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Chapter 9
Peak Spectrogram and Convolutional 
Neural Network-Based Segmentation 
and Classification for Phonocardiogram 
Signals

Anam Abid and Zo-Afshan

Abstract Heart diseases are one of the contributing reasons for the human loss in 
the world. The Phonocardiogram (PCG) provides information for the exact and 
timely detection of Cardiovascular Diseases (CVDs). Digital stethoscopes record 
the heart sound and store it as a PCG signal for the identification of abnormal 
sounds. This chapter discusses heart sound segmentation and classification algo-
rithms to diagnose the abnormal symptoms of the heart. Firstly, the breakdown of 
heart signal into “S1”, “systole”, “S2”, and “diastole” states is performed using 
multi-level threshold values for peak detection. Phonocardiograms are the non- 
stationary signals for which the identification of the exact location of the peaks is 
difficult. Using the multi-level threshold method for peak detection and with the 
peak spectrogram generation, the identification of the peak locations is improved to 
91.2%. Subsequently, features of the generated peak spectrograms are extracted 
from these four states to perform the naming of PCG as “normal” or “abnormal” 
using a traditional “Support Vector Machine” (SVM) and “Convolutional Neural 
Network”. The developed algorithms are tested on the PhysioNet2016 heart sound 
challenge dataset. The results show the suitability of the developed methods for the 
identification of “normal” and “abnormal” PCG for CVDs identification and scored 
an accuracy of 93.3%.
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9.1  Introduction

Medical Signal Processing, an emerging field, has come into the limelight and 
shown a vital role in the identification of solutions for various diseases. Along with 
the recent advancement, it is now realized that various medical issues require intel-
ligent systems and assistance. Particularly, “Deep Learning” algorithms i.e., 
“Convolutional Neural Networks” (CNN), “Long-Short Term Memory”, and 
“Recursive Neural Networks”, have had a great impact on biomedical fields. These 
systems are supposed to work like a human, think like a human, possess the decision- 
making ability, and also explain how to take action. The quintessence of designing 
an intelligent system of this kind is Deep Learning Convolutional Neural Network: 
convolution that extracts dominant features and neural networks that are designed to 
recognize patterns and adapt the environmental changes to cope with real-time 
scenarios.

An intelligent system has made nearly impossible tasks into reality. It is fre-
quently advantageous to use multi-disciplinary computing techniques and method-
ologies in cooperation rather than exclusively. One such synergistic construction of 
an intelligent system is the prelude of this chapter. In particular, the integration of 
two complementary approaches: Signal Processing and Machine Learning, results 
in an innovative approach for the analysis and early detection of cardiovascular 
disease through phonocardiogram (PCG) signals.

Agreeing to the “World Health Organization” (WHO), CVDs are one of the most 
important reasons for death in the world. From the statistics reported by WHO, 17.9 
million people lost their lives in 2017 alone due to CVDs [1]. Considering the sever-
ity of the situation, there is a dire need for an automated system that can be used for 
the evaluation of heart conditions and timely detection of any abnormality.

9.1.1  Auscultation

The heart system comprises of “heart”, “blood vessels”, and “blood”, whereas the 
heart is its most important organ. Therefore, the functioning and monitoring of the 
heart become crucial to avoid a heart attack, angina, or stroke. A heart abnormality 
originates due to the constriction or complete blockage of the blood vessels and may 
result in serious complications. Auscultation is a medical screening process in 
which a medical expert/physician listens to the sounds/murmurs of the body organs 
by using a stethoscope. During heart sound auscultation, heartbeats present very 
useful information for the recognition of abnormalities. However, only a handful of 
skilled medical experts can correctly identify heart abnormality by listening to the 
heart sounds. Biomedical signal processing and artificial intelligence techniques 
have been facilitating doctors and cardiologists in heart abnormality diagnosis over 
the last few decades.
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9.1.2  Phonocardiogram Signal

Stethoscopes are considered essential screening instruments for the diagnosis of 
heart and lung pathologies. With the development of digital stethoscopes, the pro-
cess of auscultation of heart sounds becomes easier and more convenient. Digital 
stethoscopes record the heart sound and store them for the identification of heart 
abnormalities. A Phonocardiogram (PCG) signal (refer to Fig. 9.1) consists of vari-
ous events like “S1” sound, “S2” sound, and “murmurs” [2, 3]. “S1” and “S2” cor-
respond to the primary PCG components (i.e., systolic and diastolic activities of the 
heart respectively) which are important for heart sound segmentation. In particular, 
each heart sound segment contains different characteristics. In segmented data anal-
ysis, the information from each heart sound segment is retrieved for an in-depth 
analysis and heart disease detection [4]. Consequently, in unsegmented data analy-
sis methods, the entire PCG signal is given as input. A discussion on segmented and 
unsegmented PCG data analysis is given in the following section.

