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Abstract. LIMITLESS is a lightweight and scalable framework that pro-
vides a holistic view of the system employing the combination of both plat-
form and application monitoring. This paper presents a novel feature for
improving the scheduling process based on the performance prediction and
the detection of interference between real applications. This feature con-
sists of using malleable synthetic benchmark clones (proxies) for the appli-
cations executed in the system with two objectives: (1) build large and rep-
resentative datasets that can be used to train the machine learning algo-
rithms for predicting, and (2) evaluate if two applications can share the
same compute node in order to leverage the unused node resources.

Other related works use detailed micro-architecture independent met-
rics obtained from functional simulators, which are hard to generate in
many new applications. The results are proxies that preserve many of
the original features of the applications (control flow, memory access
pattern, etc.), and their code needs obfuscation to make impossible the
use of reverse engineering. LIMITLESS generates application proxies
based on generic-purpose performance information collected from moni-
toring. It means that other methods may obtain more accurate execution
behaviours. However, LIMITLESS’ proxies generate similar performance
without extracting data from the binaries, without the necessity of man-
aging code or data from the applications, and they can be shared securely
because they have not been generated using any piece of the original code.

LIMITLESS leverages the generated proxies to execute them offline.
Each execution increases the datasets of the machine learning algorithms
to improve the application scheduling. Besides, the executions between
proxies are combined to detect performance degradation (interference)
without the necessity of waiting for the execution of the real applications,
which depends on the users. In this work, we evaluate the proposed proxy
generation approach on a set of benchmarks and applications. We com-
pare the performance obtained during the execution of the proxies and
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the applications to show their similarity. Finally, we include an evalua-
tion of the interference detection using this approach. As far as we know,
this is the first work that uses malleable proxies.

Keywords: Malleable proxy · Malleable synthetic benchmarks ·
Performance cloning · Interference detection · Application scheduling

1 Introduction

One of the key challenges in large-scale clusters is to determine as accurately as
possible the status of the system. In this work, we combine system and applica-
tion monitoring in order to provide, not only a more accurate cluster monitoring
but also a scheme that permits to model the application behaviour. The goal
is to generate proxies that can be used as benchmarks and to use those prox-
ies to generate more information to improve the application scheduling in two
ways: by predicting the performance of the applications and by detecting inter-
ference between applications. Initially, we depend on the user and the executions
he wants to run. However, LIMITLESS can perform different actions without
waiting for the original executions due to the proxies.

The use of benchmarks is one of the keys for assessing computer systems per-
formance. Researchers and engineers need to quantify the performance of their
applications by running them many times and in different architectures. Some
uses of those benchmarks are to compare the design alternatives during develop-
ment, test computer systems for guiding development, or enable a fair evaluation
of the performance in different architectures. For example, SPEC, CPU2006,
ImplanBench, PARSEC, etc., are benchmarks that provide suites for evaluating
the performance of general-purpose processors. These standard benchmarks are
generally generated based on open-source programs. Their main limitation is
that they are not representative of real-life applications, and usually, they are
very different from the applications of interest to the developers and researchers.
The alternative consists of using real-life applications, but the code are typically
proprietary. The industry could benefit from the researchers because they can
improve their applications: the computer systems could be designed to provide a
good performance of these applications, or by applying new optimizations. And
the researchers could benefit from the industry by using their real applications to
find better design solutions or studying new research lines based on the results.

This paper presents a new alternative for proxies creation based on the generic
performance information obtained by the LIMITLESS system monitor. The mon-
itor collects the performance metrics during the execution of an application in a
compute node and stores them in a database. Then, the analytic component pro-
cesses those metrics to generate a malleable proxy (using FlexMPI [10]) that repro-
duces the same performance metrics and can be reconfigured in run time.

The proposed proxy generation features three key properties: (1) no infor-
mation of the proprietary application is revealed, (2) the performance metrics
obtained by executing the proxy are similar to the original application so that
the proxy can serve as a benchmark to evaluate possible performance behaviours
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in whatever architecture, and (3) related to the last point, an intelligent sched-
uler could combine executions of proxies, and applications and proxies, to check
if there is interference between them, allowing the system to share nodes between
non-conflicting applications. Note that the malleability in already implemented
in the proxies due to their integration with FlexMPI.

