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Chapter 11
Biomedical Signal Processing 
for Automated Detection of Sleep Arousals 
Based on Multi-Physiological Signals 
with Ensemble Learning Methods

Navabeh Sadat Jalili Shani and Mohammad Hasan Moradi

Abstract Sleep-related breathing disorders such as sleep apnea and hypopnea are 
potentially serious disorders and can be the cause of a wide range of physical and 
mental health problems and also reduce the quality of life. Therefore, sleep studies 
are essential for identifying and treating these sleep disorders. This study aims to 
detect arousal regions caused by sleep non-apnea and non-hypopnea in polysom-
nography signals by using ensemble techniques. The dataset used in this study is 
related to Polysomnography measurement channels of 100 patients provided in the 
2018 Physionet challenge database. The data was split into small epochs with 50% 
overlap. Several different features were extracted from each epoch in the time and 
frequency domain. Wilcoxon rank-sum test and Genetic Algorithm optimization 
algorithm were used to find a set of features with the most discriminative informa-
tion. A technique for data augmentation was used to tackle the unbalanced data 
problem. For final classification, linear discriminant analysis, logistic regression, 
bagged tree from the bagging technique, and LightGBM from the boosting method 
were applied. Based on the Physionet Challenge indices, the area under the receiver 
operating characteristic curve (AUROC), and the area under the precision-recall 
curve (AUPRC), we compared the performance of classifiers on this dataset. The 
highest performance on 20 test subjects was 0.497 for AUPRC and 0.878 
for AUROC.
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11.1  Introduction

The human body spends a third of its life sleeping, which is a complex process 
among living beings [1]. During sleep, fatigue is eliminated and mental and physi-
cal performance is restored [2]. During sleep, changes occur in many physiological 
functions of the body. There are also variations in these changes during different 
stages of sleep. The changes in physiological functions during sleep have led to 
associated variations in electrophysiological signals, which form the basis for 
research in sleep medicine [2].

Sleep disorders are a widespread problem in society today. Decreased conscious-
ness due to sleep disorders has a negative impact on patients’ lives [2]. Accurately 
diagnosing sleep disorders is difficult because of their clinical similarities. With the 
ability to record biosignals, the assessment of sleep quality became more accurate. 
To assess sleep quality, a variety of medical signals are used, including electroen-
cephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), and elec-
trooculogram (EOG), which the EEG signal is the most useful in evaluating sleep. 
These signals are called polysomnographic recordings [3, 4].

As defined by the American Sleep Disorders Association (ASDA) in 1992, 
arousal in sleep is a sudden increase in the frequency of the EEG signal that lasts at 
least 3 seconds and less than 15 seconds, and the person has been asleep for at least 
10 seconds before it occurs [5]. A handbook of new sleep staging guidelines and 
respiratory, cardiac, and motor events was published in 2004 by the American 
Academy of Sleep Medicine (AASM). Accordingly, arousals can be defined as the 
transition between sleep and wakefulness, or the transition between REM and 
NREM stages. Brain arousals are defined as a sudden change in EEG frequency, 
including alpha, theta, or frequencies above 16 Hz, typically lasting between 3 and 
15 seconds and at least 3 seconds. An important feature of arousal is unexpected 
changes in brainwave activity patterns. Arousals are usually observed in the second 
NREM stage or REM stage. Also, during the presence of arousals in the REM stage, 
the amplitude of the EMG signal increases further, which lasts at least 1  sec-
ond [6, 7].

One of the leading causes of drowsiness during the day is the appearance of 
arousals that change the natural structure of sleep and cause sleep deprivation. This 
process is directly related to the development of sleep disorders in the individual 
[8]. As mentioned, these disorders can have significant effects on quality of life and 
daily cognitive function, including memory, learning, and concentration [9]. As a 
result, identifying EEG arousals in the polysomnographic recording is a good indi-
cator for measuring sleep quality. The most important disorders that can cause 
arousals in sleep are sleep apnea, hypopnea, bruxism, snoring, and respiratory 
effort-related arousals (RERAs).

Visual examination of the signals recorded in polysomnography to diagnose the 
presence of arousals by physicians and specialists is a time-consuming and tedious 
task; in addition, Judging these events is also completely subjective and varies sig-
nificantly from expert to expert [10]. Therefore, finding algorithms for automatic 
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detection of these disorders based on signals helps physicians in diagnosing 
them [11].

Diagnosis of arousal can also affect sleep staging. Diagnosis of arousal can also 
affect sleep staging. According to AASM rules, once an arousal region is detected, 
it may mean that it is best to rank the next 30-second sleep window as another 
(lighter) sleep stage unless the next 30-second window features maintain the current 
sleep stage (for example, the presence of rapid eye movements in the REM stage or 
the presence of sleep spindles and k complex in the N2 stage) [12].

Two types of factors can cause sleep arousal. The first cause is apnea and hypop-
nea disorders such as obstructive and mixed apneas, central apneas, and hypopneas. 
Therefore, many studies have been performed to diagnose these arousals [3, 13–15]. 
Another is arousal related to disorders other than apnea and hypopnea, which 
include arousal caused by RERA, bruxism, snoring, etc. These arousals, which are 
very important to diagnose, are relatively hidden in polysomnography and are dif-
ficult to detect [16]. RERA is a respiratory disorder characterized by an obstructive 
decrease in airflow due to narrowing the upper airways and lasts for more than 
10 seconds. RERA does not reach the threshold for apnea and hypopnea, i.e., it is 
associated with less reduction in airflow and little or no hypoxia. In plethysmogra-
phy or polysomnography, respiratory cycles are recorded from a decrease or increase 
in respiratory effort, which leads to the continuous appearance of arousals on physi-
ological signals and ends before the criteria for apnea or hypopnea are met [17, 18]. 
This disorder can lead to serious consequences, such as loss of attention while driv-
ing [19]. Diagnosing sleep apnea with disorders other than apnea and hypopnea is a 
challenge. Therefore, our aim in this study focused on the automatic detection of 
arousal regions due to non-apnea disorders, especially RERA, which is 
more common.