The heart pumping process represents a synergetic combination of mechanical 
and electrical activities which form a certain set of activities over the entire cycle. 
The blood is circulated with efficient coordination of atria and ventricles with each 
other. The cardiac cycle includes two phases: Systole (the contraction phase) and 
Diastole (the relaxation phase). During systole, contraction of atria or ventricles 
occurs and the blood is pushed to the arteries whereas during diastole, relaxation of 
heart muscles occurs and the blood is supplied to the heart. The systole period rep-
resents the contraction of the right and left ventricles and discharge of blood into the 
aorta and pulmonary artery which is allowed through the opening of the aortic and 
pulmonic valves while the atrioventricular valves remain closed during the systole 
period to prevent the blood flow into the ventricles. Diastole represents the relax-
ation of left and right ventricles. The blood runs through the mitral and tricuspid 
valves. Left and right atria contract at the end of the diastole period pushing an extra 
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Fig. 9.1 Visualization of a phonocardiogram signal
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amount of blood into the ventricles. The generated electrical signal during the heart 
pumping process force the blood flow between heart chambers and throughout the 
body. The heart produces sounds as a result of the heart beating and blood flow 
through it during the cardiac cycle. Also, the vibrations are produced with the clo-
sure of heart valves creating turbulence, which is audible and can be listened to 
through a stethoscope during cardiac auscultation by the examiner. The heart sounds 
are distinct and unique which gives valuable acoustic information about the heart 
condition. Normally in adults, there are two heart sounds, i.e., “Lub” and “Dub”, 
generated due to the closing of the semilunar and atrioventricular valve.

There are two normal primary heart sounds, i.e., “S1” and “S2”, associated with 
heart valves closing. S1 is also called first heart sounds or “Lub”. S1 is generated by 
the closing of tricuspid and bicuspid valves during the start of the systole period. 
The vibrations are produced as a result of turbulence during ventricles contraction 
in systole and they could be easily heard with a stethoscope placed at the heart ver-
tex. It has two parts: M1 which is caused by mitral valve closing and T1 which is 
caused by tricuspid valve closure. M1 occurs before T1 with an approximate 
25–45 cycles per second whereas it elapses for an interval of around 0.14–0.15 s [4].

S2 is also known as second heart sound or “Dub”. S2 is produced by semilunar 
valve closure during the end of the systole or early diastole period. S2 is best heard 
with the stethoscope placed in the aortic area. It has two components: A2 caused by 
the aortic valve closure and P2 caused by the closure of the pulmonary valve. 
Generally, S2 sound is louder and high-pitched as compared to S1 sound with a 
frequency falling in the range of 40–70 Hz. In addition, its duration is relatively 
longer which elapses for an interval of around 0.11–0.12 s [4].

9.1.3  PCG Signal Acquisition

PCG signals are correlated with the mechanical activity of the heart and provide a 
means of visualization for better analysis. PCG signals provide the most valuable 
qualitative and quantitative heart-related attributes. PCG signal acquisition process 
is categorized as one-channel acquisition and multiple-channel acquisition. In the 
one-channel case, the PCG signal is fragmented using the actual signal without any 
prior knowledge. In the multiple-channel scenario [5], certain signals for example 
an electrocardiogram, photoplethysmogram, and carotid pulse are simultaneously 
obtained along with PCG.  As a result, the performance of the multiple-channel 
acquisition setup is more effective than its one-channel counterpart. Nonetheless, 
simultaneous acquisition of multiple signals (modalities) becomes expensive and 
unmanageable, especially when conditions are ambulatory. Hence, field experts pre-
fer one-mode segmentation methods over multiple-channel counterparts [6–8].

