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Chapter 12
Deep Learning Assisted Biofeedback

Jorge J. Palacios-Venegas

Abstract After 60  years of brain waves biofeedback development, basic and 
applied research, therapeutics, and a variety of devices built, there are a well-defined 
set of applications both, in health and illness. During these years, advances in tech-
nology made big contributions to biofeedback therapeutic and training procedures 
development. Variability as a natural property in biological systems and a side effect 
of the limitations in actual biofeedback devices along with differences in treatments 
and training models, have placed regular practice in a landscape where outcome 
prediction is difficult, not always reliable, or replicable, and with lack of fundamen-
tals for generalization. This chapter discusses the develop of Deep Learning (DL) 
solutions designed to control the biofeedback process. Aim is to substitute current 
devices and neurofeedback procedures with a robust set of DL options designed to 
reduce variability and deliver biofeedback process according to the natural brain 
waves relations and principles, proposing DL models oriented to fill the actual vac-
uum of precision in current neurofeedback (NFB) devices and practice.

12.1  Introduction

There is an increasing number of Machine Learning (ML) solutions and Deep 
Learning (DL) applications in biological sciences. It can be mentioned contribu-
tions in oncology [1], cardiology [2], neuroimage [3] and electroencephalography 
(EEG) [4] with a growing number of studies since 2018 [5]. Is not the case in 
NFB. There have only been described, design and tested Neural Networks (NN) and 
DL models for assessment the efficacy of one neurofeedback procedure [6] and the 
identification of the best NFB intervention [7]. Emerging field of DL models applied 
to analysis of peripheral biological signals has more reports, standardized 
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procedures in cardiac electrophysiology [2], assessment of electrocardiogram 
(ECG) and blood pressure [8], development of prosthetic solutions for disabilities 
[9], decoding of motor intent in peripheral nerve signals [10], assessment of pain 
[11], treatment solutions for motor disfunctions [12], a biofeedback wearable device 
for movement rehabilitation [13], the assessment of accuracy in prediction models 
for augmented biofeedback training in precision shooting [14], among different 
types of Brain Computer Interfaces (BCI’s), there are none for control and adminis-
tration of the whole biofeedback and neurofeedback procedures.

Biofeedback (BFB) is particularly relevant in the study of control functions in 
biological systems. Feedback Loop (FL) has been clearly stablished [15] as the 
natural process for self-regulation, homeostasis and as a basic element in life sup-
port. The information a system is receiving about its interactions with other systems 
the environment and its current internal state is a key element for future actions to 
be organized as involuntary or voluntary reactions among other processes and bio-
logical functions during existence. In theoretical and experimental approaches to 
the study of FL processes, contributions of the Theory of Control [16, 17] opened a 
wide spectrum of research supporting the conclusion that FL processes should be 
considered as a crucial element for health and self-preservation in biological 
systems.

In this general context basic, applied, and clinical research in BFB began to grow 
after two mayor contributions took place in the second half of the last century, both 
based on the earlier studies of interoception as a specific sensory function [18], with 
a strong link with behavior [19]. Study of interoception became a milestone to the 
scientific context in which the first key experimental and clinical contributions of 
BFB emerged. The first one in the research of abnormal muscular contraction and 
coordination after neural lesion and how these functions could be restored using 
electromyographic information coming from the affected muscles and delivered to 
the patient by other sensory modalities. The objective was to provide the missing 
information from the neuromuscular spindle, element in the muscle that holds the 
FL process and was affeccted by the neural lesion. The flow of information to the 
brain was interrupted impeding the detection of the small potentials remaining and 
the machine could detect [20]. After a number of sessions using the machine, 
patients were able to control the affected muscles, feel its contractions, recover the 
function and the machine was no longer needed. These findings are now considered 
as first contributions of biofeedback applied research from where today’s Peripheral 
Biofeedback (PB) procedures were born.

The second contribution arose in a different scenario, one of the most important 
laboratories of sleep neurophysiology in 1962. A researcher noticed alpha waves 
(8–12 Hz) distribution was interrupted after participants in sleep studies closed their 
eyes during EEG recordings preparation process. Happening frequently, even par-
ticipants were with their eyes closed and awake the natural condition for the regular 
distribution of alpha waves in healthy human brain. Wondering if this phenomenon 
could be related to subjective experiences, cognitive processes or consciousness 
states taking place in that moment [21], adapted methodology developed for neuro-
muscular rehabilitation presuming mental activity will be different between the two 
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EEG states (alpha activity interrupted or not). Designed an experimental setting to 
deliver information to participants about the interruptions in its own alfa activity, 
using an analog auditory tone variations with changes in volume analog to voltage 
variations in alpha activity, using an arbitrary score to inform participants about 
their performance. He was developing the first brain waves biofeedback procedure 
years later called Neurofeedback [22, 23]. When the initial NFB works were pub-
lished, contradicted reports regarding its replicability arose. First replication of 
alpha (8–12 Hz) biofeedback study result with contradictory findings [24] and the 
conclusions of the original author were that his study was not reproduced in the 
same conditions [25, 26]. Since then, variability and replicability issues in NFB 
studies have always been present.

