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Chapter 14
Recognition Enhancement of Dementia 
Patients’ Working Memory Using 
Entropy-Based Features and Local 
Tangent Space Alignment Algorithm

Noor Kamal Al-Qazzaz, Sawal Hamid Bin Mohd Ali, and Siti Anom Ahmad

Abstract  Detecting dementia presents a barrier to advancing individualized health-
care. Electroencephalographic (EEG) signals’ nonlinear nature has been character-
ized using entropies. While a working memory (WM), the EEGs of 5 patients 
suffering vascular dementia (VD), 15 patients had stroke-related mild cognitive 
impairment (SMCI), and 15 healthy normal control (NC) participants were evalu-
ated in this study. A four-step framework for the automatic identification of demen-
tia is provided, with the first stage employing the newly developed automatic 
independent component analysis and wavelet (AICA-WT) method. In the second 
stage, nonlinear entropy features using fuzzy entropy (FuzzEn), fluctuation-based 
dispersion entropy (FDispEn), and bubble entropy (BubbEn) were utilized to extract 
various dynamical properties from multi-channel EEG signals derived from patients 
with dementia. A statistical examination of the individual performance was con-
ducted using analysis of variance (ANOVA) to determine the degree of EEG com-
plexity across brain regions. Afterwards, the nonlinear local tangent space alignment 
(LSTA) dimensionality reduction approach was utilized to enhance the automatic 
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diagnosis of dementia patients’. Using k-nearest neighbors (kNN), support vector 
machine (SVM), and decision tree (DT) classifiers, the impairment of post-stroke 
patients was finally identified. BubbEn is chosen to develop a new BubbEn-LTSA 
mapping process for creating the innovative AICA-WT-BubbEn-LTSA dementia 
recognition framework, which is the basis for an automated VD detection.

14.1 � Introduction

Cognitive impairment and dementia are progressive impairments of mental function 
that are frequent following a stroke and inevitably lead to limitations in independent 
life. It was estimated that 50 million individuals were affected globally in 2018, and 
by 2050, that number is anticipated to triple [1]. After Alzheimer’s disease (AD), 
vascular dementia (VD) is the second most prevalent type of dementia, and its prev-
alence doubles every 5–10 years after age 65 [2–4]. The majority of people with 
vascular dementia are elderly adults over the age of 65. Clinically speaking, a reduc-
tion in mental ability that is higher than would be predicted given the people’s age 
and education level but does not severely affect everyday activities is known as mild 
cognitive impairment (MCI) [5]. It’s frequently thought of as being in the middle of 
the spectrum between early-on-normal brain cognition and late-on-severe dementia. 
Following a stroke diagnosis, the cognitive function most impacted by dementia and 
cognitive loss is memory [6, 7].

Better therapeutic therapy prior to brain damage from dementia would require 
earlier diagnosis. Early dementia diagnosis will help dementia patients start 
symptom-based treatment as quickly as possible. Recent years have seen significant 
advancements in the use of biomarkers to detect dementia in its earliest stages [8–11].

The use of magnetoencephalography (MEG) to record the brain activity of 
Alzheimer’s disease (AD) patients has gained significant research interest over the 
past 20 years [12–15]. EEG is a therapeutic tool that has a high level of temporal 
resolution and can monitor brain activity in milliseconds [16]. Therefore, it is fre-
quently used to establish a thorough study of a time-sensitive neurodynamic marker 
that assists in monitoring the brain for irregularities linked to cognitive decline and 
dementia [16, 17]. It can be used in neurophysiology to recognize and classify 
changes in the brain [18]. It is essential to develop a mechanism for detecting 
dementia in its early stages so that an ideal diagnostic index can be derived.

In this study, 15 healthy normal control (NC) volunteers, 15 patients with mild 
cognitive impairment (SMCI) following a stroke, and 5 patients with vascular 
dementia (VD) were used as NC to measure the background EEG activity during a 
working memory (WM) test. In the first step of a four-stage framework for the auto-
matic identification of dementia, conventional filters with, a revolutionary automatic 
independent component analysis and wavelet (AICA-WT) approach was used. In 
the second stage, nonlinear entropy features such as fuzzy entropy (FuzzEn), 
fluctuation-based dispersion entropy (FDispEn), and bubble entropy (BubbEn) 
were utilized to extract various dynamical properties from multi-channel EEG 
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signals derived from patients with dementia. The level of EEG complexity across 
brain areas was assessed statistically using analysis of variance (ANOVA) of the 
individual performance of estimated entropies. Afterwards, the nonlinear local tan-
gent space alignment (LTSA) dimensionality reduction approach was utilized to 
enhance the automatic diagnosis of dementia patients’ onset. Using k −  nearest 
neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers, 
the disabilities suffered by stroke survivors was finally identified. The comparative 
efficiency of the LTSA method for scaling down data dimensions with the kNN, 
SVM, and DT classifiers has been examined. LTSA with kNN achieved the highest 
classification accuracies for VD, SMCI, and NC, respectively.

According to the author’s knowledge, this is the first time such an analysis has 
been performed for dementia-based discriminative processing of EEG information. 
The initial contribution of this research is the proposal of an novel EEG AICA-WT-
BubbEn-LTSA mapping architecture to improve early dementia identification. The 
suggested framework uses the novel AICA-WT denoising method and bubble 
entropy to stabilize complexity parameters. The performance of the proposed frame-
work with three class classification tasks was acquired utilizing three distinct 
machine learning models in order to provide dependable classification performance 
and demonstrate the robustness of our proposed mapping framework. The working 
memory methodology for capturing EEG signals from VD, SMCI, and NC subjects 
is the first to interpret graphical behavior from EEG-based background activity. 
Novel AICA-WT-BubbEn-LTSA could be a core for automated VD detection and a 
promising, highly efficient technique for identifying VD and SMCI impaired effects 
on neuroelectrography alterations.

14.2 � Related Works

Brain disorders like epilepsy, researchers have used EEG readings to diagnose both 
attention deficit hyperactivity disorder (ADHD) and AD. Using an EEG dataset with 
several channels spanning brain areas, it may be possible to evaluate a wide range 
of affective reactions. [4, 19–24]. Therefore, studies have demonstrated the poten-
tial for EEG signals to detect vascular dementia (VD) patients by examining work-
ing memory tasks and displaying brain alterations collected based on non-conscious 
EEG brainwave patterns in people with dementia [25, 26]. However, EEG data are 
typically polluted by motion, ocular, muscular, and cardiac activities [19, 27]. 
Greater magnitude artifacts distort the signal and mislead the analysis.