The rest of the chapter is organized as follows. Section 9.2 discusses the recent 
work carried out for PCG segmentation and classification. Section 9.3 discusses the 
quality assessment and pre-processing of the PCG signal and Sect. 9.4 presents a 
threshold-based peak detection method. Section 9.5 details the proposed 
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segmentation techniques i.e., identification of “S1” and “S2” states by (i) calculat-
ing statistical features, and (ii) converting 1D PCG signals into their 2D spectro-
gram respectively. Section 9.6 discusses the final labeling of PCG signal into “S1”, 
“systole”, “S2”, and “diastole” states, followed by PCG classification. In Sect. 9.7 
experiment and results are presented based on the developed methods. Sections 9.8 
and 9.9 present a comparison study, discussions, and conclusions of the chapter 
respectively.

9.2  Related Work

Automated analysis of a PCG signal can be classified into various steps. The typical 
approach involves (i) pre-processing, (ii) segmentation, and (iii) classification. In 
pre-processing PCG signal is filtered and extra noise spikes are removed to make 
the signal more appropriate for starting the analysis process. Most of the heartbeat 
segmentation methods follow a similar preprocessing approach, starting with noise 
reduction by applying filters and the normalization of the signal using the absolute 
maximum. This is followed by the application of envelope detection methods, such 
as the Hilbert Transform, Homomorphic Envelope, Wavelet Transform, Shannon 
Energy, and Power Spectral Density [9]. In the unsegmented PCG signal processing 
approach, deep features are obtained from the unsegmented PCG chunks, and deep 
learning algorithms are employed for classification.

9.2.1  Segmentation

In earlier works, the rule of thumbs and facts-based distinction was used to differ-
entiate between “S1” and “S2”, (i.e., interval lengths). Other techniques [10, 11] 
involve PCG energy calculation. Gomes [11] designed a system that changes the 
phonocardiogram signal into individual segmentation fragments. In [10], the 
Shannon envelope of the signal is extracted from the overlapping fragments of the 
entire signal. Threshold-based peak detection is performed in each window/frag-
ment. Heart sound signals are mainly known as non-stationary signals. Hence, by 
applying energy-based calculation methods only, better results cannot be obtained. 
Considering this issue, researchers combined these methods with some transforms, 
for instance, Short Time Fourier Transform [12], Wavelet Transform [13, 14]. In 
[14], a wavelet-transform-based segmentation algorithm was employed to extract 
temporal, time, and frequency domain attributes of PCG. In [15], the authors used 
an advanced mode of decomposition method for PCG segmentation using various 
modes of the decomposed PCGs and variational mode decomposition. Other than 
these techniques, neural networks have also been applied for heart sound segmenta-
tion [16]. Specifically, a neural network algorithm was proposed for PCG segmenta-
tion using a Hidden Markov Model. Features extracted for the PCG classification 

9 Peak Spectrogram and Convolutional Neural Network-Based Segmentation…



212

were the time and frequency domains representing the underlying characteristics of 
the phonocardiogram signal. The inter-patient differences challenge was addressed 
in [17] where the main focus is to compare the heart sounds within and across the 
patient’s PCG dataset using “Dynamic Time Warping” (DTW). The combination of 
DTW and “Mel Frequency Cepstral Coefficients” (MFCC) features was given to an 
SVM classifier. As compared to MFCC, DTW-based features computed in an unbi-
ased dataset condition performed well. In [18] heart sound recordings are classified 
by first performing the heart sound segmentation, followed by 1D waveforms trans-
formation into 2D time-frequency heat maps using MFCC, and finally, classifica-
tion was performed using CNN.

9.2.2  Extracted Features and Classifiers

After the segmentation of PCG signals as “S1” and “S2”, these segments are passed 
to the feature (distinctive attribute of an item) extraction stage, followed by the clas-
sification stage. For PCG classification features are extracted to analyze the changes 
in the signal over time and frequency contents within the signal. In the segmentation- 
based heart sound analysis approach, different features are calculated at two differ-
ent stages. At first, the features are extracted to find the S1 and S2, and in the second 
stage (i.e., classification) features are extracted to classify the signal as normal and 
abnormal. Some common features are mean, median, kurtosis, energies, entropy, 
spectral edges, etc.