With Electromyographic (EMG) biofeedback procedures, used to restore the 
muscular function loss, medical rehabilitation specialty was enriched, and EMG 
Biofeedback (EMGB) emerged as a powerful tool for recovery of function in 
patients suffering from different types of muscular palsies. Procedures were 
extended using a variety of biological signals as instant information delivered to 
patients, clients, or experiment participants to establish its control due to learning or 
conditioning, and later applied for treatment of specific conditions like tension type 
headache [27], migraine crisis [28] and anxiety and stress [29]. Due to nature of 
peripheral signals periodicity, stability, spatial and time resolution PB has been used 
regularly with predictable results and standard norms for assessment and non- 
invasive treatment of specific medical and neuropsychiatric conditions, relying in 
the excellent temporal and spacial resolution of the biological signals recorded for 
this purpose.

Initial NFB procedures out of the research laboratory were difficult to apply. 
EEG instrumentation was complicated and expensive resources needed for feed-
back procedures were rare or even inexistent and there was few information about 
EEG significance in cognitive, consciousness and emotional states. Regular EEG 
practice was reserved for clinical neurophysiologists to the study and diagnosis of 
epilepsy [30]. In the middle of 1970’s decade a notable finding, the conditioning of 
sensorimotor rhythm (smr 13–15 Hz) [31, 32], changed NFB future. Results showed 
smr conditioning was effective to inhibit spikes and spontaneous seizures in cat [33] 
and monkey in experimental models of epilepsy [34]. These procedures were 
quickly adapted and applied to humans showing smr NFB effectiveness for atten-
tion deficit and hyperactivity disorder (ADH/D) management and non-invasive 
treatment [35]. Procedures for specific neurological and neuropsychiatric condi-
tions emerged from the first standardized psychophysiological treatment protocol 
for Post-Traumatic Stress Disorder (PTSD) [36] initiating a new era around the 
1990’s decade. Scientists and clinicians in the field developed devices, software, 
and intervention procedures for alcoholism [37] depression [38–40], traumatic 
brain injury (TBI) [41], attention deficit disorder (ADD) [42, 43] and ADHD [44] 
among other protocols, leading to the professional NFB field definition [45]. BFB 
devices assisted by computers allowed contributions for therapeutic and training 
procedures and the evolution of clinical practice and research setups, from one 
channel analog devices to multichannel multimodal computer assisted interfaces. 
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Interventions became more complex arrangements with software capable to deliv-
ered feedback, according to clinical findings and normative databases opening a 
different type of practice with standard procedures based in statistical normative 
criteria [46, 47]. Develop in instrumentation and software made possible 19 EEG 
channels recording with online source biofeedback [48] with normative databases, 
developing brain mapping biofeedback procedure known as QEEG-Biofeedback 
[49] based in the low resolution tomography (LORETA) [50] environment [51, 52].

NFB expanded over the years, but replication of therapeutic findings and results 
frequently has been controversial, the so-called standardized treatment or training 
procedures have been subject to variability in individual conditions, specialist’s 
decisions, or due to software preinstalled functions in the diversity of the today 
known as commercial NFB devices. Variability in the clinical and research results 
have made difficult the path for the field, nevertheless today there’s a big number of 
professionals in the area all over the world, a substantial number of contributions 
published yearly and a growing interest in designing and developing more precise 
and reliable software interfaces.

NFB principle is to enhance through learning or conditioning the patient-trainee 
capability to “inhibit” specific EEG bands to induce the “predominance” of one in 
specific. This basic process was developed in the intent to replicate the natural orga-
nization of brain waves in health and specific consciousness states. EEG bands rela-
tions based in the power values were obtained from the clinical analog EEG 
recordings after simple statistical analysis. The purpose has been to achieve the 
resemblance of the general characteristics of normal or wellbeing EEG. This proce-
dures until today frequently find obstacles due to the natural variability, the low 
spatial resolution of the EEG and the different standards in the fabrication of the 
commercial NFB devices [53].

The problem addressed in this chapter arises from the concern that after years of 
development in computational models and tools for the study and analysis of bio-
logical signals and the creation and use of ML and DL applications based in EEG 
recordings, none have reached regular NFB practice, nor the regular production of 
ML or DL based neurofeedback devices. The aim is to address the constant issue of 
variability in regular neurofeedback practice and the traditional paths taken to mini-
mize its effects. The line of work discussed in this chapter is oriented to develop DL 
solutions capable to take care of the whole NFB process, with an architecture capa-
ble to substitute current devices and procedures preserving the basic noninvasive 
intervention principle.
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12.2  Current Biofeedback and Neurofeedback Devices 
and Practice

