
133

Chapter 6
Application of Wavelet Decomposition 
and Ma-Chine Learning for the sEMG 
Signal Based Ges-Ture Recognition

Hala Rabih Fatayerji, Majed Saeed, Saeed Mian Qaisar, Asmaa Alqurashi, 
and Rabab Al Talib

Abstract The amputees throughout the world have limited access to the high- 
quality intelligent prostheses. The correct recognition of gestures is one of the most 
difficult tasks in the context of surface electromyography (sEMG) based prostheses 
development. This chapter shows a comparative examination of the several machine 
learning-based algorithms for the hand gestures identification. The first step in the 
process is the data extraction from the sEMG device, followed by the features 
extraction. Then, the two robust machine learning algorithms are applied to the 
extracted feature set to compare their prediction accuracy. The medium Gaussian 
Support Vector Machine (SVM) performs better under all conditions as compared 
to the K-nearest neighbor. Different parameters are used for the performance com-
parison which include F1 score, accuracy, precision and Kappa index. The proposed 
method of hand gesture recognition, based on sEMG, is thoroughly investigated and 
the results have shown a promising performance. In any case, the miscalculation 
during feature extraction can reduce the recognition precision. The profound learn-
ing technique are used to achieve a high precision. Therefore, the proposed design 
takes into account all aspects while processing the sEMG signal. The system secures 
a highest classification accuracy of 92.2% for the case of Gaussian SVM algorithm.
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6.1  Introduction

The hands are the most versatile and dexterous component of the human body, 
capable of interacting with the world through a wide range of motion techniques 
such as touch, grasp, manipulation, and so on. Amputees all throughout the world 
are currently struggling to achieve anything more than the bare minimum with their 
prosthetics. In fact, according to the World Health Organization (WHO), only 1 in 
10 individuals who need assistive devices, such as prostheses, have access to them 
currently due to the costly expense of the items as well as a lack of knowledge, 
availability, trained staff, policy, and funding [1]. Furthermore, in the varying cir-
cumstances, the system, and signal acquisition and detection should be effective. 
Therefore, the proposed system design identifies hand gestures by processing sur-
face electromyography (sEMG) signals in order to contribute to the development of 
prosthetic hands.

The myoelectric signal (MES), also known as an electromyography (EMG) sig-
nal, obtained from the forearm skin surface gives vital information regarding neuro-
muscular processes. The complexity, non-linearity, and a considerable variance 
characterize the signals generated by EMG, which makes the signals difficult to 
interpret. Hence, before the usage of EMG signals to build a classification system 
for hand motions (pattern recognition and classification), there should be an identi-
fication process of the signals’ attributes (features). In this situation, the pattern is 
represented by the temporal signal in an EMG signal. In most circumstances, the 
acquired signal may be defined in terms of its amplitude, frequency, and phase, all 
of which are time-variant. Electrical currents are formed in the muscle during a 
muscle contraction, showing neuromuscular activity, because muscle contraction 
and relaxation are constantly under the control of the neurological system. The ner-
vous system and anatomical and physiological features of muscles interact to gener-
ate a complex EMG signal. While passing through various tissues, the EMG signal 
picks up noise. Moreover, if the EMG detector is placed near the skin’s surface, it 
might gather signals from many motor organs at the same time, resulting in signal 
interference.

Clinical diagnosis and biological applications are the primary drivers of interest 
in EMG signal analysis, and evidently one of the key application areas is the treat-
ment and rehabilitation of people with motor disabilities. EMG signals including 
MUAPs (Motor Unit Action Potentials) contain valuable information for the identi-
fication of diseases of the neuromuscular system. An understanding of EMG signals 
may be gained if the relevant algorithms and methods for their analysis are easily 
accessible. As a consequence, hardware implementations for different EMG signal- 
related applications can advance and be applied to invigorate the field’s stagnation, 
but the high unpredictability of sEMG and the scarcity of available data restrict the 
deployment of gesture recognition technology [2].

The necessity for another generation of upper appendage prostheses prompted 
the development of a cost-effective prosthetic hand with an easy-to-use control 
interface. Advanced signal processing apparatuses and a programmed control 
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calculation have been incorporated into the myoelectric hand to enable the replace-
ment of costly, precise actuators and sensors with less expensive components and to 
reduce the difficulty associated with the gadget’s activation and navigation. High- 
level control is used to discern the client’s goal to impel the hand model, which was 
meticulously created and built for this duty. Correspondingly, low-level control 
naturally plays out the problem of gaining a hold on it. Low-level input provides the 
control with both power and joint position data, whilst a vibrotactile feedback 
framework (undeniable level input) provides the client with a circuitous experience 
of touch [3]. When a prosthetic device is limited by electromyography signals pro-
duced by the muscles of the remaining of the amputated limb, six key perspectives 
must be considered to provide successful control:

 (a) To comprehend the characteristics of sEMG signals and how they are acquired.
 (b) To describe in detail the numerous advances produced.
 (c) To become acquainted with the various machine learning algorithms and their 

workings by evaluating how well they function.
 (d) Client control ought to be intuitive and need little mental effort.
 (e) There shouldn’t be any discernible postponement in the reaction time of the 

framework.
 (f) To put into practice a paradigm that will benefit amputees from all societal strata.