The main contributions of this work are:

– A proxy generation feature to provide synthetic malleable micro-benchmarks
based on the collected performance behaviour.

– An improvement in the application scheduling employing machine learning
algorithms trained with proxies executions.

– A methodology to improve the application scheduling through the malleable
proxies, combining them with the real applications to identify interference.
In this context, malleability means that the system can use a single proxy for
evaluating different configurations (number of processes) at run-time.

The structure of the paper is as follows: Sect. 2 describes the architecture
organization; Sect. 3 describes LIMITLESS’s features for providing proxy gener-
ation, Machine Learning training algorithms, and the studies of the interference
between applications; Sect. 4 provides a practical evaluation of the performance
metrics obtained from the proxy executions, the accuracy of the prediction algo-
rithms, and the results of the studies related to the interference between appli-
cations; Sect. 5 shows relevant works related to our proposal. Finally, Sect. 6
summarizes the main conclusions and future work.

2 Monitor Architecture

Fig. 1. General overview of the system architecture and interrelation with other com-
ponents.

LIMITLESS is a light-weight scalable monitor that operates on each compute
node and provides information about available system resources and the per-
formance of the applications that are being executed. Figure 1 shows a general
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overview of the LIMITLESS architecture. It is integrated with other compo-
nents like the application scheduler, FlexMPI and CLARISSE runtimes to extend
its capabilities, for example, including features for application-level monitoring.
LIMITLESS includes four main modules: a System monitor that collects the
performance metrics from the cluster, an ElasticSearch database [6] that pro-
vides persistent storage, Kibana, a GUI for displaying the cluster information
in a user-friendly format, and an Analytic component that analyses and models
the executing applications, and generates proxies.

LIMITLESS Analytics (LAN) is the component that deals with the storage,
visualization, communication with the scheduler and is responsible of the appli-
cation performance prediction. It stores and manages the application models,
generates the predictors, trains and executes the machine learning algorithms,
and it generates the malleable proxies.

In order to explain the system dataflow, the arrows in Fig. 1 include numbers.
When one application is executed, the scheduler notifies LIMITLESS Analytics
(arrow 1) about the application characteristics (which is used to identify and clas-
sify the application). After that, when the applications are executed two different
metrics are collected simultaneously: at node level to the monitor (arrow 2) and
application level to FlexMPI and CLARISSE (arrow 3). Then, both metrics are
processed by the respective runtimes and are written into Elastic search (arrows
4 and 5). Then, the LIMITLESS analytics creates an application model using
the information stored in ElasticSearch (arrow 6). Once the application model is
generated, the analytics also creates the proxy associated with the application,
which can be used to generate more performance metrics to increase the size
of the dataset. Then, the predictors are refined using this offline information.
And finally, the prediction model (arrow 7) is sent to LIMITLESS to predict
the performance of the applications on each node. During all these processes,
Kibana may be used to visualize (arrow 8) the cluster status.

2.1 System Monitor

The LIMITLESS monitor is designed to provide performance information of the
nodes and applications in large scale systems. LIMITLESS allows to change the
the monitoring period (also called sample interval) online, having one different
for each node, and without the necessity of restarting the system or the monitor.
The monitoring interval can be set in a range of time from hours to seconds and
also sub-second. Moreover, the overhead in the compute nodes is low (<1% in
CPU consumption and a memory footprint of 3890 KB in resident), which means
that the monitoring does not interfere with the applications.

The system monitor consists of one LIMITLESS Daemon Monitor (LDM)
per node, which periodically collects the performance metrics; a set of LIM-
ITLESS DaeMon Aggregators (LDAs), that forwards the information from the
LDMs to other aggregators or servers; and the LIMITLESS DaeMon Server
(LDS) that gathers and stores the monitoring information in ElasticSearch. The
deployment over the architecture is done hierarchically, generating a data flow
from the nodes (LDMs) to the main server (LDS) and the database. The user
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Fig. 2. Designed methodology to create the proxy benchmarks based on the monitoring
data, and how that new data is used to produce more accurate predictors.

defines the hierarchy, but the optimal design consists of mapping the hierarchy
with the network topology.