EEG high temporal resolution property characterized NFB practice for years, begin-
ning with the use of one scalp electrode hookups for ADHD management [47] and 
cephalic bipolar positions for depression [54]. Difficulties imposed to the traditional 
methods of analysis arise from EEG low spatial resolution that becomes evident as 
more channels are used in the recordings and that has always affected NFB research 
and practice initiated with the adaptation of devices engineered and built for a dif-
ferent purpose and practice [55]. At the time EEG devices were built to be used 
under specific conditions: restriction of movement, avoiding speech, laying with the 
eyes closed and were conducted inside a faraday chamber to avoid electrical and 
magnetic interference. Routine clinical EEG studies were conducted in such condi-
tions and with two standard methods: hyperventilation and photo stimulation used 
for activation of the EEG to detect spontaneous epileptic activity [56]. Initial neuro-
feedback studies were instrumented using these types of devices and developing or 
adapting other instruments to perform approximate measures of the frequencies of 
interest. Feedback was delivered by auditive, or photo stimulators built for other 
type of studies, frequently applied manually and signals quantification in relation to 
feedback events were also taken manually. In such scenarios it was expected the 
recording contamination with many types and classes of artifacts. Consistent results 
began to appear encouraging professionals in the field to continue developing and 
standardizing procedures and techniques for conducting more studies. Devices built 
specially for these procedures made practice became more consistent, results repli-
cable and due to research results with medical, neurological, and neuropsychiatric 
conditions clinical field finally emerged. NFB devices evolution can be synthetized 
as a journey from one channel analog stand-alone systems to multichannel multi-
modal (EEG and peripheral signals) computer assisted interfaces [57, 58]. NFB 
conditions requiring participants or patients to be seated with eyes opened, and not 
into a faraday chamber, lead to design procedures to reduce interference and arti-
facts. It must be recognized the hard work of the first professionals in the field for 
standardization of instrumentation, skin preparation techniques, basic room record-
ings characteristics design, adaptation and standardization of regular EEG tech-
niques and procedures and the design of specific assessment and treatment 
intervention procedures that structured the specialty and its regulation by profes-
sional associations stablishing standards for training specialists and practitioners 
[59, 60].

Today’s commercial NFB devices are built based in those initial procedures com-
plying with federal agencies regulations and based in the same general principles 
with some research done to validate its reliability [61]. Many are manufactured with 
materials and components requiring less skin preparation and recording skills, rely-
ing in the structure of its software designed with basic elements to deliver feedback 
according to built-in protocols and applications. NFB software since the 1990’s era 
is built into two different classes. One includes the closed systems with software 
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with specific sets of prebuilt applications for specific training purposes and treat-
ment procedures, users have to follow specific guides, montages, derivations and 
specific band configurations. The other class includes the open systems in which the 
user has more options to configure EEG and peripheral (ECG, EMG) signals acqui-
sition and feedback, selecting different μV threshold settings, using monopolar or 
bipolar hookups with two or more recording channels to apply the same principle to 
deliver feedback procedures. Measures of μVs average values after gross separation 
of EEG frequency bands are showed in the screen every 3 seconds and treatment 
interventions rely in determined number of training hours in which the results 
resembling normal EEG are supposed to appear be stablished as a new normal EEG 
state expected to evolve during time promoting healthy neurological and neuropsy-
chiatric states [62].

Occasionally some systems include impedance meter displays, more refined 
online impedance measures with standards indicating safe or poor recording condi-
tions. Denoising is based in gross band filters conducted by differential amplifiers. 
The software is designed for a gross frequency decomposition and online manage-
ment of the amplitude average and power measures [63]. Biological artifacts like 
ECG or eyeblinks are frequently ignored relying in basic and questionable princi-
ples like the derivations used in a given treatment intervention [64]. Off-line analy-
sis is performed when the software is built with tools to export or convert files to 
common formats [65, 66] frequently, specific file formats are used, leaving the 
option to analyze data with built-in report features, with gross averages, fixed ratio 
comparisons and the same gross frequency decomposition used during the treat-
ment session. These features have created a state where the NFB practice has been 
conducted during the last 30 years known as traditional neurofeedback (TN).

QEEG-Biofeedback based on the international 10/20 system [67, 68], is used by 
specialists to deliver feedback procedures using source localization [69] and inverse 
solution [70–72] principles, with normative databases as guidelines for more elabo-
rated NFB arrangements. Interventions are conducted using more channels, z-scores 
norms of specific EEG frequencies and its relations, source localization procedures, 
and -as it is claimed by its creators and regular users-, online feedback of the brain 
functional connectivity with estimation of the cerebellar electrophysiological activ-
ity using only the 19 channels of the traditional 10/20 system [69, 73]. These proce-
dures are not known and used by regular NFB practitioners nor common in the 
training for regular practice. Some EEG devices used for this specialty are built with 
clinical degree, safer and more precise, manufactured according to international 
regulations for clinical EEG practice, engineered with better quality and perfor-
mance capabilities and some are manufactured by the same fabricants of the TN 
devices [74] in general do not match the standards of the EEG research grade instru-
ments [75]. General principles for its use are the same that those in the TN and a lot 
must be done to reduce the effects of the sources of variability.