There have been many studies in the field of arousal detection. There have been 
three methods used to develop an algorithm for detecting sleep disorders automati-
cally in these studies. Most of these studies have proposed neural network-based 
algorithms. A group of studies [20–24] first considered the raw data as input of a 
neural network after making the necessary preprocessing on them, and another 
group first extracted a set of valuable features from the data after the necessary pre-
processing to reduce data dimension and then trained their designed deep neural 
network with the extracted features [3, 25]. Another group of studies has used basic 
machine learning algorithms such as logistic regression, linear differential analysis 
[26], and support vector machine.

The remainder of this chapter is organized as follows: Section 11.2 discusses 
polysomnography. Section 11.3 is dedicated to sleep stages. Section 11.4 will cover 
the method. Results are reported in Sect. 11.5. Finally, the last section is the 
conclusion.
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11.2  Polysomnography

Polysomnography is a nocturnal test during several hours of sleep in which different 
measurement techniques are used to simultaneously and continuously record neuro-
physiological, cardio-respiratory, and other physiological and physical parame-
ters [27].

This method uses mentioned medical signals, pulse oximetry, airflow, and respi-
ratory effort to provide data on physiological changes in many different systems of 
the body that are affected by sleep and therefore may not be present at waking time 
to assess the essential causes of sleep-related disorders. Polysomnographic record-
ings are divided into 30-second segments and are interpreted based on expert opin-
ion and published sleep guidelines. Fig. 11.1 shows a segment of airflow and SaO2 
signals. The patient has an apnea disorder in the green portion of the signal. When 
apnea occurs, the amplitude of the SaO2 signal and the airflow are reduced by more 
than 90%. Both signals are characterized by this reduction when apnea occurs. The 
part of the signal marked in blue is related to RERA arousal, and the decrease in 
airflow is less severe than in apnea.

11.2.1  EEG

The EEG signal is the main basis of the objective diagnosis of awakening, arousals, 
and sleep stages during the sleep study. In most cases, the brain waves are irregular, 
and there is no general pattern, but specific patterns appear in some cases, such as 
epilepsy. The EEG also contains waves with various frequency ranges, the presence 
of which in different brain regions corresponds to a specific activity or state. 
Rhythms in the EEG signal that include Delta, Theta, Alpha, Beta, and Gamma 
waves, as well as particular patterns in this signal that include Vertex sharp wave or 
V-waves, slow waves, K-complexes, and sleep spindles, are used to distinguish 
between waking, sleeping, classifying stages and disorders of sleep [6]. Table 11.1 
shows the rhythms in the EEG signal. Figure 11.2 also shows these rhythms.
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Fig. 11.1 A segment of airflow and SaO2 signals. The green parts are related to apnea arousal and 
the blue parts are related to RERA arousal
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Table 11.1 The EEG rhythm specifications [28]

Delta 0.1–4 Hz In adults, found in the frontal region

Theta 4–8 Hz High amplitude waves in comparison to other EEG 
sub-bands

Alpha 8–12 Hz Always seen in frontal and parietal
Beta Above 12 Hz During deep relaxation and while focusing
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Fig. 11.2 Rhythms in EEG

11.2.1.1  Special Patterns in EEG

Identifying three specific patterns in sleep is very important in analyzing EEG 
recorded during sleep. Sharp vertex wave is one of the most important patterns of 
NREM sleep that are most often seen in stage N1 and sometimes in stage N2. They 
are seen in the EEG as quite distinctive, seven-shaped waves with peaks in the 
amplitude of about 100 to 200 microvolts [29]. Sleep spindles are a sequence of 
oscillations in the amplitude of the EEG signal, usually lasting between 0.5 and 
3 seconds, and the frequency of these changes varies between 11 and 16 Hz [30]. 
K-complexes are complicated seven-shaped patterns of sleep waves that indicate the 
transition into a deeper stage of sleep. This pattern is seen as a sharp negative wave 
with a high amplitude followed by a low slope wave. K-complexes have a duration 
criterion that must at least last 0.5 seconds. K-complexes may include other events 
like periodic movements of the limbs in sleep, apnea, or appear with arousal (Alpha 
rhythm in EEG) [6].
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11.3  Sleep Stage

REM and NREM are the two main stages of sleep. NREM sleep is also divided into 
four stages. Stages 1 and 2 are called the light stage of sleep, and stages 3 and 4 are 
called the deep stage or slow-wave sleep. There are four or five sleep cycles during 
each night, each consisting of one part of NREM sleep followed by REM sleep [31]. 
The first stage is wakefulness which may last 5 to 10 minutes. At this stage, the 
brain is between sleep and wake state. The predominant brain waves at this stage are 
Alpha waves. In the EOG signal at this stage, blinking and rapid movements are 
observed. Stage N1, or somnolence, is another stage of NREM sleep. At this stage, 
called light sleep, EEG activity is fast with low voltage. This stage is defined when 
Theta waves (4 to 7 Hz) form more than 15 seconds (more than half) of the epoch. 
The next stage is N2, also known as sigma, and the sleep spindle. This stage is in the 
middle of sleep and, at first, takes about 20 minutes. At this stage, sleep enters a 
deeper level, and heart rate and the body temperature decrease. Next is stage N3, 
which is also called deep sleep, sleep with slow waves, or delta. At this stage, mus-
cle and brain activities decrease. The last stage is REM which is also called active 
or paradoxical sleep. At this stage, eyes are closed but have a rapid movement. In 
this state, the brain waves show an activity similar to the state of awakening. 
Dreaming is at this stage of sleep, and this stage occurs in adults between 90 and 
120 minutes after the beginning of sleep [6, 32].

11.4  Methodology

In this section, we discussed the ensemble learning algorithms used in this study, the 
performance evaluation criteria, the dataset, their preprocessing process, extracted 
features, and methods for selecting the effective features.