6.2  Literature Review

6.2.1  Background

After centuries of many American Civil War losses, there was a large increase in 
demand for prosthetic limbs. Due to the limited functionality of the available limbs, 
many veterans began creating their own prostheses. One of the first amputees of the 
war, James Hanger, invented the “Hanger Limb.” Samuel Decker was a pioneer in 
the development of modular limbs and also created his own mechanical arms. 
Decker’s design has a spoon that is hooked to his artificial arms in recognition of the 
requirement for him to be able to carry out daily tasks with his prosthesis. Designs 
now needed to restore some of the amputees’ prior abilities in addition to replacing 
the lost limb. A generation of young men was finally be able to live independent 
lives with artificial limbs. Specialized artificial limbs were a notion that the forerun-
ners of prosthetic design had started to explore and around the 1900s, limb design 
grew more specialized and focused on purposes other than decoration [4]. Slowly, 
the fundamental idea behind surface EMG-based human-machine interfaces devel-
oped to be the use of machine learning techniques to transform sEMG data into 
controlled signals. The implementation of prosthetic hand control and high depend-
ability of the human-machine interface have been made possible by the accuracy 
and adaptability of the information processing and classification algorithms.
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The deep learning has lately drawn more interest of academicians for studying 
the detection of sEMG based patterns. By bypassing the tedious feature extraction 
and optimization procedures, it can automatically learn features of various abstract 
levels from a variety of input samples to achieve an end-to-end sEMG based gesture 
recognition [2]. The wavelet transform is the most commonly acknowledged 
approach for dissecting the EMG in the time-recurrence space. The organizing stage 
entails selecting the class to which the element vector retrieved from an EMG 
belongs. Support vector machines and neural networks are the most commonly used 
continuous models for characterization. A mix of decision trees, k-means cluster-
ing, and hidden Markov models is employed. In this case, a mix of support vector 
machines (SVMs) and hidden Markov models (HMMs) is applied. Signal acknowl-
edgement frameworks have had to work constantly for a long time. The precision of 
these frameworks should be comparable to that of disconnected frameworks. A 
motion acknowledgment framework must be able to detect a move in less than 300 
milliseconds in order to function constantly. This is equivalent to at least three 
motions per second. Furthermore, these frameworks are typically executed with 
limited computational resources. These requirements impose a requirement on the 
complexity of an acknowledgment model. As a result, the test is to design a continu-
ous signal acknowledgment framework with a cheap computational expense and 
excellent performance. Although other machine learning techniques have been dis-
cussed in earlier research, the k-Nearest Neighbor (k-NN), SVM, and Artificial 
Neural Networks (ANNs) are the three classifiers that produce the best classifica-
tion results [5].

6.2.2  Preprocessing for sEMG Based Gesture Recognition

The sEMG-based hand motion recognition technique is divided into several steps. 
The initial step is to acquire the raw signals. The number and location of electrodes 
must be determined based on the type of motion done in the experiment. Because 
each action is dependent on multiple muscles, most observations about motion iden-
tification for whole-hand movements have been recorded from four or more chan-
nels on the entire arm. However, in hand-posture research, the utilized muscles are 
primarily in the forearm, and thus the number of channels can be decreased. 
Although this may affect the accuracy quality, it can be improved by integrating 
feature data from multiple channels appropriately. The major sEMG processing 
blocks are shown in Fig. 6.1. A description of different blocks is provided in the 
following.

Active segment signals and information from inactive segment are both included 
in the continual process of collecting sEMG signals. Non-active segment informa-
tion must be removed in order to increase the recognition model’s precision and 
speed [6]. The sEMG signal is considered a noisy one, which indicates that the 
sEMG’s probability distribution varies with time. The non-stationarity signal of 
sEMG can be reduced by filtering. Filtering is used to remove the noise and obtain 
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Fig. 6.1 The signal acquisition and preprocessing stages

Fig. 6.2 The analog 
band-pass filter

the most important information. Because roughly 95% of the sEMG signal strength 
is concentrated at 400–500 Hz, the sensor’s lowest sample frequency must be more 
than double the sEMG’s maximum frequency, according to the Nyquist–Shannon 
sampling theorem. In the meanwhile, the filter uses a low-pass filtering approach, or 
a moving average method, which might be considered a special low-pass filter. 
Some characteristics (such as MAV, ARV, or RMS) are computed using the moving 
average technique by windowing the signals and then averaging the features of all 
channels, or by computing the features of the average of all channels directly 
(Fig. 6.2).

Signal conditioning is the process of altering an analog signal such that it com-
plies with the demands of the following step of further processing. Anti-aliasing 
filtering and voltage or current limiting are examples of signal conditioning used in 
analog-to-digital converter applications. The voltage and current, frequency, and 
electric charge are all acceptable input formats. Devices for signal conditioning can 
use a variety of outputs including voltage, current and frequency. Amplification, 
filtering, range matching, isolation, and other procedures are used in signal condi-
tioning to prepare sensor output for further processing.

Analog signals are converted into digital signals by a device called an analog-to- 
digital converter (ADC). It converts a signal with continuous time and amplitude to 
one with discrete time and amplitude. The first step is band-pass filtering between 
the frequency range of [0.5; 150] Hz, given by Eq. (6.1) and shown in Fig. 6.1. In 
Eq. (6.1), x(t) is the filtered version of signal y(t) and h(t) is the impulse response of 
this filter. In second step, the sampling is carried out, given by Eq. (6.2) and shown 
in Fig. 6.3. In Eq. (6.2), xs(t) is the sampled version of x(t) and s(t) is the sampling 
function. Onward, the input is quantized throughout the quantization process. We 
employed 500  Hz sampling rate and 12-bit resolution quantizer during the A/D 
conversion. The process of quantization involves condensing an infinite set of con-
tinuous values into a more manageable set of discrete values. It involves estimating 
the real-world values with a digital representation that restricts the precision and 
range of a value in the context of simulation and embedded computing. Rounding 
mistakes, underflow or overflow, and computational noise are all introduced by 
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s(t)

xs(t)
x(t )

Fig. 6.3 The sampling 
process

quantization. The behavior of an ideal system and estimated numerical behavior, 
thus, differ numerically. When choosing suitable data types for capturing real-world 
signals, one must take into account the precision, range, and scaling of the data type 
used to encode the signal as well as the non-linear cumulative effects of quantiza-
tion on the numerical behavior of your algorithm. When mechanisms such as feed-
back loops are present, the cumulative influence of quantization is increased.