At the same time the reborn of the EEG has been taking place [76], academic 
software for EEG analysis have made enormous advances [77–79] and computa-
tional neuroscience and neuroinformatics are prolific fields for the study and under-
standing of brain electrophysiology.
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12.3  Deep Learning Models 
for Electroencephalography Analysis

EEG signals have good temporal resolution the clinical work is based in this prop-
erty and in the band frequency graphic characteristics distinguishing “graphic ele-
ments” related to specific disfunctions or illnesses from normal EEG. Most of the 
time specialists work is based in two parameters: frequency and morphology with a 
minimal of spacial resolution. EEG practice requires advanced skills, lots of train-
ing and supervision, is time consuming and frequently offers conditions facilitating 
human error. Spatial resolution is poor due to the obstacles that electrical signals 
generated in the cerebral cortex face in its propagation to the scalp facing different 
type of tissues with different properties causing that original measures in millivolts 
(mV) reach the scalp in values within the microvolts (μV) range. It was assumed the 
sources of EEG signals were found beneath of each recording electrode, changes in 
technology and recordings techniques questioned this assumption opening the field 
for source localization based in the inverse solution model [80–82].

ML and DL solutions for EEG analysis began to appear since 2010 with com-
munications for epilepsy analysis [83, 84] with a substantial number of studies of 
DL applications in EEG analysis in research and clinic.

Being raw EEG the basic element in NFB, it must be considered as the source in 
which DL models have to be applied. Contributions using DL models for end-to- 
end EEG analysis are encouraging. It was found the prediction of gender from brain 
rhythms using convolutional neural networks (CNN) for decoding and classification 
the EEG raw signal [85] showing CNNs potential to extract and classify very spe-
cific EEG “hidden” features. In a replication of this study designed to test CNN’s 
precision in classification using the same data, it was found the model performs 
better with raw data than with spectral images [86]. These findings support the regu-
lar use of DL in neurofeedback, based in the fact that in both cases results were 
obtain from raw EEG data and the best performance was obtained with minimally 
processed raw data, basic conditions in NFB regular practice. Peculiarities of NFB 
settings suggest DL models should be applied as an end-to-end process with the raw 
data, performing online feature extraction, pre-classification and classification, fil-
tering, pre-processing and processing, before the feedback process takes place. DL 
models used for offline EEG analysis, and some used in more complex scenarios 
with online recordings in invasive BCI’s offer a basic platform for DL applications 
in NFB. An element in our current work is the use of CNNs in the EEG amplifiers 
processor’s microcode to speed the process (Fig. 12.1). DL solutions have been used 
in EEG analysis, for signals classification [87, 88] online classification in BCI’s 
with 84% of accuracy [89], and offline analysis in sleep scoring [90], epilepsy [91], 
and interictal monitoring [92] searching for accuracy in assessment and diagnosis 
[93]. A line of work for improving the processing tools has contributions with pipe-
lines including feature learning and extraction [94], signal cleaning and denoising 
[95], artifact detection [96] classification and elimination [97], generation of data 
for developing hardware, simulations and DL solutions testing and development 
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Fig. 12.1 Schematic overview of a NFB device processor with pretrained CNNs in the microcode. 
(a). Raw EEG recording samples. (b). NFB device processor with CNNs in microcode for online 
EEG preprocessing. (c). EEG samples selected for feedback. (d). To computer. (Source: Prof. 
Jorge J. Palacios-Venegas)

[98], and data handling models of EEG signal with lines of research in recordings 
generation [99] and augmentation [100].

Basic DL research in EEG analysis constitutes and strong line of research in 
BCI’s develop [101], and cognitive and affective processes research [102]. From 
2010 to 2018 a classification of the DL approaches to EEG analysis found lines of 
work that can be classified identifying: BCI’s develop and testing [103], generation 
of data [100], and improvement of processing tools [104]. In this field DL strategies 
have generated information supporting fundamentals for its regular use in NFB, 
suggesting DL models could be the basic tools for neurofeedback research and 
practice since it has been successfully used in most of the stages of EEG analysis 
[105]. DL applications for denoising, artefact elimination, feature extraction and 
classification are mainly used in offline analysis [4, 106] and frequently used with 
BCI’s in which analysis and decomposition methods are applied from raw data per-
forming average, average adjusted, normalized, mean adjusted and spectral data 
analysis based in different methods: fast Fourier transform (FFT), power spectral 
density (PSD) and spectrogram with statistical analysis of signal parametric values 
(frequency and voltage) and very specific analysis like wavelet decomposition [107] 
all in an increasing number of studies in motor imagery [108. 109, 110], and emo-
tion recognition [111–114] processes.

