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Foreword

The biomedical signal processing landscape has been enriched by recent advances 
in machine learning yielding new trends for non-invasive signal estimation, classi-
fication, prediction, and manipulation. This is the result of the ever-increasing 
global demand for affordable healthcare services. The integration of biomedical 
signal processing and machine learning will have a profound impact on the health-
care scenario around the world. The new technology has the capability to empower 
humankind to solve the challenges the world is facing towards healthcare by having 
better, timely, and cost-effective diagnosis and at the same time reaching out to 
remote parts of the world owing to the non-invasive methods of signal sensing and 
processing.

With the advance in technology, high computation is not a problem. The bio-
medical signals carry rich and diverse physiological information which can be used 
to develop new techniques to aid in the prognosis and diagnosis as well as surveil-
lance and treatment of diseases that human beings are suffering from. The field of 
artificial intelligence (AI) can be found everywhere. A plethora of innovations in AI 
have occurred as the result of ongoing advances in data acquisition, processing 
power, cloud computing infra structure, and machine learning. Combining the sheer 
interest of researchers to pursue research related to biomedical field with the bud-
ding potential of machine learning systems, complex problems can be addressed, 
and this has opened new pathways in healthcare by re-inventing the processes to 
boost productivity and accuracy as well as maximizing efficacy, decreasing time 
spent and resources to focus on customized healthcare.
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The recent advances in signal sensing and processing and its integration with 
machine learning are expected to nurture the biomedical research. Hence, the pur-
pose of this work is to highlight the integration of signal sensing and processing 
with machine learning for high-quality affordable and accessible healthcare to 
everyone.

 

President, Universiti Tunku Abdul Rahman  Ir. Prof. Dato’ Dr. Ewe Hong Tat 
Kampar, Malaysia
18 October 2022

Foreword
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Preface

This book presents the modern technological advancements and revolutions in the 
biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT), 
and machine learning algorithms and architectures has introduced new approaches 
in mobile healthcare. A continuous observation of patients with critical health situ-
ation is required. It allows monitoring of their health status during daily-life activi-
ties such as during sports, walking and sleeping. Grace of modern IoT framework 
and wireless biomedical implants, such as smartphones, smartwatches, and belts, it 
is realizable. Such solutions are currently under development and in testing phases 
by healthcare and governmental institutions, research laboratories and biomedical 
companies. The biomedical signals such as electrocardiogram (ECG), electroen-
cephalogram (EEG), electromyography (EMG), phonocardiogram (PCG), chronic 
obstructive pulmonary (COP) and electrooculography (EoG), photoplethysmogra-
phy (PPG), positron emission tomography (PET), magnetic resonance imaging 
(MRI), and computerized tomography (CT) are non-invasively acquired, measured, 
and processed via the biomedical sensors and gadgets. These signals and images 
represent the activities and conditions of human cardiovascular, neural, vision and 
cerebral systems. Multi-channel sensing of these signals and images with an appro-
priate granularity is required for an effective monitoring and diagnosis. It renders a 
big volume of data, and its analysis is not feasible manually. Therefore, automated 
healthcare systems are in the process of evolution. These systems are mainly based 
on biomedical signals and images acquisition and sensing, preconditioning, features 
extraction, and classification stages. The contemporary biomedical signal sensing, 
preconditioning, features extraction, and intelligent machine and deep learning–
based classification algorithms are described.

Each chapter starts with the importance, problem statement and motivation. A 
self-sufficient description is provided. Therefore, each chapter can be read indepen-
dently by postgraduate students, postdoctoral researchers, engineers and faculty 
members in the fields of biomedical engineering, health sciences, neural engineer-
ing as well as neuropsychology, biomedical image processing, brain computer inter-
action and automated health diagnosis systems.
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In Chap. 1, an overview of non-invasive biomedical signals and images is pre-
sented. A comparison between the invasive and non-invasive procedures is also 
made. The potential applications of non-invasive biomedical signals and images, in 
the biomedical sector, are also presented.

The procedures for collecting biological signals and extracting features are cov-
ered in Chap. 2. It explains the preprocessing and analogue to digital conversion 
concepts. In addition, a variety of potential feature extraction approaches that are 
frequently used by researchers for the biomedical signals are also described.

Chapter 3 shows the use of non-invasive EEG readings to spotlight the cerebral 
activity of depressed individuals. In this framework, the related studies are reviewed. 
The chapter covers the potential EEG signal collecting protocols, augmentation 
algorithms, feature extraction methods (both linear and non-linear) and classi-
fier models.

Chapter 4 describes an automated method for the categorization of motor imag-
ery tasks in the context of brain-comp interface. The proposed approach is an effec-
tive hybridization of the classification, signal decomposition, feature mining and 
dimension reduction. The wavelet decomposition is used for sub-bands extraction. 
A variety of time-frequency features are mined from sub-bands, and dimension 
reduction is attained with the butterfly optimization. The categorization is carried 
out by using the machine learning algorithms. It is mentioned that the outcomes of 
classifier could be used to assist the disabled people by controlling the assistive 
devices.

In Chap. 5, the authors discuss the development and present state of 
electrocardiography- based heart failure screening. In the framework of the 4th gen-
eration of ECG analysis, the clinical practices of utilizing remote ECG recording 
devices, data processing and transformation are covered. The use of contemporary 
machine learning techniques has been highlighted for an automated cardiac system 
anomaly identification.

The authors describe a comparative analysis of two machine learning–based 
classifiers for the hand gestures identification in Chap. 6. The intended surface 
EMG (sEMG) signals are analysed by wavelet decomposition for feature mining. 
Afterwards, the extracted feature set is processed by the support vector machine and 
k-nearest neighbour classifiers. Different measures are used for the performance 
comparison which include F1 score, accuracy, precision and Kappa index.

Chapter 7 gives an overview of machine learning and deep learning techniques 
for classifying the EEG signals in clinical applications. Additionally, two case stud-
ies for the identification of epilepsy and schizophrenia are covered. These studies 
employ a blended deep learning and machine learning classification architecture.

An overview of machine learning and signal processing techniques for the EoG 
signals classification in clinical applications is presented in Chap. 8. The principles 
and practices in the EoG signal acquisition, noise removal, compression, feature 
extraction and classification are covered. It is described that how the EoG signals 
can be used for an automatic identification of eye movements.

Chapter 9 describes a segmentation and classification approach for the PCG sig-
nals. This method uses the peak spectrogram for an effective segmentation of the 
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PCG signals. Subsequently, features of the generated peak spectrograms are 
extracted. Onward, this feature set is processed by the support vector machine and 
convolutional neural network for an automated anomaly detection in the functional-
ity of the cardiovascular system.

The authors have presented an approach for the atopic eczema skin lesions seg-
mentation using deep neural networks in Chap. 10. A fully automated method is 
suggested to segment eczema skin lesions. A five-stage U-Net is trained to perform 
segmentation. The effect of colour space normalization and adaptive light compen-
sation are also examined. The performance is evaluated using multiple measures. 
This method can be used by dermatologists for an augmented diagnosis of Eczema.

Chapter 11 describes an approach for automated detection of sleep arousals by 
processing the multi-physiological signals with ensemble learning algorithms. The 
dataset used in this study is related to polysomnography measurements. Various 
features are extracted from each instance in the time and frequency domains. The 
Wilcoxon rank-sum test and genetic optimization algorithm are used to find a set of 
features with the most discriminative information. A technique for data augmenta-
tion is used to tackle the unbalanced classes problem. The feature set is onward 
processed by the ensemble learning algorithms for detection of sleep arousals.

The author has discussed the progress of deep learning–based solutions, designed 
to control the biofeedback process in Chap. 12. The incorporation of deep learning 
models can fill the actual vacuum of precision in current neurofeedback devices. 
The objective of this research axis is to substitute the current devices and neurofeed-
back procedures with a robust set of deep learning approaches. It can reduce vari-
ability and deliver biofeedback process according to the natural brain waves 
relations and principles and practice.

Chapter 13 describes an approach for the estimations of emotional synchroniza-
tion indices for brain regions using the EEG signal analysis. To investigate the syn-
chronization between various brain regions, a hybrid technique combining empirical 
mode decomposition with wavelet transform is employed. The linear and non-linear 
features are computed to capture various dynamical properties from emotion-based 
multi-channel EEG signals. Then, in order to increase the classification accuracy of 
various emotional states, feature selection is carried out using a statistical analysis. 
The selected features are classified using the k-nearest neighbours algorithm for the 
estimations of emotional synchronization indices.

The authors have presented an approach for the recognition of dementia patients’ 
working memory in Chap. 14. The proposed method uses the automatic indepen-
dent component analysis and wavelet method for EEG signals denoising and analy-
sis. In the next stage, nonlinear entropy features are extracted. A statistical 
examination of the individual performance is conducted using analysis of variance 
to determine the degree of EEG complexity across brain regions. Onward, the non- 
linear local tangent space alignment based dimensionality reduction is performed. 
Finally, the selected feature set is processed by the machine learning algorithms for 
recognition of dementia patients’ working memory.

To the best of the editors’ knowledge, this book is a comprehensive compilation 
on advances in non-invasive biomedical signal sensing and processing with machine 
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and deep learning. We believe that theories, algorithms, realizations, applications, 
approaches and challenges which are presented in this book will have their impact 
and contribution in the design and development of modern and effective healthcare 
systems.

Jeddah, Saudi Arabia  Saeed Mian Qaisar
Kampar, Malaysia  Humaira Nisar
Turku, Finland      Abdulhamit Subasi    

Preface
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Chapter 1
Introduction to Non-Invasive Biomedical 
Signals for Healthcare

Danyal Mahmood, Hannan Naseem Riaz, and Humaira Nisar

Abstract With the advancement of medical science, new healthcare methods have 
been introduced. Biomedical signals have provided us with a deep insight into the 
working of the human body. Invasive biomedical signaling and sensing involve 
inserting sensors inside the human body. Non-invasive biomedical signals such as 
electroencephalogram (EEG), electromyogram (EMG), electrocardiogram (ECG), 
electrooculogram (EOG), phonocardiogram (PCG), and photoplethysmography 
(PPG) can be acquired by placing sensors on the surface of the human body. After 
the acquisition of these biomedical signals, further processing such as artifact 
removal and feature extraction is required to extract vital information about the 
subject’s health and well-being. In addition to conventional signal processing and 
analysis tools, advanced methods that involve machine and deep learning tech-
niques were introduced to extract useful information from these signals. There are 
several applications of non-invasive biomedical signal processing, including moni-
toring, detecting, and estimating physiological and pathological states for diagnosis 
and therapy. For example, detection and monitoring of different types of cancer, 
heart diseases, blood vessel blockage, neurological disorders, etc. In addition, bio-
medical signals are also used in brain control interfaces (BCI), Neurofeedback and 
biofeedback systems to improve the mental and physical health of the subjects.

1.1  Introduction to Biomedical Signals

With the advancement in technology in recent years, the biomedical industry has 
radically grown. Real-time health monitoring is now possible using smart sensing 
technologies. Biomedical signals are the records of physiological events including 
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neural activities, cardiac rhythms, and tissue imaging [1]. Biomedical signals can be 
divided into two categories depending upon the source of energy for measurement, 
active and passive biomedical signals. In active biomedical signals, the source of 
energy for measurement is driven by the subject himself. There are further two types 
of signals in the active category i.e., electrical such as EEG, ECG, etc., and non- 
electrical signals such as blood pressure, temperature, etc. In passive biomedical 
signals, the source of energy for measurement is from outside the subject such as 
X-Ray, MRI, etc. Biomedical signals can also be divided into sub-categories 
depending upon the nature of the signals such as electrical, mechanical, and chemi-
cal biomedical signals. Electrical biomedical signals originate from neural cells 
such as EEG, from muscles such as EMG and ECG, and other sources such as 
EOG.  Like electrical biomedical signals, strong magnetic field from outside the 
subject’s body can also be used to scan different organs of the subject. These scans 
are known as MRI scans. These include motion and displacement signals, pressure 
and tension, blood flow signals, etc. Another category of biomedical signals is the 
chemical signals which measure the chemical change in the subject’s body such as 
PPG, level of glucose, blood oxygen levels, etc. Mechanical biomedical signals 
such as blood pressure and phonocardiogram can also be measured. Furthermore, 
there are acoustic biomedical signals as well such as PCG and respiratory sounds. 
Optical biomedical signals include endoscopy while there are thermal biomedical 
signals as well such as the heatmap of the subject.

In this chapter, the focus will be on electrical and magnetic biomedical signals 
which are recorded by the sensors placed outside the subject’s body. These biomedi-
cal signals are then used for the diagnosis and monitoring and progression of vari-
ous diseases. The improvements in signal processing methods and electronics have 
encouraged the use of biomedical signals for prognosis and diagnosis.

Sensors of different types are used to measure and record biomedical signals. 
Some sensors are implanted or inserted inside the subject to record these signals 
e.g., implanted EEG and endoscopy. While some sensors record these signals from 
outside the subject’s body e.g., MRI, and X-Ray. The recorded signals are used for 
the improving people’s health. Engineers have developed many devices that process 
these signals and present the results in an easy-to-understand way. Heart rate moni-
toring devices have enabled us to examine irregularities in the beating rhythms of 
the heart [2]. Body glucose monitoring devices help diabetic patients to monitor and 
manage their blood sugar levels without any help and supervision from healthcare 
providers. Emotiv MN8 is a wearable device that monitors brain activities to mea-
sure stress and attention.

In this chapter, a brief introduction to important biomedical signals followed by 
their acquisition techniques will be provided. Afterwards, processing and analyzing 
these signals will be discussed followed by the application of these signals for reha-
bilitation such as brain-computer interface (BCI) and neurofeedback & biofeedback 
systems. Finally, a brief conclusion of this chapter will be provided.

D. Mahmood et al.



3

1.2  Invasive and Non-Invasive Procedures

Biomedical signals can be divided into two types depending upon the nature and 
procedure of signal acquisition. In the invasive method of obtaining biomedical 
signals, sensors are inserted inside the human body. In other words, invasive tests 
are performed by penetrating the body using medical tools [3]. On the other hand, 
the non-invasive technique of acquiring biomedical signals does not involve any 
skin breaking. These tests are performed by placing sensors on the surface of the 
human body from outside the skin [4].

Non-invasive methods are much simpler and have low risk. No surgery is required 
for the placement of sensors. Once the sensors are placed, the collected data is pro-
cessed to get the required information. These techniques are cheaper and user- 
friendly and involve low risk which makes them more acceptable to the subject 
instead of invasive techniques. One of the main advantages of using a non-invasive 
method over an invasive method is that, for an invasive method, a professional spe-
cialist is required to perform the procedure. While in the case of non-invasive tech-
niques, scientists have developed many user-friendly devices which can be worn by 
the subject themselves with minimal supervision and the data can be easily 
recorded [5].

Both invasive and non-invasive techniques have some advantages and disadvan-
tages. One of the main disadvantages of non-invasive methods is their low signal-
to- noise ratio (SNR). To overcome this problem, the data is recorded under specific 
conditions to avoid noise and enhanced noise removal procedures are applied before 
using the data for analysis. Non-invasive methods generally yield less information 
rather than invasive techniques. Invasive sensors can be of different types such as 
single electrodes or multi-electrode arrays (MEA) [6]. Depending upon the type of 
the sensor, more precise information can be collected. For example, if the brain 
signals are recorded by inserting sensors inside the brain, the resulting information 
will be much more reliable, precise, and detailed rather than trying to collect the 
same data from outside the scalp of the subject. At the same time, invasive tech-
niques are more laborious and have a higher risk factor.

Invasive methods require trained professionals to insert sensors inside the body 
by operations or by inserting the sensor into a body opening. For example, for bone 
conduction hearing devices, surgery is performed to implant a device inside the skin 
of the subject and for endoscopy, a long tube with a camera is inserted to examine 
the inside of the subject’s body. Similarly, EEG can be collected invasively where 
EEG electrodes are surgically implanted on the surface or inside the brain. On the 
other hand, the non-invasive method includes X-rays, MRI, ECG, EEG, etc. In 
terms of biomedical signaling, EEG is one of the examples, in which the signals can 
be recorded in both invasive and non-invasive ways. The invasive EEG will have 
high spatial resolution and fewer artifacts with more risk while non-invasive EEG 
will have high temporal resolution with more artifacts and less risk.

1 Introduction to Non-Invasive Biomedical Signals for Healthcare



4

1.3  Non-Invasive Biomedical Signals

1.3.1  Electroencephalography (EEG)

EEG is an electrophysiological signal that records brain activity in terms of electri-
cal potentials. It is a non-invasive technique to record the potential differences 
formed by the ionic currents between the brain neurons [7]. In 1875, Richard Canton 
performed the first neurophysiological recordings of animals. In 1924, Hans Berger 
a German psychiatrist recorded the first EEG of human subjects.

To record the EEG signals, the sensors, also known as EEG electrodes, are placed 
over the scalp of the subject at specific locations. Reference electrodes are required 
to record EEG data. EEG data for the required site is then collected as a potential 
difference between the two electrodes. These reference electrodes are generally 
placed beside the ear of the subject. EEG activity is quite small, measured in micro-
volts. The location of EEG electrodes is governed by international standards such as 
10–5, 10–10, and 10–20 systems among which the international 10–20 system of 
electrode placement is most used as shown in Fig. 1.1. This system of electrode 
placement is designed in such a way that the distance between the electrodes is 
either 10% or 20% of the total front-to-back or left-to-right distance of the skull [8].

The human brain is divided into four different lobes based on its location and 
tasks that it performs. The frontal lobe is responsible for concentration, attention, 
working memory, and executive planning. The temporal lobe is responsible for lan-
guage and memory, object recognition, music, and facial recognition. The parietal 
lobe is responsible for problem-solving, attention, and association. The occipital 
lobe controls visual learning and reading [9].

EEG is a complex time-series non-stationary signal which represents the electri-
cal activity of the brain. The EEG signal varies from 0.1 to more than 100 Hz and 
can be decomposed into different frequency bands such as delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz). Each fre-
quency band represents some specific physiological functions. Delta frequency 
band represents sleep, unawareness, deep unconsciousness, and complex 

Fig. 1.1 International 10–20 system of EEG electrodes placement and 14 channel EEG data
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problem-solving abilities of the brain. Theta frequency band represents the deep 
states, creativity, distractibility, anxiety, and depression. Alpha frequency band rep-
resents memory recall, alertness, peacefulness, relaxation, and meditation. The beta 
frequency band represents the thinking, alertness, attention, focus, and excitement 
of the subject. The Gamma frequency band represents the learning, problem- solving 
cognitive capabilities, and mental sharpness of the subject [9].

EEG electrodes are very sensitive and are prone to noise and have low SNR. Due 
to this, the EEG recordings are taken very carefully in silent rooms. Many artifacts 
still manage to appear into the recordings. Filtering and artifact removal techniques 
are utilized to remove such noises from the data. This extra procedure makes the 
EEG system complex and computationally expensive. The main advantage of EEG 
is its high temporal resolution, and the most important limitation of non-invasive 
EEG is its poor spatial resolution. The EEG is recorded non-invasively, by using 
electrodes placed over the scalp, however, the actual brain activity occurs several 
centimeters below the electrodes. This means that the cortical current must travel 
through different resistances including the scalp itself to be detected by the elec-
trode. This causes distortions and noise at the scalp level. Therefore, for non- invasive 
EEG acquisition, source localization is one of the primary steps in which the actual 
source of EEG in the brain is identified based on the surface EEG recording.

Event-related potentials (ERPs), also known as event-related voltage or evoked 
potentials coming from EEG data are time-locked to sensory, motor, and cognitive 
events. ERPs can be used to classify and identify perceptual, memory, and linguistic 
processes. ERPs originate from synchronous activations of the neuronal population 
during some specific task or information processing. The ERPs are usually observed 
by averaging EEG signals. Averaging makes the ERPs less effective to background 
noise in the EEG data and thus it can extract vital information about the event- 
related activity which is otherwise difficult to differentiate in the ongoing EEG 
activity.

The human brain can develop different neurological and physiological diseases. 
Different techniques can be used to modulate EEG signals to enhance cognitive 
performance of subjects. Music can be used to regulate EEG signals to achieve 
calmness and relieve stress [10]. On the other hand, EEG can be used for the diag-
noses of neurological diseases such as epilepsy, Parkinson’s disease, multiple scle-
rosis, and Alzheimer’s disease. The most common use of EEG is to diagnose 
epilepsy [11] in which brain activities become abnormal. This can cause seizures 
and loss of awareness for some time. On the other hand, EEG is also used for diag-
noses and cure of many physiological disorders such as depression, post-traumatic 
stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), and autism. 
Different applications of EEG include but are not limited to diagnosing and check-
ing the status of brain injury, brain infections, tumors, etc. EEG can also be used to 
identify the reason for symptoms such as syncope, memory loss, confusion, or sei-
zures. EEG is also used to diagnose sleep disorders in which the EEG recordings 
must be taken while the subject is sleeping to analyze any disorders.

1 Introduction to Non-Invasive Biomedical Signals for Healthcare
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1.3.2  Magnetoencephalography (MEG)

MEG is a brain imaging technique that measures tiny magnetic fields inside the 
subject’s brain. Superconducting detectors and amplifiers (SQUIDs) are highly sen-
sitive devices that are used to detect magnetic fields of the brain without the emis-
sion of magnetic field or radiation. It generates a magnetic source image (MSI) to 
classify the specific part of the brain that is causing seizures.

Some of the advantages of MEG are its non-invasive nature, sensitivity and accu-
racy, and safety. MEG can also record the brain activities when it is actively func-
tional. MEG can be used to either detect the brain’s impulsive activity like a seizure 
or for mapping motor, sensory areas, memory, vision, and other functions of the 
brain. Due to the high sensitivity of the devices, the imaging is done in a specially 
designed shielded room with a video and intercom system to communicate with the 
subject and technicians. Electrodes are placed over the scalp of the subject while the 
head of the subject will remain in the helmet like MEG scanner. Movement of the 
head during the test may cause noise or artifacts in the recorded image so it is 
important to remain still during the test. While the technician may ask the subject to 
move certain body parts to measure the response in the brain. The sample MEG scan 
can be seen in Fig. 1.2.

MEG scan can be used by doctors to identify the source of seizures in the brain 
and determine if the subject requires seizure surgery or not. Generally, MEG is 
accompanied by EEG and magnetic resonance imaging (MRI) which creates an 
anatomical image of the brain.

1.3.3  Electromyography (EMG)

EMG is used to diagnose the health of muscles and motor neurons that controls the 
contraction of those muscles [12]. Muscles contract when the motor neurons from 
the brain send electrical signals to them. The EMG activity is directly proportional 
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to the number of contracted muscles as well as the strength of the contracted mus-
cle. Generally, the range of the electrical signals captured by the electrodes is in 
microvolts. Non-invasive sticky electrodes are placed near the muscles over the skin 
to record their electrical activity. EMG is a process of translating these electrical 
activities into graphs.

The non-invasive nature of EMG allows us to monitor physiological processes 
without affecting movement patterns. To prepare the skin for high-quality EMG 
recordings, the area must be cleaned, and any residual makeup or dirt must be 
removed. To get valid and reliable EMG data, EMG electrodes are placed over the 
muscle group of interest. This requires a certain level of anatomic knowledge. To 
collect the EMG data, a reference electrode is required. EMG data for the required 
site is then collected as a potential difference between the two electrodes. The rec-
ommended reference sites are elbow, hip, and collar bones. Figure 1.3 shows an 
example of an EMG signal. The noise can be induced in EMG recordings from the 
surrounding power sources. To minimize such noises, the distance between the 
EMG sensors and the amplifier is kept minimum [13].

EMG is used to diagnose several muscle and nerve disorders. It is used to test if 
the muscle correctly responds to the nerve signal or not. Some of the common prob-
lems diagnosed by the EMG test are muscle weakness, muscle cramps, numbness in 
arms, legs, hands, feet, or face, and muscle paralysis [14]. Facial EMG (fEMG) is 
used for the detection of facial emotions.

1.3.4  Electrocardiography (ECG)

ECG is a test that is performed to check the electrical activity and rhythm of the 
heart. A heart specialist might recommend taking an ECG test to check any unusual 
activity in the heartbeats of the subject. Sticky sensors are placed over the skin of 
the subject which detect the electrical activity produced by the contraction and 
expansion of the heart muscles [15]. The detected electrical activities are then 
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recorded, and a graph is plotted. The doctor or the heart specialist then looks at these 
graphs to find any unusual behavior of the heart.

ECG can be carried out in many ways. Generally, several sticky ECG electrodes 
are placed on the arms, legs, and chest of the subject. These electrodes are con-
nected by the ECG machine via wires. Figure 1.4 (a) displays a sample ECG signal. 
The duration of the test is normally around 5 min after which the subject is free to 
go. There are three types of ECG tests. A resting-state ECG in which the subject 
must be lying down while the electrodes record the ECG signals. In stress ECG, the 
subject is required to do some exercise such as running on a treadmill. In an ambula-
tory ECG test, a small portable and wearable machine is used to monitor the ECG 
for a longer period such as a day or more [16]. The selection of the ECG test type is 
based on the suspected heart problem and is recommended by the heart specialist. 
For example, if the heart problem symptoms appear during a workout or some phys-
ical activity, a stress ECG test might be conducted while if the symptoms are unpre-
dicted or random, an ambulatory ECG test will be more suitable [17]. In the case of 
ambulatory ECG tests, the machine records and stores the collected data which can 
be later accessed by the specialist once the test is complete.

ECG devices record the electrical activities of the heart. These electrical activi-
ties are generated due to the contractions of the beating heart. The ECG machine 
records and prints or displays the electrical activity and rhythm of the subject on a 
graph. The spikes in the ECG graph represent one complete heartbeat. Each heart-
beat is composed of several spikes in which the first peak is a P wave which repre-
sents contracting atria, the largest one known as the R or QRS complex, occurs due 
to the contracting of ventricles. Before and after the QRS complex, inverted peaks 
can be seen which are known as Q and S waves respectfully. The last spike is the T 
wave which occurs because of the relaxation of ventricles again as shown in Fig. 1.4 
(b). There should be regularity in the spikes of ECG data. The distance between 
these spikes represents heart rate. Irregularities in these spikes can be a sign of a 
problem. Abnormalities in these rhythms indicate some heart disorders such as 
arrhythmia often known as heart attack which causes damage to the heart due to the 
lack of oxygen to the heart muscles. Similarly, the distance between the spikes 
should not be too short, or too long. If the spikes are too close, it can be a sign of 
tachycardia. Other tests might be required to confirm any heart problem.

Fig. 1.4 (a) Sample ECG signal (b) Components of ECG signal

D. Mahmood et al.



9

Due to the non-invasive nature of the ECG test, there is very little risk in per-
forming the ECG. During the stress ECG, the subject is required to be monitored all 
the time and if the subject feels unwell, the test is immediately stopped. The removal 
of sticky electrodes might cause some discomfort, and, in some cases, a mild rash 
can be felt after the removal of the electrodes.

ECG is often performed along with other tests to diagnose potential heart prob-
lems such as chest pain, palpitations, dizziness, and shortness of breath. If the sub-
ject feels irregularities in the heartbeat or the heart beats too slowly or quickly, it is 
possibly due to arrhythmias. Coronary heart disease can occur if there is any block-
age in the blood supply of the heart. This can happen due to the build-up of fats in 
the blood vessel connected with the heart. If the supply of blood is suddenly stopped, 
it might cause a heart attack. Thickened walls of the heart might cause 
cardiomyopathy.

1.3.5  Electrooculography (EOG)

EOG measures the resting potential between the front and the back of the human 
eye. Due to the neurons and ion channel, the back of the retina creates a negative 
pole. The EOG measures this potential difference by placing pair of electrodes near 
the eye (up and down or right and left) [18]. The electrodes are divided into two 
groups: horizontal and vertical electrodes. The horizontal electrodes are placed near 
the outer edges of the eyes. The vertical electrodes are placed above and below the 
eyes. A ground electrode is placed on the forehead as shown in Fig. 1.5 (a). This 
arrangement of EOG electrode placement allows us to examine the full movement 
of the eye. The movement of the human eye will change the effective distance 
between the poles and the electrodes. One electrode will become nearer to the nega-
tive side of the retina while the other will become nearer to the positive side. This 
change can be sensed by the electrodes as an electrical activity and hence can be 
recorded and plotted.

The potential difference changes with the change in the exposure to light. EOG 
is used to evaluate the efficiency of the pigment epithelium. In this test, a subject 
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with EOG electrodes is requested to sit (resting state) in a dark room with his/her 
eyes open. In this phase, the subjects adapt to the darkness in such a way that their 
EOG voltage decreases at the start and reaches a minimum value after some time. 
Then the lights in the room are turned on and the subject remains sitting there for 
another several minutes. In this phase, the EOG voltage will increase and eventually 
reaches a maximum point. Once the subject adapts to the lighting condition, the 
voltage will decrease again. The comparison of voltages in the dark and light phases 
is known as Arden Ratio (AR). Generally, the AR should be around 2.0, if the AR 
decreases to 1.8 or less, there are chances that the subject has the best disease, which 
is an inherited retinal disease causing macular degeneration and may cause loss of 
central vision, as well as the ability to perceive colors and details [19]. Figure 1.5 
(b) shows a normal EOG signal while Fig. 1.5 (c) displays an abnormal EOG signal 
with the best disease where AR is less than 1 [20].

Due to its non-invasive nature, portability, cheap price, and low risk of EOG, its 
applications are limitless [21]. The application of EOG in the diagnoses of diseases 
related to human eyes is just one example. Other applications of EOG include 
Human-Computer Interface (HCI). Many EOG-controlled assistive devices are 
available such as controlling wheelchair-using eye movement, video games con-
trolled by eyes, etc.

1.3.6  Phonocardiogram (PCG)

PCG measures and plots the sounds and murmurs generated by the heart of the 
subject using a machine known as a phonocardiograph. The machine has a sensor 
that is placed over the chest of the subject to detect the sound and murmurs coming 
from the heart. These sounds are recorded, plotted on the screen, and can be listened 
to directly using a headphone. Figure 1.6 displays an example of PCG recording. 
The high resolution of phonocardiography makes this procedure very useful. These 
sounds and plots are then listened to or viewed by the specialist to diagnose any 
heart disease [22].

From ancient times, it is known that the heart makes a sound while beating. 
Robert Hooke proposed the idea of developing an instrument to record these sounds 
back in the seventeenth century. In the 1930s and 1940s, phonocardiography moni-
toring and recording equipment were developed. In the 1950s, the PCG was stan-
dardized in the first conference held in Paris [23]. NASA used the PCG system 
made by Beckman Instruments to monitor the heartbeat of astronauts in space.

The vibrations made by the opening and closure of the beating heart valves, and 
the movement of heart walls generates sounds. PCG records two sounds in each 
heartbeat. The first sound appears at the closure of atrioventricular valves during 
systole while the second sound appears at the end of systole when aortic and pulmo-
nary valves close. PCG is used for recording subaudible echoes and murmurs of the 
heart. On the other hand, a stethoscope is unable to detect such minor sounds. Hence 
a stethoscope cannot be used for a more precise diagnosis of heart disease.

D. Mahmood et al.
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Fig. 1.6 Sample PCG Signal

Some of the common uses of PCG are the detection of the rheumatic valvular 
lesion in which the valves of the heart are possibly damaged or not functioning well. 
The murmur of the aortic stenosis can also be detected using PCG in which the high 
pressure of blood through small openings of the aortic valve causes turbulence and 
hence cause intense vibrations. The non-invasive nature of PCG is very beneficial to 
diagnose several diseases related to the heart with a very low factor of risk. The 
murmur of mitral and aortic regurgitation in which the blood flows backward from 
the mitral and aortic valves during systole and diastole can also be detected by using 
PCG. Similarly, it is also used to detect the murmur of mitral stenosis in which the 
pressure difference causes difficulty while the blood passes from the left atrium to 
the left ventricle [24].

1.3.7  Photoplethysmography (PPG)

PPG is a simple, non-invasive, and low-cost procedure, commonly used for moni-
toring heart rate. In PPG, a light source generally in the infrared range is used with 
a photodetector over the skin of the subject to measure the volumetric alterations of 
blood flows. The light is emitted on the tissue by the light source which is reflected 
and measured by the photodetector. This measurement is proportional to the volu-
metric variation of blood circulation. Recently, wearable PPG devices have been 
introduced. Depending upon the type of the device, these can be worn on different 
parts of the body such as the forehead, earlobe, forearm, fingertip, and ankle [25].

Several factors may affect the response of PPG such as the geometry of the sen-
sors being used, the intensity of the light source, ambient light, and photodiode 
sensing power. Other than that, the oxygen concentration and organ characteristics 
can also change the PPG recordings. Similarly, some cardiovascular factors may 
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also alter the PPG readings. This is the reason that different PPG devices are 
designed to use in different parts of the body. The basic working of PPG is shown in 
Fig. 1.7 (a). One of the main advantages of PPG over traditional heart monitoring 
devices such as ECG is its cheap cost and simplicity. Instead of using multiple elec-
trodes on the chest and other body parts in the case of ECG, a single PPG sensor is 
required to monitor heart rate.

A PPG signal has two parts, a pulsatile or AC component which is due to the 
heartbeats and causes synchronous variations in blood volume. The other part is the 
DC component which is superimposed on the AC component. The DC component 
of PPG is due to respiration and thermoregulation [26]. A sample PPG signal is 
shown in Fig. 1.7 (b).

Portable and wearable PPG devices have the potential for early detection of car-
diovascular diseases. PPG devices are widely used in various clinical applications. 
Some of the common applications of PPG are monitoring blood pressure and oxy-
gen saturation, heart rate, respiration, vascular assessment, arterial diseases or com-
pliance and aging, microvascular blood flow, thermoregulation, and orthostasis 
[27, 28].

1.3.8  Magnetic Resonance Imaging (MRI)

MRI generates a three-dimensional anatomical image of the required organ of the 
subject. The non-invasive and high-resolution MRI allows the specialists to exam-
ine the organs, tissues, and skeleton system of the subject and diagnose several 
diseases. The working principle of MRI is that it detects the change in direction of 
the rotational axis of protons found in the living tissues using powerful magnets and 
radiofrequency [29]. Physicians can differentiate different types of tissues from the 
magnetic features of the MRI image. Figure 1.8 shows an MRI machine and an MRI 
image of a muscle.

To get an MRI image, the subject is placed inside a large tube-like magnet. The 
magnetic field aligns the water molecules inside the body for a fraction of time 
while radio waves are used to create a cross-sectional image of these aligned 

Fig. 1.7 (a) PPG sensor working principle (b) Sample PPG signal
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Fig. 1.8 MRI Machine and Sample MRI image of a muscle

molecules. Sometimes, gadolinium is injected as a contrast material into the vein in 
the hand of the subject to enhance a variety of details. To ensure the best quality of 
the image, the subject must not move otherwise the MRI image might get blurred.

MRI of different body parts can be taken to diagnose different disorders. MRI of 
the brain might be required for the detection of stroke, tumors, or disorders in the 
spinal cord. In the 1990s, functional MRI (fMRI) was invented which is a non- invasive 
brain imaging technology. fMRI can detect brain activities by measuring changes in 
the blood flow within a specific part of the brain. This can be used to analyze the func-
tion of different brain regions. fMRI can detect which parts of the brain are activated 
during specific tasks such as lifting the leg and even just thinking about something. 
fMRI is being used by researchers to diagnose, better understand, monitor, and treat 
several diseases such as post-concussion syndrome, schizophrenia, tumors, etc.

MRI of the heart can be used to examine the working of the heart, functionality 
of heart chambers, and magnitude of damage after heart disease or blockages in the 
blood vessels of the heart. Similarly, MRI of internal organs such as kidneys, uterus, 
liver, etc. can be used for the detection and examination of tumors or abnormalities 
in them. It can also be used for the detection of breast cancer.

An MRI machine contains very strong magnets, the metal in the body of the 
subject might be dangerous. Metals that are not attracted to the magnets can still 
modify the MRI image. So, it is required to remove any metal item before taking the 
test [30]. Other than that, a doctor might avoid taking MRI if the subject has some 
kidney or liver problem and/or the subject is pregnant or breastfeeding [31].

1.4  Biomedical Signal Processing

Biomedical signal processing deals with extracting significant and useful informa-
tion from the biomedical signals for medical purposes [32]. As the non-invasive 
techniques of the biomedical signal acquisition have a low peak signal-to-noise 
ratio (PSNR), advanced signal processing methods are developed and used to extract 
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the required user information. A full-time check on patients’ heartbeat, blood pres-
sure sugar levels, and neural activity can extensively improve medical diagnosis. 
This monitoring is not only used to know the status of the patient’s body but also to 
diagnose diseases in the body. With the help of biomedical signal processing, biolo-
gists can develop methods for the detection, monitoring, and cure of diseases. 
Proper processing and analysis of biomedical signals can provide numerous advan-
tages in the field of medicine. The four steps involved in the processing of sig-
nals are:

1.4.1  Signal Acquisition

The first step is a signal acquisition which deals with capturing a signal from the 
subject. A hardware device is used to capture biomedical signals from the subject 
body. Analog signals are recorded and transformed into digital signals.

1.4.2  Signal Visualization and Annotation

Visualizing the recorded biomedical signals gives significant information which can 
effectively boost the analyzing procedures. Currently, periodograms and spectro-
grams are used for visualization and analyses [33]. A periodogram determines the 
frequency spectrum of a biomedical signal and is the most used tool for visualiza-
tion. A spectrogram is a visual representation of signal strength over time at various 
frequencies. A spectrogram is a 2-dimensional graph where the color represents the 
signal strength. Modern tools e.g., MATLAB, LABVIEW provide built-in apps to 
visualize and analyze the data in time as well as a frequency domain.

1.4.3  Artifacts Removal and Preprocessing

Artifact Removal is a preprocessing step that involves removing any artifact, error, 
or noise from the recorded data before processing and analysis of biomedical sig-
nals. Different biomedical signals have different types of noise. For example, power 
line noise can be found in PCR and EEG data. In ECG data, baseline wanders arti-
fact can be found which is a low-frequency data superimposed on the recorded ECG 
signal. Similarly in MRI data, motion artifacts and external magnetic field artifacts 
are very common. In addition, the noise can be found in the recorded biomedical 
signals due to faulty or improper use of the acquisition instrument such as disloca-
tion of electrodes/sensors. Noise in the recorded signals might also be found in the 
acquisition that does not follow the standard procedures while recording the data 
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such as recording from unclean skin, unwanted movements of body parts while 
recording, interference of electrodes, and impedance from power sources. Non- 
invasive biomedical signal acquisition techniques often yield low PSNR. These arti-
facts or noise can interfere with the diagnostic system and may result in improper 
classification or detection of diseases. Different artifact removal methods are avail-
able based on the type of artifacts in the signals [34]. Some artifacts or noise such 
as powerline interference and DC component in the recording can be removed by 
using the filtration method. To remove more complicated artifacts or noise, many 
filtration and machine learning models are available. After that, various preprocess-
ing steps are implemented which include dealing with missing values, data normal-
ization, outlier removal, etc. before using the recorded biomedical signal.

1.4.4  Feature Extraction

Feature extraction is a process in which raw data is used to extract useful informa-
tion that can be processed by machine learning or deep learning models. The model 
uses these features to classify the data. Raw data is not useful until feature extrac-
tion is done. Features can be extracted manually as well as automatically. Feature 
extraction is generally based upon the required classification. For instance, Nawaz 
et al. [35] provided a comparison between different methods for feature extraction 
for the classification of emotions using EEG data. For manual feature extraction, 
Fast Fourier transform (FFT) is widely used in biomedical signal processing [36]. 
The FFT involves the conversion of a time domain signal into a frequency domain 
signal. FFT can achieve high efficiency because a smaller number of calculations 
are required to evaluate a waveform. For automatic feature extraction, the wavelet 
scattering method is used which creates the representation of a signal into a function 
called waves. A wavelet can acquire both local as well as temporal spectra. Two 
types of wavelet transformation, discrete and continuous wavelet transforms are 
often considered while extracting features automatically [37]. Discrete wavelets 
transform gives back data of equal length as that of input while the continuous trans-
form returns an array with high dimensions data as compared to the input. Other 
than these methods, statistical feature extraction also plays an important role in the 
signal analysis [38]. Some commonly used statistical features are mean, variance, 
skewness, and kurtosis.

In Fig. 1.9, we can see all the steps and observe that after feature extraction we 
can use these features for multiple purposes. Medical diagnoses are made very easy 
with visualization and manipulation of features using digital tools. Machine learn-
ing is used to identify various patterns in the signal which can lead to major 
discoveries.
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Fig. 1.9 Flow of biomedical signal processing

1.5  Machine Learning in Biomedical Signal Analysis

After the first mathematical modeling of neural networks in, machine learning was 
invented. In 1943, Warren McCulloch published a paper in which he mathemati-
cally mapped decision-making and thought processes in human cognition [39]. 
Alan Turing proposed a “Turing Test” in 1950 which can classify any system to be 
intelligent or unintelligent [40]. The idea behind this test is that a machine can be 
considered intelligent if it can convince humans that the machine is also a human. 
After this point, many machine learning models and processes started to appear, and 
a new era of smart and intelligent machines was started.

Machine Learning (ML) enables software and applications became more effi-
cient in predicting outcomes and results using trained data. The concepts of machine 
learning are used in various fields like health care, finance, marketing, new develop-
ments in cyber security, and other significant fields [41]. Machine learning has 
proven its application in various domains, and it is also widely used in biomedical 
signal processing and healthcare. It can be beneficial in extracting, analyzing, and 
visualizing various signals as well as for the detection and classification of biomedi-
cal signals such as ECG, EMG, EEG, etc. [42]. Deep neural networks (DNN) have 
enabled us to achieve more accurate and robust results of detection and classifica-
tion of biomedical signals. Applications of DNN in biomedical signal processing 
includes classification of ECG signals [43], brain tumor classification [44], missing 
data prediction in ECG signals [45], and many more. Convolutional Neural net-
works (CNN) have also played an important role in this filed such as drowsiness 
detection [46], detection of congestive heart failure [47], classification of EEG data 
listening to different kinds of music [48], EEG signal classification for emotion 
recognition [49] etc.

With the advancement in medical science and the increase in environmental pol-
lution, many new diseases have been detected. Some mild intensity of diseases can 
be cured by simple over the counter medicines. But other diseases require proper 
diagnoses, clinical surgeries, and treatments. To correctly cure any disease, proper 
diagnoses must be carried out for which correct evaluation of symptoms and bio-
medical signals from the human body is required. Machine Learning may assist in 
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making the right decision for the diagnosis and treatment of diseases. To develop 
automated symptoms and disease diagnostic systems, the contribution of machine 
learning is very important, e.g., for the segmentation of skin lesions, tumors, cancer 
cells, etc. Normal practice is the observation by radiologists or other specialists that 
puts a high burden on them in terms of time and cost and it also results in inter and 
intra-rater variability. Hence developing automated systems using machine learning 
can decrease the burden on radiologists and specialists.

After analysis, the next step is a prediction of the right treatment for the patients. 
This prediction could be challenging if developers have not designed an intelligent 
system. Machine learning allows the development of efficient and reliable systems 
for the prediction of diseases as well as medicines. For analysis and diagnosis of 
disease in the human body, different models of machine learning can be used. There 
are two main types of machine learning algorithms, supervised and non-supervised 
learning models. In supervised learning models such as support vector machine 
(SVM), naïve Bayes (NB), and K-nearest neighbor (KNN), the models are trained 
on a labeled dataset containing the ground truth. The dataset provided to the model 
contains data from diseased and healthy subjects. The model is trained in such a 
way that once it is trained, it can predict that either the subject has the disease or not. 
In medical science, the availability of labeled datasets is very limited as it requires 
a lot of time and effort by healthcare professionals and specialists. To overcome 
such problems, unsupervised ML models such as K-means, Gaussian mixture, and 
neural networks can be trained without the need for the labeled dataset. These mod-
els extract features from the non-labeled dataset and classify them based on those 
features extracted [50].

The impact of ML cannot be denied in health care and medicine because of its 
capability for disease detection, management, and treatment [51]. Disease diagnosis 
through machine learning techniques can reduce the risk of losing patients’ life. 
Advanced algorithms are used nowadays for a prior diagnosis of epilepsy, heart 
attack, and other fatal diseases. It is now easy to handle big data through ML as 
many advancements and modifications have been made. The processing, analyzing, 
and characterizing of biomedical signals is now done efficiently using ML 
approaches. Biomedical signals such as MRI, (CT), (PET), whole slide images 
(WSIs), ECG, EEG, EMG, etc. are very important and significant for analyzing and 
determining the current condition of some diseases in the human body. The diagno-
sis of diseases in a traditional way in which health specialists visually inspect the 
biomedical signals can induce a risk of human error and ambiguities. ML methods 
remove these limitations providing low-risk systems. Signal feature extraction is 
one of the techniques in ML that provides systematic visualization of biomedical 
signals. Modern ML methods provide advantages in noise reduction, artifact 
removal, and early detection of diseases. ML can be used for the classification and 
clustering of biomedical signals and images. For small dataset, classical ML is used 
and optimized by following the conditions that suit microcontrollers that are inbuilt 
into biomedical signal processing devices. This requires the correct selection of ML 
algorithms that are done by experts in ML.
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1.6  Brain-Computer Interface BCI)

Research and advancements in BCI began in the 1970s by Jacques Vidal at the 
University of California, Los Angeles (UCLA). He published his studies of control-
ling external objects using EEG signals in 1973 and stamped the name brain control 
interface [52]. Cogent Negative variation (CNV) was a major part of his publica-
tions. He calculated the evoked electrical activity of the cerebral cortex from the 
skull using EEG [53]. In 1988, Farwell and Donchin [54] added another achieve-
ment in establishing direct communication between a computer and the brain of an 
individual. After these initial establishments, a lot of progress was made by devel-
opers. In 1990, research was done on bidirectional adaptive BCI controlling com-
puter buzzers. These studies and research opened the path for the concept of BCI 
technologies to restore brain functionality.

The brain-computer interface, often called the brain interface machine, provides 
a direct communication door between the brain’s electrical activity and an external 
device [55]. The physical implementation of the BCI ranges from non-invasive to 
invasive methods [56]. BCI system acquires brain signals from the subject, pro-
cesses these signals which might contain preprocessing such as noise reduction, 
feature extraction according to the application of BCI, and classification of the brain 
signals into useful commands, and returns a feedback information to the subject as 
per application to enhance certain brain functions.

There are a lot of applications of BCI in medical, educational, and other fields 
which makes it an important topic for research and development. The medical appli-
cation can be divided into 3 parts, prevention, detection, and rehabilitation. In pre-
vention, BCI techniques are used to prevent a subject from certain diseases or habits 
such as smoking and alcohol. This is done by first training a subject specific classi-
fier that learns the EEG pattern of smoking and neutral cue and then the subject is 
asked to deactivate their real-time EEG activity patterns of smoking cue calculated 
using a previously constructed classifier [57]. The possible loss of function and 
decrease in alertness level resulting from smoking and or alcohol drinking can be 
prevented. Similarly, in detection, BCI can be used for forecasting and detecting 
health issues such as abnormal brain structure. Diseases such as stroke can be 
detected before time so that the subject can gather proper medical help. Rehabilitation 
is another important medical application of BCI in which the subjects who suffer 
from mobility disorders after strokes and other traumatic brain disorders can be 
trained to regain their previous level of these functions by helping to guide activity- 
dependent brain plasticity using EEG to indicate to the current state of brain to the 
subject and enable the subject to subsequently lower abnormal activity [58]. EEG- 
based BCI uses brain signals to control robotic arms, artificial limbs, wheelchairs, 
and other prosthetic devices [59]. The BCI approach allows the disabled individual 
to use their limbs and voice once again to communicate with the world [60].

The applications of BCI are not limited to the medical field but smart environ-
ment such as smart homes, safer transportation, and brain-controlled home appli-
ances is also a major use of BCI [61]. The use of BCI to monitor the stress and 
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attention of the driver and assist drivers during transportation in reducing the risk of 
accidents on roads [62]. Furthermore, marketing and advertisements have also been 
an interest of researchers. BCI-based advertisement is being implemented in which 
the attention and watching activity of the subject is analyzed and the most effective 
advertisements are displayed to the audience.

Moreover, in the educational field, BCI techniques such as neurofeedback train-
ing are being used to enhance the performance of the subject’s brain including 
improvement in alertness, focus, and cognitive skills of the subject. The entertain-
ment industry is also using BCI to enhance the user’s involvement in games. BCI is 
being used to control toys and video games that attract more and more users to try 
and use them. BCI is being used in security as well, where cognitive biometrics 
(such as brain signals) are used as sources of identity information, reducing vulner-
abilities and the chance of being hacked [63].

BCI techniques have some challenges that need to be resolved for user accep-
tance. The usability of BCI has certain challenges such as the training process which 
is necessary to discriminate between classes. In the training process, the subject is 
taught to use the system as well as control the brain feedback signal. After training, 
the BCI system would be able to classify or do certain functions as per the subject’s 
requirements. Noise in the recordings of brain activities can reduce the performance 
of the BCI system. For this, the subject must be careful while using BCI. Time con-
sumption also played an important role in the acceptability of BCI in normal life as 
the training process can be very long. Other than that, there are a few technical 
issues such as the non-linearity of the brain signals. Thus, the noise or artifact 
removal process is computationally expensive.

1.7  Neurofeedback & Biofeedback Systems

Hans Berger, a German researcher was the first to use EEG devices on human sub-
jects in the 1920s, by attaching electrodes to the scalp and measuring the produced 
currents [64]. After this, in the 1950s and 1960s, a method of altering brain activities 
was formulated by Dr. Joseph Kamiya and Dr. Barry and they called it Neurofeedback 
[65]. The main concept behind this system is that if a subject is offered a simple 
reward system, he/she can control their brain waves. Dr. Kamiya used a simple bell 
sound based on the subject’s EEG as a reward to achieve an alpha state.

Biofeedback has been found in ancient times where Indian Yogis used to practice 
similar yoga and transcendental meditation [66]. The modern biofeedback was first 
documented in 1969. The concept behind this is the feedback formalized by cyber-
netics during World War II [67]. Biofeedback instruments deployed modern elec-
tronic technologies in the field of psychiatry.

In the biofeedback treatment method, self-regulation of the bodily process is 
achieved by monitoring some aspect of the physiological functioning of the subject 
using electronic devices, and feedback is provided to the subject, generally in the 
form of audio or video, so that the subject can learn to alter that function in some 
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way. Some subjects used biofeedback training to control heartbeat and body tem-
perature [68]. Similarly, biofeedback training can be used to train subjects to gain 
control over blood pressure, skin temperature, and electrical activities of the brain.

In EMG biofeedback, electrical changes in specific muscle groups are converted 
into electrical signals and displayed to the subject. Similarly, thermal biomedical 
signals use skin temperature as feedback to train the subject to control blood flow 
and blood pressure. Electrodermal (EDR) biofeedback measures skin conduction 
and uses it as feedback to reduce the sympathetic tone of the subject [69].

Some of the common applications of biofeedback include the treatment of head-
aches, Cardiovascular disorders including hypertension, cardiac arrhythmias, and 
Raynaud’s disease. Neuromuscular rehabilitation such as spasmodic torticollis, 
blepharospasm, and chronic pain can also be achieved by using biofeedback train-
ing [70]. Similarly, gastrointestinal disorders can also be treated using biofeedback 
methods [71].

Neurofeedback training is a non-invasive form of therapy used to regulate brain 
waves. This process has been found helpful in the treatment of various neurological 
disorders and psychological disorders. In neurofeedback training, EEG signals are 
used to detect brain activities of the subject and real-time feedback is provided to 
the subject to improve certain functions of the brain. Neurofeedback training is also 
widely used to improve brain activity to obtain cognitive and behavioral improve-
ments [72]. Alpha neurofeedback training can be used for cognitive enhancement of 
healthy subjects [73]. Other applications of Neurofeedback training include 
improvement in cognitive processing speed and executive functions [74], decreas-
ing anxiety [75], treatment of epilepsy disorder and ADHD [76], improvement in 
artistic performance [77], and improvement in intelligence testing and psychologi-
cal assessments [78].

1.8  Conclusion

In this chapter, a brief introduction to non-invasive biomedical signals for health-
care is provided. Biomedical signals are the recordings of the physiological activi-
ties occurring inside a human body. These signals can be recorded from different 
parts of the body such as the brain, heart, eyes, etc. The use of biomedical signals 
has enabled professionals to get a deep insight into the working of different body 
parts of the subject. Non-invasive biomedical signals are usually very prone to 
noises. This requires some extra preprocessing steps before using the signals for 
analysis. First, the data is recorded with a lot of care to minimize the noise. The 
recorded data is then visualized, and artifact removal methods are implemented 
which remove the signals not associated with the activities of the observed body 
part. Once the signal is cleaned, the features are extracted. These features are then 
fed to machine learning algorithms for the analysis of different diseases and disor-
ders. Non-invasive biomedical signals have been used to detect and prevent various 
diseases and disorders. ECG and PCG have been used for the detection of 
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heart- related diseases. Similarly, EEG can be used for early diagnoses of neurologi-
cal and psychological disorders. The applications of non-invasive biomedical sig-
nals are not only limited to the cure and prevention of diseases, but these signals can 
also be used for the improvement and betterment of human cognitive and physical 
health. EEG can be used to improve the cognition and mental health of the subject. 
PPG can be used to monitor blood pressure, heart rate, and oxygen saturation in the 
blood. Applications of non-invasive biomedical signals such as neurofeedback and 
biofeedback training enabled us to enhance mental and physical health.

1.9  Teaching Assignments

 1. Describe different types of biomedical signals.
 2. Differentiate between invasive and non-invasive acquisition procedures of bio-

medicals signals with examples.
 3. Explain different steps involved in Biomedical signal processing.
 4. What are features and what is meant by feature extraction?
 5. Briefly describe Brain Computer Interface and what are its applications.
 6. What is biofeedback therapy?
 7. What are the benefits of Biofeedback?
 8. Explain how Neurofeedback training works.
 9. What is neurofeedback training used for?
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Chapter 2
Signal Acquisition Preprocessing 
and Feature Extraction Techniques 
for Biomedical Signals

Abdulhamit Subasi and Saeed Mian Qaisar

Abstract The primary purposes of the biomedical signals are the detection or diag-
nosis of disease or physiological states. These signals are also employed in bio-
medical research to model and study biological systems. The objective of the signal 
acquisition, pre-conditioning and feature extraction is to attain a precise realization 
of model or recognition of decisive elements or malfunctioning of human corporal 
systems using machine or deep learning. Furthermore, it allows future clinical or 
physiological events to be predicted using machine and deep learning. The obtained 
biological signal is frequently a complex combination of noise, artifacts, and signal. 
Instrumentation using sensors, amplifiers, filters, and analog-to-digital converters 
can produce artifacts. The muscular activities can introduce interference and the 
powerline and electromagnetic emissions are considered as the primary sources of 
noise. A good choice of signal collection and processing techniques may be made 
as a consequence of intended design specifications. This chapter aims to familiarize 
scientists and biomedical engineers with potential feature extraction methods and in 
comprehending the fundamentals of the signal acquisition and processing chain.

2.1  Introduction

The biomedical and healthcare industries have undergone a transformation thanks 
to recent technology advances. The cloud computing of biomedical data, collected 
by using wire-free wearables and the Internet of Medical Things (IoMT), has 
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resulted in real-time and portable health monitoring solutions [1]. Numerous medi-
cal conditions are diagnosed and distinguished using biomedical signals. Few 
examples are the identification and categorization of epilepsy, brain tumors, emo-
tions, lie detection, head injuries, blood oxygen levels, glucose levels, strokes, psy-
chiatric illnesses, sleep disorders, cerebral anoxia, cardiac diseases, lung diseases, 
behavioral disorders, drug effect monitoring, alertness monitoring, and anesthesia 
depth control.

The signal is a physical quantity that carries information. Signals in the physical 
and biological realms can be categorized as stochastic or deterministic. Unlike a 
deterministic signal, a stochastic signal cannot be defined by a mathematical func-
tion. The timing of a discharge capacity or a pendulum’s location are two instances 
of predictable signals. The quantity of particles released by a radioactive source or 
the result of a noise generator are two examples of typical random processes. 
Although they frequently include both a deterministic and a random component, 
physiological signals can be classified as stochastic signals. The random component 
might be more evident in some signals while deterministic impacts are more domi-
nant in others. The Electroencephalogram (EEG) is a type of stochastic signal where 
the random component is significant. An Electrocardiogram (ECG) can represent a 
different class of signals since it has a strong deterministic component connected to 
the transmission of electrical activity in the heart’s structures, along with some ran-
dom components resulting from biological noise.

Biomedical signals are measured and recorded using a variety of sensors. The 
sensing can be carried out with and without a physical body contact. In the first case, 
to effectively capture the biomedical signals, certain sensors are implanted to the 
body of intended subjects, such as endoscope, ECG electrodes and EEG headset. 
However, in the second case, such as Magnetic Resonance Imaging (MRI), Positron 
Emission Tomographic (PET) Scanners, and X-ray sensors the information is 
acquired without by scanning and without a physical contact with the subject’s 
body [2, 3].

The acquired biomedical signals are processed and analyzed using the sophisti-
cated signal processing techniques, transformation approaches, and decomposition 
algorithms [4]. In certain approaches the features are extracted from the incoming 
signals. Onward, the most pertinent features can be selected by using the dimension 
reduction techniques [5, 6]. Finally the selected feature set is processed by single or 
ensemble machine learning algorithms for the diagnosis, decision making, and pre-
diction [7]. However, in certain approaches the incoming signals are directly con-
veyed to the deep learning stage. In this case feature extraction, diagnosis/decision 
making/prediction is merged in deep learning stage. Therefore, the hand-crafted 
feature engineering is not needed and this task is done by the machine. However, the 
processing complexity and computing resources requirement is usually superior in 
this case compared to the prior approach [8].

The stages involved in contemporary features extraction and machine learning 
based biomedical signal processing and classification chains are the transduction, 
analog conditioning, analog-to-digital conversion, pre-processing, features selec-
tion and classification. The signal transduction process involves the transformation 
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of physical phenomena to electrical signals. Onward these signals are conditioned 
by amplifying, baseline restoration and analog-filtering to prepare them for an 
effective interface with the analog to digital converters. The digitized version of 
information is then pre-processed to diminish any noise and interferences. Onward, 
the transformation and decomposition mechanisms are used for getting a detailed 
insight of the incoming signal. Afterward, the features are selected and then pro-
cessed by the classifier for intended outcome [5].

In this chapter, the principle of signal acquisition and pre-processing stages is 
described. Moreover, a brief introduction to important biomedical signals features 
extraction techniques is presented. Finally, a conclusion is made.

2.2  The Biomedical Signal Acquisition and Processing

The biomedical sector’s growth has been completely transformed by technological 
advancements. When it comes to the creation of mobile and remote healthcare sys-
tems, communication technology has made enormous strides. These are built on 
cloud-connected biomedical wearables and cloud-based applications powered by 
the Internet of Medical Things (IoMT). The initial stage in employing electronic 
devices and computers to process and analyze biomedical information is to sense 
and convert biological occurrences into electrical signals. It is achieved by using a 
variety of contact based and contactless biomedical sensing mechanisms [1]. 
Designing a low-cost, long-term biomedical information collection system that can 
offer continuous signal monitoring for illness detection and therapy is desirable in 
practice. A potent tool for clinical and status monitoring, medical diagnosis, and 
communication with healthcare systems is biological sensing. In this setting, there 
have been further developments in wearable biomedical sensors. These can measure 
the vital signs of the intended subjects such as the electrocardiogram (ECG), elec-
tromyography (EMG), blood pressure, blood oxygenation, and other parameters. 
By measuring, conditioning, converting them from analog to digital domain and 
wirelessly reporting biological data including cardiac and neurological signals, a 
biomedical sensor can also offer a scalable and affordable solution for clinical 
applications.

A variety of sensors are employed for measuring and recording the biomedical 
signals. The sensing can be carried out with and without a physical body contact. In 
the first case, to effectively capture the biomedical signals, certain sensors are 
implanted to the body of intended subjects, such as endoscope, ECG electrodes and 
EEG headset. However, in the second case, such as Magnetic Resonance Imaging 
(MRI), Positron Emission Tomographic (PET) Scanners, and X-ray sensors the 
information is acquired without by scanning and without a physical contact with the 
subject’s body [2, 3].

The sensed biomedical signals possess a crucial information regarding the 
intended patient’s health conditions. The interferences and physiological artifacts 
can alter these signals. It can decrease the effectiveness of diagnosis. The power line 
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interference and baseline wander are the mainly present types of noises in the bio-
medical signals [9, 10]. The baseline wander and other artifacts are introduced by 
respiration and activity of human muscles. These are mainly the low-frequency arti-
facts [10]. The electromagnetic interference of the alternating supply causes the 
power line interference to be introduced. It is necessary to remove these undesirable 
signal components in order to diagnose biological disorders with accuracy. 
Numerous amplification and filtration approaches have been proposed to achieve 
this goal.

The sensed and conditioned version of the biological signals is onward converted 
from the analog to digital domain. The principle of analog to digital conversion is 
depicted in the following sub-section.

2.2.1  The Analog to Digital Conversion

In comparison to analog processing, the Digital Signal Processing (DSP) offers 
certain benefits [11]. Because of this, the majority of activities involved in process-
ing of the biomedical signals and images have moved from the analog to the digital 
domain in recent years. In this scenario, the Analog to Digital Converters (ADCs) 
are becoming a significant influence on the performance of the entire system [12].

Recent applications like the brain-to-computer interface, man-machine interface, 
positron emission tomography, biological sensors networks, prosthesis control, and 
bioinformatics require out of the shelf solutions. Several developments in the field 
of A/D conversion have been made in this regard. There is a wealth of available lit-
erature in this area [13]. This chapter’s major goal is to quickly recapitulate the key 
ideas of the A/D conversion.

By first sampling x(t) in time and then rounding the sample amplitudes (quanti-
zation), the A/D conversion is accomplished. The phrase “rounding off” in this con-
text refers to assessing sample amplitudes by contrasting them with selected 
reference thresholds.

A discrete representation of an analog signal is created by sampling. To accom-
plish this in the time domain, multiply the continuous time signal x(t) by the sam-
pling function sF(t). According to [14], Eq. (2.1), represents the generalized sF(t).
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The Dirac function δ(t-tn) and the sampling instant sequence {tn} are used here. 
As a result, Eq. (2.2) may be used to represent a sampled signal, xs(t).
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The sampling is the convolution of the spectra of the analog signal and the sam-
pling function in the frequency domain. Equation (2.3) can be used to express, SF(f), 
the spectra of sampling function.
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(2.3)

Finally, Eq. (2.4) may be used to describe the sampled signal Fourier transform 
(Xs(f)).

 
X f X f S fS F� � � � �� � �.  

(2.4)

Here, the input analog signal spectrum is denoted by X(f). The traits of “{tn}” 
have a direct impact on the sampling procedure. The sampling procedure is largely 
divided into the uniform and non-uniform categories depending on how “{tn}” is 
distributed [14].

The uniform sampling is the base of mostly existing biomedical signal process-
ing chains. This is the traditional sampling method, which Shannon first suggested 
in 1949 [11]. Shannon required a universal method for turning an analog signal into 
a series of integers in order to create his distortion theory, which is how he came up 
with the classical sampling theorem [11]. The majority of current digital signal 
processing (DSP) theory is built on this sampling theorem, which makes the assump-
tions that the input signal is bandlimited, the sample is regular, and the sampling 
rate complies with the Shannon sampling criteria.

The classical sampling method is a wholly predictable and periodic one, theoreti-
cally. The sample instants in this instance are evenly spaced. As a result, the time 
difference Ts between two successive samples is special. Ts is referred to as the 
sample period in literature. The periodicity of the sampling process is a product of 
Ts’ singularity. This characteristic has led to several names for this sampling proce-
dure, including periodic and equidistant. The sampling model has the following 
mathematical definition.

 t nT nn S� � �, , , ,0 1 2 .  (2.5)

In this instance, sF(t) may be written as a series of evenly spaced infinite delta 
impulses. Equation (2.6) expresses the procedure.
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Following Eq. (2.6), Eqs. (2.2), (2.3) and (2.4) become as follow in this case.
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The Fourier transform’s frequency shifting feature, which states that Xs(f) is gener-
ated by shifting and repeating X(f) forever at the integral multiples of Fs, is used to 
achieve Eqs. (2.8) and (2.9), where Fs = 1/Ts is the sampling frequency (cf. Equation 
2.9). The original signal spectrum is recognized as a picture of these repeating 
duplicates.

According to Shannon’s research, x(t) can be entirely reconstructed if its ordi-
nates are provided at a succession of locations spaced 1/(2.fmax) seconds apart and 
there are no frequencies greater than fmax. The following condition on the sampling 
frequency Fs is essentially used.

 F fs ≥ 2.
max

.  (2.10)

Shannon first suggested this Fs criteria, and Nyquist later expanded on it. This is 
the basis for the term “Nyquist sampling frequency,” which refers to sampling at a 
frequency that is precisely equal to two twice the maximum frequency (fmax).
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(2.11)

The spectral images (cf. Equation (2.9)) do not alias in the xs(t) spectrum since 
condition (2.10) is satisfied. The Poisson formula, which asserts that filtering xs(t) 
via an ideal low pass filter yields x(t), may be used to recover x(t) from xs(t).
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(2.12)

The sampling function that is given by Eq. (2.6) is the one that is used the most 
frequently in practical applications. Although this sampling procedure is theoreti-
cally abstracted in Eq. (2.6). Purely deterministic sampling was never feasible in 
real-world applications. The non-uniformity in the process is due to the real sam-
pling instants, which are constantly out of phase with where they should be on the 
time axis [11, 13].

After sampling, the second main step in A/D conversion is the quantization. 
There are several ways to implement the quantization process, which yields a vari-
ety of quantized signal properties. Generally speaking, the distribution mechanism 
for the reference thresholds determines whether the quantization process is deter-
ministic or random. The references are preserved in fixed places for deterministic 
quantization, but they are changed at random for randomized quantization [13].
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Traditionally, a uniform sampling and uniform deterministic quantization tech-
nique are used to carry out the A/D conversion. The reference thresholds in this case 
are uniformly distributed, which implies that each threshold’s subsequent amplitude 
difference is unique. This is referred to as uniform quantization. The quantization 
procedure in this situation is evident from Fig. 2.1. Where, q is the quantization step.

The only error that a theoretical ADC may introduce is the quantization error Qe. 
This inaccuracy occurs because the output is a series of limited precision samples 
but the analog input signal can take on any value within the ADC amplitude dynam-
ics [13]. The ADC resolution in bits determines the samples’ accuracy (cf. Fig. 2.2).

The dynamic range of an M-bit resolution converter may be described by Eq. 
(2.13) in the situation of uniform deterministic quantization if the ADC voltage 
changes between [-Vmax; Vmax].

 
2

2M V
q

=
.

max
.

 
(2.13)

In this case, the upper bound on Qe is given by Eq. (2.14) [13].

 
Qe ≤

LSB
.

2  
(2.14)

Where, LSB is the converter least significant bit, which is clear from the transfer 
function of an ideal M-bit ADC, shown in Fig. 2.3.

In Fig. 2.3, q is the weight of an LSB in terms of voltage. The process of calculat-
ing q is straightforward from Eq. (2.13).

Authors examined the real Qe spectrum in [13]. They have demonstrated that for 
each sample point, the Qe can occur within the range of ½ q. Qe’s more information 
may be found in [13].
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Qe may be represented as a sawtooth waveform by supposing that it is a white 
noise process and that it is uncorrelated to the input signal. Equation (2.15) provides 
Qe as a function of time based on this supposition.
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Where, s is the waveform slope (cf. Fig. 2.4). The MS (Mean Square) value of Qe(t) 
can be calculated by employing Eq. (2.16).

 

MS Q t s
q

s t dte q
s

q
s

� �� � � � � �
�

2

2
2

. . .

 

(2.16)

After simple integration and simplification, Eq. (2.16) results into Eq. (2.17).

 
MS Q t

q
e � �� � � � �2

12
.

 
(2.17)

Finally, the RMS (Root Mean Square) value of Qe(t) is given by Eq. (2.18).

A. Subasi and S. Mian Qaisar



33

t

Qe(t)

+ q/2

- q/2

- q/2.s + q/2.s

SLOPE (s)

t

Qe(t)

+ q/2

- q/2

- q/2.s + q/2.s

SLOPE (s)

Fig. 2.4 Quantization error as a function of time

 
RMS Q t q

e � �� � �
12

.

 
(2.18)

In the [−∞; ∞] Hz frequency band, the Qe(t) generates harmonics [13]. The desired 
spectral band typically is between [0; Fs /2], where Fs is the sampling frequency of 
the system. The in-band spectral width BWin is the term used in literature to refer to 
the bandwidth [0; Fs /2] [13]. The harmonics of the spectrum go far beyond than 
BWin. The higher order harmonics, however, are all folded back into BWin as a result 
of spectral periodization, and they add up to roughly generate an RMS (Qe(t)) equal 
to q/√12 [13].

2.2.2  The Digital Filtering

The signal is further denoised in the digital domain before it is converted to digital 
form. While reducing artifacts and noise, it enables emphasis on the signal’s perti-
nent contents. Filtering, a method that alters the relative amplitudes of a signal’s 
frequency components or may even completely delete specific frequency compo-
nents, is useful in a range of significant applications [14]. The conventional digital 
filtering is a time-invariant operation. They use a fixed order filter with a set sample 
rate to process the input signal [12]. A wide variety of filters, including Chebyshev, 
Butterworth, Bessel, windowed sinc, moving average, etc., are described in litera-
ture. To acquire the required results for a given application, a suitable filter should 
be carefully designed.

Analog and digital are mainly two primary categories of filters. An analog filter 
creates the desired filtering effect by utilizing electrical components such opera-
tional amplifiers, resistors, and capacitors. The signal being filtered is an electrical 
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voltage or current that is the exact physical equivalent of the quantity at all times. A 
digital processor is used by a digital filter to compute the values of digitized signals. 
The calculator might be a general-purpose computer or a specialized digital signal 
processor. Instead of being represented by a voltage or current in a digital filter, the 
signal is instead represented by a series of numerical values.

There are several situations in which analog filters ought to be utilized. This has 
more to do with general aspects that can only be accomplished with analog circuits 
rather than the actual filtering performance. The primary benefit is speed; analog is 
quick, whereas digital is slow. The amplitude and frequency dynamic range is ana-
log’s second intrinsic advantage over digital.

The analog filters are being quickly replaced by the digital ones as a result of 
recent technical breakthroughs. This is because, for a given task, digital filters might 
produce results that are far superior than those of their analog counterparts [14]. 
Digital filters provide programmability, temperature resistance, smaller attainable 
pass band ripples, linear phase characteristics, sharper achievable roll-off and stop 
band attenuation, the ability to obtain greater SNR, and other benefits over analog 
filters [14].

The implementation of the digital filters might be either recursive or non- 
recursive. The terms Infinite Impulse Response (IIR) and Finite Impulse Response 
(FIR) are also widely used to refer to the recursive and non-recursive filters, respec-
tively. The FIR filters are the linear phase filters and possess the unconditional sta-
bility. These are the key benefits of the FIR filters over IIR filters [12]. They are 
preferred for several applications because to these qualities, including equalizers, 
multirate processing, wavelets, etc.

If hk is the FIR filter impulse response, then in time domain the filtering is per-
formed by convolving hk with the digitized input signal xn. The process can be for-
mally represented as follow.
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The filtered signal in this case is yn. The filter coefficients are indexed by k. The 
number of earlier input samples utilized to generate the current output is called the 
filter order, or P. The filtering process in the frequency domain may be stated as 
follows, just as the convolution in the time domain becomes the multiplication in the 
frequency domain [14]. Here, the DFTs of yn and xn are calculated to provide Y(f) 
and X(f), respectively. The DFT of hk is computed to produce the FIR filter fre-
quency response, H(f). hk, by using time domain convolution, or H(f), by using fre-
quency domain multiplication, affects the input signal spectrum. It highlights some 
frequency components and attenuating others.
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2.2.3  The Windowing

Often, a waveform is a small piece of a much larger time series. EEG and ECG 
waveforms are biomedical waveforms that endure the full life of the person. Only a 
fraction of these waveforms may be kept in computer memory due to how the wave-
form is truncated. In most cases, a rectangular window is created by simply cutting 
out a part of the whole waveform and storing it in memory without additional shap-
ing. Now just the windowed part of the waveform is subject to examination. Other 
window shapes, usually referred to as tapering functions, are sometimes advised. 
The waveform must be multiplied by the correct shape to use them. By applying the 
Fourier transform to the window itself, the frequency properties of the window are 
included in the resultant frequency spectrum, allowing us to draw the conclusion 
that all windows generate artifacts. The triangular windows, Hanning, Blackman, 
Kaiser, and Hamming are the most well-known. Below are their equations in 
[15, 16]:

Triangular window:
for odd n:
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for even n:
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Hamming window:
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The most effective window is frequently found by testing with real data, or we 
might consider which spectral properties are significant to us. The rectangular win-
dow is chosen if there are two narrowband signals that are closely spaced apart since 
it has the smallest mainlobe. The sidelobes of the strong signal must not overwhelm 
the weak signal in order to resolve a fairly spaced strong and weak signal. In this 
situation, a window with quick sidelobe decay is desirable. The optimal option may 
be a window with moderately fading sidelobes and a relatively thin main lobe when 
there are two quite strong signals, one nearby and one farther away from a weak 
signal [15, 16].
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2.3  The Features Extraction Techniques

In the categorization of biomedical signals, the feature extraction phase is crucial. 
Since there are so many data points in the EEG signals, distinct and useful charac-
teristics may be retrieved from them using a variety of feature extraction techniques. 
Biomedical signals’ behavior is characterized by these distinct and illuminating fea-
tures, which may point to a particular action or activity. By highlighting distinctive 
and educational elements, biomedical signs can be identified. Frequencies and 
amplitudes can be utilized to depict the signal patterns employed in biological sig-
nal analysis. These features may be extracted using a variety of techniques, which 
is another stage of signal processing that facilitates and augments the effectiveness 
and efficiency of the post classification stage [17]. Since all waveforms have a finite 
duration and frequency, an efficient biomedical signal decomposition is required for 
the integration of the time, frequency, and space dimensions. Utilizing temporal- 
frequency (TF) methods, which can spot changes in both time and frequency, bio-
medical signals could be analyzed [16, 18, 19].

It is crucial to deal with smaller data sets that identify the proper signal charac-
teristics in order to obtain greater performance. Feature extraction, the process of 
converting signals into a pertinent feature vector, is typically how features are gath-
ered into a feature vector. A signal classification framework examines a signal’s 
distinguishing characteristics and establishes the signal’s class based on those char-
acteristics [16, 20]. Time-frequency approaches dissect signals in the time and fre-
quency domains, as has been discussed in this Chapter. Examples include the 
empirical wavelet transform (EWT), discrete wavelet transform (DWT), short-time 
Fourier transform (STFT), wavelet transform (WT), and empirical mode decompo-
sition (EMD). The most crucial information from the original vector should be pre-
served when the feature extraction procedure reduces the original data to a smaller 
dimension. As a result, it is crucial to pinpoint the primary traits that, given the 
structure of the collection, define the whole thing. Different statistical characteris-
tics may be derived from each sub-sample data point as the most typical values 
characterize the distribution of the biological signals. The minimum, maximum, 
mean, median, mode, standard deviation, variance, first, third, and inter-quartile 
range (IQR) are some of the frequently used features of biological signals [16, 20].