Some classification methods are based on clustering like K-Means [19]; others 
use statistical analysis like Hidden Markov Model [20], K-Nearest Neighbor [21], 
etc. Machine learning (ML) models are applied to PCG databases with several fea-
ture extraction approaches [22–24]. In [9], Springer used a modified form of the 
Hidden Markov Model (the Hidden Semi Markov Model) for the classification of 
PCGs. Similarly in [25], Kaur used fuzzy K-NN, Bayesian, and Gaussian mixer 
Model-based KNN for the classification. In [26], two stages were employed, the 
first stage performed segmentation using SVM, and “Artificial Neural Networks” 
(ANN) were used for the final classification of PCGs. Most of the recent studies 
employed classification techniques like “multi-layer perceptron” (MLP) [27], SVM 
[28], CNN [18], etc. The above-mentioned methods use different preprocessing 
techniques to segment PCG signals and extract suitable features from the PCG seg-
ments using techniques such as Short Time Fourier Transform [12], Wavelet 
Transform [13, 14], DTW [17], MFCC [29], etc. These ML methods are subjective 
and time-consuming due to the handcrafted feature selection process. In addition, 
deep features using deep neural networks [30, 31], spectrograms of heart sounds 
[32, 33], and a continuous wavelet transform-based scalogram [34] were also used 
for PCG analysis.

The existing research work conducted on CVD identification using ML and deep 
learning on different medical databases has contributed to the detection of heart 
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sound abnormalities and most of them achieved significant results. The proposed 
study is focused on spectrogram-based segmentation of PCG using CNN.

9.2.3  Unsegmented PCG Classification

The second approach for the PCG classification does not involve segmentation. 
Researchers have opted for this approach to directly classify the PCG signals into 
normal and abnormal classes skipping the intermediate segmentation stage. In [35] 
authors performed the classification of heart sound without segmentation using 5 
categories of features that include “Linear Predictive Coefficient”, Entropy-based 
features, MFCC, wavelet transform, power spectral density. From the set of 40 fea-
tures, 18 features were chosen using one of the search algorithms (called wrapper- 
based) for the feature selection. In this method, a sequential forward selection 
search was used. A total of 20, 2-layer feed-forward ANNs were used for the clas-
sification (25 neuron nodes per hidden layer). In the output layer, 4 neurons were 
used for two classification tasks at the same time, two for normal vs. abnormal and 
two for good vs. bad. In [36] authors classify the heart sound recording as normal or 
abnormal by extracting the morphological features of the PCG signals. Several fea-
tures are extracted from both temporal and spectral domains, and the classification 
is performed using an SVM. In another approach [37], wavelet entropy at a wavelet 
scale of 1.7 and with a threshold of 7.8 was employed. The heart signal was recorded 
for 5  seconds, and then wavelet coefficients were calculated. Afterward, wavelet 
energy and entropy were calculated and it was passed to the criterion function which 
used a threshold for signal classification. Another CNN-based PCG classification 
approach [38] employed Power Spectral Density (PSD) features with a window of 
150  ms. These spectrograms were fed to the network for the classification task. 
SVM, logistic regression, and random forest were also applied for PCG classifica-
tion and their results were compared. Another method using temporal dynamics of 
the signal using Markov features along with other statistical and frequency domain 
features was presented in [39]. These features were trained over the ensemble of 
artificial neural networks and gradient boosting trees.

9.3  Quality Assessment and Pre-processing of PCG Signals

In a real-world environment, during auscultation, the recorded PCG signal is often 
contaminated with noise. It is always necessary to check the suitability of the PCG 
signal before carrying out any kind of processing. For this purpose, firstly quality 
assessment of the PCG signal is carried out [16] in which the suitability of the signal 
is tested based on evaluation criteria. If the PCG signal fails the criteria, it is declared 
as “unsure” and no further processing is carried out for that PCG signal. The details 
of quality assessment and pre-processing stages are discussed in this section.
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9.3.1  Evaluation Criteria

The classification task requires the determination of a heart sound recording as nor-
mal, abnormal, or unsure (due to the high content of noise). For this purpose, three 
measures of quality assessment are taken [16]. If any of the criteria does not meet, 
the signal is not called suitable. These criteria are; (i) root mean square of successive 
differences, (ii) number of counted normal peaks in the specified size window, and 
(iii) number of zero crossings in the whole PCG signal. PCG signal is tested over 
these criteria, and the suitable signal is passed on to the next step. On the other hand, 
if any criterion fails, the PCG signal will be declared as “unsure” and no further 
processing will be carried out for that PCG signal.