11.4.1  Ensemble Learning

An ensemble learning algorithm is a machine learning method that incorporates a 
number of simple and weak algorithms to form a strong learning algorithm with 
higher accuracy. This type of learning is one of the best ways to maintain the bal-
ance between variance and bias. An effective model should be able to balance these 
two types of errors. Ensemble methods can be mainly divided into three groups: 
boosting, bagging, and stacking. In the present study, we use the random forest and 
XGboost algorithms, which apply “bagging” and “boosting” methods, respectively.
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11.4.1.1  Bootstrap Aggregation (Bagging)

The bagging method creates algorithms parallel to one another. Several independent 
models are generated, and their predictions are averaged. The variance of the com-
bined base models is reduced in proportion to the number of models or samples. In 
addition, the independence of the basic learning models significantly reduces the 
error through the application of averaging.

Bagging is used when the goal is to variance reduction of the decision tree clas-
sifier without impacting bias. The reduction of variance leads to increased accuracy 
and avoidance of overfitting, which is a major challenge in many predictive models. 
Multiple subsets of training instances are randomly created with replacement, and 
the data from each subset is used to learn the corresponding decision tree. In this 
way, a number of different models are eventually created. The average of all the 
predictions from the individual trees is the final result, which performs better than a 
single decision tree classifier.

11.4.1.1.1 Random Forest (RF)

RF is based on the ensemble learning algorithm and involves a large amount of clas-
sification and regression trees (CARTs). The core of the RF algorithm relies on the 
concept of ‘bagging’ and selecting features randomly. At the beginning of the RF 
algorithm, a bootstrap sample is taken from the training data. In each CART node, 
features are randomly selected, and feature subsets are searched to find the optimal 
split. An unpruned CART is formed when this process is repeated at each node. 
Additionally, for evaluating the model performance and estimating feature impor-
tance, bootstrap sample data - known as out-of-bag sample (OOB) – can be used as 
a test set. Repeating this process for each tree will result in a fully grown forest.

11.4.1.2  Boosting

Boosting is a sequential ensemble method in which the weight of each input is 
modified according to the latest classification. In boosting, when an input is mis-
classified by one hypothesis, its weight is increased, so the new hypothesis is more 
likely to be classified correctly. The goal at each step is to improve the prediction 
accuracy over the previous tree’s performance. In boosting, like bagging, a single 
algorithm is used as the basic learning model, and in the process, weak learning 
models become a model with more robust performance. Boosting comes in many 
forms, including Adaboost, GBDT, XGBoost, and LightGBM.  In this study, the 
LightGBM algorithm, the most recent one, is used, which is explained in the 
following.
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11.4.1.2.1 Gradient Boosting Decision Tree (GBDT)

Another ensemble learning algorithm that uses several decision trees as base learn-
ers and a gradient descent optimization algorithm to calculate the error of its previ-
ous models is GBDT. Newly added decision trees increase the emphasis on samples 
misclassified by the previous decision tree.

In the GBDT algorithm, the residual of the previous decision tree is intended as 
input to the following decision trees. Then, the new decision tree adds to minimize 
the residual so that each time the iteration is repeated, the cost decreases as it pro-
gresses in the negative gradient direction. All decision tree results are then used to 
determine the prediction result.

Supposing the data samples are represented x ,yi i� �
�
m
i 1

.

Which xi is data value and li is the predicted label. The GBDT algorithm is 
explained as the follows.

First the initial constant value θ is obtained from the eq. (11.2).
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Where L(yi, θ) is the loss function.
Based on the gradient, the residual is calculated as follows:
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Where n = 1, 2, …, N indicates the number of iterations.
The initial model T (xi; αn) is determined by using the sample data, and αn is 

computed based on the least square method as follows:
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Based on the loss function minimization, the weight of the model is computed as 
follows:
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The model can be written as follows:

 
F x F x T x ;n n n i n� � � � � � � ��1 � �

 (11.6)

This loop continues until the number of iterations is defined or until the convergence 
is [33].
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11.4.1.2.2 Light Gradient Boosting Machine (LightGBM)

LightGBM is another ensemble algorithm that is designed by Microsoft using the 
GBDT framework. It is intended to improve computation performance and thus 
provide a more accurate solution to the problems associated with handling big data 
in prediction. To calculate the information gain of all possible split points, conven-
tional GBDT implementations must examine all sample data for each feature, which 
takes much time when dealing with big data (both for the number of features and 
data size). Thus, computational complexions would be proportional to the number 
of features and samples. In LightGBM, a histogram-based algorithm and growth 
strategy through the leaves of trees are adopted with maximum depth size to enhance 
training speed and optimize memory utilization.

In order to address these limitations and further improvement of model effi-
ciency, the LightGBM algorithm presents Gradient-based One-Side Sampling 
(GOSS) and Exclusive Feature Bundling (EFB).

 (a) Gradient-based one-side sampling

In Adaboost, a sample’s weight works as a good indicator of the importance of data 
samples. However, in GBDT, there is no local weight for the samples, so the pro-
posed sampling methods for Adaboost cannot be applied directly. Gradient for each 
sample in GBDT provides practical information for data sampling. In other words, 
a sample with a small gradient had a small training error and had been well trained. 
The simple idea is to put aside data samples with small gradients. Nevertheless, it 
changes the data distribution and negatively affects the accuracy of the trained 
model. The Gradient-based One-Side Sampling (GOSS) method was developed to 
minimize this problem and maintain the accuracy of trained decision trees while 
reducing data samples.

GOSS maintains all samples with large gradients and takes randomly the ones 
with small gradients. GOSS selects the top a × 100% samples after sorting the data 
samples based on the absolute value of their gradients. Then it randomly selects 
b × 100% of samples from the remaining data. Then, for amplifying the sampled 

data with small gradients, GOSS uses a constant 
1− a
b

 for computing the informa-

tion gain to compensate for the effect of data distribution. In this way, it is possible 
to focus more on the data that has not been trained yet, without any changes to the 
original data distribution. More details about the theory of GOSS can be found 
in [34].