2.3.1  The Spectral Analysis

A waveform’s representation in the frequency domain can frequently be more help-
ful than one in the time domain. As a consequence, by examining a range of biologi-
cal signals in the frequency domain, we can find fascinating and beneficial traits for 
diagnosis. Common examples of biological signals and signs include the heart rate, 
EMG, EEG, ECG, eye movements, acoustic heart sounds, and stomach sounds [15]. 
The frequency content of a waveform is determined using spectral analysis. It 
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demonstrates to be a practical method for categorizing a range of biological data. 
This technique was developed to more accurately depict the biomedical signals 
activity than could simple be depicted by analytical techniques like one- dimensional 
histograms of the sample data. Given the periodic nature of many biological 
rhythms, signal decomposition in terms of sine and cosine functions was shown to 
be favorable. It was also a workable option in terms of computing. The fundamental 
result of Fourier transform spectral analysis is a collection of coefficients that 
describe the power spectrum and connect the signal to sines and cosines at various 
frequencies. A frequency band’s power may be rapidly ascertained using the power 
spectrum. This characteristic can help us identify whether the EEG data contains an 
alpha rhythm or other rhythms [16, 21].

There are several spectrum analysis techniques accessible, each with its own set 
of benefits and drawbacks. These methods are divided into two categories: Both 
conventional techniques (Fourier transform) and contemporary techniques based on 
model parameter estimates [15]. Because no assumptions about parametric model-
ling are made, spectral analysis based on the Fourier transform is frequently referred 
to be nonparametric [16, 22].

2.3.1.1  The Fourier Transform (FT)

One of the most popular spectrum estimating techniques utilized today is the tradi-
tional Fourier transform (FT) approach. The sine and cosine functions have a single 
frequency of energy, which is the foundation of the Fourier transform. The basic 
idea is to divide a waveform into many sinusoids of various frequencies. The ampli-
tude of these sinusoids is related to the frequency component of the waveform at 
these frequencies [15]. A series of sines, cosines, and their multiples can be used to 
depict any periodic waveform. It can alternatively be represented by a single sine 
wave with its versions with different amplitudes, frequencies and phases. In the first 
situation, we must multiply the waveform with the sine and cosine families and 
integrate over time to obtain the correct amplitude of the frequency components [15, 
16]. The two equations below provide an explanation for this process.
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where m is a collection of numbers, m = 1, 2, 3,.., identifying the family member 
and creating harmonically related frequencies, mfT, and T is the period or whole time 
duration of the waveform, fT = 1/T.
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Fourier series analysis is sometimes referred to as harmonic decomposition since 
waveforms are represented by harmonically linked sine waves. Only for m/T values 
that match the waveform for m = 1 do the sinusoids have valid frequencies. For 
m > 1, harmonics are greater multiples. The Fourier transform and Fourier series 
combine to provide a bidirectional transform for periodic functions. In other words, 
after a waveform has undergone the Fourier transform to produce sinusoidal com-
ponents, those components may be utilized to recreate the original waveform 
[15, 16]:
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where c m a m b m� � � � � � � �2 2  and .
But for the majority of actual waveforms, there are not many sinusoidal compo-

nents with appreciable amplitudes, thus a finite summation in Eq. (2.27) is fre-
quently fairly correct. Waveforms can be symmetric or antisymmetric with respect 
to the y-axis or t = 0. An even function is one in which x(t) = x(−t) and around t = 0, 
the waveform exhibits mirror symmetry. An odd function, with zero values for all 
b(m) terms, results by multiplying an even function with an odd function (see Eq. 
(2.25)). Multiplications using cosines result in an odd function when the waveform 
is antisymmetric near t  =  0, x(t)  = −x(t), zeroing all a(m) coefficients (see Eq. 
(2.24)). Half-wave symmetric functions contain a(m) and b(m) terms that, for even 
m, are both equal to zero. These functions can be odd or even and have the condition 
x(t) = x(T - t) [15]. These symmetry qualities may be helpful in lowering the com-
plexity and computation time when computing the coefficients by hand [16].

The continuous analysis we just reviewed is followed by the discrete-time 
Fourier series analysis. There are several similarities between the equations for 
continuous- time and discrete-time Fourier series analysis. Summation is used in 
place of integration, and complex variable notation and Euler’s identity are used to 
represent sinusoidal terms [16]:

 ejx x j x� �cos sin .  (2.28)

where j represents −1 since i is reserved for current in engineering. The expres-
sion for the discrete Fourier transform now becomes:
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If N is the total number of points, f is the harmonic number, or family member 
(the length of the digital data).
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For the sake of calculation, f = -N/2,..., N/2–1 must have both positive and nega-
tive values for X(f). Negative frequencies, which have no physical significance, are 
linked to negative values. The formula for the inverse Fourier transform is as 
follows:
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(2.30)

2.3.1.2  The Parametric Model Based Methods

The Fourier transform is used to produce power spectra, which represents the most 
reliable spectral estimators. Though they are not necessary, assumptions or informa-
tion about the characteristics of the waveform may be helpful when choosing win-
dows and averaging strategies. Furthermore, estimate distortion could result from 
assuming that the waveform beyond the window equals zero. Some of the draw-
backs and distortions created by traditional approaches are supposed to be addressed 
by modern spectrum analysis techniques. They work well when analyzing signals 
with a brief period. The waveform of interest and maybe the mechanism that created 
it should be known to modern approaches. When that happens, these techniques can 
make assumptions about the waveform beyond the window, which improves spec-
tral resolution, especially for waveforms with a lot of noise. The spectral resolution, 
however, will be greatly influenced by how well the selected model fits the situation 
[16, 23].

Additionally, the popularity of distinct linear model types, which may be sepa-
rated by the properties of their transfer functions, might be partially explained by 
the availability of computationally advantageous methods for parameter assess-
ment. But up to now, the main focus has been on autoregressive modelling [16, 21].

The following model types are among the most common:

• autoregressive (AR),
• moving average (MA), and
• autoregressive moving average (ARMA).

It is necessary to have some understanding of the potential spectrum form in order 
to select the optimal model. The formula for an AR model is:
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(2.31)

In (2.31), v(n) is noise, p is the filter order and a(k) are parameters of the model. 

E[v2(n)] =   is variance of noise. y(n-k) and y(n) are respectively the previous and 
computed outcomes.
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In the numerator and denominator of an AR model transfer function, there is a 
constant and a polynomial. The AR model is hence commonly called an all-pole 
model. The transfer function, H(z), of an AR model is obtained using the Z-transform:
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(2.32)

The model is determined by the positions of the poles and zeroes. In the spec-
trum, the valleys correspond to the zeros, whilst the peaks correspond to the poles. 
Therefore, when analyzing spectra with strong peaks and no discernible troughs, the 
AR model performs well.

On the other hand, spectra with troughs but no significant peaks can be estimated 
using the moving average method. There is just one polynomial for the numerator 
in the transfer function of the MA model. As a result, it is commonly referred to as 
an all-zero model. The equation below describes the MA model:
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where q is a model’s order and v(n) is the input noise function.
When high peaks and deep troughs are expected in the spectrum, a model that 

combines elements of the AR and MA models may be used. Since a transfer func-
tion with polynomials in both the numerator and the denominator is most likely 
present in an ARMA model, it is commonly referred to as a pole-zero model. An 
ARMA model’s equation is given as:
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(2.34)

The rational transfer function can define the ARMA model just as effectively,
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(2.35)

Since solving a linear matrix problem is often involved in determining AR 
parameters, the process is extremely effective. The assessment techniques for com-
puting the parameters of the ARMA and MA models, on the other hand, need a lot 
more computations. Additionally, these two methods may not converge at all or may 
converge incorrectly [16, 21].

Although this is not the case for the great majority of ARMA techniques, ARMA 
approaches should evaluate the AR and MA parameters simultaneously in order to 
get the best performance The MA approach also cannot be used as a high-resolution 
spectral estimator since it has trouble modelling narrow-band spectra properly. It 
cannot be utilized to calculate the power spectrum of biological signals as a result. 
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Although the autocorrelation sequence estimation aspect of the AR spectral 
approach is frequently used to characterize it, techniques that work directly on 
waveform’s finite data segments yield superior results [15, 16]. The most common 
methods for directly extracting the parameters and accompanying power spectrum 
of the AR model from the waveform are:

• Yule-Walker,
• Burg,
• Covariance, and
• Modified covariance methods.

It is natural to wonder which AR spectral estimation approach is ideal for biological 
signal processing given the variety of options available. It is also necessary to 
address the problem of choosing the model order p. One of the various design 
aspects that must be taken into account is the sample rate [16, 21].

The most suitable strategy is decided by the desired spectrum shape since vari-
ous approaches stress certain spectral features. The Yule-Walker method, for 
instance, generates the least-resolved spectra and hence offers the greatest smooth-
ing. Contrarily, the modified covariance approach produces the sharpest spectral 
peaks, making it simpler to identify sinusoidal waveform components [23]. The 
spectra generated by the covariance and Burg methods are equivalent. The modified 
covariance technique could, however, not provide a stable AR model with all of the 
poles inside the unit circle [24]. Fortunately, stability has little impact on spectrum 
analysis, but it must be taken into account when creating an AR-based classifier. 
Evidently, Burg’s method yields a trustworthy AR model [16, 21].

In addition to choosing the model type, we also need to decide on the model 
order, indicated by p and/or q. When choosing the order of the models, it may be 
helpful to comprehend the data generating process. Several guidelines are available 
to assist with this [15]. For instance, selecting a p number that is too high leads to 
phony spectral peaks, while selecting a p value that is too low leads to an incredibly 
smooth spectrum with poor resolution [21]. To allow the model spectrum to solely 
suit the signal spectrum while rejecting noise, the model’s order must be high 
enough [15]. Actually, the vast majority of investigations have relied on a predeter-
mined model sequence. Even lower model orders offer some amount of noise and 
artifacts resistance while offering sufficient spectral resolution for categorization of 
signal spectra [25]. The fifth- or sixth-order AR model has been effectively used in 
several studies [26, 27]. A higher model order is required if we wish to represent the 
power spectrum more accurately. For each spectral peak of interest, the model order 
is increased by two, and this number creates a lower bound for p. N/3 allows for the 
freely chosen upper limit of the model order [23]. However, the chosen model order 
is frequently a lot smaller than N/3 [16, 21].
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2.3.1.3  The Subspace Based Methods

From noise-distorted data, the powers and frequency of signals are calculated using 
subspace-based methods. These methods make advantage of the eigen- decomposition 
of the correlation matrix of the noise-corrupted signal, and they perform best with 
noise-corrupted signals composed of a number of discrete sinusoids [28–32]. The 
PSD, A(f), is computed as [16]:
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Where, m is the eigen-filter order and ak present the model parameters. 
Additionally, assuming white noise, the polynomial is represented in terms of the 
input signal’s autocorrelation matrix R.
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Where, x(n) is the observer signal, S is the direction matrix. (m + 1)L, L is the 
matrix dimension, R is the autocorrelation matrix of dimension (m + 1)(m + 1), and 
P is the signal power matrix. The size of P is (L)(L). sv2 is the power of noise and I 
denotes the identity matrix. * presents the complex conjugate and # is the complex 
conjugate transposition.
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When the signal frequencies are represented by w1, w2,...,wL::
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(2.39)

The estimated autocorrelation matrix R is often created using the autocorrelation 
lags in real-world applications:
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where N is the number of signal samples and k is the autocorrelation lag index. 
The following is the calculated autocorrelation matrix:
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(2.41)

Equation (2.42) may be written as: multiplying by the eigenvector of the autocor-
relation matrix a:

 Ra SPSa sv a � � 2
.  (2.42)

Where, a is the eigenvector of autocorrelation matrix (R’s). a is composed of [a0, 
a1, ..., am]T. The needed polynomial is only used by the subspace-based techniques, 
which also use it to compute the spectrum, as they only use the eigenvector corre-
sponding to the least eigenvalue [33]. Therefore, S#a = 0. Equation (2.42) changes 
to (2.43) when the eigenvector is considered to reside in the noise subspace:

 Ra sv a = 2
.  (2.43)

with the restriction that a = 1, where  is the noise power, which corresponds to 
the subspace-based modelling minimal eigenvalue associated with the eigenvector 
a. Under the supposition of white noise, it follows that all eigenvalues in the noise 
subspace must be equal.

 � � � � �
1 2 3

2� � ��� �k v .  (2.44)

where i = 1, 2,..., K denotes the noise subspace dimension and λi represents the noise 
subspace eigenvalues [16, 34].

2.3.2  The Time-Frequency Analysis

The Fourier transform of a musical phrase “tells us what notes are played, but it is 
very difficult to determine when they are performed” [35]. The inverse Fourier 
transform can, however, uniquely reconstruct the waveform, therefore the frequency 
spectrum must contain frequency timing information. Since particular time events 
are dispersed throughout all phase components, turning a local feature in time into 
a global feature in phase, this information is really encoded in the transform’s phase 
portion, which is challenging to understand and retrieve. For nonstationary signals 
having time-dependent spectral components, the Fourier transform is hence 
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inappropriate [15, 36]. In order to display the frequencies at each time instant, meth-
ods for extracting both time and frequency information from a waveform were cre-
ated. Understanding nonstationary biological signals has been substantially 
facilitated by the use of combined time-frequency information [16, 21].

2.3.2.1  The Short-Time Fourier Transform

A simple and well-liked Time-Frequency Analysis (TFA) approach is the short-time 
Fourier transform (STFT), which is based on a common sliding-window methodol-
ogy. When the non-stationary signal is split into a number of quick data segments, 
stationarity is presumed in the sliding-window approach. In other words, the spec-
trum of any given short data segment remains constant, but the signal’s spectrum 
evolves with time. The sliding window approach allows for the application of com-
mon spectrum estimate techniques to each of these segments, including the periodo-
gram, Welch’s method, and AR technique. After that, a spectral power distribution 
in the combined time-frequency domain may be created by concatenating the spec-
tral estimates from all windows. Time resolution and frequency resolution are the 
two most important TFA methods’ features. A time-frequency distribution’s (TFD) 
ability to distinguish between two closely spaced signal components in the time 
domain or frequency domain is referred to as its time resolution and frequency reso-
lution, respectively. The uncertainty principle of the TFA governs the trade-off 
between time-resolution and frequency resolution in STFT (and all other sliding- 
window approaches). According to the uncertain principle, it is impossible to deter-
mine a signal’s precise time-frequency representation since both time resolution and 
frequency resolution cannot be reduced to arbitrary tiny values [37].

Because it is straightforward, computationally effective, and yields a consistent 
time-frequency spectrum, STFT is a well-liked technique for evaluating non- 
stationary data. The decomposition must choose between time and frequency reso-
lution, which is the main problem. For transitory signals, it could be difficult to 
handle this compromise adequately [16, 38, 39].

The initial time-frequency methods involved segmenting the waveform into a 
number of brief, succeeding, and perhaps overlapping portions, and then perform-
ing the Fourier transform on each one of them. The time-dependent character of the 
signal was then shown by the resulting series of spectra. A window function is used 
to trim the waveform, successfully separating the data portions from the waveform 
of interest. This method, known as the short-time Fourier transform (STFT), has 
been effectively employed in a number of biological applications since the Fourier 
Transform is applied to data portions that are significantly shorter than the entire 
waveform. The sliding window function w(t) is added to the Fourier transform 
equation to construct the STFT equation, resulting in the two-dimensional function 
X(t, f) that is defined as follows:
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where x(t) is the waveform, and τ is the variable that moves the window through 
it. The following definition identifies the equation’s discrete form:

 

X n m x k W k n e
k

N j km
N, .� � � � � � �� ��

�
�

�

�
�

�

�

1

2�

 

(2.46)

Since the spectrogram of the waveform x(t) is equal to the squared STFT magnitude 
in Eq. (2.47), the STFT produces a time-frequency representation or distribution of 
the waveform.

 
P t f X t f, ,� � � � � 2

 
(2.47)

This results in a nonnegative, real-valued distribution being represented by the spec-
trogram [15, 16]. The spectrogram has two significant drawbacks: Finding the ideal 
window length for data segments and balancing time and frequency are two impor-
tant first steps. The frequency resolution is decreased when the data length, N, is 
shortened to enhance temporal resolution. Loss of low frequencies that are not fully 
incorporated into the data segment may result from cutting the data segment short. 
As a result, the frequency resolution decreases when a narrower window is utilized 
to increase temporal resolution, and vice versa.

2.3.2.2  The Wavelet Transform

The fixed-length window’s fixed time-frequency resolution over the entire time- 
frequency domain is the STFT’s biggest flaw. To improve the time-frequency reso-
lution for various spectral components of a signal, the time-frequency domain 
window size should be adjusted. One effective window selection method uses an 
adaptable and changing temporal window that is long at low frequencies and short 
at high frequencies. In fact, the continuous wavelet transform’s window selection 
strategy is another widely used time-frequency analysis technique (CWT). CWT 
can handle the issue of fixed time-frequency resolution in STFT depending on the 
time-frequency characteristics of the signal and the real demands. Long windows 
are used by CWT in the low-frequency range, whereas short windows are used in 
the high-frequency region [37].

Each transform should provide more details, which often results in a fresh inter-
pretation of the original waveform. The time-frequency problem has not been fully 
resolved despite the use of several time-frequency approaches. Another technique 
for defining the time-frequency features of a waveform is the wavelet transform. But 
now the waveform is separated into scale segments, not time segments [15, 16].

2 Signal Acquisition Preprocessing and Feature Extraction Techniques for Biomedical…



46

The Fourier transform was used to decompose the waveform x(t) in a vast range 
of sinusoidal functions:

 
X x t e dtm

j tm� �� � � � � �
��

��
�

 
(2.48)

Due to their popularity and the fact that they have energy at just one frequency, 
sine functions are a great option for examining the frequency characteristic of a 
waveform known as the frequency spectrum. Practically every function family may 
be utilized to assess or examine a waveform’s unique feature or behavior. Finite- 
length probing functions are suitable for sliding over the waveform x(t), just like the 
sliding window function w(t) is used to perform the STFT. The following convolu-
tion characterizes a transform with a sliding weighing function in general:
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where m is the family number and f(t)m denotes a family of functions. Note that 
the waveform was multiplied with the probing functions in the final two equations 
before being averaged to accomplish the comparisons described above. This trans-
form is bidirectional because the family of functions, which must be large, should 
be able to show all characteristics of the waveform x(t) by producing a redundant set 
of descriptions X(t,m), which is more than enough to reconstruct x(t). Unless it is 
occasionally employed for noise reduction, this redundancy is practically useless. 
Take note that while the STFT and all distributions are redundant, the Fourier trans-
form is not [15, 16].

Wavelets have two parameters, one for sliding through time and the other for 
scaling it. In order to properly characterize transitory signals, oscillating functions 
with their energy focused on time are called wavelets. Band-pass filtering is one of 
the mathematical properties that a wavelet function must possess. To obtain ade-
quate localization in both time and frequency, which is the aim of wavelet analysis. 
The exploration of the coexistence of fine structures and global waveforms in sig-
nals is made possible by two extra degrees of freedom, sliding and scaling. The 
fundamental concept of analyzing signals at many scales with increasing levels of 
resolution is embodied in a multi-resolution analysis [21]. The subject of filter 
banks, which is closely related to wavelet analysis, is covered in a number of good 
works that provide thorough explanations of wavelet analysis using mathematics 
[16, 40, 41].

The wavelet transform has been digitalized and is known as the discrete wavelet 
transform (DWT). It frequently accomplishes coefficient frugality by limiting the 
scale and sliding variation to powers of two; for this reason, it is also referred to as 
the dyadic wavelet transform and has the same name (DWT). However, by correctly 
reconstructing the original signal using the discrete coefficients of the dyadic wave-
let transform [42]. Even with the DWT, a non-redundant bi-lateral transform is fea-
sible if the wavelet belongs to an orthogonal family [15, 16].
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The two wavelet parameters are sampled dyadically as: s = 2-j, τ = k2-j. where j 
and k are both integers. The discretized probing function the becomes:
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(2.50)

The signal x(t) can be decomposed by using DWT. The process is given as:
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The wavelet series expansion, also known as the inverse DWT, is used to recover 
the original signal.
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where the set of orthonormal basis functions ψj,k(t) is present. The sum of two 
indices, j and k, which stand for the scaling and sliding of the basis functions j, k, 
determines the wavelet series expansion ψj,k(t). As a result, we provide a novel idea 
known as the scaling function, which makes it easier to apply and calculate the 
DWT.  The coarser resolutions are generated after the fine resolutions, using the 
original waveform’s smoothed version rather than the waveform itself. This 
smoothed form is created using the scaling function, often known as the smoothing 
function [15, 16].

2.3.2.3  The Empirical Wavelet Analysis

The Empirical Wavelet Transform (EWT), created by the authors of [43], is a time 
frequency approach for signal decomposition utilizing an adaptive wavelet depend-
ing on information content. In order to generate the proper wavelet filter bank, the 
EWT first identifies local maxima in the signal’s Fourier spectrum. Next, it sepa-
rates the spectrum into its component parts using the identified maxima.

It works in the three steps listed below [16].

 1. Use FFT to identify the applied signal’s frequency components.
 2. By accurately segmenting the Fourier spectrum, the various kinds are produced.
 3. To each segment that was discovered, apply the wavelet and scaling algorithms. 

The segmentation of the Fourier spectrum is the most crucial step in applying 
this approach to the data under analysis.

The empirical wavelets (Ψ(w)) are comprised of band-pass filters. The empirical 
scaling function ϕ(w) may be written as follows [43].
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and,
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The function β(x) is an arbitrary Ck[(0,1)] function defined by Eq. (2.55). Where 
. γ is a parameter to guarantee no overlap between two 

consecutive transition regions.
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Numerous functions fulfil these properties, the widely utilized in the literature is:
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A description of the EWT for the conventional wavelet transform is provided. 
The inner product with the empirical scaling function provided below yields the 
detailed coefficients, whereas Equation’s inner product with the scaling function 
yields the approximate coefficients (2.58). where the signal’s, x(t), Fast Fourier 
Transform is shown by (X(w)) [16].
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2.3.2.4  The Empirical Mode Decomposition

The authors of [44] created the Empirical Mode Decomposition (EMD). The zero- 
mean sum of AM-FM components is used in EMD to represent any signal. The 
algorithm, despite its remarkable accomplishment, has difficulty understanding of 
analytical formulations. The authors of [45] proposed a number of modifications to 
the initial idea. If the signal x(t) comprises two sequential extrema, a (local) high- 
frequency component or detail connected to the oscillation terminating at the two 
minima and proceeding to the maximum, that largely exists in between them can be 
utilized to define x(t). The method may then be used on the residual, which contains 
all local trends, to iteratively recover a signal’s constituent components. This can be 
done in an acceptable manner for all oscillations that make up the complete signal. 
The following is a summary of the effective EMD algorithm:

 1. List all x(t)'s extrema
 2. Use interpolation to connect minima to maxima), producing envelopes
 3. Determine the mean of envelopes, m(t)
 4. Use d(t) = x(t) − m(t) to extract the detail
 5. Repeat the loop with the residue

The aforementioned method must be refined in reality by a filtering technique by 
first iterating steps 1–4 on the detail signal d(t), till the latter may be deemed zero- 
mean according to some stopping condition [32]. After determining the associated 
residual and referring to the detail as an Intrinsic Mode Function (IMF), step 5 is 
complete. The number of extrema diminishes as one residual is added to the next, 
and the decomposition is said to be complete with a finite number of modes overall. 
On “spectral” arguments, modes and residuals are heuristically represented. Even 
with harmonic oscillations, the high vs. low frequency differentiation, which is 
analogous to the wavelet transform, is only useful locally. To choose modes, adap-
tive and completely automatic time-variant filtering is employed [16, 45].

2.4  Conclusion

To sum up, with the recent technological advancements, the biomedical sector is 
evolving. The cloud assisted mobile healthcare solutions are in trend these days. 
Their success is mainly based on the revolutionized advancement in the communi-
cation technology, wire-free biomedical implants, Internet of Medical Things, cloud 
computing and artificial intelligence. The identification or diagnosis of physiologi-
cal or pathological states is an important use of biomedical signals. In order to simu-
late and investigate biological models, these signals can also be used. Another usage 
is in the development of prosthetics and man-machine interface. Certain other 
usages are the identification and categorization of epilepsy, brain disorders, emo-
tions, lie detection, head injuries, blood oxygen levels, glucose levels, strokes, psy-
chiatric illnesses, sleep disorders, cerebral anoxia, cardiac diseases, lung diseases, 
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behavioral disorders, drug effect monitoring, alertness monitoring, and anesthesia 
depth control. The goal of the signal collecting, and processing chain is to use 
machine or deep learning to realize a model precisely or recognize critical compo-
nents or malfunctions in human bodily systems. Additionally, it enables the predic-
tion of future clinical or physiological occurrences using machine and deep learning. 
The acquired biological signal is typically a complicated mixture of signal, noise, 
and artifacts. Artifacts can be produced by instruments that use sensors, amplifiers, 
filters, and analog-to-digital converters. While power lines and electromagnetic 
radiation are thought to be the main sources of noise, muscle activity has the poten-
tial to add interference. The planned design standards might lead to a wise decision 
about the signal gathering and processing methods. For biomedical engineers and 
scientists, it is mandatory to understand the processes of signal acquisition, condi-
tioning and features extraction. In this framework, the principles of signal acquisi-
tion and pre-processing have been introduced in this chapter. Additionally, this 
chapter also tries to acquaint the readers with various key feature extraction 
approaches, used in the biomedical signal processing chains.

2.5  Assignments for Readers

• Describe your thoughts and key findings about the use of biomedical signal pro-
cessing in the healthcare sector.

• Mention the important processes that are involved in the biomedical signal 
acquisition process.

• Describe the key steps used in the analog-to-digital conversion process.
• Describe your thoughts about the use of pre-conditioning in the biomedical sig-

nals processing chain.
• Describe how the spectral analysis can complement the time-domain signal 

analysis.
• Describe the key difference between spectral and time-frequency analysis.
• Identify the feature extraction techniques, presented in this chapter.
• Present a brief comparison between the feature extraction techniques, described 

in this chapter.
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Chapter 3
The Role of EEG as Neuro-Markers 
for Patients with Depression: A Systematic 
Review

Noor Kamal Al-Qazzaz and Alaa A. Aldoori

Abstract Depressive symptoms may include feelings of melancholy, lack of inter-
est, and difficulty remembering and focusing. The existing techniques of detecting 
depression need a lot of interaction with humans, and the findings are highly reliant 
on the knowledge and skill of the doctor doing them. Electroencephalography 
(EEG) is a potential tool that reveals interesting information that can be used in 
diagnosis and evaluation of human beings’ brain abnormalities with excellent time 
resolution; however, detecting depression is a challenge for engineers and scientists 
to support personalized health care. However, EEG may provide an idea of cogni-
tive decline toward depression classification. To create a neurophysiological diag-
nostic index for therapeutic use that is sensitive to the severity of depression, it may 
be possible to combine the EEG with other biological, cognitive markers, and imag-
ing methods. The goal of the current study is to emphasize baseline EEG activity in 
depressed individuals, beginning with EEG signal collection and continuing through 
EEG data preprocessing steps for signal augmentation, linear and nonlinear proper-
ties. The subsequent focus will be on EEG signal extraction to account for the large 
swings of EEG signals, followed by classification approaches to differentiate the 
severity of depression. Therefore, the present review has examined the role of EEG 
signal processing and analysis in helping medical doctors and clinicians to deter-
mine suitable planning and optimal, more effective treatment programs.
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3.1  Introduction

The World Health Organization (WHO) estimates that 322 million individuals, or 
4.4 percent of the global population, suffer from depression [1, 2]. It is one of the 
major mental illnesses that contribute to disability. Depression raises the chance of 
suicide significantly, which adds to the burden on patients, their families, and soci-
ety [2] in addition to a number of physical problems.

Due to a lack of understanding, incompetent medical personnel, a lack of fund-
ing, and inaccurate diagnoses, a surprising 50% of patients with depression go 
untreated. A detailed understanding of the etiology and pathophysiology of the ill-
ness is urgently required, as is the development of a precise and effective method for 
identifying depression. If identified properly and with quick recognition, this dis-
ease can be easily treated [2].

One type of mental illness, known as major depressive disorder (MDD), has a 
significant impact on the patient, the healthcare system, and the economy Depression 
has been recognized as a substantial global source of impairment and disability 
among persons of working age [3], with a tendency to worsen physical and cogni-
tive impairments and limit performance on professional duties. According to predic-
tions made by MDD, adjusted life years in high-income nations would be 
considerably influenced by the disease by 2030 [4], which will cause major produc-
tivity losses due to presenteeism and absenteeism (failing to show up for work due 
to illness) (being present at work while sick). According to a 2003 World Health 
Organization study on mental health, employees with depression have an average 
yearly health care spend that is 4.2 times higher than that of a typical benefi-
ciary [4–6].

To demonstrate the spatiotemporal feature of EEG, researchers have used non- 
invasive electroencephalography (EEG). When analyzing emotions, there are signs 
of sadness, seizures, Alzheimer’s, Parkinson’s disease, and more [2, 7–11].

In order to help the reader identify gaps, areas of agreement, key references, and 
other details that will help future research, this article highlights various gaps and 
difficulties in depression studies that have emerged in recent years while also pro-
viding a concise summary of each of these works. In order to do this, a methodical 
mapping process was undertaken, which included a review of the literature on non-
invasive EEG depression markers that was mainly published between 2018 
and 2022.

3.2  Brain Structure and Depression

The electroencephalogram (EEG) is a conductivity monitoring tool which records 
extremely irregular electrical activity of brain impulses and offers crucial informa-
tion about various areas of the brain [9]. It offers methods for capturing brain elec-
trical activity over time that are both non-invasive and affordable [12]. It is 
extensively used for doctors to study how the brain works and to identify physical 
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disorders. Since EEG is reliable, it is also employed in EEG biometrics for person 
verification [8, 13–19]. Furthermore, the EEG method is the most accurate due to its 
simplicity and high temporal resolution when compared to other methods for detect-
ing depression (such as audio [20], facial [21], and MRI [22]).

Both depression and bipolar illness are signs of a brain problem. The aberrant 
structure of EEG signals manifests as variances in signal patterns for different 
patient states, allowing for the exact diagnosis of brain disorders, and the EEG 
responds to the biotic activities of the brain [9]. Fine contrasts between the chaotic 
and composite nature of normal and sad EEG data represent diverse brain processes 
in the depressive and normal groups that are challenging to show graphically [23].

3.2.1  Brain Structure

The brain is a remarkable organ that controls all bodily functions and processes 
environmental data. The brainstem, cerebellum, and cerebrum, all of which are 
located inside the skull, make up this structure [24]. One of the most crucial areas 
of the brain is the cerebrum. It is capable of doing complex tasks such as predicting 
touch, visuals, audio, speaking, mental skills, training, and correct motion control. 
The cerebrum is divided into two hemispheres, each of which has its own fissures 
and governs the opposing side of the body. Each hemisphere has four lobes: frontal, 
temporal, parietal, and occipital. The frontal lobe is in charge of consciousness, 
processing complex inputs as well as the senses of sound and scent are within the 
purview of the temporal lobe, the parietal lobe is in charge of managing objects and 
processing sensual information, and the occipital lobe is in charge of processing 
information related to the sense of sight [25]. The voltage differential between a 
scalp electrode and an ear lobe reference electrode is isolated during monopolar 
recording. On the other hand, bipolar electrodes record the voltage variation 
between two scalp electrodes [23].

3.2.2  Depression Types

There are several different types of depressive diseases Fig. 3.1. It’s helpful to be 
aware of the many illnesses and their distinctive symptoms because symptoms can 
range from mild to severe [26].

3.2.2.1  Major Depression Disorder (MDD)

Major depressive disorder (MDD), one of most prevalent kind of depression, is 
characterized by a pervasive sensation of melancholy. Depressed mood, decreasing 
interests, diminished cognitive ability, and vegetative signs such irregular eating and 
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Fig. 3.1 Depression types

sleeping schedules are the hallmarks of MDD. One in six persons will experience 
MDD at some point in their lives, which affects almost twice as many women as 
males [26].

3.2.2.2  Premenstrual Dysphoric Disorder (PMDD(

Premenstrual dysphoric disorder is now considered to affect 3 to 8% of women of 
reproductive age who fit the rigorous criteria (PMDD).Studies show that the number 
of people who have clinically severe dysphoric premenstrual disorder is likely to be 
higher. Even if a woman doesn’t have more than the arbitrary number of five indica-
tors on the PMDD list, 13 to 18 percent of women of childbearing age may be 
unable to work or feel uncomfortable because of premenstrual dysphoric symp-
toms [27].

3.2.2.3  Psychotic Depression

The intensity of major depression was once thought to range from mild to severe, 
with psychotic depression being at one extreme. Experience gained later showed 
that psychosis is a distinct characteristic that may coexist with mood disorders of 
various degrees of severity. Poorly understood are trauma-related temporary or mild 
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schizophrenia, emotional incongruent features, and psychotic symptoms. While 
much is understood more about effects of extreme mood delusions and hallucina-
tions on the progression and responsiveness to treatment of depression, there is still 
more to learn [28, 29].

3.2.2.4  Postpartum Depression (PPD)

The phrase “postpartum depression” refers to a wide range of mood disorders that 
arise after a baby is born. It’s important to distinguish between the two because they 
may require quite different treatment options or none at all. Postpartum depression 
(PPD) affects 10–15% of new moms, however many instances go unreported [30]. 
Postpartum depression should not be confused with postpartum blues, which are 
transitory mood symptoms that occur within the first week to ten days following 
birth and normally go away within a few days [31].

3.2.2.5  Persistent Depressive Disorder (PDD)

There are four diagnostic subgroups for persistent depressive disorder (PDD), 
which is defined as a depressed illness lasting at least two years (dysthymia, chronic 
major depression, recurrent major depression with incomplete remission between 
episodes, and double depression). In the Western world, persistent types of depres-
sion account for a considerable number of depressive disorders, with lifetime preva-
lence rates ranging from 3 to 6 percent [32].

3.2.2.6  Seasonal Affective Disorder (SAD)

Seasonal Affective Disorder (SAD) is a recurrent major depressive disorder with a 
seasonal pattern that often begins in the fall and lasts through the winter. The “win-
ter blues,” also known as S-SAD, is a subsyndromal variation of SAD. SAD is less 
likely to cause depression in the spring and early summer. A low mood and a lack 
of energy are the most common symptoms. Females, those under the age of 35, 
those living far from the equator, and those with a family history of depression, 
bipolar disease, or SAD are the most vulnerable [33].

3.2.3  Effect of Depression on the Brain

Three regions of the brain are involved in memory and emotion regulation: the 
amygdala, located in the basal ganglia, the hippocampus, located in the temporal 
lobe (the frontal portion of the temporal lobe),are all affected by depression and 
bipolar disorder [34]. The hippocampus controls the release of the stress hormone 
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cortisol and preserves memories. When someone is depressed, their body releases 
cortisol; however, when too much cortisol is released and carried to the brain, it 
causes problems. In persons with MDD, prolonged exposure to high cortisol levels 
can prevent the growth of new neurons. It also affects memory issues by shrinking 
the neurons in the hippocampus. The prefrontal cortex, which is located in the fron-
tal lobe, is important for emotion regulation, decision-making, and memory forma-
tion. When cortisol levels in the brain become too high, the prefrontal cortex shrinks. 
The amygdala is a structure in the temporal lobe’s frontal region that controls emo-
tional responses. Because of the constant exposure to a high cortisol ratio, the 
amygdala in depression and bipolar disorder patients grows larger and more active. 
Sleep difficulties and other activity patterns can result from an enlarged and manic 
amygdala, as well as erratic activity in other parts of the brain. Cortisol levels usu-
ally rise in the morning and fall at night. The cortisol ratio is usually higher in MDD 
patients, even at night [23].

3.3  Depression Diagnosis

Currently, the diagnosis of depression may be made using a variety of symptoms 
that aid physicians in evaluating many aspects of depressive functioning. The bio-
markers, psychological evaluations, and physiological measurements are the most 
often utilized symptom-based diagnostic tools.

3.3.1  Biomarkers

A biomarker may be used to study the biology of depression as well as to predict or 
evaluate the risk of developing the disease, which are both necessary steps in the 
process of finding a clinical diagnostic or therapeutic intervention monitoring that 
may modify or stop the condition [35, 36]. A trait that can be reliably tested and 
evaluated as a predictor of physiological processes, pathologic processes, or 
responses to a therapeutic intervention is referred to as a biomarker [37]. Markers 
should not be mistaken with symptoms of a particular illness. Ideal candidates for 
the biomarker should be people who are at risk of depression and those who can 
recognize neuropathological processes even before a clinical diagnosis.

Figure 3.2 depicts the classification of biomarkers that Lopresti et al. [38] sug-
gested. The classification of biomarkers comprises prognostic biomarkers, which 
are used to forecast how the illness will progress, diagnostic biomarkers, which are 
used to identify if a disease is present or not, therapy biomarkers, which may be 
useful in determining the best therapeutic option for a specific patient from a variety 
of therapeutic options, treatment-response biomarkers (also known as mediators), 
which are used to gauge treatment progress, and prediction biomarkers. Additional 
categories for biomarkers include trait, state, and endophenotype ones [39]. In 
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Fig. 3.2 Biomarkers subtypes

addition to the acute stage of the illness, trait biomarkers are those that can be reli-
ably found before the onset of the disease or even in remission. Because of the final 
characteristic, they somewhat resemble predictive biomarkers [37].

3.3.2  Psychological Assessments

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 
published by the American Psychiatric Association (APA) [40], Depressive disor-
ders include but are not limited to Major Depressive Disorder (MDD), Disruptive 
Mood Dysregulation Disorder (DMDD), Persistent Depressive Disorder 
(Dysthymia), Premenstrual Dysphoric Disorder (PDD), Substance/Medication- 
Induced Depressive Disorder (S/M-IDD), and Depressive Disorder Due to Other 
Medical Conditions (DDOC) [40, 41]. The genesis of MDD is linked to genetic, 
biochemical, hormonal, immunological, neurological, and environmental variables, 
as well as acute life events and neuroendocrine systems, according to [42]. While 
other varieties of depression have many of the same symptoms as MDD, they differ 
in a number of ways. DMDD, for example, is a non − episodic disorder that affects 
adolescents and teenagers. Obstinately irritable, displeased moods, as well as recur-
ring temper outbursts, are symptoms. Dysthymia is a type of depression that lasts 
for a long time. During the last week or two before the menstruation begins, PDD 
produces extreme irritation and anxiousness [43]. The long-term type of MDD 
known as S/M-IDD (Drug/Medication-Induced Depressive Disorder) is brought on 
by or follows substance misuse. Depressive disorder caused by another medical 
condition might be brought on by ongoing diseases and persistent bodily suffering 
(DDDAMC) [23].
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3.3.3  Physiological Measurements

Reducing the number of failed therapy trials could enhance MDD treatment. This 
outcome is expected if predictive measurements are used to accurately predict treat-
ment results. The predictive measures must be sufficiently sensitive to changes in 
illness states, according to the definition [44–46]. These should also be suitable for 
therapeutic applications, like precise therapy forecasts for certain patients. The 
development of EEG/ERP metrics for assessing the efficacy of MDD treatments 
will be the main topic of this section. The EEG and ERP data that have shown sig-
nificant associations with the R or NR subgroups will be explained, along with the 
values that were extracted from those data. Examples include EEG theta accor-
dance, asymmetries, antidepressant treatment response (ATR) score, and alpha and 
theta activations [47].

For MDD patients it was discovered that the ERP elements, P300 levels, and 
latencies were related with therapeutic efficacy [47, 48]. The Loudness Dependence 
Auditory Evoked Potential (LDAEP) ERP type explains how one EPR component 
(N100/P200) varies when the auditory input becomes louder. It’s thought to mea-
sure the amount of serotonergic neurotransmission in the primary auditory cortex. 
Lower LDAEP readings suggested higher chemical (serotonin) levels in the brain, 
and vice versa. The following subsections discuss related studies [47].

An auditory evoked potential (AEP) is an ERP component that is obtained by 
grand averaging numerous auditory stimuli of a single type AEP. AEPs have been 
found to have a beneficial relationship with cognitive capacities and brain auditory 
processes [49, 50]. In addition, a delay in the P300 component has been linked to 
depression [51]. Similar findings were reported in other investigations that only 
demonstrated a delay in P300  in MDD patients compared to controls [50, 52]. 
During LORETA analysis, there was also a drop in P300 intensity in the right hemi-
sphere [53]. When compared to healthy controls, depressive individuals had longer 
P300 latencies for visually evoked stimuli [54]. The P300 delay returns to normal 
after 4 weeks of antidepressant use [47]. Furthermore, the normal P300 amplitude 
predicted electro-convulsive treatment response [55]. In contrast, there were no dis-
cernible variations in P300 amplitude between those who responded to the therapy, 
those who did not react, and the controls [56].

3.4  EEG-Based Depression Recognition Neuromarker

Neurological illnesses are challenging to accurately diagnose due to the absence of 
recognized biomarkers and the patient’s subjectivity while responding to psycho-
logical evaluation questionnaires [57]. Research has examined the use of non- 
invasive EEG in order to search for biomarkers for the purpose of diagnosis or 
therapy prediction in light of this [58–61]. The search for non-invasive indicators of 
depression using EEG is crucial as it might help with more accurate illness 
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diagnosis, which is now done through questionnaires that are vulnerable to profes-
sional and patient subjectivity. But it’s also problematic because depression has a 
vast variety of signs and symptoms [62] and a high level of comorbidity, particularly 
with anxiety [63], resulting in contradictory biomarker findings. Given the intricacy 
of depression, it’s critical in order to keep up with the most recent findings of 
research on depression biomarkers [61].

EEG and ERP has role based prognostic biomarkers for MDD are discussed in 
[47]. Referenced EEG (rEEG) and ERP biomarkers P300, theta band activations, 
theta QEEG cordance, and asymmetrical alpha power [64]. The P300’s potential 
clinical use as a marker for persons with present major depressive disorder in [65]. 
Previous studies have demonstrated that the Alpha and Theta frequency bands can 
provide information on the diagnosis and treatment of depression [66, 67], Gamma 
bands were not widely recognized in depression diagnosis [68].

In contrast, by giving some notable data on gamma pulses, [69] declares gamma 
waves as a depression diagnostic biomarker [70] EEG characteristics, including 
linear and nonlinear biomarkers and the Phase Lagging Index (PLI) at the patient’s 
resting state, are used to identify depression. The frontal Theta asymmetry was used 
as a biomarker for depression by [67]. According to [71] multi-modal should be 
employed to diagnose MDD since depression affects not only mood but also psy-
chomotor and cognitive processes [72]. looked at brainwaves as a possible bio-
marker for MDD risk assessment. The neural activities aren’t just valuable in 
detecting depression, but also provide the groundwork for effective and dependable 
depression therapy. Compared to neuroimaging approaches, EEG-based depression 
biomarkers offer significant advantages [23].

3.4.1  EEG and the Brain

Due to the complex nature of electric brain activity that recorded as an EEG, it is 
necessary to characterize EEG fluctuations to understand its nature. Clinical EEG 
waveforms generally have physiological amplitudes of between (10 and 100) μv 
and frequencies between (1 and 100) Hz. According to their frequency ranges, EEG 
may be divided into five rhythms.

Alpha waves (α) are rhythmic waves that occur in awake, relaxed adults with 
their eyes closed and are associated with intelligence, memory, and cognition [73]. 
They have a frequency range of (8  to  13) Hz and a normal voltage range of 
(20 to 200) μV, and they vanish in pathological conditions like coma or sleep [74]. 
It is visible at the back of the head and reflects activity in the frontal, parietal, and 
occipital regions of the scalp [75].

Beta waves (β) have smaller amplitudes ranging from of (5 − 10) μv, and fre-
quencies that are greater than those of waveforms, in the range of (13 − 30) Hz [73]. 
Records from the frontal and parietal lobes of the scalp [75].

Theta waves (θ) have a frequency range of (4 to 7) Hz and are most prevalent 
during sleep, as well as during emotional stress, arousal in adults and older children, 
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and idleness. It has an amplitude range of (5 − 10) μv and is recorded from the 
scalp’s temporal and parietal area [73]. Based on their activities, people exhibit two 
different forms of theta. It has been connected to endeavors including concentra-
tion, focus, mental effort, and stimulus processing [75].

Delta waves (δ) have an amplitude range of (20 – 200) μv and a lowest frequency 
of less than 3.5 Hz. Deep sleep, infancy, and severe organic brain illnesses are times 
when it happens [73].

Gamma waves (γ) have frequencies between 30 and 100 Hz [73]. In the case of 
cross − model sensory processing, during short − term memory to recognize noises, 
objects, and tactile sensations, and in the pathological situation brought on by cog-
nitive decline, especially as it related to band [75] recordings from the somatosen-
sory cortex were made.

It is interesting to note that alpha and beta wave activities rise linearly through-
out the lifespan while delta and theta wave activities decrease with age [76]. Delta 
current density and glucose metabolism have an antagonistic connection in the 
event of cerebrovascular illness, such as stroke, and this relationship changes as a 
result of depression in the sub-genual prefrontal cortex [77].

An individual’s morphological EEG when they are healthy, K − complex is tran-
sient complex waveforms that have amplitude of about 200 μv and a slow frequency 
of 14 Hz. During sleep, it happened suddenly or in reaction to a quick stimulation 
and was linked with sharp components [78, 79].

Lambda wave is a monophasic, positive, sharp waves with an amplitude of less 
than 50 μv appeared posteriorly in the occipital lobes. It has to do with eye move-
ments and visual exploration together [78]. Mu rhythm is located in the middle of 
the scalp, it appears as a cluster of waves with an arcade or comb form and ampli-
tude less than 50 μv with a frequency range of (7 to 11) Hz. When there is thinking, 
preparedness, and contralateral movement of tactile stimulus, it manifests as blocks 
[78]. Spike is a transient, pointed peak, propagation duration (20 – 30) msec [78].

Sharp waves are transitory, sharp peak, propagation duration (70 − 200) msec 
[78]. Spike and wave rhythm consists of a series of surface sluggish, negative waves 
with a range of frequencies (2.5 − 3.5) Hz and amplitude of up to 1000 μv. It can 
sometimes manifest as complex waves and polyspikes [78]. Sleep spindle is an 
episodic rhythm occurred over the fronto − central area of the brain during sleep at 
a frequency of 14 Hz and an amplitude of 50 μv [78]. Vertex sharp transient, also 
known as a V − wave, is a response to sensory events experienced during sleep or 
awake and has an amplitude of roughly 300 μv [78].

3.4.2  Experimental EEG Protocol for Recognizing Depression

The experimental protocol for EEG depression detection includes a standard set of 
regulations, including the participants, subject selection criteria, EEG recording 
length, and other details.
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In terms of the participants, there can be anywhere from one and two hundred, 
with a median of 30 people, depending on the study [41, 80–83], however other 
researches have been involved more than 50 participants [84–91]. Research with 
limited number of individuals have been illustrated challenges in determining the 
accuracy and in getting the final the findings [92–94].

Regarding participant gender, the majority of studies involve both male and 
female individuals [95]; however, only a small number of studies exclusively use 
female participants to detect severe depressive disorder using EEG. Men and women 
must both participate in studies since there is a chance that they will view depres-
sion in different ways [23].

Healthcare professionals and researchers frequently utilize the Beck Depression 
Inventory (BDI) [96] as a screening tool before making a diagnosis of depression or 
anxiety. Patients with MDD are chosen for this exam based on many  multi-
ple − choice questions. Patients having a BDI − II score of greater than 13 are cat-
egorized as depressive subjects. A high overall BDI −  II score demonstrates the 
severity of depression. Many research employ the BDI to choose subjects [90, 92–
94, 97].

The Diagnostic and Statistical Manual of Mental Disorders (DSM − IV), devel-
oped by the American Psychiatric Association (APA), has also been used in several 
research to quantify various mental illnesses [40]. A DSM − IV-based questionnaire 
is used as a preliminary psychometric test to evaluate depression in EEG -based 
diagnoses and most articles used it as a preliminary EEG test [90, 91, 98].

3.4.3  EEG Publicly Available Dataset 
for Depression Diagnosis

Due to the sensitive nature of the data and privacy and confidentiality concerns, few 
public datasets for EEG -based depression diagnosis are accessible.

The Healthy Brain Network (HBN) public data biobank was established by the 
Child Mind Institute [99]. HBN′s major goal is to create a data collection that cor-
rectly captures the broad range of variance and impairment that defines develop-
mental psychopathology [99].

The National Institute of Mental Health has made the Establishing Moderators/
Mediators for a Biosignature of Antidepressant Response in Clinical Care 
(EMBARC) dataset accessible to the general public (NIMH). Using EEG in the rest-
ing state and an algorithm for machine learning, it may be possible to determine the 
neurological signal of antidepressant medication response [100].

In the Depression public dataset, which is utilized in this study, motor activity 
recordings of 23 unipolar and bipolar depressed patients and 32 healthy controls 
are included [101].

Trans Diagnostic Cohorts [102] is assessed the effectiveness of brief transdiag-
nostic cognitive-behavioral group therapy (TCBGT) in treating individuals with 
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anxiety and depression. Instead of focusing on a single element, they conceptualize 
mental illness in terms of domain-wide inequalities [103].

Patient Repository for EEG Data and Computational Tools is a sizable, open- 
access dataset (PREDICT) contains EEG data [104]. There are numerous data 
repositories that house patient-specific information and imaging data. The Patient 
Repository for EEG Data + Computational Tool (PRED + CT) website is among the 
few that offer EEG -based patient-specific data [23].

3.4.4  Function of EEG in Depression Detection 
and Classification

For additional signal processing to extract significant indicators and depression 
classification, noise from the collected EEG dataset is need to be eliminated. The 
four basic phases in processing EEG signals are EEG signal capture, preprocessing, 
feature extraction, and classification.

3.4.4.1  EEG Signal Acquisition Stage

The EEG is a medical equipment that records data from the scalp using conductive 
material and metal electrodes and displays the electrical activity of brain neurons 
[105]. A low − pass, high − pass, and notch filter can be found in one of the most 
used EEG devices [106]. With a 50 Hz or 60 Hz notch filter, the usual frequency 
range for EEG recordings in depressed individuals is 0.3 Hz to 70 Hz [112]. The 
application determines the sampling frequency [23, 107]. The American EEG 
Society has recognized the worldwide federation’s 10–20 system for recording the 
EEG of depressed patients while they are peacefully resting with their eyes closed 
[107–109]. For EEG recordings on depressive individuals, researchers have 
employed 19 electrodes [108–110].

3.4.4.2  Preprocessing Stage

Preprocessing is essential to distinguish vital information from tainted EEG signals 
since these artifacts reduce the quality of the genuine EEG signals [111].

A low − pass, high − pass, and notch filter can be found in the most widely used 
EEG device to enhance the performance of EEG signals [112].

A 12 bit A/D converter digitizes the signal to increase its accuracy. It is deter-
mined by the application whether the sample frequency is 128  Hz, 173  Hz, or 
256 Hz. The EEG signal will then be captured, typed down, and presented on a 
computer screen for further examination [23, 107].
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The frequencies of EEG signals and the majority of artifacts overlap. The EEG 
signal was contaminated by both physiological and non-physiological [113–117]. 
Because noise has a direct influence on the characteristics of the EEG signal, several 
signal processing algorithms have been developed to overcome this problem and 
obtain relevant data from the recorded EEG 3 signal

A collection of recorded EEG signals are divided into their sources using the 
blind source separation higher order statistical technique known as independent 
component analysis (ICA) [118–120].

To process non-stationary signals, such as EEG, the Wavelet transform (WT) 
method was developed [121–124].

Combining ICA and WT to create an ICA − WT hybrid strategy was done by 
Nazareth et al. and other researchers [125]. Additionally, the WT can divide EEG 
signals into various sub-bands [126– 131]. Electrooculography (EOG) and muscu-
lar activity (EMG) artifacts have been successfully eliminated using the ICA − WT 
approach [11, 132]. So, the signal is prepared for the following step (i.e., feature 
extraction stage).

3.4.4.3  Features Extraction Stage

To identify depression and create a relevant diagnostic index using EEG, feature 
extraction is used to the denoised EEG signal from the preceding stage. In this 
stage, linear and nonlinear algorithms are used to retrieve the pertinent data from the 
EEG of depressed patients.

3.4.4.3.1 Linear Spectral Features

It is simple to examine the power amplitudes for each band using linear spectral 
analysis, a direct information source acquired by EEG from the frequency domain. 
Alpha denotes mental sluggishness and relaxation [133, 134], whereas beta is 
related to expectancy [134], anxiety and introverted concentration [135]. Moreover, 
theta is considered for emotional processing [136, 137] and gamma is associated to 
attention, sensory systems [134] and may be related to mood swings [69]. However, 
delta is related to deep sleep [134].

The engineering way to diagnose depression is to explore essential biomarkers 
which would be applied to classification algorithms using power spectral features 
[138–140].

Recent research by Lee et  al. [141] indicates that depressive individuals have 
lower beta waves in the central-left side of the brain than emotionally stable indi-
viduals and greater alpha waves on the left side of the brain. Last but not least, 
Dolsen et  al. [142] found that depressed participants who had suicidal thoughts 
showed greater alpha activity during the whole night of sleep compared to those 
who had low suicidal thoughts.
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Band power has thus been extensively examined and is simple to incorporate into 
classifiers that distinguish between depressed and healthy people. Regarding this, 
Fitzgerald evaluated some data in a high impact research [69] that suggests mono-
polar depressive individuals have elevated gamma activity.

On the other hand, although additional research is required to fully understand 
the role that delta and theta waves play in depression, they do appear to be worthy 
of consideration [138, 143]. Regarding theta, it appears to be a useful characteristic 
in diagnostic tools [139, 140, 144], but nothing is known about the mechanics 
underlying it. Furthermore, the beta wave appears to be more correlated with the 
anxiety and ruminative thoughts that are prevalent in depressed patients but may not 
be as critical for a precise diagnosis [61].

3.4.4.3.2 Nonlinear Features

Since many years ago, nonlinear dynamic methods have been extensively employed 
to examine the EEG signal. The complex dynamic information that is reflected from 
the cerebral cortex and captured by EEG devices has been studied by researchers 
using EEG [145, 146]. Brain behavior can be categorized as nonlinear because brain 
neurons are regulated by nonlinear phenomena including threshold and saturation 
processes [147, 148].

The Correlation Dimension (CD) and Maximum Lyapunov Exponent are the 
first nonlinear approaches that were used to analyze EEG in order to quantify 
depression based on EEG data as biomarkers (MLE). In order to determine how 
many independent variables are required to characterize a dynamic system, 
Grassberger and Procaccia adopted the CD method in 1983 [144, 149]. The CD 
method indicated the degree of freedom of a signal, with lower values indicating a 
reduced degree of unpredictability in the signal. On the other hand, Wolf used MLE 
as a dynamic metric to assess the adaptability of the system in 1985 [150, 151]. 
Fractal dimension (FD), Lempel-Ziv Complexity (LZC), which measures a signal’s 
complexity and was first developed by Lempel and Ziv in 1976, can be used to pre-
dict the early identification of depression [152, 153]. It is shown that sad people 
have generally lower LZC values. In addition, Higuchi’s Fractal Dimension (HFD), 
proposed by Higuchi [157], reveals the fractal dimension of a signal [89, 154] and 
Detrended Fluctuation Analysis (DFA), presented by Peng et  al. [156], indicates 
long-time correlations of the signal [58]. Entropy approaches, such as sample 
entropy (SampEn) and Kologorov entropy, Tsallis Entropy (TsEn), approximation 
Entropy (ApEn), SampEn, and multiscale Entropy (MSE) [148, 158–163], have 
been used to address the complexity or irregularity in the system’s capacity to gen-
erate information.

Researchers [47, 140] have used nonlinear features, such as DFA, to train a clas-
sifier and discriminate between healthy and depressed people. In comparison to 
healthy persons, depression significantly lowers DFA, according to Bachmann 
et al. [154].
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In terms of signal complexity, HFD tends to be greater in depressed brains [58, 
154], indicating a complex signal consistent with lower DFA findings.

The results utilizing DFA and HFD are consistent with the CD signaling a cha-
otic signal. Regarding LZC, it appears that the methodology may have skewed the 
findings because Kalev et al. [155] used a multiscale approach and observed various 
effects depending on the frequency whereas Bachmann et  al. [154] found no 
difference.

3.4.4.4  Dimensionality Reduction Stage

Principal Component Analysis (PCA) [164] is one of many techniques that may be 
used to do dimensionality reduction in order to choose the ideal collection of fea-
tures for automatic depression detection [165–167]. H. Cai et  al., however, have 
utilized four feature selection techniques for this purpose, including Wrapper 
Subset, Correlation Attribute, Gain Ratio Attribute, and PCA [168].

The strategy of minimal-redundancy-maximum-relevance feature selection has 
been used in [149]. Additionally used in [169] is the sequential backward feature 
selection (SBFS) algorithm, while [170] applies differential evolution, a population- 
based adaptive global optimization algorithm.

3.4.4.5  Depression Classification Techniques

EEG is a very accurate classification method whose accuracy is directly connected 
to the quality of extracted features, and dimensionality reduction and classifiers are 
proposed to enhance EEG classification. Because of its accuracy and applicability 
in various research, linear Discriminant analysis (LDA) and Support Vector Machine 
(SVM) classifiers are the most prominent approaches used to categorize brain ill-
nesses such as dementia and epilepsy [165, 166].

Different categories of machine learning based algorithms have been explored 
for EEG based depression diagnosis such as SVM based classifiers (Least Square- 
Support Vector Machine (LS −  SVM) [171], SVM with different kernels [168], 
Linear and Quadratic Discriminant analysis based classifiers (LDA) and (QLDA) 
respectively, Ensemble architectures (Bagging, Rus-Boost (RB), GentleBoost (GB), 
and Random Forest (RF)), Logistic Regression (LR)), K-Nearest Neighbors (KNN) 
and its variants, Tree-based (Decision Tree (DT), J48, complex-tree), and others 
(Gaussian Mixture Model (GMM), BayesNet) [98, 168, 169, 172, 173].
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3.5  Discussion

The literature has been used in this study to distinguish between the various depres-
sion- based EEG subtypes. Large-scale research is needed to discover trustworthy 
biomarkers that can aid in the diagnosis of depression, which is seen as a significant 
clinical challenge. Recent studies have looked into the potential for linear and non-
linear EEG -based biomarkers to be a distinguishing factor between various MDD 
episodes and depression severity scales.

The accurate sub-types of depression are the next significant challenge for 
depression-based EEG. Although it was a good effort, none of the machine learning 
models worked the best for all patients. Therefore, employing EEG -based data- 
driven methods, the answer to this significant issue can be investigated.

There has been a lot of interest in the identification and diagnosis of depression. 
Combining reliable markers with diagnostic criteria could achieve this. The detec-
tion of both episodes and subtypes of depression may be aided by neuropsychologi-
cal tests and biomarkers evaluated against several depressive signs. We desperately 
require a marker for diagnosing depression that is precise, specific, and economical. 
EEG is a desirable technology for the early diagnosis and categorization of depres-
sion kinds and stages due to its low cost and non-invasive nature. The use of EEG 
as a neuro-marker to aid in the diagnosis of depression was the main topic of this 
review. Neurologists’ subjective training makes it difficult to assess an EEG objec-
tively, which leaves room for error. Additionally, it takes a lot of time and might not 
be able to pick up on little EEG changes, whereas computerized EEG signal analy-
sis could streamline medical professionals’ tasks and aid in more objective decision- 
making. Table  3.1 compares EEG acquisition devices, preprocessing, feature 
extraction, dimensionality reduction, and classification techniques used in research 
to diagnose depression.

In fact, BPFs and notch filters have been employed extensively in the preprocess-
ing step [154, 174]. As shown in Table 3.1, [168, 171] frequently employs linear 
spectral components such as power gamma, beta, alpha, theta, and delta. Nonlinear 
entropy investigations, however, have produced good performance findings 
[170, 175].

They used a combination of classification algorithms to see if they could enhance 
the performance, sensitivity, and specificity of the best clinical diagnosis for early 
detection and classification of depression, based on its applicability in a variety of 
disciplines and empirically strong performance. SVM, on the other hand, is the most 
widely used machine learning-based algorithm that produces great performance 
outcomes for diagnosis [171] (refer to Sect. 3.1). KNN technology is widely used 
and produces excellent results. For the aim of classification, probabilistic models 
like LR, for instance, have received a lot of attention. DT is the most used algorithm 
for tree-based classifiers. Overall, SVM and KNN perform the best in terms of mul-
tiple performance measures, getting good classification results (around 99 percent) 
in the majority of the experiments.
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3.6  Conclusion

Electroencephalogram has been emphasized as a study tool and prospective neuro-marker 
for diagnosing depression and grading its sorts in this review by offering succinct details on 
brain activity and how it is altered by various depression types. It should be mentioned that 
the review has highlighted discoveries relating to depressive illness at times. The reason for 
this is because there is a far larger body of information on depression sickness. The analyzed 
datasets were typically small as well, necessitating additional study to support the promising 
findings. On the other hand, the electroencephalogram has received high marks from numer-
ous studies for its value as a clinical evaluation tool in the diagnosis of depression. Because 
of its low cost and accessibility, extremely sensitive electroencephalogram -based detection 
of depressive episodes and subtypes categorization is a generally wanted screening strategy 
in clinical practice. It is a promising method that can be utilized to adapt or tailor the best 
treatment plans for depression sufferers.
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Chapter 4
Brain-Computer Interface (BCI) Based 
on the EEG Signal Decomposition 
Butterfly Optimization and Machine 
Learning

Mawadda Alghamdi, Saeed Mian Qaisar, Shahad Bawazeer, Faya Saifuddin, 
and Majed Saeed

Abstract The Brain-Computer Interface (BCI) is a technology that helps disabled 
people to operate assistive devices bypassing neuromuscular channels. This study 
aims to process the Electroencephalography (EEG) signals and then translate these 
signals into commands by analyzing and categorizing them with Machine Learning 
algorithms. The findings can be onward used to control an assistive device. The 
significance of this project lies in assisting those with severe motor impairment, 
paralysis, or those who lost their limbs to be independent and confident by control-
ling their environment and offering them alternative ways of communication. The 
acquired EEG signals are digitally low-pass filtered and decimated. Onward, the 
wavelet decomposition is used for signal analysis. The features are mined from the 
obtained sub-bands. The dimension of extracted feature set is reduced by using the 
Butterfly Optimization algorithm. The Selected feature set is then processed by the 
classifiers. The performance of k-Nearest Neighbor, Support Vector Machine and 
Artificial Neural Network is compared for the categorization of motor imagery 
tasks by processing the selected feature set. The suggested method secures a highest 
accuracy score of 83.7% for the case of k-Nearest Neighbor classifier.
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4.1  Introduction

The World Health Organization (WHO) estimates that there are over 1 billion 
impaired persons, 20% of whom experience severe functional challenges on a daily 
basis [1]. For example, 75 million individuals use wheelchairs every day. This 
amounts to 1% of the global population. That is equivalent to double Canada’s pop-
ulation [2]. Brain-Computer Interface (BCI) technology can significantly improve 
the lives of this sizable segment of the population.

With the use of the BCI, a person may interact with or control the outside envi-
ronment without utilizing regular neuromuscular pathways. Hence, supporting peo-
ple with severe motor impairment, paralysis, or those who lost their limbs by 
translating their brain activity and intentions into actions allowing them to assist 
themselves [3]. Such invention helps a big slice of society regain their social lives 
and become productive again rather than being a burden, thus implying the prosper-
ity of society.

Using BCI, translating brain waves into commands to control assistive devices 
can be a convoluted process with many parameters to consider. For example, when 
the brain signals are acquired with the non-invasive method of EEG, the signals are 
subjected to a lot of noise because the skull and scalp act as barriers between the 
electrodes and the brain [4]. Therefore, the challenge is to apply appropriate filter-
ing and conditioning to the acquired brain signals to get clear patterns that can be 
decoded with Artificial Intelligence (AI) algorithms. After all, an accurate start to 
the interface reduces intent translation errors and ensures more precise robot control 
at the end.

4.2  The Evolution of BCI

The history of BCI goes back to 1875 when Richard Canton discovered the pres-
ence of electrical signals in animals’ brains [5]. About a hundred years ago, Canton’s 
discovery inspired Hans Berger, a German neuroscientist, to record in 1924. It was 
the first ever non-invasive EEG study employing needle electrodes with a clay tip to 
record electrical activity in the human brain [6]. In a 17-year-old adolescent with a 
possible case of brain cancer, the electrodes were positioned at the trepanation site 
and attached to a galvanometer. In 1929, Berger demonstrated that electrical current 
variations could be recorded with electrodes put on the skin above the skull gap in 
a paper titled “Über das Elektrenkephalogramm des Menschen” [7].

Then, the University of California, Los Angeles (UCLA) started doing true BCI 
research in the 1970s with studies on animals to create a new, direct connection 
between their brains and the world [6]. The phrase “brain-computer interface” was 
first used in 1973 by UCLA Professor Jacques Vidal, who also outlined the objec-
tives of the research to analyze EEG data via a brain-computer interface. He pub-
lished a paper titled: “Toward Direct Brain-Computer Communications”, and in 
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1976 UCLA’s BCI laboratory demonstrated that a single visual trial elicited poten-
tial such that they might be utilized for cursor control in a two-dimensional laby-
rinth [8].

In 1988, P300 spellers were first introduced by Farwell and Donchin in a paper 
named “Talking off the top of your head: toward a mental prosthesis utilizing event- 
related brain potentials” [9]. Based on the detection of a positive deflection in poten-
tial 300  msec following a stimulus, the device was named “P300” [9, 10]. The 
objective of a P300 speller was to display letters selected mentally by the patient. 
The first trials were when the patient was required to choose a character from a 6 × 6 
or 5 × 5 matrix in which the rows and columns start flashing for a certain period. 
This made the brain generate a unique potential value for each letter, hence, detect-
ing the required character [10].

Ten years later, in 1998, researcher Philip Kennedy implanted the first BCI into 
a human [11]. That person was a locked-in amyotrophic lateral sclerosis (ALS) 
patient. Despite their being no effort at “typewriter” control, she was able to make 
binary choice decisions until her death 76 days after implantation [12]. After that, 
he implanted his second locked-in patient’s main cortical region near the hand, 
where he learnt to control the mouse cursor’s 2D location while using a virtual key-
board. He had to visualize particular hand gestures in order to choose the desired 
letters and activate the imagery cortex. Despite the fact that the patient could only 
type three letters per minute, this method represented a tremendous advancement in 
the area of brain mapping [13].

A significant step in the development of BCI systems was made when Matthew 
Nagle became the first person to have the commercial BCI CyberKinetics BrainGate 
implanted in him in 2004 [14]. In the same year, a study from the Wadsworth Center 
of the New York State Department of Health showed how a BCI might be used to 
operate a computer. Patients participated in the study by donning a cap with elec-
trodes to record EEG signals from the motor cortex, a region of the brain responsi-
ble for controlling movement [15].

As a neuroprosthetic technology that aids in hearing restoration, cochlear 
implants have been put in over 220,000 patients globally by 2010 [16]. A paraplegic 
58-year-old lady and a 66-year-old man were implanted with electrodes in their 
brains in 2012, according to Leigh Hochberg, a neurologist at Massachusetts 
General Hospital, to operate a robotic arm. They could grasp small objects, reach 
them, and even use a straw to sip coffee from a bottle. He predicted that someday, 
BCI technology would allow paralyzed persons to carry out routine tasks [17].

Additionally, in 2016, scientists at the University of California, Berkeley devel-
oped “neural dust,” the tiniest and most effective wireless implant in the world. In 
their idea, a cue-based system transformed visual representations of motor activities 
into instructions for operating an orthosis for the hand or a virtual keyboard [18].

In 2019, University of California, San Francisco (UCSF) researchers presented a 
BCI that synthesizes speech of patients with speech problems brought on by ner-
vous system illnesses using deep learning techniques. It was the first research to 
decode brain activity in order to generate whole phrases at a rate similar to normal 
speech [19].
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Fig. 4.1 The evolution of BCI systems

Nowadays, researchers are improving and expanding BCI techniques to be more 
comprehensive. To illustrate the universal applicability of such an innovation, 
researchers from the University of Washington in the United States investigated 
extending the design of the p300 speller with English to two additional languages, 
Spanish and Greek. Such investigations enable extending BCI system accessibility 
to further individuals, especially in underdeveloped nations [20].

Figure 4.1 below illustrates the evolution of BCI systems over time starting from 
the discovery of the presence of electrical signals in animals’ brains in 1875 until 
the present.

4.3  Studies on the BCI

In this review, we primarily focus on previous methods that have been done in the 
field of BCI over the past years. Researchers and pioneers in the world of BCI can 
benefit from this review in a way that can extend their vision of how BCI should be 
developed in the future. By highlighting some of the experiments that have been 
done in the past in the field of BCI, we expect the reader to experience a glimpse of 
how the pioneers in the world of BCI were thinking, hence, be able to follow a simi-
lar approach that contributes in the advancement of BCI systems.

Controlling machines with brains and vice versa is a problem that scientists have 
been looking at for quite a while. Delgado [21], in his book “Physical Control of the 
Mind: Toward a psychocivilized society” had the vision to build a psycho-civilized 
society by controlling the citizens’ brains to diminish their aggressive and violent 
behavior. His vision came after he developed a device called “Stimoceiver” and 
inserted it into the cortex of several bulls, some were fighting bulls and others were 
tame bulls. He did that to study the functional differences in the brains of the two 
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breeds so he could discover some clues about their neurological basis of aggression. 
After the surgical implantation of electrodes, several cerebral points were explored 
by radio stimulation and motor effects in the bull were evoked, such as head- turning, 
lifting of one leg, and circling.

In his experiment, when Delgado pushed a button, he electronically manipulated 
the bull’s muscle reflexes and forced the bull to stop the attack (See Fig. 4.2). The 
same scientist later used non-invasive approaches to control monkeys and other 
animals’ brains. However, Delgado’s idea of controlling brains using computers 
was strongly objected to. Therefore, his funding ran out at the end of the seventies.

Kennedy [12] developed a new electrode in 1998 called the “Neurotrophic 
Electrode”, this technology allowed a patient with locked-in amyotrophic lateral 
sclerosis (ALS), to restore communication by making binary choices. Using her 
differential eye movement to indicate yes or no, she was able to control the neural 
signals in an on/off fashion but with no typewriter attempts (See Fig. 4.3).

After which, he allowed another Locked-in Syndrome (LIS) patient to type 
words on a 2D virtual keyboard only using his mind [13]. That patient was implanted 
in the hand area of his primary motor cortex and learned to control the mouse cur-
sor’s position by imagining his hand movements. It was possible to capture many 
signals of various intensities, and each wave shape’s spikes were then turned into a 
pulse train. To simulate a mouse click, the brain signals were transformed into 
transistor- transistor logic (TTL) pulses with three major pulse outputs. The X and Y 
voltage input determine the cursor’s location on the screen. The cursor is moved by 
two pulse trains, one in the X direction and the other in the Y direction. The speed 
at which the firing rate increases impacts how quickly the pointer goes across the 
screen. The “enter” or “select” command, which is short for “mouse click,” is acti-
vated by the third pulse (See Fig. 4.4).

Kennedy later went a bit extreme by planting the device in his head for two years 
recording his brain activity during speech. Nowadays, he is trying to decode the 
recorded data to build the “silent speech” technology that aims to restore speech for 
those who have LIS, that is, paralyzed and mute by allowing a computer to speak for 
them when they speak inside their head [22].

Fig. 4.2 Delgado’s experiment of controlling a bull’s mind to stop its violence
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Fig. 4.3 Recording brain 
activity and analyzing the 
brain wave in an ON/OFF 
fashion

Fig. 4.4 A virtual 2D keyboard where the cursor is moved across the X and Y dimensions

Goebel [23] in his study “exploring the Mind” experimented with Functional 
Magnetic Resonance Imaging (fMRI) to record signals, where two participants 
played a Ping-Pong game together in real-time using their minds only. In his experi-
ment, BCI converted fMRI signals into racket position on the y axis, the higher the 
signal level, the higher the racket position. The first participant imagined dancing 
alone or with an increasing number of partners. And the second imagined driving a 
racing car with a varying number of other contestants. Goebel explained that the 
participants moved rackets on the screen to hit the ball and gain points with “brain-
power” instead of a joystick (See Fig. 4.5).

Nicolelis [24] in his study “A Brain-to-Brain Interface for Real-Time Sharing of 
Sensorimotor Information” used invasive brain implants in mice to study their 
behavior. His team sat up two champers 7000 miles away, the first (Encoder Setup) 
in Brazil and the second (Decoder Setup) in the USA.

Each of the champers contained a mouse with a BCI implant that is connected to 
the internet, two levers, two LED lights (one over each lever), and a window where 
the mouse could receive a sip of water as a reward. Both mice were trained to push 
the lever when seeing the LED light flashing up, then go to the window where they 
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Fig. 4.5 Playing Ping-Pong using “brainpower” by recording (fMRI) signals for two participants

received their reward. The first mouse was the encoder; when he noticed the light, 
he moved the lever underneath it to obtain his reward. By comparing the encoder’s 
brain signal pattern to a template trial, the decoder was able to capture and transmit 
the encoder’s cerebral activity at the same time (previously built with the firing rate 
average of a trial sample). The Zscore for the neural ensemble was determined by 
comparing the number of spikes in each trial to the template trial. The Zscore was 
then transformed into an ICMS pattern using a sigmoid function that was centered 
on the mean of the template trial. As a result, the microstimulation patterns changed 
in real-time, trial by trial, in accordance with the quantity of spikes recorded from 
the encoder’s brain signal.

On the other side, the other mouse or the decoder had the two lights flashing up, 
so naturally, he did not know which lever to push. Nevertheless, once microstimula-
tion was delivered to the cortex of the decoder mouse, he knew which lever to push 
to get the reward (See Fig.  4.6). This brain-to-brain communication experiment 
proved that transferring thoughts was possible with an accuracy of 69%.

In 2013, besides thoughts, Nicolelis proved that transferring sensory inputs was 
also possible. He experimented with two mice; the first mouse sensed a narrow 
width aperture with his whiskers. The sensory input of that mouse was sent to the 
other mouse with a wide aperture but behaved according to the first mouse’s sensory 
input (See Fig. 4.7).