9.3.2  Filtering and Spike Removal

Heart sound recording and analysis are generally employed as an effective and low- 
cost alternative for heart abnormality screening. Nonetheless, there are a few chal-
lenges involved in this process. Firstly, the accurate localization of primary heart 
sounds (i.e., “S1” and “S2”) is very important for the detection of any heart abnor-
mality as it provides the basis for the upcoming classification stage. Another chal-
lenge is the vulnerability of heart sounds from different noise sources. In particular, 
external noises present in the nearby setting of the signal acquisition arrangement 
(e.g., human speech, noise generated by appliances and devices), measurement 
noise due to the involvement of sensors, and other components data acquisition 
system. In contrast, internal noises (coming from the patient body), for instance, 
sounds originating from lungs and other body parts, speech, etc. may also deterio-
rate the desired PCG signal. Consequently, it is the foremost task to remove the 
undesired noises from the acquired signal using appropriate noise filtering methods.

Filters play an essential role in the field of signal processing. A filter is a special 
type of process which is used to remove the unwanted part of the signal, suppress 
the effect of unwanted or unnecessary signal, or restore the original signal from cor-
ruption. Normal PCG signals have low frequencies, ranging from 40 Hz to 200 Hz. 
Murmurs and extra heart sounds have frequency ranges up to 400 Hz. In literature 
the usage of Butterworth and Chebyshev filters [17, 28, 40] and their variants are 
found quite often. These linear filters are used for the separation of noise from the 
signal using different cutoff frequencies provided that the signal does not overlap in 
the frequency domain. In this study, the PCG signal is resampled to 1 kHz and the 
resampled signal is filtered with a Butterworth low-pass filter with a cut-off fre-
quency of 400 Hz and order 4. After that output of the first filter is passed to a 
Butterworth high-pass filter with a cut-off of 25 Hz.

Noisy spikes are then removed from the filtered signal to make the PCG signal 
clean from extra spikes other than the actual peaks of the heartbeat. Some common 
spike removal methods are Nonlinear Median filters, Schmidt spike removal 
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function [20], etc. After that envelope of the PCG using the Hilbert transform is 
extracted and it is normalized using the mean and standard deviation values of the 
extracted PCG envelope. Researchers also suggest calculating the Shannon Energy 
[10] for PCG envelope calculation.

9.4  Single and Multi-Level Threshold-Based Peak 
Detection Methods

During PCG signal segmentation, a signal is segmented into its fundamental heart 
sounds, i.e., “S1” and “S2”. Therefore, the localization is threefold; the identifica-
tion of all peaks present in the normalized PCG, extraction of true peaks, and 
removal of false peaks. Firstly, the local maxima function is employed to identify 
the location of all peaks, called candidate peaks, from the normalized envelope of 
the PCG signal. The second step is the determination of true peaks which becomes 
difficult due to the sub-par quality of the PCG acquisition process. Generally, clini-
cal settings or ambulatory conditions affect the recorded signal quality due to the 
presence of external and observational noise. In such situations, a specific single- 
threshold is not a suitable measure for extracting true peaks for the reason that sig-
nals usually have a “Signal to Noise ratio” (SNR) of a different range. Due to the 
degraded performance of single-threshold techniques, employment of one perfect, 
global threshold value for the determination of true peaks i.e., “S1” and “S2”, is not 
possible. Another associated challenge of a one-specific threshold is the determina-
tion of the threshold level. For instance, by selecting a low threshold value, peaks in 
systole/diastole intervals are also selected along with true peaks. In contrast, by 
selecting a high threshold value sometimes the misdetection of “S1” peaks from the 
PCG signal increases considerably, however, the peaks in systole and diastole inter-
vals are not detected anymore. This is because the signal with a high SNR performs 
well with a low threshold value and a signal with low SNR requires a high threshold 
value. In literature, a multi-threshold algorithm [28] is suggested to find out the 
candidate peaks for S1 and S2 from the pool of all detected peaks. The summary of 
the multi-threshold algorithm is shown in Fig. 9.2.