The efficacy of DL models under such specific conditions supports its regular 
use with online EEG raw data processing in NFB, in this area of application it must 
be noted that DL approaches are built with a variety of architectures CNNs [115–
117], fully connected (FC) [118], long short-term memory (LSTM) [119, 120], 
auto-encoders (AE) [121], recurrent neural networks (RNN) [122, 123], support 
vector machines (SVM) [122], and generative adversarial networks (GAN) [123, 
124]. All used successfully in EEG analysis in different conditions from resting- 
state task-negative and task-positive, emotion recognition tasks [113, 125], event 
related potential detection [127], motor functions induced from imagery [108, 128], 
and neurological and neuropsychiatric conditions [129, 130]. Prevalent DL archi-
tectures are CNNs with structures up to 30 layers with residual blocks and recurrent 
layers commonly with ranges between 2 to 16 or 18 layers [131]. A typical model 
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of a CNN tested for EEG data analysis from end to end is usually built with a total 
of 21 layers [132]. Most frequently used structures can be synthetized in sets com-
posed by a 2 Dimension Convolutional Layer (Conv2d) a Rectified Linear Unit 
(ReLU), a Max pooling operation for 2D spatial data (MaxPool2d), and a Dropout, 
repeating the sequence until the 28th layer followed then by a Flatten and two con-
secutives Linear layers [85]. EEG data are structured as 2D matrices representing 
time and channels, with real values of the negative and positive fluctuations of brain 
waves. These are the type of data to feed CNNs, Deep Belief Networks (DBN) and 
Recurrent Neural Networks (RNN) all prevalent in DL EEG processing and analy-
sis [83], showing in some cases accuracies between 81% [133] to 89% [134] com-
bined with analysis based in hybrid Neural Networks (NN) architectures combining 
CNNs and RNNs, RNNs and LSTM or DBN and 3 restricted Boltzmann machine 
(RBM) with one dense layer [135, 136]. DL neural, decoding and classification 
algorithms are the most advanced and precise methods used for these purposes, due 
to the success obtained in most of the cases [137] are becoming a frequent part of 
the routine pipeline analysis [138] along with a diversity of NNs, feed forward net-
works (FFN), CNNs and RNNs are also the most common due to the accuracy 
obtained in different studies [139]. There are three types of pipelines for EEG data 
analysis, usually the first composed by the preprocessing methods for cleaning the 
data and isolate the signals from those in the interference and artifacts spectrum, the 
second centered in feature extraction process, for decomposition analysis in time, 
frequency, time-frequency dimensions [140], and used for specific procedures in the 
spatial domain [141]. Performance of NNs discriminating biological characteristics 
like gender or individuals, identifying biometric properties of EEG [4], suggests DL 
models are sensitive to specific and distinctive features in EEG signal and that this 
sensibility could be extended to most of its regular uses, identifying new ones and 
implying the future design and use of more complex architectures based in NNs 
with more layers (beyond 30) designed specifically for every stage in the EEG data 
analysis and online processing. DL classification and feature extraction from EEG 
is applied with accuracy in different conditions where EEG was activated with cog-
nitive, emotional, imagery and motor tasks for detection of clinical EEG key com-
ponents in epilepsy, distinctive elements identification in neuropsychiatric 
conditions, neurologic disabilities and design and testing of EEG-based authentica-
tion technology [142]. Consistency of DL models accuracy obtained in a variety of 
studies from different conditions, procedures, and methodologies is a promising 
scenario to develop applications in NFB, based in stability in results using Artificial 
Neural Networks (ANNs) in a variety of conditions with a variety of procedures 
[143, 144].

From BCI’s research there are interesting proposals for non-invasive applica-
tions [145–149], ML and DL algorithms have proved its best performance with 
EEG data processing and classification tasks obtained under conditions very similar 
of those in NFB regular practice, raw signals online analysis, several number of tri-
als and sessions, constant audiovisual stimulation, long duration of the recording 
sessions, complex cognitive and motor tasks, noise and outliers, features with high 
dimensionality when converted as vectors and with amounts of information 
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distributed in relatively short periods of time. Non-stationary properties of signals 
often increased in conditions that are task-related or caused by individual’s reac-
tions, traits, symptoms, or sequelae [149]. The amount of information distributed in 
time offers possibilities for analysis of concatenated features coming from different 
time segments and the combination of performing different classifications using 
dynamic procedures for feature extraction with immediate results used for commu-
nication with machines, the environment or the individual itself in NFB setups with 
processes performed using classification algorithms like generative, static, stable, 
and regularized. In this type of pipeline, classifiers are used for linear discriminant 
analysis (LDA) and data separation process prior to classification [151] and SVMs 
are applied for classes identification [152]. NNs have proved reliability in online 
EEG raw recording analysis and classification tasks, being the most used: Multi- 
Layer Perception (MLP) [153], Learning Vector Quantization (LVQ) [154], algo-
rithm Fuzzy Logic, Adaptive Resonance Theory (ARTMAP), Finite Impulse 
Response (FIR), Time-Delay (TD), Gamma Dynamic Neural Networks (GDNN) 
[155], Radial Basis Function (RBF) [156], Bayesian Logistic Regression (BLR) 
[157], Adaptive Logic Network (AL) [158], and Probability Estimating Guarded 
Neural Classifier (PeGNC) [159]. Research in speech decoding from raw electro-
corticographic (EcoG) online recordings with DL models, in a patient suffering 
from anarthria, reported the accuracy of the DL architecture called natural lan-
guage performing without errors in an 80 to 150 trials sequence, using a display for 
communication [150].