Rezeika et al. [10] in their review “Brain-Computer Interface Spellers” explained 
that the first P300 speller consisted of a 6x6 matrix of flashing symbols displayed on 
a monitor, the participant was then asked to select which character he wished to 
display by only focusing on the desired one and counting how many times it flashes 
up. This technique depended on the detected positive potential difference that the 
brain created when stimulated by the flashes, which occurred 300 msec after the 
stimulus. After processing the EEG signal, the P300 signal was correlated to the 
order in which the rows and columns flashed. After analyzing these data, we were 
able to determine the exact row and column which produced the P300 signal, the 
intersection of which was the selected letter (See Fig. 4.8).
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Fig. 4.6 Transferring cortical motor signals through Encoder/Decoder mice experiment with lever 
and LED lights

Fig. 4.7 Transferring cortical tactile information through Encoder/Decoder mice experiment with 
aperture and whiskers

P300 spellers are way more developed nowadays, they predict and display sug-
gested words for the user to select which makes the system way faster and more 
efficient. More languages are also added to the device so more nations can benefit 
from such inventions, especially developing countries.

In this section, we shed light on some of the most recent problems and limita-
tions of EEG-based BCI systems. In addition, in each of the papers and letters dis-
cussed, we focus on the opportunities and developments these researchers provide 
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Fig. 4.8 The P300 speller’s 6x6 matrix where the patient can select a letter by focusing on it and 
counting how many times it flashes up

in this field as well as their contribution to the overall future enhancement of BCI 
systems.

The issue that EEG signals have a limited spatial resolution, with electrodes col-
lecting overlapping signals, is covered in Mishuhina and Jiang’s article “Feature 
Weighting and Regulariza-tion of Common Spatial Patterns in EEG-Based Motor 
Imagery BCI” [25]. Spatial filtering is frequently used in motor imagery brain- 
computer interfaces (BCI) to extract discriminative characteristics and reduce over-
fitting. However, only a small number of common spatial patterns (CSP) are chosen 
as features, and the others are disregarded. This applies that discriminating informa-
tion is lost, hence, BCI performance is restricted. In their paper, they propose a 
method that includes all CSP features avoiding information loss and enhancing BCI 
performance. This method is named Feature Weighting and Regularization (FWR) 
and proves its effectiveness in increasing the classification accuracy compared to 
other conventional feature selection approaches. Finally, they propose that FWR 
must be applied in all CSP-based approaches in MI-BCI in the future instead of the 
conventional FS methods.

Song et  al. raise the issue that supervised deep learning methods frequently 
demand a large-scale annotated dataset, which is very hard to gather in EEG-based 
applications [26]. They concentrate on how deep learning techniques are essential 
for EEG analysis to work as expected. Deep learning can enhance EEG categoriza-
tion, but its potential is constrained by the amount of difficult-to-obtain data required 
for good classification. They suggest an unique deep learning approach based on the 
Multi-Task Learning framework (DMTL-BCI) to assist in EEG-based classification 
tasks in order to resolve this problem. They test their model using the competition 
IV dataset 2a, which shows that it is beneficial in improving the performance of 
classification for EEG-based BCI systems with sparse EEG data. It also outper-
forms the most recent technique by 3%. To enhance the efficacy of EEG-based 
categorization in the future, they suggest combining semi-supervised learning and 
making full use of unlabeled data.
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Belo et  alEEG-based. ‘s Auditory Attention Detection (ADD) method is the 
main topic of their study [27]. They talk about how hearing-impaired people who 
have cochlear implants have poor auditory reception in loud settings because of the 
limited spectral resolution of these devices. Their findings show that cortical track-
ing of the envelope of the attended speech is improved as compared to the unat-
tended speech in a multi-speech setting. This opens up the prospect of future hearing 
aids using both conventional technology and AAD. Finally, they discuss its possible 
uses in non-clinical passive BCI, such as interactive musical performances or edu-
cational settings.

It has always been challenging for BCI systems to deal with data-related issues 
such as insufficient data and data corruption. However, Fahimi et al. [28] highlight 
a potential solution utilizing artificial data generation. They discuss the generative 
adversarial networks (GANs) method among other generative techniques as it 
proved its effectiveness in image processing over time. In this work, the authors 
look at how well convolutional GANs do in simulating the temporal, spectral, and 
spatial properties of genuine EEG. For instance, it aids with data augmentation and 
the restoration of damaged data. Hence, their approach of artificial data generation 
helps in the analysis process by eliminating any real EEG data issues. It also opens 
the door for researchers to investigate more about the future possibilities of such 
discoveries in the BCI world.

Finally, Abiri et al. [29] in their review of EEG-based BCI paradigms address the 
issues of reliability of BCI paradigms and platforms. For instance, the signal-to- 
noise ratio of the data derived from EEG signals is insufficient to control a sophis-
ticated neural system. The time needed to teach the patient to understand the system 
and how results are severely impacted when the patient is fatigued is another chal-
lenge. The study concludes that selecting the most trustworthy, accurate, and practi-
cal paradigm is crucial when using a neuro gadget or carrying out a particular 
neuro-rehabilitation program. They assess the benefits and drawbacks of several 
EEG-based BCI paradigms for this aim. They contend that because EEG approaches 
aid in comprehending how the brain behaves and dynamics in many contexts, they 
have the potential to be marketed for the general population. They also advocate 
using BCI as neurofeedback to help people better themselves by adjusting brain-
waves to improve different elements of cognitive control.

4.4  Methodology

The block diagram below, Fig. 4.9, illustrates the proposed BCI system’s architec-
ture in a sequence of following described steps:
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Fig. 4.9 The block diagram of proposed method

4.4.1  Brain Waves Acquisition

The study begins by acquiring the participant’s brain waves using a multi channel 
EEG neuroheadset. The neuroheadset comprises of several electrodes placed sym-
metrically on selected positions on the cerebral cortex to collect brain waves. These 
electrodes sense the brain’s electrical waves and convert them into analog electrical 
signals that are wirelessly paired with a computer for further processing. In this 
study, the participants are asked to imagine moving their right hand and left foot 
without actually moving them, hence, the data is collected from the imagery cortex.

In this investigation, the BCI competition dataset IVa [30] is utilized. The acqui-
sition of this dataset was made possible by the five healthy volunteers. Each partici-
pant under consideration completed 140 trials in each category. There were a total 
of 280 trials per individual as a result of the two kinds of assignments being assessed. 
Each trial takes place for 3.5 seconds. The data consists of various-sized training 
and testing sets for each category.

4.4.2  Analog Amplifier and Filter

The acquired EEG signal, generated by electrodes, are of considerably tiny ampli-
tude and noisy. It is because the scalp and skull act as a barriers between the brain 
and the electrodes. Moreover, the power line interference and artifacts do impact the 
content of electrodes generated EEG signals. Therefore, after transduction the brain 
waves are immediately amplified. It enhances their robustness against noise and 
improves the signal to noise ratio (SNR). Afterward, the amplified signals are band- 
pass filtered, to avoid noise and aliasing after analog to digital conversion. In this 
study, the EEG signals are band limited between [0.15, 200]Hz.
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4.4.3  Analog to Digital (A/D) Conversion

After that, the filtered and amplified analog signal is converted to digital to ease the 
analysis and calculations. To do so, the signal goes through an analog to digital 
converter (ADC). Within the ADC, the analog signal is sampled, quantized, and 
encoded to get a digital signal instead of the analog one. Sampling takes certain 
values of the signal separated by certain time intervals, hence, making the signal 
discrete in time. After that, quantization gives values of certain levels for each sam-
ple by rounding off their values, making the signal discrete in amplitude [31, 32]. 
Finally, the encoding process maps the quantized values to digital values with length 
in bits. The result is converting the analog continuous signal into a digital discrete 
one. In this study the analog filtered signals are sampled at a conversion rate 
of 1 kHz.

4.4.4  Signal Conditioning

Thence after, the signal is conditioned first by using a discrete-time Finite Impulse 
Response (FIR) filter, where each value of the output sequence is a weighted sum of 
the most recent input values. In this study, a low-pass FIR filter, with a cut-off fre-
quency of 50 Hz, is applied on the digitized version of signal. Then the digitally 
filtered signal is decimated to obtain an effective sampling rate of 100 Hz [33, 34]. 
Then, to take specific intervals of our signal, windowing using a window function is 
applied where all the values outside the boundaries selected by us are set to zero. 
Windowing the signal helps in focusing on the important parts of it, neglecting any 
unnecessary information.

4.4.5  Features Extraction

Analysis for the windowed signal starts by decomposing the conditioned and win-
dowed signal into four sets or levels (sub-bands) using the Discrete Wavelet 
Transform (DWT). This transform function down-samples the original signal into 
several cascaded sets using high- and low-pass filters. It is represented as a dual-tree 
and named “filter bank”. Each set or level in the filter bank is a time series of 
approximation coefficients describing the time evolution of the signal in the corre-
sponding frequency band. To analyze and decompose our digital signal into sub- 
bands, we used the DWT. In this study, this transform function down-samples the 
original signal into several cascaded sets using high- and low-pass filters with a 
subsampling factor of two. A time series of approximation coefficients that describe 
the temporal development of the signal in the relevant frequency range makes up 
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each set or level in the filter bank. The signal is first split into low and high frequen-
cies after passing through two filters: a high-pass filter, h[n], and a low-pass filter, 
g[n]. The first high-pass filter produces the first level’s coefficients, and the remain-
ing half of the original signal which passes through the low pass filter goes through 
another similar decomposition to be halved again producing the second level’s coef-
ficients. This process repeats four times producing four sub-bands and four levels of 
approximation coefficients. In this instance, a denoised segment is run through a 
wavelet decomposition based on the Daubechies technique that uses half- band 
high-pass and low-pass filters. This makes it possible to calculate the detail, dm

i , 
and approximation, am

i , coefficients at each level of decomposition (a mi and d mi, 
respectively).

Following that, each sub-band of the analyzed signal is extracted for features. 
The feature extraction process reduces the amount of redundant data from a dataset. 
By implementing several mathematical notations such as the standard deviation, 
minimum absolute value, maximum absolute value, mean of absolute value, energy, 
skewness, entropy, and kurtosis. Also, Zero Crossing (ZC), the Root Mean Square 
(RMS) value of the Instantaneous Amplitude (IA), and Absolute Peak-to-Peak 
Difference (APPD).

4.4.6  Dimension Reduction

To reduce the number of attributes while keeping as much of the variation in the 
original dataset a dimension reduction is applied. In our study, the Butterfly 
Optimization Algorithm (BOA) is used [33]. It is a Swarm-Intelligence based 
(SI-based) approach of optimization. SI-based algorithms are a subset of bio- 
inspired, and the latter is a subset of nature-inspired algorithms. The process can be 
presented as: SI-based ⊂ bio-inspired ⊂ nature-inspired.

The food-finding and mating strategies of butterflies serve as the basis for this 
optimization technique. The five senses that butterflies often employ are smell, 
sight, taste, touch, and hearing. The butterfly uses each of these senses to perform 
various functions. For instance, the butterfly uses her sense of smell to obtain nour-
ishment (flower nectar), lay her eggs, and flee from predators. According to scien-
tific research, butterflies have a highly developed ability to identify the source of 
scent and gauge its potency.

Therefore, in this algorithm, butterflies act as search agents that produce scents 
of varying strengths and travel arbitrarily from one place to another if they detect no 
scent, while moving in the direction of the butterfly with the strongest scent other-
wise. The initiation phase, the iteration phase, and the final phase are the three 
phases of this approach. It also depends on the three crucial factors power exponent, 
stimulus intensity, and sensory modality (a). The BOA is depicted in the flowchart 
in (Fig. 4.10) below.
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Fig. 4.10 The block diagram of proposed method

4.4.7  Classification

After features extraction and dimension reduction, the data is represented in the 
form of reduced matrix. The data for the BOA is an 840x33 matrix. Using the 
MATLAB R2021a classification learner application, several classification (catego-
rization) algorithms based on ML are used to create a model that predicts the value 
of a target variable. For example, we use the Support Vector Machine classifier 
(SVM), the k-Nearest Neighbors (k-NN) classifier and the Artificial Neural Network 
(ANN) classifier to create a model that predicts the value of a target variable. 
Following is a description of each classifier with some mathematical Equations 
according to [35].
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4.4.7.1  Support Vector Machine Classifier (SVM)

Using the SVM classifier, which is one of the most popular supervised machine 
learning algorithms for classification can classify not only linear models but also 
non-linear using the Kernel trick. SVM counts on creating margins to separate the 
available classes. These margins of separation are gaps that lie between the different 
categories and they contain the classification threshold. When misclassification is 
allowed to increase the classification accuracy, the distance between the observa-
tions where the threshold is in the middle is called a soft margin. For instance, the 
support vector classifier is a single point on a one-dimensional number line when 
the data is one-dimensional.

The support vector classifier looks like a line when the data is two-dimensional 
and linearly separable. In this instance, the soft margin is calculated using the sup-
port vectors (observations on the edge and inside the soft margin), and any new data 
is classified by determining where it falls on the line. Additionally, the support vec-
tor classifier produces a plane rather than a line when the data are three-dimensional 
(See Fig. 4.11). And we classify new observations by determining which side of the 
plane they are on. For example, the classification will be under or above the plane, 
and the new observation will be classified either under or above the plane accordingly.

Therefore, we know that the support vector classifier is a single point (zero- 
dimensional hyperplane) on a one-dimensional number line for one-dimensional 
data, and that it is a one-dimensional hyperplane for two-dimensional data (line). 
Additionally, the support vector classifier is a two-dimensional hyperplane when the 
data is three-dimensional (plane). Since the support vector classifier has less dimen-
sions than the dimensions of the data, it is a hyperplane. As a result, the support 
vector classifier is a hyperplane of certain dimensions that are smaller than the 
dimension of the data when the data is four dimensions or more. In Eq. (4.1), the 
method of separating the hyperplane is mathematically stated.

 
h x sign x bT� � � �� ��.

 
(4.1)

Fig. 4.11 Two- 
dimensional SVM linear 
classification represented 
by a line margin separator
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Where x is a sample vector x = [x1, x2…xp] with p attributes, ω = [ω1, ω2…ωp] is 
the weights vector, and b is a scalar bias.

4.4.7.2  k-Nearest Neighbors (k-NN)

The k-NN is another classifier; it is regarded as one of the simplest classifiers. It 
presumes that there are comparable objects close by.

The k-NN classifier finds the distances between a query and each example in the 
data, chooses the k instances (or as many as are given) that are closest to the query, 
and then votes for the label that is most frequently assigned. For example, if K = 1, 
then we will use only the nearest neighbor to define the category that which the 
sample belongs. In (Fig. 4.12), if k = 1, then the unknown dot belongs to the nearest 
dot, which is blue. Hence, the unknown dot is classified as blue. However, if k = 15, 
then we will take the 15 nearest neighbors and vote. In our example, if k = 15, then 
we have one green, three yellows, and 11 blues. Accordingly, the highest votes go 
to the blue category and the unknown dot is classified as blue.

Let vj stand for a sample and <vj, lj> stand for a tuple consisting of a training 
sample and its label, ljϵ[1, C] where C is a set of classes. Equation (4.2) illustrates 
the mathematical procedure for determining the closest neighbor j given a test 
sample z.

 
argmindist d t j Nj ,� �� � �1

 
(4.2)

Fig. 4.12 Classifying an unknown sample using the k-NN classifier with k = 15
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4.4.7.3  Artificial Neural Network (ANN)

A computational approach for machine learning that uses linked, hierarchical func-
tions is the ANN classifier. ANNs function like a human brain; they rely on the input 
and then do some complex processing to finally present an output. ANNs consist of 
nodes and a spider web to connect these nodes. Nodes create layers, the main three 
layers that form any ANN are the input layer, the output layer, and the hidden layers 
(all layers lying between the input and output layers) (See Fig. 4.13). Within the 
hidden layers, activation functions like the Sigmoind, Softplus, or ReLU are used. 
These activation functions or responsible for constructing a squiggle that can fit the 
complex existing data and give an indication about the classification of the new 
samples.

4.4.8  Evaluation Measures

After For the following calculations, the following values from each classifier’s 
confusion matrix are considered (True Positives (TP), False Positives (FP), False 
Negatives (FN), and True Negatives (TN)).

4.4.8.1  Accuracy

The accuracy value represents the data that has been correctly classified. The math-
ematical formula to calculate the accuracy is shown in Eq. (4.3). Accuracy has a 
maximum value of one, the higher the value of accuracy and closer to one, the better 
the performance of the classifier.

Fig. 4.13 Artificial Neural Network (ANN) classifier layout
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Accuracy

TP TN

TP TN FP FN
�

�
� � �  

(4.3)

4.4.8.2  Precision

To avoid any lack of precision or bias in estimating the classification performance 
due to the limited dataset, cross-validation with 10 folds is used in this study. 
Training and testing are applied for all classifiers in each fold for the three datasets. 
Precision is calculated as seen in Eq. (4.4).

 
Precision

TP

TP FP
�

�  
(4.4)

4.4.8.3  Recall

In a classification issue with two classes, recall (also known as sensitivity) is deter-
mined as the ratio of true positives to both true positives and false negatives (See 
Eq. (4.5)).

 
Recall

TP

TP FN
�

�  
(4.5)

4.4.8.4  Specificity

Specificity (also known as true negative) represents the accuracy of a test that 
reports the presence or absence of a condition. The total number of true negatives 
divided by the sum of true negatives and false positives is used to compute it (See 
Eq. 4.6).

 
Speci icity

TN

TN FP
f .�

�  
(4.6)

4.4.8.5  F-Measure

The F-measure (F1) gives a relation between the precision and recall values. It is 
represented mathematically in Eq. (4.7).
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(4.7)

4.4.8.6  Kappa

The agreement between two clustering findings is determined by the Kappa statis-
tic. Due to the fact that it considers the potential of the agreement occurring by 
coincidence, it is often greater than accuracy. Equation (4.8) is the mathematical 
expression of Cohen’s kappa measure.

 
kappa

p

pe
� �

�
�

1
1

1
0

 
(4.8)

Where pe is the fictitious probabilistic probability of such an agreement occurring 
randomly and p0 is the percentage of agreement between the anticipated and actual 
numbers. Eq. (4.9) is used to get the value of pe.

 

p
TP TN TP FN FP FP FN

TP TN FP FN
e �

�� � �� � � � � �� �
� � �� �2  

(4.9)

4.5  Results and Discussion

The considered classifiers are modeled, trained and tested by using the MATLAB 
R2021a classification learner application. The experimentation is conducted while 
following the cross-validation strategy.

The results obtained for the k-NN classifier are outlined in Table 4.1. It is con-
spicuous that all the classes showed results with a satisfactory level of the accuracy, 
with the score of 83.7% for both (C1) and (C2(. The precision of the classifiers also 
ranged between 83.1% (C1) and 84.3% (C2). The highest value of recall achieved 
is 84.5% for C1 while the lowest value is 82.8%. The results from specificity ranged 
from 82.9% (C1) to 84.5% (C2). Furthermore, the highest result achieved through 

Table 4.1 Calculated values of the k-NN classifier

Classes Accuracy Precision Recall Specificity F1 Kappa

Class-1 0.837% 0.831% 0.845% 0.829% 0.838% 0.674%
Class-2 0.837% 0.843% 0.828% 0.845% 0.836% 0.674%
Average 0.837% 0.837% 0.837% 0.837% 0.837% 0.674%
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F1 is 83.8% (C1) and the lowest result is 83.6% (C2). The kappa score for both 
classes is 67.4%.

The average accuracy score is 83.7%. The average precision and recall scores are 
also 83.7% for the case of SVM classifier when it is used with the DWT based 
decomposition and BOA based dimension reduction. The average specificity and F1 
scores are also 83.7% and the Kappa index, average for both intended classes, 
is 67.4%.

The results obtained for the SVM classifier are outlined in Table 4.2. It is con-
spicuous that all the classes showed results with a satisfactory level of the accuracy, 
with the score of 81.8% for both (C1) and (C2). The precision of the classifiers also 
ranged between 81.7% (C1) and 81.8% (C2). The highest value of recall achieved 
is 81.9% for (C1) while the lowest value is 81.6% for (C2). The results from speci-
ficity ranged from 81.6% (C1) to 81.9% (C2). Furthermore, the highest result 
achieved through F1 is 81.7% (C1) and the lowest result is 81.8% (C2). The kappa 
score for both classes is 63.6%.

The average accuracy score is 81.7%. The average precision and recall scores are 
also 81.8% for the case of SVM classifier when it is used with the DWT based 
decomposition and BOA based dimension reduction. The average specificity and F1 
scores are also 81.8% and the Kappa index, average for both intended classes, 
is 63.6%.

The results obtained for the ANN classifier are outlined in Table 4.3. It is con-
spicuous that all the classes showed results with an appropriate level of the accu-
racy, with the score of 74.4% for both (C1) and (C2). The precision of the classifiers 
also ranged between 77.3% (C2) and 77.4% (C2). The highest value of recall 
achieved is 77.4% for (C1) while the lowest value is 77.3% for (C2). The results 
from specificity ranged from 77.3% (C1) to 77.4% (C2). Furthermore, the highest 
result achieved through F1 is 77.4% (C1) and the lowest result is 77.3% (C2). The 
kappa score for both classes is 54.8%.

The average accuracy score is 77.4%. The average precision and recall scores are 
also 77.4% for the case of SVM classifier when it is used with the DWT based 
decomposition and BOA based dimension reduction. The average specificity and F1 
scores are also 77.4% and the Kappa index, average for both intended classes, 
is 54.8%.

While comparing performance of the SVM, k-NN and ANN classifiers for pro-
cessing the extracted feature set, by using the suggested combination of the pre- 
processing, DWT and BOA, it is clear that the k-NN outperforms the SVM and the 
ANN. The average accuracy score, obtained with the k-NN classifier is respectively 
2.0% and 6.3% superior than the average accuracy scores of the SVM and ANN 

Table 4.2 Calculated values of the SVM classifier

Classes Accuracy Precision Recall Specificity F1 Kappa

Class-1 0.818% 0.8171% 0.819% 0.816% 0.818% 0.636%
Class-2 0.818% 0.818% 0.816% 0.819% 0.817% 0.636%
Average 0.817% 0.818% 0.818% 0.818% 0.818% 0.636%
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Table 4.3 Calculated values of the ANN classifier

Classes Accuracy Precision Recall Specificity F1 Kappa

Class-1 0.774% 0.774% 0.774% 0.774% 0.774% 0.548%
Class-2 0.774% 0.773% 0.773% 0.773% 0.773% 0.548%
Average 0.774% 0.774% 0.774% 0.774% 0.774% 0.548%

classifiers. It is mainly due to a superior pruning capability of the k-NN, while pro-
cessing the extracted feature set of the intended dataset, as compared to the SVM 
and ANN classifiers.

The dataset, used in this study, is publicly available. In future, we shall collect a 
motor imagery dataset by using the EMOTIV EPOC 14-channel neuroheadset, the 
idea and processes are similar. The EEG signals will be recorded from the imagery 
cortex when the participants imagine moving their hand and foot. The study will be 
enhanced by increasing the number of participants, number of trials recorded, and 
perhaps focusing on other cortices such as the visual cortex along with the motor 
imagery. This will result in a more flexible and comprehensive technology that aids 
those in need to function better in their daily routines.

The addition of event-driven approach can enhance the performance of this sys-
tem in terms of implementation complexity, processing activity, compression and 
computation cost effectiveness [36–39]. This axis could be explored in future while 
achieving an embedded realization of this system.

4.6  Conclusion

To sum up, the BCI allows the brain to control external devices while bypassing the 
neuromuscular channels. This invention is beneficial in many ways, especially for 
people with severe motor impairments as it enables them to assist themselves and 
regain their independence. In this study, the IVa data set (motor imagery, small 
training sets) provided by the Berlin BCI Group is used. In this data set, five healthy 
participants imagined moving their hands and foot, hence, the data contains two 
classes. The EEG signals of these participants were recorded using a non-invasive 
electrode cap from ECI. Thence after, the data is digitally low-pass filtered to a 
bandwidth of 50 Hz. The filtered signal is decimated to achieve a final sampling rate 
of 100 Hz. In next step the decomposition is carried out by using the discrete wave-
let transform. The sub-bands are further analyzed for features mining. Afterward, 
the dimension of extracted feature set is diminished by using the Butterfly 
Optimization Algorithm. The selected feature set is onward processed by three 
robust machine learning algorithms for the categorization of considered motor 
imagery tasks. The considered machine learning algorithms are the k- Nearest 
Neighbor, Support Vector Machine and Artificial Neural Network. The performance 
of these algorithms is compared for classification of considered signals, while pro-
cessing the mined feature set with the devised combination of pre-processing, 
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discrete wavelet transform based decomposition, sub-bands features extraction and 
Butterfly Optimization based dimension reduction. The results have shown that the 
k-NN outperforms the SVM and the ANN. The highest average accuracy score of 
83.7% is secured by the k-Nearest Neighbor classifier for the studied case. The aver-
age accuracy score, obtained with the k-NN classifier is respectively 2.0% and 6.3% 
superior than the average accuracy scores of the SVM and ANN classifiers. It is 
mainly due to a superior pruning capability of the k-NN, while processing the 
extracted feature set of the intended dataset, as compared to the SVM and ANN 
classifiers.

In future a new motor imagery dataset can be collected and used to study the 
robustness of the devised solution. The study will be enhanced by increasing the 
number of participants, number of trials recorded, and perhaps focusing on other 
cortices such as the visual cortex along with the motor imagery. This will result in a 
more flexible and comprehensive technology that aids those in need to function bet-
ter in their daily routines. Moreover, the performance of other optimizers such as the 
Genetic Algorithm and Ant Colony Algorithm will be compared with the Butterfly 
Optimization Algorithm for the dimension reduction. Also the performance of other 
robust machine learning algorithms such as the Naïve Bayes, Decision Trees and 
Random Forest will be investigated. Additionally, investigating the feasibility of 
incorporating the ensemble and deep learning algorithms in the proposed solution is 
another prospect.

4.7  Assignments for Readers

• Describe your thoughts and key findings about the use of EEG signals in brain- 
computer interface.

• Mention the important processes that are involved in the pre-processing and EEG 
data collection stages.

• Describe how the performance of post feature extraction and classification stages 
is affected by the signal conditioning process.

• Identify your thoughts and key points about the EEG categorization techniques 
used in this chapter.

• Identify your thoughts and key points on the dimension reduction technique used 
in this chapter.

References

1. V. Schiariti, The human rights of children with disabilities during health emergencies: The 
challenge of COVID-19. Dev. Med. Child Neurol. 62(6), 661 (2020)

2. G.L. Krahn, WHO world report on disability: A review. Disabil. Health J. 4(3), 141–142 (2011)

M. Alghamdi et al.



105

3. N. Veena, N. Anitha, A review of non-invasive BCI devices. Int. J. Biomed. Eng. Technol. 
34(3), 205–233 (2020)

4. T. Choy, E. Baker, K. Stavropoulos, Systemic racism in EEG research: Considerations and 
potential solutions. Affect. Sci. 3, 1–7 (2021)

5. X. Wan et al., A review on electroencephalogram based brain computer interface for elderly 
disabled. IEEE Access 7, 36380–36387 (2019)

6. A. Kübler, The history of BCI: From a vision for the future to real support for personhood in 
people with locked-in syndrome. Neuroethics 13(2), 163–180 (2020)

7. H. Berger, Über das elektroenkephalogramm des menschen. Arch. Für Psychiatr. Nervenkrankh. 
87(1), 527–570 (1929)

8. I. Arafat, Brain-computer interface: Past, present & future. Int. Islam. Univ. Chittagong IIUC 
Chittagong Bangladesh, 1–6 (2013)

9. L.A. Farwell, E. Donchin, Talking off the top of your head: Toward a mental prosthesis utilizing 
event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

10. A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, I. Volosyak, Brain–computer inter-
face spellers: A review. Brain Sci. 8(4), 57 (2018)

11. Y. Zhang, Invasive BCI and noninvasive BCI with VR/AR technology, 12153, 186–192 (2021)
12. P.R. Kennedy, R.A. Bakay, Restoration of neural output from a paralyzed patient by a direct 

brain connection. Neuroreport 9(8), 1707–1711 (1998)
13. P.R. Kennedy, R.A. Bakay, M.M. Moore, K. Adams, J. Goldwaithe, Direct control of a com-

puter from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2), 198–202 (2000)
14. M. Korr, RI physician traces tragedy, triumphs in’Man with bionic brain’. R I Med. J. 96(2), 

47 (2013)
15. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, G. Pfurtscheller, Conversion of EEG activity into 

cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 
12(3), 331–338 (2004)

16. T. Fujikado, Brain machine-interfaces for sensory systems, in Cognitive Neuroscience Robotics 
B, (Springer, 2016), pp. 209–225

17. L.R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled 
robotic arm. Nature 485(7398), 372–375 (2012)

18. D. Seo et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. 
Neuron 91(3), 529–539 (2016)

19. G.K. Anumanchipalli, J. Chartier, E.F. Chang, Speech synthesis from neural decoding of spo-
ken sentences. Nature 568(7753), 493–498 (2019)

20. P.  Loizidou et  al., Extending brain-computer interface access with a multilingual language 
model in the P300 speller. Brain Comput. Interf., 1–13 (2021)

21. J.M.R.  Delgado, Physical Control of the Mind: Toward a Psychocivilized Society, vol 41 
(World Bank Publications, 1969)

22. P.  Kennedy, A.  Ganesh, A.  Cervantes, Slow Firing Single Units Are Essential for Optimal 
Decoding of Silent Speech (2022)

23. G. Zu Putlitz et al., Exploring the Mind
24. M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, M.A. Nicolelis, A brain-to-brain interface 

for real-time sharing of sensorimotor information. Sci. Rep. 3(1), 1–10 (2013)
25. V. Mishuhina, X. Jiang, Feature weighting and regularization of common spatial patterns in 

EEG-based motor imagery BCI. IEEE Signal Process. Lett. 25(6), 783–787 (2018)
26. Y. Song, D. Wang, K. Yue, N. Zheng, Z.-J. M. Shen. EEG-based motor imagery classification 

with deep multi-task learning, 1–8 (2019)
27. J. Belo, M. Clerc, D. Schön, “EEG-based auditory attention detection and its possible future 

applications for passive BCI,” Brain-Comput. Interf. Non-Clin. Home Sports Art Entertain. 
Educ. Well- Appl. (2022)

28. F. Fahimi, Z. Zhang, W. B. Goh, K. K. Ang, C. Guan. Towards EEG generation using GANs 
for BCI application, 1–4 (2019)

4 Brain-Computer Interface (BCI) Based on the EEG Signal Decomposition Butterfly…



106

29. R. Abiri, S. Borhani, E.W. Sellers, Y. Jiang, X. Zhao, A comprehensive review of EEG-based 
brain–computer interface paradigms. J. Neural Eng. 16(1), 011001 (2019)

30. B. Blankertz et al., The BCI competition III: Validating alternative approaches to actual BCI 
problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

31. S.M. Qaisar, A custom 70-channel mixed signal ASIC for the brain-PET detectors signal read-
out and selection. Biomed. Phys. Eng. Express 5(4), 045018 (2019)

32. S. Mian Qaisar, Isolated speech recognition and its transformation in visual signs. J. Electr. 
Eng. Technol. 14(2), 955–964 (2019)

33. S. M. Qaisar, S. I. Khan, K. Srinivasan, and M. Krichen. Arrhythmia classification using multi-
rate processing metaheuristic optimization and variational mode decomposition. J. King Saud 
Univ. Comput. Inf. Sci. (2022)

34. S.M. Qaisar, A. Mihoub, M. Krichen, H. Nisar, Multirate processing with selective subbands 
and machine learning for efficient arrhythmia classification. Sensors 21(4), 1511 (2021)

35. H. Fatayerji, R. Al Talib, A. Alqurashi, S. M. Qaisar. sEMG signal features extraction and 
machine learning based gesture recognition for prosthesis hand, 166–171 (2022)

36. S. Mian Qaisar, F. Alsharif, Signal piloted processing of the smart meter data for effective 
appliances recognition. J. Electr. Eng. Technol 15(5), 2279–2285 (2020)

37. S. Mian Qaisar, Signal-piloted processing and machine learning based efficient power quality 
disturbances recognition. PLoS One 16(5), e0252104 (2021)

38. S. Mian Qaisar, A proficient Li-ion battery state of charge estimation based on event-driven 
processing. J. Electr. Eng. Technol. 15(4), 1871–1877 (2020)

39. S.M.  Qaisar, Efficient mobile systems based on adaptive rate signal processing. Comput. 
Electr. Eng. 79, 106462 (2019)

M. Alghamdi et al.



107

Chapter 5
Advances in the Analysis 
of Electrocardiogram in Context of Mass 
Screening: Technological Trends 
and Application of AI Anomaly Detection

Illya Chaikovsky and Anton Popov

Abstract Electrocardiography is still the most wide-spread method of functional 
diagnosis. The chapter has been targeted towards the debate on evolution and cur-
rent attitude on the heart failure screening electrocardiography, reviewing the clini-
cal practices of applying remote electrocardiogram (ECG) recording gadgets, the 
quantity and origin of data possible to be collected with ECG gadgets having vari-
ous number of sensors using different modern methods of mathematical transforma-
tion of ECG signal, i.e. fourth generation ECG analysis. Accent has been made 
towards the application of the modern machine learning method – anomaly detec-
tion to heart activity analysis. Anomaly detection is one of the machine learning 
methods which identifies the data samples who deviate from some concept of nor-
mality. Such samples represent novelty, or outliers in the dataset, and often carry 
important information. As an example of application of anomaly detection in bio-
medical signal analysis, the problem of identifying the subtle deviations from the 
population norm based on the ECG is presented. The time-magnitude features 
derived from six leads of Signal Averaged ECG are used in the Isolation Forest 
anomaly (IFA) detector to quantify the distance of the single ECG from the cluster 
of normal controls. Input data to the IFA technique consists of diverse tree amounts 
as well as several pollution factors. For comparison, five different groups were 
examined: patients with proven coronary artery diseases, military personnel with 
mine-explosive injuries, COVID-19 survivors, and two subgroups involving partici-
pants of widespread-screening in one of the countryside areas in Ukraine.
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5.1  Introduction

Increasingly engaging patient participation into diagnosis and treatment decision- 
making (patient empowerment) is one of the main trends in modern medicine [1], 
supported, among other things, at the level of legislative initiatives in the healthcare 
system. Modern information technologies are a prerequisite for the implementation 
of this trend. An important part of these technologies is the increasing distribution 
of aesthetic hand-size gadgets for electrocardiography tests, which users may apply 
to some extent themselves only, without their doctor’s supervision. It is more cor-
rect to call these devices as combined software - hardware systems, because. How 
they all have the appropriate software. The progress of microelectronics and the 
development of the Internet, especially “cloud” services, make these devices afford-
able for any user and determine their annual sales of hundreds of thousands (possi-
bly millions) of pieces, and the devices of most manufacturers are available globally, 
in any country, including number in Ukraine. The analysts at Global Industry 
Analyst Inc. report the US portable electrocardiograph market alone being around 
$1.1 billion. The annual growth of this market is at least 6% [2]. Thus, the individual 
use of portable electrocardiographic devices is becoming a significant social phe-
nomenon. It can be said that with the help of such devices spontaneous screening of 
heart diseases occurs, far exceeding in scale any screening programs using classical 
12-lead electrocardiography.

I must say that in addition to the obvious advantages, this trend also carries a 
certain danger. The possibilities of partial lead electrocardiography are, of course, 
significantly limited compared to classical electrocardiography, which is often not 
recognized by users who do not have professional medical knowledge. This cer-
tainly applies to screening opportunities for various heart conditions. It is also 
important to note that the value of even routine 12-lead electrocardiography in 
screening for heart diseases, primarily coronary artery disease, i.e. its ability to 
increase predictive accuracy over traditional risk factors is currently under intense 
debate. Special attention in this context is paid to the use of artificial intelligence 
(AI) for the analysis of the electrocardiogram (ECG). One of the main driving ele-
ments of AI in medical imaging is an aim for higher effectiveness of healthcare. The 
amount of medical data grows at a disproportionately high rate compared to the 
number of physicians available. Innovations in portable and wearable medical 
devices don’t only bring a certain amount of useful data, but at the same time pro-
vide new opportunities for screening of certain diseases, as they can increase the 
number of monitoring timeframes. In this context it is extremely important to ana-
lyze slight ECG changes that are not obvious by applying common visual and/or 
automatic electrocardiogram interpretation as well as to develop metrics which are 
valid not only for 12-leads ECG but also for ECG with limited number of leads [3]. 
The electrocardiogram (ECG) has proved a valuable data source for AI studies [4]. 
Current chapter focuses on contemporary electrocardiography role opinions analy-
sis in heart disease screening, to present portable electrocardiographic gadgets 
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operation experience, to discuss data quantity and entity to be collected applying 
electrocardiography gadgets having varying lead numbers.

In addition, the results of our own research are presented, the approach based on 
AI method is proposed in order to define the subtle deviations of the ECG from the 
population norm to use in diagnosis and prognostic systems.

5.2  Evolution of Views on the Role of the Electrocardiogram 
in Assessing the Risk of Major Adverse 
Cardiovascular Events

There is no doubt that assessing an individual’s risk for serious cardiovascular 
events is extremely important.

Many different models have been developed to assess the overall risk of develop-
ing coronary artery disease and other cardiovascular diseases. Probably the first of 
them was the Framingham risk scale, which includes 7 parameters [5]. The SCORE 
(Systematic Coronary Risk Evaluation) scale, developed on the basis of European 
Institutions studies results [6], is widely known.

Currently, these scales are a reliable tool for determining the likelihood of devel-
oping cardiovascular events in the next 5–10 years in patients with existing CVD 
and in individuals without clinical manifestations of cardiovascular pathology. At 
the same time, an individual profile of risk factors and concomitant cardiovascular 
conditions is measured in order to determine the need, tactics and intensity of clini-
cal intervention.

However, despite all the obvious advantages, these scales, which are widely used 
and included in clinical guidelines, also have a number of limitations. A reflection 
of this fact is the emergence in recent years of new scales such as JBS3 risk score 
and MESA risk score, which include 15 and 12 parameters, respectively.

The most obvious problem is the practical implementation of certain interven-
tions in people without clinical symptoms of cardiovascular diseases. How much 
cost will this entail? Is it possible to follow the recommendations even with a highly 
developed healthcare system?

According to S. Shalnova and O. Vikhireva [7], if we apply the SCORE scale to 
the adult population of Norway, the country with the highest life expectancy, it turns 
out that among 40-year-old Norwegians, every fifth woman and most men have a 
high risk of cardiovascular disease. Vascular diseases. At the age of 50, these figures 
increase to 39.5% and 88.7%, respectively. For age 65, 84.0% of women and 91.6% 
of men fall into the high-risk category. From a practical point of view, the strict 
implementation of the European recommendations seems to be very difficult even 
for such a prosperous country as Norway, especially in countries with a much less 
developed system of insurance medicine, such as Ukraine.
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Individual risk is determined based on the results of extrapolation of cohort 
observations. It is clear that the probability of matches with a small set of features 
included in the risk scales for specific individuals may be low.

Naturally, risk scale estimation has no reason to be personalized, i.e. to add the 
conventional venture factors to personal physiologically crucial parameters obtained 
with equipped techniques.

Variety of all instrumental techniques makes electrocardiography undoubtedly 
outstanding. 12-lead electrocardiography has been used in epidemiological studies 
since the late 40s of the last century, in fact, from the very first steps in the epidemi-
ology of non-communicable diseases. Especially for epidemiological studies, a 
method was created for measuring the elements of the electrocardiogram and 
describing its changes, called the Minnesota code, which makes the analysis of the 
electrocardiogram unified, and therefore suitable for analyzing a large amount of 
data. Subsequently, this classification system has been improved more than once, 
and related systems have appeared, such as Novacode, MEANS and some others. In 
accordance with these analysis systems, all ECG changes are classified into a cer-
tain number of diagnostic classes, each change can be recognized as small (minor) 
or large (major).

Since the late 1970s, articles based on large sample analyzes and long-term (usu-
ally 10 to 30 years) follow-up periods have been regularly published in the most 
reputable journals, demonstrating the value of both large and small ECG changes 
(in according to the Minnesota code or similar classifier) as separate warning items 
of lethal and non-lethal cardiovascular accidents [8–13]. There was no doubt that 
the use of electrocardiographic predictors increased the predictive accuracy of 
SCORE and other risk scales.

However, in 2011, a team of authors [14] published a systematic review commis-
sioned by the US Commission on Preventive Services Tasks (USPSTF), which ana-
lyzed 62 studies, including almost 174,000 participants with a follow-up period 
from 3 to 56 years.

The key questions addressed by the authors of these guidelines are: Does electro-
cardiographic screening in asymptomatic individuals lead to a more accurate clas-
sification into groups having heightened, moderate, or neglectable coronary artery 
disease risks compared with traditional (Framingham) risk factors, what are the 
benefits of screening with compared to not doing it in terms of CHD outcome, 
whether doing screening is harmful.

The authors did not find convincing evidence that analysis of the 12-lead electro-
cardiogram improves the accuracy of classification into risk groups, nor evidence 
that the implementation of electrocardiographic screening positively affects the out-
come of coronary heart disease or the appointment of a risk-reducing drug vascular 
treatment events (statins, aspirin). On the other hand, there are no studies demon-
strating direct or indirect harm caused by electrocardiographic screening. There are 
only works containing general arguments about the undesirability of coronary angi-
ography or other functional tests associated with visualization of the myocardium, 
when there are no sufficient grounds for this. This review formed the basis of the 
USPSTF recommendations [15]. The general conclusion of these recommendations 
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is that annual routine electrocardiographic examination should not be performed in 
asymptomatic individuals who are at low risk on the basis of traditional risk scales. 
With regard to individuals belonging to groups of medium or high risk, the authors 
were unable to draw a definite conclusion about the balance of benefits and potential 
harm in the implementation of ECG screening. This strategy is also consistent with 
the findings of other recommendations and extensive studies published in recent 
years [16–18]. It must be said that these recommendations and studies have the 
highest evidentiary power according to modern systems for assessing the quality of 
recommendations for diagnostic tests, such as GRADE [19], because they are based 
on a meta-analysis of a large amount of data and rely on an assessment of how much 
a diagnostic test improves the outcome of a disease or predicts the onset of that 
disease.

It is interesting to note that the latest European Society of Cardiology guidelines 
in a field of cardiovascular disease prevention [20] advise treating individuals with 
a low risk of cardiovascular events, as defined by SCORE, but with evidence of LV 
hypertrophy on ECG, as individuals at medium risk. For other ECG syndromes, this 
recommendation is not given.

Separately, electrocardiographic screening should be considered in people of 
older age groups, and vice versa, in young people, in the latter case, in order to 
detect structural heart diseases and prevent sudden cardiac death, especially in peo-
ple experiencing great physical and psychological overload, such as athletes and 
staff power structures. As for the elderly, the study by R. Auer et al. is very informa-
tive [21]., which was published after the publication of the mentioned USPSTF 
recommendations. In this work, on significant material (more than two thousand 
participants, follow-up period of 8  years), it was shown that in people aged 
70–80 years, electrocardiographic signs, compared with traditional risk factors, sig-
nificantly increase the predictive accuracy of screening, compared with screening 
only applying conventional venture factors. The most complete and context-relevant 
are the recommendations of the American Heart Association (AHA) published in 
2014. The AHA supports such screening in principle but is not pushing for it to be 
mandatory. It is emphasized that significant resources are needed to conduct manda-
tory annual screening of all competing athletes, so the decision on the need for such 
screening is delegated to the local level. This view is broadly shared by the US 
National Institutes of Health and the European Society of Cardiology Sports 
Cardiology Working Group. At the same time, the International Olympic Committee 
more specifically recommends an electrocardiographic examination of all competi-
tive athletes at least every two years.

Regarding law enforcement personnel, national programs of mandatory electro-
cardiographic screening are carried out mainly in military aviation, especially in 
relation to candidates for entry into the ranks of the air force (USA, Israel, Italy, 
etc.). For military personnel of other military branches, electrocardiographic screen-
ing is usually required only after 40 years. In younger military personnel, it is car-
ried out only if there is evidence, for example, a burdened family history. In Ukraine, 
in accordance with the orders of the heads of law enforcement agencies, an 
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electrocardiographic examination is a mandatory part of the annual medical exami-
nation, regardless of age.

In addition to electrocardiographic screening, carried out based on such long- 
established systems for analyzing 12-channel electrocardiograms as the Minnesota 
code and its derivatives (Novacode, MEANS), works have recently appeared that 
describe screening using new tools for analyzing electrocardiograms. Such efforts 
have, in our opinion, sufficient grounds. At one time, the ECG indicators included 
in the above classifiers of electrocardiographic signs were selected not because of 
their special clinical significance or exceptional physiological nature, but due to the 
existence at that time of extensive studies of clinical and electrocardiographic rela-
tionships in relation to these parameters. Therefore, nothing prevents other electro-
cardiographic signs from being investigated in the context of their value for 
electrocardiographic screening.

These works can be divided into two categories: one is represented by studies in 
which routine amplitude-time indicators are calculated, but their unusual combina-
tions are used. An example of such works are, for example, studies of the Froelicher 
group [22]. In our opinion, the work of E. Gorodeski et al. [23] is of considerable 
interest, which shows the ability of a decision rule that includes 6 demographic and 
14 electrocardiographic amplitude-time parameters selected from more than four 
hundred indicators to forecast the all-round reasons for women’s mortality in post- 
menopausal period. It is important to note that in accordance with the Minnesota 
code, the electrocardiogram in 12 leads in all examined (more than 33 thousand 
observations) was normal. The follow-up period in this work was 8 years.

Another category includes works that use characteristics that are relatively com-
plex compared to the usual amplitude-time indicators and parameters that require 
signal conversion using computer technology.

Such methods are currently known as the fourth generation of electrocardiogra-
phy, where the first generation of electrocardiography used to be a quasi-manual 
assessment of the time-vs-amplitude ECG data including the eye-related analysis of 
plotted electrocardiographic curves, the second one included the automatically- 
processed measurement of the time-vs-amplitude ECG data and, similar to prior 
generation, graphs optical analysis. Third descent uses both automated measure-
ment and electrocardiographic diagnostics which is followed by stating a syndromic 
electrocardiographic summary.

Having this said, it is obvious that the automated tools taken from both the sec-
ond and the third ECG generations just copy and ease the functions of a person - a 
doctor of functional diagnostics. The crucial contribution of the fourth generation is 
the software-related assessment of the information given by these analysis methods 
going beyond the visual data analysis.

An example of such work is a multicenter study by T. Shlegel et al. [24], which 
demonstrated the advantages of a multi-parameter scale that, in addition to routine 
amplitude-time parameters, includes technologies such as high-frequency analysis 
of the QRS complex, analysis of T-wave morphology, and some others, in screening 
for coronary heart disease, hypertrophy left ventricle, left ventricular systolic 
dysfunction.
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It must be said that studies belonging to the latter category have a rather weak 
evidentiary value in accordance with the already mentioned GRADE scale, since 
they provide only diagnostic accuracy (sensitivity, specificity) and no data on a 
clinically important outcome of the disease. It has been clear that a long-term fol-
low- up stage is necessary in evaluating the outcome.

Let us separately discuss the ethnic difference in the parameters of a normal 
electrocardiogram. The ethnic and even more so racial difference in the quantitative 
indicators of the electrocardiogram of a healthy person has long attracted the atten-
tion of researchers. Knowing the exact limits of the ranges of normal values in dif-
ferent ethnic groups is necessary in order to decide which electrocardiogram is 
abnormal and to what extent. Ethnic and racial differences in several main amplitude- 
time parameters of the electrocardiogram, as well as criteria based on the assess-
ment of the amplitudes of left ventricular hypertrophy, were studied in detail [25, 
26]. There are papers describing the influence of racial differences on the effective-
ness of electrocardiographic decision rules based on artificial intelligence [27]. 
However, multilateral, universal electrocardiogram analysis systems such as 
Minnesota coding, to the best of our knowledge, have not been investigated in terms 
of ethnic and racial variability. In addition, the problem of the influence of ethnic 
and racial differences on the prognostic value of certain electrocardiographic param-
eters is still waiting for its researcher.

5.3  The Systems of Electrocardiographic Leads, 
Electrocardiogram with Limited Number of Leads 
for Heart Disease Screening

This section briefly looks back to the development stages of the currently wide-
spread accepted scheme for recording and analyzing the 12-lead ECG. It has been 
known that those 3 leads having a bipolar limb design have been exploited in 
clinically- performed electrocardiography, shaping the Einthoven triangle in the 
frontal plane, for several decades. These leads today are called standard. In 1942, 
Goldberger proposed enhanced unipolar limb leads that supplement the three stan-
dard leads from the point of view of areal heart electrical activity analysis, despite 
they are also located at the frontal plain and not equationally independent from the 
standard leads. Before that, in the 1930s, F. Wilson suggested 6 chest unipolar leads, 
which entered the practice with varied success by the end of the 1940s. The clinical 
contribution of the invention was broken down by Wilson himself in an iconic 1948 
article [28]. These leads’ value is proven by their unique feature to detect and dif-
ferentiate the QRST complex pathological changes, as it was reported by the group 
of modern cardiography inventors. They often diagnose pathology when the limb 
leads remain unchanged or uninformative”. The special significance of these leads 
in the diagnosis of ischemia in the anterior septal region of the left ventricle is 
emphasized. Thus, the Wilson-invented leads, which came into practice, we repeat, 
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from the end of the 1940s of the last century, increased the sensitivity of the electro-
cardiography method to local changes in the myocardium and, especially, in rela-
tion to changes in the anterior wall. For time being, the standard was the ECG in 3, 
and later in 6 leads from the limbs.

This information is provided here to re-emphasize the importance of clearly 
articulating the scope and limitations of portable electrocardiographs having a cer-
tain quantity of leads.

The development of miniaturized miniaturized aesthetic hand-size gadgets for 
electrocardiography tests, which users may apply to some extent themselves only, 
without their doctor’s supervision is a part of a broader tendency, given the name of 
POST (point-of-care testing), that among the patients briefly stands for a medical 
test carried out directly anywhere, not attending the doctors’.

The pioneers at this home-available gadgets area were, actually, the household 
automatic measurers of the blood pressure, which worldwide production was started 
by OMRON in 1988, having had their distribution begun 20–25 years ago.

Later, in the 90’s, the personal blood testers also became available, primarily 
glucose level detectors. Pluggable electrocardiographs with just several electrocar-
diographic leads represent the next POST-tools wave that has been produced since 
the very beginning of the twenty-first century.

The first such devices for mass use were apparently CheckMyHeart electrocar-
diographs (Great Britain).

There are currently dozens of different types of portable electrocardiograph 
devices on the market for individual use. Basically, they represent a sole-channel 
electrocardiographs having finger contacts. We list some of them, namely those that 
are most often mentioned in the relevant reviews: AfibAlert (USA), AliveCor/
Kardia (USA), DiCare (China), ECG Check (USA), HeartCheck Pen (Canada), 
InstantCheck (Taiwan), MD100E (China), PC-80 (China). REKA E 100 (Singapore), 
Zenicor (Sweden), Omron Heart Scan (Japan), MDK (The Netherlands).

All listed devices have one or more international technical certificates (ISO, CE, 
FDA) and are registered as electrocardiographic devices. AliveCor/Kardia and ECG 
Check devices are structurally integrated with smartphones, other devices are spe-
cialized electrocardiographic attachments for mobile devices (smartphone, tablet, 
laptop) capable of registering an ECG signal and transmitting it over a distance 
without distortion. Most devices are available on the open market without restric-
tions, manufacturers of some models (REKA E 100, ECG Check) declare that they 
are intended primarily for distribution by prescription. In this case, their purchase 
(or temporary use) is usually covered by health insurance. Many devices (for exam-
ple, Zenicor) have a Web service that allows you to immediately bring the registered 
electrocardiogram in one lead to the doctor. Without exception, all single-channel 
devices have extensive and categorical disclaimers (i.e. disclaimers) explaining that 
for any, even the most minor, symptoms of heart disease, you should immediately 
consult a doctor, not relying only on the results of automatic ECG analysis in 
one lead.

The leading area of these gadgets’ clinical use is the arrhythmic phenomenon 
registration, as it has been stated by the producing entities, primarily atrial 
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fibrillation. In this regard, the experience of AliveCor/Kardia is very interesting. 
The company was founded in 2011. A year later, the company received the first 
certificate from the US Food and Drug Administration. The wording of the intended 
use of the certified product includes recording, displaying, storing, and transmitting 
a single-lead electrocardiogram using an iPhone-integrated device. In 2013, 
AliveCor/Kardia received a second FDA certification confirming that the electro-
cardiogram obtained with its device is fully equivalent to a single lead electrocar-
diogram recorded by a standard commercial electrocardiograph. These certificates 
have given the right to professional cardiologists to prescribe the AliveCor/Kardia 
device, combined with the iPhone. patients. In 2014, the company received permis-
sion from the FDA to freely sell its devices without intermediaries to anyone. At this 
stage, the device was still used only for recording, visualization and wireless trans-
mission of the electrocardiogram, without the function of its automatic analysis. 
However, a few months later, an FDA certificate was obtained for the algorithm for 
automatic diagnosis of atrial fibrillation, which was implemented in the software. 
From that moment on, the user of the technology began to receive immediate feed-
back on the presence or absence of this type of arrhythmia. Finally, the latest FDA 
approval the company has received is a certification for the so-called Normal 
Detector, an algorithm that tells the user if their electrocardiogram is normal or 
abnormal, not only in relation to atrial fibrillation, but in relation to rhythm regular-
ity in general.

Thus, modern miniature electrocardiographic software and hardware systems are 
developing in the direction of complicating the built-in algorithms for analyzing and 
interpreting an electrocardiogram  - from devices designed only for recording a 
single- channel electrocardiogram and transmitting it to a specialist, to peculiar 
communicators that immediately and directly provide the user with more or less 
significant information about the state of his heart.

The detection of previously undiagnosed arrhythmias is one of the most natural 
areas for widespread use of miniature electrocardiographic devices.

Among these arrhythmias, atrial fibrillation seems to take the first place, due to 
its prevalence, social significance, and the relative reliability of automatic algo-
rithms for diagnosing atrial fibrillation on a single ECG lead.

The already mentioned company AliveCor/Kardia has apparently conducted the 
most extensive screening studies on this topic.

Also, large-scale screening was carried out using a single-channel portable car-
diograph MDK. The results of these and other similar studies convincingly prove 
the clinical and cost-effectiveness of atrial fibrillation screening using specialized 
electrocardiographic attachments for mobile devices. It is important that there is no 
need to organize special events for such screening. Screening is carried out during a 
routine visit, for example, to a family doctor, or even simply at home, if each screen-
ing participant is provided with a mobile device with an electrocardiographic attach-
ment during the study.

Other types of screening (detection of structural heart diseases or risk factors for 
their occurrence), carried out using electrocardiographic gadgets having a certain 
lead quantity, are hardly mentioned in known studies. We can only recall the already 
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old work [29], which shows the predictive value of T-wave flattening in the first lead 
in relation to myocardial infarction in young and middle-aged men. However, the 
sample and follow-up period presented in this paper are small and have not been 
confirmed in later and larger studies.

For a number of years, Ukraine’s NAS Glushkov Institute of Cybernetics has 
been developing original electrocardiographic devices. The” philosophy” of these 
devices software relies on subtle ECG alterations analysis, non-obvious to the clas-
sical visual and/or automatic electrocardiogram representation, that are invisible 
based on conventional optical and/or automated electrocardiogram reading. The 
proprietary metric is developed, which allows to define the “distance” from each 
current electrocardiogram to the gender and age benchmark. We interpret this dis-
tance as an additional risk factor for MACE as well as a qualifier for distant 
future events.

Hierarchical classification of miniature electrocardiographic devices has been 
suggested according to two criteria – the ability of ECG signal acquisition and soft-
ware capabilities (Table 5.1).

Obviously, the class of any electrocardiographic device can be defined as the 
sum of the scores on both of the above criteria.

The role of routine 12-lead electrocardiography in classical epidemiological 
studies in cardiology is being intensively discussed by the scientific community. 
However, the increasing use of miniature electrocardiographic devices without the 
participation of medical personnel will remain one of the main technological trends 
in the coming years. An inevitable, perhaps most important, part of this trend is the 
screening component, ie. identification of various, including non-trivial, electrocar-
diographic signs that will be interpreted by users (mostly clinically healthy people) 
as signs of a heart disease or indicators of an increased risk of such a disease in the 
future. As shown above, there is indeed a need for new, individualized indicators of 
increased cardiovascular complaints chances, taken from physiological response 

Table 5.1 Classification of miniature electrocardiographic devices

Level

According to the possibilities of ECG signal acquisition

1 Only the 1st standard ECG lead
2 3 standard ECG leads (consecutive)
3 3 standard leads (parallel
4 All 6 leads from the extremities

According to the capabilities of the software

1 Only ECG visualization, measurement of some of the simplest amplitude - time 
parameters of ECG and parameters of heart rate variability (HRV)

2 Ability to immediately assess the functional state and its trends based on the analysis of 
subtle changes in the shape, magnitude and duration of waves and intervals of ECG 
signal

3 Ability to immediately assess the functional state based on the formation of a multilateral 
integrated indicator. Elements of ECG analysis of the fourth generation

Table source: Ilya Chaikovsky
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analysis of a particular person, in addition to traditional risk scales. Methods for 
analyzing the value of periodically emerging new risk factors for cardiovascular 
diseases were recently summarized by M.A. Hlatky et al. [30]. As with the GRADE 
scale, the main criterion is the predictive value for a clinically important outcome of 
the disease. It is interesting that considerable attention is paid to complex indicators, 
consisting of several particular ones.

However, long-term follow-up studies are only the final phase of investigating 
the value of a new risk marker. The conclusions of such studies become available 
only after many years of the “life” of a new indicator. For quite a long time, it can 
(and, due to the technological trend described above, will) be used without strict 
scientific evidence of its value. Therefore, when creating such new indicators, it is 
necessary to strive to make them as multilateral and complex as possible. So, with 
regard to new electrocardiographic markers that can be obtained using portable 
devices for individual use, this means using the maximum possible number of elec-
trocardiographic leads in portable devices and a prognostic conclusion based not on 
any particular indicator, but on a combination of several indicators.

5.4  The Generations of ECG Analysis, some Modern 
Approaches Based on Mathematical Transformation 
of ECG Signal

As it was mentioned above, we propose to divide the methods of electrocardiogram 
analysis into 4 generations.

Methods of the fourth generation, in turn, can be divided into 2 groups. The first 
group consists of approaches that are based only on improved methods of data anal-
ysis, more informative criteria and biomarkers, electrocardiogram registration is 
carried out in the usual way. These 2-nd group of methods includes new technical 
means of signal recording.

All these methods have a common pathophysiological basis: all of them are 
aimed at assessing the electrical homogeneity of the myocardium by various means. 
In this case, the greater the heterogeneity of the myocardium from an electrical 
point of view, in other words, the greater the dispersion of the generated transmem-
brane action potentials in amplitude and length, the greater the likelihood of serious 
cardiovascular events.

It should be noted that one of the main areas of application of fourth generation 
technologies is the screening of cardiac diseases.

The feasibility of electrocardiographic screening for the most common heart dis-
eases, especially coronary heart disease, in terms of price / effect ratio is intensively 
discussed. Early detection of myocardial ischemia by resting electrocardiography or 
ambulatory electrocardiography in individuals over 40 years without symptoms of 
coronary heart disease, with atypical chest pain, or with stable low-grade angina 
reduces the risk of severe cardiovascular events. However, the cost of a mass survey 
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is very significant [31]. Thus, to increase the effectiveness of electrocardiographic 
screening, it is necessary to solve two tasks: on the one hand to reduce the cost and 
simplify the procedure of examination and interpretation of results, on the other 
hand to increase the sensitivity of the test.

fourth generation electrocardiography is aimed at solving both problems.
The most famous of the methods of the first group of fourth-generation electro-

cardiography technologies is the so-called “signal-averaged electrocardiogram”. 
From the semantics point of view, a signal – averaged electrocardiogram is an elec-
trocardiogram obtained by averaging several electrocardiographic complexes in 
order to improve signal quality. The averaging procedure is used in many modern 
methods of electrocardiogram analysis, but in the scientific literature, unfortunately, 
the narrow meaning of the term signal-averaged electrocardiogram (synonymous 
with high-resolution ECG) has taken root. This is usually called the analysis of late 
potentials, i.e. time and spectral study of low-amplitude and high-frequency signals 
in the final part of the QRS complex and the initial part of the ST segment. This 
method is widely used, there are consensus documents of various cardiological 
societies (such as the American College of Cardiology) [32]. The value of the analy-
sis of late potentials to determine the risk of ventricular tachycardia in patients with 
myocardial infarction has been proven. Less strong, but still sufficient evidence 
suggests that this method is also useful for determining the risk of ventricular tachy-
cardia in patients with non-coronary cardiomyopathy [33]. An improvement of this 
method is the analysis of the late potentials of P-wave, which is used to assess the 
risk of paroxysms of atrial fibrillation [34].

However, it can be said that recent analysis of late potentials has been replaced 
by newer and more modern methods of electrocardiogram analysis, which have not 
yet been tested as widely as late potential analysis but are even more promising in 
terms of their value in determining cardiovascular events.

We consider the morphology (shape) analysis of the electrocardiogram T-wave 
as potentially interesting and electrophysiologically reasonable. Mathematically, 
this method is the decomposition of the electrocardiographic signal by values   at 
special (singular) points with the analysis of the main components [35]. In the 
framework of this method, the so-called coefficient of complexity of the T-wave is 
calculated.

This coefficient indicates the extent to which the electrocardiogram T-wave 
shape can be described by a simple dipole model of the electrocardiogram source 
and, accordingly, the contribution of more complex sources. The higher this coeffi-
cient, the more heterogeneous the myocardium in electrical terms.This T-wave mor-
phology consideration has proved to be a good predictor of the risk of cardiovascular 
events in the general population [36], among young athletes [37] and for myocardial 
infarction patients. Other, simpler approaches to the consideration of the electrocar-
diogram T-wave shape, also exist. Thus here, it is necessary to mention the ECG 
analysis in the phase space. If the system is described by two variables, then the 
phase space has two dimensions, and each variable corresponds to one dimension. 
In this case, the phase space is a phase plane, i.e. a rectangular coordinate system, 
along the axes of which the values of the two variables are being plotted. Having 
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said that, the technology nature states that at each point of the initial electrocardio-
graphic response in the time domain, its first derivative is estimated by quantitative 
methods, and all further processing is carried out on the phase plane. This approach 
to ECG analysis has been used for a long time, at least since the late 70’s of last 
century [38]. The Cybernetic Center of the National Academy of Sciences of 
Ukraine has been developing a different approach to ECG phase analysis for several 
years. This treatment involves dividing the phase trajectory into separate cardiac 
cycles, selecting trajectories with the same morphology, trajectories being averaged 
in phase space with subsequent “reference cycle” assessment on the average phase 
trajectory.

Thus, it is the indicators of the shape of the average phase trajectory that are 
evaluated, and the trajectories of ectopic cardiocomplexes are not considered, while 
in the other above-mentioned works on ECG phase analysis, on the contrary, they 
are the subject of analysis. We have proposed a number of quantitative indicators for 
the analysis of the shape of the average phase trajectory, the most sensitive of which 
was the symmetry index, i.e. the ratio of the maximum velocity at the rising segment 
of the T-wave to the maximum velocity at the descending segment of T-wave (at 
positive T) or the ratio of the maximum velocity on the descending segment of the 
T-wave to the maximum speed on the ascending segment of the T-wave (with neg-
ative T).

The diagnostic value of this approach to ECG analysis in many clinical situations 
has been demonstrated, including the analysis of only first electrocardiographic 
lead [39].

Also, a certain reserve of increasing diagnostic informativeness in the assess-
ment of repolarization patterns may be linked to the evolution of mathematical 
description models of the ST-segment and T-wave by several approximation func-
tions [40].

Another promising approach is the so-called high-frequency analysis of the QRS 
complex. It consists in calculating the signal power in the band 150–250 Hz in the 
middle of the QRS complex part of ECG. It has been shown that a decrease in this 
indicator is a reliable predictor of myocardial ischemia, both in acute coronary syn-
drome and in chronic asymptomatic ischemia [41].

It is reasonable to mention a simple and clear approach based on the calculation 
of the spatial angle between the vertices of the QRS complex and the T wave of the 
electrocardiogram. This parameter is essentially an improved ventricular gradient of 
Wilson, known since 1934. In recent years, large-scale studies have shown that this 
simple indicator is a strong predictor of cardiovascular events and mortality in the 
general population, and especially among women [42].

At the end of the last and the beginning of our century, such an electrocardio-
graphic indicator of myocardial electrical homogeneity was widely used as the spa-
tial variance of the QT interval, i.e. the difference between the longest and shortest 
QT interval in 12 leads. Recently, this indicator has been criticized, but certainly has 
not yet exhausted its usefulness [43].

The approach developed by L. Titomir [44], called dipole electrocardiotopogra-
phy (DECARTO), is interesting and well-founded. This is a method of visual 
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display and analysis of information obtained using 3 orthogonal leads. It is a quasi- 
mapping of the electrical process in the ventricles of the heart based on orthogonal 
ECG, based on the use of a model of ventricular depolarization wave, which is 
reflected by the electrical vector of the heart. The components of this vector are 
proportional to the corresponding signals of orthogonal leads. At each point in time, 
the depolarization front is projected onto a spherical quasipericardium (a sphere 
centered in the geometric center of the ventricles that covers the heart) in the form 
of a spherical segment. The main area of application of this method is acute coro-
nary syndrome, the prognosis of short-term and long-term results of treatment of 
acute myocardial infarction.

Finally, a separate subgroup should include methods based not on the analysis of 
indirect electrocardiographic signals, but rather the variability of certain character-
istics of individual cardio-complexes over a period of time. It is necessary to distin-
guish these methods from the analysis of heart rate variability, when analyzing not 
the parameters of your own cardiocycle, but only R-R intervals.

There are many methods and estimates of variability of certain elements of the 
cardiac signal from complex to complex. This is an analysis of the variability of the 
amplitude of the T-wave at the microvolt level, and some others. The most common 
of these is the analysis of the duration of the variability of the QT interval (QTV). 
This indicator is also used to assess the risk of life-threatening ventricular arrhyth-
mias in patients diagnosed with heart diseases [45].

This review is far from being complete. There are other modern methods of elec-
trocardiogram analysis, the authors of which insist on their high efficiency. In all 
this diversity, the clinician can easily “drown”. Therefore, information technologies 
should be developed that summarize the data obtained with several modern comput-
erized methods of electrocardiogram analysis and offer the doctor an integral coef-
ficient that shows the probability of a heart disease or cardiovascular event. In this 
regard, it should be noted the results obtained by the Laboratory of Functional 
Diagnostics of the US National Aerospace Administration (NASA) in Houston.

In recent years, much attention of researchers is attracted by electrocardiogram 
analysis using artificial intelligence methods. As a matter of fact, ECG pays benefits 
for AI applications deep learning. The ECG is highly accessible and provides iter-
able unprocessed data which is available for digital storing and transferring. Another 
feature is totally automated ECG representation, when the accurate study applica-
tions use huge ECG data banks and sets of clinical data, cooperated with cutting- 
edge computer abilities, are demonstrating the usefulness of the AI-engaged ECG, 
the detection apparatus of ECG signs and structures unseen to the man’s eye. These 
structures are able to spot the cardiac disease, such as left ventricular (LV) systolic 
dysfunction, silent atrial fibrillation (AF) and hypertrophic cardiomyopathy (HCM), 
but might also reflect systemic physiology, such as a person’s age and sex or their 
serum potassium levels etc. [46] Of course, the use of AI for ECG analysis in the 
context of predicting various heart diseases is of particular interest. In the work [47] 
it is shown that the ECG-AI model based solely on information extracted from ECG 
independently predicts HF with accuracy comparable to existing FHS and ARIC 
risk calculators. There are several other high-quality works on this topic.

I. Chaikovsky and A. Popov



121

Also, we would especially like to emphasize the work in which it is demon-
strated that the difference between individual biological age, defined by AI ECG, 
and chronological age is an independent predictor of all-cause and cardiovascular 
mortality. Discrepancies between these possibly reflect disease independent bio-
logical aging [48].

It should be noted that the further development of fourth generation electrocardi-
ography is impossible without mathematical and computer modeling. However, 
models of heart electrical activity which are set with high levels of the object spatial 
distribution have considerable gaps with empirical models mostly used to define the 
links of electrophysiological phenomena in a heart at the visceral level with ECG 
changes. The latter primarily involves the task of understanding the ECG pathology 
changes mechanisms in myocardial ischemia due to the rise in its electrical inhomo-
geneity and gradually its unsteadiness. Given the inconsistency of a few sets of 
testing volumes, this context complicates the new algorithm evolution for diagnos-
ing ischemia in its early stages, as well as methods for quantifying some manifesta-
tions of ECG disorders ofheart muscle activation and repolarization applying the 
only model.

The development of computer technology and information technology has given 
a new impetus to electrocardiography. The electrocardiographic signal, which is 
easily recorded and digitized, allegedly “provokes” doctors and mathematicians to 
cooperate under the motto of Galileo Galilei: “Measure everything that can be mea-
sured, make measurable everything that has not been measured before.” The result 
of this collaboration is the creation of new effective methods of electrocardiographic 
diagnosis, which over time will find a place in every clinic and doctor’s office and 
may replace traditional electrocardiography.

5.5  Anomaly Detection in ECG Using Machine 
Learning Approach

Many devices can provide ECG in clinical controlled conditions, as well as during 
exercise and in 24/7 regime during everyday life activities. Comparatively wide 
availability of the ECG recordings, both clinically and from wearable devices sup-
ports its usage as a basis of the online diagnosis tool. Performing ECG anomaly 
detection tries to serve as the prediction and prevention tool for dangerous health 
conditions associated with heart malfunctioning.

In ECG the anomalous behavior may be represented as the irregular heart 
rhythms or heartbeats with unusual time-magnitude parameters. Despite many devi-
ations from the conditional normal ECG have been described in the literature, their 
combination, or the tiny changes at the beginning of the disease development, may 
not be obvious, be rare events, or be hidden. Therefore, application of rule-based 
anomaly detection may be less effective than use of the data-driven machine learn-
ing approach.
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Anomaly detection is one of the fundamental tasks in data mining and consists 
of identifying the objects which considerably deviate from some concept of normal-
ity in each dataset [49]. Depending on the context, such objects can be irregular, 
unexpected, rare, or simply “strange”. Due to the fuzzy and application-dependent 
definitions for “deviation” and “normality”, there exist a lot of anomaly detection 
algorithms. The algorithms of anomaly detection may be roughly subdivided into 
two major classes: unsupervised and supervised, depending on the availability of 
the labeled data. Excellent description of the anomaly detection techniques can be 
found in [50].

Unsupervised methods do not use the information about the labels of the data 
(normal or anomalous) in the training set. This group of methods contains model- 
based methods (relying on the description of the data generation model) and 
proximity- based methods (which use the distances between data points in the fea-
ture space). In supervised anomaly detection, the prior information about the labels 
in the training dataset is available. In this case, many general-purpose classification 
methods can potentially be used. But in case of application to anomaly vs. normal 
object classification, this is less used than unsupervised, because the number of 
anomalies is usually limited, and often the anomalies are not available beforehand.

Many methods of anomaly detection have been applied to the ECG analysis, 
focusing on the different types of animal characteristics. In [51], the review of most 
widely used approaches is presented. Authors of [52] applied Support Vector 
Machine classifier after wavelet-based extraction of heart rate variability features to 
of arrhythmic beat classification. Multilinear principal component analysis is used 
to process ECG for extracting disease-altered patterns, followed by anomaly detec-
tion using deep support vector data description in [53]. The proposed framework 
achieves superior performance in detecting abnormal ECG patterns, such as atrial 
fibrillation, right bundle branch block, and ST-depression. Recently, deep learning 
networks training is getting more attention for ECG anomaly detection develop-
ment. In [54] a novel hybrid architecture consisting of Long Short Term Memory 
cells and Multi-Layer Perceptrons. Simultaneous training pushes the overall net-
work to learn descriptive features complementing each other for making decisions, 
which led to the average classification accuracy of 97% across several records in the 
ECG database.
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5.6  Isolation Forest Anomaly Detection for Quantifying 
the Deviation of Signal Averaged ECG 
from Population Norm

5.6.1  Isolation Forest Unsupervised Anomaly Detection

Isolation Forest (IF) [55] is one of the most popular methods for anomaly detection 
[56]. To define if the vector of features representing the ECG under analysis is an 
anomaly or not in the group of vectors, unsupervised learning is used for isolating 
the anomalies. The idea is that the anomalies are easier to separate from the cluster 
than non-anomalous vectors because they lie on the outskirts of the cluster. To iso-
late a vector in space, the IF algorithm recursively selects the axis in a feature space, 
and then randomly splits this axis by selecting the value between the minimum and 
maximum of the corresponding feature values. After several partitions, the coordi-
nate of the single vector appears to be separated. The number of partitions required 
to isolate each vector is used to compute the score of anomalies of that vector. If the 
vector is located far from the rest of the vectors, the number of partitions required to 
isolate it is quite small, since the coordinates of the vector deviate substantially from 
the coordinates of other vectors. This method is applied to the identification of tiny 
changes in ECG from several groups of subjects.

5.6.2  Subjects Data

Five different groups were examined [57]: healthy subjects with no reported cardio-
vascular problems (Normal Controls, NC), subjects with proven coronary artery 
diseases (CID), subjects recovered from COVID-19, military personnel with mine- 
explosive injuries (Combatants), and two subgroups of participants of mass- 
screening in one of the rural region of Ukraine. Subgroup 1 consisted of persons, 
who died during five- years follow-up (all-cause mortality), subgroup 2 - persons, 
who didn’t die during this period.

Signal averaged ECG (SAECG) considering a group of 181 people (males, aged 
from 18 to 28) is used in this study. Originally the data contained ECGs recorded in 
six ECG leads (I, II, III, aVR, aVL, aVF). From each of six SAECG leads, 34 fea-
tures were extracted:

• Durations of P, Q, R, S peaks, and QRS complex,
• Durations of PR, QR, TR intervals,
• Duration of JT segment, duration from J to the top of T peak, duration from the 

top to the end of T peak,
• Amplitudes of P, Q, R, S, T peaks, and J wave,
• Mean magnitude over the ST segment, the magnitude at the end of ST-segment,
• Area under P peak, area under the QRS complex,
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• Areas under the T peak from the beginning to the top, and from the top to the end,
• Ultimate derivative values are at ascending/descending parts of T peak.

In total, 204 features from each lead are calculated to characterize multichan-
nel SAECG.

5.6.3  Quantification of the Distance to the Norm

After SAECG features are extracted, each ECG can be presented as a vector in the 
204-dimensional feature space. The value of every feature is the coordinate of the 
particular ECG in that space with respect to the corresponding axes. In the case of 
having the group of ECG with similar characteristics, the corresponding feature 
vectors will form in the cluster in the space. If the particular ECG is located far from 
the cluster, this might indicate that their features are distinct from those of the clus-
ter members. The vector of ECG which is similar to the group of ECGs forming the 
cluster will be located within the cluster.