There is a growing body of research aimed at removing non-cerebral sources 
from EEG data, known as artifacts, which may imitate brain disease activity and so 
affect the analysis [19, 26]. Early techniques for detecting and removing artifacts 
included blind source separation (BSS) based on Independent Component Analysis 
(ICA) [28], wavelet denoising [29, 30] to enhance the performance [31]. However, 
wavelets are time-frequency spectrums that overlap, but ICA lacks redundancy in 
the number of signals relative to the number of sources. Al-Qazzaz [19, 32] have 
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proposed the combination of ICA and wavelets approaches to solve these 
constraints.

In addition to being extremely informative on brain physiology, EEG signals 
may also serve as biomarkers of brain behavior [33–37]. The Hurst exponent (Hur) 
[32, 38] and fractal dimension (FD) [39, 40] nonlinear methods that have been used 
to represent and analyze cerebral cortex-generated complex dynamic data [41, 42]. 
Nonlinear parametric index of entropy can be used to quantify the uncertainty of 
dynamic systems like EEG signals that lack stability [43]. The field of cognitive 
neuroscience, sleep research, and the classification of emotional states have all prof-
ited from the use of entropy with EEG information [26, 40, 44, 45].

Entropy methods have been proposed throughout the previous three decades as a 
potent metric for quantifying the dynamic complexity of real-world systems such as 
EEG time series [43]. Entropies have been used to research cognitive thinking 
states, sleep states, and emotional level categorization techniques using the EEG 
signal [26, 40, 44, 45]. In addition, social emotion, personal identification, therapy 
uptake, clinical efficacy, and side effects are potential therapeutic uses of EEG-
based biological gender recognition leveraging several entropies. [46]. Wang [47] 
employed sample entropy (SampEn), approximate entropy (ApEn), and permutation 
entropy (PerEn) to examine the human emotions in response to video clips due to 
the robustness of these entropies to noise and their ability to effectively assess the 
complexity of a time series [48, 49]. Researchers have proposed fuzzy entropy 
(FuzzEn) for EEG assessment. In addition, Shannon entropy (ShEn) and conditional 
entropy (ConEn) represent the amount of information and the rate at which new 
information is being made [50]. The widely-used SampEn is derived from ConEn 
[51], whereas PerEn and the newly developed dispersion entropy (DispEn) [52] are 
derived from ShEn [53]. SampEn gives unreliable or unknown entropy values for 
short time series and is inadequate for long signals [14, 15]. PerEn is intuitive and 
computationally efficient. However, it has a continuous distribution and is noise-
sensitive. Fluctuation-based dispersion entropy (FDispEn) was proposed in [50] 
and Bubble entropy (BubbEn) was utilized in [54] to examine the dynamics of time 
series, specifically the distribution of symbol sequences, in order to address the 
inadequacies of PerEn and SampEn.

The advantage of this work is to find out how psychological EEG signals in dif-
ferent parts of the brain differ between VD, SMCI, and NC people by utilizing EEG 
markers to detect various dynamical features of dementia-based EEG background 
activity. Therefore, among the several empirical entropies, the FuzzEn [55], 
FDispEn [50] and BubbEn [54] entropies were chosen because they are noise-
resistant and may provide important information for interpreting the time series 
complexity.

Methods like sequential feed-forward selection (SFFS), minimum redundancy 
maximum relevance (mRMR), genetic algorithm (GA), evolutionary computation 
(EC), and sparse discriminative ensemble learning (SDEL) algorithm, sparse linear 
discriminant analysis (LDA) and principle component analysis (PCA) have all been 
used to estimate the best features [56–61].
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Xie [33] have utilized the kNN and SVM classifiers for seizure detection, whereas 
Subasi [62] have employed PCA as a dimensionality reduction technique and the 
SVM classifier with two outputs, either an epileptic seizure or not. In addition, for 
Brain Computer Interface (BCI) system applications, Vidaurre [63] examined brain-
waves using a linear discriminant analysis (LDA) classifier, whereas Murugappan 
[64] classified discrete emotions using kNN and LDA. In addition, Lagun [65] cat-
egorised the EEG datasets of AD, SMCI, and NC participants using logistic regres-
sion (LR), naive Bayes (NB), and support vector machine (SVM). Chaovalitwongse 
[66] have presented a technique for classifying and detecting seizure precursors 
using kNN.

The majority of dementia detection investigations used EEG signals based on 
AD, and they concentrated on linear analysis employing spectral relative powers 
[67–69]. However, other studies [21, 70, 71] have employed nonlinear entropy char-
acteristics to examine brain complexity behavior. To this goal, entropy features were 
computed to emphasize the diversity of dementia in affective-based EEG systems.

14.3 � Methods and Materials

The recorded EEG requires several stages of signal processing and analysis in order 
to obtain relevant details from the EEG signal of VD and SMCI patients in order to 
enhance the accuracy of the diagnosis of degenerative changes. EEG may have a 
significant role in the diagnosis and severity categorization of dementia. 
Preprocessing, feature extraction, dimensionality reduction, and classification are 
the primary stages of EEG signal processing. Fig. 14.1 depicts the complexity of 
EEG processing algorithms.