The proposed method employs multiple threshold levels for true peak selection 
namely, “moderate-level (MLT)”, “high-level (HLT)”, and “low-level (LLT)”. 
These levels are applied in sequence and the criterion for the selection of a threshold 
is a count of candidate peaks, ‘count’, occurring in a pre-defined window size (0.2 s 
in our case). To begin with, the ‘count’ is computed with MLT (0.1 in our case). 
When ‘count’ is above the specified upper limit (sp1), HLT is incorporated. 
Similarly, when ‘count’ is below the specified lower limit (sp2), LLT is employed. 
Afterwards, true peaks fulfilling the requirements i.e., equal to or above the updated 
threshold are selected using the freshly updated threshold. Over each candidate 
peak, a window of 1 ms with overlapping of 0.5 ms is placed to segment that par-
ticular portion of the signal.
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Fig. 9.2 Multi-Level threshold algorithm

9.5  Segmentation Methods of PCG Signals

In the proposed methodology, two approaches are employed for the classification of 
“S1” and “S2”:

• Segmentation based on statistical features and Support Vector Machine (SVM)
• Segmentation based on Peak Spectrogram and Convolutional Neural 

Networks (CNN)

Both approaches are discussed in detail in this section.

9.5.1  Segmentation Based on Statistical Features and Support 
Vector Machine

In this approach, a total of 11 features obtained from both time and frequency 
domains are extracted from the windowed PCG segments (wS) and complete heart 
sound (HS). A list of these features is mentioned in Table 9.1. These features pro-
vide statistical values for the classification of “S1” and “S2”. Different classifiers 
are trained using these 11 features namely K-Nearest-Neighbor (KNN), ANN, and 
SVM.  Accuracy results obtained from all mentioned classifiers are given in 
Sect. 9.8.
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Table 9.1 Proposed features for heart sound peak classification

1. SD of ‘wS’/SD of heart ‘HS’
2. μ of ‘wS’/μ of ‘HS’
3. S of 1st-level approximation coefficient of ‘HS’
4. S of 1st-level detail coefficients of ‘HS’
5. S of 2nd-level approximation coefficient of ‘HS’
6. Spectral edge frequency of ‘HS’
7. Spectral S for dyadic bands of ‘HS’
8. Fractional dimensions of ‘HS’
9. Hjorth parameters of ‘HS’
10. Skewness of ‘HS’
11. Kurtosis of ‘HS’

Note: SD, Standard deviation; μ, Mean; S, Entropy

9.5.2  Segmentation Based on Spectrograms and Convolutional 
Neural Network

Convolutional Neural Network (CNN) works better on 2D data. On the other hand, 
the signal acquired during auscultation is 1D. To make it useful for CNN, in this 
approach, Short Time Fourier Transform of PCG segment determined after which 
1D signal is converted into a 2D peak spectrogram. The time-domain representation 
of “S1” and “S2” and their respective spectrograms are shown in Fig. 9.3.

These peak spectrograms are fed to a CNN which classifies them into “S1” and 
“S2”. The architecture used for the CNN model is shown in Fig. 9.4. At the end of 
this step, all candidate peaks are assigned with their respective labels, like “S1” or 
“S2”. This information is used in the next phase of the proposed methodology to get 
fully labeled cardiac cycles in the PCG signal.

9.6  Post-processing and Classification of PCG Signals

9.6.1  Post-processing and PCG Labeling

In this step, the marked positions of “S1” and “S2” along with the duration distribu-
tion provided by Schmidt et.al [20]. are utilized to label the systole and diastole 
regions in the PCG signal. A fully labeled PCG signal with states “S1”, systole, 
“S2”, and diastole is obtained after the post-processing. The example of a labeled 
PCG signal obtained after segmentation is presented in Sect. 9.7.
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Fig. 9.3 Peak Spectrogram generation using short-time-Fourier-transform

9.6.2  PCG Classification

In this step, features are extracted utilizing post-processed state labels for PCG sig-
nals that are used to train the classifier. A total of 50 features are extracted (20 time- 
domain, 30 frequency-domain). A list of these features is given in Table 9.2. These 
features are used to train SVM.  As mentioned earlier, for segmentation, two 
approaches were proposed. Both of them follow the same classification step sepa-
rately and their accuracies are reported in Sect. 9.7.