In embedded systems, the quantization is an essential step in accelerating infer-
ence while reducing memory and power usage. As a result, it may be installed on 
hardware with a reduced memory footprint, which frees up more RAM for control 
logic and extra algorithms. For a particular hardware architecture, examples of 
quantization features include integer processing, employing hardware accelerators, 
and fusing layers [7, 8]. The quantization process is given by Eq. (6.3). In Eq. (6.3), 
x[n] is the digitized version of xs[n] and Qe[n] is its corresponding quantization 
error. The upper bound on the Qe[n] is posed by the quantum q and the relation ship 
is given by Eq. (6.4) [9, 10].
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Each prolonged sEMG signal was divided into 6-second segments comprising 
3000 samples to increase information size and the rectangular window approach 
was used to complete the division, with the windowing process is given by Eqs. 
(6.5) and (6.6) [11–13].
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Where, the digitized version of the sEMG band limited signal acquired from the 
examined dataset is denoted by xn. Its segmented form is zwn. wn represents the vec-
tor of window function coefficients. It has a period of 6-seconds and 3000 magni-
tude 1 coefficients. The windowing method breaks up the longer sEMG signal into 
reduced chunks. Each segment is treated as a distinct instance. A total of 180 cases 
are examined, with 30 from each class.

The basic principle behind wavelets is to interpret data based on scale. The size 
with which we examine data is important in wavelet analysis. Wavelet algorithms 
operate on data at various sizes or resolutions. Gross characteristics can be seen if 
the signal is seen via a big “window.” Similarly, minor characteristics would be seen 
if the signal was viewed via a narrow “window.” Wavelet analysis produces the abil-
ity to view both the forest and the trees. Approximating functions that are cleanly 
confined in finite domains can be employed with wavelet analysis. Wavelets are 
ideal for estimating data with severe discontinuities. A wavelet function, known as 
an analyzing wavelet or mother wavelet is used in the wavelet analysis. If the best 
wavelets are not selected for the intended data or if the coefficients resolution is 
decreased below a certain threshold, then the data will not be correctly represented 
[7, 14]. The Eq. (6.7) can be used to express wavelet mathematically. Where s 
denotes the scaling operator and u is the translation operator.
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The Eq. (6.8) demonstrates how to use the wavelet transform to break down a signal 
x(t). When it comes to the decomposition of signals in terms of a base set of func-
tions, the Discrete Wavelet Transform (DWT) is similar to the Fourier transform. A 
single parameter is used in Fourier transformations, and the basis set is made up of 
sines and cosines, whereas the expansion has only one parameter. A single “mother” 
wavelet is used to create the functions (wavelets) in the wavelet transform, with 
dilation and offsets matching to the two variables of the expansion being used to 
construct the functions.

The Discrete Time Wavelet Packet Decomposition (DWPD) is a wavelet trans-
form that applies additional filters to the signal than the DWT. Wavelet packets are 
one-of-a-kind linear wavelet combinations. Many of the orthogonality, smoothness, 
and localization characteristics of their parent wavelets are retained in the bases they 
produce. The DWPD is a wavelet transform that applies additional filters to the 
signal than the DWT. Wavelet packets are one-of-a-kind linear wavelet combina-
tions. Many of the orthogonality, smoothness, and localization characteristics of the 
parent wavelets are retained in the bases they produce. Each freshly created wavelet 
packet coefficient sequence serves as the root of its own analysis tree as the coeffi-
cients in the linear combinations are computed recursively. The WPD decomposes 
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both the detail and approximation coefficients. The WPD creates 2n separate sets of 
coefficients (or nodes) for n degrees of decomposition, whereas the DWT produces 
(n + 1) sets. However, because of the down sampling process, the total number of 
coefficients remains constant and there is no redundancy [15]. The process of com-
puting the approximation an detailed coefficients is respectively given by Eqs. (6.9) 
and (6.10).
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The wavelet decomposition, utilized to produce the sub-bands of the sEMG signal 
is shown in Fig. 6.4. The wavelet decomposition approach has been shown to lower 
the empirical risk in certain circumstances. Results from sEMG signal time series 
show that our method makes sense [16].

6.2.3  Feature Selection Techniques for sEMG Based 
Gesture Recognition

A feature is a functional requirement of a system. In general, the phrase feature 
includes both functional and non-functional criteria. The feature is an observable 
behavior of the system that the user might activate in this research. One of the most 
difficult aspects of programming is comprehending how a certain feature works. 
One must first locate the feature’s implementation in the code before they can fully 
understand it. In many cases, systems are composed of many modules, each of 
which contains tens or hundreds of lines of code. Most of the time, it’s difficult to 
tell wherein the source code a specific functionality is implemented. Original archi-
tects of the system may not be available, or their perspective may be skewed due to 
alterations made by others since the documentation’s creation (if any). Maintaining 

Fig. 6.4 The Wavelet Decomposition
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a system introduces illogical modifications that weaken its overall structure. Every 
time something is altered in the system, it becomes more difficult to understand. 
One alternative is to reverse engineer the system from the ground up to get out of 
this rut, identifying all of its components and assigning functions to them. An incre-
mental semiautomatic procedure uses established automatic ways for retrieving 
component data and validating them by hand before using them. Exhaustive proce-
dures, on the other hand, are not economically viable. Fortunately, understanding 
the components that implement a certain set of functionalities is often sufficient [17].