14.3.1 � Participants and EEG Recording

The NicoletOne (V32) system, developed and manufactured by VIASYS Healthcare 
Inc. in the United States, was used to gather the EEG data. The scalp was covered 
with 19 electrodes (including ground and system reference electrodes) in a cap elec-
trode configuration. Here are the cutoff frequencies for the low-pass filter (LPF), 
high-pass filter (HPF), and notch hardware filters included in the EEG device: The 
3 dB point for the LPF is at a frequency of 0.3 Hz, and the 70 Hz HPF upper cutoff 
frequency is adjustable. Typically, the notch filter is set at 50 Hz, and the frequency 
range is (0.3 to 70) Hz. The sampling frequency is determined by the application to 
be 256 Hz, etc., and a 12 bit A/D converter accurately digitizes the signal. 15 NC 
records, 15 SMCI patients, and 5 VD patients had their EEG data reviewed for this 
investigation. The participants serving as NC had no history of mental or neurologi-
cal problems. The stroke patients were recruited from the stroke ward at Pusat 
Perubatan Universiti Kebangsaan Malaysia (PPUKM), the National University of 
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Fig. 14.1  The block diagram of current study

Malaysia’s medical facility. Patients with VD were recruited through the Neurology 
Clinic. The stroke patient met the requirements of the National Institutes of Health 
Stroke Scale (NIHSS) [72]. All patients were diagnosed using magnetic resonance 
imaging (MRI) images of the brain, patient medical histories, and clinical and labo-
ratory tests. The healthy NC group had no history of mental or neurological disor-
ders. The Mini  −  Mental State Examination (MMSE) [73] and the Montreal 
Cognitive Assessment (MoCA) [74] were used to evaluate the cognitive abilities of 
both groups. In accordance with the 10–20 worldwide system, a total of 19 elec-
trodes plus the ground and system reference electrode were placed (Fp1, Fp2, F7, 
F3, Fz, F4, F8, T3, T5, T4, T6, P3, Pz, P4, C3, Cz, C4, O1, and O2). Table 14.1 
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Table 14.1  Sociodemographic characteristics of the NC subjects and SMCI and VD patients.

Participant features NC SMCI VD

Number 15 15 5
Age 60.06 ± 5.21 60.26 ± 7.77 64.6 ± 4.8
MMSE 29.6 ± 0.73 20.2 ± 5.63 14.8 ± 1.92
MoCA 29.06 ± 0.88 16.13 ± 5.97 13.2 ± 2.38
Gender 8 Females/7 Males 10 Females/5 Males 2 Females/3 Males

Age in years, MMSE Mini-Mental State Examination, MoCA Montreal Cognitive Assessment, SD 
meanstandard deviation

Fig. 14.2  The experimental model of working memory

displays the sociodemographic and cognitive characteristics of the NC, SMCI and 
VD patients.

The Human Ethics Committee of the National University of Malaysia authorized 
each protocol for an experiment. The participants also completed a consent form to 
receive information. In this EEG investigation, a session of auditory working mem-
ory (WM) test was done. Participants were given a 0.5 second fixation signal at the 
start of the session and asked to sit as still as possible for the duration of the test. 
Afterward, as a quick WM test, the participants were given five words to memorize 
for 10  seconds. Then, while EEG data was being recorded, participants were 
instructed to close their eyes and think about these words. The patients had to open 
their eyes once the allotted 60 seconds had passed and make a list of all the words 
and phrases they had remembered (Fig. 14.2) [3, 29].

14.3.2 � Preprocessing Stage

EEG signal preprocessing is required to remove noise, due to the fact that EEG 
waves typically contain artifacts in the same frequency ranges, allowing for proba-
ble overlap with brain processes.
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14.3.2.1 � Conventional Filters

The A/C power interference noise was reduced by utilizing a notch filter with a 
50 Hz cut-off frequency [4] and a band-pass filter (BPF) with a lower cutoff equat-
ing to 3 dB at 0.5 Hz and an upper cutoff frequency within the range of 64 Hz, as 
described in [69]. In a subsequent step of processing for the filtered EEG dataset, 
the data were split into 6 trials, with each trial including 10 seconds (6 x 10 second 
periods) and 15360 data points per ten seconds.

14.3.2.2 � AICA–WT Technique Methodology

In this study, we present and describe the AICA-WT technique as a fully automatic 
hybrid approach. The purpose of this strategy is to address the limitations of both 
ICA and DWT by combining their benefits. To improve the quality of EEG record-
ings, AICA-WT is applied [75, 76]. ICA is a strong statistical approach for estimat-
ing a set of n unknown components, s(t) = [s1(t), …, sn(t) ], that were linearly mixed 
by the ICA linear transform matrix A. The formula is as follows:

	
x Ast t� � � � � 	

(14.1)

where the EEGs are denoted by x(t), and both x(t) and s(t) should average out to 
zero. The demixing matrix W, which is the inverse matrix of A used to represent the 
linearly ICs, is generated by the ICA from the higher-order statistics of x(t). The ICs 
can then be determined using Eq. (14.2) (based on the above assumptions) [75, 
77, 78]:

	
y Wxt t� � � � � 	

(14.2)

where y(t) = [y1(t), …, yn(t) ] is the vector that estimate the ICs
In this investigation, the FastICA algorithm described by Hyvärinen [79] was 

utilized to decompose EEG signals due to its simplicity, rapid convergence, and 
efficiency in decomposing the recorded EEG and extracting the new component 
matrix ŝ .

DWT, symlet mother wavelet (MWT) of order 9 ‘sym9’, and the SURE threshold 
were chosen to denoise ICA-detected artifacts in a single or many channels [29]. A 
five-level decomposition of the EEG wave was performed (the sampling rate of the 
current work was 256 Hz). After applying the threshold for each level, the noise on 
the denoised ICs of the artificial sets was eliminated. Then coefficients were recre-
ated utilizing the inverse DWT (IDWT). The denoised components have been 
restored to the initial set of ICs.

The calculated ICA of the original, artifact-free EEG data was then reconstructed 
as x̂  from the corrected ICs using the following:
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ˆ ˆx Ast t� � � � � 	

(14.3)

where ŝ t� �  is the new matrix of ICs.

14.3.3 � Features Extraction

EEG signals are regarded as a non-invasive, effective diagnostic measure that can 
provide a more accurate description of emotional state variations across brain 
regions [21, 23, 80]. Consequently, it is crucial to detect dementia early using EEG 
signals. The complex dynamics structure of EEG signals can be assessed through 
the extraction of nonlinear dynamical attributes from the EEGs to identify the most 
significant features that improve the detection of dementia based on EEG brain 
mapping [25, 26, 80].

Nonlinear entropy approaches, such as FuzzEn, FDispEn, and BubbEn, have 
been used to quantify information regarding brain function based on dementia dif-
ferences. N = 15360 samples and 6 windows of 10 second length (2560 samples) 
were taken from the EEGs for each of 19 channels over the course of 60 seconds.

14.3.3.1 � Fuzzy Entropy (FuzzEn)

FuzzyEn has been used to characterize several biomedical data, including electro-
myograms [81], EEGs, or modulations in the heart rate [19, 20]. Moreover, new 
research [19] reveals that FuzzEn is a reliable entropy estimator for studying bio-
logical signals with incomplete data.