3 Building Synthetic Micro-benchmarks

The proposed proxy generation process can be seen in Fig. 2. The first step is the
application characterization. This process consists of collecting the performance
metrics associated with the running applications. The LIMITLESS Monitor is in
charge of providing this collection of metrics. The execution time is also obtained
from the scheduler. The second step consists of storing the performance metrics
associated with each application in the database. Then, the analytic component
generates a model of each application based on the collected performance met-
rics. Finally, the last step is to generate the proxy based on that model, resulting
in an executable that tries to reproduce the same performance metrics as the
original application.

The LIMITLESS Analytic component uses the performance models to gen-
erate the proxy benchmark. We extend the previous works by a new lightweight
proxy generation that do not contain proprietary information, can be shared
without any issue, do not need input data, and it is malleable. However, there
are also some weaknesses. Note that the resulting proxies are not as accurate as
other proposals due to the general-purpose source data.

The LIMITLESS’ scheduling policies have been designed for clusters that
use shared nodes. They can be applied to clusters with exclusive resource allo-
cations, but they have no potential for improvement. There are three strategies
to schedule the applications: the first one is based on monitoring information,
the second one is based on prediction, and the last one is based on proxies uti-
lization. The first alternative was implemented in [2] and uses the monitoring
information to make decisions about the application schedule depending on the
available resources, the performance of the running applications and other user-
defined metrics. The second alternative uses the generated application models to
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predict the future performance of the applications to make decisions about appli-
cation scheduling in advance, which is a process that does not consume resources
or CPU. However, this alternative depends on the accuracy of the predictors.
The third strategy consists of using the proxies to combine their executions with
other applications to identify pairs of applications that can run concurrently in
the same compute node (to leverage the unused resources). The concepts of the
second and third strategies are explained below.

In order to have a large dataset for the training and test phases, the frame-
work executes the proxies multiple times until the accuracy of the prediction
algorithms enhanced until 85%. Typically, during our tests, this value is achieved
when the applications have been executed three times. However, the proxies are
not as much accurate as the original application, which means that the training
with proxies needs more executions. During our tests, we achieved that accuracy
with 10 executions. Instead, LIMITLESS uses the compute-nodes to execute the
proxies when there are free computational resources, and the scheduler does not
have tasks ready to be run.

3.1 Application for Improving Machine Learning Algorithms

Deep-learning networks perform automatic feature extraction from the datasets
independently. Most traditional machine-learning algorithms need to analyze
large amounts of data in order to provide accurate predictions, and those datasets
has to be large and representative enough of the features that the users want to
extract.

The feature extraction process can take a long time to accomplish using sta-
tistical analysis by hand. Besides, there is no applications for generating well
datasets for training, validating and processing. However, the more data a net
can train on, the more accurate it is likely to be. So, the fact of having large
datasets with representative data for each feature is directly related to the accu-
racy improvement.

Following this idea, LIMITLESS uses the proxy generator to produce new
synthetic micro-benchmarks to execute at non critical hours and generate more
data. Each execution of an application proxy is stored as a model of the original
application, increasing the dataset for that application. Then, this dataset is
used by the prediction algorithms to predict the performance of the running
applications. Predicting the performance behaviour permits the scheduler to
improve its policies, making decisions based on possible future scenarios. This
proposal is the continuation of a previous work [2] and [3], in which LIMITLESS
uses monitoring information to schedule the jobs dynamically. The proxies allow
the scheduler to predict possible future states of the nodes and applications.
Currently, this information is used to perform dynamic application scheduling
based on predicting the future states of the cluster.

Note that this scheduling strategy can be used when an application has run
one time because LIMITLESS generates the proxy. Then, the proxy model is used
to train and predict. This process substitutes the human action of executing the
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applications by hand, saving time until the users re-run their applications, and
without consuming resources.