For a system to be understood in its implementation of a specific feature, it must 
first be identified as to which computing units within the system are responsible for 
that characteristic. There are many instances where mapping features to source code 
is not well documented. The intended behavior of a system is described in abstract 
terms by its features. While concentrating solely on the implementation details and 
static structure of a system, reverse engineering methodologies neglect the dynamic 
relationships between the many pieces that only show when the system is in opera-
tion. By developing a model in which characteristics are tied to structural entities, 
we want to enhance the static and dynamic analyses that have already been per-
formed. When it comes to dynamic analysis, there is a multitude of information 
available; nevertheless, this amount of knowledge creates a challenge in the analy-
sis. In order to cope with it, we used Latent Semantic Indexing, an information 
retrieval technique that works with both documents and keywords. The objectives 
were to find linked features, as well as associated classes that participate in features 
in order to complete the task. For the text corpus, they used function calls from the 
traces; for the document corpus, they employed two mappings to documents: classes 
as documents as well as traces as documents.

The reduction of duplicate data in a data source is made possible through feature 
extraction. Data reduction expedites the learning and generalization stages of the 
machine learning process while also assisting the computer in building the model 
with less manual labor. Standard deviation, absolute minimum of nth level approxi-
mation coefficients, highest absolute value of nth level detail coefficients, mean of 
average absolute of all sub-bands, ratios of the mean of average absolute of succeed-
ing sub-bands, root-mean-square value of time series, skewness & kurtosis of sub- 
band coefficients, absolute peak-to-peak difference of sub-band coefficients, and 
energies are all mined for each considered sub-band [18].

6.2.4  Machine Learning and Deep Learning Techniques 
for sEMG Based Gesture Recognition

In order to manage complicated activities autonomously or with little to no human 
participation, artificial intelligence (AI) is generally defined as any approach that 
allows computers to imitate or surpass human decision-making and mimic human 
behavior. As a result, it has connections to a wide range of tools and approaches and 
is concerned with a broad range of important issues, such as knowledge 
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representation, reasoning, learning, planning, perception, and communication. A 
computer might then use logical inference techniques to reason about hard-coded 
positions in formal languages, which were the main focus of early AI research. The 
knowledge base technique is another name for this. However, the paradigm has 
significant disadvantages since individuals fail to articulate all of their tacit knowl-
edge necessary to do difficult tasks. Such constraints exist.

Artificial intelligence is divided into several subfields, including deep learning, 
machine learning, and neural networks. Deep learning, a type of machine learning, 
is divided into neural networks. Both deep learning and machine learning use dis-
tinctive learning techniques. The majority of the feature extraction process is auto-
mated using deep learning, eliminating the requirement for some manual human 
interaction and enabling the usage of larger data sets. Traditional, or “non-deep,” 
machine learning is taught by humans. Human experts create a collection of traits to 
recognize differences in data inputs, which frequently require the use of additional 
organized data to understand. Although they are not necessary, labeled datasets or 
supervised learning can help “deep” machine learning algorithms. Unstructured 
data may be ingested in its raw form, and it can automatically recognize the proper-
ties that set distinct data types apart. Data analysis, in contrast to machine learning, 
does not need human contact, allowing us to scale machine learning in more intrigu-
ing ways. Speech recognition, natural language processing, and computer vision 
have all advanced more quickly as a result of deep learning. Deep learning is a term 
used to describe the number of layers in a neural network. More than three layers of 
inputs and outputs make up a deep learning algorithm, sometimes referred to as a 
deep neural network. There are just two or three layers in a simple neural net-
work [19].

According to ML, a computer program’s performance generally increases over 
time in relation to a range of tasks and performance indicators. It attempts to auto-
mate the process of developing analytical models in order to carry out cognitive 
tasks like object identification and language translation. This is accomplished by 
employing algorithms that continually learn from training data specific to the task 
at hand, giving computers the ability to identify intricate patterns and hidden insights 
without being explicitly trained. For high-dimensional data operations like classifi-
cation, regression, and grouping, machine learning is incredibly helpful. It can assist 
in obtaining reliable and repeatable findings by learning from earlier calculations 
and seeing patterns in huge databases. Machine learning algorithms have succeeded 
in a number of fields as a result, including fraud detection, credit scoring, analysis 
of the next-best offer, audio and image identification, and natural language process-
ing (NLP). On the basis of the problem and the data provided, three types of ML 
may be identified:

 (a) Supervised learning,
 (b) Unsupervised learning
 (c) Reinforcement learning

Using labeled datasets, supervised learning is the process of creating algorithms 
that can accurately categorize data or forecast outcomes. When new input data is 
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added, the model’s weights are changed until it is well fitted. To make sure the 
model is not overfitting or underfitting, this is done as part of the cross validation 
stage. Organizations may solve a variety of complex real-world problems with the 
help of supervised learning, such as separating spam from email. In supervised 
learning, classification and regression techniques including Naive Bayes, Neural 
Networks, Linear Regression, Logistic Regression, Random Forest, Support Vector 
Machine (SVM), and others are utilized. The user trains the algorithm to provide a 
response based on a collection of known and labeled data.

Unsupervised machine learning analyzes and sorts unlabeled data sets using 
machine learning techniques; these algorithms find hidden patterns or data group-
ings. Because of its capacity to identify similarities and differences in data, it is the 
ideal choice for exploratory data analysis, cross-selling tactics, consumer segmenta-
tion, and picture and pattern recognition. Additionally, it is used in the dimensional-
ity reduction process to reduce the number of features in a model; principal 
component analysis (PCA) and singular value decomposition are two typical tech-
niques for this (SVD). There are several unsupervised learning techniques and clus-
tering algorithms available, including neural networks, k-means clustering, 
probabilistic clustering, and others. The algorithms create answers from unlabeled 
and unknown data. Data scientists frequently employ unsupervised approaches to 
uncover patterns in fresh data sets, and they may build machine learning algorithms 
utilizing a variety of technologies and languages, as well as pre-built machine learn-
ing frameworks, to speed up the process [19, 20].