Given N data points from a time series x(n) = x(1), x(2), …, x(N), the following 
algorithm can be used to obtain FuzzEn [12]:

	1.	 Create m-vectors Xm(1), Xm(2), …, Xm(N − m + 1), where Xm(i) = [x(i), x(i + 1), 
…, x(i + m − 1)] − x0(i) for all in the range 1 ≤ i ≤ N − m + 1.

These vectors are a sequence of m consecutive x values, starting at the ith point 

with the baseline x i
m

x i j
j

m

0
0

11� � � �� �
�

�
��

�

�
��

�

�

�  eliminated.

	2.	 Define the distance between vectors Xm(i) and Xm(j), dij, m, as the biggest absolute 
difference between their scalar components.

	3.	 Using fuzzy function, determine the similarity degree Dij, m of the vectors Xm(i) 
and Xm(j) given n and r:

	

D d r
d

rij m ij m

ij m

n

, ,

,
exp� � � �

�� ��

�

�
�

�

�

�
�

� ,

	

(14.4)
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	4.	 Specify the function φm as follows

	

�m
i

N m

j j i

N m

ij mn r
N m N m

D,� � �
� � ��

�

� �

�

� �1 1

11 1,
,

	

(14.5)

	5.	 We extend the dimension to m + 1, create vectors Xm + 1(i), and then derive the 
function φm + 1by repeating steps 2 through 4.

	6.	 FuzzEn can be computed for time series with a finite number of samples N using 
the following Eq. [81]:

	
FuzEn m n r N n r n rm m, , , , ,� � � � � � � ��ln ln� � 1 	

(14.6)

14.3.3.2 � Fluctuation-Based Dispersion Entropy (FDispEn)

The entropy metric DispEn was developed lately for measuring the randomness of 
time series. It’s fast, and it’s performed well in describing time series thus far. In this 
research, we looked at how different mapping approaches affected DispEn’s 
performance.

The DispEn algorithm is as follows, given a unilabiate signal x(n) = x(1), x(2), …, 
x(N) of length N:

At the outset, we map xj(j = 1, 2, …, N) to c classes with indices from 1 to c. 
uj(j = 1, 2, …, N) is the signal that has been categorized.

With an embedding dimension m and a time delay of d, we may generate a 
series of timestamps denoted by ui

m c, : 
u u u u i N m di
m c

i
c

i d
c

i m d
c, , , , ,� �� � � � � �� �� � �� �, , , 1 1 2 1  [52, 53]. Each dispersion pat-

tern � v v vm0 1 1� �
 allocated to the  m elements of the vector ui

m c, , where 
u v u v u vi
c

i d
c

i m d
c

m� � � �� �� � �� � �0 1 1 1, , ,  has a corresponding integer value between 1 
and c [52].

The relative frequency for the cm possible dispersion patterns � v v vm0 1 1� �
, is calcu-

lated as follows:

	

p
i i N m d u has

N m dv v v

i
m c

v v

m

m�
�

0 1 1

0 1
1 1

1�

�

�

�� � �
� � �� �� �

� �� �
# ,|, |,

	

(14.7)

where # means cardinality. p v v vm
�

0 1 1� �
� �  illustrates the number of dispersion pat-

terns of � v v vm0 1 1� �
 that is given as ui

m c,  divided by the total number of embedded 
signals with embedding dimension m.

At last, the DispEn value is computed as follows, in accordance with Shannon’s 
notion of entropy:

	
DispEn x m c d p p

c

v v v v v v

m

m m
, , ,� � � � � � � �

�
� �� � �

�

� �
1

0 1 1 0 1 1
. ln

	
(14.8)
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In fact, FDispEn accounts the variations in behaviour between neighboring ele-
ments in adjacent element dispersion patterns, which are based on fluctuation. Thus, 
we obtain vectors of length m −  1  in which every element is a different value 
between −c + 1 and c − 1. Thus, there are (2c − 1)m − 1 potential dispersion patterns 
based on random fluctuation. The only distinction between the DispEn and FDispEn 
algorithms is the potential patterns employed by each technique. Note that the nor-
malized FDispEn is represented as [50]

	

FDispEn

c
m

ln 2 1
1

�� �� ��

	

(14.9)

14.3.3.3 � Bubble Entropy (BubbEn)

BubbEn is created by applying a metric to the permutation approach, which calcu-
lates a rough estimate of the work involved in the latter method. Similar vectors are 
grouped together to reduce the time and effort required to calculate the conditional 
R’enyi entropy. We limit the number of distinct potential states and generate a 
coarser distribution based on intrinsic correlations using this method. A sorting 
algorithm’s number of steps is used as the unit of measurement. To determine how 
many iterations of bubble sort are necessary to sort the vector in ascending order, we 
count the number of insertions and deletions in the process. We’ll call this entropy 
Bubble Entropy (BubbEn). Next, we count the number of swaps Hswaps

m� �  needed to 
arrange the vectors in ascending order, and use that information to calculate the 
conditional R’enyi entropy of this distribution.

	
BubbleEn H H m mswaps

m
swaps
m� �� � � �� ��1 1 1/ log /

	
(14.10)

For embedding dimensions m and log(1 + m(m + 1)/2), respectively, the maximum 
entropy is  log  (1  +  m(m −  1)/2), and the normalization factor is the difference 
between these two values. In each case, it indicates how many possible states there 
are when bubble sort permits swaps between 0 to m(m − 1)/2. The state in which no 
swaps were performed was ignored in order to simplify the normalization factor 
because it was not relevant for non-zero values of m. The computation of BubbEn is 
shown in pseudo-code below:

	1.	 We use a counting method to determine how many swaps ni are required to 
arrange each vector Xi of m elements in in descending order.

	2.	 The probabilities pi (describing the likelihood of a given number of swaps) ni are 
calculated by normalizing the histogram of ni values by N − m + 1.