 (b) Exclusive Feature Bundling

The purpose of the EFB method is to effectively reduce the number of features. 
In general, high-dimensional data are sparse. By considering the sparse nature of 
the feature space, we can devise a method of reducing the number of features almost 
without losing any information. Particularly, many features in sparse feature space 
are mutually exclusive; that is, they cannot take nonzero values simultaneously. 
Exclusive features can be grouped into a single feature (an exclusive feature bun-
dle). By a carefully designed feature scanning algorithm, identical feature 
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histograms can be constructed from these feature bundles as the same histograms 
for single features. Thus, the histogram structure complexity from the number of 
features multiplied by the number of samples changes to the number of feature 
bundles multiplied by the number of samples, in which the number of feature bun-
dles is much less than the number of features alone. In this way, the speed of GBDT 
training can be significantly increased without compromising accuracy. To do this 
by turning the ranking problem into a graph coloring process (adding edges for both 
non- exclusive features and features as vertices) and its solution is designed by 
another algorithm with a fixed approximation ratio of an effective algorithm.

Compared to the level-wise growth run in the XGBoost algorithm, the limited 
growth process through leaves used by the LightGBM algorithm is more efficient; 
because it is distributed only through a leaf with the highest information gain, and 
as a result, it achieves much better accuracy than other boosting algorithms, and the 
limited depth can effectively prevent overfitting. As mentioned, this algorithm is 
surprisingly fast; hence the word “light” is dedicated to it [34]. Studies have indi-
cated that this algorithm can make the training process 20 times faster [35].

11.4.2  Evaluating Performance

For evaluating the performance of the implemented algorithms, we used two mea-
surement criteria: the Area Under the Receiver Operating characteristic Curve 
(AUROC) and the Area Under the Precision-Recall Curves (AUPRC).

AUROC indicates the ability of a model to classify samples accurately. A ROC 
curve represents the exchange between true positive rate (TPR) and false positive 
rate (FPR) at a range of decision thresholds. In ROC curves, the decision threshold 
is implicit. There is no axis for decision thresholds, and AUROC is the area under 
the ROC curve. On the ROC curve, the x-axis represents the FPR, and the y-axis 
represents the TPR. AUROC for a specified curve is simply the area below it. The 
lowest AUROC value is 0.5, and the highest is 1.

The AUPRC criterion is used to evaluate model performance when classes are 
highly unbalanced and positive samples are essential. The precision-recall curve 
illustrates the relationship between precision and recall for different thresholds. 
Having a large area under the curve indicates high precision and recall of the model, 
where high precision is related to a low false positive rate (FPR) and high recall is 
related to a low false negative rate (FNR). A high value for both indicates that the 
classifier returns correct (high precision) and the most positive (high recall) results 
[36]. The area under the PR curve is known as the AUPRC. PR curves represent the 
tradeoff between accuracy and sensitivity over a range of decision thresholds. A 
recall is also known as a true positive rate (TPR). As a result, both AUPRC and 
AUROC use TPR.

Unlike the ROC curve where the y-axis represents recall, the x-axis represents 
the FPR, the x-axis represents the PR-recall curve, and the y-axis represents 
precision.
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One of the features of the PR curve is that it does not use TNs in any way. 
According to the definitions of precision and recall, they are calculated as follows:

 

Recall TPR
True Positives TP

True Positives TP False Negativ
� �

� �
� � � ees FN� �  (11.7)

The recall of a classifier can be defined as the ability to correctly identify all positive 
samples.

 

Precision
True Positives TP

TruePositives TP False Positive
�

� �
� � � ss FP� �  (11.8)

A classifier’s precision is its ability to avoid mislabeling a negative sample as 
positive.

In PR curves, there are no TNs, so AUPRC will not be affected by TNs. If 
AUPRC is used for datasets with 95% negative and 5% positive samples, it focuses 
on how 5% of the samples are treated. If the model performs well in detecting posi-
tive samples, the AUPRC will be high; if not, it will be low. The AUPRC is therefore 
most useful when its baseline is the lowest because it focuses on the smallest frac-
tion of positive samples possible across large datasets with large numbers of 
TNs [37].

11.4.3  Data Description

As mentioned earlier, the current study aimed to provide a method for automatic 
detection of arousals related to non-apnea sleep disorders using polysomnographic 
signals with ensemble learning. In this study, we used Physionet Challenge 2018 
database [16].

A total of 1983 polysomnographic data were provided, which included 994 sub-
jects for training and 989 subjects for the test. Polysomnography in these data is 
recorded according to the AASM standard. A total of 13 signals are provided, 
including:

• six EEG channels; F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1, based 
on the international 10–20 system;

• one left eye EOG channel, referenced to the right ear EEG electrode (M2);
• Three EMG channels, one on the chin and two channels of breathing signal from 

the abdomen and chest;
• one airflow channel;
• one oxygen saturation channel (SaO2);
• And one ECG channel located below the right clavicle close to the sternum and 

across the left lateral chest wall
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All signals were measured at a sampling frequency of 200 Hz except SaO2. SaO2 
was upsampled to 200 Hz to synchronize samples using a sample and hold. Also, all 
signals are measured in microvolts.

The specialists labeled the training data in two different ways in the data source. 
In the first state, the samples were labeled into three classes −1, 0, and + 1. In these 
three classes:

• Label +1 is related to non-apnea and non-hypopnea arousals
• Label 0 is related to normal sleep
• Label −1 is related to apnea and hypopnea arousals

In the second state, the labeling has been done more precisely, and types of arousals 
related to each region are also determined. The sleep stages were labeled too.