9.7  Experimentation on the PhysioNet2016 
Challenge Dataset

This section discusses the experiments and the obtained results of the proposed 
method implementation. A detailed description of the results obtained in each step 
is given below.
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Table 9.2 Proposed features for SVM Classifier Training

Time-Domain Features

Interval/ Interval Ratio Features
Mean Standard Deviation

R-R X X
S1 X X
S2 X X
Systole X X
Diastole X X
Systole, R–R ratio X X
Diastole, R–R ratio X X
Systole, diastole ratio X X
Systole period, S1 period ratio Mean absolute 

amplitude ratios
Mean absolute amplitude 
ratios

Diastole period, S2 period ratio Mean absolute 
amplitude ratios

Mean absolute amplitude 
ratios

Frequency-Domain Features
Segments/
Segments Ratio Frequency Band Features

Power Band Power Amplitude Q-factor

Cardiac Cycle 150–350 Hz
200–400 Hz

Mean Mean – –

Systole 150–350 Hz
200–400 Hz

Mean Mean – –

Diastole 150–350 Hz
200–400 Hz

Mean Mean – –

S1 Mean Mean – X
S2 Mean Mean – X
Systole Mean Mean Mean X
Diastole Mean Mean Mean X
S1 Mean Mean Mean X
S2 Mean Mean Mean X
Cardiac Cycle, systole ratio 100–300 Hz

200–400 Hz
Average – – –

Cardiac Cycle, diastole ratio 100–300 Hz
200–400 Hz

Average – – –

Diastole, systole ratio 100–300 Hz
200–400 Hz

Average – – –
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9.7.1  Dataset

The proposed methodology is implemented on the PhysioNet2016 challenge data-
set [41]. In this dataset, a total of 3226 data samples of PCG recording both from 
healthy and pathological patients were collected. 1610 instances of the total data 
samples are used for training and 1616 samples are used for testing. The physioNet 
dataset consists of multiple sub-datasets including A, B, C, D, E, and F. The audio 
recordings present in each sub-dataset are 409, 488, 29, 53, 2137, and 110 respec-
tively. A 50-50% split training-testing strategy is incorporated in this study. The 
actual number of recordings used for training are 204, 244, 14, 26, 1067, and 55 and 
for testing 205, 244, 15, 27, 1070, and 55 respectively. For segmentation, “S1” and 
“S2” labels for each PCG signal sample are obtained using the Springer Algorithm 
[9] which are compared with the segmentation results of the developed method.

9.7.2  Results of Pre-processing

After obtaining the suitable (classifiable) signals the preprocessing techniques are 
performed. First, the signal is passed through the low pass and high pass filters. 
Furthermore, the removal of spikes is carried out using a Schmidt spike removal 
function. Followed by the extraction of the envelope using the Hilbert transform. 
Finally, the resultant signal is normalized using simple mean and standard deviation 
formula. The results of different preprocessing operations are illustrated in Fig. 9.5. 
Figure 9.5a shows a smaller chunk of the original (classifiable) signal. Figure 9.5b 
shows the signal obtained after filtering and spike removal operations. It is clear that 
after preprocessing the signal became smooth and spikes were removed. Furthermore, 

Fig. 9.5 Pre-processing results
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Fig. 9.5c shows the obtained envelope of the preprocessed signal which contains 
useful information regarding the “S1” and “S2” activities. Finally, a normalized 
envelope of the processed signal is obtained as shown in Fig. 9.5d.

9.7.3  Results of Segmentation

In this stage, true peaks are extracted from the preprocessed signal. Firstly all peaks 
are identified using peak finders which are called the candidate peaks for the “S1” 
and “S2”. Afterward, a multi-level threshold is employed for the identification of 
the true peaks. Consequently, true peaks are selected from the pool of peaks which 
are sent to the feature extractor to classify them as “S1” and “S2” based on their 
features. The results of the peak finder stage illustrating the candidate peaks are 
given in Fig. 9.6a. Subsequently, the candidate obtained using the starting threshold 
is given in Fig. 9.6b. Afterward, true peaks are detected and false peaks are elimi-
nated using the developed multi-level threshold, as shown in Fig. 9.6c.

Classification of peaks is performed using a spectrogram of obtained true peaks. 
The windowing procedure is applied to obtain the true peak, and its spectrogram is 
obtained using Short Time Fourier Transform. These spectrograms are fed as input 
to the convolutional neural network which learns features in 100 iterations and 
trains its model. Final testing of the model is performed on unseen samples of spec-
trogram which classify them as “S1” and “S2”. The spectrogram and CNN combi-
nation gives an overall segmentation accuracy of 91.20% as compared to SVM and 
ANN classifiers. Figure 9.7 illustrates the peak identification results where the true 
peaks are labeled based on the peak spectrograms.