	3.	 When α = 2, the entropy Hswaps
m  swaps is calculated from pi using the following 

Equation:
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H X p

i

n

i2
1

2� � � �
�
�log

	
(14.11)

	4.	 Iterating steps 1–3, we find Hswaps
m+1  swaps for vectors with m + 1 elements.

	5.	 Using Eq. 14.11, we determine BubbEn.

14.3.4 � Statistical Analysis

To do ANOVA, the denoising findings, nonlinear entropy feature results of the 19 
channels from the EEG datasets of 15 NC, 15 SMCI, and 5 VD patients were pre-
liminarily classified into 5 recording regions that related to the scalp region of the 
cortex. Regionally averaged features aided in taking into account the differences 
between the scalp regions, which can directly demonstrate the effects of dementia 
following a stroke in terms of a reduction in brain complexity and a slowing of cog-
nitive function. These regions include the frontal cortex (seven channels: Fp1, Fp2, 
F3, F4, F7, F8, and Fz), the temporal cortex (four channels: T3, T4, T5, and T6), the 
parietal cortex (three channels: P3, P4, and Pz), the occipital cortex (two channels: 
O1 and O2), and the central cortex (three channels: C3, C4, and Cz).

In order to assess the efficacy of the FuzzEn, FDispEn, and BubbEn entropies, 
three sessions of two − way analysis of variance (ANOVA) were statistically ana-
lyzed to determine the level of EEG complexity across brain areas. Version 22 of the 
SPSS program from IBM USA was selected for statistical analysis.

In each of the three sessions, the nonlinear (FuzzEn, FDispEn, and BubbEn) fea-
tures were dependent variables, whereas the group factor and the five groups of the 
scalp areas were independent factors. The group factor included NC healthy partici-
pants, SMCI patients who had recently suffered a stroke, and VD patients. Then, 
Levene′s test for homoscedasticity and the Kolmogorov − Smirnov evaluations for 
normality were applied. Duncan′s test was used to determine the post − hoc con-
trast, and p  <  0.05 was established as the significance level for each statistical 
evaluation.

14.3.5 � Preliminary Feature Processing Prior Classification

In this work, each EEG channel was divided into 6 epochs, and each epoch was 
given three entropy features (FuzzEn, FDispEn and BubbEn).

Before being applied to the classifier, the extracted features from the preceding 
step must undergo additional analysis. The “curse of dimensionality,” or difficulties 
caused by a large number of possible feature combinations, and the resulting 
increase in processing time can be avoided by employing dimensionality reduction 
techniques. In order to avoid classifier overload, improve classification model 

N. K. Al-Qazzaz et al.



357

accuracy, and reduce overfitting concerns, this research made use of dimensionality 
reduction techniques. Thus, these solutions are necessary to reduce the dimension 
of feature vectors.

The dimension of the feature matrix for healthy NC and SMCI was (90 × 57), 
(15 subjects × 6 epochs) = 90 observations and (3 features × 19 channels) = 57 attri-
butes, whereas for VD patients, the dimension was (30  ×  57), where (5 VD 
×6  epochs)  =  30  observations and (3  features  ×  19  channels)  =  57 attributes. 
Therefore, VD is an unbalanced set of data that may affect the performance of pro-
posed model. Learning from unbalanced datasets is problematic because the imbal-
ance hinders the performance of the learning algorithms. Given that the majority of 
learning models assume a balanced class distribution, their outcomes tend to favour 
the dominant class whose class predictions are inaccurate. Class imbalance in the 
dataset has a substantial effect on the classification model’s precision. However, 
because the minority class cannot be readily distinguished, the classifier can simply 
classify each instance as a member of the majority class.

In this study, patients with VD serve as an example of the minority class. To rec-
tify the data imbalance, SMOTE (Synthetic Oversampling Technique) was employed 
[82]. In order to reduce overfitting and bias in the classification analysis [83], the 
parameters of the classifier and the amount of oversampling were determined 
through 10 − fold cross-validation and grid search. The supplied dataset was divided 
into ten distinct subsets of equal size. One of these subsets was used as the test set, 
while the remaining nine were used to teach the classifier. This method was exe-
cuted ten times with 10 successful outcomes. The arithmetic mean of these preci-
sions represents the 10 − fold cross-validation precision of this dataset’s learning 
algorithm [84].

Because SMOTE modifies the dataset, the %age of oversampling has been added 
to the parameters. Therefore, parameters discovered with various SMOTE percent-
ages may not be identical. The SMOTE was utilized to balance the class frequency 
using only the training set [85, 86].

14.3.6 � Local Tangent Space Alignment (LTSA)

With its speed and relative insensitivity to parameter choice, the local tangent space 
alignment (LTSA) method has found widespread application in dimension reduc-
tion across a variety of disciplines. In the LTSA method, the coordinates from the 
local tangent space are combined with the low-dimensional global coordinates 
using the local radiological transformation matrix. Using the surrounding area as a 
sample, a tangent space at the local level is constructed. Given the data x(n) = x(1), 
x(2), …, x(M) ⊂ RM × N, the, principle of LTSA can be described as following [87]:

	1.	 Create a set Xi consisting of the k nearest neighbors of each sample xi selected 
using the k nearest neighbors algorithm, and normalize the results X̂i . It can be 
written as
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	2.	 Perform singular value decomposition to determine the eigenvalues and eigen-
vectors of the matrix X̂i .

The tangent space Hi is the set of eigenvectors associated with the first d  largest 
singular values.
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	3.	 In order to preserve as much data as possible during transformation, we must 
build the matrix Li i� �� , where
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where �i
�  represents the generalized inverse matrix of θi, Yi represents the set of 

nearest neighbors of Y after dimension reduction, that is, Yi = (yi1, yi2, …, yik).

	4.	 Once the optimization problem in the previous equation has been solved by 
determining the matrix's eigenvalues and eigenvectors, the embedding matrix Y 
can be derived. The analogous Equations to (17) are
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The low-dimensional embedding matrix Y is obtained by computing the eigenvec-
tors that correspond to the second through dth smallest eigenvalues of the alignment 
matrix B.

	 B HWW HT T= 	 (14.17)
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14.3.7 � Dementia Classification Techniques

A thorough analysis of the EEG data was done to classify the individuals’ cognitive 
and mental disability into three groups (NC, SMCI, and VD). The caliber of the 
generated features has a significant impact on classifier precision. As a result, the 
choice of dimensionality reduction techniques and the kind of classifier can both 
have an impact on how accurate the results of the classification are. Three popular 
methods for categorizing brain illnesses were used in this study: kNN, SVM, and DT.