12.4  Deep Learning Assisted Biofeedback (DLAB)

Our model is based in years of experience in research and clinical practice with 
traditional PB, NFB and QEEG-Biofeedback devices designed for all the stages in 
NFB process. Is built including previous contributions in the field, gathers the most 
relevant DL solutions used in biomedical signals analysis and processing and incor-
porates those designed specifically for NFB process. Is structured of a group of 
independent NN’s running simultaneously and in sequence. Figure 12.2 shows the 
general diagram with model components. Named as Brain Computer Interface for 
Biofeedback (BCIB) and controlled by the Deep Learning Assisted Biofeedback 
Platform (DLABP) is a hybrid NNs design built to carry on with specific processing 
tasks designed to reduce variability by maintaining stability in the feedback process, 
working in task positive setups with individuals suffering from different type of 
conditions or sequelae and considering artifacts should be expected from different 
sources that can’t be controlled. Our DL platform is conceived with the objective to 
obtain as final result a stable EEG recording during the NFB session. DLAB hybrid 
CNNs are built to control EEG stability correcting perturbances from environmental 
conditions, technical and instrumentation procedures, natural perturbances (fatigue, 
sleep, drowsiness, eye blinking) and performance -task positive- perturbances 
(movements, speech, emotional expressions, motor and movement sequelae).
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Fig. 12.2 Schematic overview of the DLAB model. (Source: Prof. Jorge J. Palacios-Venegas)

Model is based in a constant online database consultation in the cloud, or to 
a default basic database in the system, performing processes controlled by CNNs 
built to extract, features from databases and current recordings to select and “target” 
segments suitable to feedback. A set of NNs is designed to supervise the targeted 
segments performance during the feedback process with specific denoising func-
tions identifying, classifying and removing artifacts with two different types of out-
puts corrected and not successfully cleaned. The next NN performs uncleaned 
segments quantification if results are above 5% feedback is interrupted until record-
ing perturbations are absent. NNs for feedback delivery and administration control 
stability in targeted segments for feedback based on a predictive process for natural 
perturbances anticipation. Output of this NN is to interrupt the feedback action until 
perturbances are over. Three more NNs elements are built to independently measure 
and assess segments performance during the feedback process, classifying them by 
stability and types of deviations, the output will feed the group of NNs for quantifi-
cation, assessment and selection functions, built to control the stability of the feed-
back process. Figure 12.3 is the schematic representation of the DLABP described 
in the following pages.

12.4.1  PP-net: EEG Online Preprocessing

PP.net (Fig.  12.3a) receives online raw EEG signals matrices input. Performs 
denoising, band pass filtering, artifacts rejection, identifies and reject bad channels 
and segments, performs independent component analysis (ICA) and classification 
(ICA labeling), frequency decomposition and classification functions for EEG spec-
trum definition including High Frequency Oscillations (HFOs). Table 12.1 contains 
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Fig. 12.3 Schematic overview of the DLABP. (Source: Prof. Jorge J. Palacios-Venegas)

Table 12.1 Frequency EEG bands in frequency decomposition. (Source: Prof. Jorge 
J. Palacios-Venegas)

Hz EEG bands Hz EEG bands

0–0.3 Ultraslow 22 to 26 Beta4 β4

0.3 to 4 Delta ∂ 26 to 30 Beta5 β5

4 to 8 Theta θ 30 to 80 Gamma γ
8 to 13 Alpha α High Frequency Oscillations
13 to 15 Beta1 β1 80–250 Ripples
15 to 18 Beta2 β2 250–500 Fast ripples
18 to 22 Beta3 β3 >500–1000 Ultrafast ripples

the complete frequency bands selected for decomposition. Output are two sets of 
files one to be ignored (EEGI) and one selected for the feedback procedure orga-
nized in 5 seconds segments groups, identified as pre-selected signals. PP-net gen-
eral structure is convolution layers (CL) for denoising, subsampling, band-pass 
filtering, CL for artifacts rejection, subsampling, CL for ICA, ICA labeling, sub-
sampling, CL for frequency decomposition extraction and classification, flattening, 
FC layers for bad channels selection and extraction, output: EEGI segments and 
preselected signals to feed Sel-net (Fig. 12.3b). Results are stored in local database.
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12.4.2  Sel-net: Classifying “Targeting” Signals for Feedback

Sel-net (Fig.  12.3b) identifies conditions: eyes closed (EC), eyes opened (EO), 
activity: task negative (TNg), task positive (TP) classifies the neurophysiological 
markers (NM) according to conditions: anxiety, depression, addiction or neural 
states: attention, inattention, drowsiness. Extracts and classifies neural markers 
matching them with correspondent features extracted from databases, targeting 
them for feedback. This process involves two types of bidirectional databases con-
sultation. Depending on the resources available (machine capabilities, internet 
speed etc.) a consultation type is to a small basic default database with preprocessed 
EEG segments classified by gender, age and recording type and for conditions or 
state. The other type is a constant consultation to the international databases. Output 
are two types of files one identified for rejection and one targeted for modification 
through feedback. A temporal database will be stored for Control-net (Fig. 12.3c) 
consultation during control functions. Sel-net general structure is CL for condition, 
subsampling, CL for activity, subsampling, CL for matching to databases, CL for 
NM identification, subsampling, flattening, FC layers for NM classification. Output: 
predominant NM selected for feedback. Results are stored in the system database.