In this work, the concept of outlier/inlier is proposed to be used for detecting the 
deviations of the ECG from the group of other ECGs. To define whether the particu-
lar ECG is an outlier or not, the Isolation Forest anomaly detector is used.

The procedure to use IF in defining the deviation of the current ECG from the 
group of the norm is as follows:

 1. For the group of normal ECGs, SAECG is obtained, and the features of SAECGs 
are extracted.

 2. Train the IF anomaly detector using the group of normal ECGs.
 3. For the new ECG under analysis, pass it through the IF and obtain the anom-

aly score.

The negative values of the anomaly score indicate that the ECG is an anomaly; this 
is interpreted as the substantial deviation of the ECG from the norm. Additionally, 
the absolute value of the anomaly score can be used as a degree of deviation from 
the normal group. The bigger the absolute value is, the more distant the SAECG is 
located from the population norm, and therefore the difference between the current 
ECG and the normal group is more significant.

5.6.4  Experiment Results

In Fig. 5.1 the distribution of subjects from NC, CID, and COVID groups are pre-
sented. As vertical axes, the projection on the main eigenvector from PCA decom-
position of the feature matrix is provided for reference, to construct the 2D plot. 
Table  5.2 contains mean and standard deviation values of the distance from the 
centers of the cluster for different groups.
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Fig. 5.1 The distribution of subjects from COVID group (a), CAD group (b), and Combatants 
group (c) with respect to NC subjects. (Image source: Illya Chaikovsky, Anton Popov)
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Table 5.2 Mean and standard deviation of the anomaly score

Group name
Mean ± std. of the anomaly 
score

Healthy volunteers 0.0583 ± 0.0318
CAD −0.0129 ± 0.0522
Wounded combatants 0.0389 ± 0.0431
COVID patients 0.0157 ± 0.0481
Subjects, died within 5 years of follow-ups  
(all-cause mortality)

−0.0102 ± 0.0601

Subjects, didn’t die within 5 years of follow-ups 0.0204 ± 0.0498

Table source: Illya Chaikovsky, Anton Popov

As one can see, the distribution of distances and relative amount of outliers dif-
fers for the different groups, suggesting the receptiveness of the proposed method to 
the characteristics of the original SAECG. In case of COVID subjects, the positions 
are distributed quite equally, and points representing the COVID patients have both 
positive and negative distance values. This suggests that ECG of COVID subjects 
does not contain subtle deviations from the NC group. In contrast, many of CAD 
subjects have a negative distance from the NC group, which suggests the difference 
between the SAECG characteristics due to the changes of heart activity.

When estimating distance between the studied groups and normal controls it was 
found that the largest distance takes place between healthy volunteers’ group and 
CAD patients group and group of subjects who died within 5 years of follow-ups 
(all-cause mortality). This may suggest further development of the mortality predic-
tive score based on the outlier detection. The minimal distance from NC was 
detected in the Combatants group.

As already mentioned, the role of artificial intelligence methods in ECG analysis 
is increasing significantly. Of course, the disadvantages of this method should not 
be underestimated [58, 59]. Among these shortcomings, the need to analyze a large 
amount of data is usually noted, which requires a high qualification of the research-
ers. Often there is a need to update the used models during the study or after deploy-
ment due to the shift in the data. Another important problem is overfitting, i.e. a 
situation where the algorithm over-adjusts to the training sample, reaching maxi-
mum accuracy in it, but its performance is much worse on other populations. Solving 
this problem requires “fine tuning” of the training process.

However, the biggest problem hindering the widespread implementation of AI 
methods in the practice of cardiologists seems to be the “black box nature” of the 
findings obtained using AI. This means that clinicians have a poor understanding of 
the logical chain of inferences that lead to certain results, and therefore do not trust 
them. To solve this problem, in recent years, a special line has been developing in 
the theory and practice of machine learning methods, which is called explainable 
machine learning [60]. Of course, this approach also has its limitations.

The above limitations, especially the “black box nature”, probably lead, among 
other things, to the fact that AI-assisted ECG analysis methods are used mainly for 
solving more specific problems, and are rarely used to determine the global risk of 
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death from all causes. Only a few works on this topic are known. In the work of 
A.A. Mahayni and co-authors [61] used AI to predict long-term mortality after car-
diac surgery. They used preoperative ECGs from subjects with detected left ven-
tricular ejection fraction to train convolutional neural network for binary 
classification, and demonstrated increased prognostic value in the prediction of 
long-term mortality in patients undergoing cardiac surgical procedures. Another 
work [62] used a massive amount of the 12-lead resting-state ECGs to train deep 
neural network and predict the 1-year mortality with high efficacy. It was demon-
strated that even the ECG, which is interpreted as normal by a qualified electrocar-
diologist, may provide important prognostic information to the AI algorithm and 
help to build correct predictions.

We, within the framework of our metric, interpret the distance from each current 
electrocardiogram to the threshold as a risk factor for long-term outcomes .

The novelty of our approach is the ability to specify the groups of SAECGs, from 
which we want to find the deviations. This enables adjustment of the risk analysis to 
the cohorts of people who inherently have specific characteristics of heart electrical 
activity, such as sportsmen, children, etc. We demonstrated that the same framework 
could be used to catch the tiny deviations from the group norm, and quantify its 
value, which may be used as a prognostic feature of the risk. The advantages of the 
employed Isolation Forest anomaly detector is its ability to work with smaller sam-
ple sizes, which is useful for the case of having relatively small groups to compare 
the ECG with. At the same time, IF can scale to handle the extremely large data 
volume and is robust to the presence of the irrelevant features. Together with its 
ability to directly isolate the anomalies in the dataset and provide a quantified score 
of the distance from the cluster, it is best suitable for the detection of subtle changes 
in the SAECGs with respect to the group norm.

5.7  Teaching Assignment

 1. Describe the evolution and current opinion regarding the role of the electrocar-
diogram in assessing the venture for major adverse cardiovascular accidents.

 2. Describe the basic characteristics and classification of the miniature electrocar-
diographic devices.

 3. Highlight the generations of ECG analysis, describe the basic characteristics 
of each.

 4. Describe your reflection of the adjustments of the risk factors to different groups 
of subjects, proposed in this chapter.

 5. Describe the main idea of the interpretation of the distance from the group of 
feature vectors, proposed in this chapter.
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5.8  Conclusion

In the nearest time there will certainly be more cases for delegating the patients with 
rights to test their heart state. Electrocardiographic tools with mobile phone size and 
simple access to analyzing cloud servers are becoming crucial for giving the patients 
personalized medicine approach.

Electrocardiograms analysis cloud platforms with few leads are going to develop 
gradually from oversimplified processing of just several rhythm disturbances to 
more sophisticated analysis, services, and diagnosis. The decision-making develop-
ments involving artificial intelligence as their base will give estimations for every-
one. Their goals are severe cardiovascular risks both in the general population and, 
especially in certain cohorts, such as those with diabetes, pre-diabetes, and heart 
failure patients. The attempts are to be made to cope with the most powerful barrier 
to the engagement of machine learning logics – their black-box character, i.e., the 
difficulty, especially for clinicians, to perceive and moreover trust the representation 
of data leading to the diagnosis. Based on electrocardiogram and heart rate variabil-
ity analysis, individualized recommendations will be made regarding frequency, 
duration, intensity, type, and total amount of physical activity, as well as detailed 
dietary recommendations.

On the other hand, the classic 12-lead electrocardiogram will remain the most 
frequently used technology in clinical cardiology for the long time. The progress in 
biomedical computing and signal processing, and the available computational 
power offer fascinating new options for electrocardiogram analysis relevant to all 
fields of cardiology. Successful implementation of artificial intelligence technolo-
gies for the analysis of routine 12-channel electrocardiogram is a critical step to 
further increase the power of electrocardiography. In this respect, the huge amount 
of digitized electrocardiogram recordings from affordable and widespread devices 
enables the growth of artificial intelligence data-driven machine learning approaches. 
The sophisticated algorithms requiring the training data will be more available both 
on the devices and as the cloud-based services, providing the automated diagnosis, 
prediction, and prevention of cardiovascular diseases and supporting human 
well-being.
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Chapter 6
Application of Wavelet Decomposition 
and Ma-Chine Learning for the sEMG 
Signal Based Ges-Ture Recognition

Hala Rabih Fatayerji, Majed Saeed, Saeed Mian Qaisar, Asmaa Alqurashi, 
and Rabab Al Talib

Abstract The amputees throughout the world have limited access to the high- 
quality intelligent prostheses. The correct recognition of gestures is one of the most 
difficult tasks in the context of surface electromyography (sEMG) based prostheses 
development. This chapter shows a comparative examination of the several machine 
learning-based algorithms for the hand gestures identification. The first step in the 
process is the data extraction from the sEMG device, followed by the features 
extraction. Then, the two robust machine learning algorithms are applied to the 
extracted feature set to compare their prediction accuracy. The medium Gaussian 
Support Vector Machine (SVM) performs better under all conditions as compared 
to the K-nearest neighbor. Different parameters are used for the performance com-
parison which include F1 score, accuracy, precision and Kappa index. The proposed 
method of hand gesture recognition, based on sEMG, is thoroughly investigated and 
the results have shown a promising performance. In any case, the miscalculation 
during feature extraction can reduce the recognition precision. The profound learn-
ing technique are used to achieve a high precision. Therefore, the proposed design 
takes into account all aspects while processing the sEMG signal. The system secures 
a highest classification accuracy of 92.2% for the case of Gaussian SVM algorithm.
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6.1  Introduction

The hands are the most versatile and dexterous component of the human body, 
capable of interacting with the world through a wide range of motion techniques 
such as touch, grasp, manipulation, and so on. Amputees all throughout the world 
are currently struggling to achieve anything more than the bare minimum with their 
prosthetics. In fact, according to the World Health Organization (WHO), only 1 in 
10 individuals who need assistive devices, such as prostheses, have access to them 
currently due to the costly expense of the items as well as a lack of knowledge, 
availability, trained staff, policy, and funding [1]. Furthermore, in the varying cir-
cumstances, the system, and signal acquisition and detection should be effective. 
Therefore, the proposed system design identifies hand gestures by processing sur-
face electromyography (sEMG) signals in order to contribute to the development of 
prosthetic hands.

The myoelectric signal (MES), also known as an electromyography (EMG) sig-
nal, obtained from the forearm skin surface gives vital information regarding neuro-
muscular processes. The complexity, non-linearity, and a considerable variance 
characterize the signals generated by EMG, which makes the signals difficult to 
interpret. Hence, before the usage of EMG signals to build a classification system 
for hand motions (pattern recognition and classification), there should be an identi-
fication process of the signals’ attributes (features). In this situation, the pattern is 
represented by the temporal signal in an EMG signal. In most circumstances, the 
acquired signal may be defined in terms of its amplitude, frequency, and phase, all 
of which are time-variant. Electrical currents are formed in the muscle during a 
muscle contraction, showing neuromuscular activity, because muscle contraction 
and relaxation are constantly under the control of the neurological system. The ner-
vous system and anatomical and physiological features of muscles interact to gener-
ate a complex EMG signal. While passing through various tissues, the EMG signal 
picks up noise. Moreover, if the EMG detector is placed near the skin’s surface, it 
might gather signals from many motor organs at the same time, resulting in signal 
interference.

Clinical diagnosis and biological applications are the primary drivers of interest 
in EMG signal analysis, and evidently one of the key application areas is the treat-
ment and rehabilitation of people with motor disabilities. EMG signals including 
MUAPs (Motor Unit Action Potentials) contain valuable information for the identi-
fication of diseases of the neuromuscular system. An understanding of EMG signals 
may be gained if the relevant algorithms and methods for their analysis are easily 
accessible. As a consequence, hardware implementations for different EMG signal- 
related applications can advance and be applied to invigorate the field’s stagnation, 
but the high unpredictability of sEMG and the scarcity of available data restrict the 
deployment of gesture recognition technology [2].

The necessity for another generation of upper appendage prostheses prompted 
the development of a cost-effective prosthetic hand with an easy-to-use control 
interface. Advanced signal processing apparatuses and a programmed control 
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calculation have been incorporated into the myoelectric hand to enable the replace-
ment of costly, precise actuators and sensors with less expensive components and to 
reduce the difficulty associated with the gadget’s activation and navigation. High- 
level control is used to discern the client’s goal to impel the hand model, which was 
meticulously created and built for this duty. Correspondingly, low-level control 
naturally plays out the problem of gaining a hold on it. Low-level input provides the 
control with both power and joint position data, whilst a vibrotactile feedback 
framework (undeniable level input) provides the client with a circuitous experience 
of touch [3]. When a prosthetic device is limited by electromyography signals pro-
duced by the muscles of the remaining of the amputated limb, six key perspectives 
must be considered to provide successful control:

 (a) To comprehend the characteristics of sEMG signals and how they are acquired.
 (b) To describe in detail the numerous advances produced.
 (c) To become acquainted with the various machine learning algorithms and their 

workings by evaluating how well they function.
 (d) Client control ought to be intuitive and need little mental effort.
 (e) There shouldn’t be any discernible postponement in the reaction time of the 

framework.
 (f) To put into practice a paradigm that will benefit amputees from all societal strata.

6.2  Literature Review

6.2.1  Background

After centuries of many American Civil War losses, there was a large increase in 
demand for prosthetic limbs. Due to the limited functionality of the available limbs, 
many veterans began creating their own prostheses. One of the first amputees of the 
war, James Hanger, invented the “Hanger Limb.” Samuel Decker was a pioneer in 
the development of modular limbs and also created his own mechanical arms. 
Decker’s design has a spoon that is hooked to his artificial arms in recognition of the 
requirement for him to be able to carry out daily tasks with his prosthesis. Designs 
now needed to restore some of the amputees’ prior abilities in addition to replacing 
the lost limb. A generation of young men was finally be able to live independent 
lives with artificial limbs. Specialized artificial limbs were a notion that the forerun-
ners of prosthetic design had started to explore and around the 1900s, limb design 
grew more specialized and focused on purposes other than decoration [4]. Slowly, 
the fundamental idea behind surface EMG-based human-machine interfaces devel-
oped to be the use of machine learning techniques to transform sEMG data into 
controlled signals. The implementation of prosthetic hand control and high depend-
ability of the human-machine interface have been made possible by the accuracy 
and adaptability of the information processing and classification algorithms.
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The deep learning has lately drawn more interest of academicians for studying 
the detection of sEMG based patterns. By bypassing the tedious feature extraction 
and optimization procedures, it can automatically learn features of various abstract 
levels from a variety of input samples to achieve an end-to-end sEMG based gesture 
recognition [2]. The wavelet transform is the most commonly acknowledged 
approach for dissecting the EMG in the time-recurrence space. The organizing stage 
entails selecting the class to which the element vector retrieved from an EMG 
belongs. Support vector machines and neural networks are the most commonly used 
continuous models for characterization. A mix of decision trees, k-means cluster-
ing, and hidden Markov models is employed. In this case, a mix of support vector 
machines (SVMs) and hidden Markov models (HMMs) is applied. Signal acknowl-
edgement frameworks have had to work constantly for a long time. The precision of 
these frameworks should be comparable to that of disconnected frameworks. A 
motion acknowledgment framework must be able to detect a move in less than 300 
milliseconds in order to function constantly. This is equivalent to at least three 
motions per second. Furthermore, these frameworks are typically executed with 
limited computational resources. These requirements impose a requirement on the 
complexity of an acknowledgment model. As a result, the test is to design a continu-
ous signal acknowledgment framework with a cheap computational expense and 
excellent performance. Although other machine learning techniques have been dis-
cussed in earlier research, the k-Nearest Neighbor (k-NN), SVM, and Artificial 
Neural Networks (ANNs) are the three classifiers that produce the best classifica-
tion results [5].

6.2.2  Preprocessing for sEMG Based Gesture Recognition

The sEMG-based hand motion recognition technique is divided into several steps. 
The initial step is to acquire the raw signals. The number and location of electrodes 
must be determined based on the type of motion done in the experiment. Because 
each action is dependent on multiple muscles, most observations about motion iden-
tification for whole-hand movements have been recorded from four or more chan-
nels on the entire arm. However, in hand-posture research, the utilized muscles are 
primarily in the forearm, and thus the number of channels can be decreased. 
Although this may affect the accuracy quality, it can be improved by integrating 
feature data from multiple channels appropriately. The major sEMG processing 
blocks are shown in Fig. 6.1. A description of different blocks is provided in the 
following.

Active segment signals and information from inactive segment are both included 
in the continual process of collecting sEMG signals. Non-active segment informa-
tion must be removed in order to increase the recognition model’s precision and 
speed [6]. The sEMG signal is considered a noisy one, which indicates that the 
sEMG’s probability distribution varies with time. The non-stationarity signal of 
sEMG can be reduced by filtering. Filtering is used to remove the noise and obtain 
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Fig. 6.1 The signal acquisition and preprocessing stages

Fig. 6.2 The analog 
band-pass filter

the most important information. Because roughly 95% of the sEMG signal strength 
is concentrated at 400–500 Hz, the sensor’s lowest sample frequency must be more 
than double the sEMG’s maximum frequency, according to the Nyquist–Shannon 
sampling theorem. In the meanwhile, the filter uses a low-pass filtering approach, or 
a moving average method, which might be considered a special low-pass filter. 
Some characteristics (such as MAV, ARV, or RMS) are computed using the moving 
average technique by windowing the signals and then averaging the features of all 
channels, or by computing the features of the average of all channels directly 
(Fig. 6.2).

Signal conditioning is the process of altering an analog signal such that it com-
plies with the demands of the following step of further processing. Anti-aliasing 
filtering and voltage or current limiting are examples of signal conditioning used in 
analog-to-digital converter applications. The voltage and current, frequency, and 
electric charge are all acceptable input formats. Devices for signal conditioning can 
use a variety of outputs including voltage, current and frequency. Amplification, 
filtering, range matching, isolation, and other procedures are used in signal condi-
tioning to prepare sensor output for further processing.

Analog signals are converted into digital signals by a device called an analog-to- 
digital converter (ADC). It converts a signal with continuous time and amplitude to 
one with discrete time and amplitude. The first step is band-pass filtering between 
the frequency range of [0.5; 150] Hz, given by Eq. (6.1) and shown in Fig. 6.1. In 
Eq. (6.1), x(t) is the filtered version of signal y(t) and h(t) is the impulse response of 
this filter. In second step, the sampling is carried out, given by Eq. (6.2) and shown 
in Fig. 6.3. In Eq. (6.2), xs(t) is the sampled version of x(t) and s(t) is the sampling 
function. Onward, the input is quantized throughout the quantization process. We 
employed 500  Hz sampling rate and 12-bit resolution quantizer during the A/D 
conversion. The process of quantization involves condensing an infinite set of con-
tinuous values into a more manageable set of discrete values. It involves estimating 
the real-world values with a digital representation that restricts the precision and 
range of a value in the context of simulation and embedded computing. Rounding 
mistakes, underflow or overflow, and computational noise are all introduced by 
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s(t)

xs(t)
x(t )

Fig. 6.3 The sampling 
process

quantization. The behavior of an ideal system and estimated numerical behavior, 
thus, differ numerically. When choosing suitable data types for capturing real-world 
signals, one must take into account the precision, range, and scaling of the data type 
used to encode the signal as well as the non-linear cumulative effects of quantiza-
tion on the numerical behavior of your algorithm. When mechanisms such as feed-
back loops are present, the cumulative influence of quantization is increased.

In embedded systems, the quantization is an essential step in accelerating infer-
ence while reducing memory and power usage. As a result, it may be installed on 
hardware with a reduced memory footprint, which frees up more RAM for control 
logic and extra algorithms. For a particular hardware architecture, examples of 
quantization features include integer processing, employing hardware accelerators, 
and fusing layers [7, 8]. The quantization process is given by Eq. (6.3). In Eq. (6.3), 
x[n] is the digitized version of xs[n] and Qe[n] is its corresponding quantization 
error. The upper bound on the Qe[n] is posed by the quantum q and the relation ship 
is given by Eq. (6.4) [9, 10].
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Each prolonged sEMG signal was divided into 6-second segments comprising 
3000 samples to increase information size and the rectangular window approach 
was used to complete the division, with the windowing process is given by Eqs. 
(6.5) and (6.6) [11–13].
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Where, the digitized version of the sEMG band limited signal acquired from the 
examined dataset is denoted by xn. Its segmented form is zwn. wn represents the vec-
tor of window function coefficients. It has a period of 6-seconds and 3000 magni-
tude 1 coefficients. The windowing method breaks up the longer sEMG signal into 
reduced chunks. Each segment is treated as a distinct instance. A total of 180 cases 
are examined, with 30 from each class.

The basic principle behind wavelets is to interpret data based on scale. The size 
with which we examine data is important in wavelet analysis. Wavelet algorithms 
operate on data at various sizes or resolutions. Gross characteristics can be seen if 
the signal is seen via a big “window.” Similarly, minor characteristics would be seen 
if the signal was viewed via a narrow “window.” Wavelet analysis produces the abil-
ity to view both the forest and the trees. Approximating functions that are cleanly 
confined in finite domains can be employed with wavelet analysis. Wavelets are 
ideal for estimating data with severe discontinuities. A wavelet function, known as 
an analyzing wavelet or mother wavelet is used in the wavelet analysis. If the best 
wavelets are not selected for the intended data or if the coefficients resolution is 
decreased below a certain threshold, then the data will not be correctly represented 
[7, 14]. The Eq. (6.7) can be used to express wavelet mathematically. Where s 
denotes the scaling operator and u is the translation operator.
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The Eq. (6.8) demonstrates how to use the wavelet transform to break down a signal 
x(t). When it comes to the decomposition of signals in terms of a base set of func-
tions, the Discrete Wavelet Transform (DWT) is similar to the Fourier transform. A 
single parameter is used in Fourier transformations, and the basis set is made up of 
sines and cosines, whereas the expansion has only one parameter. A single “mother” 
wavelet is used to create the functions (wavelets) in the wavelet transform, with 
dilation and offsets matching to the two variables of the expansion being used to 
construct the functions.

The Discrete Time Wavelet Packet Decomposition (DWPD) is a wavelet trans-
form that applies additional filters to the signal than the DWT. Wavelet packets are 
one-of-a-kind linear wavelet combinations. Many of the orthogonality, smoothness, 
and localization characteristics of their parent wavelets are retained in the bases they 
produce. The DWPD is a wavelet transform that applies additional filters to the 
signal than the DWT. Wavelet packets are one-of-a-kind linear wavelet combina-
tions. Many of the orthogonality, smoothness, and localization characteristics of the 
parent wavelets are retained in the bases they produce. Each freshly created wavelet 
packet coefficient sequence serves as the root of its own analysis tree as the coeffi-
cients in the linear combinations are computed recursively. The WPD decomposes 
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both the detail and approximation coefficients. The WPD creates 2n separate sets of 
coefficients (or nodes) for n degrees of decomposition, whereas the DWT produces 
(n + 1) sets. However, because of the down sampling process, the total number of 
coefficients remains constant and there is no redundancy [15]. The process of com-
puting the approximation an detailed coefficients is respectively given by Eqs. (6.9) 
and (6.10).
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The wavelet decomposition, utilized to produce the sub-bands of the sEMG signal 
is shown in Fig. 6.4. The wavelet decomposition approach has been shown to lower 
the empirical risk in certain circumstances. Results from sEMG signal time series 
show that our method makes sense [16].

6.2.3  Feature Selection Techniques for sEMG Based 
Gesture Recognition

A feature is a functional requirement of a system. In general, the phrase feature 
includes both functional and non-functional criteria. The feature is an observable 
behavior of the system that the user might activate in this research. One of the most 
difficult aspects of programming is comprehending how a certain feature works. 
One must first locate the feature’s implementation in the code before they can fully 
understand it. In many cases, systems are composed of many modules, each of 
which contains tens or hundreds of lines of code. Most of the time, it’s difficult to 
tell wherein the source code a specific functionality is implemented. Original archi-
tects of the system may not be available, or their perspective may be skewed due to 
alterations made by others since the documentation’s creation (if any). Maintaining 

Fig. 6.4 The Wavelet Decomposition
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a system introduces illogical modifications that weaken its overall structure. Every 
time something is altered in the system, it becomes more difficult to understand. 
One alternative is to reverse engineer the system from the ground up to get out of 
this rut, identifying all of its components and assigning functions to them. An incre-
mental semiautomatic procedure uses established automatic ways for retrieving 
component data and validating them by hand before using them. Exhaustive proce-
dures, on the other hand, are not economically viable. Fortunately, understanding 
the components that implement a certain set of functionalities is often sufficient [17].

For a system to be understood in its implementation of a specific feature, it must 
first be identified as to which computing units within the system are responsible for 
that characteristic. There are many instances where mapping features to source code 
is not well documented. The intended behavior of a system is described in abstract 
terms by its features. While concentrating solely on the implementation details and 
static structure of a system, reverse engineering methodologies neglect the dynamic 
relationships between the many pieces that only show when the system is in opera-
tion. By developing a model in which characteristics are tied to structural entities, 
we want to enhance the static and dynamic analyses that have already been per-
formed. When it comes to dynamic analysis, there is a multitude of information 
available; nevertheless, this amount of knowledge creates a challenge in the analy-
sis. In order to cope with it, we used Latent Semantic Indexing, an information 
retrieval technique that works with both documents and keywords. The objectives 
were to find linked features, as well as associated classes that participate in features 
in order to complete the task. For the text corpus, they used function calls from the 
traces; for the document corpus, they employed two mappings to documents: classes 
as documents as well as traces as documents.

The reduction of duplicate data in a data source is made possible through feature 
extraction. Data reduction expedites the learning and generalization stages of the 
machine learning process while also assisting the computer in building the model 
with less manual labor. Standard deviation, absolute minimum of nth level approxi-
mation coefficients, highest absolute value of nth level detail coefficients, mean of 
average absolute of all sub-bands, ratios of the mean of average absolute of succeed-
ing sub-bands, root-mean-square value of time series, skewness & kurtosis of sub- 
band coefficients, absolute peak-to-peak difference of sub-band coefficients, and 
energies are all mined for each considered sub-band [18].

6.2.4  Machine Learning and Deep Learning Techniques 
for sEMG Based Gesture Recognition

In order to manage complicated activities autonomously or with little to no human 
participation, artificial intelligence (AI) is generally defined as any approach that 
allows computers to imitate or surpass human decision-making and mimic human 
behavior. As a result, it has connections to a wide range of tools and approaches and 
is concerned with a broad range of important issues, such as knowledge 
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representation, reasoning, learning, planning, perception, and communication. A 
computer might then use logical inference techniques to reason about hard-coded 
positions in formal languages, which were the main focus of early AI research. The 
knowledge base technique is another name for this. However, the paradigm has 
significant disadvantages since individuals fail to articulate all of their tacit knowl-
edge necessary to do difficult tasks. Such constraints exist.

Artificial intelligence is divided into several subfields, including deep learning, 
machine learning, and neural networks. Deep learning, a type of machine learning, 
is divided into neural networks. Both deep learning and machine learning use dis-
tinctive learning techniques. The majority of the feature extraction process is auto-
mated using deep learning, eliminating the requirement for some manual human 
interaction and enabling the usage of larger data sets. Traditional, or “non-deep,” 
machine learning is taught by humans. Human experts create a collection of traits to 
recognize differences in data inputs, which frequently require the use of additional 
organized data to understand. Although they are not necessary, labeled datasets or 
supervised learning can help “deep” machine learning algorithms. Unstructured 
data may be ingested in its raw form, and it can automatically recognize the proper-
ties that set distinct data types apart. Data analysis, in contrast to machine learning, 
does not need human contact, allowing us to scale machine learning in more intrigu-
ing ways. Speech recognition, natural language processing, and computer vision 
have all advanced more quickly as a result of deep learning. Deep learning is a term 
used to describe the number of layers in a neural network. More than three layers of 
inputs and outputs make up a deep learning algorithm, sometimes referred to as a 
deep neural network. There are just two or three layers in a simple neural net-
work [19].

According to ML, a computer program’s performance generally increases over 
time in relation to a range of tasks and performance indicators. It attempts to auto-
mate the process of developing analytical models in order to carry out cognitive 
tasks like object identification and language translation. This is accomplished by 
employing algorithms that continually learn from training data specific to the task 
at hand, giving computers the ability to identify intricate patterns and hidden insights 
without being explicitly trained. For high-dimensional data operations like classifi-
cation, regression, and grouping, machine learning is incredibly helpful. It can assist 
in obtaining reliable and repeatable findings by learning from earlier calculations 
and seeing patterns in huge databases. Machine learning algorithms have succeeded 
in a number of fields as a result, including fraud detection, credit scoring, analysis 
of the next-best offer, audio and image identification, and natural language process-
ing (NLP). On the basis of the problem and the data provided, three types of ML 
may be identified:

 (a) Supervised learning,
 (b) Unsupervised learning
 (c) Reinforcement learning

Using labeled datasets, supervised learning is the process of creating algorithms 
that can accurately categorize data or forecast outcomes. When new input data is 
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added, the model’s weights are changed until it is well fitted. To make sure the 
model is not overfitting or underfitting, this is done as part of the cross validation 
stage. Organizations may solve a variety of complex real-world problems with the 
help of supervised learning, such as separating spam from email. In supervised 
learning, classification and regression techniques including Naive Bayes, Neural 
Networks, Linear Regression, Logistic Regression, Random Forest, Support Vector 
Machine (SVM), and others are utilized. The user trains the algorithm to provide a 
response based on a collection of known and labeled data.

Unsupervised machine learning analyzes and sorts unlabeled data sets using 
machine learning techniques; these algorithms find hidden patterns or data group-
ings. Because of its capacity to identify similarities and differences in data, it is the 
ideal choice for exploratory data analysis, cross-selling tactics, consumer segmenta-
tion, and picture and pattern recognition. Additionally, it is used in the dimensional-
ity reduction process to reduce the number of features in a model; principal 
component analysis (PCA) and singular value decomposition are two typical tech-
niques for this (SVD). There are several unsupervised learning techniques and clus-
tering algorithms available, including neural networks, k-means clustering, 
probabilistic clustering, and others. The algorithms create answers from unlabeled 
and unknown data. Data scientists frequently employ unsupervised approaches to 
uncover patterns in fresh data sets, and they may build machine learning algorithms 
utilizing a variety of technologies and languages, as well as pre-built machine learn-
ing frameworks, to speed up the process [19, 20].

Deep learning is a subcategory of machine learning that employs both supervised 
and unsupervised learning techniques. It is based on the representation learning 
subfield of machine learning theory (or feature learning). Artificial neural networks 
(ANN), also known as deep learning neural networks, mimic the workings of the 
human brain by using data inputs, weights, and bias. Together, these elements 
describe, categorize, and identify data items. Each layer of deep neural networks, 
which are made up of several interconnected ones, improves and fine-tunes catego-
rization or prediction. A network’s transmission of calculations is referred to as 
forward propagation. The layers of a deep neural network that are visible are the 
input and output layers. The layers of a deep neural network that are visible are the 
input and output layers. Before producing the final prediction or classification in the 
output layer, the deep learning model processes data in the input layer.

Deep learning models provide results quicker than traditional machine learning 
approaches because they employ a hierarchical learning process to extract high- 
level, complicated abstractions as data representations. In other words, rather of 
requiring the data scientist to select the important attributes manually, a deep learn-
ing model will learn them Backpropagation is a different approach that uses meth-
ods like gradient descent to produce prediction errors before altering the weights 
and biases of the function by repeatedly going back through the layers to train the 
model. Forward and back-propagation function in tandem to allow a neural network 
to foresee and correct for errors. Deep learning models provide results quicker than 
traditional machine learning approaches because they employ a hierarchical learn-
ing process to extract high-level, complicated abstractions as data representations. 
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In other words, rather of requiring the data scientist to select the important attributes 
manually, a deep learning model will learn them. Backpropagation is a different 
approach that uses tools like gradient descent to produce prediction errors before 
changing the function’s weights and biases by repeatedly going back through the 
layers to train the model. Forward and back-propagation function in tandem to 
allow a neural network to foresee and correct for errors. The algorithm’s accuracy 
improves with time, and the “deep” in deep learning refers to the several layers used 
in deep learning models:

The completion of tasks like object detection and identification is made possible 
by convolutional neural networks (CNNs), which are extensively employed in com-
puter vision and image classification applications. CNNs are able to recognize pat-
terns and discriminate between properties in an image. CNN can be made up of 
numerous layers of models, each accepting input from the previous layer, process-
ing it, and then passing it on to the next layer in a daisy-chain pattern. Recurrent 
neural networks (RNNs), on the other hand, are often utilized in natural language 
and speech recognition applications because they utilize sequential or time series 
data [20, 21].

6.3  Methodology

Figure 6.5 displays the designed system block diagram. The following describes 
several processing phases with materials and methods.

6.3.1  Dataset

The dataset came from a research that involves frequently and freely grasping of 
different items [22]. The individuals were given complete control over the speed 
and force of grasping. The six motions, shown in Fig. 6.6, were asked to be repeated 
by five healthy volunteers between the ages of 20 and 22. Figure 6.7 displays the 
surface plots of feature sets that were retrieved from examples of various categories. 
For each fundamental movement, the experiment was repeated 30 times with the 
subject performing each one for 6  seconds. 180 sEMG signals were therefore 
acquired for each subject.

In addition to being non-invasive, repeating patterns, and capable of categorizing 
signals in real time, sEMG has a wide range of applications, including gesture rec-
ognition, prosthesis development, and human-computer interfaces. The sEMG sig-
nals in this dataset can also be used to enhance other datasets for more accurate 
categorization of similar signals. There are 16 recorded EMG signals, each lasting 
70 seconds, in the sEMG database of objects gripping activities. The signals were 
gathered from a healthy person. Six tasks were offered to the participant: spherical, 
palmar, tiny tools, lateral, cylindrical and hook gestures (cf. Figure 6.6) [22, 23].
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Fig. 6.5 The proposed system block diagram

Fig. 6.6 (a) Spherical Gesture, (b) Tiny Tools Gesture, (c) Palmar (Grip) Gesture, (d) Lateral 
Gesture, (e) Cylindrical Gesture, and (f) Hook Gesture
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Fig. 6.7 (a) Class 1: Spherical, (b) Class 2: Tip, (c) Class 3: Cylindrical, (d) Class 4: Palmar, (e) 
Class 5: Lateral, (e) Class-6: Hook. The x-axis is presenting the number of attributes and y-axis is 
presenting their corresponding magnitudes

6.3.2  Machine Learning Algorithms

The classifier is an algorithm for performing the categorization tasks. It learns from 
the labeled dataset and onward the trained classifier may then be used to classify 
unknown documents or nodes based on the samples that were passed through the 
classifier to learn what makes a specific class where some parameters are set to bet-
ter understand the status of the signal. Optimizer options are hyper-parameter 
options deactivated and all features used in the model before PCA are set to the 
default of “Gaussian Naive Bayes” in Model Type Preset. Gaussian is the distribu-
tion name for numerical predictors. Multivariate multinomial distribution is the 
name of the distribution used for categorical predictors (MVMN). The default 
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choice for the feature selection and cost matrix is MVMN. Fine KNN, Euclidean 
distance metric, weight equality, and standardize data are all true. Hyper-parameter 
options are deactivated in the optimizer settings, and feature selection is enabled for 
the model type preset. PCA is disabled and the Misclassification Cost Matrix is set 
as the default for all features in the model prior to PCA. Our method considers K of 
these data points, which is the predefined number. Therefore, the distance metric 
and K value of the KNN algorithm are crucial elements to take into consideration. 
As far as distance measurements go, there’s no better option than using Euclidean 
distance. In addition to this, you have the option of using the Hamming, Manhattan, 
or even the Minkowski distance. The training dataset’s data points are all taken into 
account when predicting the class or continuous value of a new data point. Use 
feature space, class labels, or continuous values to find the “K” Nearest Neighbors 
of new data points. In Discriminant Linear All features used in the model prior to 
PCA are selected, and PCA is deactivated. The Misclassification Costs Matrix is set 
to Default. The Model Type Preset is Linear Discriminant, and the Covariance 
Structure is full. In the SVM Model Type Preset, the Gaussian Kernel Function, the 
7.2-scale kernel, the one-level box constraint, and the One-vs-One (OvO) multiclass 
method are all set to the default values of medium. Settings for hyper-parameters 
are disabled; All features used in the model before to PCA are referred to as feature 
selection; The Misclassification Cost Matrix has a True default value since PCA is 
deactivated. There are 30 learner types and 26 subspace dimensions in Ensemble 
Classifiers’ model type pre-sets, and hyper-parameter choices have been deactivated 
in the optimizer settings. There are no PCA or misclassification cost matrices since 
the model uses all characteristics before PCA.

6.3.2.1  Support Vector Machine Classifier (SVM)

A sparse kernel decision machine, the SVM approach builds its learning model 
without taking posterior probabilities into account. SVM provides a systematic 
solution to machine learning problems because to its mathematical foundation in 
statistical learning theory. Frequently used for classification, regression, novelty 
detection, and feature reduction problems, SVM develops a solution by using a 
subset of the training input.

When a program is executing, it generates new parameter values. Preventative 
maintenance can save a lot of money in the long run if the engine begins to show 
signs of failure early on. In order to solve the problem that the diagnostic model’s 
generalization ability decreases due to the motor’s variable operating circumstances, 
this research proposed a rolling application bearing cross-domain defect detection 
strategy based on a medium Gaussian SVM. End-to-end diagnostics is made pos-
sible using only the original signal as an input. To evaluate a model, this approach 
requires prior knowledge of the label for the target domain in order to achieve super-
vised domain adaptation.

The SVM approach creates its learning model without taking posterior probabili-
ties into account. It is a sparse kernel decision machine. Due to its mathematical 
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Fig. 6.8 Support vector machine

basis in statistical learning theory, SVM provides a systematic solution to machine 
learning problems. SVM is often used for classification, regression, novelty detec-
tion, and feature reduction problems and provides a solution by using a subset of the 
training input. These are their two main advantages (in the thou-sands). This method 
is perfect for problems involving text classification when a dataset of a few thousand 
tagged samples is the norm (Fig. 6.8).

6.3.2.2  K-Nearest Neighbor (KNN)

Using no previous knowledge of the original dataset, the KNN is a nonparametric 
classification technique. It is renowned for both its efficiency and ease of usage. The 
class of the unlabeled data can be predicted because the data points in a labelled 
training dataset are divided into multiple classes. Although this classifier is straight-
forward, the ‘K’ value is crucial for identifying unlabeled data. The term “k nearest 
neighbor” refers to the ability to repeatedly run the classifier with various values to 
determine which one produces the best results.

Automated model parameter estimation and manual setting of model hyper 
parameters are used to estimate model parameters. As the components of machine 
learning that need to be manually set and tweaked, model hyper parameters are 
sometimes referred to as “parameters.” The K Nearest Neighbors operates in this 
manner. The nearest neighbors of our new data point are the data points that are 
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Fig. 6.9 K-nearest neighbor

separated from it by the least feature space. Our approach considers K of these data 
points, which is a fixed quantity. The distance metric and K value of the KNN algo-
rithm are therefore important parameters. The Euclidean distance is the distance 
unit that is used the most frequently. There are also the Minkowski and Hamming 
distances, as well as the Manhattan and Manhattan distances. When determining the 
class or continuous value of a new data point, the training dataset’s whole collection 
of data points is considered. Finds the K nearest neighbors of new data points by 
searching feature space, class labels, or continuous values (Fig. 6.9).

6.3.3  Evaluation Measures

6.3.3.1  Accuracy

According to [24], the disarray framework concept is used to evaluate the classifi-
er’s demonstration. The total number of predictions made to determine classifica-
tion accuracy divides the total number of accurate predictions given a dataset. 
Accuracy is insufficient as a performance metric for imbalanced classification prob-
lems. This is mostly due to the fact that the dominant class(es) will exceed the 
minority class(es), which implies that even untrained models can get accuracy 
scores of 90% or 999%, depending on how severe the class imbalance is. There are 
four categories for each administered class. Focusing on the classes of lateral and 
hook gestures, we are defining:

Lateral and hook gestures
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• True Positive (TP): How frequently does the characterization computation pre-
dict “lateral” even when “lateral” is the true class?

• False Positive (FP): How frequently does the categorization computation predict 
“lateral” even when the real class is “hook”? Also known as a “Type I Error”.

• False Negative (FN): How often does the order computation predict, “hook” 
when the real class is “lateral”? Also known as a “Type II Error”

• How often does the arrangement computation predict “hook” when the true class 
is “palmar”? [24].

The accuracy is the range of real orders that can range from 0 to 1, with 1 represent-
ing the best accuracy result as given in Eq. (6.11).
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6.3.3.2  Precision

Another statistical measure is called precision. It counts the number of accurate 
positive forecasts. Precision calculates the accuracy for the minority class as a 
result. It is determined by dividing the total expected number of positive occur-
rences by the number of accurately predicted positive cases. When the TNs and TPs 
classifications are appropriate, Eq. (6.12) may be used to quantitatively describe this 
measure. Findings from categorization that are FPs or FNs are wrong.
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6.3.3.3  Specificity

As indicated in Eq. (6.13), the percentage of accurately detected adverse events is 
known as specificity.
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6.3.3.4  Recall

The recall, as it is described in Eq. (6.14), is a measure that counts the actual posi-
tive predictions that were made as opposed to all possible positive predictions. 
Recall takes into account all positive predictions, as opposed to accuracy, which 
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only takes into account the right positive predictions among all positive predictions. 
Recall in this method indicates the coverage of the positive class [24].
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6.3.3.5  F-Score

The F-score evaluates the precision of a model on a certain dataset. It is used to 
assess algorithms that categorize occurrences as either “positive” or “negative,” or 
in between. A statistic for assessing information retrieval systems is the F-score. It 
is possible to adjust the F-score to emphasize accuracy over recall or the opposite. 
Equation represents the harmonic mean of accuracy and recall, which is the classic 
F1 score Eq. (6.15) [25].
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6.3.3.6  Kappa Statistics

Cohen’s K-coefficient, which measures inter-rater agreement, measures the degree 
of agreement between two variables; hence, kappa most frequently deals with data 
that is the result of a judgment rather than a measurement. The likelihood of agree-
ment is compared by Kappa to what may be expected if the ratings were indepen-
dent. Kappa is another means of conveying the classifier’s accuracy [26]. Conditions, 
Eqs. (6.16) to (6.18), can be used to calculate Kappa.

 
kappa p

pe

� �
�
�

1
1

1

0
.

 
(6.16)

 

p
TP TN

TP TN FP FNo �
�� �

� � �� �
.

 

(6.17)

 

p
TP TN TP FN FP TN FP FN

TP TN FP FN
e �

�� � �� � � �� � �� �
� � �� �2

.

 

(6.18)

6 Application of Wavelet Decomposition and Ma-Chine Learning for the sEMG…



152

6.4  Results and Discussion

T The performance of the created method is assessed using the six hand-gesture 
characteristics. Each gesture was made by the participants 30 times for a total of six 
seconds each gesture. The recordings were made with a conversion resolution of 12 
bits and a sample rate of 500 Hz. The proposed windowing method is used to seg-
ment the ADC output. The maximum segment length is three seconds. To provide 
the qualities of each instance, features from each segment are extracted and com-
bined. The extracted feature set is then processed using ML-based classifiers. The 
10-CV approach is used to evaluate performance. Tables  - describe the findings 
obtained for SVM and KNN, respectively.

The confusion matrices, obtained for the case of each hand gesture are outlined 
in the following Tables 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6.

The evaluation measures for the case of SVM classifier are outlined in Table 6.7.
In Table 6.7, the spherical gesture (C1) shows the highest values of evaluation 

indices and the best AUC graph in the prediction parameters of all classes of ges-
tures. When the SVM classification technique is used, it is the simplest to discrimi-
nate between maneuvers and the rest of the movements. All six classifiers evaluated 
had an average recall of 92.2% and an average AUC value of 99.0%, with the 
Medium Gaussian SVM coming out on top (Fig. 6.10)

The evaluation measures for the case of KNN classifier are outlined in Table 6.8.
In Table 6.8, the measures for the Fine KNN algorithm show the lowest outcome 

in overall accuracy (70.71%). Based on a confusion matrix and a prediction graph, 
it has the lowest prediction outcomes. Compared to other algorithms, the Weighted 
KNN method achieved 94.1 percent accuracy and took just 0.97885 Sec. to run. On 
the other hand, the classification accuracy of Cosine KNN was the lowest at 81.3%. 
Cubic KNN, on the other hand, took the longest to train at 30.441 seconds. According 
to the selection of two attributes, the prediction model presents the predicted with 
accurate and wrong predictions in the X and Y axis. The Euclidian distance mea-
sure, equal distance weight, and a default number of neighbors of 10 are all part of 
the Medium KNN. With the default parameters, this method has a 91.6% accuracy. 

Table 6.1 Class 1 Dataset Records

Gesture Input (Dataset)

Spherical gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 3
   FPs: 7
   FNs: 0
   TNs: 110

Medium Gaussian SVM
   TPs: 29
   FPs: 0
   FNs: 1
   TNs: 137
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Table 6.2 Class 2 Dataset Records

Gesture Input (Dataset)

Tiny tools gesture 30 times for the duration of 6 seconds.

Result
   Fine KNN
   TPs: 28
   FPs: 0
   FNs: 2
   TNs: 112

   Medium Gaussian SVM
   TPs: 30
   FPs: 1
   FNs: 0
   TNs: 136

Table 6.3 Class 3 Dataset Records

Gesture Input (Dataset)

Palmar gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 19
   FPs: 7
   FNs: 11
   TNs: 121

Medium Gaussian SVM
   TPs: 22
   FPs: 3
   FNs: 8
   TNs: 144

It employs the Euclidian distance metric, equal weight of the distance, and a default 
of 100 neighbors as its default settings for coarse KNN. Based on the default param-
eters, this algorithm’s Accuracy is 92.3 percent. In its computation, the cosine KNN 
uses a cosine distance metric, equal distance weight, and a de-fault number of 
neighbors of 10. The accuracy of this method is 81.3% with the default parameters. 
The Cubic KNN method makes use of an initial set of 10 neighbors and an equal 
distance weight. This algorithm’s accuracy with default parameters is 93.5%. 
WKNN employs Euclidean distance metrics, the square of squared inverse distance 
weighted by 10 neighbors, and a default number of neighbors. This algorithm is 
accurate only 81.1% of the time (Fig. 6.11).

The accuracy is 77.8%, total misclassification costs are 40, prediction speed is 
⁓3800 obs/sec, and training time is 0.8864 seconds in the results of the KNN simu-
lation. Model type is acceptable, KNN number of neighbors is one, distance metric 
is Euclidean, distance weight is equal, standardize data is true, hyper-parameter 
options are disabled in the optimizer options, all features used in the model are 
selected, PCA is disabled before misclassification cost analysis, and the default 
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Table 6.4 Class 4 Dataset Records

Gesture Input (Dataset)

Lateral gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 23
   FPs: 9
   FNs: 7
   TNs: 117

Medium Gaussian SVM
   TPs: 29
   FPs: 0
   FNs: 1
   TNs: 137

Table 6.5 Class 5 Dataset Records

Gesture Input (Dataset)

Cylindrical gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 24
   FPs: 3
   FNs: 6
   TNs: 116

Medium Gaussian SVM
   TPs: 29
   FPs: 2
   FNs: 1
   TNs: 137

misclassification cost matrix is used. On the other hand, the SVM’s accuracy is 
92.2%, the cost of misclassification as a whole is 14, the prediction speed is ⁓3400 
obs/sec, the training time is 0.77719 sec, the model type is Medium Gaussian SVM, 
the Kernel Function is Gaussian, the Kernel Scale is 7.2, and the Box Constraint 
Level is 1. One-to-one standardized data is utilized in the multiclass method, hyper 
parameter choices in the optimizer are deactivated, all features used in the model are 
selected, PCA is turned off before PCA, and the default misclassification cost matrix 
is used.

The event-driven tools are beneficial in terms of the computational effectiveness, 
processing activity and power consumption reduction and real-time compression 
[27–29]. The feasibility of incorporating these tools in the suggested method can be 
investigated in future.
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Table 6.6 Class 6 Dataset Records

Gesture Input (Dataset)

Hook gesture 30 times for the duration of 6 seconds.

Result
Fine KNN
   TPs: 16
   FPs: 14
   FNs: 14
   TNs: 124

Medium Gaussian SVM
   TPs: 27
   FPs: 8
   FNs: 3
   TNs:139

Table 6.7 Prediction evaluations of SVM

RF Accuracy Precision Recall Specificity F1 Kappa AUC

C1 0.994 1.000 0.967 1.000 0.983 0.993 1.00
C2 0.994 0.967 1.000 0.992 0.983 0.993 1.00
C3 0.937 0.880 0.733 0.979 0.80 0.921 0.97
C4 0.994 1.000 0.967 1.000 0.983 0.993 1.00
C5 0.982 0.935 0.967 0.985 0.950 0.978 1.00
C6 0.937 0.771 0.900 0.945 0.830 0.921 0.97
Avg 0.973 0.925 0.922 0.983 0.921 0.966 0.99
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Fig. 6.10 Comparison of Gaussian SVM Prediction Parameters
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Table 6.8 Prediction evaluations of KNN

RF Accuracy Precision Recall Specificity F1 Kappa AUC

C1 0.952 0.811 1.000 0.940 0.895 0.938 0.98
C2 0.986 1.000 0.933 1.000 0.965 0.982 0.97
C3 0.886 0.731 0.633 0.945 0.678 0.846 0.79
C4 0.897 0.719 0.767 0.928 0.742 0.862 0.85
C5 0.939 0.889 0.800 0.975 0.842 0.921 0.89
C6 0.833 0.533 0.533 0.899 0.533 0.767 0.72
Avg 0.916 0.780 0.778 0.948 0.776 0.886 0.87
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Fig. 6.11 Comparison of KNN Prediction Parameters

6.5  Conclusion

This chapter describes a contemporary automated system that uses sEMG signals to 
identify hand gestures. The sEMG signals are one of the most often utilized biologi-
cal signals for predicting the upper limb movement intentions. Turning the sEMG 
signals to useful control signals frequently necessitates a large amount of computa-
tional power and sophisticated techniques. This chapter compares the performance 
of k-Nearest Neighbor and Support Vector Machine techniques for hand gesture 
detection based on the processing of sEMG signals. The first stage in this method is 
to capture the signal from the skin’s surface, followed by conditioning, segmenta-
tion, and feature extraction. The feature extraction highlights the needed character-
istics from the da-ta to recognize the gesture. Following that, the k-Nearest Neighbor 
and Support Vector Machine techniques were applied on the mined feature set. The 
training and testing is carried out while following the cross-validation strategy. The 
prediction of accuracy, AUC, F1 score, precision and Kappa are among the mea-
sures utilized in the comparison. The comparison confirms that SVM produces 
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superior results and is best suited, among the studied methods, for the needed appli-
cation of gesture recognition.

In the conducted study, while processing the sEMG signals with the proposed 
hybridization of segmentation, discrete wavelet transform, sub-bands feature extrac-
tion, and KNN classifiers the tip gesture had the highest accuracy of 98.5%. The 
accuracy score for the tip gesture is even higher for the case of SVM classifier and 
it is 99.4%. The average accuracy score of 91.6% and 97.3% is respectively secured 
by the KNN and SVM classifiers for the 6-intended hand gestures of a 
mono-subject.

These results are encouraging and the effectiveness of the developed solution 
will be evaluated in the future for multiple individuals datasets. The Naive bias and 
other classifiers such as the Artificial Neural Networks, Decision Trees and Random 
Forests will also be used for categorization. The deep learning and ensemble learn-
ing methods will also be investigated.

6.6  Assignments for Readers

• Describe your thoughts and key findings about the use of sEMG signals in 
prosthetics.

• Mention the important processes that are involved in the pre-processing and 
sEMG data collection stages.

• Describe how the performance of post feature extraction and classification stages 
is affected by the sEMG signal conditioning process.

• Identify your thoughts and key points about the sEMG classification techniques 
used in this chapter.

• Identify your thoughts and key points on the feature s technique used in this 
chapter.
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Chapter 7
Review of EEG Signals Classification 
Using Machine Learning 
and Deep- Learning Techniques

Fatima Hassan and Syed Fawad Hussain

Abstract Electroencephalography (EEG) signals have been widely used for the 
prognosis and diagnosis of several disorders, such as epilepsy, schizophrenia, 
Parkinson’s disease etc. EEG signals have been shown to work with machine learn-
ing techniques in the literature. However, they require manual extraction of features 
beforehand which may change from dataset to dataset or depending on the disease 
application. Deep learning, on the other hand, have the ability to process the raw 
signals and classify data without requiring any domain knowledge or manually 
extracted features but lacks a good understanding and interpretability. This chapter 
will discuss different techniques of machine learning including features extraction 
and selection methods from filtered signals and classification of these selected fea-
tures for clinical applications. We have also discussed two case studies i.e., epilepsy 
and schizophrenia detection. These case studies use an architecture which combines 
deep learning with traditional ML techniques and compare their results. Using this 
hybrid model, an accuracy of 94.9% is obtained based on EEG signals obtained 
from epileptic and normal subjects, while an accuracy of 98% accuracy is achieved 
in schizophrenia detection using only three EEG channels. The latter result is sig-
nificant as it is comparable to other state of art techniques while requiring less data 
and computational power.
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7.1  Introduction

Biomedical signals carry useful information regarding the physiological activities 
of the human which might not be directly observed. Significant research has been 
conducted to extract meaningful information from these signals. This information 
can be useful in developing automated real-time detection of different disorders 
using machine learning algorithms. EEG is a neuroimaging technique which records 
the electrical activity generated by population of neurons inside the human brain. It 
allows the non-invasive monitoring of patients’ health and diagnose different brain 
disorders such as Epilepsy, Alzheimer, Parkinson’s, and other brain disorders. These 
diseases often cause abnormalities in EEG readings. Generally, clinicians and phy-
sicians analyze these signals visually which is laborious, time-consuming and may 
result in inefficient results.

Brain computer interface (BCI) is another multidisciplinary area which has 
recently piqued attention due to its potential to provide communication and control 
to patients with severe movement disorders. It allows a physically disabled person 
to control an external device such as prosthetics using EEG signals rather than mus-
cle activity. The majority of BCI applications, including wheelchair control, emo-
tion recognition, prosthetic arms, etc., use EEG signals. BCI implementation 
requires an effective strategy for processing these complex EEG signals. These 
challenges inspired researchers to develop different signal processing, feature 
extraction, feature selection algorithms in combination with machine and deep 
learning. The human brain is divided into two hemispheres, left and right, and four 
lobes, i.e., Temporal, Frontal, Occipital, Parietal and Central lobe. Each lobe has its 
own specialized functions, and when performing them, it releases different rhyth-
mic waves. The EEG signals are recorded by means of non-invasive electrodes 
placed at different positions on the scalp. There are two modes for positioning of 
electrodes which are unipolar and bipolar. In the first mode, each electrode mea-
sures the voltage difference compared to a reference electrode and each electrode- 
reference pair forms a channel. The voltage difference between two specified 
electrodes are recorded in bipolar mode and each pair creates a channel [1]. One to 
256 channels can be found in a standard EEG system. The EEG waveforms recorded 
are categorized into five bands based on their frequency ranges. Most of the impor-
tant information of human brain activity lie in these five bands. These frequency 
bands along with their frequency ranges are listed in Table 7.1. The Delta band 
consists of slowest waves with highest amplitude. These rhythms occur in deep 
sleep. Theta waves are observed in a state of meditation. Alpha waves are normally 
seen when the subject under observation is awake but is in a state of deep relaxation 
with eyes closed. When the brain is in a state of active concentration or engaged in 
activities such as thinking, decision making etc., Beta waves are generated. Lastly, 
Gamma waves occur when the subject is intensely focused.

The sensorimotor rhythm which reflects human movement is also a component 
of the alpha and beta frequency bands. Akbulut et al. [3] extracted features from 
these bands for the classification of hand movements. Similarly, Jatupaiboon et al. 
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Table 7.1 Frequency ranges Corresponding to each EEG Band [2]

EEG bands Frequency range

Delta < 4 Hz
Theta 4 – 8 Hz
Alpha 8 – 13 Hz
Beta 13 – 30 Hz
Gamma > 30 Hz

Signal

Acquisition

Feature

Extraction

Preprocessing

Noise Removal

Feature

Selection
Classification

Fig. 7.1 General Block Diagram of AI-based Classifiers for EEG Signals [2]

[4] performed the frequency band analysis and channel-based analysis of EEG sig-
nals for emotion classification.

This chapter covers different signal processing techniques and feature extraction 
methods to extract the relevant and dominant features which are then sent to machine 
learning models for classification. Figure 7.1 shows the basic block diagram of an 
artificial intelligence (AI) based classification of EEG signals.

There are five common steps in all AI-based classification algorithms. The first 
step is signal acquisition which is already discussed above. The next step is signal 
pre-processing which involves noise and artifacts removal. Researchers have pro-
posed different signal processing techniques depending upon the problem and the 
type of artifacts. For multi-channel data, some researchers have used channel selec-
tion techniques also where only a subset of the channels are selected rather than the 
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entire data. The third step is feature extraction which aims to find the most informa-
tive set of features from the raw signals. Among them, the most discriminative fea-
tures are then selected using feature selection algorithms which discards the 
irrelevant features. This reduction in features in turn decreases the processing time 
and improves the accuracy. Finally, the last step is the classification of these features 
for which different architectures have been proposed.

7.2  Signal Pre-Processing

Although EEG has shown to be a powerful tool in different domains, it still has 
some limitations that make it difficult to analyze or process. The EEG signals are 
susceptible to noise and artefacts which can affect the quality of a signal. Artefacts 
are the unwanted signals due to external and internal interferences, experimental 
errors and environmental noise, power and line interferences, eye blinking, muscle 
movements and heartbeat etc. These artefacts may imitate cognitive or pathogenic 
activity which can affect the neurologist’s interpretation and lead to misleading 
results. Cutting the entire segment of data affected by the artefacts might result in 
the loss of important information. For real-time processing, manual artefact extrac-
tion would be almost impossible. These artifacts should be removed from EEG 
signals for further processing. There should be some automated technique for arte-
fact separation. Different methods have been used for noise removal and signal fil-
tration. Some of them are discussed briefly here.

EEG signals are regarded as non-stationary due to the presence of high and low 
frequency noises. The effect of these noises and artifacts can be reduced by basic 
filters, such as low-pass, band-pass, high-pass, etc. Selection of filters depends upon 
the frequency range of the artifacts. Low-pass filter attenuates the frequencies which 
are higher than the certain level. On the other hand, high-pass filter removes the 
frequencies below a certain threshold. Low-frequency noises in EEG signals can be 
removed by passing them through low-pass filters. Similarly, noise due to muscle 
movements is a high frequency noise and therefore can be reduced through high- 
pass filter [5]. In most of the BCI applications, high pass filters are employed to 
eliminate the very low frequency noises, such as those of breathing [6]. Moreover, 
low pass filters that have a cut-off frequency of 40–70 Hz are used to reduce or 
eliminate high-frequency noise [7].

In case of band-pass filters, only frequencies within a specific range can pass 
through them. The signals below and upper the limit of this range are discarded. 
Band-stop filter is the reverse of band-pass filter. The signals below the lower and 
upper limit of the range remain undistorted and all the signals within this range are 
discarded. The power line introduces 50 Hz or 60 Hz electromagnetic waves and is 
the source of the most substantial noise. The value of power line noise is from 
10 mV to 1 V whereas the EEG signals without artifacts have a value from 0 to 
70μV [8]. It can corrupt the data of a few or even all electrodes. Therefore, Maiorana 
et  al. [9] applied band-stop filter on the signals to eliminate power line noise. It 
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discards the signals within a narrow frequency range. Band-pass filters allow you to 
focus your study on specific frequency bands that are relevant to your application 
[9, 10]. Another commonly used filter is a notch filter [11, 12]. Notch filter with a 
central frequency of 50 or 60 Hz is used to minimize power line interference. It 
allows all frequencies to pass through except the interfering frequencies [12–15]. 
used Butterworth filter for noise removal. Adaptive filters are also used for signal 
denoising. They have the ability to modify themselves according to the properties of 
signal being analyzed [16].

Some research studies have used Blind Source Separation (BSS) techniques for 
signal pre-processing. The BSS [17] separates the source signals from mixed sig-
nals with little or no knowledge about the source signals or the mixing process. 
Independent Component Analysis (ICA) is an example of a BSS technique. It 
decomposes a complex mixed signal into independent components. Some of these 
components represent original data sources whereas others represent the artifacts. If 
these artifactual components are used in training machine learning models, they can 
affect the classification accuracy. Therefore, the features extracted from these arti-
factual components should be removed. Artifacts such as eye movement, EEG, elec-
trocardiogram (ECG), and electrical grounding noise are all generated by statistically 
independent signal sources [18]. The ICA method can separate them and extract 
relevant information from EEG signals. This approach has been reported to detect 
artefacts in certain papers [19–21]. It also improves the signal quality in multichan-
nel EEG data. This has been proven in numerous studies including various numbers 
of channels, ranging from 16 to many more [21, 22].

ICA is computationally efficient but requires more computations to decompose a 
signal into components [18]. Its performance depends upon the volume and length 
of the data segment. Higher the volume of data, higher will be the performance of 
ICA in terms of artifact removal. Sai et al. [23] applied ICA along with wavelet 
multiresolution analysis on EEG signals to filter out artifactual components with 
minimal distortion to the signals of interest. The EEG signal from each channel is 
then decomposed to 8 levels using Debauchies (db8) mother wavelet. Among these 
8 levels, D1, D2 and A8 were discarded as they contain high frequency noise and 
artifacts. Then, ICA is applied on remaining levels containing frequencies of 
interest.

One commonly used BSS technique is the Principal Component Analysis (PCA). 
PCA works by reducing the dimensionality which is useful for artifact removal and 
noise reduction [24, 25]. PCA decomposes the EEG signal into linearly unrelated 
vectors known as principal components which are then split into two groups: one 
related to brain activity and the other associated to artefacts. The components related 
to brain activity are then used to reconstruct the clean and filtered EEG signal. 
However, in real recorded signals, the assumption of orthogonality in PCA is not 
always met which affects the performance significantly. Some studies employed 
Empirical Mode Decomposition (EMD) [26, 27]. Patel et al. [28] applied PCA with 
Ensemble EMD on EEG signals to suppress the effects of eye blink artefacts.

Wavelet transforms (WT) is a proven technique for analyzing non-stationary sig-
nals due to their ability to accurately capture transient events [29]. They provide 
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multi-scale analysis of EEG signals in both time and frequency domain [30]. To 
suppress the effect of noise, different operations such as thresholding are applied in 
spatial domain [31]. Salis et al. [32] applied discrete wavelet transform (DWT) to 
eliminate artifacts applied at each scale. Then these wavelet coefficients are trans-
formed back to construct the signal. Zhao et al. [33] also employed wavelet packet 
transforms (WPT) for artifact removal.

7.3  Features Extraction

Machine Learning algorithms require features for classification. Feature is an iden-
tifiable measurement, or a distinguishing attribute which is extracted from data seg-
ment of a pattern. These features are required to reduce the computational 
complexity, number of resources and lower the cost of data processing. The most 
critical step in any classification model is the extraction of relevant features as it 
directly affects the classifier’s performance [34]. For correct interpretation, it is nec-
essary to extract the most informative statistical features from the EEG signal. 
Feature extraction involves conversion of raw data into numerical features while 
preserving the original data’s information. Different feature extraction algorithms 
have been used by the researchers which are discussed here in detail.

7.3.1  Fast Fourier Transform (FFT)

FFT transform the signal from a time to the frequency domain. By doing so, hidden 
features become more apparent. Suppose 𝑓(𝑡) is a continuous-time signal, then a 
Fourier transform F(ω) is given by the following mathematical equation:

 
F f t e dtj t� �� � � � �

��

�

�
 (7.1)

Here, ω is the frequency. Delimayanti et al. [35] extracted features using FFT for 
sleep stage classification. They segmented EEG signals into equal time intervals 
termed as epochs. These epochs were then subjected to frequency analysis using 
FFT. Rashid et al. [36] extracted standard deviation, average spectral density, energy 
entropy and spectral centroid from alpha and beta bands of EEG signals. Average 
spectral density is computed using FFT. All these features were then fed to a classi-
fier. A study in [37] also used FFT for classification of depressive subjects from the 
normal ones. FFT has a limitation that it focusses only on spectral information but 
does not provide any time-domain information.

F. Hassan and S. F. Hussain



165

7.3.2  Short-Time Fourier Transform (STFT)

To cover the limitations of FFT, STFT is proposed which analyses the EEG signals 
in a time-frequency domain. It divides the signal of interest into short segments 
using a windowing technique. These short segments are then analyzed using the 
standard Fourier transform. The mathematical equation of STFT is written as:

 
F f t t e dti t� � � � �,� � � � � �� �

��

�
��

 (7.2)

where represents the window function, 𝑓(𝑡) is the input signals and 𝐹(τ ω) is the 
Fourier transform representing the signal over time and frequency. STFT is also 
used for extracting features from spectrograms. Spectrogram is a 3D representation 
of a signal amplitude with respect to time and frequency. There are different param-
eters which should be selected appropriately as they effect the resolution of a spec-
trogram such as window length, window type, number of FFT points, etc. [10]. 
Zabidi et  al. [10] used Hamming window of width 0.1–0.8  s to compute 
STFT.  Ramos-Aguilar et  al. [38] also computed STFT or spectrogram and then 
extracted features from them to detect epileptic seizures. Although STFT provides 
both time and frequency information but it has a fixed-time resolution [38].

7.3.3  Continuous Wavelet Transform

It is another feature extraction technique used to extract event related time- frequency 
features from EEG signals. CWT convolves the scaled and translated wavelet func-
tions φ(𝑡) with the input data sequence and generate a two-dimensional time- 
frequency scalograms. The mathematical equation of CWT is:
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Here, φφ(𝑡) is a mother wavelet function, x(t) represents input signal, n and s are 
scaling and translation parameters. Upadhyay et al. [39] computed statistical fea-
tures from the CWT coefficients and used them for alcoholism diagnosis. Zhao 
et al. [40] generated scalograms by applying CWT on the raw EEG signals. The 
features extracted using CWT are then passed as an input for training classifiers. But 
CWT based feature extraction is computationally intensive.
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7.3.4  Discrete Wavelet Transform

DWT is a common feature extractor for the analysis of time-series data. DWT 
decomposes the time-series data into different components having different fre-
quencies at different scales using a set of basis function. This function is formed by 
compression and dilation of a mother wavelet. Let 𝑎 and 𝑏 represent the scaling 
parameter and translation parameter. For an input signal 𝑓(𝑡), the DWT would be:
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Here, φφ(𝑡) is a mother wavelet function. The input signal is passed through a mul-
tiple high and low pass filters and generate detailed coefficient and the approxi-
mated coefficients. The approximated coefficients are then further passed through 
the series of filters. There are seven different wavelets which are commonly used. 
These are Haar, Symlets, Discrete Meyer, Reverse Biorthogonal, Biorthogonal, 
Daubechies and Coiflets. Figure 7.2 shows the decomposition of EEG signal (F[tm]) 
into five sub-bands 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐴4 using the Debauchies wavelet.

Db4 is the most commonly employed mother wavelet for interpretation of EEG 
signals. Numerous studies [30, 41–43] have employed DWT based feature extrac-
tion. Djemal et al. [30] decomposed the pre-processed EEG segment into five fre-
quency bands using level 4 DWT. Different Statistical features and several entropy 
values (log energy, Renyi entropy, threshold entropy and Shannon entropy) are 
computed from these wavelet coefficients, i.e., D1, D2, D3, D4, and A4. Research 
study in [42] extracted Expected Activity Management (EAM), Higuchi fractal 
dimension (HFD) and sample entropy from the sub-bands. Another study in [44] 
extracted fourteen statistical features from DWT coefficients and selected the differ-
ent combinations of these features for training. Among these 14 features, they found 
out that energy, entropy and variance provided the best classification accuracy. 
Qaiser et al. [41] also computed statistical features such as signal power spectrum, 
skewness, mean absolute value, entropy, kurtosis, standard deviation, mean ratio, 
zero crossings, peak positive value etc. from the approximate and detailed 
coefficients.

D1

A1 A2 A3 A4

D2 D3 D4

F[tm]

Fig. 7.2 Detailed and Approximate coefficients using Db4 mother wavelet [41]
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7.3.5  Wavelet Packet Decomposition (WPD)

It is the extended form of DWT which performs multilevel decomposition of EEG 
signals and used for signal transformation from time domain to frequency domain. 
In contrast to WT, WPD splits both sub-bands i.e., the low and high frequency band 
but the frequency bins are of equal width. In wavelet analysis, a signal is divided 
into approximate and a detail coefficient. The complete binary tree is constructed by 
decomposing these coefficients. Figure 7.3 shows the block diagram of a 4-level 
WPD. Studies in [45, 46] extracted features using WPD.

7.4  Features Selection

Some of the features are redundant or are of less importance. These redundant or 
irrelevant features tend to affect the accuracy. Training the model with the best set 
of features is a crucial task since selecting the best set of features from any dataset 
is a difficult process. Using feature selection methods, we can choose the most rel-
evant features and discard the irrelevant ones. The aim of feature selection is to 
reduce the dimensionality of the features which speeds up the learning and reduce 
the cost of a learning algorithm. Feature selection methods can be divided into two 
main types which are discussed below.

Wrapper based feature selection techniques follow a greedy search approach by 
searching the feature space and testing all the possible feature combinations. The 
effectiveness of the chosen feature subset is then assessed using the prediction accu-
racy of the classifiers. Recursive Feature Elimination (RFE) [47] is a wrapper-based 
method. The method involves fitting the model to the entire dataset initially, then 
removing the weakest features one at a time until the desired number of features is 
obtained. There is no specific criterion for elimination of features. The features are 
recursively eliminated based on the classifier’s accuracy. Ting et al. [46] used RFE 
combined with Support Vector Machine (SVM) classifier. All the features in a 

x(t)

A1

DA2

DAA3 ADA3 DDA3 AAD3

AA2

AAA3

D1

AD2 DD2

DAD3 ADD3 DDD3

Fig. 7.3 3-Level Wavelet Packet decomposition
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feature vector are assigned with a weight value. These weight values are learned by 
kernel function of SVM.  Then, RFE eliminates the features with lowest weight 
values recursively.

Roy et al. [48] used two strategies to pick the fewest number of features. The first 
one is PCA, which compresses a dataset into a lower-dimensional feature subspace 
in such a way that majority of the important information is preserved. Then, RFE 
technique is used which assigns a score to each feature and choose the ones with the 
highest score. As, the wrapper-based methods are optimized according to the learn-
ing algorithm therefore, any modification to the learning algorithm may affect the 
subset quality. Also, these methods are computationally expensive.

On the other hand, filter methods use intrinsic aspects of data to select relevant 
features. They are independent of learning algorithm used such as mutual informa-
tion (MI) technique. It is a feature selection technique which uses MI score to assess 
which features convey more information [49]. The MI score is a measure of depen-
dency between the output label (A) and input feature (B) and is given by:
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Here, p(A) and p(B) represents the marginal density functions, p(A, B) denotes the 
joint probability density functions, A represent feature distribution and B represent 
the class distribution. If the input feature and target variable are independent of each 
other, MI score would become equal to 0. Higher value of MI score indicates that 
this feature is more discriminatory [41, 50, 51].

Another technique named Minimum Redundancy and Maximum Relevance 
(MRMR) is devised for microarray data [52]. It selects a subset of features that have 
the strongest correlation with a target class and the least association with each other. 
It ranks features using the minimal-redundancy-maximal-relevance criterion. To 
calculate relevance, the F-statistic or MI can be used, while redundancy can be esti-
mated using the Pearson correlation coefficient or MI. Subhani et al. [53] selected 
the most relevant features using MRMR for stress classification.

7.5  Machine Learning Techniques

Machine Learning is a rapidly emerging field and have numerous applications in the 
medical domain. Clinical EEG analysis can be automated using machine learning 
techniques. Researchers have used different classifiers such as Logistic Regression 
(LR), Linear Discriminant Analysis (LDA), SVM, Random Forest (RF), Gradient 
Boosting (GB), k-Nearest Neighbors (KNN), etc.

The logistic regression [29] is a statistical analysis method used to model dichot-
omous variables given a set of independent variables. However, it can also be 
extended to a multiclass problem. It predicts the likelihood of an event occurring by 
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fitting data to a logit function. It is a simple, efficient, and easy to implement classi-
fier. But for high-dimensional data, it leads to overfitting.

LDA [54] is another widely used machine learning classifier. Assuming data is 
normally distributed and linearly separable classes, LDA draws a hyperplane and 
project the data onto it in such a way that the interclass variance is minimized and 
the intraclass distance is maximized. It is generally used for two class problems, but 
it can also be extended to problems with multiple classes. For multiple classes, it 
creates multiple linear discrimination functions representing several hyperplanes in 
the feature space. In [54], LDA is used for classification of EEG imagery tasks. 
Another study in [55] used LDA for deceit identification. LDA is not only a robust 
classifier, but it is also used for data visualization, dimensionality reduction and 
feature extraction. But it does not always provide good performance for non-linear 
classification.

Like LDA, SVM [56] is a linear classifier which uses discriminant hyperplanes 
to separate data items belonging to different classes. The hyperplane is optimized 
maximizes the distance between the hyperplane and the closest training data points 
known as support vectors. For non-linear data, it maps the feature space into a 
higher dimension using kernel function. This higher dimensional data is then clas-
sified using a linear decision boundary. Some of the most commonly used kernel 
functions include linear, radial basis function (RBF), polynomial and sigmoid. 
SVM classifier has been widely employed for diagnosis of various neurological 
disorders, cognitive processes [34] and BCI application [57]. It has a high general-
ization and thus prevents the model from over-fitting.

The KNN [34] is a supervised algorithm that assigns a class label to a new data 
sample based on the class of k-nearest training samples. It uses a distance metric 
such as Manhattan, Euclidean, Minkowski, hamming distance etc. to compute the 
similarity between an unseen point and its k neighbors. Studies [34, 57] used KNN 
for interpretation of EEG signals. It is robust to noise and simple to implement. But 
it has high computational cost. KNN saves training data, and all computation occurs 
at the time of classification. That is why it requires more memory compared to other 
classifiers.

Ensemble methods have also been used to boost the classification accuracy. 
Some of the most commonly used ensemble-based algorithms include RF, GB etc.

7.6  Deep Learning Techniques

Due to the ability to learn appropriate feature representations from raw data, deep 
learning has recently shown significant potential in interpreting EEG signals. It is a 
subfield of machine learning which provides an automated end-to-end learning 
from preprocessing to the classification of data samples while also achieving com-
petitive performance on the objective task. The use of these networks in neuroimag-
ing is on the rise, with recent studies using them to investigate cognitive tasks, 
diagnose disorders and human emotions detection.
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Artificial Neural Network (ANN) refers to an architecture for processing infor-
mation composed of a set of and is composed of interconnected nodes that mimic 
the biological neurons in a human brain. They are used for EEG based detection of 
autism [30], epileptic seizures [58], emotions [59], depression [37], Sleep Apnea 
[44] and BCI applications [60].