According to the available data, arousals that were considered in this study are 
classified as spontaneous arousals, RERA, hypoventilation, bruxisms, hypopneas, 
snores, apneas (central, obstructive and mixed), vocalizations, periodic leg move-
ments, Cheyne-Stokes breathing or partial airway obstructions.

The proposed method was evaluated using recordings belonging to 100 subjects 
from the training group. 80% of this data, which includes 80 subjects, have been 
considered for the training stage, and 20%, including 20 subjects, have been consid-
ered for the test stage [16].

11.4.4  Pre-Processing

Before extracting the features from the data, the signals were preprocessed to 
remove noise.

11.4.4.1  EEG and EOG Signals

Due to the non-invasive nature of EEG signals, the distance between the signal 
source and the recording electrode, as well as the low amplitude of this signal, add-
ing unwanted signals can reduce the signal to noise ratio and cause many problems 
in the analysis of these signals; as a result, it is necessary to preprocess them before 
analyzing.

Both EEG and EOG signals are first preprocessed using a fourth-order low-pass 
Butterworth filter with a cut-off frequency of 42  Hz and then a fourth-order 
Butterworth high-pass filter with a cut-off frequency of 1 Hz.

Although EEGs are typically interpreted as recording brain activity, other electri-
cal activities are also captured. Extra activities tend to be harmful artifacts, whether 
they are physiological, like EOG, EMG, or ECG, or extra artifacts like power line 
interference. Frontal electrodes are mainly responsible for recording EOG measure-
ments, however they can also affect other electrodes [38]. Furthermore, due to the 
volume conduction effect, both effects of eye activity and EEG activity are diffused 
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to the surface of the head and recorded by electrodes. EOGs usually have a greater 
amplitude than EEGs. However, due to its similar frequency to EEG signals, remov-
ing this artifact is one of the most critical problems in studying brain activity [39].

The power spectrum of some of these artifacts created during recording is differ-
ent from the power spectrum of the EEG, making its removal easy with an IIR filter. 
Even so, ECG and EOG, whose power overlaps significantly with EEG, are not 
easily removed and require specialized algorithms [40].

For this purpose, we used the adaptive filter, which is a successful method in the 
non-stationary signals processing field. This method uses raw EEG signals as inputs 
and EOG and ECG artifacts as reference signals. Pure EEG can be obtained by 
reducing the filtered output. The ability to adapt the parameters of an adaptive filter 
based on the minimization of mean square error (MSE) is between the output signal 
of the system and the desired signal. The recursive least squares (RLS) and the least 
mean square (LMS) are commonly used algorithms of adaptive filter algorithms. 
The advantages of the RLS algorithm over the LMS are its stability and fast conver-
gence speed. Therefore, we used the RLS algorithm to adjust the filter coefficients 
to ensure that the reference signal has the most appropriate specifications for these 
artifacts.

To do so, we used the method proposed in [38]. In order to detect the additional 
presence of EOG and ECG, the filtered EEG, EOG, and ECG signals after being 
divided into segments with 2048 samples, the cross-correlation between each EEG 
segment with the respective EOG and ECG sections has been calculated. Adaptive 
RLS filters are used when the cross-correlation coefficients between EEG-EOG or 
EEG-ECG are greater than two thresholds of 0.5 and 0.2, respectively. If the thresh-
old values for the cross-correlation coefficients are not met, the corresponding EEG 
part is transferred without changing the output. In Fig. 11.3 More details can be 
found in [38].

11.4.4.2  EMG Signal

After preprocessing with a Butterworth low-pass filter with a cut-off frequency of 
70 Hz, the EMG signals were then passed through a Butterworth high-pass filter 
with a cut-off frequency of 10 Hz. Then, an adaptive filter was applied to remove 
ECG artifacts.

11.4.4.3  ECG Signal

This signal is also passed through a fourth-order Butterworth low-pass filter, with a 
cut-off frequency of 25 Hz, and a high-pass filter with a cut-off frequency of 0.1 Hz 
with the same specifications. Fig. 11.4 shows the ECG signal before and after the 
filtering.
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Fig. 11.3 One segment of (1) EOG signal, (2) EEG after the removal of EOG by RLS method and 
(3) EOG impregnated EEG

11.4.4.4  Airflow Signal

In order to preprocess this signal, in the first step, the DC value is removed from the 
signal. Thus, a window of 20,000 samples is considered. The median of the window 
is subtracted from the total in the length of the signal. In the next step, a fourth-order 
low-pass filter with a cut-off frequency of 5 Hz is applied to the signal. Fig. 11.5 
shows one segment of the airflow signal before and after the filtering.

Any extra preprocessing step applied to SaO2 signal.

11.4.4.5  Signal Segmentation

One of the most critical early steps in biosignal processing is to segment the signals 
into smaller and relatively stationary segments. Each part must have nearly the same 
statistical characteristics, such as amplitude and frequency. In this study, first, the 
data are normalized using mean and standard deviation. Then, to divide the data into 
shorter epochs, we take some steps to choose the appropriate epoch size, and then 
labeling was done on each epoch.

Since arousals are the minority class, we first extracted the lengths of the signal 
intervals in which the arousal occurred continuously in those areas. First, the mini-
mum and maximum arousal intervals were calculated for each individual to deter-
mine the most appropriate window size. About 95% of these intervals contain at 
least 1750 samples and in terms of time is 8.75 seconds. As a result of applying an 
adaptive filter after windowing, 149 samples were added to this range at the begin-
ning and end to reduce distortion of the labeled signal. It will also be helpful for 
applying the hamming window to extract the frequency properties.

After analyzing the minimum arousal interval lengths of non-apnea among 994 
patients, we realized that forty-nine patients had no non-apnea/hypopnea arousals, 
and no sample labeled +1 was observed in their data. We did not include these 
people in the training phase.

Therefore, each biosignal was segmented into an epoch with 2048 samples with 
50% overlapping to eliminate sharp transitions between segments in such a way that 
1750 samples in the middle of each segment must have the same label, and the 
whole window is considers to have that label.
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Fig. 11.4 A segment of (1) the noisy and (2) filtered ECG signal.