12.4.3  Control-net: Extracting and Classifying for Feedback

Control-net (Fig.  12.3c)  is built of hybrid NNs with CNN, LSTM and recurrent 
neural network (RNN), to determine the best temporal sequences model, consider-
ing NM complex and nonlinear dynamics nature. Is design to activate or not FB-net 
(Fig. 12.3d) action based in the output obtained after processing. Is used as a predic-
tive process built to control feedback online delivery. Predictions are made for the 
temporal stability of the targeted NM based in the stability of the correspondent 
EEG microstates. Stability is assessed in terms of recordings time permanence if 
predictions output is for 3 secs or more the feedback is allowed. Control-net general 
structure is CL, maxpooling, memory layers, flatten, FC. Output: stability NM sus-
tentation in order to control FB-net action (Fig. 12.3d). Results are stored in system 
database.

12.4.4  FB-net: EEG Online Feedback

Feedback process is the output of a decision function controlled at the same time by 
two simultaneous NNs. Control-net (Fig. 12.3c) and Config-net (Fig. 12.3e). FB-net 
(Fig. 12.3d) runs a predictive process based on a hybrid CNNs and LSTMs design, 
built to assess signals stability runs decision processes based in NM current proper-
ties changes. Receives Config-net (Fig.  12.3e) output with estimated values of 
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current NM that match feedback criteria. Its output refines rewarding or positive 
feedback to both the signals and the subject. Is designed to deliver feedback based 
in the current stability of NM expecting modifications in its properties (improve-
ment in the general percentage of the performance, increment or decrement of μVs, 
ratios, asymmetry or synchrony). Implies a moment-to-moment stability measure of 
NM behavior with the last decision to interrupt the feedback. Is in direct responsi-
bility of the FL control and administration. FB-net general structure is CL, max-
pooling, memory layers, flatten, FC. Output: activation of locally stored audiovisual 
resources analogical to the variations in NM current measures simultaneously sent 
to Assess-net (Fig. 12.3h). Results are stored in local database.

12.4.5  Config-net: Predictive Maintenance 
and Feedback Modulation

Config-net (Fig. 12.3e) modulates with assessment and predictive functions current 
state in FB-net (Fig. 12.3d) performance and possible evolution anticipating faults. 
Receives Asses-net (Fig. 12.3h) and E-net (Fig. 12.3i) output, processing current 
NM values matching feedback criteria. Tunes de feedback operation, setting thresh-
olds upon relations between performance in expected frequency μVs values and 
ratios, measuring general performance and difficulty level in terms of success/error 
rate during the last 30 seconds segments. Config-net structure is CL, maxpooling, 
memory layers, flatten, FC. Output: current NM values matching feedback criteria. 
Results are stored in local database.

12.4.6  iClean-net: Cleaning Performance Perturbances

iClean-net (Fig. 12.3f) is a parallel and independent NN. Feed with current targeted 
signals for feedback matrices built to extract perturbances consequence of perfor-
mance during the feedback session. Process current measures performing denois-
ing, artifact removing, identifying and classifying outliers and artifacts extraction. 
Runs predictive functions with bidirectional communication built to maintain sta-
bility in the signals during feedback process, maintaining NM stability cleaning 
them of interference. Its predictive capabilities are designed with functionality to 
anticipate stability deficiencies lasting more than 3 secs and performing cleaning 
process to ensure feedback. iClean-net general structure is CL for denoising, sub-
sampling, CL for artifacts rejection, subsampling, CL for identifying and classify-
ing outliers, CL for movements and artifacts extraction, subsampling, flattening, FC 
layers for bad channels selection and extraction, resulting in a rectified EEG with 
clean NM. Output: NM cleaned and corrected for feedback and uncleaned segments 
sent to PN-net (Fig. 12.3g). Results are stored in local database.
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12.4.7  PN-net: Feedback Quality Control System 
and Interactive Database

PN-net (Fig. 12.3g) is a RNN modify from [159] and restructured to control feed-
back process based in the amount of perturbances generated during the task positive 
performance that could not be extracted by iClean-net. Receives online classified 
datasets performs quantification of identified and classified perturbations. Designed 
to interrupt the feedback process after 3 seconds of uncleaned segments accumula-
tion. PN-net general structure is quantifiers, LSTM, last LSTM hidden state, FC 
layer, RELU, a smooth approximation to the hard maximum of the vector (SoftMax). 
Output: to FB-net for interruption of feedback action. Results are stored in the local 
database.

12.4.8  Assess-net: Feedback Modulation Control Database

Assess-net (Fig.  12.3h) built for feedback monitoring based in the performance 
curve of near in time sessions. Is an information central unit of general feedback 
performance. Exceptionally large deviations between predicted and current EEG 
signals are used as indicators of the near future or immediate performance. Has 
feedback process predictive, decision making and control capabilities. Is feed with 
wavelet transform, short time Fourier and spectral parameterization resolved in time 
(SPRINT) [160] scalogram images generated with databases information with the 
outcome of current session, has prediction capabilities based in previous and current 
performance and databases consultation. Controls the feedback intervention match-
ing current session with performance history and resemblance to default and control 
data. Executes extraction, classification, quantification and qualification of targeted 
segments once they have received feedback. Its predictive capabilities anticipate 
segments probability to receive feedback. Predictive functions are used for prevent-
ing setbacks in current performance and treatment, predicting setbacks probability 
and classifying current data by selecting feedback-performance ratio of previous 
stages to enhance current preventing relapses or setbacks. Output is performance 
predicted classes and probabilities sent to the E-net (Fig. 12.3i). Assess-net general 
structure is input layer of three red, green and blue (RGB) channels, CL, pooling 
layer, flatten, FC, softmax (last three for classification). Results stored in the local 
database.
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12.4.9  E-net