3.2 Application for Application Interference Analysis

One of the main objectives to generate these proxies based on application mon-
itoring is the interference evaluation when two applications are running in the
same node (note that one application could use more than one node with a
different number of processes). This situation can occur when the scheduler allo-
cates the jobs in non-exclusive nodes in order to perform a better utilization of
the resources. With this configuration, depending on the available resources of a
certain compute node, another application can share the unused ones. However,
there is a potential risk of performance degradation (interference) between them.
To improve the scheduling task, we propose the use of our malleable proxies to
generate a profiling study under different workloads while a real application is
running in the system.

To know if there is interference between two jobs (two applications, an appli-
cation and a proxy, or two proxies), the system collects the performance metrics
of the applications at the beginning, during a short period of time when the
application is running exclusively in the node. Then, when another application is
allocated in the same compute node the same performance counters are collected.
By comparing the exclusively-collected and the shared-collected metrics, the sys-
tem can identify if there is performance degradation. Using this information, the
scheduler can make decisions about the scheduling, for instance migrating one
of them to avoid the interference, or evaluating if that interference is mitigated
when the number of processes is increased or decreased.

The collected information results in three performance counters: RTIME indi-
cates the CPU time per group of iterations, CTIME is the communication time
per group of iterations, and finally the execution time TIME. The execution time
indicates if there is generic interference between two applications: if the execution
time of an application is lower than the obtained when another application is
running in the same node, it means that the second application is interfering with
the first one. However, using the other counters, the system can identify more
details about the reasons behind the performance degradation. This information
contributes to making decisions to avoid it. For instance, if the interference is
produced at CPU-level, the second application could reduce its processes to mit-
igate it, or the scheduler could move the second application to another compute
node. FlexMPI performs these operations of expanding, reducing and migrating.
It allows the application to increase or decrease its processes and redistribute
the data every reconfiguration. Note that there is no necessity to kill the job
and restart it with the new configuration. In the case of communication-based
interference, the solution could be the reduction of the number of processes to
reduce the communication between them.

Currently, the malleable proxies are relevant because, during the execution
of the real application, the proxies can be run with different configurations: the
scheduler, employing FlexMPI, can reconfigure a proxy from 2 processes to n to
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collect information about the performance and the interference. The objective
is to evaluate different configurations to generate a scalability model that could
support the scheduler with the scheduling making decisions. Note that, different
from the last strategy, this one consumes computational resources due to the
concurrent execution of the proxy and the applications. However, the interference
evaluation is done with only one execution of the original application and one
execution with the proxy to evaluate the different scenarios, which is faster than
executing the original application and every configuration of the proxy.

4 Evaluation

We have implemented a proof-of-concept of application proxy generation based
on CPU, memory and communication usage. We do not use profilers or perform
reverse engineering like other related works.

The evaluation has been divided into three sections. The first one shows a
comparison between the original benchmark and the proxy based on it. The
original benchmarks used come from the Princeton Application Repository for
Shared-Memory Computers (PARSEC) [14], which is a benchmark suite com-
posed of multi-threaded programs that are focused on emerging workloads, and
NASA Advance Supercomputing (NAS) Parallel Benchmarks (NPB) [11], which
consists of a small set of applications designed to evaluate the performance of
parallel supercomputers. The second section consists of a brief evaluation of the
predictors when LIMITLESS uses the proxies to train the algorithms instead of
the original applications. Finally, the third section corresponds to the evaluation
of the interference produced between applications and proxies.

The evaluation has been done in a physical platform that consists of eight
compute nodes. One partition of the cluster contains six nodes with Intel(R)
Xeon(R) E7 with 12 cores and 128GB of RAM in the other. The second partition
contains two nodes with Intel(R) Xeon(R) Gold 6212U CPU @ 2.40GHz with 24
cores and 315GB of RAM. The connection between nodes is a 10 Gbps Ethernet.
The I/O is based on Gluster parallel file system.

4.1 Proxy Accuracy

The different benchmarks used for this evaluation includes, as we have indicated
before, a set of applications from PARSEC, NPB and the Jacobi method. The
used benchmarks are:

– Jacobi: This is an algorithm for determining the solutions of a diagonally
dominant system of linear equations. Each diagonal element is solved for,
and an approximate value is plugged in. The process is then iterated until it
converges.