Convolutional neural networks (CNNs) are feed-forward neural networks capa-
ble of learning internal representations of data. Unlike machine learning classifi-
ers, they are able to learn automatically without requiring any domain knowledge 
and features. The input data is passed through multiple convolutional and pooling 
layers. The convolutional layers consist of kernels or filters. These kernels con-
volve with the input data and generate output feature maps. For accurate classifica-
tion, the hyperparameters of CNN should be tuned appropriately. Each convolution 
layer has an activation function that decides which neuron should be activated or 
not. Acharya et al. [61] presented a deep CNN architecture consisting of thirteen 
layers which classify EEG signals into normal, pre-ictal, and seizure classes. 
Nissimagoudar et al. [62] used a deep (CNN) to learn features. These features were 
then used to detect whether the car driver is alert while driving or in a drowsy state. 
Another research study [63] presented a CNN architecture which learns features 
from raw EEG signals to classify depressive and normal subjects. Oh et al. [64] 
also used CNN for the Parkinson’s disease detection. Similarly, research study in 
[65] proposed a 23-layered CNN architecture for the classification of abnormal and 
normal EEG signals. Automatic feature extraction capabilities of deep learning 
networks are now used along with Machine learning classifiers for improved 
classification.

Another deep learning architecture is Recurrent Neural networks (RNN). They 
have the ability to capture information from the past inputs. In RNN, the neurons 
within the layer also share connections with each other. They can capture higher 
dimensional dependencies from time-series or sequential data, such as EEG sig-
nals. Traditional RNNs are quick in learning the short-term dependencies; however, 
due to vanishing and expanding gradient, they struggle to learn long-term dynam-
ics. Long Short-term memory (LSTM) network is a form of RNN that can learn 
both long and short-term dependencies to solve vanishing and exploding gradient 
problems. It consists of three parts or gates namely forget, input and output gates. 
The forget gate decides whether the information coming from the previous layer is 
relevant or not. If not, then forget this information. The input gate learns the infor-
mation from the input and the third part which is the output gate passes this infor-
mation to the next cell. Zhang et al. [66] used LSTM for classifying hand movements. 
Recently, a hybrid architecture using both CNN and LSTM is designed which has 
shown significant improvement in terms of performance and classification 
accuracies.
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7.7  Case Studies

7.7.1  Epilepsy Detection

Epilepsy is a neurological disorder which generate irregular and recurrent seizures. 
A seizure is an abnormal electrical activity that occurs suddenly in your brain. If not 
diagnosed, these seizures can even lead to death. Timely detection of these seizures 
is necessary in order to start medication and treatment. EEG is a widely used modal-
ity for screening epileptic patients. Manual examination of these highly complex 
and non-stationary signal is a quite laborious and time-consuming process. 
Therefore, [2] proposed a hybrid model of CNN and machine learning for auto-
mated detection of epileptic seizures.

7.7.1.1  Dataset

A publicly available dataset of CHB-MIT is used. This dataset consists of long 
duration EEG signals of 23 pediatric patients. These signals are recorded using 23 
channels with a sampling rate of 256 Hz. The recorded signals were then split into 
5  s segments consisting of 1280 sampling points. Here each segment makes an 
instance. Out of total 23 channels, they have considered only 22 channels because 
the data in 22nd and 23rd channel is almost similar. As, there are total 22 channels 
therefore, each segment consists of 1280 × 22 sampling points.

7.7.1.2  Methodology

As discussed previously, the EEG signals often get contaminated with noise and 
artifacts. Therefore, for signal denoising and filtration, they used Butterworth filter 
of order 2. The frequency content of a signal is confined between 0.5 and 50 Hz. In 
the relevant literature, we have observed that the deep learning architectures are 
most widely used for automatic learning of intrinsic aspects of data. In this study, 
CNN is used to classify the epileptic and non-epileptic patients. Before passing 
them to CNN, these filtered EEG signals were normalized between 0 and 1 using 
z-score normalization. Figure 7.4 shows the architecture CNN used in this study. 
Unlike machine learning classifiers, CNN can automatically learn from the data. 
CNN consists of two parts namely feature extraction and classification part. They 
consist of a stack of convolution and pooling layers which performs feature extrac-
tion. These convolution layers consist of kernels or filters which are convolved with 
the 1D data of EEG signals and generate feature maps. Different number of kernels 
are tried and their effect on the accuracy is observed. The number of kernels on 
which maximum accuracy is obtained are fixed.
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Fig. 7.4 CNN Architecture for Epileptic Seizures Detection

Table 7.2 Summary of Classification Results for Epileptic Seizures Detection

Dataset ANN LR RF SVM GB KNN

CHB-MIT 91.6 88.5 90.5 92 92 94.9

These feature maps are then passed onto another layer known as the maximum 
pooling layer. The pooling layer selects the high-level features from these feature 
maps and reduces the dimensionality, number of parameters and amount of compu-
tation needed to process these features. The input data after passing through succes-
sive convolution and pooling layers reaches the flatten layer. The second part of a 
CNN is a classification part which consists of dense layers. These layers take 1D 
data as an input. But the feature maps are 2-dimensional. Therefore, the flatten layer 
is added to transform these 2D feature maps into a 1D feature vector. This feature 
map is then passed through three dense layers consisting of 50, 20 and 2 neurons, 
respectively. Note that the number of neurons in the last layer indicate the number 
of classes. A ten-fold cross-validation is used for training CNN model. The CNN 
based classification achieved 91.6% accuracy. Machine learning classifiers are very 
powerful, but they require features. Therefore, they extracted features from the flat-
ten layer and sent them to different machine learning classifiers for classification. 
The results obtained are given in Table 7.2. When the features learnt by CNN are 
passed to KNN, the accuracy increased to 94.9%.
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7.7.2  Schizophrenia Detection

Schizophrenia is a chronic mental illness which effect the daily activities of patients. 
The symptoms of this disease include hallucinations, delusions and other socio- 
psychological issues. Normally, it is diagnosed by conducting interviews and 
observing the symptoms. But this examination requires continuous monitoring of 
patients. Researchers have used different modalities to detect schizophrenic patients. 
Most of the researchers have used EEG modality due to its non-invasive nature 
along with a high temporal resolution. The study in [2] proposes a new model by 
fusing CNN and machine learning classifiers with the combination of only three 
channels.

7.7.2.1  Dataset

For analysis, researchers have used publicly available dataset collected from the 
Institute of Psychiatry and Neurology in Warsaw, Poland. The dataset consists of 
15 minutes long EEG recordings from 28 patients including 14 SZ and 14 normal 
subjects. These signals are recorded using 19 channels with a sampling frequency 
of 250 Hz which are then divided into 20 sec segments. Each segment behaves as an 
instance consisting of 5000 sampling points. As there are total 19 channels, there-
fore each instance comprises of 5000 × 19 sampling points. All these instances are 
passed to a Butterworth filter for artifact removal. Then four datasets are created to 
study the effect of all channels, individual channels, different brain regions and 
selected channels on Schizophrenia detection.

7.7.2.2  Methodology

First of all, data is passed through a Butterworth filter and then applied normaliza-
tion. Then they trained data of all nineteen channels on individual CNN networks. 
The number of kernels, kernel size, activation function, optimizer etc. are adjusted 
by varying them and observing their effect on the classification accuracy. There was 
total nineteen channels used which are Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, 
T4, T5, P3, Pz, P4, T6, O1, O2.

When the data of all these channels is grouped and trained on CNN, the model 
classified the instances with 97% accuracy. But, in this dataset, each instance con-
sists of 5000 × 19 sampling points which is equal to 95,000. Training this high- 
dimensional data would take time to process. Therefore, CNN based channel 
selection is employed. Data of all the channels is individually trained on a CNN 
architecture. They observed that channels T4, Cz, T3 and C4 obtained highest accu-
racy as compared to the others which indicate that these channels contain more 
relevant information. From the combination of these channels, four different 
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datasets have been created based on their classification accuracies. Table 7.3 shows 
the dataset created based on the combination of channels selected.

These datasets are then trained one by one on a CNN architecture. The hyperpa-
rameters are chosen by observing their effect on the classification accuracy. Different 
number of kernels of different sizes are tried. Similarly, the learning rate is increased 
from 0.01 to 0.0001. After trying different combinations of optimizers and learning 
rates, they found out that the Adam optimizer used with a learning rate of 0.001 is 
suitable. So, these parameters were fixed. Figure 7.5 shows the CNN architecture 
which is trained on selected channel dataset using ten-fold cross-validation.

Like previous case study, the features learnt by CNN are extracted from the flat-
ten layer and passed to different machine learning classifiers. The results obtained 
are given in Table 7.4.

According to the results mentioned in the above table, when feature extractor of 
CNN is combined with logistic regression it achieved 98% accuracy. The sampling 
points or features are also reduced from 5000 × 19 to 5000 × 3.

7.8  Discussion

Accurate interpretation of EEG signals is a tedious process and might take years of 
training. This chapter discusses different machine learning techniques to automate 
clinical EEG signal analysis for different problems. There are two types of tech-
niques presented in the literature: feature-based and end-to-end learning. Feature 
based learning requires manual extraction of features beforehand which are then 
passed to machine learning algorithms. Different combinations of signal process-
ing, feature extraction and selection methods are used to extract more relevant fea-
tures depending upon the problem. Table 7.5 shows a brief detail of the algorithms 
used for different problems. In all aforementioned studies based on feature-based 
learning, a non-linear analysis or an algorithm such as CWT, DWT, FFT, STFT etc. 
is required to extract features. The algorithm chosen might lose some critical infor-
mation due to which it may work well on one dataset but fail on another dataset. 
Selection of the algorithm is quite difficult.

Deep learning or end to end feature learning is a subfield of machine learning 
which can significantly improve the categorization of EEG signals. Studies in [61–
65] employed deep CNN to process EEG signals. The hidden layers have the ability 

Table 7.3 Datasets based on Combination of Selected Channels [2]

Dataset name Channels combination

A T4, Cz
B T4, C4, Cz
C T4, T3, Cz
D T4, T3, C4, Cz
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Fig. 7.5 CNN Architecture for Schizophrenia Detection [2]

Table 7.4 Classification Accuracy on “Selected_Channels” Dataset [2]

Datasets CNN LR RF SVM GB

A 96.23 96.30 93.85 94.27 94.90
B 97.70 97.77 95.32 96.44 96.30
C 97.84 98.05 96.93 96.30 96.79
D 97 97 95 96 96

to capture the minute details from raw data without requiring feature extraction or 
selection algorithms. Due to high representational power, more hidden layers are 
required to learn details from raw EEG signals. Adding more hidden layers might 
improve the accuracy or might not depending upon the complexity of a problem and 
data size. Deeper architectures are more prone to overfitting. You can use any net-
work depending upon your problem and the resources available. LSTM is another 
commonly used network to process time-series data. They have the advantage of 
being able to analyze lengthy input sequences without expanding the network size. 
But they require more parameters as compared to CNN.

Hassan et al. [2] employed a hybrid of CNN and ML algorithms in the thesis and 
presented two case studies epilepsy detection and schizophrenia detection which we 
have discussed here. This hybrid architecture uses the feature extraction capability 
of CNN and pass the learnt features to ML algorithms for classification. The model 
achieved the accuracy comparable to the other state-of-art accuracies for binary 
class problem without requiring any feature extraction and selection algorithm.
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Table 7.5 Summary of research on EEG signals Classification

References Problem Preprocessing
Feature extraction 
and selection

Classification 
algorithm

[13] Epileptic 
seizures 
detection

High-pass Butterworth 
filter

Tunable-Q wavelet 
transform (TQWT) 
framework
Extracted statistical, 
entropy-based and 
fractal features

Ensemble- 
learning 
algorithms

[14] Alcoholism 
detection

– Wavelet transform
PCA

Naive Bayes 
(NB), SVM, 
decision tree 
(DT), RF and 
GB

[19] Epileptic 
seizure 
detection

Normalization Extracted statistical 
features using DWT
PCA, ICA and LDA

SVM

[23] Automated 
artifacts 
identification

– Wavelet 
multiresolution 
analysis
ICA

SVM

[30] Autism 
diagnosis

ICA and adaptive 
filtering

DWT + statistical 
features extraction

ANN

[44] Sleep apnea 
classification

Infinite impulse 
response Butterworth 
band pass filter
Hilbert Huang 
transform

Signal decomposition 
into five frequency 
bands
Computed statistical 
features for every 
frequency band

SVM

[48] Emotion 
recognition

– RFE + PCA Light gradient 
boosting 
machine

[50] Arrythmia 
classification

Adaptive rate sampling
Bandpass FIR filter

DWT + statistical 
features extraction
MI-based feature 
selection

RF, SVM

[53] Stress 
classification

Notch filter Applied FFT and 
computed absolute 
power and relative 
power as features
Feature selection 
using MRMR based 
on MI score

SVM

[54] Motor imagery 
(MI) based BCI 
application

– Computed PSD using 
FFT

LDA

[55] Deceit 
identification

Bandpass filter WPT + statistical 
features

LDA

(continued)
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Table 7.5 (continued)

References Problem Preprocessing
Feature extraction 
and selection

Classification 
algorithm

[57] Classification of 
mental tasks

Bandpass filter + 
Laplacian filter + 
normalization

Computed power 
spectral density from 
periodogram
Channel selection

SVM

[61] Epilepsy 
detection

Normalization – 13-layered CNN

[62] Driver state 
(alert/drowsy) 
detection

– – CNN

[63] Depression 
diagnosis

– 13-layered CNN

[64] Parkinson’s 
disease 
detection

– – 13-layered CNN

[65] Epilepsy 
detection

Normalization 23-layered CNN

[66] Classification of 
hand 
movements

Notch filter to remove 
50 Hz power line 
interference + bandpass 
filter which allows a 
frequency range of 
0.5–70 Hz + min-max 
normalization

Time-domain and 
frequency features

Attention-based 
LSTM network

Case 
studies

Epilepsy 
detection

CNN KNN

Schizophrenia 
detection

CNN
Channel selection

LR

7.9  Conclusion

Biomedical signals provide a rich source of data to identify various diseases and 
identify events related to neurological state. EEG signals form an important part of 
a patient’s medical data. This chapter gives an overview of machine learning meth-
ods used for EEG classification. To classify EEG data, a combination of different 
signal processing, feature extraction, and feature selection techniques are used. 
Numerous machine learning algorithms for the classification of EEG signals have 
been used in the literature.

The aim of biomedical signal processing is to remove the artifacts due to external 
and internal environments and transform raw data to a useful form. This transforma-
tion is basically feature extraction. Different studies have used different features 
depending upon the nature of the problem. Some studies extract time-domain fea-
tures, for instance the mean and variance, whereas others observed that the hidden 
features become more apparent in frequency domain. In many cases, both time- 
domain and frequency domain features were considered useful. Overall, there are 
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two major approaches to processing EEG signals in the literature – the first one 
involves using a combination of signal processing techniques, feature extraction 
methods, and feature selection algorithms to arrive at a set of derived features which 
can be used for classification and prediction. This is more efficient but may need 
domain knowledge for best effectiveness as the set of features may vary according 
to the problem and the data. The second approach leaves the cumbersome part of 
feature engineering to the deep learning classifier and uses a one-stop solution. The 
advantage is less human involvement but requires far more processing time and data 
to train the model.

Deep Learning architectures can automatically extract features but are complex 
in nature. For high-dimensional data, additional convolution layers are needed in 
case of raw EEG signals. More layers mean more parameters and more computa-
tions. However, with the addition of a few signal processing steps on the raw EEG 
data, the number of hidden layers can be significantly reduced. We have presented 
two case studies using hybrid of CNN and machine learning algorithm. A 
Butterworth bandpass filter is used for preprocessing of signals. The complex fea-
ture extraction part in conventional architectures have been replaced by the auto-
mated feature learning capability of CNN. Using this architecture, an accuracy of 
94.9% and 98% is achieved for epilepsy and schizophrenia detection.

More research is needed to study the contribution of different channels in the 
interpretation of EEG signals. In this regard, there can be several further studies on 
EEG data and machine learning classifiers. For instance, multi-view learning can be 
a possible future direction where data from different channels are considered as 
views and a weighted multi-view classifier can automatically assess the contribution 
of each channel. Another aspect involves deeper study on the contribution of each 
channel or region of the brain.

7.10  Assignments

The following assignments are suggested for this chapter:

 1. Download the Institute of Psychiatry and Neurology dataset. Select all 19 chan-
nels, i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 
O1, and O2. Run the CNN algorithm using parameters given in Sect. 7.7.1.2. 
Note the accuracy value and time taken using a ten-fold cross-validation strategy. 
Repeat the experiment with and without using Butterworth filter and Discrete 
Wavelet Transformation. Compare results and discuss the difference observed.

 2. Repeat the experiment above but this time using only 4 channels, i.e., T4, T3, C4, 
Cz and the CNN architecture given in Fig. 7.5. What can be concluded about 
these channels?

 3. CNN are popularly used deep learning techniques for processing ECG data. A 
CNN model can be separated into its two constituent parts- the convolution part, 
responsible for extracting relevant features, and the full connected layers used 
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for classification training. However, the feature extraction can also be done sepa-
rately using sophisticated signal processing techniques and used as an input in 
different supervised machine learning classifiers. Download the CHB-MIT data-
set comprising of 23 channels. Use the CNN architecture given in Fig. 7.4 along 
with ten-fold cross-validation for training the model. Separately, use DWT to 
generate 5 sub-bands as shown in Fig. 7.2 and extract the following statistical 
features  – kurtosis, power spectrum, peak positive value, standard deviation, 
skewness, and peak negative value from the sub-bands and classify the data 
using SVM, ANN, and RF. Compare the results using CNN and feature selection 
+ classification, using accuracy and time taken.
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Chapter 8
Biomedical Signal Processing and Artificial 
Intelligence in EOG Signals

Alberto López and Francisco Ferrero

Abstract Electrooculography is a technique that detects and analyses eye move-
ment based on electrical potentials recorded using electrodes placed around the 
eyes. The electrical signal recorded is named electrooculogram (EOG) and can be 
used as an alternative input for medical and human-computer interface systems. To 
implement an eye movement-based system, at least four main stages will be 
required: signal denoising, feature extraction, signal classification and decision- 
making. The first one after the EOG signal acquisition is signal denoising, which 
suppresses noise that could not be removed by the analogue filters. In this task, the 
slope of the signal edges, as well as the amplitudes of the signal to distinguish 
between different eye movements, must be preserved. After denoising, the second 
task is to extract the features of the EOG signal based mainly on the detection of 
saccades, fixations, and blinks. The next stage is the automatic identification of eye 
movements. This task, called signal classification, is essential for generating accu-
rate commands, especially in real-time applications. This classification is carried 
out mainly using a combination of algorithms in artificial intelligence (AI). These 
types of algorithms are the most suitable for adaptive systems that require real-time 
decision-making supported by AI techniques. In some applications, EOG model-
ling, and compression are also applied as an additional signal processing stage.
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8.1  Introduction

8.1.1  EOG Fundamentals

The electrooculogram (EOG) is the electrical signal produced by the potential dif-
ference between the cornea (the positive pole) and the retina (the negative pole). 
This potential difference is measured by placing surface electrodes near the eyes, 
and the process of measuring the EOG is called electrooculography.

The eye movements can be either saccades, smooth pursuits, vergence or 
vestibule- ocular, which can further be reflex or voluntary. Saccades are eye volun-
tary movements used in clinical studies to analyse eye movements. Smooth pursuits 
are also voluntary but are slower tracking eye movements that keep a moving stimu-
lus on the fovea. Vergence and vestibulo-ocular movements have involuntary origins 
[1], so they are usually removed in EOG applications.

EOG-based human−computer interfaces (HCIs) offer disabled people a new 
means of communication and control as eye movements can easily be interpreted in 
EOG signals. In recent years, different types of HCI systems have been developed 
such as controlling the computer cursor, virtual keyboards, electric wheelchairs, 
games, hospital alarm systems, television control systems, home automation appli-
cations and smartphones [2–8]. Diabetic retinopathy or refractive disorders such as 
hypermetropia and myopia can be diagnosed early based on the EOG results [9]. 
EOG also provides reliable information to identify sleep stages and detect anoma-
lies [10, 11].

Figure 8.1 shows a block diagram of the main stages to develop an EOG system. 
For the development of widely used EOG-based applications in the real world, it is 
necessary to provide accurate hardware and efficient software to implement the 
tasks shown in Fig. 8.1, which will be introduced in this chapter.

8.1.2  EOG Signal Measurement

Saccadic eye movements are the most interesting as they are voluntary and easily 
identifiable on the EOG. The most basic movements are up, down, right, and left. To 
distinguish between these eye movement classes, two pairs of bipolar electrodes 
and a reference electrode are positioned around the eyes as shown in Fig. 8.1.

The amplitude of the EOG signals has a mean range of 50–3500 μV and the 
frequency is between zero and about 50 Hz. Another issue to consider is that muscle 
noise spreads along with the signal bandwidth almost constantly, which makes it 
very difficult to completely remove it. The amplitude of the signal obtained using 
two electrodes to record the differential potential of the eye is directly proportional 
to the angle of rotation of the eyes within the range ± 30°. Sensitivity is on the order 
of 15 μV/º [12].
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Fig. 8.1 Block diagram of the main stages that can make up a system based on EOG signals

Fig. 8.2 Eye modelled as a dipole and an electrooculogram where two typical saccades with dif-
ferent amplitude depending on the gaze angle

Voluntary and involuntary blinks produce spikes in EOG signals that must be 
detected because they can be mistaken for saccades. Figure 8.2 shows EOG funda-
mentals by modelling the eye as a dipole and an electrooculogram where two typi-
cal saccades with different amplitudes depending on the gaze angle are 
represented.

Before any further analysis, a preprocessing step will be necessary to reduce 
mainly the base-line drift, the powerline interference and the electromyographic 
potential. For this task, analogue filters are usually used. Table 8.1 shows the most 
relevant commercial bio amplifiers used in EOG for experimental measurements.

On the other hand, several datasets are publicly available that offer signals which 
are already pre-processed and ready to be used. Some of the most widely used data-
sets in the literature are shown in Table 8.2, mostly related to sleep recordings.
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Table 8.2 Summary of the most relevant EOG signal databases

Dataset name Description Num. of subjects References

Physionet Sleep 1893 [18]
Sleep-EDF-SC Sleep 20 [18]
Sleep-EDF-ST Sleep 22 [18]
Wisconsin Sleep 1500 [19]
MASS Sleep 200 [20]
Surrey-cEEGGrid Sleep 12 [21]
SDRC Sleep 22 [22]
UMALTA-EOG Repetitive tasks 6 [23]

Table 8.1 Most relevant commercial bio amplifiers used for EOG measurement along with their 
main characteristics

Name Sampling rate Num. of channels Filtering References

ADT26 PowerLab 100 Hz 10 0.1 to 2 kHz [13]
Bluegain 1 kHz 2 0.1 to 30 Hz [14]
ActiveTwo AD-box 64 Hz 8 Selectable [15]
g.USBAmp 256 Hz 16 0.1 to 100 Hz [16]
OtoScreen 200 Hz 2 0.02 to 70 Hz [17]

8.2  EOG Signal Denoising

After hardware acquisition and preprocessing, EOG signals are still contaminated 
by several noise sources that can mask eye movements and simulate eyeball events. 
Additional denoising must be done to remove unwanted spectral compo-nents to 
improve analogue filtering and remove other kinds of human biopotentials. 
Denoising must preserve the signal amplitudes and the slope of the EOG signals to 
detect blinks and saccades. In some cases, it is an additional feature while in others, 
it is considered an artefact that should be eliminated. In these latter cases, the blink 
artefact region is easily removed because blinking rarely occurs during saccades, 
instead, they usually occur immediately before and after the saccades. Another issue 
that needs to be considered in EOG noise removal is crosstalk or the interdepen-
dence between acquisition channels. Many changes in eye movements recorded by 
one channel generally appear in other EOG channels. The main strategy is to ignore 
those signals with a low amplitude.

Several methods are proposed in the literature to attenuate or eliminate the effects 
of artefacts on EOG signals. Digital filters are typically employed to reduce muscle 
artefacts and remove power line noise and linear trends. Adaptive filters, such as 
Kalman and Wiener filters are used to remove the effects of overlap frequencies 
over the EOG spectrum from electrocardiographic and electromyographic artefacts. 
In addition to linear filtering, the median filter is very robust in removing high- 
frequency noise, and preserving amplitude and the slope, without introducing any 
shift in the signal [11].
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Fig. 8.3 General outline of the WT-based filtering procedure

Regression methods can learn signal behaviour by modelling colour noise that 
distorts the EOG signal and subtracting it. Due to the relationship between nearby 
samples, these methods include the nearby noise samples for the prediction of the 
given sample. The noise distribution characteristics are not considered in the regres-
sion models.

The wavelet transform (WT) is a powerful mathematical tool for noise removal. 
The WT consists of chopping a signal into scaled and displaced versions of a wave-
let that is called “mother wavelet”. From the point of view of signal processing, 
wavelets act as bandpass filters. The WT is a stable representation of transient phe-
nomena, and therefore, conserves energy. In this way, the WT provides much more 
information about the signal than the Fourier transform because it allows to high-
light its peculiarities by acting as a mathematical microscope.

Figure 8.3 shows the general scheme of the WT-based filtering procedure. The 
decomposition module is responsible for obtaining the wavelet coefficients of the 
EOG signal at the output of the conditioning stage. The thresholding stage consists 
of selecting an appropriate threshold for the wavelet coefficients so that those of 
lower values are eliminated because they correspond to noise and interference. 
Finally, the EOG signal is reconstructed through the coefficients not discarded in 
the previous stage. To do this, the reverse process of the wavelet transformation car-
ried out in the first module is followed.

For a complete decomposition and reconstruction of the signal, it is necessary 
that the filters of the wavelet structures have a finite number of coefficients (finite 
impulse response filters) and that they are regular. In addition, it is also important to 
ensure that the filters have phase linearity, as this prevents the use of non-trivial 
orthogonal filters but allows the use of biorthogonal filters. It is very common to 
choose the Biorthogonal and Daubechies families for EOG signal processing [3, 24].

8.3  Compression

In some EOG applications, such as sleep studies, it is necessary to compress the 
signals because they can extend up to several gigabytes. Storage and transmission 
for remote health monitoring of this amount of data comes at a high cost. In these 
cases, compression techniques are needed for the transmission of the signal through 
the communication networks. An alternative is the Turning point compression algo-
rithm reported in [25]. This algorithm reduces the effective sampling rate by half 
and saves the turning points that represent the peaks and valleys of the EOG signal. 
The main purpose of compressing data is to reduce the size while retaining the char-
acteristic and useful features. Figure 8.4 shows the original, filtered, and compressed 
EOG signal using this technique.
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Fig. 8.4 Original, filtered, and compressed EOG signal using Turning point algorithm

8.4  EOG Feature Processing

EOG feature processing consists of selecting how many and which signal features 
are the most relevant for the application. An important issue is that the chosen fea-
tures must be independent of each other to prevent collecting redundant data. By 
evaluating the EOG signals, it is possible to conclude that fixations have a stable 
slope whereas saccades and blinks increase quickly. The same happens for smooth 
eye movements and other features such as average speed, range, variance, and sig-
nal energy. Fixations are the slowest eye movements and saccades are the fastest 
[26]. The processing of informative, discriminatory, and independent features is a 
key step in preparing an appropriate collection of values for a classifier.

8.4.1  Feature Extraction

Feature extraction is the process of extracting features from the processed signals to 
obtain significant discrimination on several independent features. The goal is to find 
a space that makes the extracted features more independent and where they can be 
discriminated against. Feature extraction techniques can fall in the time domain, 
frequency domain, time-frequency domain, and nonlinear domain [27].

8.4.1.1  Time-Domain Features

Time-domain features represent the morphological characteristics of a signal. They 
are simply interpretable and suitable for real-time applications. The most popular 
time-based parameters are compiled in Table 8.3.
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• Statistical features are mean, variance, standard deviation, skewness, kurtosis, 
median and the 25th, and 75th percentile of the signal.

• Hjorth features are activity, mobility, and complexity parameters to measure 
the variance of a time series, the proportion of standard deviation of the power 
spectrum and change in the signal frequency, respectively.

• Zero crossing rate features refer to the number of times that a signal crosses the 
baseline. This parameter is very sensitive to additive noises.

Other time-domain EOG features for eye movements are amplitude, latency, devia-
tion, velocity, slope, peak polarity, and duration.

Table 8.3 Summary of the main time-domain EOG features, where x refers to the input signal, n 
is the nth sample of the signal, and N is the total number of samples
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8.4.1.2  Frequency Domain Features

The main features in the frequency domain are energy, power ratio, spectral fre-
quency, duration ratio and power spectral density (PSD). The most popular methods 
to estimate the PSD are Autoregressive (AR), Moving average and Autoregressive 
moving average. In [28] AR was considered to extract features from the EOG sig-
nal. These methods are named the parametric method because the spectrum is esti-
mated by the signal model. These approaches are suitable for signals with both low 
SNR and length. In the non-parametric methods, such as Periodogram and Welch, 
the PSD values are calculated directly from the signal samples in each signal win-
dow. In [29] a non-parametric statistical analysis is performed using Welch method. 
The features obtained by the Welch technique discriminate better due to the lower 
sensitivity of nonparametric methods to residual noise and motion artefacts com-
pared to parametric and cumulant-based methods. The non-parametric methods 
based on the Fast Fourier transform are easy to implement. Another method used to 
extract the frequency domain features is the higher-order spectra, which represent 
the frequency content of a higher-order signal static.

8.4.1.3  Time-Frequency Features

EOG signals are non-stationary, and to transfer a signal from the time domain to the 
frequency domain, three main techniques are available:

• Signal decomposition: The aim of signal decomposition is to decompose the 
signals into a series of basic functions, and the most common methods are Short- 
Time Fourier and WT [3]. The first one is simple and well-known, however, for 
EOG signals, the second one is the most widely used. Continuous wavelet trans-
forms have more separable features and the coefficients are more redundant than 
the discrete wavelet transforms within the same period.

• Energy distribution: Several methods are proposed for energy distribution: 
Choi–Williams distribution and Wigner-Ville distribution are the traditional non- 
linear time-frequency methods widely used to analyse non-stationary signals. 
Hilbert–Huang transform is a more recent method to obtain momentary regular-
ity of nonlinear and non-stationary signals such as EOGs [4].

• Modelling: The Gaussian mixture model (GMM) is used in some works to esti-
mate the continuous probability density of the signal. The model parameters are 
estimated using the Expectation-Maximization algorithm such that the probabil-
ity of observation is maximised. Figure 8.5 depicts the GMM model [8, 26, 30].

8.4.1.4  Non-Linear Features

Non-linear methods employed for EOG signal feature extraction fall into two 
main groups:

A. López and F. Ferrero
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Fig. 8.5 GMM structure where three parameters must be estimated separately for each Gaussian 
function: mean vector (μ), covariance matrix (∑) and weight (w). The weighted sum on these 
probabilities builds the output based on the input observations, x(t) = {x1, ..., xn} where xn is the 
nth observation or feature vector

• Entropy and complexity-based methods. Complexity methods are used to esti-
mate the nonlinear dynamic parameters of EOG, electroencephalographic (EEG) 
and electromyographic (EMG) signals. Among complexity methods, entropy- 
based algorithms are robust estimators for evaluating the regularity of signals. 
Shannon’s entropy method is the most famous one. However, in some cases, the 
data for the decision-making processes cannot be measured accurately and other 
methods have been proposed, such as Renyi’s, Sample, Tsallis, Permutation, 
Multi scale and Approximate entropy [31].

• Fractal-based methods. They propose measuring the fractal dimension of the 
EOG irregular shape and determining the amount of self-similarity on the signal. 
The Correlation Dimension, Lyapunov exponent and Hurst exponent are exam-
ples of fractal-based methods. First, they map a signal into the phase space and 
then measure the self-similarity of its trajectory shape [32].

Both techniques are suitable for measuring the amount of roughness in the signal, in 
turn increasing the entropy of the signal with the irregularity. These techniques are 
only effective at detecting stage transitions, not for the signal bandwidth.

8.4.2  Feature Selection

After the feature extraction, feature selection techniques are applied to find a dis-
criminative subset of features to reduce the number of features needed to feed and 
train subsequent classification models, for avoiding over-fitting and reducing the 
computational time [33].

Minimum redundancy maximum relevance is an algorithm for feature selection 
according to the criteria of minimum redundancy (least correlation between them-
selves) and maximum relevance (most correlation with the class). Redundancy can 
be computed by using Pearson’s R for continuous features or mutual information 
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for discrete ones. Relevance can be calculated using F-distribution under the null 
hypothesis for continuous features or mutual information for discrete ones [34].

Another selection method is named the Clear based feature selection (CBFS). 
CBFS computes the distance between the objective sample and the centroid of each 
class. Then, the algorithm compares the class of the closest centroid with the class 
of the target sample. [35] reports an efficient classification of EOG signals using this 
algorithm.

8.4.3  Feature Normalization

Feature normalization can be applied to reduce the effects of the individual vari-
ability and is performed over values for each feature separately. This process can 
prevent extremely high or low values from influencing any conclusions. [36] reports 
the procedure for feature normalization in an automatic sleep staging method. 
Another example of normalization is shown in [37] in which the original EOG sig-
nal, managed by a dynamic threshold (includes a positive and a negative threshold), 
would be transformed into a series of rectangular pulses that have −1 or 1 in their 
amplitude.

8.5  Classification

The automatic identification of eye movements (classification) is essential to gener-
ate accurate commands, especially in real-time applications. Classification tech-
niques based on static or dynamic thresholds are also not easily generalisable, so 
methods based on artificial intelligence (AI) are needed. Many conventional 
machine learning algorithms and recently deep learning due to the increased com-
putational power are truly becoming virtual assistants for clinicians to classify EOG 
features and improve medical diagnosis. The most widely used classifiers are here-
with briefly commented.

The main parameters associated with classification performance are accuracy, 
precision, sensitivity, specificity, recall, F1 and F2 score, true positive rate, false- 
positive rate and Genni’s or Mathew’s correlation coefficient. Confusion matrices 
are also commonly used to compare the performance of different classification 
methods and avoid misleading when data is unbalanced.

8.5.1  Machine Learning Techniques

Conventional machine learning techniques include a wide variety of algorithms. All 
of them have shown great performance in EOG features’ classification compared to 
threshold-based classification techniques proposed in some preliminary EOG-based 
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systems. The main machine learning techniques used in EOG features’ classifica-
tion are briefly described below.

K-Nearest Neighbor (K-NN) is an algorithm that finds the nearest observations 
to the one it is trying to predict and classifies the observation of interest according 
to the majority of the surrounding data. The only parameter to set is the number of 
neighbouring points to consider in the vicinity to classify the different classes that 
are already known in advance.

Support vector machines are other conventional hierarchical supervised classifi-
ers. They involve the adoption of a nonlinear kernel function to transform the input 
data into an optimal hyperplane for separating the features.

Decision trees are non-parametric supervised learning techniques that require 
little preprocessing and have a good runtime performance to handle tasks in real- 
time. The goal is to create a model that predicts the value of an objective variable 
according to various input variables [38].

Random Forest (RF) is one of the best algorithms for classifying large data with 
accuracy. RF is an ensemble of predictor trees such that each tree depends on the 
values of a random vector. This random vector is tested independently and presents 
the same distribution for each tree. Each tree is grown through bootstrap training. 
Figure 8.6 shows the general structure of RF. The classification is made from the 
vote of each tree in the ensemble and by selecting the most popular class among 
them [26]. [39] reports an automatic scoring of sleep stages classification using 
EOG signals.

Linear Discriminant Analysis (LDA) is a method of supervised classification in 
which two or more groups of variables are known a priori and new observations are 
classified into one of them according to their characteristics. The result is created on 
the nearest centre classifier applied to the LDA outputs. After training, the nearest 
centres calculate the distance between any point and each class. In [40], an LDA 
classifier was applied to EOG classification with good training and testing accuracy 
that could be used for disabled people.

Logistic Regression (LG) optimises a set of weights assigned to each input fea-
ture to provide the best classification performance using a training dataset. LG was 
used in the design of an omnidirectional robot controlled by eye movements because 
of its efficiency and the low computing resources needed [7].

GMM as a classifier learns the input features of each class and assigns a specific 
label to them. When a sample fits into the scheme of Fig. 8.5, the label that produces 

Dataset
Random
vectors

Bootstrapping

Tree classifier1

Training data2 Tree classifier2

Training datan Tree classifiern

Voting Prediction
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Fig. 8.6 Random Forest structure
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the highest probability is assigned. The GMM provides a framework to model 
unknown distributional shapes. The key issue is to estimate how many components 
to include in the model.

A Hidden Markov Model (HMM) is a statical model in which the parameters are 
unknown. The training is done using maximum likelihood. HMM assesses the tran-
sition and emission probabilities from the observation sequence to the state 
sequence. This classifier can tolerate time warping of the input data. [8, 41] report a 
wheelchair navigation system based on an HMM for people with restricted mobil-
ity. Figure 8.7 shows an example of the transition of states of HMM.

Clustering is an unsupervised grouping classifier where the samples lack labels. 
The goal is to create groups with similar samples using criteria such as information, 
statistical measures, and distance metrics. Each eye movement has specific features; 
therefore, first grouping the signals into the two categories, centre gazes and non- 
centre gazes might be a useful step in some classification schemes. Figure 8.8 shows 
the application of this concept to the hierarchical clustering procedure for classify-
ing eye movements.

Based on how the clusters are related to each other and the objects in the dataset, 
the first division of clustering algorithms can be established. In hard clustering, each 
object belongs to a single cluster, so the clusters would become a partition of the 
dataset. In soft (or fuzzy) clustering, the objects belong to the clusters according to 
a degree of trust or belonging (e.g., Fuzzy C-Means). Clustering can be classified by 
looking at how the object is related: flat clustering, hierarchical clustering, graph- 
based clustering, and density-base clustering. Examples of these clusters can be 
found in [26, 42].

Even EOG signals from the same eye movement can differ in amplitude and time 
and thus, produce errors in recognition. The Dynamic time wrapping algorithm can 
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Fig. 8.7 Example of HMM architecture, where ‘x’ refers to hidden states, ‘y’ refers to observable 
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Fig. 8.8 Hierarchical clustering procedure to classify eye movements
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solve this problem by breaking the problem recursively into subproblems, storing 
the results and later using those results when needed. For large datasets, this algo-
rithm employs a lot of time for training the model [8, 43].

Artificial neural network (ANN) has numerous applications for pattern classifi-
cation in the medical field to easily interpret the EOG signals and diagnose the 
problem more accurately. An ANN comprises several highly interconnected pro-
cessing elements called neurons, which are organized into layers. These layers have 
a geometry and functionality linked to the human brain. ANNs include three layers: 
input, hidden and output as depicted in Fig. 8.9 [44].

8.5.2  Deep Learning Techniques

Deep learning (DL) replicates the functioning of the human brain regarding sending 
information from one neuron to another and handling a great amount of data. DL 
produces more insight knowledge than machine learning techniques as it can learn 
multiple levels of representation from raw data using unsupervised learning and 
model more complex relationships. The nucleus of DL is the ANN with multiple 
nonlinear hidden layers. DL offers robust computing power and enormous datasets, 
as they generally use a greater number of recordings to develop and evaluate their 
methodologies than the traditional machine learning classification methods.

A convolutional neural network (CNN) is an ANN class composed of a convolu-
tion layer to filter the extraction of features, a pooling layer to reduce the size of the 
analysed data, a fully connected layer, and a loss function to calculate the errors 
between the current and the desired network output. Back propagation is applied to 
update weights for convolutional layers and pooling filters cascade. Figure  8.10 
shows an example of a deep neural network for eye movement classification.

CNN requires fewer parameters than the conventional neural network, therefore 
CNN can be applied for solving regression problems. For example, in [45] CNN 
was used to eliminate eye blinking artefacts, and in [46], the authors used CNN for 
drowsiness detection based on EOG signals.

The recurrent neural network (RNN) is basically an ANN developed under the 
premise that humans always consider the past when making decisions. RNN 

Input Layer Hidden Layer Output Layer

Fig. 8.9 Basic architecture of multilayer feed-forward ANN where the circles represent an artifi-
cial neuron
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automatically stores past information through a loop within its architecture. Based 
on this fact, in [47], an RNN was considered for real-time eye blink suppression in 
EEG recordings.

The time distributed convolutional neural network (TDConvNet) is a DL model 
comprising two main stages: a one-dimensional CNN epoch encoder, to extract the 
time-invariant features from raw EOG signals, and another one-dimensional CNN 
stage, to infer labels from the sequence of epochs. TDConvNet was applied to clas-
sify the sleep stages of polysomnography signals [48].

Unsupervised pre-training algorithms initialise the parameters such that the opti-
misation process ends up with a higher speed of training. In [49, 50], two pre- 
training methods were presented for EOG signals: restricted Boltzmann machine 
(RBM) and deep belief networks (DBN). Figure 8.11a shows an example of the 
RBM system. The relation between the input and output layers allows the network 
to be trained much faster. RBM can be extended if the output layer of one RBM is 
the input layer for another RBM, as shown in Fig. 8.11b.
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Long short-term memory (LSTM) deep networks are developed to obtain long- 
term dependencies in the data. LSTM algorithm as a classifier uses three kinds of 
gates to configure the data entering a network: input, forget and output. The more 
important formations can be saved between data segments using two forward and 
backward LSTMs. This architecture of two LSTMs, named Bidirectional long 
short-term memory (Bi-LSTM), presents each forward and backward training 
sequence in two separate LSTM layers, connected to the equal output layer.

Since the large length of the data can cause a leakage gradient problem, Gated 
Recurrent Unit (GRU) networks can be used to learn the representation of the EOG 
signal. This recurrent neural layer not only allows the improvement of the memory 
capacity but also eases the training since they retain the information within the unit 
while a sequence flows in the gating unit [51].

8.6  Decision-Making

The major difficulty in classification and subsequent decision-making is the vari-
ability of the data. Hence the importance of having large datasets that allow the 
creation of generalisable models and the learning process. The classification meth-
ods must be adapted to each user based on the previous actions and the results 
derived from them. Eye movements and blinks (voluntary and involuntary) are con-
sidered commands in the EOG-based systems and are used as input in different 
medical diagnostic systems and operation interfaces, such as serious games, home 
automation or communication and mobility solutions.

Some of the EOG-based communication solutions also include text-to-speech 
modules. These multilingual speech synthesisers are one of the recent forms of 
AI. They convert the stream of digital text selected by eye movements and blinks 
into natural-sounding speech. EOG can also be found in the design of industry- 
oriented robotic arms. In these systems, decision-making based on the results of 
previous commands improves real-time usability to provide the user with a reason-
able degree of control.

8.6.1  Intelligent Decision Support Systems

Intelligent decision support systems (IDSS) use AI tools to improve the decision- 
making related to complex problems that involve a large amount of data in real- 
time. ANNs, Fuzzy logic, Expert systems, Case-based reasoning (CBR), and 
Intelligent agents (IA) can be considered IDSS. This section is a brief introduction 
to some of these techniques related to bio-signals for medical applications.

Fuzzy logic is a very promising technology within the medical decision-making 
application. Its main challenge is obtaining the required fuzzy data, even more when 
one must produce such data from patients. Usually, Fuzzy logic is used for the 
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classification of the EOG and EEG signals, but they need calibration parameters 
obtained previously during the user training. [52] is an example of a Fuzzy logic- 
based controller for wheelchair motion control using the EOG technique.

An Expert system tries to solve human problems by embedding human knowl-
edge in the computer. A typical application of expert systems is to filter ocular 
artefacts hidden in EEG signals without affecting clinically important EEG infor-
mation [53]. Another application is reported in [54] for multichannel sleep data 
analysis.

ANNs have the advantage of executing the trained network quickly, which is a 
key issue for signal processing applications. However, the ANN algorithm is itera-
tive and suffers from convergence problems. ANN has many practical applications, 
for example, ANN can be used for the diagnosis of a subnormal eye through the 
analysis of EOG signals [44].

To solve a new problem, CBR compares that problem with earlier solved prob-
lems and adjusts their well-known solutions instead of starting from scratch [55]. A 
CBR problem requires recovering relevant cases from the memory of cases, choos-
ing the best cases, developing a solution, assessing the solution, and storing in the 
memory the newly solved case. A CBR system was used to classify ocular artefacts 
in EEG signals [56].

Alexa and Siri are examples of IA. They gather data from the internet without the 
help of the user. In the field of biomedical application, IA is used to diagnose, treat, 
and manage problems associated with dementia and Alzheimer’s [57]. In these 
cases, the agents may be any methodologies with decision-making abilities such as 
patient analysts, signal processing, neural network models and Bayesian systems. 
The information of each agent can be shared with other agents.

In the last ten years, Multi-Agent System (MAS) has gained interest due to the 
advances in AI, wireless sensor networks and sensors. In MAS, a larger problem can 
be divided into smaller subproblems. A task can be delegated among different 
agents, and each agent produces the output according to its task. Then, all outputs 
are joined and converted into the final answer to the complete problem. The interac-
tion between agents increases the speed of problem resolution. MAS is a research 
topic in complex medical applications [58].

8.6.2  Learning Approaches

Learning approaches try to overcome the problems related to training data of the 
classification models in many EOG studies. Another important challenge is to 
improve the automatic classification.

Two of these learning approaches are Transfer learning (TL) and Deep transfer 
learning. These are powerful methods that reuse previously trained models as the 
starting point. This approach avoids the needed large training dataset and saves 
time, while, at the same time, does not reduce the accuracy of the assessment. 
Figure 8.12 outlines the TL from the source to the target domains [59]. The base 
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model is trained using the data from the source domain and then fitted to the data 
from the target domain to complete the transfer of knowledge and make EOG-based 
systems more reliable and accurate. Through transfer learning, the classification 
performance improves significantly in all learning cases for temporal models trained 
only on the target domains.

Due to the limited ability of the EOG signals to adapt to the characteristics of 
each user, a Reinforcement Learning (RL) algorithm is included, which allows 
adapting the interface to the user. The RL algorithm allows the adaptation of the 
user’s commands to the responses in the interfaces controlled by EOG. This algo-
rithm is usually implemented in computer serious games as a moderator of the 
intensity of user commands given experience [60].

A model-free Q-learning method was proposed in [61] for the planning of robot 
motion through the user EOG signals, including obstacles surrounding the robotic 
platform. Figure 8.13 depicts the navigation approach in a simplified way.

Learning vector quantization (LVQ) is a supervised classification algorithm fre-
quently used to recognise eye movements in EOG-based systems. LVQ is an artifi-
cial neural network that lets us choose how many training instances to latch onto 
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and learns exactly what those instances should look like. EOG features can be con-
sidered as training data to build a network for recognition. Despite not being par-
ticularly powerful compared to other methods, it is simple and intuitive for the 
recognition of eye movements [62].

8.7  Discussion

Considering the articles published in the last decade, we can say that for EOG signal 
denoising, wavelet transform is the most useful technique for data preprocessing 
because this mathematical tool is better focused on transient and high-frequency 
phenomena. For EOG feature selection, the CBFS allows reducing redundant fea-
tures and increases the precision and accuracy of the neural network-based classi-
fier. EOG compression improves the signal transmission with fewer data from the 
original signal. As a result, the size of memory is reduced, which is an important 
feature for large polysomnogram signals.

EOG signal classification can be done automatically using any conventional 
classification algorithm. K-NN is the typical classification algorithm based on 
supervised ML that offers better performance and simplicity. K-NN employs the 
complete dataset to train “every point”, which is why the required memory is higher 
than other classifiers. Therefore, K-NN is recommended for small datasets with 
fewer features.

CNN is a very efficient classification method in EOG signal processing, espe-
cially for EOG-based HCIs. CNN yields models of significantly higher correlation 
coefficients than the traditional K-NN classification algorithm for large datasets. 
The RL layer is used to help the user by selecting proper actions, and at the same 
time, learning from previous behaviours. For example, to prevent collisions in a 
robotic platform or improve wheelchair navigation. Deep transfer learning can be 
used for a relatively small amount of data for sleep stage classification and models.

The development of sophisticated AI-based models together with the availability 
of larger datasets will allow better interpretation of EOG. This will result in the 
design of more efficient systems that also present an improvement in the decision- 
making stage.

8.8  Conclusions

This chapter introduced and discussed signal processing in electrooculographic 
signals, which is a challenging problem due to the wide variability in the morphol-
ogy and features of electrooculograms within the population. The key aspect is to 
find the technique that presents the best overall performance in each of the basic 
signal processing stages that are divided: denoising, feature extraction, classifica-
tion, and decision-making. Some applications require the processing of large 
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electrooculograms lasting several hours to monitor the health status of patients. 
Such scenarios also bring the need for powerful artificial intelligence-based tech-
niques for classification and modelling, as well as compression of the signal for 
efficient decision and storage.
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Chapter 9
Peak Spectrogram and Convolutional 
Neural Network-Based Segmentation 
and Classification for Phonocardiogram 
Signals

Anam Abid and Zo-Afshan

Abstract Heart diseases are one of the contributing reasons for the human loss in 
the world. The Phonocardiogram (PCG) provides information for the exact and 
timely detection of Cardiovascular Diseases (CVDs). Digital stethoscopes record 
the heart sound and store it as a PCG signal for the identification of abnormal 
sounds. This chapter discusses heart sound segmentation and classification algo-
rithms to diagnose the abnormal symptoms of the heart. Firstly, the breakdown of 
heart signal into “S1”, “systole”, “S2”, and “diastole” states is performed using 
multi-level threshold values for peak detection. Phonocardiograms are the non- 
stationary signals for which the identification of the exact location of the peaks is 
difficult. Using the multi-level threshold method for peak detection and with the 
peak spectrogram generation, the identification of the peak locations is improved to 
91.2%. Subsequently, features of the generated peak spectrograms are extracted 
from these four states to perform the naming of PCG as “normal” or “abnormal” 
using a traditional “Support Vector Machine” (SVM) and “Convolutional Neural 
Network”. The developed algorithms are tested on the PhysioNet2016 heart sound 
challenge dataset. The results show the suitability of the developed methods for the 
identification of “normal” and “abnormal” PCG for CVDs identification and scored 
an accuracy of 93.3%.
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9.1  Introduction

Medical Signal Processing, an emerging field, has come into the limelight and 
shown a vital role in the identification of solutions for various diseases. Along with 
the recent advancement, it is now realized that various medical issues require intel-
ligent systems and assistance. Particularly, “Deep Learning” algorithms i.e., 
“Convolutional Neural Networks” (CNN), “Long-Short Term Memory”, and 
“Recursive Neural Networks”, have had a great impact on biomedical fields. These 
systems are supposed to work like a human, think like a human, possess the decision- 
making ability, and also explain how to take action. The quintessence of designing 
an intelligent system of this kind is Deep Learning Convolutional Neural Network: 
convolution that extracts dominant features and neural networks that are designed to 
recognize patterns and adapt the environmental changes to cope with real-time 
scenarios.

An intelligent system has made nearly impossible tasks into reality. It is fre-
quently advantageous to use multi-disciplinary computing techniques and method-
ologies in cooperation rather than exclusively. One such synergistic construction of 
an intelligent system is the prelude of this chapter. In particular, the integration of 
two complementary approaches: Signal Processing and Machine Learning, results 
in an innovative approach for the analysis and early detection of cardiovascular 
disease through phonocardiogram (PCG) signals.

Agreeing to the “World Health Organization” (WHO), CVDs are one of the most 
important reasons for death in the world. From the statistics reported by WHO, 17.9 
million people lost their lives in 2017 alone due to CVDs [1]. Considering the sever-
ity of the situation, there is a dire need for an automated system that can be used for 
the evaluation of heart conditions and timely detection of any abnormality.

9.1.1  Auscultation

The heart system comprises of “heart”, “blood vessels”, and “blood”, whereas the 
heart is its most important organ. Therefore, the functioning and monitoring of the 
heart become crucial to avoid a heart attack, angina, or stroke. A heart abnormality 
originates due to the constriction or complete blockage of the blood vessels and may 
result in serious complications. Auscultation is a medical screening process in 
which a medical expert/physician listens to the sounds/murmurs of the body organs 
by using a stethoscope. During heart sound auscultation, heartbeats present very 
useful information for the recognition of abnormalities. However, only a handful of 
skilled medical experts can correctly identify heart abnormality by listening to the 
heart sounds. Biomedical signal processing and artificial intelligence techniques 
have been facilitating doctors and cardiologists in heart abnormality diagnosis over 
the last few decades.
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9.1.2  Phonocardiogram Signal

Stethoscopes are considered essential screening instruments for the diagnosis of 
heart and lung pathologies. With the development of digital stethoscopes, the pro-
cess of auscultation of heart sounds becomes easier and more convenient. Digital 
stethoscopes record the heart sound and store them for the identification of heart 
abnormalities. A Phonocardiogram (PCG) signal (refer to Fig. 9.1) consists of vari-
ous events like “S1” sound, “S2” sound, and “murmurs” [2, 3]. “S1” and “S2” cor-
respond to the primary PCG components (i.e., systolic and diastolic activities of the 
heart respectively) which are important for heart sound segmentation. In particular, 
each heart sound segment contains different characteristics. In segmented data anal-
ysis, the information from each heart sound segment is retrieved for an in-depth 
analysis and heart disease detection [4]. Consequently, in unsegmented data analy-
sis methods, the entire PCG signal is given as input. A discussion on segmented and 
unsegmented PCG data analysis is given in the following section.

The heart pumping process represents a synergetic combination of mechanical 
and electrical activities which form a certain set of activities over the entire cycle. 
The blood is circulated with efficient coordination of atria and ventricles with each 
other. The cardiac cycle includes two phases: Systole (the contraction phase) and 
Diastole (the relaxation phase). During systole, contraction of atria or ventricles 
occurs and the blood is pushed to the arteries whereas during diastole, relaxation of 
heart muscles occurs and the blood is supplied to the heart. The systole period rep-
resents the contraction of the right and left ventricles and discharge of blood into the 
aorta and pulmonary artery which is allowed through the opening of the aortic and 
pulmonic valves while the atrioventricular valves remain closed during the systole 
period to prevent the blood flow into the ventricles. Diastole represents the relax-
ation of left and right ventricles. The blood runs through the mitral and tricuspid 
valves. Left and right atria contract at the end of the diastole period pushing an extra 
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amount of blood into the ventricles. The generated electrical signal during the heart 
pumping process force the blood flow between heart chambers and throughout the 
body. The heart produces sounds as a result of the heart beating and blood flow 
through it during the cardiac cycle. Also, the vibrations are produced with the clo-
sure of heart valves creating turbulence, which is audible and can be listened to 
through a stethoscope during cardiac auscultation by the examiner. The heart sounds 
are distinct and unique which gives valuable acoustic information about the heart 
condition. Normally in adults, there are two heart sounds, i.e., “Lub” and “Dub”, 
generated due to the closing of the semilunar and atrioventricular valve.

There are two normal primary heart sounds, i.e., “S1” and “S2”, associated with 
heart valves closing. S1 is also called first heart sounds or “Lub”. S1 is generated by 
the closing of tricuspid and bicuspid valves during the start of the systole period. 
The vibrations are produced as a result of turbulence during ventricles contraction 
in systole and they could be easily heard with a stethoscope placed at the heart ver-
tex. It has two parts: M1 which is caused by mitral valve closing and T1 which is 
caused by tricuspid valve closure. M1 occurs before T1 with an approximate 
25–45 cycles per second whereas it elapses for an interval of around 0.14–0.15 s [4].

S2 is also known as second heart sound or “Dub”. S2 is produced by semilunar 
valve closure during the end of the systole or early diastole period. S2 is best heard 
with the stethoscope placed in the aortic area. It has two components: A2 caused by 
the aortic valve closure and P2 caused by the closure of the pulmonary valve. 
Generally, S2 sound is louder and high-pitched as compared to S1 sound with a 
frequency falling in the range of 40–70 Hz. In addition, its duration is relatively 
longer which elapses for an interval of around 0.11–0.12 s [4].

9.1.3  PCG Signal Acquisition

PCG signals are correlated with the mechanical activity of the heart and provide a 
means of visualization for better analysis. PCG signals provide the most valuable 
qualitative and quantitative heart-related attributes. PCG signal acquisition process 
is categorized as one-channel acquisition and multiple-channel acquisition. In the 
one-channel case, the PCG signal is fragmented using the actual signal without any 
prior knowledge. In the multiple-channel scenario [5], certain signals for example 
an electrocardiogram, photoplethysmogram, and carotid pulse are simultaneously 
obtained along with PCG.  As a result, the performance of the multiple-channel 
acquisition setup is more effective than its one-channel counterpart. Nonetheless, 
simultaneous acquisition of multiple signals (modalities) becomes expensive and 
unmanageable, especially when conditions are ambulatory. Hence, field experts pre-
fer one-mode segmentation methods over multiple-channel counterparts [6–8].

The rest of the chapter is organized as follows. Section 9.2 discusses the recent 
work carried out for PCG segmentation and classification. Section 9.3 discusses the 
quality assessment and pre-processing of the PCG signal and Sect. 9.4 presents a 
threshold-based peak detection method. Section 9.5 details the proposed 
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segmentation techniques i.e., identification of “S1” and “S2” states by (i) calculat-
ing statistical features, and (ii) converting 1D PCG signals into their 2D spectro-
gram respectively. Section 9.6 discusses the final labeling of PCG signal into “S1”, 
“systole”, “S2”, and “diastole” states, followed by PCG classification. In Sect. 9.7 
experiment and results are presented based on the developed methods. Sections 9.8 
and 9.9 present a comparison study, discussions, and conclusions of the chapter 
respectively.

9.2  Related Work

Automated analysis of a PCG signal can be classified into various steps. The typical 
approach involves (i) pre-processing, (ii) segmentation, and (iii) classification. In 
pre-processing PCG signal is filtered and extra noise spikes are removed to make 
the signal more appropriate for starting the analysis process. Most of the heartbeat 
segmentation methods follow a similar preprocessing approach, starting with noise 
reduction by applying filters and the normalization of the signal using the absolute 
maximum. This is followed by the application of envelope detection methods, such 
as the Hilbert Transform, Homomorphic Envelope, Wavelet Transform, Shannon 
Energy, and Power Spectral Density [9]. In the unsegmented PCG signal processing 
approach, deep features are obtained from the unsegmented PCG chunks, and deep 
learning algorithms are employed for classification.

9.2.1  Segmentation

In earlier works, the rule of thumbs and facts-based distinction was used to differ-
entiate between “S1” and “S2”, (i.e., interval lengths). Other techniques [10, 11] 
involve PCG energy calculation. Gomes [11] designed a system that changes the 
phonocardiogram signal into individual segmentation fragments. In [10], the 
Shannon envelope of the signal is extracted from the overlapping fragments of the 
entire signal. Threshold-based peak detection is performed in each window/frag-
ment. Heart sound signals are mainly known as non-stationary signals. Hence, by 
applying energy-based calculation methods only, better results cannot be obtained. 
Considering this issue, researchers combined these methods with some transforms, 
for instance, Short Time Fourier Transform [12], Wavelet Transform [13, 14]. In 
[14], a wavelet-transform-based segmentation algorithm was employed to extract 
temporal, time, and frequency domain attributes of PCG. In [15], the authors used 
an advanced mode of decomposition method for PCG segmentation using various 
modes of the decomposed PCGs and variational mode decomposition. Other than 
these techniques, neural networks have also been applied for heart sound segmenta-
tion [16]. Specifically, a neural network algorithm was proposed for PCG segmenta-
tion using a Hidden Markov Model. Features extracted for the PCG classification 
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were the time and frequency domains representing the underlying characteristics of 
the phonocardiogram signal. The inter-patient differences challenge was addressed 
in [17] where the main focus is to compare the heart sounds within and across the 
patient’s PCG dataset using “Dynamic Time Warping” (DTW). The combination of 
DTW and “Mel Frequency Cepstral Coefficients” (MFCC) features was given to an 
SVM classifier. As compared to MFCC, DTW-based features computed in an unbi-
ased dataset condition performed well. In [18] heart sound recordings are classified 
by first performing the heart sound segmentation, followed by 1D waveforms trans-
formation into 2D time-frequency heat maps using MFCC, and finally, classifica-
tion was performed using CNN.

9.2.2  Extracted Features and Classifiers

After the segmentation of PCG signals as “S1” and “S2”, these segments are passed 
to the feature (distinctive attribute of an item) extraction stage, followed by the clas-
sification stage. For PCG classification features are extracted to analyze the changes 
in the signal over time and frequency contents within the signal. In the segmentation- 
based heart sound analysis approach, different features are calculated at two differ-
ent stages. At first, the features are extracted to find the S1 and S2, and in the second 
stage (i.e., classification) features are extracted to classify the signal as normal and 
abnormal. Some common features are mean, median, kurtosis, energies, entropy, 
spectral edges, etc.

Some classification methods are based on clustering like K-Means [19]; others 
use statistical analysis like Hidden Markov Model [20], K-Nearest Neighbor [21], 
etc. Machine learning (ML) models are applied to PCG databases with several fea-
ture extraction approaches [22–24]. In [9], Springer used a modified form of the 
Hidden Markov Model (the Hidden Semi Markov Model) for the classification of 
PCGs. Similarly in [25], Kaur used fuzzy K-NN, Bayesian, and Gaussian mixer 
Model-based KNN for the classification. In [26], two stages were employed, the 
first stage performed segmentation using SVM, and “Artificial Neural Networks” 
(ANN) were used for the final classification of PCGs. Most of the recent studies 
employed classification techniques like “multi-layer perceptron” (MLP) [27], SVM 
[28], CNN [18], etc. The above-mentioned methods use different preprocessing 
techniques to segment PCG signals and extract suitable features from the PCG seg-
ments using techniques such as Short Time Fourier Transform [12], Wavelet 
Transform [13, 14], DTW [17], MFCC [29], etc. These ML methods are subjective 
and time-consuming due to the handcrafted feature selection process. In addition, 
deep features using deep neural networks [30, 31], spectrograms of heart sounds 
[32, 33], and a continuous wavelet transform-based scalogram [34] were also used 
for PCG analysis.

The existing research work conducted on CVD identification using ML and deep 
learning on different medical databases has contributed to the detection of heart 
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sound abnormalities and most of them achieved significant results. The proposed 
study is focused on spectrogram-based segmentation of PCG using CNN.

9.2.3  Unsegmented PCG Classification

The second approach for the PCG classification does not involve segmentation. 
Researchers have opted for this approach to directly classify the PCG signals into 
normal and abnormal classes skipping the intermediate segmentation stage. In [35] 
authors performed the classification of heart sound without segmentation using 5 
categories of features that include “Linear Predictive Coefficient”, Entropy-based 
features, MFCC, wavelet transform, power spectral density. From the set of 40 fea-
tures, 18 features were chosen using one of the search algorithms (called wrapper- 
based) for the feature selection. In this method, a sequential forward selection 
search was used. A total of 20, 2-layer feed-forward ANNs were used for the clas-
sification (25 neuron nodes per hidden layer). In the output layer, 4 neurons were 
used for two classification tasks at the same time, two for normal vs. abnormal and 
two for good vs. bad. In [36] authors classify the heart sound recording as normal or 
abnormal by extracting the morphological features of the PCG signals. Several fea-
tures are extracted from both temporal and spectral domains, and the classification 
is performed using an SVM. In another approach [37], wavelet entropy at a wavelet 
scale of 1.7 and with a threshold of 7.8 was employed. The heart signal was recorded 
for 5  seconds, and then wavelet coefficients were calculated. Afterward, wavelet 
energy and entropy were calculated and it was passed to the criterion function which 
used a threshold for signal classification. Another CNN-based PCG classification 
approach [38] employed Power Spectral Density (PSD) features with a window of 
150  ms. These spectrograms were fed to the network for the classification task. 
SVM, logistic regression, and random forest were also applied for PCG classifica-
tion and their results were compared. Another method using temporal dynamics of 
the signal using Markov features along with other statistical and frequency domain 
features was presented in [39]. These features were trained over the ensemble of 
artificial neural networks and gradient boosting trees.

9.3  Quality Assessment and Pre-processing of PCG Signals

In a real-world environment, during auscultation, the recorded PCG signal is often 
contaminated with noise. It is always necessary to check the suitability of the PCG 
signal before carrying out any kind of processing. For this purpose, firstly quality 
assessment of the PCG signal is carried out [16] in which the suitability of the signal 
is tested based on evaluation criteria. If the PCG signal fails the criteria, it is declared 
as “unsure” and no further processing is carried out for that PCG signal. The details 
of quality assessment and pre-processing stages are discussed in this section.
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9.3.1  Evaluation Criteria

The classification task requires the determination of a heart sound recording as nor-
mal, abnormal, or unsure (due to the high content of noise). For this purpose, three 
measures of quality assessment are taken [16]. If any of the criteria does not meet, 
the signal is not called suitable. These criteria are; (i) root mean square of successive 
differences, (ii) number of counted normal peaks in the specified size window, and 
(iii) number of zero crossings in the whole PCG signal. PCG signal is tested over 
these criteria, and the suitable signal is passed on to the next step. On the other hand, 
if any criterion fails, the PCG signal will be declared as “unsure” and no further 
processing will be carried out for that PCG signal.

9.3.2  Filtering and Spike Removal

Heart sound recording and analysis are generally employed as an effective and low- 
cost alternative for heart abnormality screening. Nonetheless, there are a few chal-
lenges involved in this process. Firstly, the accurate localization of primary heart 
sounds (i.e., “S1” and “S2”) is very important for the detection of any heart abnor-
mality as it provides the basis for the upcoming classification stage. Another chal-
lenge is the vulnerability of heart sounds from different noise sources. In particular, 
external noises present in the nearby setting of the signal acquisition arrangement 
(e.g., human speech, noise generated by appliances and devices), measurement 
noise due to the involvement of sensors, and other components data acquisition 
system. In contrast, internal noises (coming from the patient body), for instance, 
sounds originating from lungs and other body parts, speech, etc. may also deterio-
rate the desired PCG signal. Consequently, it is the foremost task to remove the 
undesired noises from the acquired signal using appropriate noise filtering methods.

Filters play an essential role in the field of signal processing. A filter is a special 
type of process which is used to remove the unwanted part of the signal, suppress 
the effect of unwanted or unnecessary signal, or restore the original signal from cor-
ruption. Normal PCG signals have low frequencies, ranging from 40 Hz to 200 Hz. 
Murmurs and extra heart sounds have frequency ranges up to 400 Hz. In literature 
the usage of Butterworth and Chebyshev filters [17, 28, 40] and their variants are 
found quite often. These linear filters are used for the separation of noise from the 
signal using different cutoff frequencies provided that the signal does not overlap in 
the frequency domain. In this study, the PCG signal is resampled to 1 kHz and the 
resampled signal is filtered with a Butterworth low-pass filter with a cut-off fre-
quency of 400 Hz and order 4. After that output of the first filter is passed to a 
Butterworth high-pass filter with a cut-off of 25 Hz.

Noisy spikes are then removed from the filtered signal to make the PCG signal 
clean from extra spikes other than the actual peaks of the heartbeat. Some common 
spike removal methods are Nonlinear Median filters, Schmidt spike removal 
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function [20], etc. After that envelope of the PCG using the Hilbert transform is 
extracted and it is normalized using the mean and standard deviation values of the 
extracted PCG envelope. Researchers also suggest calculating the Shannon Energy 
[10] for PCG envelope calculation.

9.4  Single and Multi-Level Threshold-Based Peak 
Detection Methods

During PCG signal segmentation, a signal is segmented into its fundamental heart 
sounds, i.e., “S1” and “S2”. Therefore, the localization is threefold; the identifica-
tion of all peaks present in the normalized PCG, extraction of true peaks, and 
removal of false peaks. Firstly, the local maxima function is employed to identify 
the location of all peaks, called candidate peaks, from the normalized envelope of 
the PCG signal. The second step is the determination of true peaks which becomes 
difficult due to the sub-par quality of the PCG acquisition process. Generally, clini-
cal settings or ambulatory conditions affect the recorded signal quality due to the 
presence of external and observational noise. In such situations, a specific single- 
threshold is not a suitable measure for extracting true peaks for the reason that sig-
nals usually have a “Signal to Noise ratio” (SNR) of a different range. Due to the 
degraded performance of single-threshold techniques, employment of one perfect, 
global threshold value for the determination of true peaks i.e., “S1” and “S2”, is not 
possible. Another associated challenge of a one-specific threshold is the determina-
tion of the threshold level. For instance, by selecting a low threshold value, peaks in 
systole/diastole intervals are also selected along with true peaks. In contrast, by 
selecting a high threshold value sometimes the misdetection of “S1” peaks from the 
PCG signal increases considerably, however, the peaks in systole and diastole inter-
vals are not detected anymore. This is because the signal with a high SNR performs 
well with a low threshold value and a signal with low SNR requires a high threshold 
value. In literature, a multi-threshold algorithm [28] is suggested to find out the 
candidate peaks for S1 and S2 from the pool of all detected peaks. The summary of 
the multi-threshold algorithm is shown in Fig. 9.2.

The proposed method employs multiple threshold levels for true peak selection 
namely, “moderate-level (MLT)”, “high-level (HLT)”, and “low-level (LLT)”. 
These levels are applied in sequence and the criterion for the selection of a threshold 
is a count of candidate peaks, ‘count’, occurring in a pre-defined window size (0.2 s 
in our case). To begin with, the ‘count’ is computed with MLT (0.1 in our case). 
When ‘count’ is above the specified upper limit (sp1), HLT is incorporated. 
Similarly, when ‘count’ is below the specified lower limit (sp2), LLT is employed. 
Afterwards, true peaks fulfilling the requirements i.e., equal to or above the updated 
threshold are selected using the freshly updated threshold. Over each candidate 
peak, a window of 1 ms with overlapping of 0.5 ms is placed to segment that par-
ticular portion of the signal.
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Fig. 9.2 Multi-Level threshold algorithm

9.5  Segmentation Methods of PCG Signals

In the proposed methodology, two approaches are employed for the classification of 
“S1” and “S2”:

• Segmentation based on statistical features and Support Vector Machine (SVM)
• Segmentation based on Peak Spectrogram and Convolutional Neural 

Networks (CNN)

Both approaches are discussed in detail in this section.

9.5.1  Segmentation Based on Statistical Features and Support 
Vector Machine

In this approach, a total of 11 features obtained from both time and frequency 
domains are extracted from the windowed PCG segments (wS) and complete heart 
sound (HS). A list of these features is mentioned in Table 9.1. These features pro-
vide statistical values for the classification of “S1” and “S2”. Different classifiers 
are trained using these 11 features namely K-Nearest-Neighbor (KNN), ANN, and 
SVM.  Accuracy results obtained from all mentioned classifiers are given in 
Sect. 9.8.
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Table 9.1 Proposed features for heart sound peak classification

1. SD of ‘wS’/SD of heart ‘HS’
2. μ of ‘wS’/μ of ‘HS’
3. S of 1st-level approximation coefficient of ‘HS’
4. S of 1st-level detail coefficients of ‘HS’
5. S of 2nd-level approximation coefficient of ‘HS’
6. Spectral edge frequency of ‘HS’
7. Spectral S for dyadic bands of ‘HS’
8. Fractional dimensions of ‘HS’
9. Hjorth parameters of ‘HS’
10. Skewness of ‘HS’
11. Kurtosis of ‘HS’

Note: SD, Standard deviation; μ, Mean; S, Entropy

9.5.2  Segmentation Based on Spectrograms and Convolutional 
Neural Network

Convolutional Neural Network (CNN) works better on 2D data. On the other hand, 
the signal acquired during auscultation is 1D. To make it useful for CNN, in this 
approach, Short Time Fourier Transform of PCG segment determined after which 
1D signal is converted into a 2D peak spectrogram. The time-domain representation 
of “S1” and “S2” and their respective spectrograms are shown in Fig. 9.3.

These peak spectrograms are fed to a CNN which classifies them into “S1” and 
“S2”. The architecture used for the CNN model is shown in Fig. 9.4. At the end of 
this step, all candidate peaks are assigned with their respective labels, like “S1” or 
“S2”. This information is used in the next phase of the proposed methodology to get 
fully labeled cardiac cycles in the PCG signal.

9.6  Post-processing and Classification of PCG Signals

9.6.1  Post-processing and PCG Labeling

In this step, the marked positions of “S1” and “S2” along with the duration distribu-
tion provided by Schmidt et.al [20]. are utilized to label the systole and diastole 
regions in the PCG signal. A fully labeled PCG signal with states “S1”, systole, 
“S2”, and diastole is obtained after the post-processing. The example of a labeled 
PCG signal obtained after segmentation is presented in Sect. 9.7.
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Fig. 9.3 Peak Spectrogram generation using short-time-Fourier-transform

9.6.2  PCG Classification

In this step, features are extracted utilizing post-processed state labels for PCG sig-
nals that are used to train the classifier. A total of 50 features are extracted (20 time- 
domain, 30 frequency-domain). A list of these features is given in Table 9.2. These 
features are used to train SVM.  As mentioned earlier, for segmentation, two 
approaches were proposed. Both of them follow the same classification step sepa-
rately and their accuracies are reported in Sect. 9.7.

9.7  Experimentation on the PhysioNet2016 
Challenge Dataset

This section discusses the experiments and the obtained results of the proposed 
method implementation. A detailed description of the results obtained in each step 
is given below.
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Table 9.2 Proposed features for SVM Classifier Training

Time-Domain Features

Interval/ Interval Ratio Features
Mean Standard Deviation

R-R X X
S1 X X
S2 X X
Systole X X
Diastole X X
Systole, R–R ratio X X
Diastole, R–R ratio X X
Systole, diastole ratio X X
Systole period, S1 period ratio Mean absolute 

amplitude ratios
Mean absolute amplitude 
ratios

Diastole period, S2 period ratio Mean absolute 
amplitude ratios

Mean absolute amplitude 
ratios

Frequency-Domain Features
Segments/
Segments Ratio Frequency Band Features

Power Band Power Amplitude Q-factor

Cardiac Cycle 150–350 Hz
200–400 Hz

Mean Mean – –

Systole 150–350 Hz
200–400 Hz

Mean Mean – –

Diastole 150–350 Hz
200–400 Hz

Mean Mean – –

S1 Mean Mean – X
S2 Mean Mean – X
Systole Mean Mean Mean X
Diastole Mean Mean Mean X
S1 Mean Mean Mean X
S2 Mean Mean Mean X
Cardiac Cycle, systole ratio 100–300 Hz

200–400 Hz
Average – – –

Cardiac Cycle, diastole ratio 100–300 Hz
200–400 Hz

Average – – –

Diastole, systole ratio 100–300 Hz
200–400 Hz

Average – – –
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9.7.1  Dataset

The proposed methodology is implemented on the PhysioNet2016 challenge data-
set [41]. In this dataset, a total of 3226 data samples of PCG recording both from 
healthy and pathological patients were collected. 1610 instances of the total data 
samples are used for training and 1616 samples are used for testing. The physioNet 
dataset consists of multiple sub-datasets including A, B, C, D, E, and F. The audio 
recordings present in each sub-dataset are 409, 488, 29, 53, 2137, and 110 respec-
tively. A 50-50% split training-testing strategy is incorporated in this study. The 
actual number of recordings used for training are 204, 244, 14, 26, 1067, and 55 and 
for testing 205, 244, 15, 27, 1070, and 55 respectively. For segmentation, “S1” and 
“S2” labels for each PCG signal sample are obtained using the Springer Algorithm 
[9] which are compared with the segmentation results of the developed method.