The parameter k must be specified for the kNN classifier. The value of k was 
altered between 1 and 9 at 2-point intervals. The classifier was trained to determine 
the optimal value of k, and k = 5 was selected empirically. As a measure of similarity 
for classifying each trial using kNN, the Euclidean distance was computed.

Using ten-fold cross-validation to optimize the complexity parameter C with a 
range of −4 ≤ log10(C) ≤ 4 in C values C ∈ {0.0001,0.001,0.01,0.1,0, 10,100,1000, 1000
0} on the training set produced optimal results for the SVM classifier. During test-
ing, C equal to 10 yielded the best outcomes for C values. Based on the radial basis 
function (RBF) kernel, multi-class SVM classifiers were implemented. In addition, 
the training dataset was utilized to calculate the minimum mis-classification rate, 
which aided in obtaining the smoothing σ value for SVM training. The only way to 
determine the optimal value is by methodically varying during multiple training 
sessions. As a result, the σ value in this study was changed between 0.1 and 1 at 
intervals of 0.1. It was determined that a σ value of 0.5 corresponds to the lowest 
mis-classification rate [19, 22, 28, 32, 44, 88].

In addition, the DT classification tree model was utilized. It employs a recursive 
partitioning algorithm that generates nodes depending on certain criteria for split-
ting. The produced and divided nodes are then used to grow a tree. To use the split 
criteria, the optimal split point must be identified. The quality of the splitting criteria 
is measured by a function derived from the variance function. The optimal point for 
splitting is determined by a function that is applied to every split point beginning 
with binary splits and evaluating them based on an optimization criterion. Gini’s 
diversity index has been used as an optimization criterion in this work. When the 
classification tree reaches the pure node, it stops partitioning the instance space; a 
node is pure if it contains only observations of one class [89]. 50 trees have been 
employed as the parameter for identifying VD, SMCI, and NC EEG signals using DT.

The performance of the suggested framework was assessed using the average 
classification accuracy reported as a percentage and the confusion matrix, which 
enabled to determination the effects of dementia recognition enhancement.
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14.4 � Results and Discussion

Utilizing the novel, 100% automatic AICA-WT denoising technique presented in 
[19], the EEG dataset was successfully denoised. In our previous investigations [19, 
27, 28], we statistically analyzed the differences between the linear spectral distri-
butions of EEG slowing in VD patients, SMCI patients, and healthy NC subjects. 
The training process is where the most important design decisions for the kNN, 
SVM, and DT classifiers are made, as they are based on the test set and training set 
sizes. However, the classifiers employed in this work were trained on the same train-
ing data set and assessed on the testing data set in order to compare the performance 
of the suggested classifiers.

14.4.1 � Results of Preprocessing Stage

Compared to the original EEG recording, the artifactual components (red color) 
were successfully and adequately suppressed (blue color). As depicted in Fig. 14.3, 
the ocular artifacts were effectively inhibited in Ch2 (which represents F8 from the 
frontal region).
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Fig. 14.3  The outcomes of applying the AICA–WT approach to EEG Ch2, which represents F8, 
to remove ocular artifact
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14.4.2 � Results of Dementia Recognition by Statistical Analysis

The brain states of SMCI patients with VD and SMCI were distinguished from those 
of healthy NC participants using FuzzEn, FDispEn and BubbEn. Table 14.2 presents 
a comparative average mean values of the three used entropies which are estimated 
over five scalp regions for the VD patients, SMCI patients, and healthy NC subjects.

The VDs exhibited lower complexity than the SMCIs and healthy NCs (FuzzEnVaD 
< FuzzEnMCI< FuzzEnNC) with significant differences were observed for the NC sub-
jects (p < 0.05), (FDispEnVaD < FDispEnMCI< FDispEnNC) and (BubbEnVaD < 
BubbEnMCI< BubbEnNC) observable differences were identified between the VD 
patients and the NC. In line with expectations, the complexity of EEG signals 
decreases with increasing illness severity, especially in those with SMCI and VD.

The multiple comparisons have been looked at using the Bonferroni post hoc 
test. The post − hoc dementia multiple comparisons using Bonferroni corrections 
for the FuzzEn, FDispEn, and BubbEn characteristics are displayed in Table 14.3. 
The NC was statistically significant from VD (p = 0.05) and SMCI was statistically 
significant from VD (p = 0.01) for the FuzzEn, according to post hoc testing using 
the Bonferroni correction.

Additionally, the SMCI was statistically significant from VD for the FDispEn 
according to post hoc tests with the Bonferroni correction (p = 0.023).

Additionally, the post hoc analyses employing the Bonferroni correction for the 
BubbEn indicated statistically significant differences, especially for VD. The statis-
tical difference between the VD and the NC was 0.05, while the statistical difference 
between the VD and the SMCI was 0.003.

Table 14.2  Lists the average values for FuzzEn, FDispEn and BubbEn across all five scalp regions 
for patients with VD, SMCI, and NC participants. An asterisk indicates differences between groups 
that are significant

Features DSC Frontal Temporal Parietal Occipital Central p-value
FuzzEn NC 1.147 ± 0.212 1.203 ± 0.171 1.03 ± 0.133 1.236 ± 0.197 1.09 ± 0.171 0.05*

SMCI 1.08 ± 0.226 1.115 ± 0.264 1.015 ± 0.172 1.086 ± 0.196 1.038 ± 0.205 0.169

VD 1.079 ± 0.204 1.056 ± 0.191 0.957 ± 0.151 1.073 ± 0.137 0.964 ± 0.254 0.653

FDispEn NC 2.365 ± 0.388 2.514 ± 0.337 2.302 ± 0.243 2.276 ± 0.348 2.525 ± 0.329 0.114

SMCI 2.333 ± 0.514 2.397 ± 0.524 2.249 ± 0.454 2.228 ± 0.506 2.352 ± 0.477 0.187

VD 2.222 ± 0.398 2.29 ± 0.332 2.25 ± 0.33 2.111 ± 0.311 2.384 ± 0.302 0.163

BubbEn NC 0.611 ± 0.033 0.609 ± 0.031 0.597 ± 0.027 0.601 ± 0.049 0.609 ± 0.037 0.011*