– Integer-Sort: This is a kernel that performs random memory access. It belongs
to the class of bucket sort algorithms which perform an all-to-all communi-
cation pattern (through OpenMP in this case).
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– Multi-grid: This benchmark solves a 3D Poisson equation using a V-cycle
multigrid method. It exhibits structured, long range communications.

– Bodytrack: This application tracks a human body with multiple cameras
through an image sequence.

– Blackscholes: This application calculates the prices for a portfolio of Euro-
pean options analytically with the Black-Scholes partial differential equation
(PDE). There is no closed-form expression for the Black-Scholes equation and
as such it must be computed numerically [13].

Figure 3a shows the performance behavior of the Jacobi method. It exhibits
characteristic CPU, memory and communication patterns. The CPU phases are
correlated to the memory and the communication phases. Once LIMITLESS
has modelled the application, the LAN component generates its proxy, which
produces the performance behavior that can be seen in Fig. 3b.

Fig. 3. Jacobi I/O model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

The next two figures (Figs. 4a and 4b show the performance behavior of
Integer-sort (IS) and Multi-grid (MG) benchmarks from the NAS Parallel Bench-
marks. Figure 4a shows the performance behavior of the Integer-sort benchmark.
In this case, the execution performs a series of computations, including a gradual
increase in memory usage until the data load is complete (the first 30 s of the
execution). Figure 4b corresponds to the performance behavior obtained from
the proxy execution. In this case, the CPU usage is a bit higher as the original
due to the overhead of the memory replication.

Figure 5a shows the performance behavior of the Multi-Grid benchmark. This
use case is similar to the last one (and similar to the rest of the benchmarks of
the NPB 1). MG also performs a series of computations keeping the CPU and the
memory barely constant along the execution time. Figure 5b corresponds to the
performance behaviour obtained from the proxy execution, which is reproduced
with high fidelity.

Figures 6a and 6b show the performance behavior of Bodytrack and Blacksc-
holes benchmarks from the PARSEC Benchmarks. The first one corresponds
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Fig. 4. Integer-Sort model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

Fig. 5. Multi-Grid model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

to a computer vision workload, which performs medium working sets of com-
putation. The second one is the simplest of all PARSEC workloads because it
performs small working sets with no communication until execution end. The
first one shows the performance behavior of Bodytrack benchmark. It consists
of seventeen computation phases that are well replicated by the proxy in the
second figure. There are no significant changes in the memory consumption, and
it keep constant along the time.

The performance of the last original use case can be seen in Fig. 7a, which
corresponds to Blackscholes benchmark. It performs an unique computation (but
longer) phase at the middle of the executions. At the end of the execution there
is a peak of communication. The performance metrics obtained from the proxy
execution can be seen in Fig. 7b.

As it can be seen, in all the cases the proxy program is able to reproduce
the original workload, despite the fact of existing small differences between the
original program and the proxy. It is due to LIMITLESS does not perform deep
profiling of the applications to produce 100% accurate proxies. Instead, LIMIT-
LESS tries to build generic proxies that reproduce, with certain accuracy, the
performance behaviour, the computation phases, the memory consumption and
the network traffic. Taking all into account, LIMITLESS uses these proxies offline
to generate new data to refine faster the performance predictors. It is important
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Fig. 6. Bodytrack model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

Fig. 7. Blackscholes model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

to highlight that the predictors are re-built every time new model is stored in
the LIMITLESS database, so the proxy programs improve their accuracy over
the time.

4.2 Prediction Algorithms Improvement

LIMITLESS includes one analysis method to predict the performance of the
applications. It is based on multi-variable analysis, and uses a federation of
machine learning algorithms: Nearest Neighbour (NN), AdaBoost and Support
Vector Machines (SVM). The purpose of having this prediction feature is to
improve the application scheduling by means of evaluating possible future states
of the system. If the scheduler needs to schedule an application App, it can
predict the complete behaviour of App, select better nodes to run App, or decide
if any of the current running applications could share a node with App.