Deep learning is a subcategory of machine learning that employs both supervised 
and unsupervised learning techniques. It is based on the representation learning 
subfield of machine learning theory (or feature learning). Artificial neural networks 
(ANN), also known as deep learning neural networks, mimic the workings of the 
human brain by using data inputs, weights, and bias. Together, these elements 
describe, categorize, and identify data items. Each layer of deep neural networks, 
which are made up of several interconnected ones, improves and fine-tunes catego-
rization or prediction. A network’s transmission of calculations is referred to as 
forward propagation. The layers of a deep neural network that are visible are the 
input and output layers. The layers of a deep neural network that are visible are the 
input and output layers. Before producing the final prediction or classification in the 
output layer, the deep learning model processes data in the input layer.

Deep learning models provide results quicker than traditional machine learning 
approaches because they employ a hierarchical learning process to extract high- 
level, complicated abstractions as data representations. In other words, rather of 
requiring the data scientist to select the important attributes manually, a deep learn-
ing model will learn them Backpropagation is a different approach that uses meth-
ods like gradient descent to produce prediction errors before altering the weights 
and biases of the function by repeatedly going back through the layers to train the 
model. Forward and back-propagation function in tandem to allow a neural network 
to foresee and correct for errors. Deep learning models provide results quicker than 
traditional machine learning approaches because they employ a hierarchical learn-
ing process to extract high-level, complicated abstractions as data representations. 
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In other words, rather of requiring the data scientist to select the important attributes 
manually, a deep learning model will learn them. Backpropagation is a different 
approach that uses tools like gradient descent to produce prediction errors before 
changing the function’s weights and biases by repeatedly going back through the 
layers to train the model. Forward and back-propagation function in tandem to 
allow a neural network to foresee and correct for errors. The algorithm’s accuracy 
improves with time, and the “deep” in deep learning refers to the several layers used 
in deep learning models:

The completion of tasks like object detection and identification is made possible 
by convolutional neural networks (CNNs), which are extensively employed in com-
puter vision and image classification applications. CNNs are able to recognize pat-
terns and discriminate between properties in an image. CNN can be made up of 
numerous layers of models, each accepting input from the previous layer, process-
ing it, and then passing it on to the next layer in a daisy-chain pattern. Recurrent 
neural networks (RNNs), on the other hand, are often utilized in natural language 
and speech recognition applications because they utilize sequential or time series 
data [20, 21].

6.3  Methodology

Figure 6.5 displays the designed system block diagram. The following describes 
several processing phases with materials and methods.

6.3.1  Dataset

The dataset came from a research that involves frequently and freely grasping of 
different items [22]. The individuals were given complete control over the speed 
and force of grasping. The six motions, shown in Fig. 6.6, were asked to be repeated 
by five healthy volunteers between the ages of 20 and 22. Figure 6.7 displays the 
surface plots of feature sets that were retrieved from examples of various categories. 
For each fundamental movement, the experiment was repeated 30 times with the 
subject performing each one for 6  seconds. 180 sEMG signals were therefore 
acquired for each subject.

In addition to being non-invasive, repeating patterns, and capable of categorizing 
signals in real time, sEMG has a wide range of applications, including gesture rec-
ognition, prosthesis development, and human-computer interfaces. The sEMG sig-
nals in this dataset can also be used to enhance other datasets for more accurate 
categorization of similar signals. There are 16 recorded EMG signals, each lasting 
70 seconds, in the sEMG database of objects gripping activities. The signals were 
gathered from a healthy person. Six tasks were offered to the participant: spherical, 
palmar, tiny tools, lateral, cylindrical and hook gestures (cf. Figure 6.6) [22, 23].

H. R. Fatayerji et al.



145

Fig. 6.5 The proposed system block diagram

Fig. 6.6 (a) Spherical Gesture, (b) Tiny Tools Gesture, (c) Palmar (Grip) Gesture, (d) Lateral 
Gesture, (e) Cylindrical Gesture, and (f) Hook Gesture
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Fig. 6.7 (a) Class 1: Spherical, (b) Class 2: Tip, (c) Class 3: Cylindrical, (d) Class 4: Palmar, (e) 
Class 5: Lateral, (e) Class-6: Hook. The x-axis is presenting the number of attributes and y-axis is 
presenting their corresponding magnitudes