SMCI 0.596 ± 0.039 0.592 ± 0.041 0.586 ± 0.046 0.576 ± 0.048 0.579 ± 0.04 0.921

VD 0.592 ± 0.03 0.59 ± 0.035 0.59 ± 0.043 0.585 ± 0.032 0.593 ± 0.021 0.047*
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Table 14.3  VD, SMCI patients and the NC subjects multiple comparison test using Bonferroni for 
FuzzEn, FDispEn and BubbEn entropy features

Dependent Variable (I) DSC (J) DSC Mean Difference (I-J) p-valuea

FuzzEn NC SMCI −0.036 0.158
VD −0.113* 0.05

SMCI VD −0.077* 0.01
FDispEn NC SMCI 0.06 0.344

VD −0.084 0.358
SMCI VD −0.145* 0.023

BubbEn NC SMCI −0.004 0.709
VD −0.020* 0.05

SMCI VD −0.016* 0.003
*The mean difference is significant at the 0.05 level

14.4.3 � Results of Dementia Recognition by Classification 
and Performance Measure

Figure 14.4 displays the confusion matrix for VD, SMCI patients and healthy NC 
subjects identification from EEGs using FuzzEn with kNN, SVM and DT classifiers, 
respectively, the correct recognition is observed on the diagonal whereas the off-
diagonal represent the substitution errors.

The confusion matrix’s two diagonal cells, as shown in Fig. 14.4 using FuzzEn, 
display the %age of correctly classified data from the kNN classifier. For instance, 
93.33% of the time, VD and SMCI are correctly categorized. Likewise, all are accu-
rately identified as NC subjects (100%) while 5.56% of VD are misclassified as 
SMCI, and 1.11% of VD and SMCI are misclassified as NC healthy patients.

Moreover, the SVM classifier results show that VD and SMCI are correctly clas-
sified with 64.44% and 97.78%, respectively. Like NC subjects, 100% are correctly 
classified, 28.89% of VD are incorrectly classified as SMCI, and 6.67% of VD and 
2.22% of SMCI are incorrectly classified as NC healthy subjects, respectively.

Additionally, for the DT classifier, the confusion matrix shows that the VD and 
SMCI are correctly classified with 86.67% and 12.22%, respectively. Similarly, NC 
subjects are correctly classified, whereas 13.33% of VD and SMCI are incorrectly 
classified as NC healthy subjects. By contrast, 51.11% and 36.67% of SMCI are 
classified as VD and NC subjects, respectively.

The confusion matrix for VD, SMCI patients, and healthy NC subjects identifica-
tion from EEG background signals using DispEn with kNN, SVM, and DT classifi-
ers, respectively, are presented in Fig. 14.5.

Figure 14.5 illustrates the proportion of correct classification from the kNN clas-
sifier using DispEn. With 97.78% accuracy, VD and SMCI, whereas NC healthy 
patients are correctly classified with 100%. Similarly, 2.22% of VD are wrongly 
labeled as SMCI patients.
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Fig. 14.4  Confusion matrix calculations for VD, SMCI, and NC from EEGs using FuzzEn and 
kNN, SVM, and DT classifiers

Furthermore, VD, SMCI and NC are appropriately diagnosed with 98.98%, 
95.56% and 100%, respectively, according to the SVM classifier results. 1.11% of 
VD are incorrectly classified as SMCI, but 4.44% of SMCI are wrongly classi-
fied as VD.

VD are accurately categorized with 18.89%, whereas 81.11% of VD are mistak-
enly labeled as SMCI patients and healthy NC subjects. Similarly, SMCI are accu-
rately classified with 86.67% and 13.33% wrongly labeled as VD patients and NC 
subjects, respectively.

NC participants are accurately classified with 91.11% but incorrectly classified 
as SMCI by 8.89%.

Figure 14.6 shows the confusion matrix for identifying VD, SMCI patients, and 
healthy NC participants from EEG background signals using BubbEn with kNN, 
SVM, and DT classifiers, respectively. On the diagonal, correct recognition is shown, 
whereas substitution errors are shown off-diagonal.

The proportion of correct classification from the kNN classifier utilizing BubbEn 
is shown in Fig. 14.6, VD and SMCI are correctly categorized with 96.67% accu-
racy, while SMCI and healthy individuals are correctly classified with 100% 
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Fig. 14.5  Confusion matrix calculations for VD, SMCI, and NC from EEGs using DispEn and 
kNN, SVM, and DT classifiers

accuracy. Similarly, 1.11% and 2.22% of VD patients are mistakenly identified as 
SMCI patients and NC subjects, respectively.

Furthermore, according to the SVM classifier results, VD, SMCI, and NC are cor-
rectly diagnosed with 93.33% and 100%, respectively. VD is improperly diagnosed 
as SMCI in 1.11% and 5.56% as NC.

VD, SMCI and NC are correctly classified with 82.22%, 80% and 91.11%, 
respectively. Notably, 17.78% of VD are mislabeled as SMCI patients and healthy 
NC participants. Similarly, SMCI are incorrectly categorized, with only 20% misla-
beled as VD patients and NC participants, respectively. With 8.89% accuracy, NC 
individuals are incorrectly classified as VD and SMCI patients.

To determine how well the LTSA dimensionality reduction technique works with 
the kNN, SVM, and DT classifiers, a comparative research has been done. The most 
accurate classifications of VD, SMCI, and NC patients were made using LTSA and 
kNN, in that order. Therefore, the effect of the FuzzEn, FDispEn and BubbEn entro-
pies have been examine without applying the LTSA algorithm individually as shown 
in Fig. 14.7.
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Fig. 14.6  Confusion matrix calculations for VD, SMCI, and NC from EEGs using BubbEn and 
kNN, SVM, and DT classifiers

The EEG-based dementia detection framework was evaluated in MATLAB R2021a 
on a laptop equipped with a 1.80 GHz and 1.99 GHz Intel Core i7 − 8550U proces-
sor, 16.0 GB of RAM, and a 64 − bit operating system.