Fig. 11.5 A segment of (1) the noisy and (2) filtered airflow signal.

11.4.4.6  Labeling Epochs

The following were considered non-apnea arousals:

• In the period of two seconds before and ten seconds after a RERA arousal,
• A period of 2 seconds before a non-RERA, non-apnea arousal happens, up to 

2 seconds after it ends [16].

In this study, we consider segmentation in the exact areas of arousal in the signals. 
In other words, the extra samples labeled at the beginning and end of arousal are not 
considered and are labeled 0 (Except for the 149 samples described above).

11.4.5  Feature Extraction

A detailed discussion of all the features that are extracted from signals is provided 
in this section.

11.4.5.1  Features Extracted from EEG Signals

EEG signals can provide helpful information about Sleep-related breathing disor-
ders. This signal is, in fact, one of the most critical signals in diagnosing sleep- 
related breathing disorder [41]. Different features are extracted from each fragment 
of the preprocessed and segmented EEG signals, generally divided into the tempo-
ral, frequency, and time-scale domains.

Statistical features are some of the most common ones that can be extracted from 
the EEG. In this study we extracted median, mean, zero-crossing rate (ZCR), stan-
dard deviation (SD), variance, kurtosis, skewness, Root Mean Square (RMS), cor-
relation between channels and three Hjorth parameters as time domain features.
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The Activity parameter is the power of the signal (which is filtered wideband), 
the Mobility parameter is the mean frequency, and the Complexity parameter is the 
frequency change [42]. Studies show that changes in power along the EEG fre-
quency bands provide information about arousal detection [43].

11.4.5.1.1 Frequency Features

As frequency features, the power spectral density estimate using the Welch Method 
with a hamming window with a length of about 2 seconds or 256 samples has been 
used to extract power from different EEG frequency bands. The relative and abso-
lute power of the delta, theta, alpha, and beta bands are extracted from each seg-
ment. In addition, the power ratio of each sub-band relative to the others is also 
considered a feature.

11.4.5.1.2 Time-Frequency Features

Then the Deabeuchies order 8 Discrete Wavelet Transform (DWT) is used to decom-
pose the signals into five stages. The coefficients obtained from this analysis include 
five detailed coefficients and an approximation coefficient. From these six coeffi-
cients, seven statistical features were extracted: Mean Absolute Value (MAV), vari-
ance, Average Power (AVP), standard deviation, entropy, mean, and skewness.

11.4.5.1.3 Nonlinear Features

Another category is nonlinear features. Because the EEG signal behaves erratically, 
entropy and fractal methods can provide a good indication of the irregularity of the 
signal. In other words, the more non-stationary the behavioral signal, the higher the 
entropy and fractal dimension. As entropy-based features, we extracted Renyi and 
relative spectral entropy that Renyi entropy provides information about the random-
ness of a system numerically and is the generalized Shannon entropy.

 (a) Features based on fractal dimension

A new method for measuring the dimension of irregular shapes was first proposed 
by Mandelbrot [44]. The fractal dimension is a non-linear measure of irregularity. 
As a measure of self-similarity, fractal dimension describes the behavior of random 
signals [45]. In this study, the methods of Katz and Higuchi for calculating the frac-
tal dimension were used. Two algorithms, Higuchi fractal dimension (HFD) and, 
Katz fractal dimension (KFD) are used in this study.

• Katz fractal dimension
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Katz fractal dimensions are shown below for a signal of length n:
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Where T is the segment length (Euclidean distance between consecutive data points) 
and d indicates the maximum distance between the initial and other points [46].

• Higuchi fractal dimension (HFD)

The HFD is a fast, nonlinear method of measuring fractal dimension that gives more 
accurate results. Due to the shift in time series structure over a particular character-
istic frequency, it is challenging to determine power law indices and a characteristic 
time scale based on the power spectrum. With very limited data points, the HFD 
method can still provide stable indices and time scales as a function of the charac-
teristic frequency. Below are the equations of Higuchi’s algorithm.

From a L-length one-dimensional time series x(1), x(2), …, x(l) with equal inter-
vals, form a new time series Xn

k :
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Where r represents the distance between two consecutive time series and n = 1, 
2, …, r is the time value at the beginning of the sequence. For each xn

r , the average 
length of each time series is calculated as follows:
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As a result, the average length of the whole series of discrete time signals is as 
follows:
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The following result can be obtained using logarithmic transformation:
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The Df slope is the Higuchi fractal dimension [47].
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 (b) Detrended Fluctuation Analysis (DFA)

The other feature extracted from the EEG signal is the Features of detrended 
fluctuation analysis (DFA). DFA is one of the nonlinear methods used to determine 
the fractal scalability properties of the EEG signal that is a modified method of root 
mean square for the random walk. A function of scale parameter is used to calculate 
the mean square distance of a signal from a trend line. Usually, there is a power-law 
dependency, and the main parameter is power. The terms related to it are 
explained below.

The time series s(i) represents the EEG signal contribution of Ns samples. In the 
DFA algorithm, first, time series are corrected and integrated. Afterward, the inte-
grated time series s(m)  is divided into separate sections of the same length. The 
length of this section in this study is considered as 1024 samples. The local trend is 
calculated for each section. By subtraction of the local trend sn(m) in each section, 
this trend is removed from the EEG time series s(m). After determining the variation 
of the root square mean of this non-trended time series F(n), it can be expressed as 
follows:
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As a function of section size, F(n) is calculated throughout all time scales to identify 
its dependence on average variations. On a log-log plot, linear relationships demon-
strate fractal scaling. Therefore, the fluctuation is proportional to nα. The parameter 
α, which indicates the variation rate of a complex signal, is the self-similarity or 
autocorrelation parameter. It can be defined as
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By finding the slope of log F(n) - log n line, this can be calculated [48]. The value 
of this parameter is considered a feature.

