While
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Table 1. Values of μX, μY, and ε

Set μX μY ε

1 3.840 3.00 0.025

2 3.830 3.00 0.050

3 3.808 3.00 0.075

4 3.810 2.95 0.025

5 3.832 2.95 0.050

6 3.826 2.90 0.025

Fig. 5. The normalized values of the long-term behavior of the coupled yn map relative to the
mean as a pdf. The fluctuations from the deterministic map form a nearly Gaussian distribution
(solid black line). The symbol legend conforms to the data in Table 1.

the couplingmaintains the stability of the ymap and pushes the fixed point slightly lower
(the mean of y ~ 0.649 for P(y) in Fig. 4(b) is slightly smaller than the fixed point of y =
0.66 in Fig. 4(a)), the coupling introduces fluctuations about the mean even in the long
term behavior of the map.

The flatness of these fluctuations about the mean value for P(y) is F= 3 as shown by
the box in the plot of Fig. 3, indicating the fluctuations in the tails are nearly Gaussian.
While there are examples of large fluctuations elsewhere in the graph, it should be noted
that the box highlights an occurrence where the flatness is gently changing and is not
discontinuous. To observe this Gaussian more clearly, Fig. 5 is a log plot of P(�y /y0)
where �y = y – ymean and y0 is the variance of the fluctuations about the mean value.
A Gaussian curve is shown for comparison. The fluctuations for all values of μX, μY,
and ε as listed in Table 1 are plotted. Each histogram in the plot is composed of 20,000
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iterations of the coupled y map. A general trend was that for larger values of μY the
larger the window in ε that could produce an occurrence of Gaussian statistics for some
value of μX.

3 Conclusions

We have reported on the results of a pair of coupled logistic maps that produce Gaussian
fluctuations about the mean of the stable map due to the unstable map’s chaotic behavior.
The results give an example of a pair of deterministic equations that together produce
a set of equilibrium-like fluctuations in one of the two maps and are applicable to
the chaotic encryption of data to hide information within an apparently random, but
deterministically generated signal. It is an interesting question for further study if this
map is an example of a broader class of coupled maps that will demonstrate this general
behavior. Additionally, the results demonstrate a new low dimensional example of a
system for which equilibrium thermostatistics can be recaptured in a system driven
out of equilibrium, rather than a more complicated system of higher dimensionality.
In the former, the apparently random fluctuations produced from a deterministic set
of equations can be used to encrypt a signal or an image for security purposes, with
multiple sets of different parameters that all demonstrate noise-likeGaussian fluctuations
from deterministic equations. In the latter, the mixing improves the stability of one
trajectory while increasing the instability of the other and may shed new light on the
non-equilibrium behavior of low-dimensional experiments such as a dimer on a shaken
plate. In subsequent papers, we will demonstrate a simple technique for using these
coupled logistic maps at these parameters for the purposes of image encryption, similar
to recent work, as well as an application to the low-dimensional granular system to build
a simple picture of non-equilibrium thermodynamics. Such cross-disciplinary results are
one of the hallmarks and strengths of research in nonlinear dynamics.

The authors acknowledge the support in part by funds from the Vice Provost for
Research and the NSF REU Program at Baylor University.
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