Regarding the accuracy by using proxies, Table 1 shows the accuracy of the
predictors using the five use cases previously described. Only the first execution
stores real data in the dataset. Hence, another 20 execution patterns are stored
using proxies. At first, it is important to know that these machine learning
algorithms showed an average accuracy of 97% by using real executions and
patterns. As it can be seen in Table 1, the average accuracy for all these use
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cases is 87.5% (77.6% for memory patterns and 97.4% for CPU patterns). Note
that these values include a tolerance of 3% (if both, the original and predicted
values, have a difference within this range, we consider the prediction a hit). CPU
is better predicted because generating CPU loads is easier than other factors.
However, memory, I/O, and communications are harder to replicate without
using the same code structure and operations, as [8] and [17] suggest. In our case,
we do not try to consider the memory pattern, the execution flow, the system
calls used, etc., which should improve the accuracy. Instead, we try to generate
generic algorithms to provide similar proxies to replicate the performance of the
original applications.

Table 1. Accuracy of the machine learning algorithms using datasets without real
application executions, taking into account a tolerance of +/–3%. Note that the first
execution is provided by the real application (first execution in the system), and then
it is used as a model for generating the proxies.

Application Memory CPU

BS 55% 97%
BT 92% 98%
IS 50% 99%
MG 99% 99%
JIO 92% 94%

4.3 Interference Detection Using Malleable Proxies

Fig. 8. Use case Jacobi - comparison between the execution time of Jacobi instances
running concurrently in the same compute node and the same executions using proxies.
The interference is directly related to the execution time.
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Fig. 9. Use case Gradient - comparison between the execution time of Conjugate Gradi-
ent instances running concurrently in the same compute node and the same executions
using proxies. The interference is directly related to the execution time.

In this section we show two examples of how the system studies the interfer-
ence between two applications using the malleable proxies. With the information
related to the interference analysis, the scheduler is able to make more precise
decisions for future executions, knowing which applications are compatible (i.e.
both can share a node without performance degradation). The following tests
have been focused on the second partition of the cluster. Note that the applica-
tions can be run in more compute nodes, however only the last allocated node
could have available resources to share with other applications. For example,
App1 requires 28 processes and App2 20 in a cluster with two nodes with 24
cores each. The scheduler will allocate 24 processes in the first node and the other
4 processes in the second node for App1. As there are enough free resources in
the second compute node, the scheduler can allocate App2 on them.

Following this idea, the first use case corresponds to the Jacobi I/O appli-
cation. The second use case corresponds to the Conjugate Gradient algorithm.
Figure 8 shows the execution time of the Jacobi use case under different condi-
tions. The experiments start with the execution time of the Jacobi application
running in an exclusive node. Then, each experiment corresponds to a Jacobi
instance with 12 processes (in blue) combined with another instance with pro-
cesses from 8 to 28 (in orange). The objective is to quantify the interference
under different scenarios. As it can be seen, the interference reaches the max-
imum value with 12 processes per application because all the cores are in use,
and both instances are performing the same operations.

The same scenario is proposed in Fig. 9 with the Conjugate Gradient use case.
In this scenario, the evaluation is done between 8 and 16 processes due to the
size of the problem. There is no possibility to increase the processes because of
the data redistribution. The same behaviour can be observed in the 12-processes
experiment. Before and after this, the interference is lower because the interfere
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operations overlap in a lower percentage in the time because the load changes
on each experiment (load distribution between processes).

The last scenarios have been done statically, with the proxies previously con-
figured with the concrete number of processes. However, due to the malleability,
the same experiments can be done in a row, executing one instance of Jacobi
or Gradient, and a malleable proxy that increases its number of processes peri-
odically. The results of these experiments can be seen in Tables 2 and 3. They
show the overhead of performing the interference study using malleability. Note
that each experiment takes the time per iteration instead of the execution time
(which multiplied by the number of iterations results in the estimated execution
time). Taking into account the overheads, the difference between the static and
the malleable evaluation is the time needed to get the results: 32,734 s for the
first use case and 44,868 s for the second one with the static model. In the case
of the malleable mode, the time needed is 3850 s for the first one, and 6003 s
for the second one. Note that the executions start with 8 processes. Malleability
generates overheads for process creation/destruction, but it is compensated by
the time saved when the application is running with more processes.