9.7.2  Results of Pre-processing

After obtaining the suitable (classifiable) signals the preprocessing techniques are 
performed. First, the signal is passed through the low pass and high pass filters. 
Furthermore, the removal of spikes is carried out using a Schmidt spike removal 
function. Followed by the extraction of the envelope using the Hilbert transform. 
Finally, the resultant signal is normalized using simple mean and standard deviation 
formula. The results of different preprocessing operations are illustrated in Fig. 9.5. 
Figure 9.5a shows a smaller chunk of the original (classifiable) signal. Figure 9.5b 
shows the signal obtained after filtering and spike removal operations. It is clear that 
after preprocessing the signal became smooth and spikes were removed. Furthermore, 

Fig. 9.5 Pre-processing results
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Fig. 9.5c shows the obtained envelope of the preprocessed signal which contains 
useful information regarding the “S1” and “S2” activities. Finally, a normalized 
envelope of the processed signal is obtained as shown in Fig. 9.5d.

9.7.3  Results of Segmentation

In this stage, true peaks are extracted from the preprocessed signal. Firstly all peaks 
are identified using peak finders which are called the candidate peaks for the “S1” 
and “S2”. Afterward, a multi-level threshold is employed for the identification of 
the true peaks. Consequently, true peaks are selected from the pool of peaks which 
are sent to the feature extractor to classify them as “S1” and “S2” based on their 
features. The results of the peak finder stage illustrating the candidate peaks are 
given in Fig. 9.6a. Subsequently, the candidate obtained using the starting threshold 
is given in Fig. 9.6b. Afterward, true peaks are detected and false peaks are elimi-
nated using the developed multi-level threshold, as shown in Fig. 9.6c.

Classification of peaks is performed using a spectrogram of obtained true peaks. 
The windowing procedure is applied to obtain the true peak, and its spectrogram is 
obtained using Short Time Fourier Transform. These spectrograms are fed as input 
to the convolutional neural network which learns features in 100 iterations and 
trains its model. Final testing of the model is performed on unseen samples of spec-
trogram which classify them as “S1” and “S2”. The spectrogram and CNN combi-
nation gives an overall segmentation accuracy of 91.20% as compared to SVM and 
ANN classifiers. Figure 9.7 illustrates the peak identification results where the true 
peaks are labeled based on the peak spectrograms.

Fig. 9.6 True peak detection results based on multi-level threshold
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Fig. 9.7 Predicted labels using peak spectrogram and convolution neural network

Fig. 9.8 Predicted label after post-processing

9.7.4  Results of Post-processing

After the assignment of “S1” and “S2” peaks by the classifier, a post-processing 
step is required. This completes one cycle as “S1”, “systole”, “S2”, and “diastole” 
as shown in Fig. 9.8.

9.7.5  Results of PCG Segmentation

The state sequences (i.e., “S1”, systole, “S2”, diastole) obtained after post- 
processing are forwarded to the final stage in which features are extracted based on 
the intervals between the states, their ratios, mean, standard deviation, amplitudes, 
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Table 9.3 Segmentation results on the PhysioNet 2016 challenge dataset

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

CNN (Proposed) 91.20 94.05 88.53
SVM 87.57 92.08 83.08
ANN 82.01 87.33 76.93

Table 9.4 Comparison Analysis on the PhysioNet 2016 challenge dataset

Approach Technique
Score/
Accuracy

Proposed Methodology I SVM without 
spectrogram

86.89

Proposed Methodology II SVM with 
spectrogram

93.33

Classifying Heart Sound Recording Using Deep 
Convolutional Neural Network [18]

CNN 88%

Morphological Determination of Pathological PCG Signal 
by Time and Frequency Domain Analysis [36]

SVM 81%

PCG Classification using Neural Network Approach [16] ANN 79%

and other power-energy features. The classifier employed for this purpose is the 
SVM which performs the binary classification. In another set of experiments, PCG 
signal segmentation was performed using the developed spectrogram and CNN- 
based segmentation approach. Afterward, PCG signal classification is performed 
using an SVM classifier and the classification result are shown in Table 9.3 which 
shows that with the incorporation of spectrogram and CNN combination the PCG 
classification accuracy improves.

9.8  Comparison Analysis and Discussions

In this section, a comparison study is presented between the proposed approach and 
the state-of-the-art counterparts on the same datasets i.e., PhysioNet 2016, as dis-
cussed in Sect. 9.7. Comparison results with other classifiers (i.e., Artificial Neural 
Networks, Convolutional Neural networks, and Support Vector Machine) are also 
shown in Table 9.4. In [16] PCG signal is classified using Hidden Markov Model 
(HMM) for extracting features and ANN focusing only on the statistical features 
which results in an accuracy of 79%. Support Vector Machine with Time and 
Frequency domain features is employed in [38] for analysis of PCG signals and it 
obtained an accuracy of 81%. In [18] the emphasis is on the state-of-the-art CNN, 
and this approach leads to an accuracy of 88%. In this chapter, two different clas-
sification approaches were presented. In the Proposed Methodology I, PCG signals 
were analyzed under the category of segmented approach using a multi-level thresh-
old, extracting the time and frequency domain features along with the Support 
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Vector Machine for final classification with the accuracy of 86.89%. In the Proposed 
Methodology II, the same strategy was followed except that segmentation was car-
ried out using a CNN along with the SVM as a final classifier, resulting in the high-
est accuracy of 93.33%.

9.9  Conclusions

Phonocardiograms are the non-stationary signals which make the task of identifying 
the exact location of the peaks difficult. Using the multi-threshold method for peak 
detection and with the peak spectrogram, the identification of the peak locations 
was improved. Also, PCG signal classification into normal and abnormal was 
improved to 93.33% with our developed method. The segmentation and classifica-
tion results reported for our developed approach using peak spectrogram and state- 
of- the-art convolutional neural network have an accuracy of 91% and 93.33% 
respectively.

Classification of PCGs can be bettered by calculating advanced features which 
extract the information of signal in more depth or by using deep learning models. In 
this paper, separate methods are used for PCG segmentation and classification. 
Nonetheless, there can be a possibility to use a unified framework for segmenting 
and classifying PCG both. In addition, instead of binary classification non-binary 
classification can be performed to find out the exact CVD in future endeavors.
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Chapter 10
Eczema Skin Lesions Segmentation Using 
Deep Neural Network (U-Net)

Humaira Nisar, Ysin Ren Tan, and Kim Ho Yeap

Abstract Atopic Eczema is a skin condition that causes dry, itchy, and inflamed 
skin. The treatment of eczema requires detection of the infected region and grading 
of eczema symptoms. Dermatologists assess eczema visually and use special forms 
to record their findings. This process is tiresome and uses a great deal of time. In 
addition, it introduces inter-observer and intra-observer variability in the results. 
Hence in this work a fully automated method is developed to segment eczema skin 
lesions. A five-stage U-Net is trained to perform segmentation on the eczema data-
set that consists of 84 images of different severity levels. Four different color spaces 
i.e., the RGB color space, HSV color space, YCbCr color space and CIELAB color 
space are employed for the segmentation analysis. In addition, the effect of color 
space normalisation technique and Adaptive Light Compensation (ALC) for illumi-
nation compensation are also examined. For performance evaluation five metrics 
are used namely, accuracy, sensitivity, specificity, Positive Predictive Value (PPV) 
and Negative Predictive Value (NPV). The highest average segmentation accuracy 
of 87.44% is achieved by using 16 channels in the first stage of convolution layer 
with 512 × 512 image dimension after training for 500 epochs, using ALC as pre- 
processing, G color channel from RGB space and mathematical morphology-based 
post-processing methods.

10.1  Introduction

Eczema is commonly known as atopic dermatitis. It is among the well-known skin 
diseases that effects the quality of life of people in different age groups ranging 
from children to adults. The symptoms include various degrees of inflammation on 
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the skin, reddish patches, rashes, and itchiness. The problem with eczema is that it 
is not totally curable, rather it requires continuous treatment and home care to heal 
the infected skin region and prevent further infection.

The treatment of eczema requires detection of the infected area. The grading of 
eczema is based on the size of the infected area and the severity index [1]. This 
process is time-consuming and requires an expert dermatologist to evaluate it. 
Visual assessment may suffer from inter-rater well as intra-rater variability depend-
ing on the experience level of dermatologists as well as their working condition and 
burn out. Hence it is recommended to automate the process using computer-based 
technology which may result in improving the grading quality and speed of assess-
ment. The first step in eczema severity grading is the segmentation of the infected 
region. Skin lesion segmentation is one of the toughest jobs for a computer system. 
This is because image segmentation requires pixel-wise classification to determine 
the region of the infected skin lesion.

Recent advances in computer technology allows for the medical diagnosis to be 
carried out with the aid of machines hence assisting the medical health profession-
als in their tedious tasks of diagnosing and grading different diseases. Therefore, the 
focus of this chapter is on segmenting eczema skin lesions using deep learn-
ing models.

10.1.1  Eczema Area and Severity Index Measurement

One of the methods used by dermatologists to identify and grade the severity levels 
of eczema is by using Eczema Area and Severity Index (EASI) [1] standard. This is 
a grading standard to determine the severity index of eczema with the help of the 
area of the infected region and the severity of the infection [2]. In this method the 
human body is divided into four main regions: head and neck, trunk, upper limb and 
lower limbs, and the area score is calculated according to percentage coverage of 
the eczema skin lesions. The area score has seven levels; the area score 0 corre-
sponds to <1% infected region, 1 is for 1–9% infected area, 2 is for 10–29%, 3 is for 
30–49%, 4 is for 50–69%, 5 is for 70–89% and 6 is for 90–100%. The severity/
intensity score is graded based on four parameters; redness, thickness, scratching 
and lichenification into 0 with none, 1 with mild, 2 with moderate and 3 with severe 
intensity [1].

The calculation of the area and severity scores is a time-consuming process and 
needs lots of expertise as well. In addition to EASI method there are also other 
methods of eczema assessment which are Atopic Dermatitis Severity Index (ADSI); 
body surface area (BSA); Six Area, Six Sign Atopic Dermatitis (SASSAD); 
SCORing Atopic Dermatitis (SCORAD); Physician Global Assessment (PGA); 
Patient Dermatology Life Quality Index (DLQI); Oriented Eczema Measure 
(POEM); and pruritus Numerical Rating Scale (NRS) [3].

H. Nisar et al.



231

10.1.2  Segmentation

The first step for the automated detection of the eczema lesion is to acquire an image 
of the lesion and then segment this lesion from the background skin. This process is 
known as image segmentation. Segmentation is a very important process in image 
processing. There are a lot of segmentation methods to handle images of different 
modalities and different level of details. The existing image segmentation methods 
can be classified into 7 groups, as summarized in Table 10.1 [4].

Threshold-based segmentation makes use of intensity variation between the 
background and region of interest (ROI) to separate the image into intended regions. 
Global thresholding method looks at the overall intensity across the image and 
assigns threshold value to separate background and the intended region. Edge-based 
segmentation algorithm isolates the intended segmentation region from the back-
ground by detecting the edge or discontinuity of the intended object through deriva-
tive (first or second derivative) of intensity value. It determines the boundary of the 
object by examining the rapid change of intensity value within an image.

Region-based segmentation techniques assign classes to each pixel by determin-
ing whether the pixel is in a neighbourhood of the region through calculating the 
connectivity of pixel with initial seeds. The initial seeds are random points chosen 
to form regions with the surrounding pixels. Clustering algorithm makes use of 
mean, variance, and distance between clusters to classify pixels in images. Pixels 
with intensity value closest to the distance, mean or variance of one cluster are 
assigned to the respective cluster. The number of clusters is set at the beginning of 
the segmentation process based on the intended output.

Watershed based segmentation operates by assigning ‘basin’ based on intensity 
topology of image and classify pixels based on the drainages which separate all the 
basins. The drainage represents the edge in images and the basin represents different 
regions in the images. Partial differential equation (PDE) based method reduces 
noise in an image and performs edge detection by using different orders of PDE. For 

Table 10.1 Image segmentation methods

Segmentation Methods Algorithms

Thresholding Otsu Thresholding
Local Adaptive Thresholding

Edge Detection Sobel Operator
Roberts Operator

Region-Based Seeded Region Growing
Clustering K-means Clustering

Hierarchical Clustering
Gaussian Mixture Model

Watershed Marker-based Watershed
Partial Differential Equation Lavenberg and Marquardt Minimization
Neural Network Fully Convolutional Networks

Recurrent Neural Networks
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example, second order PDE is suitable for edge detection and fourth order PDE is 
suitable for noise reduction. Neural network-based methods perform segmentation 
by extracting the features in each region of the object and classify pixels based on a 
supervised learning technique. A training set consists of original images and ground 
truth images are used to train the weight of each node in the neural network and vali-
dation set is used to verify the accuracy of segmentation.

10.2  Deep Learning Approach in Segmentation

The main features to differentiate deep learning with other machine learning tech-
niques or traditional methods is the multiple layers of neural network in the model. 
It utilises the powerful computing, analysing, and processing capabilities of deep 
layers of the network to overcome the limitation or blind spot of humans in perform-
ing these tasks.

10.2.1  Neural Network

The neural network is inspired from the biological structure of the human brain 
which processes information through an infinite number of neurons. The neurons 
work together to transmit information from one end to the other end at the junctions 
known as synapses. Neural network mimics the operation of a human neuron. 
Figure 10.1 shows the architecture of a neural network; the basic components of the 
neural networks are the numerous circles interconnected with each other, these are 
known as nodes or neurons. Each neuron is responsible for a certain feature or infor-
mation. Weights are assigned to each neuron to represent the significance of the 

Fig. 10.1 Architecture of a neural network

H. Nisar et al.



233

features owned by the respective neuron. The input layer is normally represented by 
a vector, array or tensor that holds the input information whether in sequence 
or random.

When the input information propagates through the neural network, each neuron 
imparts some influence on the information according to the weights and features 
carried by them. The output layers are shaped according to the intended output pat-
tern. It may be a predicted value, a probability of an event happening or a simple 
binary representation of yes and no.

The powerful aspect of neural network is derived from its capability to continu-
ously monitor and update the weight of each neuron to obtain the optimal results 
through supervised learning. At the instance where the information propagates 
through the neural network and reaches the output node, a cost function is imple-
mented to determine the difference between the predicted value and the actual 
value. After that, the difference or error is backpropagated to each neuron and the 
weight of each neuron is updated in such a way to achieve the optimal output 
accuracy.

10.2.2  Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a modification of the basic neural network 
structure with the intention to utilize it in image processing, especially for classifi-
cation. The fundamental architecture of CNN is shown in Fig. 10.2. There are four 
main operations in the CNN model; convolution, pooling, flattening and fully con-
nected layer. Convolutional layers in CNN are responsible for extracting features 
from an image by performing simple 2-D convolution either with zero padding or 
without it. The results of the convolution are numerous feature maps that hold dif-
ferent feature channel of the original image. Each convolution operation is followed 

Fig. 10.2 Basic architecture of a CNN

10 Eczema Skin Lesions Segmentation Using Deep Neural Network (U-Net)



234

by a rectification operation, which improves the non-linearity within each feature 
channels [5].

Pooling performs down scaling by reducing the size of the feature map and it 
sends only the important data to next layers in CNN. It thus reduces the pixel den-
sity of the image. Flattening layer is an intermediate layer that converts all the 2-D 
arrays from pooled feature maps into a single linear vector. The fully connected 
layer is the final layer that contains all the information required to determine the 
expected output, by applying normalization function such as SoftMax function. In a 
multi-class problem SoftMax specifies decimal probabilities to each class (the sum 
of all probabilities should be equal to 1.0).

10.2.3  Region-Based CNN (R-CNN)

The basic CNN structure has its limitations. Its applications are usually limited to 
image classification. When it comes to segmentation, the CNN architecture as 
shown in Fig. 10.2 is not very useful. This is because CNN is responsible for extract-
ing features from images and classify them based on the similarities among the 
features from all images. While in segmentation, the image dataset normally shares 
similar general features. For example, the whole image dataset is about human skin. 
The focus of CNN is on the features in the images while segmentation requires to 
focus on differentiating features within images, or more accurately, features repre-
sented by each pixel or group of pixels.

Region-based CNN (R-CNN) is an alternative to deal with the shortcomings of 
the CNN model. Instead of focusing on inter-image features, R-CNN method is 
specifically designed to perform convolution on randomly selected regions of the 
image to create values for region-specific details [6]. This allows localization and 
detection to take place as R-CNN model focuses on features within the images. 
There is a simple example to illustrate R-CNN outcomes, imagine that the algo-
rithm randomly selected three regions and one of them is the ROI. The R-CNN 
would provide a label for ROI, for example, a car, while the other two regions may 
be labelled as background. The architecture of R-CNN is shown in Fig.  10.3. 
R-CNN is more promising when it comes to image segmentation. Table 10.2 lists 
down the methods proposed by researchers to perform skin lesion segmentation 
based on R-CNN model. Their pros and cons are analyzed and summarized.

10.2.4  Fully Convolutional Network (FCN)

Another method for image segmentation using deep learning is Fully Convolutional 
Neural Network. FCN blends the encoder-decoder structure with CNN architecture 
to form a network that is suitable for segmentation. Encoder-decoder network is one 
of the branches in deep learning that takes the output size or output channel like the 
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Fig. 10.3 Basic architecture of a R-CNN

Table 10.2 R-CNN based segmentation algorithms

Model Dataset Advantage Disadvantage

R-CNN
(Girshick et al., 
2015) [7]

ILSVRC2013 Able to perform 
segmentation

Time consuming, Poor 
region selection algorithm
Low accuracy,

Fast R-CNN
(Girshirk, 2015) 
[6]

PASCAL VOC 2007 Efficient segmentation Poor region selection 
algorithm, Low accuracy

Faster R-CNN
(Ren et al., 
2015) [8]

PASCAL VOC 2007 Time efficient Poor region selection 
algorithm, -Low accuracy

Mask R-CNN
(He et al., 2017) 
[9]

COCO 2015,
COCO 2016

High accuracy 
segmentation

–

SSD
(Liu et al., 
2016) [10]

PASCAL VOC, 
COCO, ILSVRC

Grid-based region 
selection algorithm

Required extra network to 
perform segmentation

input channel. The autoencoder structure has strong application in compressing and 
encoding information and recovering it [11]. The architecture of the encoder- 
decoder algorithm is shown in Fig. 10.4.

When the encoder-decoder structure blends with the CNN architecture shown in 
Fig. 10.2, it forms a perfect architecture for segmentation. As shown in Fig. 10.5, 
FCN takes the input which is same as the size of the original image and performs 
convolution on features within the image without padding. At the final stage, recon-
struction of image maximizes the possibility to obtain high accuracy in segmenta-
tion since the reconstructed image preserves most of the pixel information and 
allows evaluation of accuracy to be performed at the same size as of the original 
image [12]. Some common deep learning models implemented by researchers to 
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Fig. 10.4 Encoder-decoder architecture

Fig. 10.5 FCN architecture

perform skin lesion segmentation are shown in Table 10.3. The pros and cons are 
listed by analyzing the performance of each model.

10.2.5  Summary of Lesion Segmentation Literature

There are many methods proposed in the literature for skin lesion segmentation 
using machine and deep learning. Many methods are proposed for Melanoma lesion 
segmentation using different neural network models [17–27]. Abraham and Khan 
(2018) proposed U-Net and Attention U-Net as the methods to carry out 
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Table 10.3 FCN based segmentation algorithms

Model Dataset Advantage Disadvantage

FCN
(Long et al., 
2015) [12]

PASCAL VOC 
2011

Able to perform 
segmentation

Large dataset required

SegNet
(Badrinara. 
et al.,2017) [13]

PASCAL 
VOC12

Efficient segmentation Not suitable for biomedical 
images

DeepLab
(Chen et al., 
2017) [14]

PASCAL VOC 
2012

Time efficient suitable for 
large object segmentation

Not suitable for biomedical 
images

U-Net
(Ronneberger 
et al., 2015) [15]

ISBI 2012 
Challenge

Feasible for small dataset. 
Suitable for biomedical 
image segmentation

Up sampling phase 
limitation due to transpose 
convolution technique

R2U-Net
(Alom et al.,2018) 
[16]

Skin cancer 
lesion,
Lung cancer, 
retina blood 
vessel

Feasible for small dataset. 
Suitable for biomedical 
image segmentation

Complex network 
architecture

segmentation [17, 18]. A dice score of 0.838 for U-Net and 0.856 for Attention 
U-Net was achieved. Yuan (2017) [18] proposed Convolutional-deconvolutional 
Network to segment melanoma images and recorded mean Intersection over Union 
(IoU) of 78.40% while Bi et  al. (2017) [20] using Multiscale Resnet to perform 
segmentation on melanoma dataset and achieves 79.40% IoU.

For eczema segmentation, traditional machine learning approaches have been 
used by previous researchers. Ch’ng et  al. (2014) reported 84.60% accuracy by 
using K-means [28] and using a semi-automatic bi- level k-means with CSN-I 
Green channel and adaptive light compensation (ALC) as pre-processing method, a 
highest average segmentation accuracy of 86.07% is achieved [29]. Nisar et  al. 
(2020) proposed a fully automatic method of eczema lesion segmentation using 
feature ranking and SVM with CSN-I RGB color space [30]. An accuracy of 84.43% 
was achieved with Green-channel. Nisar et al. (2020) proposed another eczema seg-
mentation method using U-Net [31] on the same dataset with a slightly higher accu-
racy of 85.16% with Green channel of RGB color space.

Table 10.4 summarizes segmentation methods of skin diseases including mela-
noma (skin cancer) and eczema. Hence from Table 10.4 we can see that the average 
segmentation performance of melanoma lesion segmentation using deep learning 
model is 75–85%. FCN based network including U-Net, FCN and FCRN shows 
promising performance in lesions segmentation compared to other families of deep 
learning model. For eczema lesion segmentation, the traditional methods show the 
highest accuracy of 86.07% and a simple U-Net based method gives an accuracy of 
85.16% [31]. Based on the performance of deep learning network in melanoma 
segmentation, it is recommended to try deep learning models for eczema lesion 
segmentation to design a fully automated segmentation process without the tedious 
task of feature extraction.
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Table 10.4 Skin lesion segmentation algorithms

Author Dataset Segmentation Model Accuracy

Abraham and Khan
(2018) [17]

Melanoma U-net 0.838 ± 0.026 
(Dice)

Abraham and Khan
(2018) [17]

Melanoma Attention U-net 0.856 ± 0.007 
(Dice)

Yuan (2017) [18] Melanoma CDNN 0.784
Li and Shen
(2018) [19]

Melanoma FCRN 0.753

Bi et al. (2017) [20] Melanoma MResNet-Seg
(Multi-scale)

0.794

Goyal and Yap
(2017) [21]

Melanoma FCN 0.785 (Dice)

Vesal, Ravikumar, 
Maier (2018) [22]

Melanoma Skinnet 0.7667

Wen (2017) [23] Melanoma FCN 0.82
Attia et al. (2017) 
[24]

Melanoma CNN + RNN 0.93

Yuan, Chao, Lo, 
(2017)
[25]

Melanoma, 
PH2

FCN 0.836

Izadi et al. (2018) 
[26]

DermoFit,
(Melanoma)

GANs + UNet 0.812

Tang et al. (2019) 
[27]

ISBI 2016
(Melanoma)

Multistage UNet+Context Information 
Fusion Structure+Deep Supervision

0.853

Ch’ng et al. (2014) 
[28]

Eczema K-means 0.846

Ch’ng et al. (2014) 
[29]

Eczema 2 Levels k-means 0.8607

Nisar et al. (2020) 
[30]

Eczema SVM, NBC, KNN
CSN-1 RGB, Green channel

0.844,0.833, 
0.835

Nisar et al. (2020) 
[31]

Eczema UNET
RGB, Green channel

0.852

10.3  Methodology

This section explains the complete method to perform segmentation of eczema skin 
lesions. The flow of the process includes pre-processing, image augmentation, seg-
mentation, post-processing, and performance evaluation. Figure 10.6a provides an 
overview of the work flow. After image acquisition, ground truth images are pre-
pared for evaluation as shown in Fig. 10.6b. Image pre-processing and augmenta-
tion are carried out before applying the neural network to segment the skin lesions. 
Performance evaluation is carried out at the end of the segmentation process.
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Fig. 10.6 (a) Overview of workflow (b) Ground truth binary mask preparation

10.3.1  Image Acquisition and Ground Truth Preparation

A total of 84 images in jpg format are a acquired using a Digital Single Lens Reflex 
(DSLR) camera. The images were obtained from the Raja Permaisuri Bainun 
Hospital, Ipoh and were provided voluntarily. The images in the dataset are com-
posed of three severity levels, mild, moderate, and severe.

The ground truth for the skin lesions was manually drawn for performance 
assessment. This was done with the help of GNU Image Manipulation Program 
(GIMP) (The GIMP team, 2014). The ground truth was verified by the dermatolo-
gist. Figure 10.7 shows original images of different severity levels and a ground 
truth image. The lesion is surrounded by the black border that is manually drawn 
and verified by the dermatologist. It separates the normal skin region from the 
region of interest (ROI) i.e. the lesion. For performance evaluation, the ground truth 
images are further transformed into a binary image. The algorithm to transform the 
ground truth image into binary form is shown in the Fig. 10.6b.
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Fig. 10.7 Original Images. (a) Mild (b) Moderate (c) Severe and (d) ground truth image

10.3.2  Image Pre-processing

Deep learning approach requires different pre-processing pipeline as compared to 
the traditional approach. It involves two major steps, data structure preparation and 
pre-processing which includes light compensation and color model conversion.

10.3.2.1  Data Structure Preparation for Supervised Learning Methods

Supervised learning methods require dataset to be split into two or more parts, 
namely training set and validation set. Dataset is split into training and validation set 
by generating random seed and applying the random splitting function to the origi-
nal dataset. The procedure to implement data structure preparation is outlined as 
follows:

• Read image from original dataset folder
• Generate random seed
• Apply dataset splitting function
• Create directory separating training and validation set following a hierarchical 

structure
• Save training and validation dataset into the corresponding directory

In this work, the splitting ratio for the training set and validation set is 7:3 instead of 
conventional ratio 8:2. This is due to the small dataset size.

Deep neural network model for segmentation often accepts a specific size of 
input images, therefore all the images including ground truth images are resized to 
512 by 512.

10.3.2.2  Adaptive Light Compensation (ALC)

The image segmentation may be affected by non-uniform illumination. ALC pro-
posed by Ch’ng et al. [28] is applied on eczema images to decrease the effect of 
non-uniform illumination. In ALC the value of the luminance component which 
isdenoted by Y is extracted from the input image and Yavg is computed. To achieve 
good luminance, a high value of 200 and low value of 80 is obtained empirically 
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from the images. Finally, a luminance factor is computed for image correction as 
given in Eq. (10.1).
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10.3.2.3  Color Model Conversion

Different color models have been used in this study which are RGB, HSV, YCbCr, 
CIElab [32]. In addition, color space normalization I technique is also applied on 
RGB color model [29].

10.3.3  Data Augmentation

Data augmentation is deep learning specific technique to handle the problem of a 
small dataset. For applications such as biomedical imaging, it is difficult to obtain 
large datasets as it requires lots of time as well as ethical issues are involved. 
Geometrical transformation is used for image augmentation. However, image aug-
mentation is challenging for segmentation. This is due to the reason that segmenta-
tion dataset consists of both the original image and ground truth image, where 
segmentation dataset normally is limited due to the tedious ground truth preparation 
process. Data augmentation for segmentation is more tedious than conventional 
form as it requires transformation of both the original image and corresponding 
ground truth image simultaneously. The parameters assigned for augmentation are 
listed in Table 10.5.

Table 10.5 Image augmentation parameters

Parameters Tuning Range

Horizontal flip Yes
Vertical flip Yes
Brightness range 0.5
Shear range 0.2
Rotation range 0.2
Zoom range 0.2
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10.3.4  Image Segmentation

10.3.4.1  U-Net Architecture

The proposed method to handle segmentation task is U-Net proposed by Ronneberger 
et al. (2015) [15] from the University of Freiberg. U-Net is a deep neural network 
under the FCN family. Figure 10.8 shows the architecture of the U-Net.

As the name suggests, U-Net is a U-shape network composed of three main 
parts: down sampling path, up sampling path and bottleneck. Each of the stage in 
down sampling path consists of two 3 × 3 convolution layers, Rectified Linear Unit 
(ReLU) layers and one 2 × 2 max-pooling layer. The feature channels double while 
going through each convolution set until reaching the bottleneck.

The up sampling (path) is performed through transpose convolution where the 
feature channel is halved at each stage and concatenated with the similar layer of the 
cropped image at down sampling path. The up-sampling path is created to recon-
struct the image so that the mask can be analyzed at the same size as the original 
image. After 33 output layers, an extra 1 by 1 convolution layer is added to generate 
the output segmentation map.

Fig. 10.8 U-Net architecture
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10.3.4.2  U-Net Implementation

The procedure to implement U-Net can be divided into three steps; building the 
network, training network and validating the network. The first step of building 
U-Net involves constructing down sampling path using convolution, pooling, and 
rectifier function. Combination of these functions forms the first five layers of 
U-Net. After that reconstruction path is built by applying transpose convolution, 
pooling, and concatenation function. Five layers of reconstruction path forms the 
symmetrical structure of the U-shape network. Training network uses the training 
set of images and masks to train the network for several epochs. For each epoch, the 
network is validated either through accuracy, loss, or dice coefficient. Weights of the 
network are updated based on the validation coefficient. The network is trained and 
validated until the validation coefficient reaches a certain limit or no improvement 
is achieved for successive epochs. Validation network includes the process of apply-
ing the test set to the trained network to verify the performance of the network. 
Problems such as overfitting and underfitting or poor performance may occur in this 
stage, therefore validation process is important. Verification of network is simply 
checking the performance analysis parameters such as accuracy, sensitivity, and 
specificity of segmentation.

In this work 5 layers U-Net is used to perform segmentation. 3 × 3 convolution 
kernels followed by 2 × 2 max pooling kernels are used in each layer. The convolu-
tion layers’ channels used are (16, 32, 64, 128, 256). The parameters to keep track 
of the training process are accuracy and loss. The images are resized to 512 × 512 
before applying to the model as the model only accepts symmetrical input images. 
The loss function used in this U-Net model is binary cross-entropy and the opti-
mizer used is Adam optimizer. Eq. 10.2 shows the binary cross-entropy loss func-
tion. The results are obtained based on the training parameters of 50 epochs and 300 
steps per epoch. The steps involved in implementing U-Net are shown in Fig. 10.9 
and the parameters used are listed in Table 10.6.
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Fig. 10.9 Implementing U-Net
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Table 10.6 Parameters used to build U-Net

Parameters Value

Network Layers 5
Convolution Kernel Size 3 × 3
Max. pooling kernels 2 × 2
Number of convolution channels (16,32,64,128,256)
Image Dimension 512 × 512
Steps per epoch 300
Training epoch 50
Loss Function Binary cross-entropy
Optimizer Adam

10.3.5  Image Post Processing

After image segmentation the next step is to remove unwanted noise like holes and 
broken links/edges. This is carried out using morphological image processing. Hole 
filling and morphological dilation is carried out using a disk shape structuring ele-
ment to perform postprocessing.

10.3.6  Segmentation Performance Analysis

The segmentation results are evaluated using the following metrics as given in 
Eqs. 10.3, 10.4, 10.5, 10.6, and 10.7.
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Validation accuracy determines the degree of correctness based on the pixels of 
foreground and background segmented when compared with the ground truth. In 
other words, it determines how much regions are classified correctly. Sensitivity 
denotes the detection rate of the region of interest (ROI), which is the eczema 
lesions in this work. In other words, out of the correct lesions depicted in ground 
truth image, how much is correctly segmented as lesion. Specificity provides infor-
mation about the correct rejection rate of normal skin i.e., background in the image. 
In other words, how much normal skin region or background is correctly segmented 
as background. The PPV determines the precision of segmentation, which is the 
percentage of correct eczema region out of the regions segmented as lesions. While 
NPV determines the correct rejected region out of the regions rejected.

10.4  Results and Discussion

10.4.1  Image Pre-processing for Ground Truth Images

Image pre-processing phase turns the mask of the ground truth images into binary 
ground truth. This ground truth images serve as the golden images for performance 
evaluation after segmentation. Figure 10.10. shows a sample binary mask of ground 
truth. The black color indicates the eczema skin region while the white color label 
represents normal skin region.

10.4.2  Image Segmentation

The algorithm is tested using different color channels from different color models. 
In addition, for illumination correction ALC is applied. After image augmentation 
and illumination correction, image segmentation is performed using U-Net archi-
tecture and the results are evaluated based on individual color spaces, ALC method, 
as well as the effect of varying training epochs, steps per epochs and kernel number.

Fig. 10.10 Sample images from the dataset. (a) Original image. (b) Marked ground truth (c) 
Ground truth binary mask
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10.4.2.1  Color Channels

Table 10.7 shows the average segmentation performance for RGB, HSI, YCbCr, 
CIELAB and CSN-I RGB channels monitored using accuracy. From the table, it is 
observed that the green channel achieves the highest average segmentation accuracy 
of 85.16% followed by GrayScale and Lightness channel, while the Value Channel 
recorded the highest average segmentation sensitivity and NPV, which are 90.92% 
and 91.28% respectively followed by Red and CSN-I Red Channels. In addition, 
Hue channel provides the highest average segmentation specificity followed by 
Blue and CSN-I blue. Lastly Blue channel also has highest PPV of 89.75% followed 
by Lightness and Green channels.

Table 10.8 shows the average segmentation performance for all channels moni-
tored using loss. From the table 10.8, it is observed that the Grayscale achieves the 
highest average segmentation accuracy of 84.90% followed by Lightness and Y 
channels, while the Cb channel recorded the highest average segmentation sensitiv-
ity of 97.74% followed by A* and CSN-I Red channels. In addition, Hue channel 
provides the highest average segmentation specificity of 100% followed by Blue 
and CSN-I Blue channels. Highest average segmentation PPV is given by Blue 
channel of 87.9% followed by Green and Y channels and lastly highest NPV is 
given by CSN-I Red of 93.07% followed by Red and Value channels.

Summarizing Tables 10.7 and 10.8, and compiling results for different channels 
with the segmentation accuracy higher than 70%, it is seen that the Green Channel 
obtained highest accuracy of 85.16%, CSN-I Red channel provides the highest 

Table 10.7 Average segmentation performance for different color channels monitored using 
accuracy

Color
Channel Validation Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV(%)

Grayscale 84.59 81.18 85.55 78.10 88.31
Red 76.05 90.72 65.40 64.81 92.62
Green 85.16* 75.51 89.39 84.10 86.39
Blue 82.13 59.93 93.69 89.75 81.39
Hue 63.29 3.84 99.72 – 62.74
Saturation 74.83 59.21 80.14 69.65 79.77
Value 74.97 90.94 63.65 63.50 91.28
Y 81.32 85.67 77.01 73.28 90.07
Cb 65.64 77.99 56.74 54.55 84.75
Cr 45.54 85.99 21.63 40.41 71.63
Lightness 84.31 81.60 84.41 78.72 88.80
A* 53.98 65.55 49.01 44.59 69.49
B* 53.38 70.95 43.78 43.60 70.54
CSN-I Red 80.41 87.50 74.73 70.78 91.01
CSN-I Green 74.95 67.10 80.15 71.76 80.68
CSN-I Blue 67.86 31.04 90.21 67.58 69.01

(*refers to highest accuracy, and highlight refers to top 3 values)
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Table 10.8 Average segmentation performance for different channels monitored using loss

Color Channel Validation Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV(%)

Grayscale 84.90* 80.87 86.19 79.40 88.54
Red 76.87 92.04 66.28 64.39 92.49
Green 84.78 74.29 90.30 84.11 85.12
Blue 79.12 47.00 96.67 87.90 76.45
Hue 62.01 0.36 100 0 61.94
Saturation 51.10 83.34 30.87 42.54 79.09
Value 78.04 89.06 69.12 69.30 90.64
Y 83.08 75.06 86.96 81.42 85.47
Cb 44.68 97.74 11.79 40.40 80.27
Cr 36.98 50.60 30.64 28.73 50.05
Lightness 84.18 79.12 86.40 79.86 86.69
A* 41.01 94.91 7.73 38.77 67.99
B* 61.28 62.93 60.95 50.10 71.55
CSN-I Red 76.59 92.13 62.05 64.89 93.07
CSN-I Green 75.71 59.17 85.27 79.94 78.61
CSN-I Blue 67.01 27.89 90.26 – 67.93

(*refers to highest accuracy, and highlight refers to top 3 values)

average segmentation sensitivity of 92.13%. While blue channel from RGB color 
space recorded the highest average segmentation specificity of 96.67% and PPV of 
89.75% respectively. The CSN-I red channel achieves highest average segmentation 
NPV of 93.07%. Overall, the comparison between different color spaces summa-
rizes that RGB color space is indeed the best to perform eczema skin lesions seg-
mentation. While the green channel is the best channel among all the color channels 
as it gives the highest average segmentation accuracy.

Figure 10.11 shows the segmentation results for a simple image using all chan-
nels. By observation, the blue channel provides the best segmentation results as the 
boundary and the regions of the eczema lesion and normal skin are well defined. 
Grayscale and green channels provide satisfied output masks as the boundary of the 
infected region and normal skin region is outlined clearly although there are some 
holes in the eczema lesions. While the red channel exhibit poor segmentation per-
formance in this simple image as it missed the main area of the infected region. For 
HSV channels only the value channel provides acceptable segmentation results, 
where the segmentation output provides a clear boundary and the eczema lesion. 
Hue and saturation channel are unable to perform segmentation on this dataset. 
Both channels classified most of the pixels as a normal skin region and could not 
localize the infected region on skin. For YCbCr model, only Y channel provides 
acceptable segmentation results, with a clear boundary and the regions of infected 
skin. The result is not perfect as there are still little regions wrongly labelled as 
infected although it is normal skin. Cb and Cr channel both are unable to perform 
segmentation on this dataset. For LAB channels, only the lightness channel pro-
vides acceptable segmentation results, with a clear boundary and the eczema skin 
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Fig. 10.11 Simple lesion and Segmented Images (a) Original Image. (b) Ground Truth. (c) 
Grayscale (d) Red Channel. (e) Green Channel. (f) Blue Channel (g) Hue Channel. (h) Saturation 
Channel. (i) Value Channel (j) Y Channel. (k) Cb Channel. (l) Cr Channel. (m) Lightness Channel. 
(n) A* Channel. (o) B* Channel (p) CSN-I Red channel. (q) CSN-I Green channel. (r) CSN-I 
Blue channel
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lesion. A* and B* channels are unable to perform segmentation on this dataset. Both 
channels classified most of the pixels as the normal skin region and could not local-
ize the infected region on the skin. For CSN-I RGB channels, CSN-I red and CSN-I 
green channel provides acceptable segmentation results, where the segmentation 
output of CSN-I red channel provides a clear boundary for eczema lesion. CSN-I 
green channel can identify a small region of eczema lesion and there are some mis-
labeled regions as well. CSN-I blue channel is unable to perform segmentation on 
this dataset. It classified most of the pixels as the normal skin and cannot localize 
the eczema lesion.

Figure 10.12 shows the results for all channels on a complex image. All RGB 
channels can segment the normal skin region and eczema skin legion at a satisfying 
level, but the green channel and grayscale image provide detailed segmentation of 
the boundary. Overall, green channel provides the highest accuracy as well as 
detailed segmentation on both simple and complex images. For HSV model, only 
the value channel provides acceptable segmentation with a clear boundary. Hue and 
saturation channels are unable to perform segmentation on this dataset. For YCbCr 
model, only Y channel provides acceptable segmentation results with a clear bound-
ary of eczema lesion. However, a small region is wrongly labelled as eczema lesion 
although it is normal skin. Cb and Cr channels are unable to perform segmentation 
on this dataset. For LAB channels, only the lightness channel provides acceptable 
segmentation results with a clear boundary of eczema lesion. A* and B* channels 
are unable to perform segmentation on this dataset. For CSN-I RGB channels, 
CSN-I red and CSN-I green channels provide acceptable segmentation results, 
where CSN-I red channel gives a clear boundary and eczema skin lesion. CSN-I 
green channel only identifies the main eczema lesion but it cannot clearly define the 
boundary between normal skin and eczema lesion. CSN-I blue channel is unable to 
perform segmentation.

10.4.2.2  Adaptive Light Compensation Technique (ALC)

Tables 10.9 and 10.10 show the average segmentation performance for ALC RGB 
channel monitored using accuracy and loss respectively. It is observed that the accu-
racy improved after applying ALC technique to all the channels. The ALC green 
channel achieves highest average segmentation accuracy of 86.55%. ALC grayscale 
channel has the highest average segmentation sensitivity and NPV of 85.66% and 
90.06% among all ALC RGB channels. The ALC blue channel provides the highest 
average segmentation specificity and PPV of 93.99% and 90.64% respectively. 
However, when CSN-I is applied along with ALC then the accuracy values decreased 
for all channels.

Table 10.10 shows the average segmentation performance for ALC RGB channel 
monitored using loss. The ALC green channel achieves highest average segmenta-
tion accuracy of 86.59%. ALC grayscale channel provides the highest average seg-
mentation sensitivity of 88.30%. The ALC blue channels provide the highest 
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Fig. 10.12 Complex lesion and Segmented Images. (a) Original Image. (b) Ground Truth. (c) 
Grayscale. (d) Red Channel. (e) Green Channel. (f) Blue Channel (g) Hue Channel. (h) Saturation 
Channel. (i) Value Channel (j) Y Channel. (k) Cb Channel. (l) Cr Channel. (m) Lightness Channel. 
(n) A* Channel. (o) B* Channel (p) CSN-I Red channel. (q) CSN-I Green channel. (r) CSN-I 
Blue channel
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Table 10.9 Average segmentation performance for different channels with ALC and monitored 
using accuracy

Color Channel
Validation Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%) NPV(%)

Grayscale 84.59 81.18 85.55 78.10 88.31
Red 76.05 90.72 65.40 64.81 92.62
Green 85.16 75.51 89.39 84.10 86.39
Blue 82.13 59.93 93.69 89.75 81.39
ALC Grayscale 84.38 85.66 81.65 76.10 90.06
ALC Red 78.01 49.87 91.41 85.36 77.70
ALC Green 86.55* 72.73 93.05 89.18 85.08
ALC Blue 83.47 62.28 93.99 90.64 82.30
ALC CSN1 Red 74.46 36.22 96.47 – 73.32
ALC CSN1 
Green

79.55 56.90 90.08 83.60 80.84

ALC CSN1 Blue 65.50 20.45 93.09 59.97 65.27

(*refers to highest accuracy, and highlight refers to top 2 values)

Table 10.10 Average segmentation performance for different channels with ALC and monitored 
using loss

Color Channel
Validation Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%) NPV(%)

Grayscale 84.90 80.87 86.19 79.40 88.54
Red 76.87 92.04 66.28 64.39 92.49
Green 84.78 74.29 90.30 84.11 85.12
Blue 79.12 47.00 96.67 87.90 76.45
ALC Grayscale 82.85 88.30 77.34 72.78 91.55
ALC Red 75.78 41.44 93.02 0 75.40
ALC Green 86.59* 69.89 94.18 90.98 84.77
ALC Blue 80.74 51.67 95.99 97.08 78.98
ALC CSN1 Red 71.73 27.65 97.69 – 70.07
ALC CSN1 
Green

80.67 59.48 91.07 84.80 81.35

ALC CSN1 Blue 70.83 24.94 96.82 87.66 68.08

(*refers to highest accuracy, and highlight refers to top 2 values)

average segmentation PPV of 97.08%. Whereas by combining ALC with CSN I, 
only Red channel achieved a highest specificity of 97.69%.

Figure 10.13 shows the segmentation accuracy for ALC RGB Channels 
Monitored for a simple image. By observation, the grayscale channel provides the 
best segmentation results as the boundary and the regions of eczema lesion and 
normal skin are well defined. Green channels provide satisfied output as the bound-
ary of the eczema region and normal skin region is outlined clearly. While the red 
channel and blue channel exhibits poor segmentation performance in this simple 
image as it missed the main lobe of the infected region. For segmentation using 
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Fig. 10.13 Simple lesion and Segmented Images (a) Original image. (b) Ground truth. (c) ALC 
Grayscale. (d) ALC Red channel. (e) ALC Green channel. (f) ALC Blue channel (g) ALC CSN I 
Red channel. (h) ALC CSN I Green channel. (i) ALC CSN I Blue channel

ALC CSN-I RGB channels on a simple image, none of the three channels provide 
good segmentation results as the boundary and the regions of the eczema lesion and 
normal skin could not be defined by any of the channels.

Figure 10.14 shows the segmentation accuracy for ALC RGB Channels 
Monitored for a complex image. By observation, grayscale, green and blue channels 
provide good segmentation results as the boundary and the eczema skin and normal 
skin are well defined. Grayscale channel provides extra details on the boundary of 
normal skin and eczema lesion. While the red channel exhibits poorer segmentation 
performance in this complex image as it cannot identify and localize the eczema 
lesion. For ALC CSN-I RGB channels on a complex image, by observation, ALC 
CSN-I green channel provides the better segmentation output among three channels 
as it can localize the eczema skin lesion as well as the boundary of the normal skin 
and eczema lesion. ALC CSN-I red and ALC CSN-I blue channels do not provide 
good segmentation.
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Fig. 10.14 Complex lesion and Segmented Images (a) Original image. (b) Ground truth. (c) ALC 
Grayscale. (d) ALC Red channel. (e) ALC Green channel. (f) ALC Blue channel (g) ALC CSN I 
Red channel. (h) ALC CSN I Green channel. (i) ALC CSN I Blue channel

10.4.3  Post-processing

After image segmentation the next step is to remove unwanted noise like holes, 
small gaps from it using morphological image processing. Hole filling and morpho-
logical dilation is carried out using a disk shape structuring element with radius 1 
pixel is applied to the connected area with size larger than 500 pixels to perform 
postprocessing. This step helps to improve the overall segmentation quality as seen 
from Table 10.11 and Fig. 10.15.
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Table 10.11 Average segmentation performance after post processing (PP)

Color Channel
Validation Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%) NPV(%)

Green (Before PP) 85.16 75.51 89.39 84.10 86.39
Green (After PP) 85.52 79.08 87.45 82.52 88.20
ALC Green (Before 
PP)

86.55 72.73 93.05 89.18 85.08

ALC Green (After 
PP)

87.44* 77.10 91.78 88.11 86.76

(*refers to highest accuracy, and highlight refers to top 2 values)

Fig. 10.15 Segmentation before and after post processing (a) Simple image ground truth. (b) 
Green channel (without post-processing). (c) Green channel (with post-processing). (d) Complex 
image ground truth. (e) Green channel (without post-processing). (f) Green channel (with 
post-processing)

10.4.4  Analysis of the Effect of Varying Kernel Number 
in Convolution Layer

Table 10.12 shows the average segmentation performance of U-Net with different 
kernel numbers of convolution layers. Results show that with 16 kernels at the first 
stage, the highest average segmentation accuracy of 85.99% is achieved. With 2 
kernels at the first stage, the accuracy is the lowest, which is 47.92%. Figure 10.16 
shows the segmentation results of a simple image when the number of kernels at 
each convolution layers are varied. By observation, 8 and 16 kernels at first stage 
provides good segmentation as the boundary of eczema lesion and normal skin 
regions are clearly defined in addition to good localization of eczema lesion. 
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Table 10.12 Average segmentation performance of U-Net with different Kernel numbers

Kernel No. at each 
stage

Validation Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%) NPV(%)

2,4,8,16,32 47.92 64.19 37.21 38.66 62.94
4,8,16,32,64 80.83 60.67 91.50 84.24 79.49
8,16,32,64,128 82.71 84.85 81.15 75.12 88.93
16,32,64,128,256 85.99* 79.29 89.09 83.96 87.96
32,64,128,256,512 85.36 73.99 91.15 87.10 86.34

(*refers to highest accuracy, and highlight refers to top value)

Fig. 10.16 Simple Lesion and segmented images with different kernel sets (a) Ground truth. (b) 
2,4,8,16,32. (c) 4,8,16,32,64. (d) 8,16,32,64,128. (e) 16,32,64,128,256. (f) 32,64,128,256,512

Figure 10.17 shows the segmentation results on a complex image when the number 
of kernels at each convolution layers are varied. By observation, all kernel sets 
except the one with 2 kernels at first stage result in good segmentation as the bound-
ary of the eczema skin lesion and normal skin regions are clearly defined in addition 
to good localization of the eczema lesion.

10.4.5  Analysis of the Effect of Varying Steps per Epoch

Table 10.13 shows the average segmentation performance of U-Net when varying 
steps per epoch in the training process. Results show that when 500 steps per epoch 
is used in training, the output has the highest average segmentation accuracy, which 
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Fig. 10.17 Complex Lesion and segmented images with different kernel (a) Ground truth. (b) 
2,4,8,16,32. (c) 4,8,16,32,64. (d) 8,16,32,64,128. (e) 16,32,64,128,256. (f) 32,64,128,256,512

Table 10.13 Average segmentation performance of U-Net with different steps per epoch

Steps per 
Epoch

Validation Accuracy 
(%) Sensitivity (%) Specificity (%)

PPV 
(%) NPV(%)

1 48.78 46.10 49.77 36.34 60.39
10 69.18 55.72 75.65 57.54 73.35
50 80.59 64.04 88.99 78.88 81.39
100 83.80 76.93 85.63 78.70 87.46
300 85.99 79.29 89.09 83.96 87.96
500 86.41* 80.83 88.73 84.00 88.53
1000 86.17 72.04 93.09 89.54 86.03

(*refers to highest accuracy, and highlight refers to top value)

is 86.41%. when one step per epoch is used in training, the average segmentation 
accuracy is the lowest, which is 48.78%.

Figure 10.18 shows the segmentation result of simple image when steps per 
epochs at the training stage are varied. It is observed that when 300 onwards steps 
per epoch are used in training, it provides very good segmentation as the boundary 
of eczema lesion and normal skin regions are clearly defined in addition to good 
localization of eczema lesion and less noise. With one step per epoch the output 
binary mask is full of noise. Figure 10.19 shows the segmentation result of a com-
plex image when steps per epochs at the training stage are varied. By observation, 
when 300 onwards steps per epoch are used in training, it provides best 
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Fig. 10.18 Simple Lesion and segmented images with different step sizes per epoch (a) Ground 
truth. (b) 1 step. (c) 10 steps. (d) 50 steps. (e) 100 steps. (f) 300 steps. (g) 500 steps. (h) 1000 steps

segmentation result as the boundary of eczema skin lesion and normal skin region 
are clearly defined in addition to good localization of eczema lesion and less noise.

10.4.6  Analysis of the Effect of Varying Number of Epochs

Table 10.14 shows the average segmentation performance of U-Net when varying 
the number of training epochs. Results show that when training epochs are 500, the 
highest average segmentation accuracy, which is 87.44% is achieved. Figure 10.20 
shows the segmentation results on a simple image when training epochs are varied. 
By observation, when 10 epochs are used in training, it provides the very good seg-
mentation of the eczema skin lesion and the boundary between eczema lesion and 
normal skin regions are clearly defined. When 500 epochs are used in training, it 
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Fig. 10.19 Complex Lesion and segmented images with different step sizes per epoch (a) Ground 
truth. (b) 1 step. (c) 10 steps. (d) 50 steps. (e) 100 steps. (f) 300 steps. (g) 500 steps. (h) 1000 steps

Table 10.14 Average segmentation performance of U-Net with different number of epochs

No. of Epochs Validation Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV(%)

1 85.99 79.29 89.09 83.96 87.96
5 86.90 74.72 93.61 89.54 86.15
10 87.00 76.38 92.25 87.77 86.22
25 85.60 77.50 87.78 81.82 87.15
50 86.59 69.89 94.18 90.98 84.77
500 87.44* 78.10 91.34 87.35 87.19

(*refers to highest accuracy, and highlight refers to top value)

also provides the very good segmentation on the boundary between the eczema skin 
lesion and normal skin in addition to sufficient coverage of eczema skin lesion. 
Notice that other training epochs including 1, 5, 25 and 50 provide moderate result 
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Fig. 10.20 Simple Lesion and segmented images with different number of epochs (a) Ground 
truth. (b) 1 epoch. (c) 5 epochs. (d) 10 epochs. (e) 25 epochs. (f) 50 epochs. (g) 500 epochs

Fig. 10.21 Complex Lesion and segmented images with different number of epochs (a) Ground 
truth. (b) 1 epoch. (c) 5 epochs. (d) 10 epochs. (e) 25 epochs. (f) 50 epochs. (g) 500 epochs

as there is either discontinuity at the boundary between lesion and normal skin 
region or there is insufficient coverage of lesion. Figure 10.21 shows the segmenta-
tion result on complex image when training epochs are varied. By observation, all 
training epochs provide good segmentation result as there is no noise and disconti-
nuity at the boundary between the eczema lesion and normal skin region.
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Table 10.15 Average segmentation performance comparison of different algorithms

Algorithm
Color 
Channel Classifier

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

[30] Fully 
Automatic

CSN-I G SVM 84.43 84.98 84.28

Semi Automatic CSN-I G 2-level 
K-Means

88.28* 81.76 90.37

Fully Automatic CSN-I G Fuzzy C 
Means
5 clusters

87.36 78.6 91.37

CSN-I G K Means
5 clusters

87.51 79.23 90.07

Proposed
Fully Automatic

RGB G U-Net 87.44 77.10 91.78

(*refers to highest accuracy, and highlight refers to top 2 values)

10.4.7  Comparison of Machine Learning and Deep 
Learning Methods

Table 10.15 shows a comparison of the proposed method with other state of the art 
segmentation algorithms available in the literature. It is observed that the highest 
segmentation accuracy 88.28% is achieved by a semi automatic method and the 
second highest accuracy is achieved by the proposed method in this work with is 
87.44% and this method is fully automatic.

10.5  Conclusions

In this chapter, detailed analysis of eczema skin lesion segmentation is carried out. 
A deep learning network based on U-Net architecture was built and implemented to 
segment eczema lesions. Several image processing techniques were incorporated to 
improve the performance of the model including Color Space Transformation, 
Color Space Normalisation, Adaptive Light Compensation and Morphological 
image processing. From the results, green channel achieves the highest average seg-
mentation accuracy among all the color channels from different color spaces includ-
ing RGB, HSV, CIELAB and YCbCr and CSN-I RGB. Adaptive Light Compensation 
(ALC) technique and post processing significantly improved the segmentation per-
formance of deep learning U-Net model. Final a segmentation accuracy of 87.44% 
is achieved with a fully automatic segmentation method.

Here are some recommendations to further improve the overall segmentation 
performance.

• Building a more sophisticated deep learning segmentation model. From the lit-
erature review it is observed that to segment biomedical images with a small 
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dataset Variants of U-Net may be suitable. The model chosen in this chapter is 
U-Net, but R2U-Net may also provide a better result.

• Another possible improvement is using powerful and specific artificial intelli-
gence training hardware to handle the training process. In this work due to the 
limitation of GPU memory, the number of iterations, the number of convolution 
channels and the layers of the model were restricted, thus it directly affects the 
highest performance of deep learning model. A tensor core GPU or AI chips are 
recommended to significantly improve the performance.
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Chapter 11
Biomedical Signal Processing 
for Automated Detection of Sleep Arousals 
Based on Multi-Physiological Signals 
with Ensemble Learning Methods

Navabeh Sadat Jalili Shani and Mohammad Hasan Moradi

Abstract Sleep-related breathing disorders such as sleep apnea and hypopnea are 
potentially serious disorders and can be the cause of a wide range of physical and 
mental health problems and also reduce the quality of life. Therefore, sleep studies 
are essential for identifying and treating these sleep disorders. This study aims to 
detect arousal regions caused by sleep non-apnea and non-hypopnea in polysom-
nography signals by using ensemble techniques. The dataset used in this study is 
related to Polysomnography measurement channels of 100 patients provided in the 
2018 Physionet challenge database. The data was split into small epochs with 50% 
overlap. Several different features were extracted from each epoch in the time and 
frequency domain. Wilcoxon rank-sum test and Genetic Algorithm optimization 
algorithm were used to find a set of features with the most discriminative informa-
tion. A technique for data augmentation was used to tackle the unbalanced data 
problem. For final classification, linear discriminant analysis, logistic regression, 
bagged tree from the bagging technique, and LightGBM from the boosting method 
were applied. Based on the Physionet Challenge indices, the area under the receiver 
operating characteristic curve (AUROC), and the area under the precision-recall 
curve (AUPRC), we compared the performance of classifiers on this dataset. The 
highest performance on 20 test subjects was 0.497 for AUPRC and 0.878 
for AUROC.
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11.1  Introduction

The human body spends a third of its life sleeping, which is a complex process 
among living beings [1]. During sleep, fatigue is eliminated and mental and physi-
cal performance is restored [2]. During sleep, changes occur in many physiological 
functions of the body. There are also variations in these changes during different 
stages of sleep. The changes in physiological functions during sleep have led to 
associated variations in electrophysiological signals, which form the basis for 
research in sleep medicine [2].

Sleep disorders are a widespread problem in society today. Decreased conscious-
ness due to sleep disorders has a negative impact on patients’ lives [2]. Accurately 
diagnosing sleep disorders is difficult because of their clinical similarities. With the 
ability to record biosignals, the assessment of sleep quality became more accurate. 
To assess sleep quality, a variety of medical signals are used, including electroen-
cephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), and elec-
trooculogram (EOG), which the EEG signal is the most useful in evaluating sleep. 
These signals are called polysomnographic recordings [3, 4].

As defined by the American Sleep Disorders Association (ASDA) in 1992, 
arousal in sleep is a sudden increase in the frequency of the EEG signal that lasts at 
least 3 seconds and less than 15 seconds, and the person has been asleep for at least 
10 seconds before it occurs [5]. A handbook of new sleep staging guidelines and 
respiratory, cardiac, and motor events was published in 2004 by the American 
Academy of Sleep Medicine (AASM). Accordingly, arousals can be defined as the 
transition between sleep and wakefulness, or the transition between REM and 
NREM stages. Brain arousals are defined as a sudden change in EEG frequency, 
including alpha, theta, or frequencies above 16 Hz, typically lasting between 3 and 
15 seconds and at least 3 seconds. An important feature of arousal is unexpected 
changes in brainwave activity patterns. Arousals are usually observed in the second 
NREM stage or REM stage. Also, during the presence of arousals in the REM stage, 
the amplitude of the EMG signal increases further, which lasts at least 1  sec-
ond [6, 7].

One of the leading causes of drowsiness during the day is the appearance of 
arousals that change the natural structure of sleep and cause sleep deprivation. This 
process is directly related to the development of sleep disorders in the individual 
[8]. As mentioned, these disorders can have significant effects on quality of life and 
daily cognitive function, including memory, learning, and concentration [9]. As a 
result, identifying EEG arousals in the polysomnographic recording is a good indi-
cator for measuring sleep quality. The most important disorders that can cause 
arousals in sleep are sleep apnea, hypopnea, bruxism, snoring, and respiratory 
effort-related arousals (RERAs).

Visual examination of the signals recorded in polysomnography to diagnose the 
presence of arousals by physicians and specialists is a time-consuming and tedious 
task; in addition, Judging these events is also completely subjective and varies sig-
nificantly from expert to expert [10]. Therefore, finding algorithms for automatic 
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detection of these disorders based on signals helps physicians in diagnosing 
them [11].

Diagnosis of arousal can also affect sleep staging. Diagnosis of arousal can also 
affect sleep staging. According to AASM rules, once an arousal region is detected, 
it may mean that it is best to rank the next 30-second sleep window as another 
(lighter) sleep stage unless the next 30-second window features maintain the current 
sleep stage (for example, the presence of rapid eye movements in the REM stage or 
the presence of sleep spindles and k complex in the N2 stage) [12].

Two types of factors can cause sleep arousal. The first cause is apnea and hypop-
nea disorders such as obstructive and mixed apneas, central apneas, and hypopneas. 
Therefore, many studies have been performed to diagnose these arousals [3, 13–15]. 
Another is arousal related to disorders other than apnea and hypopnea, which 
include arousal caused by RERA, bruxism, snoring, etc. These arousals, which are 
very important to diagnose, are relatively hidden in polysomnography and are dif-
ficult to detect [16]. RERA is a respiratory disorder characterized by an obstructive 
decrease in airflow due to narrowing the upper airways and lasts for more than 
10 seconds. RERA does not reach the threshold for apnea and hypopnea, i.e., it is 
associated with less reduction in airflow and little or no hypoxia. In plethysmogra-
phy or polysomnography, respiratory cycles are recorded from a decrease or increase 
in respiratory effort, which leads to the continuous appearance of arousals on physi-
ological signals and ends before the criteria for apnea or hypopnea are met [17, 18]. 
This disorder can lead to serious consequences, such as loss of attention while driv-
ing [19]. Diagnosing sleep apnea with disorders other than apnea and hypopnea is a 
challenge. Therefore, our aim in this study focused on the automatic detection of 
arousal regions due to non-apnea disorders, especially RERA, which is 
more common.

There have been many studies in the field of arousal detection. There have been 
three methods used to develop an algorithm for detecting sleep disorders automati-
cally in these studies. Most of these studies have proposed neural network-based 
algorithms. A group of studies [20–24] first considered the raw data as input of a 
neural network after making the necessary preprocessing on them, and another 
group first extracted a set of valuable features from the data after the necessary pre-
processing to reduce data dimension and then trained their designed deep neural 
network with the extracted features [3, 25]. Another group of studies has used basic 
machine learning algorithms such as logistic regression, linear differential analysis 
[26], and support vector machine.

The remainder of this chapter is organized as follows: Section 11.2 discusses 
polysomnography. Section 11.3 is dedicated to sleep stages. Section 11.4 will cover 
the method. Results are reported in Sect. 11.5. Finally, the last section is the 
conclusion.
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11.2  Polysomnography

Polysomnography is a nocturnal test during several hours of sleep in which different 
measurement techniques are used to simultaneously and continuously record neuro-
physiological, cardio-respiratory, and other physiological and physical parame-
ters [27].

This method uses mentioned medical signals, pulse oximetry, airflow, and respi-
ratory effort to provide data on physiological changes in many different systems of 
the body that are affected by sleep and therefore may not be present at waking time 
to assess the essential causes of sleep-related disorders. Polysomnographic record-
ings are divided into 30-second segments and are interpreted based on expert opin-
ion and published sleep guidelines. Fig. 11.1 shows a segment of airflow and SaO2 
signals. The patient has an apnea disorder in the green portion of the signal. When 
apnea occurs, the amplitude of the SaO2 signal and the airflow are reduced by more 
than 90%. Both signals are characterized by this reduction when apnea occurs. The 
part of the signal marked in blue is related to RERA arousal, and the decrease in 
airflow is less severe than in apnea.

11.2.1  EEG

The EEG signal is the main basis of the objective diagnosis of awakening, arousals, 
and sleep stages during the sleep study. In most cases, the brain waves are irregular, 
and there is no general pattern, but specific patterns appear in some cases, such as 
epilepsy. The EEG also contains waves with various frequency ranges, the presence 
of which in different brain regions corresponds to a specific activity or state. 
Rhythms in the EEG signal that include Delta, Theta, Alpha, Beta, and Gamma 
waves, as well as particular patterns in this signal that include Vertex sharp wave or 
V-waves, slow waves, K-complexes, and sleep spindles, are used to distinguish 
between waking, sleeping, classifying stages and disorders of sleep [6]. Table 11.1 
shows the rhythms in the EEG signal. Figure 11.2 also shows these rhythms.
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Fig. 11.1 A segment of airflow and SaO2 signals. The green parts are related to apnea arousal and 
the blue parts are related to RERA arousal
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Table 11.1 The EEG rhythm specifications [28]

Delta 0.1–4 Hz In adults, found in the frontal region

Theta 4–8 Hz High amplitude waves in comparison to other EEG 
sub-bands

Alpha 8–12 Hz Always seen in frontal and parietal
Beta Above 12 Hz During deep relaxation and while focusing

1

–1

0.5

0.2

–0.2

–0.5

0

0

0

0.5

0.2

–0.2

–0.5

0

0

0.1

–0.1
0

0 0.5 1 2 3.52.51.5

0 0.5 1 2 3.52.51.5

0 0.5 1 2 3.52.51.5

0 0.5 1 2 3.52.51.5

0 0.5 1 2 3.52.51.5

0 0.5 1 2
Time(Secs.)

Brain Waves

3.52.51.5

ra
w

 E
E

G

D
el

ta
(1

-4
 H

z)
T

he
ta

(4
-8

 H
z)

A
lp

ha
(8

-1
2 

H
z)

B
et

a
12

-3
0 

H
z

G
am

m
a

30
-7

0 
H

z

3 4

3 4

3 4

3 4

3 4

3 4

Fig. 11.2 Rhythms in EEG

11.2.1.1  Special Patterns in EEG

Identifying three specific patterns in sleep is very important in analyzing EEG 
recorded during sleep. Sharp vertex wave is one of the most important patterns of 
NREM sleep that are most often seen in stage N1 and sometimes in stage N2. They 
are seen in the EEG as quite distinctive, seven-shaped waves with peaks in the 
amplitude of about 100 to 200 microvolts [29]. Sleep spindles are a sequence of 
oscillations in the amplitude of the EEG signal, usually lasting between 0.5 and 
3 seconds, and the frequency of these changes varies between 11 and 16 Hz [30]. 
K-complexes are complicated seven-shaped patterns of sleep waves that indicate the 
transition into a deeper stage of sleep. This pattern is seen as a sharp negative wave 
with a high amplitude followed by a low slope wave. K-complexes have a duration 
criterion that must at least last 0.5 seconds. K-complexes may include other events 
like periodic movements of the limbs in sleep, apnea, or appear with arousal (Alpha 
rhythm in EEG) [6].
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11.3  Sleep Stage

REM and NREM are the two main stages of sleep. NREM sleep is also divided into 
four stages. Stages 1 and 2 are called the light stage of sleep, and stages 3 and 4 are 
called the deep stage or slow-wave sleep. There are four or five sleep cycles during 
each night, each consisting of one part of NREM sleep followed by REM sleep [31]. 
The first stage is wakefulness which may last 5 to 10 minutes. At this stage, the 
brain is between sleep and wake state. The predominant brain waves at this stage are 
Alpha waves. In the EOG signal at this stage, blinking and rapid movements are 
observed. Stage N1, or somnolence, is another stage of NREM sleep. At this stage, 
called light sleep, EEG activity is fast with low voltage. This stage is defined when 
Theta waves (4 to 7 Hz) form more than 15 seconds (more than half) of the epoch. 
The next stage is N2, also known as sigma, and the sleep spindle. This stage is in the 
middle of sleep and, at first, takes about 20 minutes. At this stage, sleep enters a 
deeper level, and heart rate and the body temperature decrease. Next is stage N3, 
which is also called deep sleep, sleep with slow waves, or delta. At this stage, mus-
cle and brain activities decrease. The last stage is REM which is also called active 
or paradoxical sleep. At this stage, eyes are closed but have a rapid movement. In 
this state, the brain waves show an activity similar to the state of awakening. 
Dreaming is at this stage of sleep, and this stage occurs in adults between 90 and 
120 minutes after the beginning of sleep [6, 32].

11.4  Methodology

In this section, we discussed the ensemble learning algorithms used in this study, the 
performance evaluation criteria, the dataset, their preprocessing process, extracted 
features, and methods for selecting the effective features.

11.4.1  Ensemble Learning

An ensemble learning algorithm is a machine learning method that incorporates a 
number of simple and weak algorithms to form a strong learning algorithm with 
higher accuracy. This type of learning is one of the best ways to maintain the bal-
ance between variance and bias. An effective model should be able to balance these 
two types of errors. Ensemble methods can be mainly divided into three groups: 
boosting, bagging, and stacking. In the present study, we use the random forest and 
XGboost algorithms, which apply “bagging” and “boosting” methods, respectively.
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11.4.1.1  Bootstrap Aggregation (Bagging)

The bagging method creates algorithms parallel to one another. Several independent 
models are generated, and their predictions are averaged. The variance of the com-
bined base models is reduced in proportion to the number of models or samples. In 
addition, the independence of the basic learning models significantly reduces the 
error through the application of averaging.

Bagging is used when the goal is to variance reduction of the decision tree clas-
sifier without impacting bias. The reduction of variance leads to increased accuracy 
and avoidance of overfitting, which is a major challenge in many predictive models. 
Multiple subsets of training instances are randomly created with replacement, and 
the data from each subset is used to learn the corresponding decision tree. In this 
way, a number of different models are eventually created. The average of all the 
predictions from the individual trees is the final result, which performs better than a 
single decision tree classifier.

11.4.1.1.1 Random Forest (RF)

RF is based on the ensemble learning algorithm and involves a large amount of clas-
sification and regression trees (CARTs). The core of the RF algorithm relies on the 
concept of ‘bagging’ and selecting features randomly. At the beginning of the RF 
algorithm, a bootstrap sample is taken from the training data. In each CART node, 
features are randomly selected, and feature subsets are searched to find the optimal 
split. An unpruned CART is formed when this process is repeated at each node. 
Additionally, for evaluating the model performance and estimating feature impor-
tance, bootstrap sample data - known as out-of-bag sample (OOB) – can be used as 
a test set. Repeating this process for each tree will result in a fully grown forest.

11.4.1.2  Boosting

Boosting is a sequential ensemble method in which the weight of each input is 
modified according to the latest classification. In boosting, when an input is mis-
classified by one hypothesis, its weight is increased, so the new hypothesis is more 
likely to be classified correctly. The goal at each step is to improve the prediction 
accuracy over the previous tree’s performance. In boosting, like bagging, a single 
algorithm is used as the basic learning model, and in the process, weak learning 
models become a model with more robust performance. Boosting comes in many 
forms, including Adaboost, GBDT, XGBoost, and LightGBM.  In this study, the 
LightGBM algorithm, the most recent one, is used, which is explained in the 
following.
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11.4.1.2.1 Gradient Boosting Decision Tree (GBDT)

Another ensemble learning algorithm that uses several decision trees as base learn-
ers and a gradient descent optimization algorithm to calculate the error of its previ-
ous models is GBDT. Newly added decision trees increase the emphasis on samples 
misclassified by the previous decision tree.

In the GBDT algorithm, the residual of the previous decision tree is intended as 
input to the following decision trees. Then, the new decision tree adds to minimize 
the residual so that each time the iteration is repeated, the cost decreases as it pro-
gresses in the negative gradient direction. All decision tree results are then used to 
determine the prediction result.

Supposing the data samples are represented x ,yi i� �
�
m
i 1

.

Which xi is data value and li is the predicted label. The GBDT algorithm is 
explained as the follows.

First the initial constant value θ is obtained from the eq. (11.2).
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Where L(yi, θ) is the loss function.
Based on the gradient, the residual is calculated as follows:
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Where n = 1, 2, …, N indicates the number of iterations.
The initial model T (xi; αn) is determined by using the sample data, and αn is 

computed based on the least square method as follows:
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Based on the loss function minimization, the weight of the model is computed as 
follows:
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The model can be written as follows:
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 (11.6)

This loop continues until the number of iterations is defined or until the convergence 
is [33].
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11.4.1.2.2 Light Gradient Boosting Machine (LightGBM)

LightGBM is another ensemble algorithm that is designed by Microsoft using the 
GBDT framework. It is intended to improve computation performance and thus 
provide a more accurate solution to the problems associated with handling big data 
in prediction. To calculate the information gain of all possible split points, conven-
tional GBDT implementations must examine all sample data for each feature, which 
takes much time when dealing with big data (both for the number of features and 
data size). Thus, computational complexions would be proportional to the number 
of features and samples. In LightGBM, a histogram-based algorithm and growth 
strategy through the leaves of trees are adopted with maximum depth size to enhance 
training speed and optimize memory utilization.

In order to address these limitations and further improvement of model effi-
ciency, the LightGBM algorithm presents Gradient-based One-Side Sampling 
(GOSS) and Exclusive Feature Bundling (EFB).

 (a) Gradient-based one-side sampling

In Adaboost, a sample’s weight works as a good indicator of the importance of data 
samples. However, in GBDT, there is no local weight for the samples, so the pro-
posed sampling methods for Adaboost cannot be applied directly. Gradient for each 
sample in GBDT provides practical information for data sampling. In other words, 
a sample with a small gradient had a small training error and had been well trained. 
The simple idea is to put aside data samples with small gradients. Nevertheless, it 
changes the data distribution and negatively affects the accuracy of the trained 
model. The Gradient-based One-Side Sampling (GOSS) method was developed to 
minimize this problem and maintain the accuracy of trained decision trees while 
reducing data samples.

GOSS maintains all samples with large gradients and takes randomly the ones 
with small gradients. GOSS selects the top a × 100% samples after sorting the data 
samples based on the absolute value of their gradients. Then it randomly selects 
b × 100% of samples from the remaining data. Then, for amplifying the sampled 

data with small gradients, GOSS uses a constant 
1− a
b

 for computing the informa-

tion gain to compensate for the effect of data distribution. In this way, it is possible 
to focus more on the data that has not been trained yet, without any changes to the 
original data distribution. More details about the theory of GOSS can be found 
in [34].

 (b) Exclusive Feature Bundling

The purpose of the EFB method is to effectively reduce the number of features. 
In general, high-dimensional data are sparse. By considering the sparse nature of 
the feature space, we can devise a method of reducing the number of features almost 
without losing any information. Particularly, many features in sparse feature space 
are mutually exclusive; that is, they cannot take nonzero values simultaneously. 
Exclusive features can be grouped into a single feature (an exclusive feature bun-
dle). By a carefully designed feature scanning algorithm, identical feature 
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histograms can be constructed from these feature bundles as the same histograms 
for single features. Thus, the histogram structure complexity from the number of 
features multiplied by the number of samples changes to the number of feature 
bundles multiplied by the number of samples, in which the number of feature bun-
dles is much less than the number of features alone. In this way, the speed of GBDT 
training can be significantly increased without compromising accuracy. To do this 
by turning the ranking problem into a graph coloring process (adding edges for both 
non- exclusive features and features as vertices) and its solution is designed by 
another algorithm with a fixed approximation ratio of an effective algorithm.

Compared to the level-wise growth run in the XGBoost algorithm, the limited 
growth process through leaves used by the LightGBM algorithm is more efficient; 
because it is distributed only through a leaf with the highest information gain, and 
as a result, it achieves much better accuracy than other boosting algorithms, and the 
limited depth can effectively prevent overfitting. As mentioned, this algorithm is 
surprisingly fast; hence the word “light” is dedicated to it [34]. Studies have indi-
cated that this algorithm can make the training process 20 times faster [35].