Similar features as EEG signals are also extracted from the EOG signal.

11.4.5.2  Features Extracted from EMG

From the EMG signal, features such as MAV, AVP, standard deviation, variance, 
95th percentile, skewness, kurtosis, frequency band energy of each four Hz window 
(five frequency bands), waveform length (WL), ZCR, the derivative zero-crossing 
rate, amplitude, and root mean square, are extracted.
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11.4.5.3  Features Extracted from SaO2

From the SaO2 signal, thirteen features are extracted, including mean, standard 
deviation, coefficient of variation, kurtosis, mean, variance, and range. Since arous-
als occur in a few seconds, power spectrum density is calculated using Yule-Walker 
autocorrelation estimation of order 5, and an average frequency range of 0.016–5 Hz 
is also considered a feature. In addition, the percentage of time when SaO2 ≥ 96, 
90 ≤ SaO2 ≤ 96, 80 ≤ SaO2 ≤ 90 and SaO2 < 80 in each window used to determine 
the duration of normal, mild, moderate, and severe oxygen saturation are also 
extracted as features.

11.4.5.4  Features Extracted from Airflow

Features extracted from airflow, similar to other signals, are in the time and fre-
quency domain. These features include statistical features such as respiration rate, 
frequency band energy per 0.25 Hz, average, minimum, maximum, range, variance, 
coefficient of variation, skewness, and kurtosis, and also other features like integral 
of absolute value (IAV), MAV, ZCR, slope sign changes (SSC), WL, RMS. Since 
the airflow is also nonstationary, Welch’s method is used to calculate power spec-
trum density as another feature.

11.4.5.5  Features Extracted from ECG

Features such as heart rate, heart rate variability, low-frequency band-power, and 
the ratio of low-frequency band-power (0.003 to 0.4 Hz) to high-frequency power 
(0.04 to 0.15 Hz) are extracted from ECG signals.

This study considers another set of features associated with signal variation over 
time. Due to the time intervals between the selected segments and their effect, it’s 
necessary to effectively use the features of each segment adjacent. However, consid-
ering the purpose of this study of detecting non-apnea arousals and ineffective 
regions related to apnea, not all selected segments have adjacent necessarily. For 
this reason, we used the ratio between the first half of the segment and its second 
half as new features extracted from each segment in order to consider the course of 
change in each segment. In this way, each segment first is divided into two equal 
parts, and the features considered for each part are extracted separately. Then, the 
ratio of these extracted features in two parts is considered the new feature.

Also, the autocorrelation of the segments is considered. In this way, autocorrela-
tion is calculated from all segments, and then time features are extracted from them.

A total of 1741 features were extracted from 13 channels. Table 11.2 shows the 
number of features extracted from each channel.
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Table 11.2 The number of features that extracted

EEG + EOG Corr of EEGs EMG SaO2 Airflow ECG All

Initial features 1160 15 325 26 114 101 1741

11.4.6  Data Balancing

In order to improve the classifier learning performance and also to apply statistical 
analysis, the data in the two classes need to balance. Due to the significant imbal-
ance, the class needs to choose a method for balancing the data. In this method, the 
classifier is trained each time by a random subset of data. The second approach is 
increasing the minority class by multiplying a little random noise of about 0.1% by 
the feature values of each part of the class labeled 1.

11.4.7  Feature Selection

There are two general types of feature selection methods: individual evaluation and 
subset evaluation. Feature ranking also known as individual evaluation measures the 
relevance of individual features by giving them a score. However, using this 
approach provides a subset of selected features according to a specific method of 
searching. This method compares each selected subset to the previous best by evalu-
ating it based on a specific evaluation criterion.

Besides this category, three general feature selection approaches are filter, wrap-
per, and embedded. In this study, the first two approaches are used.

The filter method does the feature selection process as a preprocessing step with-
out considering any specific classification algorithm and only by ranking features 
based on their importance in the dataset. The advantage of this method is its low 
computational cost and good generalization ability. In this study, we used two meth-
ods of correlation-based feature selection (CFS) and the Wilcoxon rank-sum test 
among the filtering methods [49, 50].

To determine the usefulness of a subset of features, the wrapper method uses a 
learning algorithm as a black box. In order to find practical features to improve the 
performance and reduce the speed of classification, the significance of the extracted 
features at the significance level of 0.01 was evaluated using Wilcoxon statistical 
test. This test was used as the first step in selecting better features, and features with 
were removed from the feature vector. Thus, 320 features out of a total of 1741 
features did not reject the Wilcoxon null hypothesis of having samples of continu-
ous distributions with different medians and so were removed from the feature vector.

Then, the 711 features with higher scores are selected by ranking the features 
using the CFS method, and then by using the genetic algorithm with KNN fitness 
function, which is one of the wrapper methods, the features have increased to 249. 
Table 11.3 shows the number of features selected in each step.
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Based on this table, we can see which of these 13 signals contributes most to 
classifying target class or non-apnea arousals. Among the selected features, the rela-
tive power of different EEG frequency bands and their autocorrelation signals, the 
ratio of the first half spectrum power to the second half of the epoch related to EEG 
and EMG signals, 95th percentile autocorrelation of EEG signals can be named.

11.5  Classification Result

In this section, the results of the classifiers are reported in several steps. First, using 
the features obtained after the CFS, i.e., 711 features, the performance results of the 
two approaches of data reduction and data augmentation in order to balance. Tables 
11.4, 11.5, and 11.6 shows the results of the RF algorithm with 50 trees in both 
steps. RF parameters are selected experimentally. According to the definition of the 
AUPRC criterion, it is necessary to calculate the baseline to compare the value of 
this criterion. The baseline in each step is equal to the total number of epochs with 
label 1 to the total available data. In Table 11.4, the baseline for the test data used 
is 0.114.