6.3.2  Machine Learning Algorithms

The classifier is an algorithm for performing the categorization tasks. It learns from 
the labeled dataset and onward the trained classifier may then be used to classify 
unknown documents or nodes based on the samples that were passed through the 
classifier to learn what makes a specific class where some parameters are set to bet-
ter understand the status of the signal. Optimizer options are hyper-parameter 
options deactivated and all features used in the model before PCA are set to the 
default of “Gaussian Naive Bayes” in Model Type Preset. Gaussian is the distribu-
tion name for numerical predictors. Multivariate multinomial distribution is the 
name of the distribution used for categorical predictors (MVMN). The default 
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choice for the feature selection and cost matrix is MVMN. Fine KNN, Euclidean 
distance metric, weight equality, and standardize data are all true. Hyper-parameter 
options are deactivated in the optimizer settings, and feature selection is enabled for 
the model type preset. PCA is disabled and the Misclassification Cost Matrix is set 
as the default for all features in the model prior to PCA. Our method considers K of 
these data points, which is the predefined number. Therefore, the distance metric 
and K value of the KNN algorithm are crucial elements to take into consideration. 
As far as distance measurements go, there’s no better option than using Euclidean 
distance. In addition to this, you have the option of using the Hamming, Manhattan, 
or even the Minkowski distance. The training dataset’s data points are all taken into 
account when predicting the class or continuous value of a new data point. Use 
feature space, class labels, or continuous values to find the “K” Nearest Neighbors 
of new data points. In Discriminant Linear All features used in the model prior to 
PCA are selected, and PCA is deactivated. The Misclassification Costs Matrix is set 
to Default. The Model Type Preset is Linear Discriminant, and the Covariance 
Structure is full. In the SVM Model Type Preset, the Gaussian Kernel Function, the 
7.2-scale kernel, the one-level box constraint, and the One-vs-One (OvO) multiclass 
method are all set to the default values of medium. Settings for hyper-parameters 
are disabled; All features used in the model before to PCA are referred to as feature 
selection; The Misclassification Cost Matrix has a True default value since PCA is 
deactivated. There are 30 learner types and 26 subspace dimensions in Ensemble 
Classifiers’ model type pre-sets, and hyper-parameter choices have been deactivated 
in the optimizer settings. There are no PCA or misclassification cost matrices since 
the model uses all characteristics before PCA.

6.3.2.1  Support Vector Machine Classifier (SVM)

A sparse kernel decision machine, the SVM approach builds its learning model 
without taking posterior probabilities into account. SVM provides a systematic 
solution to machine learning problems because to its mathematical foundation in 
statistical learning theory. Frequently used for classification, regression, novelty 
detection, and feature reduction problems, SVM develops a solution by using a 
subset of the training input.

When a program is executing, it generates new parameter values. Preventative 
maintenance can save a lot of money in the long run if the engine begins to show 
signs of failure early on. In order to solve the problem that the diagnostic model’s 
generalization ability decreases due to the motor’s variable operating circumstances, 
this research proposed a rolling application bearing cross-domain defect detection 
strategy based on a medium Gaussian SVM. End-to-end diagnostics is made pos-
sible using only the original signal as an input. To evaluate a model, this approach 
requires prior knowledge of the label for the target domain in order to achieve super-
vised domain adaptation.

The SVM approach creates its learning model without taking posterior probabili-
ties into account. It is a sparse kernel decision machine. Due to its mathematical 
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Fig. 6.8 Support vector machine

basis in statistical learning theory, SVM provides a systematic solution to machine 
learning problems. SVM is often used for classification, regression, novelty detec-
tion, and feature reduction problems and provides a solution by using a subset of the 
training input. These are their two main advantages (in the thou-sands). This method 
is perfect for problems involving text classification when a dataset of a few thousand 
tagged samples is the norm (Fig. 6.8).

6.3.2.2  K-Nearest Neighbor (KNN)

Using no previous knowledge of the original dataset, the KNN is a nonparametric 
classification technique. It is renowned for both its efficiency and ease of usage. The 
class of the unlabeled data can be predicted because the data points in a labelled 
training dataset are divided into multiple classes. Although this classifier is straight-
forward, the ‘K’ value is crucial for identifying unlabeled data. The term “k nearest 
neighbor” refers to the ability to repeatedly run the classifier with various values to 
determine which one produces the best results.

Automated model parameter estimation and manual setting of model hyper 
parameters are used to estimate model parameters. As the components of machine 
learning that need to be manually set and tweaked, model hyper parameters are 
sometimes referred to as “parameters.” The K Nearest Neighbors operates in this 
manner. The nearest neighbors of our new data point are the data points that are 
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Fig. 6.9 K-nearest neighbor

separated from it by the least feature space. Our approach considers K of these data 
points, which is a fixed quantity. The distance metric and K value of the KNN algo-
rithm are therefore important parameters. The Euclidean distance is the distance 
unit that is used the most frequently. There are also the Minkowski and Hamming 
distances, as well as the Manhattan and Manhattan distances. When determining the 
class or continuous value of a new data point, the training dataset’s whole collection 
of data points is considered. Finds the K nearest neighbors of new data points by 
searching feature space, class labels, or continuous values (Fig. 6.9).

6.3.3  Evaluation Measures

6.3.3.1  Accuracy

According to [24], the disarray framework concept is used to evaluate the classifi-
er’s demonstration. The total number of predictions made to determine classifica-
tion accuracy divides the total number of accurate predictions given a dataset. 
Accuracy is insufficient as a performance metric for imbalanced classification prob-
lems. This is mostly due to the fact that the dominant class(es) will exceed the 
minority class(es), which implies that even untrained models can get accuracy 
scores of 90% or 999%, depending on how severe the class imbalance is. There are 
four categories for each administered class. Focusing on the classes of lateral and 
hook gestures, we are defining:

Lateral and hook gestures
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• True Positive (TP): How frequently does the characterization computation pre-
dict “lateral” even when “lateral” is the true class?

• False Positive (FP): How frequently does the categorization computation predict 
“lateral” even when the real class is “hook”? Also known as a “Type I Error”.

• False Negative (FN): How often does the order computation predict, “hook” 
when the real class is “lateral”? Also known as a “Type II Error”

• How often does the arrangement computation predict “hook” when the true class 
is “palmar”? [24].

The accuracy is the range of real orders that can range from 0 to 1, with 1 represent-
ing the best accuracy result as given in Eq. (6.11).

 
Accuracy T T

T T F F
P N

P N P N

�
�

� � �
�100%.

 
(6.11)

6.3.3.2  Precision

Another statistical measure is called precision. It counts the number of accurate 
positive forecasts. Precision calculates the accuracy for the minority class as a 
result. It is determined by dividing the total expected number of positive occur-
rences by the number of accurately predicted positive cases. When the TNs and TPs 
classifications are appropriate, Eq. (6.12) may be used to quantitatively describe this 
measure. Findings from categorization that are FPs or FNs are wrong.