11.4.2  Evaluating Performance

For evaluating the performance of the implemented algorithms, we used two mea-
surement criteria: the Area Under the Receiver Operating characteristic Curve 
(AUROC) and the Area Under the Precision-Recall Curves (AUPRC).

AUROC indicates the ability of a model to classify samples accurately. A ROC 
curve represents the exchange between true positive rate (TPR) and false positive 
rate (FPR) at a range of decision thresholds. In ROC curves, the decision threshold 
is implicit. There is no axis for decision thresholds, and AUROC is the area under 
the ROC curve. On the ROC curve, the x-axis represents the FPR, and the y-axis 
represents the TPR. AUROC for a specified curve is simply the area below it. The 
lowest AUROC value is 0.5, and the highest is 1.

The AUPRC criterion is used to evaluate model performance when classes are 
highly unbalanced and positive samples are essential. The precision-recall curve 
illustrates the relationship between precision and recall for different thresholds. 
Having a large area under the curve indicates high precision and recall of the model, 
where high precision is related to a low false positive rate (FPR) and high recall is 
related to a low false negative rate (FNR). A high value for both indicates that the 
classifier returns correct (high precision) and the most positive (high recall) results 
[36]. The area under the PR curve is known as the AUPRC. PR curves represent the 
tradeoff between accuracy and sensitivity over a range of decision thresholds. A 
recall is also known as a true positive rate (TPR). As a result, both AUPRC and 
AUROC use TPR.

Unlike the ROC curve where the y-axis represents recall, the x-axis represents 
the FPR, the x-axis represents the PR-recall curve, and the y-axis represents 
precision.
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One of the features of the PR curve is that it does not use TNs in any way. 
According to the definitions of precision and recall, they are calculated as follows:

 

Recall TPR
True Positives TP

True Positives TP False Negativ
� �

� �
� � � ees FN� �  (11.7)

The recall of a classifier can be defined as the ability to correctly identify all positive 
samples.

 

Precision
True Positives TP

TruePositives TP False Positive
�

� �
� � � ss FP� �  (11.8)

A classifier’s precision is its ability to avoid mislabeling a negative sample as 
positive.

In PR curves, there are no TNs, so AUPRC will not be affected by TNs. If 
AUPRC is used for datasets with 95% negative and 5% positive samples, it focuses 
on how 5% of the samples are treated. If the model performs well in detecting posi-
tive samples, the AUPRC will be high; if not, it will be low. The AUPRC is therefore 
most useful when its baseline is the lowest because it focuses on the smallest frac-
tion of positive samples possible across large datasets with large numbers of 
TNs [37].

11.4.3  Data Description

As mentioned earlier, the current study aimed to provide a method for automatic 
detection of arousals related to non-apnea sleep disorders using polysomnographic 
signals with ensemble learning. In this study, we used Physionet Challenge 2018 
database [16].

A total of 1983 polysomnographic data were provided, which included 994 sub-
jects for training and 989 subjects for the test. Polysomnography in these data is 
recorded according to the AASM standard. A total of 13 signals are provided, 
including:

• six EEG channels; F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1, based 
on the international 10–20 system;

• one left eye EOG channel, referenced to the right ear EEG electrode (M2);
• Three EMG channels, one on the chin and two channels of breathing signal from 

the abdomen and chest;
• one airflow channel;
• one oxygen saturation channel (SaO2);
• And one ECG channel located below the right clavicle close to the sternum and 

across the left lateral chest wall
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All signals were measured at a sampling frequency of 200 Hz except SaO2. SaO2 
was upsampled to 200 Hz to synchronize samples using a sample and hold. Also, all 
signals are measured in microvolts.

The specialists labeled the training data in two different ways in the data source. 
In the first state, the samples were labeled into three classes −1, 0, and + 1. In these 
three classes:

• Label +1 is related to non-apnea and non-hypopnea arousals
• Label 0 is related to normal sleep
• Label −1 is related to apnea and hypopnea arousals

In the second state, the labeling has been done more precisely, and types of arousals 
related to each region are also determined. The sleep stages were labeled too.

According to the available data, arousals that were considered in this study are 
classified as spontaneous arousals, RERA, hypoventilation, bruxisms, hypopneas, 
snores, apneas (central, obstructive and mixed), vocalizations, periodic leg move-
ments, Cheyne-Stokes breathing or partial airway obstructions.

The proposed method was evaluated using recordings belonging to 100 subjects 
from the training group. 80% of this data, which includes 80 subjects, have been 
considered for the training stage, and 20%, including 20 subjects, have been consid-
ered for the test stage [16].

11.4.4  Pre-Processing

Before extracting the features from the data, the signals were preprocessed to 
remove noise.

11.4.4.1  EEG and EOG Signals

Due to the non-invasive nature of EEG signals, the distance between the signal 
source and the recording electrode, as well as the low amplitude of this signal, add-
ing unwanted signals can reduce the signal to noise ratio and cause many problems 
in the analysis of these signals; as a result, it is necessary to preprocess them before 
analyzing.

Both EEG and EOG signals are first preprocessed using a fourth-order low-pass 
Butterworth filter with a cut-off frequency of 42  Hz and then a fourth-order 
Butterworth high-pass filter with a cut-off frequency of 1 Hz.

Although EEGs are typically interpreted as recording brain activity, other electri-
cal activities are also captured. Extra activities tend to be harmful artifacts, whether 
they are physiological, like EOG, EMG, or ECG, or extra artifacts like power line 
interference. Frontal electrodes are mainly responsible for recording EOG measure-
ments, however they can also affect other electrodes [38]. Furthermore, due to the 
volume conduction effect, both effects of eye activity and EEG activity are diffused 
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to the surface of the head and recorded by electrodes. EOGs usually have a greater 
amplitude than EEGs. However, due to its similar frequency to EEG signals, remov-
ing this artifact is one of the most critical problems in studying brain activity [39].

The power spectrum of some of these artifacts created during recording is differ-
ent from the power spectrum of the EEG, making its removal easy with an IIR filter. 
Even so, ECG and EOG, whose power overlaps significantly with EEG, are not 
easily removed and require specialized algorithms [40].

For this purpose, we used the adaptive filter, which is a successful method in the 
non-stationary signals processing field. This method uses raw EEG signals as inputs 
and EOG and ECG artifacts as reference signals. Pure EEG can be obtained by 
reducing the filtered output. The ability to adapt the parameters of an adaptive filter 
based on the minimization of mean square error (MSE) is between the output signal 
of the system and the desired signal. The recursive least squares (RLS) and the least 
mean square (LMS) are commonly used algorithms of adaptive filter algorithms. 
The advantages of the RLS algorithm over the LMS are its stability and fast conver-
gence speed. Therefore, we used the RLS algorithm to adjust the filter coefficients 
to ensure that the reference signal has the most appropriate specifications for these 
artifacts.

To do so, we used the method proposed in [38]. In order to detect the additional 
presence of EOG and ECG, the filtered EEG, EOG, and ECG signals after being 
divided into segments with 2048 samples, the cross-correlation between each EEG 
segment with the respective EOG and ECG sections has been calculated. Adaptive 
RLS filters are used when the cross-correlation coefficients between EEG-EOG or 
EEG-ECG are greater than two thresholds of 0.5 and 0.2, respectively. If the thresh-
old values for the cross-correlation coefficients are not met, the corresponding EEG 
part is transferred without changing the output. In Fig. 11.3 More details can be 
found in [38].

11.4.4.2  EMG Signal

After preprocessing with a Butterworth low-pass filter with a cut-off frequency of 
70 Hz, the EMG signals were then passed through a Butterworth high-pass filter 
with a cut-off frequency of 10 Hz. Then, an adaptive filter was applied to remove 
ECG artifacts.

11.4.4.3  ECG Signal

This signal is also passed through a fourth-order Butterworth low-pass filter, with a 
cut-off frequency of 25 Hz, and a high-pass filter with a cut-off frequency of 0.1 Hz 
with the same specifications. Fig. 11.4 shows the ECG signal before and after the 
filtering.
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Fig. 11.3 One segment of (1) EOG signal, (2) EEG after the removal of EOG by RLS method and 
(3) EOG impregnated EEG

11.4.4.4  Airflow Signal

In order to preprocess this signal, in the first step, the DC value is removed from the 
signal. Thus, a window of 20,000 samples is considered. The median of the window 
is subtracted from the total in the length of the signal. In the next step, a fourth-order 
low-pass filter with a cut-off frequency of 5 Hz is applied to the signal. Fig. 11.5 
shows one segment of the airflow signal before and after the filtering.

Any extra preprocessing step applied to SaO2 signal.

11.4.4.5  Signal Segmentation

One of the most critical early steps in biosignal processing is to segment the signals 
into smaller and relatively stationary segments. Each part must have nearly the same 
statistical characteristics, such as amplitude and frequency. In this study, first, the 
data are normalized using mean and standard deviation. Then, to divide the data into 
shorter epochs, we take some steps to choose the appropriate epoch size, and then 
labeling was done on each epoch.

Since arousals are the minority class, we first extracted the lengths of the signal 
intervals in which the arousal occurred continuously in those areas. First, the mini-
mum and maximum arousal intervals were calculated for each individual to deter-
mine the most appropriate window size. About 95% of these intervals contain at 
least 1750 samples and in terms of time is 8.75 seconds. As a result of applying an 
adaptive filter after windowing, 149 samples were added to this range at the begin-
ning and end to reduce distortion of the labeled signal. It will also be helpful for 
applying the hamming window to extract the frequency properties.

After analyzing the minimum arousal interval lengths of non-apnea among 994 
patients, we realized that forty-nine patients had no non-apnea/hypopnea arousals, 
and no sample labeled +1 was observed in their data. We did not include these 
people in the training phase.

Therefore, each biosignal was segmented into an epoch with 2048 samples with 
50% overlapping to eliminate sharp transitions between segments in such a way that 
1750 samples in the middle of each segment must have the same label, and the 
whole window is considers to have that label.
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Fig. 11.4 A segment of (1) the noisy and (2) filtered ECG signal.

Fig. 11.5 A segment of (1) the noisy and (2) filtered airflow signal.

11.4.4.6  Labeling Epochs

The following were considered non-apnea arousals:

• In the period of two seconds before and ten seconds after a RERA arousal,
• A period of 2 seconds before a non-RERA, non-apnea arousal happens, up to 

2 seconds after it ends [16].

In this study, we consider segmentation in the exact areas of arousal in the signals. 
In other words, the extra samples labeled at the beginning and end of arousal are not 
considered and are labeled 0 (Except for the 149 samples described above).

11.4.5  Feature Extraction

A detailed discussion of all the features that are extracted from signals is provided 
in this section.

11.4.5.1  Features Extracted from EEG Signals

EEG signals can provide helpful information about Sleep-related breathing disor-
ders. This signal is, in fact, one of the most critical signals in diagnosing sleep- 
related breathing disorder [41]. Different features are extracted from each fragment 
of the preprocessed and segmented EEG signals, generally divided into the tempo-
ral, frequency, and time-scale domains.

Statistical features are some of the most common ones that can be extracted from 
the EEG. In this study we extracted median, mean, zero-crossing rate (ZCR), stan-
dard deviation (SD), variance, kurtosis, skewness, Root Mean Square (RMS), cor-
relation between channels and three Hjorth parameters as time domain features.
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The Activity parameter is the power of the signal (which is filtered wideband), 
the Mobility parameter is the mean frequency, and the Complexity parameter is the 
frequency change [42]. Studies show that changes in power along the EEG fre-
quency bands provide information about arousal detection [43].

11.4.5.1.1 Frequency Features

As frequency features, the power spectral density estimate using the Welch Method 
with a hamming window with a length of about 2 seconds or 256 samples has been 
used to extract power from different EEG frequency bands. The relative and abso-
lute power of the delta, theta, alpha, and beta bands are extracted from each seg-
ment. In addition, the power ratio of each sub-band relative to the others is also 
considered a feature.

11.4.5.1.2 Time-Frequency Features

Then the Deabeuchies order 8 Discrete Wavelet Transform (DWT) is used to decom-
pose the signals into five stages. The coefficients obtained from this analysis include 
five detailed coefficients and an approximation coefficient. From these six coeffi-
cients, seven statistical features were extracted: Mean Absolute Value (MAV), vari-
ance, Average Power (AVP), standard deviation, entropy, mean, and skewness.

11.4.5.1.3 Nonlinear Features

Another category is nonlinear features. Because the EEG signal behaves erratically, 
entropy and fractal methods can provide a good indication of the irregularity of the 
signal. In other words, the more non-stationary the behavioral signal, the higher the 
entropy and fractal dimension. As entropy-based features, we extracted Renyi and 
relative spectral entropy that Renyi entropy provides information about the random-
ness of a system numerically and is the generalized Shannon entropy.

 (a) Features based on fractal dimension

A new method for measuring the dimension of irregular shapes was first proposed 
by Mandelbrot [44]. The fractal dimension is a non-linear measure of irregularity. 
As a measure of self-similarity, fractal dimension describes the behavior of random 
signals [45]. In this study, the methods of Katz and Higuchi for calculating the frac-
tal dimension were used. Two algorithms, Higuchi fractal dimension (HFD) and, 
Katz fractal dimension (KFD) are used in this study.

• Katz fractal dimension
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Katz fractal dimensions are shown below for a signal of length n:
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Where T is the segment length (Euclidean distance between consecutive data points) 
and d indicates the maximum distance between the initial and other points [46].

• Higuchi fractal dimension (HFD)

The HFD is a fast, nonlinear method of measuring fractal dimension that gives more 
accurate results. Due to the shift in time series structure over a particular character-
istic frequency, it is challenging to determine power law indices and a characteristic 
time scale based on the power spectrum. With very limited data points, the HFD 
method can still provide stable indices and time scales as a function of the charac-
teristic frequency. Below are the equations of Higuchi’s algorithm.

From a L-length one-dimensional time series x(1), x(2), …, x(l) with equal inter-
vals, form a new time series Xn

k :
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Where r represents the distance between two consecutive time series and n = 1, 
2, …, r is the time value at the beginning of the sequence. For each xn

r , the average 
length of each time series is calculated as follows:
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As a result, the average length of the whole series of discrete time signals is as 
follows:

 
L r

r
L r .

r

n

n� � � � � �
�1 1

 (11.12)

The following result can be obtained using logarithmic transformation:

 
ln .lnL r D

r
.f� �� � � �

�
�

�
�
�

1

 (11.13)

The Df slope is the Higuchi fractal dimension [47].
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 (b) Detrended Fluctuation Analysis (DFA)

The other feature extracted from the EEG signal is the Features of detrended 
fluctuation analysis (DFA). DFA is one of the nonlinear methods used to determine 
the fractal scalability properties of the EEG signal that is a modified method of root 
mean square for the random walk. A function of scale parameter is used to calculate 
the mean square distance of a signal from a trend line. Usually, there is a power-law 
dependency, and the main parameter is power. The terms related to it are 
explained below.

The time series s(i) represents the EEG signal contribution of Ns samples. In the 
DFA algorithm, first, time series are corrected and integrated. Afterward, the inte-
grated time series s(m)  is divided into separate sections of the same length. The 
length of this section in this study is considered as 1024 samples. The local trend is 
calculated for each section. By subtraction of the local trend sn(m) in each section, 
this trend is removed from the EEG time series s(m). After determining the variation 
of the root square mean of this non-trended time series F(n), it can be expressed as 
follows:
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As a function of section size, F(n) is calculated throughout all time scales to identify 
its dependence on average variations. On a log-log plot, linear relationships demon-
strate fractal scaling. Therefore, the fluctuation is proportional to nα. The parameter 
α, which indicates the variation rate of a complex signal, is the self-similarity or 
autocorrelation parameter. It can be defined as
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By finding the slope of log F(n) - log n line, this can be calculated [48]. The value 
of this parameter is considered a feature.

Similar features as EEG signals are also extracted from the EOG signal.

11.4.5.2  Features Extracted from EMG

From the EMG signal, features such as MAV, AVP, standard deviation, variance, 
95th percentile, skewness, kurtosis, frequency band energy of each four Hz window 
(five frequency bands), waveform length (WL), ZCR, the derivative zero-crossing 
rate, amplitude, and root mean square, are extracted.
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11.4.5.3  Features Extracted from SaO2

From the SaO2 signal, thirteen features are extracted, including mean, standard 
deviation, coefficient of variation, kurtosis, mean, variance, and range. Since arous-
als occur in a few seconds, power spectrum density is calculated using Yule-Walker 
autocorrelation estimation of order 5, and an average frequency range of 0.016–5 Hz 
is also considered a feature. In addition, the percentage of time when SaO2 ≥ 96, 
90 ≤ SaO2 ≤ 96, 80 ≤ SaO2 ≤ 90 and SaO2 < 80 in each window used to determine 
the duration of normal, mild, moderate, and severe oxygen saturation are also 
extracted as features.

11.4.5.4  Features Extracted from Airflow

Features extracted from airflow, similar to other signals, are in the time and fre-
quency domain. These features include statistical features such as respiration rate, 
frequency band energy per 0.25 Hz, average, minimum, maximum, range, variance, 
coefficient of variation, skewness, and kurtosis, and also other features like integral 
of absolute value (IAV), MAV, ZCR, slope sign changes (SSC), WL, RMS. Since 
the airflow is also nonstationary, Welch’s method is used to calculate power spec-
trum density as another feature.

11.4.5.5  Features Extracted from ECG

Features such as heart rate, heart rate variability, low-frequency band-power, and 
the ratio of low-frequency band-power (0.003 to 0.4 Hz) to high-frequency power 
(0.04 to 0.15 Hz) are extracted from ECG signals.

This study considers another set of features associated with signal variation over 
time. Due to the time intervals between the selected segments and their effect, it’s 
necessary to effectively use the features of each segment adjacent. However, consid-
ering the purpose of this study of detecting non-apnea arousals and ineffective 
regions related to apnea, not all selected segments have adjacent necessarily. For 
this reason, we used the ratio between the first half of the segment and its second 
half as new features extracted from each segment in order to consider the course of 
change in each segment. In this way, each segment first is divided into two equal 
parts, and the features considered for each part are extracted separately. Then, the 
ratio of these extracted features in two parts is considered the new feature.

Also, the autocorrelation of the segments is considered. In this way, autocorrela-
tion is calculated from all segments, and then time features are extracted from them.

A total of 1741 features were extracted from 13 channels. Table 11.2 shows the 
number of features extracted from each channel.
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Table 11.2 The number of features that extracted

EEG + EOG Corr of EEGs EMG SaO2 Airflow ECG All

Initial features 1160 15 325 26 114 101 1741

11.4.6  Data Balancing

In order to improve the classifier learning performance and also to apply statistical 
analysis, the data in the two classes need to balance. Due to the significant imbal-
ance, the class needs to choose a method for balancing the data. In this method, the 
classifier is trained each time by a random subset of data. The second approach is 
increasing the minority class by multiplying a little random noise of about 0.1% by 
the feature values of each part of the class labeled 1.

11.4.7  Feature Selection

There are two general types of feature selection methods: individual evaluation and 
subset evaluation. Feature ranking also known as individual evaluation measures the 
relevance of individual features by giving them a score. However, using this 
approach provides a subset of selected features according to a specific method of 
searching. This method compares each selected subset to the previous best by evalu-
ating it based on a specific evaluation criterion.

Besides this category, three general feature selection approaches are filter, wrap-
per, and embedded. In this study, the first two approaches are used.

The filter method does the feature selection process as a preprocessing step with-
out considering any specific classification algorithm and only by ranking features 
based on their importance in the dataset. The advantage of this method is its low 
computational cost and good generalization ability. In this study, we used two meth-
ods of correlation-based feature selection (CFS) and the Wilcoxon rank-sum test 
among the filtering methods [49, 50].

To determine the usefulness of a subset of features, the wrapper method uses a 
learning algorithm as a black box. In order to find practical features to improve the 
performance and reduce the speed of classification, the significance of the extracted 
features at the significance level of 0.01 was evaluated using Wilcoxon statistical 
test. This test was used as the first step in selecting better features, and features with 
were removed from the feature vector. Thus, 320 features out of a total of 1741 
features did not reject the Wilcoxon null hypothesis of having samples of continu-
ous distributions with different medians and so were removed from the feature vector.

Then, the 711 features with higher scores are selected by ranking the features 
using the CFS method, and then by using the genetic algorithm with KNN fitness 
function, which is one of the wrapper methods, the features have increased to 249. 
Table 11.3 shows the number of features selected in each step.
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Based on this table, we can see which of these 13 signals contributes most to 
classifying target class or non-apnea arousals. Among the selected features, the rela-
tive power of different EEG frequency bands and their autocorrelation signals, the 
ratio of the first half spectrum power to the second half of the epoch related to EEG 
and EMG signals, 95th percentile autocorrelation of EEG signals can be named.

11.5  Classification Result

In this section, the results of the classifiers are reported in several steps. First, using 
the features obtained after the CFS, i.e., 711 features, the performance results of the 
two approaches of data reduction and data augmentation in order to balance. Tables 
11.4, 11.5, and 11.6 shows the results of the RF algorithm with 50 trees in both 
steps. RF parameters are selected experimentally. According to the definition of the 
AUPRC criterion, it is necessary to calculate the baseline to compare the value of 
this criterion. The baseline in each step is equal to the total number of epochs with 
label 1 to the total available data. In Table 11.4, the baseline for the test data used 
is 0.114.

Data augmentation improves classification results because all zero-class data 
samples are included every time that model is trained, so the whole dataset is taken 
into account when used to train the model. For this reason, this method has been 
used to balance the data in the following.

In this section, the random forest algorithm is implemented separately on the 
extracted initial features of each of the 13 channels. The results are presented in 
Table 11.5 N is the number of features of each channel.

As a result of measuring the importance of each feature group for the detection 
of non-apnea arousal with the AUPRC criteria, it can be concluded that airflow with 
a score equal to 0.367 is the second most important feature after the EMG signal. 
The best result is related to the EMG signal with AUPRC equal to 0.375. This is 
understandable since more than 90% of the non-apnea arousal regions identified in 
the data include RERA, related to respiration. The best result is related to the EMG 
signal with AUPRC equal to 0.375. The reason for this is understandable since more 
than 90% of the non-apnea arousal regions identified include RERA, which is a 
breath-related disorder. Among the EEG signals, the features of the C3-M2 central 
channel were more important than the other channels, and this channel alone can be 
used to identify arousals.

Table 11.3 The number of features that selected in each stage of feature selection

Selected by EEG + EOG Corr of EEGs EMG SaO2 Airflow ECG Total

Wilcoxon 952 10 286 22 61 90 1421
CFS 496 2 163 4 22 24 711
GA 166 1 60 2 12 8 249
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Table 11.4 Comparing the performance of two approaches of data reduction and data augmentation 
for balancing

Random Forest
Data Reduction Data Augmentation

Recall/ TPR F1-score Recall/ TPR F1-score
Class 0 0.814 0.882 Class 0 0.834 0.894
Class 1 0.750 0.457 Class 1 0.793 0.487
Macro average 0.782 0.669 Macro average 0.801 0.685
Weighted average 0.807 0.834 Weighted average 0.829 0.848
Accuracy 0.806 Accuracy 0.811
Baseline 0.114 Baseline 0.114
AUPRC 0.378 AUPRC 0.436
AUROC 0.834 AUROC 0.860

Table 11.5 The result of applying random forest on each signal

AUROC AUPRC N AUROC AUPRC N

0.789 0.329 99 Chin EMG 0.751 0.277 136 F3-M2
0.740 0.265 92 Abdominal EMG 0.724 0.310 136 F4-M1
0.722 0.298 95 Chest EMG 0.766 0.321 136 C3-M2
0.815 0.375 286 All channels of EMG 0.748 0.309 136 C4-M1
0.802 0.367 61 Airflow 0.742 0.293 136 O1-M2
0.770 0.298 22 SaO2 0.752 0.305 136 O2-M1
0.791 0.252 90 ECG 0.814 0.332 816 All channels of EEG

Table 11.6 Comparison of results for two ensemble algorithms under the same condition

Bagged Tree (RF) LightGBM

Predicted Predicted
Class 0 Class 1 Class 0 Class 1

Actual Class 0 85% 15% Actual Class 0 86% 14%
Class 1 27% 73% Class 1 26% 74%

Recall TPR/ F1-score Recall TPR/ F1-score
Class 0 0.847 0.900 Class 0 0.861 0.909
Class 1 0.724 0.497 Class 1 0.734 0.521
Accuracy 0.832 Accuracy 0.846
Macro average 0.785 0.698 Macro average 0.797 0.715
Weighted average 0.833 0.854 Weighted average 0.847 0.865
AUPRC 0.466 AUPRC 0.496
AUROC 0.865 AUROC 0.877

Figure 11.6 shows the performance of the four classifiers using the AUPRC cri-
teria on each feature category compared to each other. As it turns out, the respiratory 
properties performed best.
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Fig. 11.6 The performance of classifier on different feature set

The mentioned algorithms are trained using 249 features obtained after applying 
the genetic algorithm with the five-fold cross-validation method, and the test results 
are given in Tables 11.6 and 11.7. The baseline here is about 0.18.

Figure 11.7 shows the diagrams for two main criteria for measuring performance 
in this study, AUPRC, and AUROC.  As can be seen, in these diagrams and the 
results above, the ensemble algorithms, LightGBM of boosting category, and ran-
dom forest of bagging category, in contrast to the individual algorithms, have a 
significant ability to identify arousal regions. The LightGBM algorithm performed 
better with much higher speeds than the other algorithms.

11.6  Conclusion

Studies show that detecting non-apnea arousal regions has less accuracy than iden-
tifying apnea arousals, and most of the studies have been done to identify apnea. 
The goal of the challenge held by Physionet in 2018, is to identify non-apnea arousal 
regions. In more than 90% of the models presented in this challenge, neural net-
works were used. The best results were obtained using deep neural networks with 
the area under the precision-recall and the area under the precision-recall scores of 
0.93 and 0.54, respectively. However, intelligent feature extraction can still be 
promising, as only four papers in this challenge have applied pattern recognition 
methods using manual feature extraction and reached to the area under the precision- 
recall in the range of 0.21 to 0.29.

In this study, different features of all available signals have been extracted, and 
using ensemble algorithms that have received much attention today, results have 
been obtained that are relatively close to neural network-based methods.
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Table 11.7 Comparison of results for two basic machine learning algorithms under the same 
condition

Linear discriminative Analysis Logistic Regression

Predicted Predicted Predicted
Class 0 Class 1 Class 0 Class 1

Actual Class 0 89% 11% Actual Class 0 90% 10%
Class 1 53% 47% Class 1 49% 51%

Recall TPR/ F1-score Recall TPR/ F1-score
Class 0 0.890 0.908 Class 0 0.903 0.891
Class 1 0.465 0.401 Class 1 0.506 0.448
Accuracy 0.841 Accuracy 0.857
Macro average 0.678 0.654 Macro average 0.704 0.683
Weighted average 0.841 0.850 Weighted average 0.857 0.840
AUPRC 0.310 AUPRC 0.345
AUROC 0.806 AUROC 0.824
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Fig. 11.7 Comparison of PRC and ROC curves
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Chapter 12
Deep Learning Assisted Biofeedback

Jorge J. Palacios-Venegas

Abstract After 60  years of brain waves biofeedback development, basic and 
applied research, therapeutics, and a variety of devices built, there are a well-defined 
set of applications both, in health and illness. During these years, advances in tech-
nology made big contributions to biofeedback therapeutic and training procedures 
development. Variability as a natural property in biological systems and a side effect 
of the limitations in actual biofeedback devices along with differences in treatments 
and training models, have placed regular practice in a landscape where outcome 
prediction is difficult, not always reliable, or replicable, and with lack of fundamen-
tals for generalization. This chapter discusses the develop of Deep Learning (DL) 
solutions designed to control the biofeedback process. Aim is to substitute current 
devices and neurofeedback procedures with a robust set of DL options designed to 
reduce variability and deliver biofeedback process according to the natural brain 
waves relations and principles, proposing DL models oriented to fill the actual vac-
uum of precision in current neurofeedback (NFB) devices and practice.

12.1  Introduction

There is an increasing number of Machine Learning (ML) solutions and Deep 
Learning (DL) applications in biological sciences. It can be mentioned contribu-
tions in oncology [1], cardiology [2], neuroimage [3] and electroencephalography 
(EEG) [4] with a growing number of studies since 2018 [5]. Is not the case in 
NFB. There have only been described, design and tested Neural Networks (NN) and 
DL models for assessment the efficacy of one neurofeedback procedure [6] and the 
identification of the best NFB intervention [7]. Emerging field of DL models applied 
to analysis of peripheral biological signals has more reports, standardized 
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procedures in cardiac electrophysiology [2], assessment of electrocardiogram 
(ECG) and blood pressure [8], development of prosthetic solutions for disabilities 
[9], decoding of motor intent in peripheral nerve signals [10], assessment of pain 
[11], treatment solutions for motor disfunctions [12], a biofeedback wearable device 
for movement rehabilitation [13], the assessment of accuracy in prediction models 
for augmented biofeedback training in precision shooting [14], among different 
types of Brain Computer Interfaces (BCI’s), there are none for control and adminis-
tration of the whole biofeedback and neurofeedback procedures.

Biofeedback (BFB) is particularly relevant in the study of control functions in 
biological systems. Feedback Loop (FL) has been clearly stablished [15] as the 
natural process for self-regulation, homeostasis and as a basic element in life sup-
port. The information a system is receiving about its interactions with other systems 
the environment and its current internal state is a key element for future actions to 
be organized as involuntary or voluntary reactions among other processes and bio-
logical functions during existence. In theoretical and experimental approaches to 
the study of FL processes, contributions of the Theory of Control [16, 17] opened a 
wide spectrum of research supporting the conclusion that FL processes should be 
considered as a crucial element for health and self-preservation in biological 
systems.

In this general context basic, applied, and clinical research in BFB began to grow 
after two mayor contributions took place in the second half of the last century, both 
based on the earlier studies of interoception as a specific sensory function [18], with 
a strong link with behavior [19]. Study of interoception became a milestone to the 
scientific context in which the first key experimental and clinical contributions of 
BFB emerged. The first one in the research of abnormal muscular contraction and 
coordination after neural lesion and how these functions could be restored using 
electromyographic information coming from the affected muscles and delivered to 
the patient by other sensory modalities. The objective was to provide the missing 
information from the neuromuscular spindle, element in the muscle that holds the 
FL process and was affeccted by the neural lesion. The flow of information to the 
brain was interrupted impeding the detection of the small potentials remaining and 
the machine could detect [20]. After a number of sessions using the machine, 
patients were able to control the affected muscles, feel its contractions, recover the 
function and the machine was no longer needed. These findings are now considered 
as first contributions of biofeedback applied research from where today’s Peripheral 
Biofeedback (PB) procedures were born.

The second contribution arose in a different scenario, one of the most important 
laboratories of sleep neurophysiology in 1962. A researcher noticed alpha waves 
(8–12 Hz) distribution was interrupted after participants in sleep studies closed their 
eyes during EEG recordings preparation process. Happening frequently, even par-
ticipants were with their eyes closed and awake the natural condition for the regular 
distribution of alpha waves in healthy human brain. Wondering if this phenomenon 
could be related to subjective experiences, cognitive processes or consciousness 
states taking place in that moment [21], adapted methodology developed for neuro-
muscular rehabilitation presuming mental activity will be different between the two 
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EEG states (alpha activity interrupted or not). Designed an experimental setting to 
deliver information to participants about the interruptions in its own alfa activity, 
using an analog auditory tone variations with changes in volume analog to voltage 
variations in alpha activity, using an arbitrary score to inform participants about 
their performance. He was developing the first brain waves biofeedback procedure 
years later called Neurofeedback [22, 23]. When the initial NFB works were pub-
lished, contradicted reports regarding its replicability arose. First replication of 
alpha (8–12 Hz) biofeedback study result with contradictory findings [24] and the 
conclusions of the original author were that his study was not reproduced in the 
same conditions [25, 26]. Since then, variability and replicability issues in NFB 
studies have always been present.

With Electromyographic (EMG) biofeedback procedures, used to restore the 
muscular function loss, medical rehabilitation specialty was enriched, and EMG 
Biofeedback (EMGB) emerged as a powerful tool for recovery of function in 
patients suffering from different types of muscular palsies. Procedures were 
extended using a variety of biological signals as instant information delivered to 
patients, clients, or experiment participants to establish its control due to learning or 
conditioning, and later applied for treatment of specific conditions like tension type 
headache [27], migraine crisis [28] and anxiety and stress [29]. Due to nature of 
peripheral signals periodicity, stability, spatial and time resolution PB has been used 
regularly with predictable results and standard norms for assessment and non- 
invasive treatment of specific medical and neuropsychiatric conditions, relying in 
the excellent temporal and spacial resolution of the biological signals recorded for 
this purpose.

Initial NFB procedures out of the research laboratory were difficult to apply. 
EEG instrumentation was complicated and expensive resources needed for feed-
back procedures were rare or even inexistent and there was few information about 
EEG significance in cognitive, consciousness and emotional states. Regular EEG 
practice was reserved for clinical neurophysiologists to the study and diagnosis of 
epilepsy [30]. In the middle of 1970’s decade a notable finding, the conditioning of 
sensorimotor rhythm (smr 13–15 Hz) [31, 32], changed NFB future. Results showed 
smr conditioning was effective to inhibit spikes and spontaneous seizures in cat [33] 
and monkey in experimental models of epilepsy [34]. These procedures were 
quickly adapted and applied to humans showing smr NFB effectiveness for atten-
tion deficit and hyperactivity disorder (ADH/D) management and non-invasive 
treatment [35]. Procedures for specific neurological and neuropsychiatric condi-
tions emerged from the first standardized psychophysiological treatment protocol 
for Post-Traumatic Stress Disorder (PTSD) [36] initiating a new era around the 
1990’s decade. Scientists and clinicians in the field developed devices, software, 
and intervention procedures for alcoholism [37] depression [38–40], traumatic 
brain injury (TBI) [41], attention deficit disorder (ADD) [42, 43] and ADHD [44] 
among other protocols, leading to the professional NFB field definition [45]. BFB 
devices assisted by computers allowed contributions for therapeutic and training 
procedures and the evolution of clinical practice and research setups, from one 
channel analog devices to multichannel multimodal computer assisted interfaces. 
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Interventions became more complex arrangements with software capable to deliv-
ered feedback, according to clinical findings and normative databases opening a 
different type of practice with standard procedures based in statistical normative 
criteria [46, 47]. Develop in instrumentation and software made possible 19 EEG 
channels recording with online source biofeedback [48] with normative databases, 
developing brain mapping biofeedback procedure known as QEEG-Biofeedback 
[49] based in the low resolution tomography (LORETA) [50] environment [51, 52].

NFB expanded over the years, but replication of therapeutic findings and results 
frequently has been controversial, the so-called standardized treatment or training 
procedures have been subject to variability in individual conditions, specialist’s 
decisions, or due to software preinstalled functions in the diversity of the today 
known as commercial NFB devices. Variability in the clinical and research results 
have made difficult the path for the field, nevertheless today there’s a big number of 
professionals in the area all over the world, a substantial number of contributions 
published yearly and a growing interest in designing and developing more precise 
and reliable software interfaces.

NFB principle is to enhance through learning or conditioning the patient-trainee 
capability to “inhibit” specific EEG bands to induce the “predominance” of one in 
specific. This basic process was developed in the intent to replicate the natural orga-
nization of brain waves in health and specific consciousness states. EEG bands rela-
tions based in the power values were obtained from the clinical analog EEG 
recordings after simple statistical analysis. The purpose has been to achieve the 
resemblance of the general characteristics of normal or wellbeing EEG. This proce-
dures until today frequently find obstacles due to the natural variability, the low 
spatial resolution of the EEG and the different standards in the fabrication of the 
commercial NFB devices [53].

The problem addressed in this chapter arises from the concern that after years of 
development in computational models and tools for the study and analysis of bio-
logical signals and the creation and use of ML and DL applications based in EEG 
recordings, none have reached regular NFB practice, nor the regular production of 
ML or DL based neurofeedback devices. The aim is to address the constant issue of 
variability in regular neurofeedback practice and the traditional paths taken to mini-
mize its effects. The line of work discussed in this chapter is oriented to develop DL 
solutions capable to take care of the whole NFB process, with an architecture capa-
ble to substitute current devices and procedures preserving the basic noninvasive 
intervention principle.
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12.2  Current Biofeedback and Neurofeedback Devices 
and Practice

EEG high temporal resolution property characterized NFB practice for years, begin-
ning with the use of one scalp electrode hookups for ADHD management [47] and 
cephalic bipolar positions for depression [54]. Difficulties imposed to the traditional 
methods of analysis arise from EEG low spatial resolution that becomes evident as 
more channels are used in the recordings and that has always affected NFB research 
and practice initiated with the adaptation of devices engineered and built for a dif-
ferent purpose and practice [55]. At the time EEG devices were built to be used 
under specific conditions: restriction of movement, avoiding speech, laying with the 
eyes closed and were conducted inside a faraday chamber to avoid electrical and 
magnetic interference. Routine clinical EEG studies were conducted in such condi-
tions and with two standard methods: hyperventilation and photo stimulation used 
for activation of the EEG to detect spontaneous epileptic activity [56]. Initial neuro-
feedback studies were instrumented using these types of devices and developing or 
adapting other instruments to perform approximate measures of the frequencies of 
interest. Feedback was delivered by auditive, or photo stimulators built for other 
type of studies, frequently applied manually and signals quantification in relation to 
feedback events were also taken manually. In such scenarios it was expected the 
recording contamination with many types and classes of artifacts. Consistent results 
began to appear encouraging professionals in the field to continue developing and 
standardizing procedures and techniques for conducting more studies. Devices built 
specially for these procedures made practice became more consistent, results repli-
cable and due to research results with medical, neurological, and neuropsychiatric 
conditions clinical field finally emerged. NFB devices evolution can be synthetized 
as a journey from one channel analog stand-alone systems to multichannel multi-
modal (EEG and peripheral signals) computer assisted interfaces [57, 58]. NFB 
conditions requiring participants or patients to be seated with eyes opened, and not 
into a faraday chamber, lead to design procedures to reduce interference and arti-
facts. It must be recognized the hard work of the first professionals in the field for 
standardization of instrumentation, skin preparation techniques, basic room record-
ings characteristics design, adaptation and standardization of regular EEG tech-
niques and procedures and the design of specific assessment and treatment 
intervention procedures that structured the specialty and its regulation by profes-
sional associations stablishing standards for training specialists and practitioners 
[59, 60].

Today’s commercial NFB devices are built based in those initial procedures com-
plying with federal agencies regulations and based in the same general principles 
with some research done to validate its reliability [61]. Many are manufactured with 
materials and components requiring less skin preparation and recording skills, rely-
ing in the structure of its software designed with basic elements to deliver feedback 
according to built-in protocols and applications. NFB software since the 1990’s era 
is built into two different classes. One includes the closed systems with software 
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with specific sets of prebuilt applications for specific training purposes and treat-
ment procedures, users have to follow specific guides, montages, derivations and 
specific band configurations. The other class includes the open systems in which the 
user has more options to configure EEG and peripheral (ECG, EMG) signals acqui-
sition and feedback, selecting different μV threshold settings, using monopolar or 
bipolar hookups with two or more recording channels to apply the same principle to 
deliver feedback procedures. Measures of μVs average values after gross separation 
of EEG frequency bands are showed in the screen every 3 seconds and treatment 
interventions rely in determined number of training hours in which the results 
resembling normal EEG are supposed to appear be stablished as a new normal EEG 
state expected to evolve during time promoting healthy neurological and neuropsy-
chiatric states [62].

Occasionally some systems include impedance meter displays, more refined 
online impedance measures with standards indicating safe or poor recording condi-
tions. Denoising is based in gross band filters conducted by differential amplifiers. 
The software is designed for a gross frequency decomposition and online manage-
ment of the amplitude average and power measures [63]. Biological artifacts like 
ECG or eyeblinks are frequently ignored relying in basic and questionable princi-
ples like the derivations used in a given treatment intervention [64]. Off-line analy-
sis is performed when the software is built with tools to export or convert files to 
common formats [65, 66] frequently, specific file formats are used, leaving the 
option to analyze data with built-in report features, with gross averages, fixed ratio 
comparisons and the same gross frequency decomposition used during the treat-
ment session. These features have created a state where the NFB practice has been 
conducted during the last 30 years known as traditional neurofeedback (TN).

QEEG-Biofeedback based on the international 10/20 system [67, 68], is used by 
specialists to deliver feedback procedures using source localization [69] and inverse 
solution [70–72] principles, with normative databases as guidelines for more elabo-
rated NFB arrangements. Interventions are conducted using more channels, z-scores 
norms of specific EEG frequencies and its relations, source localization procedures, 
and -as it is claimed by its creators and regular users-, online feedback of the brain 
functional connectivity with estimation of the cerebellar electrophysiological activ-
ity using only the 19 channels of the traditional 10/20 system [69, 73]. These proce-
dures are not known and used by regular NFB practitioners nor common in the 
training for regular practice. Some EEG devices used for this specialty are built with 
clinical degree, safer and more precise, manufactured according to international 
regulations for clinical EEG practice, engineered with better quality and perfor-
mance capabilities and some are manufactured by the same fabricants of the TN 
devices [74] in general do not match the standards of the EEG research grade instru-
ments [75]. General principles for its use are the same that those in the TN and a lot 
must be done to reduce the effects of the sources of variability.

At the same time the reborn of the EEG has been taking place [76], academic 
software for EEG analysis have made enormous advances [77–79] and computa-
tional neuroscience and neuroinformatics are prolific fields for the study and under-
standing of brain electrophysiology.
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12.3  Deep Learning Models 
for Electroencephalography Analysis

EEG signals have good temporal resolution the clinical work is based in this prop-
erty and in the band frequency graphic characteristics distinguishing “graphic ele-
ments” related to specific disfunctions or illnesses from normal EEG. Most of the 
time specialists work is based in two parameters: frequency and morphology with a 
minimal of spacial resolution. EEG practice requires advanced skills, lots of train-
ing and supervision, is time consuming and frequently offers conditions facilitating 
human error. Spatial resolution is poor due to the obstacles that electrical signals 
generated in the cerebral cortex face in its propagation to the scalp facing different 
type of tissues with different properties causing that original measures in millivolts 
(mV) reach the scalp in values within the microvolts (μV) range. It was assumed the 
sources of EEG signals were found beneath of each recording electrode, changes in 
technology and recordings techniques questioned this assumption opening the field 
for source localization based in the inverse solution model [80–82].

ML and DL solutions for EEG analysis began to appear since 2010 with com-
munications for epilepsy analysis [83, 84] with a substantial number of studies of 
DL applications in EEG analysis in research and clinic.

Being raw EEG the basic element in NFB, it must be considered as the source in 
which DL models have to be applied. Contributions using DL models for end-to- 
end EEG analysis are encouraging. It was found the prediction of gender from brain 
rhythms using convolutional neural networks (CNN) for decoding and classification 
the EEG raw signal [85] showing CNNs potential to extract and classify very spe-
cific EEG “hidden” features. In a replication of this study designed to test CNN’s 
precision in classification using the same data, it was found the model performs 
better with raw data than with spectral images [86]. These findings support the regu-
lar use of DL in neurofeedback, based in the fact that in both cases results were 
obtain from raw EEG data and the best performance was obtained with minimally 
processed raw data, basic conditions in NFB regular practice. Peculiarities of NFB 
settings suggest DL models should be applied as an end-to-end process with the raw 
data, performing online feature extraction, pre-classification and classification, fil-
tering, pre-processing and processing, before the feedback process takes place. DL 
models used for offline EEG analysis, and some used in more complex scenarios 
with online recordings in invasive BCI’s offer a basic platform for DL applications 
in NFB. An element in our current work is the use of CNNs in the EEG amplifiers 
processor’s microcode to speed the process (Fig. 12.1). DL solutions have been used 
in EEG analysis, for signals classification [87, 88] online classification in BCI’s 
with 84% of accuracy [89], and offline analysis in sleep scoring [90], epilepsy [91], 
and interictal monitoring [92] searching for accuracy in assessment and diagnosis 
[93]. A line of work for improving the processing tools has contributions with pipe-
lines including feature learning and extraction [94], signal cleaning and denoising 
[95], artifact detection [96] classification and elimination [97], generation of data 
for developing hardware, simulations and DL solutions testing and development 
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Fig. 12.1 Schematic overview of a NFB device processor with pretrained CNNs in the microcode. 
(a). Raw EEG recording samples. (b). NFB device processor with CNNs in microcode for online 
EEG preprocessing. (c). EEG samples selected for feedback. (d). To computer. (Source: Prof. 
Jorge J. Palacios-Venegas)

[98], and data handling models of EEG signal with lines of research in recordings 
generation [99] and augmentation [100].

Basic DL research in EEG analysis constitutes and strong line of research in 
BCI’s develop [101], and cognitive and affective processes research [102]. From 
2010 to 2018 a classification of the DL approaches to EEG analysis found lines of 
work that can be classified identifying: BCI’s develop and testing [103], generation 
of data [100], and improvement of processing tools [104]. In this field DL strategies 
have generated information supporting fundamentals for its regular use in NFB, 
suggesting DL models could be the basic tools for neurofeedback research and 
practice since it has been successfully used in most of the stages of EEG analysis 
[105]. DL applications for denoising, artefact elimination, feature extraction and 
classification are mainly used in offline analysis [4, 106] and frequently used with 
BCI’s in which analysis and decomposition methods are applied from raw data per-
forming average, average adjusted, normalized, mean adjusted and spectral data 
analysis based in different methods: fast Fourier transform (FFT), power spectral 
density (PSD) and spectrogram with statistical analysis of signal parametric values 
(frequency and voltage) and very specific analysis like wavelet decomposition [107] 
all in an increasing number of studies in motor imagery [108. 109, 110], and emo-
tion recognition [111–114] processes.

The efficacy of DL models under such specific conditions supports its regular 
use with online EEG raw data processing in NFB, in this area of application it must 
be noted that DL approaches are built with a variety of architectures CNNs [115–
117], fully connected (FC) [118], long short-term memory (LSTM) [119, 120], 
auto-encoders (AE) [121], recurrent neural networks (RNN) [122, 123], support 
vector machines (SVM) [122], and generative adversarial networks (GAN) [123, 
124]. All used successfully in EEG analysis in different conditions from resting- 
state task-negative and task-positive, emotion recognition tasks [113, 125], event 
related potential detection [127], motor functions induced from imagery [108, 128], 
and neurological and neuropsychiatric conditions [129, 130]. Prevalent DL archi-
tectures are CNNs with structures up to 30 layers with residual blocks and recurrent 
layers commonly with ranges between 2 to 16 or 18 layers [131]. A typical model 
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of a CNN tested for EEG data analysis from end to end is usually built with a total 
of 21 layers [132]. Most frequently used structures can be synthetized in sets com-
posed by a 2 Dimension Convolutional Layer (Conv2d) a Rectified Linear Unit 
(ReLU), a Max pooling operation for 2D spatial data (MaxPool2d), and a Dropout, 
repeating the sequence until the 28th layer followed then by a Flatten and two con-
secutives Linear layers [85]. EEG data are structured as 2D matrices representing 
time and channels, with real values of the negative and positive fluctuations of brain 
waves. These are the type of data to feed CNNs, Deep Belief Networks (DBN) and 
Recurrent Neural Networks (RNN) all prevalent in DL EEG processing and analy-
sis [83], showing in some cases accuracies between 81% [133] to 89% [134] com-
bined with analysis based in hybrid Neural Networks (NN) architectures combining 
CNNs and RNNs, RNNs and LSTM or DBN and 3 restricted Boltzmann machine 
(RBM) with one dense layer [135, 136]. DL neural, decoding and classification 
algorithms are the most advanced and precise methods used for these purposes, due 
to the success obtained in most of the cases [137] are becoming a frequent part of 
the routine pipeline analysis [138] along with a diversity of NNs, feed forward net-
works (FFN), CNNs and RNNs are also the most common due to the accuracy 
obtained in different studies [139]. There are three types of pipelines for EEG data 
analysis, usually the first composed by the preprocessing methods for cleaning the 
data and isolate the signals from those in the interference and artifacts spectrum, the 
second centered in feature extraction process, for decomposition analysis in time, 
frequency, time-frequency dimensions [140], and used for specific procedures in the 
spatial domain [141]. Performance of NNs discriminating biological characteristics 
like gender or individuals, identifying biometric properties of EEG [4], suggests DL 
models are sensitive to specific and distinctive features in EEG signal and that this 
sensibility could be extended to most of its regular uses, identifying new ones and 
implying the future design and use of more complex architectures based in NNs 
with more layers (beyond 30) designed specifically for every stage in the EEG data 
analysis and online processing. DL classification and feature extraction from EEG 
is applied with accuracy in different conditions where EEG was activated with cog-
nitive, emotional, imagery and motor tasks for detection of clinical EEG key com-
ponents in epilepsy, distinctive elements identification in neuropsychiatric 
conditions, neurologic disabilities and design and testing of EEG-based authentica-
tion technology [142]. Consistency of DL models accuracy obtained in a variety of 
studies from different conditions, procedures, and methodologies is a promising 
scenario to develop applications in NFB, based in stability in results using Artificial 
Neural Networks (ANNs) in a variety of conditions with a variety of procedures 
[143, 144].

From BCI’s research there are interesting proposals for non-invasive applica-
tions [145–149], ML and DL algorithms have proved its best performance with 
EEG data processing and classification tasks obtained under conditions very similar 
of those in NFB regular practice, raw signals online analysis, several number of tri-
als and sessions, constant audiovisual stimulation, long duration of the recording 
sessions, complex cognitive and motor tasks, noise and outliers, features with high 
dimensionality when converted as vectors and with amounts of information 
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distributed in relatively short periods of time. Non-stationary properties of signals 
often increased in conditions that are task-related or caused by individual’s reac-
tions, traits, symptoms, or sequelae [149]. The amount of information distributed in 
time offers possibilities for analysis of concatenated features coming from different 
time segments and the combination of performing different classifications using 
dynamic procedures for feature extraction with immediate results used for commu-
nication with machines, the environment or the individual itself in NFB setups with 
processes performed using classification algorithms like generative, static, stable, 
and regularized. In this type of pipeline, classifiers are used for linear discriminant 
analysis (LDA) and data separation process prior to classification [151] and SVMs 
are applied for classes identification [152]. NNs have proved reliability in online 
EEG raw recording analysis and classification tasks, being the most used: Multi- 
Layer Perception (MLP) [153], Learning Vector Quantization (LVQ) [154], algo-
rithm Fuzzy Logic, Adaptive Resonance Theory (ARTMAP), Finite Impulse 
Response (FIR), Time-Delay (TD), Gamma Dynamic Neural Networks (GDNN) 
[155], Radial Basis Function (RBF) [156], Bayesian Logistic Regression (BLR) 
[157], Adaptive Logic Network (AL) [158], and Probability Estimating Guarded 
Neural Classifier (PeGNC) [159]. Research in speech decoding from raw electro-
corticographic (EcoG) online recordings with DL models, in a patient suffering 
from anarthria, reported the accuracy of the DL architecture called natural lan-
guage performing without errors in an 80 to 150 trials sequence, using a display for 
communication [150].

12.4  Deep Learning Assisted Biofeedback (DLAB)

Our model is based in years of experience in research and clinical practice with 
traditional PB, NFB and QEEG-Biofeedback devices designed for all the stages in 
NFB process. Is built including previous contributions in the field, gathers the most 
relevant DL solutions used in biomedical signals analysis and processing and incor-
porates those designed specifically for NFB process. Is structured of a group of 
independent NN’s running simultaneously and in sequence. Figure 12.2 shows the 
general diagram with model components. Named as Brain Computer Interface for 
Biofeedback (BCIB) and controlled by the Deep Learning Assisted Biofeedback 
Platform (DLABP) is a hybrid NNs design built to carry on with specific processing 
tasks designed to reduce variability by maintaining stability in the feedback process, 
working in task positive setups with individuals suffering from different type of 
conditions or sequelae and considering artifacts should be expected from different 
sources that can’t be controlled. Our DL platform is conceived with the objective to 
obtain as final result a stable EEG recording during the NFB session. DLAB hybrid 
CNNs are built to control EEG stability correcting perturbances from environmental 
conditions, technical and instrumentation procedures, natural perturbances (fatigue, 
sleep, drowsiness, eye blinking) and performance -task positive- perturbances 
(movements, speech, emotional expressions, motor and movement sequelae).
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Fig. 12.2 Schematic overview of the DLAB model. (Source: Prof. Jorge J. Palacios-Venegas)

Model is based in a constant online database consultation in the cloud, or to 
a default basic database in the system, performing processes controlled by CNNs 
built to extract, features from databases and current recordings to select and “target” 
segments suitable to feedback. A set of NNs is designed to supervise the targeted 
segments performance during the feedback process with specific denoising func-
tions identifying, classifying and removing artifacts with two different types of out-
puts corrected and not successfully cleaned. The next NN performs uncleaned 
segments quantification if results are above 5% feedback is interrupted until record-
ing perturbations are absent. NNs for feedback delivery and administration control 
stability in targeted segments for feedback based on a predictive process for natural 
perturbances anticipation. Output of this NN is to interrupt the feedback action until 
perturbances are over. Three more NNs elements are built to independently measure 
and assess segments performance during the feedback process, classifying them by 
stability and types of deviations, the output will feed the group of NNs for quantifi-
cation, assessment and selection functions, built to control the stability of the feed-
back process. Figure 12.3 is the schematic representation of the DLABP described 
in the following pages.

12.4.1  PP-net: EEG Online Preprocessing

PP.net (Fig.  12.3a) receives online raw EEG signals matrices input. Performs 
denoising, band pass filtering, artifacts rejection, identifies and reject bad channels 
and segments, performs independent component analysis (ICA) and classification 
(ICA labeling), frequency decomposition and classification functions for EEG spec-
trum definition including High Frequency Oscillations (HFOs). Table 12.1 contains 
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Fig. 12.3 Schematic overview of the DLABP. (Source: Prof. Jorge J. Palacios-Venegas)

Table 12.1 Frequency EEG bands in frequency decomposition. (Source: Prof. Jorge 
J. Palacios-Venegas)

Hz EEG bands Hz EEG bands

0–0.3 Ultraslow 22 to 26 Beta4 β4

0.3 to 4 Delta ∂ 26 to 30 Beta5 β5

4 to 8 Theta θ 30 to 80 Gamma γ
8 to 13 Alpha α High Frequency Oscillations
13 to 15 Beta1 β1 80–250 Ripples
15 to 18 Beta2 β2 250–500 Fast ripples
18 to 22 Beta3 β3 >500–1000 Ultrafast ripples

the complete frequency bands selected for decomposition. Output are two sets of 
files one to be ignored (EEGI) and one selected for the feedback procedure orga-
nized in 5 seconds segments groups, identified as pre-selected signals. PP-net gen-
eral structure is convolution layers (CL) for denoising, subsampling, band-pass 
filtering, CL for artifacts rejection, subsampling, CL for ICA, ICA labeling, sub-
sampling, CL for frequency decomposition extraction and classification, flattening, 
FC layers for bad channels selection and extraction, output: EEGI segments and 
preselected signals to feed Sel-net (Fig. 12.3b). Results are stored in local database.
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12.4.2  Sel-net: Classifying “Targeting” Signals for Feedback

Sel-net (Fig.  12.3b) identifies conditions: eyes closed (EC), eyes opened (EO), 
activity: task negative (TNg), task positive (TP) classifies the neurophysiological 
markers (NM) according to conditions: anxiety, depression, addiction or neural 
states: attention, inattention, drowsiness. Extracts and classifies neural markers 
matching them with correspondent features extracted from databases, targeting 
them for feedback. This process involves two types of bidirectional databases con-
sultation. Depending on the resources available (machine capabilities, internet 
speed etc.) a consultation type is to a small basic default database with preprocessed 
EEG segments classified by gender, age and recording type and for conditions or 
state. The other type is a constant consultation to the international databases. Output 
are two types of files one identified for rejection and one targeted for modification 
through feedback. A temporal database will be stored for Control-net (Fig. 12.3c) 
consultation during control functions. Sel-net general structure is CL for condition, 
subsampling, CL for activity, subsampling, CL for matching to databases, CL for 
NM identification, subsampling, flattening, FC layers for NM classification. Output: 
predominant NM selected for feedback. Results are stored in the system database.

12.4.3  Control-net: Extracting and Classifying for Feedback

Control-net (Fig.  12.3c)  is built of hybrid NNs with CNN, LSTM and recurrent 
neural network (RNN), to determine the best temporal sequences model, consider-
ing NM complex and nonlinear dynamics nature. Is design to activate or not FB-net 
(Fig. 12.3d) action based in the output obtained after processing. Is used as a predic-
tive process built to control feedback online delivery. Predictions are made for the 
temporal stability of the targeted NM based in the stability of the correspondent 
EEG microstates. Stability is assessed in terms of recordings time permanence if 
predictions output is for 3 secs or more the feedback is allowed. Control-net general 
structure is CL, maxpooling, memory layers, flatten, FC. Output: stability NM sus-
tentation in order to control FB-net action (Fig. 12.3d). Results are stored in system 
database.

12.4.4  FB-net: EEG Online Feedback

Feedback process is the output of a decision function controlled at the same time by 
two simultaneous NNs. Control-net (Fig. 12.3c) and Config-net (Fig. 12.3e). FB-net 
(Fig. 12.3d) runs a predictive process based on a hybrid CNNs and LSTMs design, 
built to assess signals stability runs decision processes based in NM current proper-
ties changes. Receives Config-net (Fig.  12.3e) output with estimated values of 
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current NM that match feedback criteria. Its output refines rewarding or positive 
feedback to both the signals and the subject. Is designed to deliver feedback based 
in the current stability of NM expecting modifications in its properties (improve-
ment in the general percentage of the performance, increment or decrement of μVs, 
ratios, asymmetry or synchrony). Implies a moment-to-moment stability measure of 
NM behavior with the last decision to interrupt the feedback. Is in direct responsi-
bility of the FL control and administration. FB-net general structure is CL, max-
pooling, memory layers, flatten, FC. Output: activation of locally stored audiovisual 
resources analogical to the variations in NM current measures simultaneously sent 
to Assess-net (Fig. 12.3h). Results are stored in local database.

12.4.5  Config-net: Predictive Maintenance 
and Feedback Modulation

Config-net (Fig. 12.3e) modulates with assessment and predictive functions current 
state in FB-net (Fig. 12.3d) performance and possible evolution anticipating faults. 
Receives Asses-net (Fig. 12.3h) and E-net (Fig. 12.3i) output, processing current 
NM values matching feedback criteria. Tunes de feedback operation, setting thresh-
olds upon relations between performance in expected frequency μVs values and 
ratios, measuring general performance and difficulty level in terms of success/error 
rate during the last 30 seconds segments. Config-net structure is CL, maxpooling, 
memory layers, flatten, FC. Output: current NM values matching feedback criteria. 
Results are stored in local database.

12.4.6  iClean-net: Cleaning Performance Perturbances

iClean-net (Fig. 12.3f) is a parallel and independent NN. Feed with current targeted 
signals for feedback matrices built to extract perturbances consequence of perfor-
mance during the feedback session. Process current measures performing denois-
ing, artifact removing, identifying and classifying outliers and artifacts extraction. 
Runs predictive functions with bidirectional communication built to maintain sta-
bility in the signals during feedback process, maintaining NM stability cleaning 
them of interference. Its predictive capabilities are designed with functionality to 
anticipate stability deficiencies lasting more than 3 secs and performing cleaning 
process to ensure feedback. iClean-net general structure is CL for denoising, sub-
sampling, CL for artifacts rejection, subsampling, CL for identifying and classify-
ing outliers, CL for movements and artifacts extraction, subsampling, flattening, FC 
layers for bad channels selection and extraction, resulting in a rectified EEG with 
clean NM. Output: NM cleaned and corrected for feedback and uncleaned segments 
sent to PN-net (Fig. 12.3g). Results are stored in local database.
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12.4.7  PN-net: Feedback Quality Control System 
and Interactive Database

PN-net (Fig. 12.3g) is a RNN modify from [159] and restructured to control feed-
back process based in the amount of perturbances generated during the task positive 
performance that could not be extracted by iClean-net. Receives online classified 
datasets performs quantification of identified and classified perturbations. Designed 
to interrupt the feedback process after 3 seconds of uncleaned segments accumula-
tion. PN-net general structure is quantifiers, LSTM, last LSTM hidden state, FC 
layer, RELU, a smooth approximation to the hard maximum of the vector (SoftMax). 
Output: to FB-net for interruption of feedback action. Results are stored in the local 
database.

12.4.8  Assess-net: Feedback Modulation Control Database

Assess-net (Fig.  12.3h) built for feedback monitoring based in the performance 
curve of near in time sessions. Is an information central unit of general feedback 
performance. Exceptionally large deviations between predicted and current EEG 
signals are used as indicators of the near future or immediate performance. Has 
feedback process predictive, decision making and control capabilities. Is feed with 
wavelet transform, short time Fourier and spectral parameterization resolved in time 
(SPRINT) [160] scalogram images generated with databases information with the 
outcome of current session, has prediction capabilities based in previous and current 
performance and databases consultation. Controls the feedback intervention match-
ing current session with performance history and resemblance to default and control 
data. Executes extraction, classification, quantification and qualification of targeted 
segments once they have received feedback. Its predictive capabilities anticipate 
segments probability to receive feedback. Predictive functions are used for prevent-
ing setbacks in current performance and treatment, predicting setbacks probability 
and classifying current data by selecting feedback-performance ratio of previous 
stages to enhance current preventing relapses or setbacks. Output is performance 
predicted classes and probabilities sent to the E-net (Fig. 12.3i). Assess-net general 
structure is input layer of three red, green and blue (RGB) channels, CL, pooling 
layer, flatten, FC, softmax (last three for classification). Results stored in the local 
database.
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12.4.9  E-net

E-net (Fig. 12.3i) is built for EEG entropy assessment, measured in terms of the 
current stability in comparison with previous stable feedback periods during 
session(s) with databases consultation. This function is performed with the seg-
ments successfully rewarded with feedback action extracting, selecting and classi-
fying them. Output generates the elements constituting EEG internal stability map, 
estimating coherence, synchrony, symmetry, stability permanence probability in 
time. Entropy is defined in terms of sample entropy or SampEn [162, 163]. E-net is 
built to evaluate whole brain activity (not only NFB derivations) during perfor-
mance along feedback training session and treatment. E-net general structure is 
based in parallel SVMs with one class output to Config-net (Fig. 12.3e). Results are 
stored in local database.

12.5  Discussion

Current development in brain waves BFB leads to its overhauling and regular inte-
gration to Neurosciences basic and applied research field. NFB procedures need to 
be updated complementing them with the most recent advances in neuroinformatics 
and computational neurosciences, in order to take advantage of achievements in 
these fields that will make professional practice safer and more reliable and will 
incorporate NFB research as a regular specialty area in Neurosciences. Setbacks to 
NFB scientific development due to the issues discussed in this chapter could be 
overcome with the integration of current ML and DL solutions and the ones to be 
built, for the creation of an Open Source neuroinformatic environment specifically 
developed for biological signals acquisition and processing as end to end solutions 
design from online acquisition, preprocessing a processing to feedback intervention 
and offline analysis. Solution based in research grade 64 and on EEG channels sys-
tems including polygraphic recordings. Table 12.2 shows a comparison of some of 
the ML and DL key state of the art solutions mentioned in the chapter, to be consid-
ered in the development of such an Open Source neuroinformatic environment 
for NFB.

12.6  Conclusions

Our model is being built with applications for research and practice based in QEEG 
Biofeedback procedures. Advances and changes in EEG devices and affordability 
of more powerful computers will make possible to deploy it into a very different 
systems (recording devices and computers). Ideal solution is from 64 EEG with 5 
polygraphic channels and on, with perspectives for addressing challenges in the 
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Table 12.2 ML and DL research in Biofeedback and EEG signals analysis. (Source: Prof. Jorge 
J. Palacios-Venegas)

References Solution (s)
Publish 
year Application

[134] Sigmoid (AE) 20 individual AE’s. Avg of 
AE’s, 5 OUT

2016 Automatic sleep stage 
scoring

[114] CNN, 1 conv (ReLU), 1 FC (Softmax), 4 
OUT

2017 Bulling incidences 
identification

[136] Hybrid CNN-RNN, 4 conv, 2 RNN layers, 1 
FC, T OUT, ReLU (conv), Softmax (FC)

2017 Automatic sleep stage 
scoring from raw EEG

[95] CNN Hilbert-Huang transform 2018 EEG signals 
preprocessing

[123] Hybrid CNN-RNN, 4 conv, 2 RNN layers, 1 
FC, 2 OUT. ReLU (conv), Softmax (FC)

2018 Sleep stage classification

[91] Deep Convolutional Neural Network 2020 Epilepsy EEG diagnosis
[85] Convolutional NN (6 layers), Pooling (4 

layers), Dropout (4 layers), Dense Layer 
(Softmax), ReLU (conv)

2018 Biometric identification

[126] Cross-correlation values and Mahalanobis 
distance

2018 Biometric identification

[124] Entropy, SVM, K-Nearest Neighbors (KNN) 2019 Alzheimer’s diagnosis
[113] CNN (7 layers), Flatten, FC, Softmax, 2020 Speech emotion 

recognition
[109] RNN-LSTM, 2 LSTM layers, 2 OUT, 2021 Motor imagery 

classification
[86] CNN (6 layers), MaxPol (4 layers), Dropout 

(4 Layers), FC (2 layers), Softmax (1 layer)
2021 Biometric identification

[161] Decision tree (DT), Naïve Bayes (NB), 
SVM, KNN, ANN,

2021 Evaluation of 
Neurofeedback training

[150] Not specified, 2021 Neuroprosthesis for 
decoding speech

NFB spatial domain allowing a more precise work, overcoming some of the spacial 
resolution restrictions of the traditional NFB EEG recordings. Developing a new 
generation of integral solutions in temporal and spatial domains with NFB process, 
that could be used with magnetoencephalography (MEG) devices in the emerging 
field of MEG-Biofeedback (MEG-B). It also must be considered the developing for 
regular use of the minimally invasive NFB brain computer interfaces (subcutane-
ous) to be used with autonomy, for a constant neuromodulation with applications to 
prevalent neurologic and neuropsychiatric conditions: Alzheimer’s, Parkinson’s, 
Depression, Autistic Spectrum Disorders or Epilepsy. Conditions requiring constant 
attention. The aim of this line of work is to develop a less vulnerable, precise and 
diverse generation of neurofeedback and neuromodulation systems based in Deep 
Learning solutions.
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Chapter 13
Estimations of Emotional Synchronization 
Indices for Brain Regions Using 
Electroencephalogram Signal Analysis

Noor Kamal Al-Qazzaz, Reda Jasim Lafta, and Maimonah Akram Khudhair

Abstract Recognizing emotions based on brain activity has become crucial for 
understanding diverse human behavior in daily life. The electroencephalogram 
(EEG) has been proven to help gather information regarding the distribution of 
waveforms across the scalp. This project serves two goals. Firstly is to examine the 
synchronization and connectivity indices for emotion recognition. Secondly is to 
develop a framework to study the relationship between emotional state and brain 
activity based on synchronization and functional connectivity. The EEGs of 23 
healthy volunteers were recorded while they viewed 18 film clips. To investigate the 
synchronization between various brain regions, a hybrid technique combining 
empirical mode decomposition with wavelet transform (EMD − WT) was employed. 
Linear features like cross-correlation (xCorr), coherence (Coh), and phase lag index 
(PLI) as well as nonlinear features like cross fuzzy entropy (CFuzzEn) and joint 
permutation entropy (JPE) were computed to capture various dynamical properties 
from emotion-based multi-channel EEG signals. Then, in order to increase the clas-
sification accuracy of various emotional states, choose features based on statistical 
analysis. At the end, the classifying process was utilized using the k-nearest neigh-
bours (kNN) classifier. The classification results demonstrated the impact of the 
combination of CFuzzEn and JPE features as a remarkable synchronization index 
for analyzing emotions derived from an EEG-based data set. As a result, EEG indi-
ces enable a more thorough knowledge of the varied impacts of brain therapies on 
behavioral outcomes in humans.
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13.1  Introduction

It is acknowledged that emotions are the manifestation of mental and psychophysi-
ological states. Human-computer interaction (HCI) systems reveal hidden informa-
tion from the brain and control peripheral devices [1]. It is difficult to create 
trustworthy emotion recognition algorithms that are accurate enough and flexible 
enough for use in practical applications [2].

Emotional state is believed to be a complex phenomenon comprised of biologi-
cal, social, and cognitive components due to its modulating effects on physiological 
and behavioral processes. In brain-computer interface (BCI) applications and cog-
nitive neuroscience research, two distinct models for characterizing the emotional 
state have been studied: In emotion recognition application mapping, the Circumplex 
model is a cognitive-emotional state model. The two measurements used to depict 
emotions on a two-dimensional coordinate plane are valance and arousal. Valence 
indicates the positive and negative intensity of an emotion, whilst arousal measures 
the intensity of an emotion, ranging from ecstatic to tranquil [3]. The Circumplex 
Model of emotion serves as an example of how this model graphs all emotions to a 
valance-arousal graph [4]. Researchers [5, 6] have added a third dimension that 
accounts the attention-rejection characteristic.

Visual and auditory inputs influence the amplitude of the sensorimotor rhythm 
[7]. It is believed that these inputs are the two most prevalent approaches for humans 
to trigger different emotional states [8] in order to reveal distinctive characteristics 
that would be useful for accurately determining an individual’s emotion in daily 
life. Recent research suggests that the optimal setting for automatic emotion recog-
nition requires both stimulants of visual and acoustic inputs [9] to evoke a particular 
emotional condition. Typically, audible and visual elicitation employing short video 
clips is used to evoke different emotional states more effectively than other tech-
niques [2, 7, 10]. Therefore, in this work, short audio-visual video segments were 
used to elicited emotion.

Numerous study investigations on the identification of human emotions have 
been carried out over the last few decades utilizing a range of approaches, including 
facial expressions [11]., peripheral physiological signs for identifying individuals 
based on emotional shifts are obtained using many biological measurements, such 
as Electrocardiogram (ECG) [12] and Electroencephalogram (EEG) [13–17].

Throughout this study, the EEG dataset was preprocessed with conventional fil-
ters and the hybrid empirical mode decomposition with wavelet transform 
(EMD − WT) technique. Linear features such as cross-correlation (xCorr), coher-
ence (Coh), and phase lage index (PLI) as well as nonlinear features such as cross 
fuzzy entropy (CFuzzEn) and joint permutation entropy (JPE) were computed to 
capture various dynamical properties from emotion-based multi-channel EEG sig-
nals. A two independent variables analysis of variance (ANOVA) of these features 
is evaluated to determine the significant features that enhance the accuracy of clas-
sification of nine short emotional video clips (excitement, sadness, happiness, 
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calmness, disgust, fear, anger, amusement and surprise). k-Nearest Neighbours 
(kNN) classifier was used for classification in its final step.

This work has focused on the role of emotion synchronization in the brain- 
emotion relationship. The paper novelty is therefore twofold. This is to be the first 
study to use the hybrid EMD − WT technique with the aforementioned features to 
evaluate emotions using EEG-based functional connectivity patterns to assess 
changes in brain network activity. Second, it is the first study to combine linear and 
nonlinear features to capture the changes in connectivity between brain lobes as 
measured by EEGs based on emotional states. Therefore, EEG indices allow for a 
more comprehensive understanding of the various effects of brain interventions on 
human behavior.

13.2  Related Works

In the past decade, EEG has been considered as a non-surgical clinical tool capable 
of monitoring neuronal activity in the brain with millisecond precision and a high 
level of temporal resolution [18]. Using EEG, numerous channels are recorded and 
analyzed for neurophysiology applications [18, 19] responsible for detecting and 
differentiating various brain diseases, such as epilepsy and sleep disorders. EEG 
signals have been used to classify mental tasks and sleep stages as well as to diag-
nose a number of brain disorders, such as epilepsy, ADHD, Alzheimer’s disease 
(AD), and vascular dementia (VaD) [20, 21]. A viable indication for assessing vari-
ous affective reactions may be an EEG dataset with many channels spanning differ-
ent brain areas [22]. Similarly, in [23] in order to identify current affective moods 
based on neural feedback and personalized modification of treatment, an integrated 
music therapy was developed using instantaneous techniques of affect recognition 
based on EEG.

The most challenging part of brain activity recognition is the low accuracy of 
recognition because of the significant noise compared to the EEG signal. EEG sig-
nals are subject to various types of artifacts, including physiological artifacts such 
as pulse, blinking eyes, and muscular activity [24–27] and sweat and other non- 
physiological phenomena like power line interference noise [27, 28]. Artifacts have 
a direct effect on EEG signals due to their frequency overlap with EEG signals. 
Therefore, a variety of denoising methods must be used to get over these problems 
and retrieve valuable data from the EEG dataset. Consequently, the most popular 
denoising techniques are wavelet transform (WT) [29, 30], independent component 
analysis (ICA) [31], empirical mode decomposition (EMD) [32], Savitzky – Golay 
(SG) [33] which can eliminate EEG artifacts. Numerous studies [34–37] have used 
hybrid techniques based on the combined use of ICA and WT to denoise EEG 
signals.

EMD and WT approaches were often used in ECG and EEG studies, either sepa-
rately or in combination, depending on the data and the analysis’s objectives 
[38, 39].
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EMD is frequently used with biological data that are nonlinear and non- 
stationarity sequence, like heart rate variability (HRV), electromyography (EMG), 
and EEG. This is because of its characteristics and qualities. In a similar way, wave-
let transforms have found extensive usage in BCI systems because to their ability to 
retain details in the time and frequency domain with a broad range of scale and 
translation functions. Both approaches were successfully used as a foundation for 
filtering or further feature extraction to successfully obtain higher accuracy in 
classification.

To distinguish between focal and unfocal EEG data taken from epileptic patients, 
Das and Bhuiyan [40] employed EMD followed by wavelet. In the combination 
EMD − DWT, they used entropy-based characteristics to achieve excellent classifi-
cation accuracy. For the elimination of EEG artifacts in [41], wavelet packet trans-
form was used before wavelet packet transform after EMD. Generally speaking, 
EMD performed better than WT while denoising EEG data and getting ready for 
feature extraction [42].

Earlier emotional states of EEG-based studies used linear features such as cor-
relation (Corr), coherence (Coh), and phase lag indices (PLI) between pairs of EEG 
sensors to estimate functional brain connectivity [43]. Coherence is a metric that 
has worked in a number of research fields, including physiology [44] and neurologi-
cal disease [45]. Phase synchronization among the contributing neurological groups 
is one more technique for determining the functional connectivity of the EEG 
between different locations of the brain. This method is based on how two signals 
change in phase with one another. Neurological illnesses are studied using measures 
of EEG synchronization in phases [46].

Even so, using linear features, the complexity of the brain structure necessitates 
needs highly informative methods to inform about brain connectivity; thus, EEG 
signals are very effective bio-indicator of brain linear and nonlinear activity 
[29, 47–50].