Table 2. Jacobi use case - Interference evaluation using malleability with one proxy,
from 8 processes to 28.

N. procs Expand/shrink time (s) Data redistribution

8 to 12 0.891120 0.121103

12 to 14 0.949042 0.116333

14 to 16 0.898925 0.114143

16 to 18 0.901130 0.120974

18 to 20 0.908145 0.114886

20 to 24 0.909972 0.104716

24 to 28 0.907456 0.104094

28 to 8 0.017645 0.131265

Total overhead 6.383435 0.927514

Table 3. Gradient use case - Overhead using malleability with one proxy, from 8
processes to 16.

N. procs Expand/shrink time Data redistribution time

8 to 12 0.087823 0.125488

12 to 14 0.088597 0.105049

14 to 16 0.935568 0.115070

16 to 8 0.002273 0.158980

Total overhead 1.111978 s. 0.5048587 s.
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5 Related Work

In this section we introduce some related works that are relevant in fields of
monitoring, application proxy generation and scheduling. Unfortunately, it does
not contains any related work about malleable proxies, because, as far as we
know, our proposal is a novelty.

The main goal of the authors in [9] is to provide easy-to-use, portable, trans-
parent, and efficient instrumentation tools (called Pintools) that are written in
C/C++ using Pin’s rich API. They provide different instrumentation than other
similar tools, for example, Valgrind and dynamoRIO. The instrumentation does
not interfere with the loads/stores in the registers. The authors provide a com-
parison between PIN, Valgrind and dinamoRIO, where we can observe that PIN
and dinamoRIO outperform Valgrind without instrumentation, and PIN out-
performs both Valgrind and dinamoRIO when we consider performance with
instrumentation.

In [4] the authors proposed a synthetic proxy generation to (1) reduce the
simulation time employing these proxies generated instead of the original appli-
cations, and (2) share these proxies for computer architects, as some of the
specific target applications are proprietary, and vendors hesitate to share them.
They provided the synthetic clones for CPU2006 and ImplanBench workloads.
The metrics used include the Memory Level Parallelism (MLP) of those work-
loads to estimate the burstiness of accesses to the main memory, and the features
needed to characterize a benchmark are: a Statistical Flow Graph (SFG) that
is used to capture the control flow behaviour; a branch prediction algorithm
based on the branch transition rate; the Instruction Level Parallelism (ILP)
in the workload; and the memory access pattern. Instead of capturing data to
get the memory access pattern, the authors used a stride base memory access
(because Joshi et al. concluded previously in [7] that most of the load and store
instructions in CPU200 workloads have that pattern).

Later, in [5], the authors proposed a framework that can generate proxies for
real-world multi-threaded applications based on: shared caches, coherence logic,
out-of-order cores, interconnection network and DRAM. This framework is eval-
uated by generating proxies from the PARSEC benchmark suite and comparing
their results in terms of performance. Their solution consists of extracting per-
formance information from the applications and then generating the code for
the proxies based on a C template with some options. The main benefit of cre-
ating and using these proxies is that they have used a simulator to calculate
the energy consumption of different workloads and different parameters, and the
simulations are four magnitude orders faster using the proxies due to the number
of instructions executed (millions versus thousands of instructions).

In [16] the authors proposed code mutation (to generate application prox-
ies), a technique that mutates the original code of a real application to make
harder/impossible reverse engineering. Their objective consists of allowing the
distribution of those proxies that have the same behaviour (in terms of perfor-
mance) as the original. To test the results, they use the SPEC CPU2000 and
MiBench benchmarks. They also provide a comparison between the different
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related works for code mutation, because the approaches differ in the way to pre-
serve the proprietary application’s memory accesses and control flow behaviour.
The code mutation uses the same code structure by maintaining the execution
flow but using different instructions, operations and registers. In these cases, the
mutant code has the same execution time as the original application, which is
one of the main objectives.