The comparison of the proposed method with existing methodologies is shown 
in Table  14.4. Studies have used feature selection and dimensionality reduction 
techniques to estimate the optimal features. In order to improve the ability to iden-
tify VD and SMCI using EEGs, this study offers an automatic dementia recognition 
model employing the unique AICA-WT-BubbEn-LTSA dementia recognition 
framework. With the suggested strategy, the classification accuracy of kNN, SVM, 
and DT has improved somewhat. However, VD and SMCI recognition from NC 
subjects using the BubbEn-LTSA mapping process is the first to be taken into con-
sideration in this study in order to maintain the best quality of features that enhanced 
the classification accuracy of VD and SMCI from NC subjects. These methods have 
also been used to study EEGs. Furthermore, the EEG dataset elicitation technique 
and the EEG estimate system have never been used for securing sensation informa-
tion, which may make dementia contrasts more clear.
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Fig. 14.7  Average accuracy (%) for the kNN, SVM, and DT classifiers as calculated from the 
FuzzEn, FDispEn and BubbEn entropies with and without using LTSA algorithm

This study has some limitations, including a small sample size and the need for 
a follow-up analysis with a larger database. Despite this, more research based on 
real-time online experiments is required to validate the results due to the differences 
between offline and online categorizations. Despite these caveats, the results of The 
findings of this study concur with those of other investigations showing that EEG 
signals can be used to distinguish between those with VD, SMCI and NC [3, 4, 30, 
99, 100].

14.5 � Conclusion

The pre-processing stage of the EEG datasets of 15 SMCI patients had mild cogni-
tive SMCI, 15 NC, and 5 patients suffering VD involved the use of conventional 
filters and the novel AICA-WT method to denoise the data on WM task. Inh the next 
stage, the complexity and irregularity changes from EEGs have been investigated 
using the FuzzEn, FDispEn, and BubbEn characteristics. Additionally, the statistical 
analysis of the EEG complexity across the different brain regions has been done 
using ANOVA. Then, the nonlinear LTSA dimensionality reduction approach has 
utilized to enhance the automatic diagnosis of VD patients’. k-nearest neighbors 
(kNN), support vector machine (SVM), and decision tree (DT) classifiers have been 
performed in the final stage. The effectiveness of FuzzEn, FDispEn, and BubbEn 
have been compared, and the findings demonstrate that BubbEn is the technique that 
consistently separates VD, SMCI patients, and NC from the EEG signals. In order to 
create the innovative AICA-WT-BubbEn-LTSA dementia recognition framework, 
BubbEn has been chosen to construct a new BubbEn-LTSA mapping approach. The 
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Table 14.4  Comparative study of the suggested approach to the state-of-the-art

Study EEG Dataset Features types Method Classifiers

Best 
Accuracy 
(%)

Kortelainen 
et al.
[56]

BPF Frequency domain SFFS kNN 65

P. Ackermann 
et al. [61]

BPF Statistical mRMR SVM, RF SVM
(55)

Al-Qazzaz 
et al.
[45]

Conventional 
filtering, 
AICA-WT

SpecEn, ApEn,  PerEn IBGSA kNN 90.52

Al-Qazzaz 
et al.
[44]

SG RCMDE DEFS_Ch SVM 95.24

H. Cai et al.
[90]

BPF, Kalman Relative and Absolute 
frequency, Relative and 
absolute power, CD, 
Entropy

Correlation-
based 
method, 
Wrapper 
based 
method, PCA

SVM (RBF), 
RF, LR, 
kNN, DT

DT
(76.4)

H. Cai et al.
[91]

FIR, Kalman 
with DWT, 
Adaptive-
Predictor 
Filter (APF)

Relative and absolute 
power, 
Hjorth parameters 
(activity, mobility, 
complexity), Shannon 
Entropy, SE, CD, Peak 
, Kurtosis, Skewness

Minimal-
redundancy-
maximal-
relevance

kNN, SVM, 
DT

kNN 
(79.27)

Y. Li et al.
[92]

Notch filter, 
LPF, HPF

AR model + max-
power spectrum 
density, and Sum 
power, CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, PerEn, LLE, 
Singular-Value 
Deposition Entropy 
(SVDE), Variance, 
Mean-square (MS), 
Mean of Peak-to-Peak 
(P2P)

Differential 
evolution

kNN kNN 
(98.40)

H. Peng et al.
[93]

BPF Phase lag index (PLI), 
alpha, beta, delta, and 
theta

Kendall’s tau 
coefficient

SVM, KNN, 
DT, NB

SVM 
(92.73)

S. Mahato 
et al. [94]

BPF Asymmetry and paired 
asymmetry of gamma1, 
gamma2, beta, alpha, 
theta, delta,
DFA, SE

ReliefF Bagging, 
SVM 
(kernels 
such as 
polynomial,

SVM 
(96.02)

(continued)
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Table 14.4  (continued)

Study EEG Dataset Features types Method Classifiers

Best 
Accuracy 
(%)

J. Zhu et al.
[95]

LPF, HPF AR model + Power-
Spectrum Density 
(PSD), AR model + 
max-power spectrum 
density, and 
Sumpower, CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, PerEn, 
Singular-Value 
Deposition Entropy 
(SVDE), Mean-square 
(MS), Mean of 
Peak-to-Peak (P2P)

Correlation 
Feature 
Selection

LR, kNN, 
RF, SVM, 
BayesNet, 
NB, J48

kNN 
(92.65)

R. A. 
Movahed 
et al. [96]

LPF, HPF Synchronization 
likelihood (SL), 
Higuchi-Fractal 
Dimension (HFD), 
Detrended-Fluctuation 
Analysis (DFA), CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, LLE, 
Kurtosis, Skewness, 
DWT, Relative-Wavelet 
Energy (RWE), 
Wavelet-Entropy (WE)

Sequential 
Backward 
Feature 
Selection 
(SBFS)

SVM (RBF),
LR, DT, NB, 
RB, GB, RF

SVM (99)

Narayan et al.
[97]

BPF(8 to 30) 
Hz, notch 
filter, ICA

CSP PCA SVM, LDA SVM
(98.8)

Al-Qazzaz 
et al.
[98]

Emotion Entropy ESD kNN, SVM, 
RF

SVM 
(87.64)

Our Proposed 
Method
(AICA-WT-
BubbEn-
LTSA)

Conventional 
filtering, 
AICA-WT

FuzzEn, FDispEn and 
BubbEn

LTSA kNN 98.89
SVM 91.11
DT 98.89

unique AICA-WT-BubbEn-LTSA detection has improved automated VD dementia 
recognition, and it may be a potential framework for enhancing the distinction 
between VD and SMCI patients and NC participants.
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