Data augmentation improves classification results because all zero-class data 
samples are included every time that model is trained, so the whole dataset is taken 
into account when used to train the model. For this reason, this method has been 
used to balance the data in the following.

In this section, the random forest algorithm is implemented separately on the 
extracted initial features of each of the 13 channels. The results are presented in 
Table 11.5 N is the number of features of each channel.

As a result of measuring the importance of each feature group for the detection 
of non-apnea arousal with the AUPRC criteria, it can be concluded that airflow with 
a score equal to 0.367 is the second most important feature after the EMG signal. 
The best result is related to the EMG signal with AUPRC equal to 0.375. This is 
understandable since more than 90% of the non-apnea arousal regions identified in 
the data include RERA, related to respiration. The best result is related to the EMG 
signal with AUPRC equal to 0.375. The reason for this is understandable since more 
than 90% of the non-apnea arousal regions identified include RERA, which is a 
breath-related disorder. Among the EEG signals, the features of the C3-M2 central 
channel were more important than the other channels, and this channel alone can be 
used to identify arousals.

Table 11.3 The number of features that selected in each stage of feature selection

Selected by EEG + EOG Corr of EEGs EMG SaO2 Airflow ECG Total

Wilcoxon 952 10 286 22 61 90 1421
CFS 496 2 163 4 22 24 711
GA 166 1 60 2 12 8 249
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Table 11.4 Comparing the performance of two approaches of data reduction and data augmentation 
for balancing

Random Forest
Data Reduction Data Augmentation

Recall/ TPR F1-score Recall/ TPR F1-score
Class 0 0.814 0.882 Class 0 0.834 0.894
Class 1 0.750 0.457 Class 1 0.793 0.487
Macro average 0.782 0.669 Macro average 0.801 0.685
Weighted average 0.807 0.834 Weighted average 0.829 0.848
Accuracy 0.806 Accuracy 0.811
Baseline 0.114 Baseline 0.114
AUPRC 0.378 AUPRC 0.436
AUROC 0.834 AUROC 0.860

Table 11.5 The result of applying random forest on each signal

AUROC AUPRC N AUROC AUPRC N

0.789 0.329 99 Chin EMG 0.751 0.277 136 F3-M2
0.740 0.265 92 Abdominal EMG 0.724 0.310 136 F4-M1
0.722 0.298 95 Chest EMG 0.766 0.321 136 C3-M2
0.815 0.375 286 All channels of EMG 0.748 0.309 136 C4-M1
0.802 0.367 61 Airflow 0.742 0.293 136 O1-M2
0.770 0.298 22 SaO2 0.752 0.305 136 O2-M1
0.791 0.252 90 ECG 0.814 0.332 816 All channels of EEG

Table 11.6 Comparison of results for two ensemble algorithms under the same condition

Bagged Tree (RF) LightGBM

Predicted Predicted
Class 0 Class 1 Class 0 Class 1

Actual Class 0 85% 15% Actual Class 0 86% 14%
Class 1 27% 73% Class 1 26% 74%

Recall TPR/ F1-score Recall TPR/ F1-score
Class 0 0.847 0.900 Class 0 0.861 0.909
Class 1 0.724 0.497 Class 1 0.734 0.521
Accuracy 0.832 Accuracy 0.846
Macro average 0.785 0.698 Macro average 0.797 0.715
Weighted average 0.833 0.854 Weighted average 0.847 0.865
AUPRC 0.466 AUPRC 0.496
AUROC 0.865 AUROC 0.877

Figure 11.6 shows the performance of the four classifiers using the AUPRC cri-
teria on each feature category compared to each other. As it turns out, the respiratory 
properties performed best.
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Fig. 11.6 The performance of classifier on different feature set

The mentioned algorithms are trained using 249 features obtained after applying 
the genetic algorithm with the five-fold cross-validation method, and the test results 
are given in Tables 11.6 and 11.7. The baseline here is about 0.18.

Figure 11.7 shows the diagrams for two main criteria for measuring performance 
in this study, AUPRC, and AUROC.  As can be seen, in these diagrams and the 
results above, the ensemble algorithms, LightGBM of boosting category, and ran-
dom forest of bagging category, in contrast to the individual algorithms, have a 
significant ability to identify arousal regions. The LightGBM algorithm performed 
better with much higher speeds than the other algorithms.

11.6  Conclusion

Studies show that detecting non-apnea arousal regions has less accuracy than iden-
tifying apnea arousals, and most of the studies have been done to identify apnea. 
The goal of the challenge held by Physionet in 2018, is to identify non-apnea arousal 
regions. In more than 90% of the models presented in this challenge, neural net-
works were used. The best results were obtained using deep neural networks with 
the area under the precision-recall and the area under the precision-recall scores of 
0.93 and 0.54, respectively. However, intelligent feature extraction can still be 
promising, as only four papers in this challenge have applied pattern recognition 
methods using manual feature extraction and reached to the area under the precision- 
recall in the range of 0.21 to 0.29.

In this study, different features of all available signals have been extracted, and 
using ensemble algorithms that have received much attention today, results have 
been obtained that are relatively close to neural network-based methods.
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Table 11.7 Comparison of results for two basic machine learning algorithms under the same 
condition

Linear discriminative Analysis Logistic Regression

Predicted Predicted Predicted
Class 0 Class 1 Class 0 Class 1

Actual Class 0 89% 11% Actual Class 0 90% 10%
Class 1 53% 47% Class 1 49% 51%

Recall TPR/ F1-score Recall TPR/ F1-score
Class 0 0.890 0.908 Class 0 0.903 0.891
Class 1 0.465 0.401 Class 1 0.506 0.448
Accuracy 0.841 Accuracy 0.857
Macro average 0.678 0.654 Macro average 0.704 0.683
Weighted average 0.841 0.850 Weighted average 0.857 0.840
AUPRC 0.310 AUPRC 0.345
AUROC 0.806 AUROC 0.824
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Fig. 11.7 Comparison of PRC and ROC curves
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