 

Precision
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TP FP
�

�� �
.
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6.3.3.3  Specificity

As indicated in Eq. (6.13), the percentage of accurately detected adverse events is 
known as specificity.

 

Specificity
TN

TN FP
�

�� �
.

 

(6.13)

6.3.3.4  Recall

The recall, as it is described in Eq. (6.14), is a measure that counts the actual posi-
tive predictions that were made as opposed to all possible positive predictions. 
Recall takes into account all positive predictions, as opposed to accuracy, which 
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only takes into account the right positive predictions among all positive predictions. 
Recall in this method indicates the coverage of the positive class [24].

 

Recall
TP

TP FN
�

�� �
.

 

(6.14)

6.3.3.5  F-Score

The F-score evaluates the precision of a model on a certain dataset. It is used to 
assess algorithms that categorize occurrences as either “positive” or “negative,” or 
in between. A statistic for assessing information retrieval systems is the F-score. It 
is possible to adjust the F-score to emphasize accuracy over recall or the opposite. 
Equation represents the harmonic mean of accuracy and recall, which is the classic 
F1 score Eq. (6.15) [25].
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6.3.3.6  Kappa Statistics

Cohen’s K-coefficient, which measures inter-rater agreement, measures the degree 
of agreement between two variables; hence, kappa most frequently deals with data 
that is the result of a judgment rather than a measurement. The likelihood of agree-
ment is compared by Kappa to what may be expected if the ratings were indepen-
dent. Kappa is another means of conveying the classifier’s accuracy [26]. Conditions, 
Eqs. (6.16) to (6.18), can be used to calculate Kappa.
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6.4  Results and Discussion

T The performance of the created method is assessed using the six hand-gesture 
characteristics. Each gesture was made by the participants 30 times for a total of six 
seconds each gesture. The recordings were made with a conversion resolution of 12 
bits and a sample rate of 500 Hz. The proposed windowing method is used to seg-
ment the ADC output. The maximum segment length is three seconds. To provide 
the qualities of each instance, features from each segment are extracted and com-
bined. The extracted feature set is then processed using ML-based classifiers. The 
10-CV approach is used to evaluate performance. Tables  - describe the findings 
obtained for SVM and KNN, respectively.

The confusion matrices, obtained for the case of each hand gesture are outlined 
in the following Tables 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6.

The evaluation measures for the case of SVM classifier are outlined in Table 6.7.
In Table 6.7, the spherical gesture (C1) shows the highest values of evaluation 

indices and the best AUC graph in the prediction parameters of all classes of ges-
tures. When the SVM classification technique is used, it is the simplest to discrimi-
nate between maneuvers and the rest of the movements. All six classifiers evaluated 
had an average recall of 92.2% and an average AUC value of 99.0%, with the 
Medium Gaussian SVM coming out on top (Fig. 6.10)

The evaluation measures for the case of KNN classifier are outlined in Table 6.8.
In Table 6.8, the measures for the Fine KNN algorithm show the lowest outcome 

in overall accuracy (70.71%). Based on a confusion matrix and a prediction graph, 
it has the lowest prediction outcomes. Compared to other algorithms, the Weighted 
KNN method achieved 94.1 percent accuracy and took just 0.97885 Sec. to run. On 
the other hand, the classification accuracy of Cosine KNN was the lowest at 81.3%. 
Cubic KNN, on the other hand, took the longest to train at 30.441 seconds. According 
to the selection of two attributes, the prediction model presents the predicted with 
accurate and wrong predictions in the X and Y axis. The Euclidian distance mea-
sure, equal distance weight, and a default number of neighbors of 10 are all part of 
the Medium KNN. With the default parameters, this method has a 91.6% accuracy. 

Table 6.1 Class 1 Dataset Records

Gesture Input (Dataset)

Spherical gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 3
   FPs: 7
   FNs: 0
   TNs: 110

Medium Gaussian SVM
   TPs: 29
   FPs: 0
   FNs: 1
   TNs: 137

H. R. Fatayerji et al.



153

Table 6.2 Class 2 Dataset Records

Gesture Input (Dataset)

Tiny tools gesture 30 times for the duration of 6 seconds.

Result
   Fine KNN
   TPs: 28
   FPs: 0
   FNs: 2
   TNs: 112

   Medium Gaussian SVM
   TPs: 30
   FPs: 1
   FNs: 0
   TNs: 136

Table 6.3 Class 3 Dataset Records

Gesture Input (Dataset)

Palmar gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 19
   FPs: 7
   FNs: 11
   TNs: 121

Medium Gaussian SVM
   TPs: 22
   FPs: 3
   FNs: 8
   TNs: 144

It employs the Euclidian distance metric, equal weight of the distance, and a default 
of 100 neighbors as its default settings for coarse KNN. Based on the default param-
eters, this algorithm’s Accuracy is 92.3 percent. In its computation, the cosine KNN 
uses a cosine distance metric, equal distance weight, and a de-fault number of 
neighbors of 10. The accuracy of this method is 81.3% with the default parameters. 
The Cubic KNN method makes use of an initial set of 10 neighbors and an equal 
distance weight. This algorithm’s accuracy with default parameters is 93.5%. 
WKNN employs Euclidean distance metrics, the square of squared inverse distance 
weighted by 10 neighbors, and a default number of neighbors. This algorithm is 
accurate only 81.1% of the time (Fig. 6.11).