In [15] the same authors as the last related work propose a framework to
generate synthetic benchmarks based on real applications. To do that, the frame-
work performs different profiling analyses, similar to reverse engineering. Based
on that set of instructions, data and code information, the framework generates
an application in a high-level programming language (C) that fulfils the perfor-
mance requirements. Finally, the framework performs a semi-random obfuscation
for avoiding the possibility of generating similar code as the original application,
but with smaller number of instructions.

Clone morphing [17] is different from Clone workloads. The second one tries
to copy in an application its performance behaviour, without providing real
information about the original application. The first one proposes systematic
changes to clone the behaviour of the application focusing on certain features.
In this case, this program copies the cache/memory patterns for each application.
Their main contribution is the systematic method for producing new proxies with
performance behaviours that are the result of the combination of more than one
application. The main weakness of this work is that the authors focus their work
on the cache and memory patterns.

In [12] the authors proposed PerfProx, another alternative to build proxies
based on real applications. However, this related work differs from other previ-
ous works because their proxy generator tries to replicate the performance of the
applications based on the performance counters (similar to our proposal), and
it is only focused on database processes. PerfProx directly genetares a general-
purpose proxy executable. They have evaluated their proposal on Casandra,
MongoDB and MySQL running both the data-serving and data-analysis on dif-
ferent platforms.

In [1] the authors proposed SynFull, a synthetic traffic generator that cap-
tures both applications and cache coherence behaviour to evaluate NoCs (Net-
works on chips). SynFull provides a novel technique for modelling real application
traffic without the need for expensive, detailed simulation of all levels of the sys-
tem. The authors determined the key traffic attributes that a cache-coherent
application-driven traffic model must capture, including coherence-based mes-
sage dependencies, application phase behaviour and injection process. So, this
work is focused on modelling the network and the cache coherence traffic. As a
result, SynFull attains an overall accuracy of 10.5% across the three configura-
tions for all benchmarks relative to full-system simulation.

In contrast to the previous related works, the objective of this proposal is
not to replicate the applications accurately. Instead, our goal is to reproduce
the performance of the applications without extracting data from the binaries,
without the necessity of dealing with code or data from the applications, and
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without a big penalty in terms of overhead. However, this research line is relevant
because more accurate proxies will produce more accurate performance counters,
and they will increase the accuracy of the predictors. Moreover, the LIMITLESS’
proxies are malleable using FlexMPI, which allows dynamic reconfiguration of
the number of processes in run time. Due to this, the system is able to analyze
different configurations of the same application proxy to discover its scalability
and its impact on other applications (interference).

6 Conclusion

In this paper, we introduce a new feature on LIMITLESS, a lightweight mon-
itoring and scheduling framework that was designed to monitor and schedule
the execution of the applications on large-scale computing infrastructures. This
feature consists of creating synthetic micro-benchmarks (proxies) from the appli-
cations executed in the cluster, based on the performance models that LIMIT-
LESS already produces in an iterative fashion. One of the main characteristics
of the framework is the performance prediction, which allows the scheduler to
improve its tasks. It generates proxies based on the collected data and then uses
those proxies to generate new execution data, which are included in the dataset
to train the networks and the machine learning algorithms. With this proposal,
LIMITLESS can predict the application performance with one execution and
without user intervention. Besides, those application proxies can be shared to
exhibit the performance of the real applications that have been running in the
platforms because they do not contain proprietary information nor include any
piece of code of the original application. Moreover, the system uses different
application proxies to perform interference studies between applications, which
allows the scheduler to share nodes between compatible applications. Note that,
in case of performance degradation (interference) during the execution of real
applications, the system will detect that situation, avoiding it by means of appli-
cation migration or increasing or decreasing the processes using the malleability
features.

As future work, we are studying the possibility of including a more precise
application characterization to replicate, not only the performance metrics but
the performance behaviour: FLOPs, IPC, syscalls, I/O phases, etc. Currently, it
is not an option because we want to keep the overhead in the compute nodes as
lower as possible.
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