Fig. 9.6 True peak detection results based on multi-level threshold
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Fig. 9.7 Predicted labels using peak spectrogram and convolution neural network

Fig. 9.8 Predicted label after post-processing

9.7.4  Results of Post-processing

After the assignment of “S1” and “S2” peaks by the classifier, a post-processing 
step is required. This completes one cycle as “S1”, “systole”, “S2”, and “diastole” 
as shown in Fig. 9.8.

9.7.5  Results of PCG Segmentation

The state sequences (i.e., “S1”, systole, “S2”, diastole) obtained after post- 
processing are forwarded to the final stage in which features are extracted based on 
the intervals between the states, their ratios, mean, standard deviation, amplitudes, 
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Table 9.3 Segmentation results on the PhysioNet 2016 challenge dataset

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

CNN (Proposed) 91.20 94.05 88.53
SVM 87.57 92.08 83.08
ANN 82.01 87.33 76.93

Table 9.4 Comparison Analysis on the PhysioNet 2016 challenge dataset

Approach Technique
Score/
Accuracy

Proposed Methodology I SVM without 
spectrogram

86.89

Proposed Methodology II SVM with 
spectrogram

93.33

Classifying Heart Sound Recording Using Deep 
Convolutional Neural Network [18]

CNN 88%

Morphological Determination of Pathological PCG Signal 
by Time and Frequency Domain Analysis [36]

SVM 81%

PCG Classification using Neural Network Approach [16] ANN 79%

and other power-energy features. The classifier employed for this purpose is the 
SVM which performs the binary classification. In another set of experiments, PCG 
signal segmentation was performed using the developed spectrogram and CNN- 
based segmentation approach. Afterward, PCG signal classification is performed 
using an SVM classifier and the classification result are shown in Table 9.3 which 
shows that with the incorporation of spectrogram and CNN combination the PCG 
classification accuracy improves.

9.8  Comparison Analysis and Discussions

In this section, a comparison study is presented between the proposed approach and 
the state-of-the-art counterparts on the same datasets i.e., PhysioNet 2016, as dis-
cussed in Sect. 9.7. Comparison results with other classifiers (i.e., Artificial Neural 
Networks, Convolutional Neural networks, and Support Vector Machine) are also 
shown in Table 9.4. In [16] PCG signal is classified using Hidden Markov Model 
(HMM) for extracting features and ANN focusing only on the statistical features 
which results in an accuracy of 79%. Support Vector Machine with Time and 
Frequency domain features is employed in [38] for analysis of PCG signals and it 
obtained an accuracy of 81%. In [18] the emphasis is on the state-of-the-art CNN, 
and this approach leads to an accuracy of 88%. In this chapter, two different clas-
sification approaches were presented. In the Proposed Methodology I, PCG signals 
were analyzed under the category of segmented approach using a multi-level thresh-
old, extracting the time and frequency domain features along with the Support 
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Vector Machine for final classification with the accuracy of 86.89%. In the Proposed 
Methodology II, the same strategy was followed except that segmentation was car-
ried out using a CNN along with the SVM as a final classifier, resulting in the high-
est accuracy of 93.33%.

9.9  Conclusions

Phonocardiograms are the non-stationary signals which make the task of identifying 
the exact location of the peaks difficult. Using the multi-threshold method for peak 
detection and with the peak spectrogram, the identification of the peak locations 
was improved. Also, PCG signal classification into normal and abnormal was 
improved to 93.33% with our developed method. The segmentation and classifica-
tion results reported for our developed approach using peak spectrogram and state- 
of- the-art convolutional neural network have an accuracy of 91% and 93.33% 
respectively.

Classification of PCGs can be bettered by calculating advanced features which 
extract the information of signal in more depth or by using deep learning models. In 
this paper, separate methods are used for PCG segmentation and classification. 
Nonetheless, there can be a possibility to use a unified framework for segmenting 
and classifying PCG both. In addition, instead of binary classification non-binary 
classification can be performed to find out the exact CVD in future endeavors.
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