The Hurst exponent (Hur) [51] and fractal dimension (FD) [52] are a well-known 
nonlinear algorithm used to examine the complex dynamic data produced by the 
cerebral cortex and reflect complex emotive tasks [53, 54].

The integration of entropy to EEG signals have improved the study of mental and 
sleep states, with techniques for identifying emotion levels. In [55], for instance, the 
emotions elicited by short clips were analyzed using sample entropy (SampEn), 
approximate entropy (ApEn), and permutation entropy (PerEn), as these techniques 
are unaffected by noise and capable of accurately measuring time sequence com-
plexity. In a dissimilar study, clinical assessments of EEG signals based on sym-
bolic transfer entropy and PerEn entropy were conducted, demonstrating that the 
EEG entropy investigation to relate to clinical cases of countless cognitive condi-
tions [56]. Fuzzy entropy (FuzzEn), which substitutes fuzzy membership functions 
for Heaviside functions [57, 58], is also suggested for EEG examination. Existing 
research indicates that FuzzEn mitigates the issue of entropy mutation; however, 
when using such entropy approaches, pertinent information is lost since they need 
single-scale analysis. Compared to SampEn, FuzzEn exhibits more consistency and 
less dependency on data length [59]., despite the fact that SampEn is somewhat 
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faster. The present research focuses on EEG-synchronization derived markers to 
categorize the gender variances in EEG signals based on emotion across the brain.

Artificial neural networks (ANNs), support-vector networks (SVNs), the 
k − nearest neighbours (kNN) classifier, and hidden Markov models (HMM) have 
all been closely examined as machine learning algorithms for a gender classification 
system [60, 61]. In [62], a gender and age classification system based on EEG sig-
nals was created using the SVM classifier, whereas in [55], resting-state EEG data 
served as the foundation for a model for automatic gender detection. An automated 
system for estimating age and gender was developed by combining EEG sensors 
with wavelet transform frequency break-down as feature extraction and random for-
est classifier [63, 64].

Emotional reactivity is the main focus of investigations on EEG-based emotion 
identification [65–67]. emphasized the use of spectral relative powers in linear anal-
ysis. Nevertheless, many researchers have exploited nonlinear properties to study 
the complexity of the brain [17, 68, 69]. In the present research, we intend to esti-
mate the synchronization based on the EEG role for recognition using both the lin-
ear and nonlinear features to classify the emotional-based signals by analyzing the 
behavior of coactivated and communicating brain regions during audiovisual video 
clips. Additionally, the particularity of emotion Functional connectivity-based EEG 
research have demonstrated the ability to distinguish between diverse emotional 
states; however, none of these investigations have directly evaluated these multiple 
synchronization indices within a single study. This study subject is important 
because various connection measures are sensitive to various EEG signal properties.

Therefore, the goal of the current work was to revisit the problem of EEG-based 
emotional specificity using the linear and nonlinear synchronization indices and 
discover which of the indices is more effective at identifying various affective states 
using pattern classification analyses. Correlation, cross coherence, and synchroni-
zation indices are examples of connectivity indicators that might potentially reveal 
important information, given that emotion processing is a complicated activity that 
is not limited to a small number of brain areas. Nine distinct emotional states were 
elicited through the use of emotive video clips.

13.3  Materials and Methods

The proposed study is depicted in Fig. 13.1 as a block diagram.

13.3.1  Subjects and Experimental Procedure

Electroencephalogram (EEG) and electrocardiogram (ECG) signals recorded in 
response to audio-visual stimuli comprise the multi-modal ‘DREAMER’ dataset 
[70]. The emotions of 23 participants were elicited and recorded alongside the 
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Fig. 13.1 Schematic representation of the proposed system

participants’ self-assessments of their affective state in terms of valence, arousal, 
and dominance following each stimulus. There were 11 females and 14 males, with 
a mean age of 26.6 ± 2.7 years and a standard deviation of 2.7 years. 16 contact- 
sensors with plated gold connected to the flexible arms of a wireless headset and 
positioned in the Universal 10 − 20 system’s locations: AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, AF4, M1 and M2. Mastoid sensor M1 served as a 
ground reference point for comparing the voltage of all other sensors.

The EEG dataset consisted of 18 movie scenes chosen and analyzed by Gabert- 
Quillen et al. [71]. These movie clips include scenes from several movies that have 
been demonstrated to induce a variety of emotions. The duration of the movie clips 
ranged from 65  to  393 seconds (M  =  199 seconds), which is deemed adequate 
because, according to psychologists, video stimuli between 1 − 10 minutes can trig-
ger single emotions. However, an individual’s emotional state may change over 
time, especially when longer video stimuli are employed. To prevent multiple emo-
tions from contaminating data recordings, only the final thirty seconds of each 
movie clip were further analyzed. To prevent external influences, the experiments 
were conducted in an isolated setting with regulated lighting. The room was com-
pletely darkened by an electric curtain, and the video clips played back on a 
45 − inch TV panel.
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13.3.2  Preprocessing Stage

The majority of artifacts that emerge in EEG wave frequency bands, where there is 
a potential for overlap with brain processes, necessitate the removal of noise while 
processing EEG signals.

13.3.2.1  Conventional Filtering

In the cerebral cortex’s scalp region, 14 channels of EEG data were recorded. Every 
channel of the recorded EEG dataset was initially treated using standard filtering 
methods. A band pass filter with a frequency range of (0.5 − 64) Hz was used to 
isolate the band of the recorded EEG signals, and a notch filter at 50 Hz was sug-
gested to remove power line interference noise [72].

13.3.2.2  Empirical Mode Decomposition with Wavelet (EMD − WT) 
Hybrid Denoising Technique

In this study, EMD and DWT were used in a two-stage filtering process. It is pro-
posed and discussed that EMD − WT is an automatic hybrid method for combining 
the benefits of EMD with WT and to mitigate their weaknesses. Consequently, the 
EMD − WT technique has been implemented as in the following sessions. In the 
initial stage, EMD decomposed the EEG dataset into Intrinsic Modal Functions 
(IMF) levels with a residue. Each IMF consists of limited-frequency bands that 
permit a more accurate representation of the EEG dataset and have the following 
properties [73]:

 (i) Baseline crossings and Extermas are identical or differ by no more than one.
 (ii) The envelopes average formed by extremes is equal zero. EMD can represent a 

raw EEG signal y[n] in terms of IMFs as [73]
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where M, Im[n], and rM[n] indicate number of IMFs, mth IMF, and residue, respec-
tively. IMFs are parts of the original EEG signal, which may be either contain noise 
or information. Compared to informative components, it has been observed in [74] 
that noisy IMFs are poorly correlated with the original signal. The optimal threshold 
point of correlation Cth for removal of noisy components can be calculated as fol-
lows: [74],
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Ci: the IMF correlation coefficient (CC) of the ith IMF with the original signal.
Max(Ci): maximum CC among M IMFs
The removal of noisy components algorithm is given as [73]:

 1. Initialize denoised EEG signal, S[n]D = 0
 2. for i = 1 : M do
 3. if Ci < CTh then
 4. IMFi is a Noisy- IMF
 5. else
 6. S[n]D = S[n]D + IMFi

 7. end if
 8. end for
 9. Get → S[n]D

Due to the WT’s ability to resolve EEG into distinct time and frequency components, 
discrete (DWT) was applied to each IMF in the second stage to gain a better under-
standing of the WT’s advantages for high frequencies, there is an excellent time 
resolution but a low frequency resolution and at low frequencies there’s a good 
frequency resolution and a poor time resolution. DWT transform can be obtained as 
a set of decomposition functions of the correlation between the signal f(t) and the 
shifting and dilation of a particular function known as the mother wavelet function 
ψ(t). According to Eq. 13.1, the mother wavelet (ψ _ (a, b) (t)) is shifted along the 
original signal by the position parameter (b) and stretched or compressed by the 
frequency scaling parameter (a) [29, 75–80]:
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 (13.3)

a0 and b0 values are set to 2 and 1, respectively.
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This study indicated that ‘sym9’ from the Symlets family of order 9 with four levels 
of decomposition is suitable for automatically removing artifacts and reducing com-
putational time and complexity. SURE threshold is an adaptive soft thresholding 
technique that seeks to identify the threshold limit for every level based on 
Stein′s unbiased risk estimation [81] and commonly employed values in [82–85]. To 
obtain EEG signals devoid of artifacts, the inverse DWT (IDWT) is applied at the 
conclusion.
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13.3.3  Features Extraction Stage

In order to determine which approach is best for predicting emotions from multi- 
channel EEG signals evaluation, features from the temporal domain have been used 
with linear and nonlinear interdependence analysis to examine functional connec-
tivity in various brain areas.

13.3.3.1  Linear Features

 A. Cross-correlation (xCorr)
Taking into account two separate time series xn and yn, n = 1, …, N. The most 

often used linear synchronization method is the cross-correlation function cxy, 
which is defined as [86]:
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where x  and σx denote mean and variance, and τ is the time lag.

 B. Coherence (Coh)
The cross − spectral density function Cxy(ω), which is derived as the Fourier 

transform of the cross correlation, is called magnitude squared coherence or 
simply coherence. The normalization of the cross spectrum is therefore defined 
as the coherence function (γxy) [86]:
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 (13.6)

Cross − correlation is a time − lag − dependent measure, whereas coherence is a 
frequency − dependent linear measure. For each pair of electrodes, we found 
peaks in coherence and cross − correlation and used these peak values to 
calculate the two-connectivity metrics.

 C. Phase lag index (PLI)
Even though the amplitudes of two linked nonlinear systems are not corre-

lated, empirical tests have demonstrated that their phase can synchronize. The 
analytical signal for a real-valued signal x(t) is defined as [86]:

 
Z t x t ix t A t ex H x

H i tx
H
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 (13.7)

Where xH(t) is the Hilbert transform of x(t). Then similarly for another signal y(t), 
we define Ay

H and ∅ y
H . If we let the synchronization between x(t) and y(t) is 
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n : m, we define the (n, m) phase difference of their analytic signal as 
� � � � � � � � � � �xy

H
x
H

y
Ht n t m t , where n and m are integers. Then the PLI is defined 

as,
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 (13.8)

When the phases are not synchronized, the PLI is zero, and when they are 
perfectly synchronized, it is one.

13.3.3.2  Nonlinear Features

 A. Cross fuzzy entropy (CFuzzyEn)
The synchronization or similarity of patterns between two signals is mea-

sured using cross − fuzzy entropy (CFuzzyEn). CFuzzyEn is a cross- SampEn 
enhancement that is better suited to short time series and more noise resistant. 
CFuzzyEn is computed as for two times series of length N [87]:
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synchrony or similarity degree. Each CFuzzyEn computation requires the 
determination of three parameters. The first parameter, m, is the length of the 
sequences to be compared, or the dimension of the vector to be compared. The 
remaining two parameters, r and n, control the width and gradient of the 
exponential function’s boundary, respectively. Setting the tolerance r between 
0.1 and 0.3 and choosing small integers for the selection of n works well in 
practice.

 B. Joint permutation entropy (JPE)
Yin et al. introduced the joint permutation entropy (JPE), which is used to 

measure the synchronism between two time series [88]. It is based on permuta-
tion entropy, which compares neighboring values of each point and converts 
them into ordinal patterns to quantify the complexity of a signal. JPE is calcu-
lated as the Shannon entropy of the d !  × d! unique motif combinations ( πi

d t,

, π j
d t, ) for two signals u and v [88]:
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where p i
d t� ,
,.� �  means the probability that the first time series has the ith pattern 

regardless of the second, and p j
d t

.
,

,�� �  denotes the chance that the second time 

series has the ith motif regardless of the first.

13.3.4  Features Selection Using Statistical Analysis

The emotional task channels were chosen using the ANOVA test as inputs for the 
classifiers. The significant p value of the EEG feature was a key factor in the selec-
tion of features for events. p values of less than 0.05 show a 95% significant differ-
ence between classes. Selected channels were determined by the Statistical Package 
for Social Sciences (SPSS) version 22’s ANOVA test with a significance level of 
(p < 0.05).

As a result, the goal of this study is to examine the linear and nonlinear charac-
teristics’ most efficient channels. The Kolmogorov − Smirnov test was used to judge 
the normality of the tests. The relevant channels among the emotions (i.e. amuse-
ment, excitement, happiness, calmness, anger, disgust, fear, sadness and surprise) 
were chosen using two sessions of two − way ANOVA.

In the first session of ANOVA, linear features including xCorr, Coh and PLI 
were applied as dependent variables and the group factor (emotions and brain 
regions) were the independent variable. Moreover, in the second session of ANOVA, 
nonlinear features like CFuzzEn and JPE features and the group factor (emotions 
and brain regions) were the independent variable. The significance was set at 
p ˂ 0.05.

Then, the feature reduction method was implemented to reduce the irrelevant 
daughter features (pair of channels) the method is as follows:

For each symmetric functional connectivity matrix, 14 diagonal elements were 
removed, and the upper triangle elements of the connectivity matrix were extracted 
as classification features, i.e., the feature space for classification was constituted by 
the 14  ×  (14  −  1)/2  =  91 dimensional feature vectors (pair of channels or 
connections).

The abnormal functional connectivity patterns associated with emotional states 
are mainly represented by the highly discriminating functional connections, and 91 
dimensional feature vectors including all the differences caused by noise. Highly 
discriminatory features were selected from the original 128 features space, further 
reducing the number of features, accelerating computation and diminishing noise.

Therefore, the feature selection method was used to reduce the dimension for 
classification through retaining the most discriminative functional connections and 
eliminating the remaining indistinctive features. The discriminative power of a fea-
ture can be quantitatively measured by the importance of its degree of relevance to 
classification.

Based on how dependent each feature was on its corresponding class, features 
were rated. The features that are most reliant on the class were chosen, and this 
procedure provides those features a higher rank than other features. Based on each 
sample, these feature frequencies are calculated.
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13.3.5  Emotion Classification Stage

Linear and nonlinear features had (91 connections without reduction) which were 
calculated for the last 30 second of each video clip recording with an epoch length 
of Fs×5 = 128×5 = 640 samples. Meaning 6 epochs for each video clip (emotion) 
and since we have 9 emotions and 23 subject the number of instances is 
23×9×6 = 1242 for each pair connection.

In this section, k nearest neighbors (kNN) was used. One of the most often used 
non-parametric classification methods is kNN; when k > 1, in particular to lessen the 
impacted noisy points in the training set, it is more resilient. The Euclidean distance 
was used in this work as a similarity metric to categorize each trial using kNN.

13.4  Results and Discussions

13.4.1  Results of Preprocessing Stage

Datasets of EEG signals were filtered using traditional filters and then denoised 
using EMD − WT hybrid technique. The frontal brain region when anger is pro-
duced is shown by the data from Channel 7 in Fig. 13.2. Artifactual signal elements 
(red line) in the raw EEG data were successfully eliminated during signal denoising, 
leaving a clear EEG signal (blue line).
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Fig. 13.2 The denoising results after preprocessing stage for channel 7 from subject 9
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13.4.2  Results of Features Extraction Stage

To characterize the emotion synchronization of EEGs, linear features including 
xCorr, Coh and PLI and nonlinear features like CFuzzEn and JPE were computed 
for the EEGs. Features were estimated for each channel with a total length of 3,840 
samples divided into 6 epochs; the length of each epoch was 640 data points (1 seg-
ment represents 5 s) of EEGs.

13.4.2.1  Results of Linear Features

The outcome demonstrates that particular brain areas have higher levels of connec-
tion during emotional reactions. These findings were revealed from linear features, 
which could be used to identify a synchronization diagnostic index that would be 
able to distinguish emotions from EEG-based signals. Statistical analysis of net-
work parameters revealed these features from the two groups were significantly 
different.

 A. Results of Cross-correlation (xCorr)

The calculated comparative plot of xCorr  is shown in Fig.  13.3 to discriminate 
among nine different emotional states based on EEG signals. The matrix presents 
the topographical map of the nine emotions using linear bivariate features in all 
channel.

Figure 13.4 shows the xCorr ranking and the connection importance score of the 
feature of all channels in the EEG signals. Features that are strongly influenced by 
the emotional category and are ranked higher than other features.
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Fig. 13.3. Comparative plot of the functional connectivity matrices for the nine tested emotional 
states using linear xCorr
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Fig. 13.4 Comparative plot of the xCorr rank of channels

Fig. 13.5 Electrodes Connectivity plot of the xCorr first 15 ranked pairs

Plotting the first 15 ranked pairs of xCorr electrodes in Fig. 13.5 reveals that the 
most efficient pairs are conjugated with the F7 and F8 electrodes in the frontal lobe.

 B. Results of Coherence (Coh)
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Figure 13.6 illustrates the comparative plot of Coh which was shown to discrimi-
nate among nine different emotional states based on EEG signals. The matrix pres-
ents the topographical map of the nine emotions using linear bivariate features in all 
channel.

Figure 13.7 shows the Coh ranking and the connection importance score of the 
feature of all channels in the EEG signals. Features that are strongly influenced by 
the emotional category and are ranked higher than other features.

The most efficient pairs are conjugated with the O1 and O2 electrodes in the 
occipital lobe, as seen in Fig. 13.8, which plots the first 15 ranked pair of electrodes 
of the Coh.

 C. Results of phase lag index (PLI)

Figure 13.9 illustrates the comparative plot of PLI which was illustrated to dis-
criminate among nine different emotional states based on EEG signals. The matrix 
presents the topographical map of the nine emotions using linear bivariate features 
in all channel.

Figure 13.10 shows the PLI ranking and the connection importance score of the 
feature of all channels in the EEG signals. Features that are strongly influenced by 
the emotional category and are ranked higher than other features.

Plotting the first 15 ranked pairs of electrodes from the PLI in Fig. 13.11 reveals 
that the most efficient pairs are centered in the frontal right lobe.
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Fig. 13.6 Comparative plot of the functional connectivity matrices for the nine tested emotional 
states using linear Coh.
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Fig. 13.7 Comparative plot of the Coh of channels

Fig. 13.8 Electrodes Connectivity plot of the Coh. first 15 ranked pairs

13.4.2.2  Results of Nonlinear Features

The results demonstrate that emotional responses are associated with higher levels 
of connection in specific brain locations. These findings were disclosed using non-
linear features that could be utilized to develop a synchronization diagnostic index 
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Fig. 13.9 Comparative plot of the functional connectivity matrices for the nine tested emotional 
states using linear PLI.

Fig. 13.10 Comparative plot of the PLI of channels

that could differentiate emotions from EEG-based signals, according to statistical 
analysis of network parameters.

 A. Results of cross-fuzzy entropy (CFuzzEn)

Figure 13.12 illustrates the comparative plot of CFuzzEn which was computed to 
discriminate among nine different emotional states based on EEG signals. The 
matrix presents the topographical map of the nine emotions using nonlinear bivari-
ate features in all channel.
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Fig. 13.11 Electrodes Connectivity plot of the PLI first 15 ranked pairs
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Fig. 13.12 Comparative plot of the functional connectivity matrices for the nine tested emotional 
states using nonlinear CFuzzEn

Figure 13.13 shows the CFuzzEn ranking and the connection importance score 
of the feature of all channels in the EEG signals. Features that are strongly influ-
enced by the emotional category and are ranked higher than other features.
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Fig. 13.13 Comparative plot of the CFuzzEn of channels

Fig. 13.14 Electrodes Connectivity plot of the CFuzzEn first 15 ranked pairs

Plotting the first 15 ranked pair of electrodes of the CFuzzEn in Fig. 13.14 reveals 
that the Temporal lobe electrodes T7 and T8 are related to the majority of the effec-
tive pairings (features).

 B. Results of Joint Permutation Entropy (JPE)
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Figure 13.15 illustrates the comparative plot of JPE which was considered to 
discriminate among nine different emotional states based on EEG signals. The 
matrix presents the topographical map of the nine emotions using nonlinear bivari-
ate features in all channel.

Figure 13.16 shows the JPE ranking and the connection importance score of the 
feature of all channels in the EEG signals. Features that are strongly influenced by 
the emotional category and are ranked higher than other features.

The top 15 ranked pairings of the JPE, which are conjugated with the T7 and 
T8 in the temporal lobe and P8 and P7 in the parietal lobe, are the most successful 
in the categorization, as shown in Fig. 13.17.

13.4.3  Results of Features Selection and Emotion 
Classification Stages

13.4.3.1  Classification Results of Linear Features

Table 13.1 shows the kNN classification accuracies for full feature set of 91 attri-
butes and the accuracies after applying the feature selection method. It can be 
observed that the linear features were fells to classify the emotions from EEG-based 
signals and that’s may related to the brain complexity structure. Therefore, in the 
next stage this study was used nonlinear dynamical features to be compatible with 
the brain complexity.
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Fig. 13.15 Comparative plot of the functional connectivity matrices for the nine tested emotional 
states using nonlinear JPE.
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Fig. 13.16 Comparative plot of the JPE of channels

Fig. 13.17 Electrodes Connectivity plot of the JPE first 15 ranked pairs

13.4.3.2  Classification Results of Nonlinear Features

Table 13.2 shows the kNN classification accuracies for full feature set of 91 attri-
butes and the accuracies after applying the feature selection method. It can be 
observed that the nonlinear have better scores particularly for the JPE compared to 
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Table 13.1 kNN classification accuracies of full features set and after selection of linear features

Linear features Accuracy (%) Selected features Accuracy (%)

xCorr 24.8 70 attributes 23.5
Coh 20.1 89 attributes 21.1
PLI 21.3 70 attributes 22.4
Linear features Accuracy (%) Selected features Accuracy (%)
xCorr 24.8 70 attributes 23.5

Table 13.2 Classification accuracies of full features set and after selection of nonlinear features

Nonlinear features Accuracy (%) Selected features Accuracy (%)

CFuzzEn 73.8 85 attributes 74.5
JPE 82.9 85 attributes 83.3

the linear features.
Moreover, the combination of CFuzzEn and JPE nonlinear entropy features 

increase the classification accuracy to 84.9%. The classification results illustrated 
the effect of CFuzzEn and JPE features as remarkable synchronization index for 
investigating emotions from EEG-based data set.

Figures 13.18 and 13.19 display the confusion matrices for linear and nonlinear 
features computed from emotional-based EEG signals in which correct recognition 
is shown on the diagonal; substitution errors are off-diagonal. According to the last 
confusion matrix of both data sets, sadness (Class 9) had the least misclassification 
due to its very low valance score.

Based on the studies that attempted to estimate the best features, Table 13.3 com-
pares the proposed method with existing methodologies. However, these methods 
were obtained with reduction in detection accuracy due to complicated computa-
tional calculations due to the redundant features. The experimental results show that 
our approach achieves a high accuracy comparing to competitive state-of-the-art 
methods, indicating its potential in promoting future research on multi-person EEG 
recognition. Thus, this study presents an automatic emotion recognition model 
employing synchronization indices to extract features with the highest quality to 
enhance the ability of emotional-based EEGs to identify different emotions. The 
suggested technique improves the kNN classification accuracy by a fair amount. 
Moreover, these methods have been used to study emotional-based EEGs, but in this 
work, automatic emotion detection from synchronization indices utilizing 
emotional- based EEG is the first to be observed in order to choose the optimum 
quality of features that improved the accuracy of classification of emotions from 
amusement, excitement, happiness, calmness, anger, disgust, fear, sadness and sur-
prise emotional-based EEGs. Additionally, the previous studies have used already 
existing public dataset datasets (MAHNOB, DEAP) with mainly linear features 
while in this investigation the EEG dataset was investigated and examined using 
linear and nonlinear features particularly bivariate CFuzzEn and JPE entropy fea-
tures therefore, Since the EEG estimate technique has never been used to secure 
emotional information, emotion contrasts may be better expressed.
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Fig. 13.18 The confusion matrix calculations for emotional-based EEGs classification using lin-
ear features
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Fig. 13.19 The confusion matrix configuration for emotional-based EEGs classification using 
nonlinear features

There are some disadvantages, nevertheless, that should be taken into account. 
For instance, the suggested method made use of a regularized dimensionality reduc-
tion stage rather than including small sample size, and the future work will need to 
use a larger data source. This work compared only 3 linear and 2 nonlinear entropy 
feature sets, however, wavelet entropy, dispersion entropy, and multi-scale entropy 
are also worth looking into to see if they have the ability to detect emotional 
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Table 13.3 Qualitative comparison of the proposed method to the state-of-the-art

References
Denoising 
technique Feature extraction

Classifier
Accuracy (%)

A. M. Bhatti
et al. [89]

bandpass filter (0.1 
to 50) Hz

Time domain, Frequency 
domain, STFT, PSD

MLP (78.11),
K-NN (72.80), 
SVM (75.62)

N. Jatupaiboon et al. 
[90]

notch at 50 Hz Wavelet, PSD SVM (65.12)

T. F. Bastos-Filho 
et al. [91]

bandpass filter (0.4 
to 45) Hz

Statistical (STD, MAV), PSD, 
High Order Crossings

k-NN (69.5)

U. Wijeratne et al. 
[92]

Wavelet PSD ANN (75)

V. H. Anh et al. [93] bandpass filter 
(1–30) Hz

HFD SVM (70.5)

synchronization using EEG data. Nevertheless, the suggested EEG-based method 
does have a limitation, in this study. The EEG datasets were examined offline and 
data from examinations was gathered. However, in order to corroborate the findings, 
further research utilizing real-time online experiments is necessary due to the differ-
ences between offline and online categorizations.

Despite these limitations, the results from this study and those of past studies, 
which supported the potential of EEG signals to identify the majority of emotional 
disparities, are in accord and those discrepancies were reflected in the EEG bands 
as well [94]. Hence, when coupled with nonlinear feature sets and kNN classifier, 
the proposed method can provide valuable insight for automatic emotion estimation 
using synchronization indices on the basis of key biomarkers and dependable indi-
cators for affective-based EEG.

This study adds to the body of knowledge about the detection of affective mood 
by its findings. However, additional research is needed, and combining other tech-
niques, such as EEG and MEG or EEG and fMRI, may improve the results. This 
method is justified by the fact that various emotions do not affect the metabolic 
behavior of blood in capillaries and neuron electrical activity in the same manner.

To sum up, EMD − WT hybrid denoising technique was used, xCorr, Coh and 
PLI linear features and CFuzzEn and JPE nonlinear features can provide informa-
tion to improve the synchronization of emotions. These features can yield useful 
information to characterize and identify the relation between brain lobes when the 
emotion changes. The former features have been used for further analysis including 
channels selection using ANOVA test. The results have been reported to extract the 
valuable EEG synchronization markers associated with emotions. This result 
implies that the denoising technique combined mainly with nonlinear entropy fea-
tures may automatically detect and provide reliable synchronization markers to 
identify state of emotion of individuals. Indeed, the results emphasize the crucial 
role played by the novel proposed framework in the EEG signal processing chain 
particularly in the classification results.
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13.5  Conclusion

Conventional filters and WT technique were used in the preprocessing stage to 
denoise the Dreamer EEG datasets of 23 subjects while watching 18 short emo-
tional video clips with (amusement, excitement, happiness, calmness, anger, dis-
gust, fear, sadness and surprise) audio-visual stimuli. In the second stage, linear 
features including xCorr, Coh, PLI and nonlinear features like CFuzzEn and JPE 
features were computed to capture different dynamical properties from emotional- 
based multi-channel emotional-based EEGs. Moreover, ANOVA has been used to 
statistically examined the individual performance of the used features. Finally, kNN 
classification technique has been used for automatic emotion recognition from 
EEG-based dataset. These Results shows increased emotion classification accuracy 
for the features that included high synchronization of certain lobe with the rest of 
the brain regions. The nonlinear features such as JPE and CFuzzEn had one lobe 
(Temporal lobe) synchronized with the rest of brain lobes (electrodes) thus provid-
ing the highest classification accuracy among the other features that are in the con-
trarily didn’t have any specific lobe connected to the others.
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Chapter 14
Recognition Enhancement of Dementia 
Patients’ Working Memory Using 
Entropy- Based Features and Local 
Tangent Space Alignment Algorithm

Noor Kamal Al-Qazzaz, Sawal Hamid Bin Mohd Ali, and Siti Anom Ahmad

Abstract Detecting dementia presents a barrier to advancing individualized health-
care. Electroencephalographic (EEG) signals’ nonlinear nature has been character-
ized using entropies. While a working memory (WM), the EEGs of 5 patients 
suffering vascular dementia (VD), 15 patients had stroke-related mild cognitive 
impairment (SMCI), and 15 healthy normal control (NC) participants were evalu-
ated in this study. A four-step framework for the automatic identification of demen-
tia is provided, with the first stage employing the newly developed automatic 
independent component analysis and wavelet (AICA-WT) method. In the second 
stage, nonlinear entropy features using fuzzy entropy (FuzzEn), fluctuation-based 
dispersion entropy (FDispEn), and bubble entropy (BubbEn) were utilized to extract 
various dynamical properties from multi-channel EEG signals derived from patients 
with dementia. A statistical examination of the individual performance was con-
ducted using analysis of variance (ANOVA) to determine the degree of EEG com-
plexity across brain regions. Afterwards, the nonlinear local tangent space alignment 
(LSTA) dimensionality reduction approach was utilized to enhance the automatic 
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diagnosis of dementia patients’. Using k-nearest neighbors (kNN), support vector 
machine (SVM), and decision tree (DT) classifiers, the impairment of post-stroke 
patients was finally identified. BubbEn is chosen to develop a new BubbEn-LTSA 
mapping process for creating the innovative AICA-WT-BubbEn-LTSA dementia 
recognition framework, which is the basis for an automated VD detection.

14.1  Introduction

Cognitive impairment and dementia are progressive impairments of mental function 
that are frequent following a stroke and inevitably lead to limitations in independent 
life. It was estimated that 50 million individuals were affected globally in 2018, and 
by 2050, that number is anticipated to triple [1]. After Alzheimer’s disease (AD), 
vascular dementia (VD) is the second most prevalent type of dementia, and its prev-
alence doubles every 5–10 years after age 65 [2–4]. The majority of people with 
vascular dementia are elderly adults over the age of 65. Clinically speaking, a reduc-
tion in mental ability that is higher than would be predicted given the people’s age 
and education level but does not severely affect everyday activities is known as mild 
cognitive impairment (MCI) [5]. It’s frequently thought of as being in the middle of 
the spectrum between early-on-normal brain cognition and late-on-severe dementia. 
Following a stroke diagnosis, the cognitive function most impacted by dementia and 
cognitive loss is memory [6, 7].

Better therapeutic therapy prior to brain damage from dementia would require 
earlier diagnosis. Early dementia diagnosis will help dementia patients start 
symptom- based treatment as quickly as possible. Recent years have seen significant 
advancements in the use of biomarkers to detect dementia in its earliest stages [8–11].

The use of magnetoencephalography (MEG) to record the brain activity of 
Alzheimer’s disease (AD) patients has gained significant research interest over the 
past 20 years [12–15]. EEG is a therapeutic tool that has a high level of temporal 
resolution and can monitor brain activity in milliseconds [16]. Therefore, it is fre-
quently used to establish a thorough study of a time-sensitive neurodynamic marker 
that assists in monitoring the brain for irregularities linked to cognitive decline and 
dementia [16, 17]. It can be used in neurophysiology to recognize and classify 
changes in the brain [18]. It is essential to develop a mechanism for detecting 
dementia in its early stages so that an ideal diagnostic index can be derived.

In this study, 15 healthy normal control (NC) volunteers, 15 patients with mild 
cognitive impairment (SMCI) following a stroke, and 5 patients with vascular 
dementia (VD) were used as NC to measure the background EEG activity during a 
working memory (WM) test. In the first step of a four-stage framework for the auto-
matic identification of dementia, conventional filters with, a revolutionary automatic 
independent component analysis and wavelet (AICA-WT) approach was used. In 
the second stage, nonlinear entropy features such as fuzzy entropy (FuzzEn), 
fluctuation- based dispersion entropy (FDispEn), and bubble entropy (BubbEn) 
were utilized to extract various dynamical properties from multi-channel EEG 
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signals derived from patients with dementia. The level of EEG complexity across 
brain areas was assessed statistically using analysis of variance (ANOVA) of the 
individual performance of estimated entropies. Afterwards, the nonlinear local tan-
gent space alignment (LTSA) dimensionality reduction approach was utilized to 
enhance the automatic diagnosis of dementia patients’ onset. Using k −  nearest 
neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers, 
the disabilities suffered by stroke survivors was finally identified. The comparative 
efficiency of the LTSA method for scaling down data dimensions with the kNN, 
SVM, and DT classifiers has been examined. LTSA with kNN achieved the highest 
classification accuracies for VD, SMCI, and NC, respectively.

According to the author’s knowledge, this is the first time such an analysis has 
been performed for dementia-based discriminative processing of EEG information. 
The initial contribution of this research is the proposal of an novel EEG AICA-WT- 
BubbEn-LTSA mapping architecture to improve early dementia identification. The 
suggested framework uses the novel AICA-WT denoising method and bubble 
entropy to stabilize complexity parameters. The performance of the proposed frame-
work with three class classification tasks was acquired utilizing three distinct 
machine learning models in order to provide dependable classification performance 
and demonstrate the robustness of our proposed mapping framework. The working 
memory methodology for capturing EEG signals from VD, SMCI, and NC subjects 
is the first to interpret graphical behavior from EEG-based background activity. 
Novel AICA-WT-BubbEn-LTSA could be a core for automated VD detection and a 
promising, highly efficient technique for identifying VD and SMCI impaired effects 
on neuroelectrography alterations.

14.2  Related Works

Brain disorders like epilepsy, researchers have used EEG readings to diagnose both 
attention deficit hyperactivity disorder (ADHD) and AD. Using an EEG dataset with 
several channels spanning brain areas, it may be possible to evaluate a wide range 
of affective reactions. [4, 19–24]. Therefore, studies have demonstrated the poten-
tial for EEG signals to detect vascular dementia (VD) patients by examining work-
ing memory tasks and displaying brain alterations collected based on non-conscious 
EEG brainwave patterns in people with dementia [25, 26]. However, EEG data are 
typically polluted by motion, ocular, muscular, and cardiac activities [19, 27]. 
Greater magnitude artifacts distort the signal and mislead the analysis.

There is a growing body of research aimed at removing non-cerebral sources 
from EEG data, known as artifacts, which may imitate brain disease activity and so 
affect the analysis [19, 26]. Early techniques for detecting and removing artifacts 
included blind source separation (BSS) based on Independent Component Analysis 
(ICA) [28], wavelet denoising [29, 30] to enhance the performance [31]. However, 
wavelets are time-frequency spectrums that overlap, but ICA lacks redundancy in 
the number of signals relative to the number of sources. Al-Qazzaz [19, 32] have 
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proposed the combination of ICA and wavelets approaches to solve these 
constraints.

In addition to being extremely informative on brain physiology, EEG signals 
may also serve as biomarkers of brain behavior [33–37]. The Hurst exponent (Hur) 
[32, 38] and fractal dimension (FD) [39, 40] nonlinear methods that have been used 
to represent and analyze cerebral cortex-generated complex dynamic data [41, 42]. 
Nonlinear parametric index of entropy can be used to quantify the uncertainty of 
dynamic systems like EEG signals that lack stability [43]. The field of cognitive 
neuroscience, sleep research, and the classification of emotional states have all prof-
ited from the use of entropy with EEG information [26, 40, 44, 45].

Entropy methods have been proposed throughout the previous three decades as a 
potent metric for quantifying the dynamic complexity of real-world systems such as 
EEG time series [43]. Entropies have been used to research cognitive thinking 
states, sleep states, and emotional level categorization techniques using the EEG 
signal [26, 40, 44, 45]. In addition, social emotion, personal identification, therapy 
uptake, clinical efficacy, and side effects are potential therapeutic uses of EEG- 
based biological gender recognition leveraging several entropies. [46]. Wang [47] 
employed sample entropy (SampEn), approximate entropy (ApEn), and permutation 
entropy (PerEn) to examine the human emotions in response to video clips due to 
the robustness of these entropies to noise and their ability to effectively assess the 
complexity of a time series [48, 49]. Researchers have proposed fuzzy entropy 
(FuzzEn) for EEG assessment. In addition, Shannon entropy (ShEn) and conditional 
entropy (ConEn) represent the amount of information and the rate at which new 
information is being made [50]. The widely-used SampEn is derived from ConEn 
[51], whereas PerEn and the newly developed dispersion entropy (DispEn) [52] are 
derived from ShEn [53]. SampEn gives unreliable or unknown entropy values for 
short time series and is inadequate for long signals [14, 15]. PerEn is intuitive and 
computationally efficient. However, it has a continuous distribution and is noise- 
sensitive. Fluctuation-based dispersion entropy (FDispEn) was proposed in [50] 
and Bubble entropy (BubbEn) was utilized in [54] to examine the dynamics of time 
series, specifically the distribution of symbol sequences, in order to address the 
inadequacies of PerEn and SampEn.

The advantage of this work is to find out how psychological EEG signals in dif-
ferent parts of the brain differ between VD, SMCI, and NC people by utilizing EEG 
markers to detect various dynamical features of dementia-based EEG background 
activity. Therefore, among the several empirical entropies, the FuzzEn [55], 
FDispEn [50] and BubbEn [54] entropies were chosen because they are noise- 
resistant and may provide important information for interpreting the time series 
complexity.

Methods like sequential feed-forward selection (SFFS), minimum redundancy 
maximum relevance (mRMR), genetic algorithm (GA), evolutionary computation 
(EC), and sparse discriminative ensemble learning (SDEL) algorithm, sparse linear 
discriminant analysis (LDA) and principle component analysis (PCA) have all been 
used to estimate the best features [56–61].
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Xie [33] have utilized the kNN and SVM classifiers for seizure detection, whereas 
Subasi [62] have employed PCA as a dimensionality reduction technique and the 
SVM classifier with two outputs, either an epileptic seizure or not. In addition, for 
Brain Computer Interface (BCI) system applications, Vidaurre [63] examined brain-
waves using a linear discriminant analysis (LDA) classifier, whereas Murugappan 
[64] classified discrete emotions using kNN and LDA. In addition, Lagun [65] cat-
egorised the EEG datasets of AD, SMCI, and NC participants using logistic regres-
sion (LR), naive Bayes (NB), and support vector machine (SVM). Chaovalitwongse 
[66] have presented a technique for classifying and detecting seizure precursors 
using kNN.

The majority of dementia detection investigations used EEG signals based on 
AD, and they concentrated on linear analysis employing spectral relative powers 
[67–69]. However, other studies [21, 70, 71] have employed nonlinear entropy char-
acteristics to examine brain complexity behavior. To this goal, entropy features were 
computed to emphasize the diversity of dementia in affective-based EEG systems.

14.3  Methods and Materials

The recorded EEG requires several stages of signal processing and analysis in order 
to obtain relevant details from the EEG signal of VD and SMCI patients in order to 
enhance the accuracy of the diagnosis of degenerative changes. EEG may have a 
significant role in the diagnosis and severity categorization of dementia. 
Preprocessing, feature extraction, dimensionality reduction, and classification are 
the primary stages of EEG signal processing. Fig. 14.1 depicts the complexity of 
EEG processing algorithms.

14.3.1  Participants and EEG Recording

The NicoletOne (V32) system, developed and manufactured by VIASYS Healthcare 
Inc. in the United States, was used to gather the EEG data. The scalp was covered 
with 19 electrodes (including ground and system reference electrodes) in a cap elec-
trode configuration. Here are the cutoff frequencies for the low-pass filter (LPF), 
high-pass filter (HPF), and notch hardware filters included in the EEG device: The 
3 dB point for the LPF is at a frequency of 0.3 Hz, and the 70 Hz HPF upper cutoff 
frequency is adjustable. Typically, the notch filter is set at 50 Hz, and the frequency 
range is (0.3 to 70) Hz. The sampling frequency is determined by the application to 
be 256 Hz, etc., and a 12 bit A/D converter accurately digitizes the signal. 15 NC 
records, 15 SMCI patients, and 5 VD patients had their EEG data reviewed for this 
investigation. The participants serving as NC had no history of mental or neurologi-
cal problems. The stroke patients were recruited from the stroke ward at Pusat 
Perubatan Universiti Kebangsaan Malaysia (PPUKM), the National University of 
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Fig. 14.1 The block diagram of current study

Malaysia’s medical facility. Patients with VD were recruited through the Neurology 
Clinic. The stroke patient met the requirements of the National Institutes of Health 
Stroke Scale (NIHSS) [72]. All patients were diagnosed using magnetic resonance 
imaging (MRI) images of the brain, patient medical histories, and clinical and labo-
ratory tests. The healthy NC group had no history of mental or neurological disor-
ders. The Mini  −  Mental State Examination (MMSE) [73] and the Montreal 
Cognitive Assessment (MoCA) [74] were used to evaluate the cognitive abilities of 
both groups. In accordance with the 10–20 worldwide system, a total of 19 elec-
trodes plus the ground and system reference electrode were placed (Fp1, Fp2, F7, 
F3, Fz, F4, F8, T3, T5, T4, T6, P3, Pz, P4, C3, Cz, C4, O1, and O2). Table 14.1 
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Table 14.1 Sociodemographic characteristics of the NC subjects and SMCI and VD patients.

Participant features NC SMCI VD

Number 15 15 5
Age 60.06 ± 5.21 60.26 ± 7.77 64.6 ± 4.8
MMSE 29.6 ± 0.73 20.2 ± 5.63 14.8 ± 1.92
MoCA 29.06 ± 0.88 16.13 ± 5.97 13.2 ± 2.38
Gender 8 Females/7 Males 10 Females/5 Males 2 Females/3 Males

Age in years, MMSE Mini-Mental State Examination, MoCA Montreal Cognitive Assessment, SD 
meanstandard deviation

Fig. 14.2 The experimental model of working memory

displays the sociodemographic and cognitive characteristics of the NC, SMCI and 
VD patients.

The Human Ethics Committee of the National University of Malaysia authorized 
each protocol for an experiment. The participants also completed a consent form to 
receive information. In this EEG investigation, a session of auditory working mem-
ory (WM) test was done. Participants were given a 0.5 second fixation signal at the 
start of the session and asked to sit as still as possible for the duration of the test. 
Afterward, as a quick WM test, the participants were given five words to memorize 
for 10  seconds. Then, while EEG data was being recorded, participants were 
instructed to close their eyes and think about these words. The patients had to open 
their eyes once the allotted 60 seconds had passed and make a list of all the words 
and phrases they had remembered (Fig. 14.2) [3, 29].

14.3.2  Preprocessing Stage

EEG signal preprocessing is required to remove noise, due to the fact that EEG 
waves typically contain artifacts in the same frequency ranges, allowing for proba-
ble overlap with brain processes.
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14.3.2.1  Conventional Filters

The A/C power interference noise was reduced by utilizing a notch filter with a 
50 Hz cut-off frequency [4] and a band-pass filter (BPF) with a lower cutoff equat-
ing to 3 dB at 0.5 Hz and an upper cutoff frequency within the range of 64 Hz, as 
described in [69]. In a subsequent step of processing for the filtered EEG dataset, 
the data were split into 6 trials, with each trial including 10 seconds (6 x 10 second 
periods) and 15360 data points per ten seconds.

14.3.2.2  AICA–WT Technique Methodology

In this study, we present and describe the AICA-WT technique as a fully automatic 
hybrid approach. The purpose of this strategy is to address the limitations of both 
ICA and DWT by combining their benefits. To improve the quality of EEG record-
ings, AICA-WT is applied [75, 76]. ICA is a strong statistical approach for estimat-
ing a set of n unknown components, s(t) = [s1(t), …, sn(t) ], that were linearly mixed 
by the ICA linear transform matrix A. The formula is as follows:

 
x Ast t� � � � �  

(14.1)

where the EEGs are denoted by x(t), and both x(t) and s(t) should average out to 
zero. The demixing matrix W, which is the inverse matrix of A used to represent the 
linearly ICs, is generated by the ICA from the higher-order statistics of x(t). The ICs 
can then be determined using Eq. (14.2) (based on the above assumptions) [75, 
77, 78]:

 
y Wxt t� � � � �  

(14.2)

where y(t) = [y1(t), …, yn(t) ] is the vector that estimate the ICs
In this investigation, the FastICA algorithm described by Hyvärinen [79] was 

utilized to decompose EEG signals due to its simplicity, rapid convergence, and 
efficiency in decomposing the recorded EEG and extracting the new component 
matrix ŝ .

DWT, symlet mother wavelet (MWT) of order 9 ‘sym9’, and the SURE threshold 
were chosen to denoise ICA-detected artifacts in a single or many channels [29]. A 
five-level decomposition of the EEG wave was performed (the sampling rate of the 
current work was 256 Hz). After applying the threshold for each level, the noise on 
the denoised ICs of the artificial sets was eliminated. Then coefficients were recre-
ated utilizing the inverse DWT (IDWT). The denoised components have been 
restored to the initial set of ICs.

The calculated ICA of the original, artifact-free EEG data was then reconstructed 
as x̂  from the corrected ICs using the following:
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ˆ ˆx Ast t� � � � �  

(14.3)

where ŝ t� �  is the new matrix of ICs.

14.3.3  Features Extraction

EEG signals are regarded as a non-invasive, effective diagnostic measure that can 
provide a more accurate description of emotional state variations across brain 
regions [21, 23, 80]. Consequently, it is crucial to detect dementia early using EEG 
signals. The complex dynamics structure of EEG signals can be assessed through 
the extraction of nonlinear dynamical attributes from the EEGs to identify the most 
significant features that improve the detection of dementia based on EEG brain 
mapping [25, 26, 80].

Nonlinear entropy approaches, such as FuzzEn, FDispEn, and BubbEn, have 
been used to quantify information regarding brain function based on dementia dif-
ferences. N = 15360 samples and 6 windows of 10 second length (2560 samples) 
were taken from the EEGs for each of 19 channels over the course of 60 seconds.

14.3.3.1  Fuzzy Entropy (FuzzEn)

FuzzyEn has been used to characterize several biomedical data, including electro-
myograms [81], EEGs, or modulations in the heart rate [19, 20]. Moreover, new 
research [19] reveals that FuzzEn is a reliable entropy estimator for studying bio-
logical signals with incomplete data.

Given N data points from a time series x(n) = x(1), x(2), …, x(N), the following 
algorithm can be used to obtain FuzzEn [12]:

 1. Create m-vectors Xm(1), Xm(2), …, Xm(N − m + 1), where Xm(i) = [x(i), x(i + 1), 
…, x(i + m − 1)] − x0(i) for all in the range 1 ≤ i ≤ N − m + 1.

These vectors are a sequence of m consecutive x values, starting at the ith point 
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 4. Specify the function φm as follows
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(14.5)

 5. We extend the dimension to m + 1, create vectors Xm + 1(i), and then derive the 
function φm + 1by repeating steps 2 through 4.

 6. FuzzEn can be computed for time series with a finite number of samples N using 
the following Eq. [81]:

 
FuzEn m n r N n r n rm m, , , , ,� � � � � � � ��ln ln� � 1  

(14.6)

14.3.3.2  Fluctuation-Based Dispersion Entropy (FDispEn)

The entropy metric DispEn was developed lately for measuring the randomness of 
time series. It’s fast, and it’s performed well in describing time series thus far. In this 
research, we looked at how different mapping approaches affected DispEn’s 
performance.

The DispEn algorithm is as follows, given a unilabiate signal x(n) = x(1), x(2), …, 
x(N) of length N:

At the outset, we map xj(j = 1, 2, …, N) to c classes with indices from 1 to c. 
uj(j = 1, 2, …, N) is the signal that has been categorized.

With an embedding dimension m and a time delay of d, we may generate a 
series of timestamps denoted by ui

m c, : 
u u u u i N m di
m c

i
c

i d
c

i m d
c, , , , ,� �� � � � � �� �� � �� �, , , 1 1 2 1  [52, 53]. Each dispersion pat-

tern � v v vm0 1 1� �
 allocated to the  m elements of the vector ui

m c, , where 
u v u v u vi
c

i d
c

i m d
c

m� � � �� �� � �� � �0 1 1 1, , ,  has a corresponding integer value between 1 
and c [52].

The relative frequency for the cm possible dispersion patterns � v v vm0 1 1� �
, is calcu-

lated as follows:
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(14.7)

where # means cardinality. p v v vm
�

0 1 1� �
� �  illustrates the number of dispersion pat-

terns of � v v vm0 1 1� �
 that is given as ui

m c,  divided by the total number of embedded 
signals with embedding dimension m.

At last, the DispEn value is computed as follows, in accordance with Shannon’s 
notion of entropy:
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In fact, FDispEn accounts the variations in behaviour between neighboring ele-
ments in adjacent element dispersion patterns, which are based on fluctuation. Thus, 
we obtain vectors of length m −  1  in which every element is a different value 
between −c + 1 and c − 1. Thus, there are (2c − 1)m − 1 potential dispersion patterns 
based on random fluctuation. The only distinction between the DispEn and FDispEn 
algorithms is the potential patterns employed by each technique. Note that the nor-
malized FDispEn is represented as [50]

 

FDispEn

c
m

ln 2 1
1

�� �� ��

 

(14.9)

14.3.3.3  Bubble Entropy (BubbEn)

BubbEn is created by applying a metric to the permutation approach, which calcu-
lates a rough estimate of the work involved in the latter method. Similar vectors are 
grouped together to reduce the time and effort required to calculate the conditional 
R’enyi entropy. We limit the number of distinct potential states and generate a 
coarser distribution based on intrinsic correlations using this method. A sorting 
algorithm’s number of steps is used as the unit of measurement. To determine how 
many iterations of bubble sort are necessary to sort the vector in ascending order, we 
count the number of insertions and deletions in the process. We’ll call this entropy 
Bubble Entropy (BubbEn). Next, we count the number of swaps Hswaps

m� �  needed to 
arrange the vectors in ascending order, and use that information to calculate the 
conditional R’enyi entropy of this distribution.

 
BubbleEn H H m mswaps

m
swaps
m� �� � � �� ��1 1 1/ log /

 
(14.10)

For embedding dimensions m and log(1 + m(m + 1)/2), respectively, the maximum 
entropy is  log  (1  +  m(m −  1)/2), and the normalization factor is the difference 
between these two values. In each case, it indicates how many possible states there 
are when bubble sort permits swaps between 0 to m(m − 1)/2. The state in which no 
swaps were performed was ignored in order to simplify the normalization factor 
because it was not relevant for non-zero values of m. The computation of BubbEn is 
shown in pseudo-code below:

 1. We use a counting method to determine how many swaps ni are required to 
arrange each vector Xi of m elements in in descending order.

 2. The probabilities pi (describing the likelihood of a given number of swaps) ni are 
calculated by normalizing the histogram of ni values by N − m + 1.

 3. When α = 2, the entropy Hswaps
m  swaps is calculated from pi using the following 

Equation:
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 4. Iterating steps 1–3, we find Hswaps
m+1  swaps for vectors with m + 1 elements.

 5. Using Eq. 14.11, we determine BubbEn.

14.3.4  Statistical Analysis

To do ANOVA, the denoising findings, nonlinear entropy feature results of the 19 
channels from the EEG datasets of 15 NC, 15 SMCI, and 5 VD patients were pre-
liminarily classified into 5 recording regions that related to the scalp region of the 
cortex. Regionally averaged features aided in taking into account the differences 
between the scalp regions, which can directly demonstrate the effects of dementia 
following a stroke in terms of a reduction in brain complexity and a slowing of cog-
nitive function. These regions include the frontal cortex (seven channels: Fp1, Fp2, 
F3, F4, F7, F8, and Fz), the temporal cortex (four channels: T3, T4, T5, and T6), the 
parietal cortex (three channels: P3, P4, and Pz), the occipital cortex (two channels: 
O1 and O2), and the central cortex (three channels: C3, C4, and Cz).

In order to assess the efficacy of the FuzzEn, FDispEn, and BubbEn entropies, 
three sessions of two − way analysis of variance (ANOVA) were statistically ana-
lyzed to determine the level of EEG complexity across brain areas. Version 22 of the 
SPSS program from IBM USA was selected for statistical analysis.

In each of the three sessions, the nonlinear (FuzzEn, FDispEn, and BubbEn) fea-
tures were dependent variables, whereas the group factor and the five groups of the 
scalp areas were independent factors. The group factor included NC healthy partici-
pants, SMCI patients who had recently suffered a stroke, and VD patients. Then, 
Levene′s test for homoscedasticity and the Kolmogorov − Smirnov evaluations for 
normality were applied. Duncan′s test was used to determine the post − hoc con-
trast, and p  <  0.05 was established as the significance level for each statistical 
evaluation.

14.3.5  Preliminary Feature Processing Prior Classification

In this work, each EEG channel was divided into 6 epochs, and each epoch was 
given three entropy features (FuzzEn, FDispEn and BubbEn).

Before being applied to the classifier, the extracted features from the preceding 
step must undergo additional analysis. The “curse of dimensionality,” or difficulties 
caused by a large number of possible feature combinations, and the resulting 
increase in processing time can be avoided by employing dimensionality reduction 
techniques. In order to avoid classifier overload, improve classification model 
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accuracy, and reduce overfitting concerns, this research made use of dimensionality 
reduction techniques. Thus, these solutions are necessary to reduce the dimension 
of feature vectors.

The dimension of the feature matrix for healthy NC and SMCI was (90 × 57), 
(15 subjects × 6 epochs) = 90 observations and (3 features × 19 channels) = 57 attri-
butes, whereas for VD patients, the dimension was (30  ×  57), where (5 VD 
×6  epochs)  =  30  observations and (3  features  ×  19  channels)  =  57 attributes. 
Therefore, VD is an unbalanced set of data that may affect the performance of pro-
posed model. Learning from unbalanced datasets is problematic because the imbal-
ance hinders the performance of the learning algorithms. Given that the majority of 
learning models assume a balanced class distribution, their outcomes tend to favour 
the dominant class whose class predictions are inaccurate. Class imbalance in the 
dataset has a substantial effect on the classification model’s precision. However, 
because the minority class cannot be readily distinguished, the classifier can simply 
classify each instance as a member of the majority class.

In this study, patients with VD serve as an example of the minority class. To rec-
tify the data imbalance, SMOTE (Synthetic Oversampling Technique) was employed 
[82]. In order to reduce overfitting and bias in the classification analysis [83], the 
parameters of the classifier and the amount of oversampling were determined 
through 10 − fold cross-validation and grid search. The supplied dataset was divided 
into ten distinct subsets of equal size. One of these subsets was used as the test set, 
while the remaining nine were used to teach the classifier. This method was exe-
cuted ten times with 10 successful outcomes. The arithmetic mean of these preci-
sions represents the 10 − fold cross-validation precision of this dataset’s learning 
algorithm [84].

Because SMOTE modifies the dataset, the %age of oversampling has been added 
to the parameters. Therefore, parameters discovered with various SMOTE percent-
ages may not be identical. The SMOTE was utilized to balance the class frequency 
using only the training set [85, 86].

14.3.6  Local Tangent Space Alignment (LTSA)

With its speed and relative insensitivity to parameter choice, the local tangent space 
alignment (LTSA) method has found widespread application in dimension reduc-
tion across a variety of disciplines. In the LTSA method, the coordinates from the 
local tangent space are combined with the low-dimensional global coordinates 
using the local radiological transformation matrix. Using the surrounding area as a 
sample, a tangent space at the local level is constructed. Given the data x(n) = x(1), 
x(2), …, x(M) ⊂ RM × N, the, principle of LTSA can be described as following [87]:

 1. Create a set Xi consisting of the k nearest neighbors of each sample xi selected 
using the k nearest neighbors algorithm, and normalize the results X̂i . It can be 
written as
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where x
k
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j

k

i j� �1
,  and lk is a unit vector of length k.

 2. Perform singular value decomposition to determine the eigenvalues and eigen-
vectors of the matrix X̂i .

The tangent space Hi is the set of eigenvectors associated with the first d  largest 
singular values.

 
�ij i

T
ij iH x x� �� �

 
(14.14)

 3. In order to preserve as much data as possible during transformation, we must 
build the matrix Li i� �� , where
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where �i
�  represents the generalized inverse matrix of θi, Yi represents the set of 

nearest neighbors of Y after dimension reduction, that is, Yi = (yi1, yi2, …, yik).

 4. Once the optimization problem in the previous equation has been solved by 
determining the matrix's eigenvalues and eigenvectors, the embedding matrix Y 
can be derived. The analogous Equations to (17) are
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(14.16)
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The low-dimensional embedding matrix Y is obtained by computing the eigenvec-
tors that correspond to the second through dth smallest eigenvalues of the alignment 
matrix B.

 B HWW HT T=  (14.17)
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14.3.7  Dementia Classification Techniques

A thorough analysis of the EEG data was done to classify the individuals’ cognitive 
and mental disability into three groups (NC, SMCI, and VD). The caliber of the 
generated features has a significant impact on classifier precision. As a result, the 
choice of dimensionality reduction techniques and the kind of classifier can both 
have an impact on how accurate the results of the classification are. Three popular 
methods for categorizing brain illnesses were used in this study: kNN, SVM, and DT.

The parameter k must be specified for the kNN classifier. The value of k was 
altered between 1 and 9 at 2-point intervals. The classifier was trained to determine 
the optimal value of k, and k = 5 was selected empirically. As a measure of similarity 
for classifying each trial using kNN, the Euclidean distance was computed.

Using ten-fold cross-validation to optimize the complexity parameter C with a 
range of −4 ≤ log10(C) ≤ 4 in C values C ∈ {0.0001,0.001,0.01,0.1,0, 10,100,1000, 1000
0} on the training set produced optimal results for the SVM classifier. During test-
ing, C equal to 10 yielded the best outcomes for C values. Based on the radial basis 
function (RBF) kernel, multi-class SVM classifiers were implemented. In addition, 
the training dataset was utilized to calculate the minimum mis-classification rate, 
which aided in obtaining the smoothing σ value for SVM training. The only way to 
determine the optimal value is by methodically varying during multiple training 
sessions. As a result, the σ value in this study was changed between 0.1 and 1 at 
intervals of 0.1. It was determined that a σ value of 0.5 corresponds to the lowest 
mis-classification rate [19, 22, 28, 32, 44, 88].

In addition, the DT classification tree model was utilized. It employs a recursive 
partitioning algorithm that generates nodes depending on certain criteria for split-
ting. The produced and divided nodes are then used to grow a tree. To use the split 
criteria, the optimal split point must be identified. The quality of the splitting criteria 
is measured by a function derived from the variance function. The optimal point for 
splitting is determined by a function that is applied to every split point beginning 
with binary splits and evaluating them based on an optimization criterion. Gini’s 
diversity index has been used as an optimization criterion in this work. When the 
classification tree reaches the pure node, it stops partitioning the instance space; a 
node is pure if it contains only observations of one class [89]. 50 trees have been 
employed as the parameter for identifying VD, SMCI, and NC EEG signals using DT.

The performance of the suggested framework was assessed using the average 
classification accuracy reported as a percentage and the confusion matrix, which 
enabled to determination the effects of dementia recognition enhancement.
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14.4  Results and Discussion

Utilizing the novel, 100% automatic AICA-WT denoising technique presented in 
[19], the EEG dataset was successfully denoised. In our previous investigations [19, 
27, 28], we statistically analyzed the differences between the linear spectral distri-
butions of EEG slowing in VD patients, SMCI patients, and healthy NC subjects. 
The training process is where the most important design decisions for the kNN, 
SVM, and DT classifiers are made, as they are based on the test set and training set 
sizes. However, the classifiers employed in this work were trained on the same train-
ing data set and assessed on the testing data set in order to compare the performance 
of the suggested classifiers.

14.4.1  Results of Preprocessing Stage

Compared to the original EEG recording, the artifactual components (red color) 
were successfully and adequately suppressed (blue color). As depicted in Fig. 14.3, 
the ocular artifacts were effectively inhibited in Ch2 (which represents F8 from the 
frontal region).
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Fig. 14.3 The outcomes of applying the AICA–WT approach to EEG Ch2, which represents F8, 
to remove ocular artifact
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14.4.2  Results of Dementia Recognition by Statistical Analysis

The brain states of SMCI patients with VD and SMCI were distinguished from those 
of healthy NC participants using FuzzEn, FDispEn and BubbEn. Table 14.2 presents 
a comparative average mean values of the three used entropies which are estimated 
over five scalp regions for the VD patients, SMCI patients, and healthy NC subjects.

The VDs exhibited lower complexity than the SMCIs and healthy NCs (FuzzEnVaD 
< FuzzEnMCI< FuzzEnNC) with significant differences were observed for the NC sub-
jects (p < 0.05), (FDispEnVaD < FDispEnMCI< FDispEnNC) and (BubbEnVaD < 
BubbEnMCI< BubbEnNC) observable differences were identified between the VD 
patients and the NC. In line with expectations, the complexity of EEG signals 
decreases with increasing illness severity, especially in those with SMCI and VD.

The multiple comparisons have been looked at using the Bonferroni post hoc 
test. The post − hoc dementia multiple comparisons using Bonferroni corrections 
for the FuzzEn, FDispEn, and BubbEn characteristics are displayed in Table 14.3. 
The NC was statistically significant from VD (p = 0.05) and SMCI was statistically 
significant from VD (p = 0.01) for the FuzzEn, according to post hoc testing using 
the Bonferroni correction.

Additionally, the SMCI was statistically significant from VD for the FDispEn 
according to post hoc tests with the Bonferroni correction (p = 0.023).

Additionally, the post hoc analyses employing the Bonferroni correction for the 
BubbEn indicated statistically significant differences, especially for VD. The statis-
tical difference between the VD and the NC was 0.05, while the statistical difference 
between the VD and the SMCI was 0.003.

Table 14.2 Lists the average values for FuzzEn, FDispEn and BubbEn across all five scalp regions 
for patients with VD, SMCI, and NC participants. An asterisk indicates differences between groups 
that are significant

Features DSC Frontal Temporal Parietal Occipital Central p-value
FuzzEn NC 1.147 ± 0.212 1.203 ± 0.171 1.03 ± 0.133 1.236 ± 0.197 1.09 ± 0.171 0.05*

SMCI 1.08 ± 0.226 1.115 ± 0.264 1.015 ± 0.172 1.086 ± 0.196 1.038 ± 0.205 0.169

VD 1.079 ± 0.204 1.056 ± 0.191 0.957 ± 0.151 1.073 ± 0.137 0.964 ± 0.254 0.653

FDispEn NC 2.365 ± 0.388 2.514 ± 0.337 2.302 ± 0.243 2.276 ± 0.348 2.525 ± 0.329 0.114

SMCI 2.333 ± 0.514 2.397 ± 0.524 2.249 ± 0.454 2.228 ± 0.506 2.352 ± 0.477 0.187

VD 2.222 ± 0.398 2.29 ± 0.332 2.25 ± 0.33 2.111 ± 0.311 2.384 ± 0.302 0.163

BubbEn NC 0.611 ± 0.033 0.609 ± 0.031 0.597 ± 0.027 0.601 ± 0.049 0.609 ± 0.037 0.011*

SMCI 0.596 ± 0.039 0.592 ± 0.041 0.586 ± 0.046 0.576 ± 0.048 0.579 ± 0.04 0.921

VD 0.592 ± 0.03 0.59 ± 0.035 0.59 ± 0.043 0.585 ± 0.032 0.593 ± 0.021 0.047*
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Table 14.3 VD, SMCI patients and the NC subjects multiple comparison test using Bonferroni for 
FuzzEn, FDispEn and BubbEn entropy features

Dependent Variable (I) DSC (J) DSC Mean Difference (I-J) p-valuea

FuzzEn NC SMCI −0.036 0.158
VD −0.113* 0.05

SMCI VD −0.077* 0.01
FDispEn NC SMCI 0.06 0.344

VD −0.084 0.358
SMCI VD −0.145* 0.023

BubbEn NC SMCI −0.004 0.709
VD −0.020* 0.05

SMCI VD −0.016* 0.003
*The mean difference is significant at the 0.05 level

14.4.3  Results of Dementia Recognition by Classification 
and Performance Measure

Figure 14.4 displays the confusion matrix for VD, SMCI patients and healthy NC 
subjects identification from EEGs using FuzzEn with kNN, SVM and DT classifiers, 
respectively, the correct recognition is observed on the diagonal whereas the off- 
diagonal represent the substitution errors.

The confusion matrix’s two diagonal cells, as shown in Fig. 14.4 using FuzzEn, 
display the %age of correctly classified data from the kNN classifier. For instance, 
93.33% of the time, VD and SMCI are correctly categorized. Likewise, all are accu-
rately identified as NC subjects (100%) while 5.56% of VD are misclassified as 
SMCI, and 1.11% of VD and SMCI are misclassified as NC healthy patients.

Moreover, the SVM classifier results show that VD and SMCI are correctly clas-
sified with 64.44% and 97.78%, respectively. Like NC subjects, 100% are correctly 
classified, 28.89% of VD are incorrectly classified as SMCI, and 6.67% of VD and 
2.22% of SMCI are incorrectly classified as NC healthy subjects, respectively.

Additionally, for the DT classifier, the confusion matrix shows that the VD and 
SMCI are correctly classified with 86.67% and 12.22%, respectively. Similarly, NC 
subjects are correctly classified, whereas 13.33% of VD and SMCI are incorrectly 
classified as NC healthy subjects. By contrast, 51.11% and 36.67% of SMCI are 
classified as VD and NC subjects, respectively.

The confusion matrix for VD, SMCI patients, and healthy NC subjects identifica-
tion from EEG background signals using DispEn with kNN, SVM, and DT classifi-
ers, respectively, are presented in Fig. 14.5.

Figure 14.5 illustrates the proportion of correct classification from the kNN clas-
sifier using DispEn. With 97.78% accuracy, VD and SMCI, whereas NC healthy 
patients are correctly classified with 100%. Similarly, 2.22% of VD are wrongly 
labeled as SMCI patients.
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Fig. 14.4 Confusion matrix calculations for VD, SMCI, and NC from EEGs using FuzzEn and 
kNN, SVM, and DT classifiers

Furthermore, VD, SMCI and NC are appropriately diagnosed with 98.98%, 
95.56% and 100%, respectively, according to the SVM classifier results. 1.11% of 
VD are incorrectly classified as SMCI, but 4.44% of SMCI are wrongly classi-
fied as VD.

VD are accurately categorized with 18.89%, whereas 81.11% of VD are mistak-
enly labeled as SMCI patients and healthy NC subjects. Similarly, SMCI are accu-
rately classified with 86.67% and 13.33% wrongly labeled as VD patients and NC 
subjects, respectively.

NC participants are accurately classified with 91.11% but incorrectly classified 
as SMCI by 8.89%.

Figure 14.6 shows the confusion matrix for identifying VD, SMCI patients, and 
healthy NC participants from EEG background signals using BubbEn with kNN, 
SVM, and DT classifiers, respectively. On the diagonal, correct recognition is shown, 
whereas substitution errors are shown off-diagonal.

The proportion of correct classification from the kNN classifier utilizing BubbEn 
is shown in Fig. 14.6, VD and SMCI are correctly categorized with 96.67% accu-
racy, while SMCI and healthy individuals are correctly classified with 100% 
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Fig. 14.5 Confusion matrix calculations for VD, SMCI, and NC from EEGs using DispEn and 
kNN, SVM, and DT classifiers

accuracy. Similarly, 1.11% and 2.22% of VD patients are mistakenly identified as 
SMCI patients and NC subjects, respectively.

Furthermore, according to the SVM classifier results, VD, SMCI, and NC are cor-
rectly diagnosed with 93.33% and 100%, respectively. VD is improperly diagnosed 
as SMCI in 1.11% and 5.56% as NC.

VD, SMCI and NC are correctly classified with 82.22%, 80% and 91.11%, 
respectively. Notably, 17.78% of VD are mislabeled as SMCI patients and healthy 
NC participants. Similarly, SMCI are incorrectly categorized, with only 20% misla-
beled as VD patients and NC participants, respectively. With 8.89% accuracy, NC 
individuals are incorrectly classified as VD and SMCI patients.

To determine how well the LTSA dimensionality reduction technique works with 
the kNN, SVM, and DT classifiers, a comparative research has been done. The most 
accurate classifications of VD, SMCI, and NC patients were made using LTSA and 
kNN, in that order. Therefore, the effect of the FuzzEn, FDispEn and BubbEn entro-
pies have been examine without applying the LTSA algorithm individually as shown 
in Fig. 14.7.
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Fig. 14.6 Confusion matrix calculations for VD, SMCI, and NC from EEGs using BubbEn and 
kNN, SVM, and DT classifiers

The EEG-based dementia detection framework was evaluated in MATLAB R2021a 
on a laptop equipped with a 1.80 GHz and 1.99 GHz Intel Core i7 − 8550U proces-
sor, 16.0 GB of RAM, and a 64 − bit operating system.

The comparison of the proposed method with existing methodologies is shown 
in Table  14.4. Studies have used feature selection and dimensionality reduction 
techniques to estimate the optimal features. In order to improve the ability to iden-
tify VD and SMCI using EEGs, this study offers an automatic dementia recognition 
model employing the unique AICA-WT-BubbEn-LTSA dementia recognition 
framework. With the suggested strategy, the classification accuracy of kNN, SVM, 
and DT has improved somewhat. However, VD and SMCI recognition from NC 
subjects using the BubbEn-LTSA mapping process is the first to be taken into con-
sideration in this study in order to maintain the best quality of features that enhanced 
the classification accuracy of VD and SMCI from NC subjects. These methods have 
also been used to study EEGs. Furthermore, the EEG dataset elicitation technique 
and the EEG estimate system have never been used for securing sensation informa-
tion, which may make dementia contrasts more clear.
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Fig. 14.7 Average accuracy (%) for the kNN, SVM, and DT classifiers as calculated from the 
FuzzEn, FDispEn and BubbEn entropies with and without using LTSA algorithm

This study has some limitations, including a small sample size and the need for 
a follow-up analysis with a larger database. Despite this, more research based on 
real-time online experiments is required to validate the results due to the differences 
between offline and online categorizations. Despite these caveats, the results of The 
findings of this study concur with those of other investigations showing that EEG 
signals can be used to distinguish between those with VD, SMCI and NC [3, 4, 30, 
99, 100].

14.5  Conclusion

The pre-processing stage of the EEG datasets of 15 SMCI patients had mild cogni-
tive SMCI, 15 NC, and 5 patients suffering VD involved the use of conventional 
filters and the novel AICA-WT method to denoise the data on WM task. Inh the next 
stage, the complexity and irregularity changes from EEGs have been investigated 
using the FuzzEn, FDispEn, and BubbEn characteristics. Additionally, the statistical 
analysis of the EEG complexity across the different brain regions has been done 
using ANOVA. Then, the nonlinear LTSA dimensionality reduction approach has 
utilized to enhance the automatic diagnosis of VD patients’. k-nearest neighbors 
(kNN), support vector machine (SVM), and decision tree (DT) classifiers have been 
performed in the final stage. The effectiveness of FuzzEn, FDispEn, and BubbEn 
have been compared, and the findings demonstrate that BubbEn is the technique that 
consistently separates VD, SMCI patients, and NC from the EEG signals. In order to 
create the innovative AICA-WT-BubbEn-LTSA dementia recognition framework, 
BubbEn has been chosen to construct a new BubbEn-LTSA mapping approach. The 
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Table 14.4 Comparative study of the suggested approach to the state-of-the-art

Study EEG Dataset Features types Method Classifiers

Best 
Accuracy 
(%)

Kortelainen 
et al.
[56]

BPF Frequency domain SFFS kNN 65

P. Ackermann 
et al. [61]

BPF Statistical mRMR SVM, RF SVM
(55)

Al-Qazzaz 
et al.
[45]

Conventional 
filtering, 
AICA-WT

SpecEn, ApEn, PerEn IBGSA kNN 90.52

Al-Qazzaz 
et al.
[44]

SG RCMDE DEFS_Ch SVM 95.24

H. Cai et al.
[90]

BPF, Kalman Relative and Absolute 
frequency, Relative and 
absolute power, CD, 
Entropy

Correlation- 
based 
method, 
Wrapper 
based 
method, PCA

SVM (RBF), 
RF, LR, 
kNN, DT

DT
(76.4)

H. Cai et al.
[91]

FIR, Kalman 
with DWT, 
Adaptive- 
Predictor 
Filter (APF)

Relative and absolute 
power, 
Hjorth parameters 
(activity, mobility, 
complexity), Shannon 
Entropy, SE, CD, Peak 
, Kurtosis, Skewness

Minimal- 
redundancy- 
maximal- 
relevance

kNN, SVM, 
DT

kNN 
(79.27)

Y. Li et al.
[92]

Notch filter, 
LPF, HPF

AR model + max- 
power spectrum 
density, and Sum 
power, CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, PerEn, LLE, 
Singular-Value 
Deposition Entropy 
(SVDE), Variance, 
Mean-square (MS), 
Mean of Peak-to-Peak 
(P2P)

Differential 
evolution

kNN kNN 
(98.40)

H. Peng et al.
[93]

BPF Phase lag index (PLI), 
alpha, beta, delta, and 
theta

Kendall’s tau 
coefficient

SVM, KNN, 
DT, NB

SVM 
(92.73)

S. Mahato 
et al. [94]

BPF Asymmetry and paired 
asymmetry of gamma1, 
gamma2, beta, alpha, 
theta, delta,
DFA, SE

ReliefF Bagging, 
SVM 
(kernels 
such as 
polynomial,

SVM 
(96.02)

(continued)
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Table 14.4 (continued)

Study EEG Dataset Features types Method Classifiers

Best 
Accuracy 
(%)

J. Zhu et al.
[95]

LPF, HPF AR model + Power- 
Spectrum Density 
(PSD), AR model + 
max-power spectrum 
density, and 
Sumpower, CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, PerEn, 
Singular-Value 
Deposition Entropy 
(SVDE), Mean-square 
(MS), Mean of 
Peak-to-Peak (P2P)

Correlation 
Feature 
Selection

LR, kNN, 
RF, SVM, 
BayesNet, 
NB, J48

kNN 
(92.65)

R. A. 
Movahed 
et al. [96]

LPF, HPF Synchronization 
likelihood (SL), 
Higuchi-Fractal 
Dimension (HFD), 
Detrended-Fluctuation 
Analysis (DFA), CD, 
Kolmogorov-Entropy 
(KE), Shannon 
Entropy, LLE, 
Kurtosis, Skewness, 
DWT, Relative-Wavelet 
Energy (RWE), 
Wavelet-Entropy (WE)

Sequential 
Backward 
Feature 
Selection 
(SBFS)

SVM (RBF),
LR, DT, NB, 
RB, GB, RF

SVM (99)

Narayan et al.
[97]

BPF(8 to 30) 
Hz, notch 
filter, ICA

CSP PCA SVM, LDA SVM
(98.8)

Al-Qazzaz 
et al.
[98]

Emotion Entropy ESD kNN, SVM, 
RF

SVM 
(87.64)

Our Proposed 
Method
(AICA-WT- 
BubbEn- 
LTSA)

Conventional 
filtering, 
AICA-WT

FuzzEn, FDispEn and 
BubbEn

LTSA kNN 98.89
SVM 91.11
DT 98.89

unique AICA-WT-BubbEn-LTSA detection has improved automated VD dementia 
recognition, and it may be a potential framework for enhancing the distinction 
between VD and SMCI patients and NC participants.

N. K. Al-Qazzaz et al.
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