E-net (Fig. 12.3i) is built for EEG entropy assessment, measured in terms of the 
current stability in comparison with previous stable feedback periods during 
session(s) with databases consultation. This function is performed with the seg-
ments successfully rewarded with feedback action extracting, selecting and classi-
fying them. Output generates the elements constituting EEG internal stability map, 
estimating coherence, synchrony, symmetry, stability permanence probability in 
time. Entropy is defined in terms of sample entropy or SampEn [162, 163]. E-net is 
built to evaluate whole brain activity (not only NFB derivations) during perfor-
mance along feedback training session and treatment. E-net general structure is 
based in parallel SVMs with one class output to Config-net (Fig. 12.3e). Results are 
stored in local database.

12.5  Discussion

Current development in brain waves BFB leads to its overhauling and regular inte-
gration to Neurosciences basic and applied research field. NFB procedures need to 
be updated complementing them with the most recent advances in neuroinformatics 
and computational neurosciences, in order to take advantage of achievements in 
these fields that will make professional practice safer and more reliable and will 
incorporate NFB research as a regular specialty area in Neurosciences. Setbacks to 
NFB scientific development due to the issues discussed in this chapter could be 
overcome with the integration of current ML and DL solutions and the ones to be 
built, for the creation of an Open Source neuroinformatic environment specifically 
developed for biological signals acquisition and processing as end to end solutions 
design from online acquisition, preprocessing a processing to feedback intervention 
and offline analysis. Solution based in research grade 64 and on EEG channels sys-
tems including polygraphic recordings. Table 12.2 shows a comparison of some of 
the ML and DL key state of the art solutions mentioned in the chapter, to be consid-
ered in the development of such an Open Source neuroinformatic environment 
for NFB.

12.6  Conclusions

Our model is being built with applications for research and practice based in QEEG 
Biofeedback procedures. Advances and changes in EEG devices and affordability 
of more powerful computers will make possible to deploy it into a very different 
systems (recording devices and computers). Ideal solution is from 64 EEG with 5 
polygraphic channels and on, with perspectives for addressing challenges in the 
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Table 12.2 ML and DL research in Biofeedback and EEG signals analysis. (Source: Prof. Jorge 
J. Palacios-Venegas)

References Solution (s)
Publish 
year Application

[134] Sigmoid (AE) 20 individual AE’s. Avg of 
AE’s, 5 OUT

2016 Automatic sleep stage 
scoring

[114] CNN, 1 conv (ReLU), 1 FC (Softmax), 4 
OUT

2017 Bulling incidences 
identification

[136] Hybrid CNN-RNN, 4 conv, 2 RNN layers, 1 
FC, T OUT, ReLU (conv), Softmax (FC)

2017 Automatic sleep stage 
scoring from raw EEG

[95] CNN Hilbert-Huang transform 2018 EEG signals 
preprocessing

[123] Hybrid CNN-RNN, 4 conv, 2 RNN layers, 1 
FC, 2 OUT. ReLU (conv), Softmax (FC)

2018 Sleep stage classification

[91] Deep Convolutional Neural Network 2020 Epilepsy EEG diagnosis
[85] Convolutional NN (6 layers), Pooling (4 

layers), Dropout (4 layers), Dense Layer 
(Softmax), ReLU (conv)

2018 Biometric identification

[126] Cross-correlation values and Mahalanobis 
distance

2018 Biometric identification

[124] Entropy, SVM, K-Nearest Neighbors (KNN) 2019 Alzheimer’s diagnosis
[113] CNN (7 layers), Flatten, FC, Softmax, 2020 Speech emotion 

recognition
[109] RNN-LSTM, 2 LSTM layers, 2 OUT, 2021 Motor imagery 

classification
[86] CNN (6 layers), MaxPol (4 layers), Dropout 

(4 Layers), FC (2 layers), Softmax (1 layer)
2021 Biometric identification

[161] Decision tree (DT), Naïve Bayes (NB), 
SVM, KNN, ANN,

2021 Evaluation of 
Neurofeedback training

[150] Not specified, 2021 Neuroprosthesis for 
decoding speech

NFB spatial domain allowing a more precise work, overcoming some of the spacial 
resolution restrictions of the traditional NFB EEG recordings. Developing a new 
generation of integral solutions in temporal and spatial domains with NFB process, 
that could be used with magnetoencephalography (MEG) devices in the emerging 
field of MEG-Biofeedback (MEG-B). It also must be considered the developing for 
regular use of the minimally invasive NFB brain computer interfaces (subcutane-
ous) to be used with autonomy, for a constant neuromodulation with applications to 
prevalent neurologic and neuropsychiatric conditions: Alzheimer’s, Parkinson’s, 
Depression, Autistic Spectrum Disorders or Epilepsy. Conditions requiring constant 
attention. The aim of this line of work is to develop a less vulnerable, precise and 
diverse generation of neurofeedback and neuromodulation systems based in Deep 
Learning solutions.
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