The accuracy is 77.8%, total misclassification costs are 40, prediction speed is 
⁓3800 obs/sec, and training time is 0.8864 seconds in the results of the KNN simu-
lation. Model type is acceptable, KNN number of neighbors is one, distance metric 
is Euclidean, distance weight is equal, standardize data is true, hyper-parameter 
options are disabled in the optimizer options, all features used in the model are 
selected, PCA is disabled before misclassification cost analysis, and the default 
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Table 6.4 Class 4 Dataset Records

Gesture Input (Dataset)

Lateral gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 23
   FPs: 9
   FNs: 7
   TNs: 117

Medium Gaussian SVM
   TPs: 29
   FPs: 0
   FNs: 1
   TNs: 137

Table 6.5 Class 5 Dataset Records

Gesture Input (Dataset)

Cylindrical gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 24
   FPs: 3
   FNs: 6
   TNs: 116

Medium Gaussian SVM
   TPs: 29
   FPs: 2
   FNs: 1
   TNs: 137

misclassification cost matrix is used. On the other hand, the SVM’s accuracy is 
92.2%, the cost of misclassification as a whole is 14, the prediction speed is ⁓3400 
obs/sec, the training time is 0.77719 sec, the model type is Medium Gaussian SVM, 
the Kernel Function is Gaussian, the Kernel Scale is 7.2, and the Box Constraint 
Level is 1. One-to-one standardized data is utilized in the multiclass method, hyper 
parameter choices in the optimizer are deactivated, all features used in the model are 
selected, PCA is turned off before PCA, and the default misclassification cost matrix 
is used.

The event-driven tools are beneficial in terms of the computational effectiveness, 
processing activity and power consumption reduction and real-time compression 
[27–29]. The feasibility of incorporating these tools in the suggested method can be 
investigated in future.
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Table 6.6 Class 6 Dataset Records

Gesture Input (Dataset)

Hook gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 16
   FPs: 14
   FNs: 14
   TNs: 124

Medium Gaussian SVM
   TPs: 27
   FPs: 8
   FNs: 3
   TNs:139

Table 6.7 Prediction evaluations of SVM

RF Accuracy Precision Recall Specificity F1 Kappa AUC

C1 0.994 1.000 0.967 1.000 0.983 0.993 1.00
C2 0.994 0.967 1.000 0.992 0.983 0.993 1.00
C3 0.937 0.880 0.733 0.979 0.80 0.921 0.97
C4 0.994 1.000 0.967 1.000 0.983 0.993 1.00
C5 0.982 0.935 0.967 0.985 0.950 0.978 1.00
C6 0.937 0.771 0.900 0.945 0.830 0.921 0.97
Avg 0.973 0.925 0.922 0.983 0.921 0.966 0.99
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Fig. 6.10 Comparison of Gaussian SVM Prediction Parameters
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Table 6.8 Prediction evaluations of KNN

RF Accuracy Precision Recall Specificity F1 Kappa AUC

C1 0.952 0.811 1.000 0.940 0.895 0.938 0.98
C2 0.986 1.000 0.933 1.000 0.965 0.982 0.97
C3 0.886 0.731 0.633 0.945 0.678 0.846 0.79
C4 0.897 0.719 0.767 0.928 0.742 0.862 0.85
C5 0.939 0.889 0.800 0.975 0.842 0.921 0.89
C6 0.833 0.533 0.533 0.899 0.533 0.767 0.72
Avg 0.916 0.780 0.778 0.948 0.776 0.886 0.87
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Fig. 6.11 Comparison of KNN Prediction Parameters

6.5  Conclusion

This chapter describes a contemporary automated system that uses sEMG signals to 
identify hand gestures. The sEMG signals are one of the most often utilized biologi-
cal signals for predicting the upper limb movement intentions. Turning the sEMG 
signals to useful control signals frequently necessitates a large amount of computa-
tional power and sophisticated techniques. This chapter compares the performance 
of k-Nearest Neighbor and Support Vector Machine techniques for hand gesture 
detection based on the processing of sEMG signals. The first stage in this method is 
to capture the signal from the skin’s surface, followed by conditioning, segmenta-
tion, and feature extraction. The feature extraction highlights the needed character-
istics from the da-ta to recognize the gesture. Following that, the k-Nearest Neighbor 
and Support Vector Machine techniques were applied on the mined feature set. The 
training and testing is carried out while following the cross-validation strategy. The 
prediction of accuracy, AUC, F1 score, precision and Kappa are among the mea-
sures utilized in the comparison. The comparison confirms that SVM produces 
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superior results and is best suited, among the studied methods, for the needed appli-
cation of gesture recognition.

In the conducted study, while processing the sEMG signals with the proposed 
hybridization of segmentation, discrete wavelet transform, sub-bands feature extrac-
tion, and KNN classifiers the tip gesture had the highest accuracy of 98.5%. The 
accuracy score for the tip gesture is even higher for the case of SVM classifier and 
it is 99.4%. The average accuracy score of 91.6% and 97.3% is respectively secured 
by the KNN and SVM classifiers for the 6-intended hand gestures of a 
mono-subject.

These results are encouraging and the effectiveness of the developed solution 
will be evaluated in the future for multiple individuals datasets. The Naive bias and 
other classifiers such as the Artificial Neural Networks, Decision Trees and Random 
Forests will also be used for categorization. The deep learning and ensemble learn-
ing methods will also be investigated.

6.6  Assignments for Readers

• Describe your thoughts and key findings about the use of sEMG signals in 
prosthetics.

• Mention the important processes that are involved in the pre-processing and 
sEMG data collection stages.

• Describe how the performance of post feature extraction and classification stages 
is affected by the sEMG signal conditioning process.

• Identify your thoughts and key points about the sEMG classification techniques 
used in this chapter.

• Identify your thoughts and key points on the feature s technique used in this 
chapter.
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