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Abstract. While there has been a growing interest in supporting accel-
erators, especially GPU accelerators, in large-scale systems, the user
typically has to work with low-level GPU programming models such as
CUDA along with the low-level message passing interface (MPI).

We believe higher-level programming models such as Partitioned
Global Address Space (PGAS) programming models enable productive
parallel programming at both the intra-node and inter-node levels in
homogeneous and heterogeneous nodes. However, GPU programming
with PGAS languages in practice is still limited since there is still a big
performance gap between compiler-generated GPU code and hand-tuned
GPU code; hand-optimization of CPU-GPU data transfers is also an
important contributor to this performance gap. Thus, it is not rare that
the user eventually writes a fully external GPU program that includes
the host part -i.e., GPU memory (de)allocation, host-device/device-host
data transfer, and the device part - i.e., GPU kernels, and calls it from
their primary language, which is not very productive.

Our key observation is that the complexity of writing the external
GPU program comes not only from writing GPU kernels in the device
part, but also from writing the host part. In particular, interfacing
objects in the primary language to raw C/C++ pointers is tedious and
error-prone, especially because high-level languages usually have a well-
defined type system with type inference.

In this paper, we introduce the GPUAPI module, which offers multiple
abstraction levels of low-level GPU API routines for high-level program-
ming models with a special focus on PGAS languages, which allows the
user to choose an appropriate abstraction level depending on their tuning
scenarios. The module is also designed to work with multiple standard
low-level GPU programming models: CUDA, HIP, DPC++, and SYCL,
thereby significantly improving productivity and portability.

We use Chapel as the primary example and our preliminary perfor-
mance and productivity evaluations show that the use of the GPUAPI
module significantly simplifies GPU programming in a high-level pro-
gramming model like Chapel, while targeting different multi-node
CPUs+GPUs platforms with no performance loss.
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1 Introduction

There has been a growing interest in accelerators, especially GPU accelerators,
in large-scale systems. In the Top 500 list, one can see that a significant num-
ber of systems consist of heterogeneous nodes with GPUs. As with homogeneous
systems, software productivity and portability is still a profound issue for hetero-
geneous systems. We believe that the use of PGAS (Partitioned Global Address
Space) languages [2,5,15] including Chapel, is a scalable and portable way to
achieve high-performance without sacrificing productivity.

As for GPU support in PGAS languages, some of the past approaches [6,
13] aim at compiling high-level parallel constructs (e.g., Chapel’s forall) to
GPUs. Also, from Chapel 1.24 onwards, a preliminary full automatic approach is
available [4,12]. However, in general, there is still a big performance gap between
compiler-generated GPU code and hand-tuned GPU code. Thus, it is possible
that the user ends up writing a low-level GPU program that includes the host
part—i.e., GPU memory (de)allocation, host-device/device-host data transfer,
and the device part—i.e., GPU kernels, and call it from their primary language.

Our key observation is that there are only two ultimate GPU programming
approaches in PGAS languages: fully automatic and fully manual, and there
is no “intermediate” approach. Also, our another key observation is that the
complexity of the fully manual approach comes not only from writing GPU
kernels in the device part, but also from writing the host part. In particular,
interfacing objects in the primary language to raw C/C++ pointers is tedious
and error-prone, especially because PGAS languages have a well-defined type
system with type inference.

In this paper, we propose the GPUAPI module, which offers “medium-level
(MID-level)” abstraction of low-level GPU API routines for high-level program-
ming models with a special focus on PGAS languages, which fills the gap between
the fully automatic approach (we call it HIGH-level) and fully manual approach
(we call it LOW-level). In our design, MID-level includes two sub-levels:

– MID-level: Provides GPU API that is more natural to the user of the pri-
mary language -i.e., use the new keyword to allocate GPU memory.

– MID-LOW-level: Provides simple wrapper functions for raw GPU API
functions -i.e., use the Malloc function to allocate GPU memory.

This multi-level design allows the user to choose an appropriate one depend-
ing on their tuning scenarios. Specifically, the user has the option of 1) providing
a high-level specification (HIGH-level) and letting the compiler do the job, and
2) diving into lower-level details to incrementally evolve their implementations
for improved performance (MID-level → MID-LOW-level → LOW-level). Also,
the module is designed to work with multiple standard low-level GPU program-
ming models: CUDA, HIP, DPC++, and SYCL, thereby significantly improving
productivity and portability.

To the best of our knowledge, this paper is the first paper that discusses
the design and implementation of “intermediate-level” GPU API for multiple
CPUs+GPUs platforms.
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This paper makes the following contributions:

– The design and implementation of multi-level platform-independent GPU
API for high-level languages.

– Performance evaluations and productivity discussion using different dis-
tributed mini applications and a real-world application [1] on different
CPU+GPU systems.

While we use Chapel as the primary language, our discussion should apply
to other PGAS languages.

2 Background

2.1 Chapel

Chapel has been one of the most active PGAS languages for decades. Chapel
is designed to express parallelism as part of language rather than include it as
libraries or language extensions such as compiler directives or annotations. Due
to this design, many of the constructs that support parallelism are treated as
first-class citizens of the language. Since locality is also important in achieving
performance in parallel programs, the locality constructs are also included as a
first-class citizen in the Chapel language. Chapel allows expressing parallelism
at various granularity for a wide range of platforms without the need for code
specialization. This expressiveness of parallelism helps programmers to create
portable parallel programs, thereby improving their productivity.

Also, Chapel’s “global-view” programming model allows the user to easily
write a multi-node program as if they are writing a program for a single-node.
For example, suppose D is a distributed domain, which is an iteration space that
is distributed across multiple nodes, one can write the following code to create
a distributed array A with the length of n and assign 1 to it:

1 // D is a block distributed domain, n is a big number
2 var D: domain(1) dmapped Block(boundingBox = {1..n}) = {1..n};
3 var A[D]: int;
4 forall i in D {
5 A[i] = 1;
6 }

Space limitations prevent us from including more details on Chapel. For more
details, see [3].

2.2 Chapel’s GPUIterator Module

In our past work [9], we introduced the GPUIterator module, which facilitates
the invocation of a user-written low-level GPU program. The module provides
a parallel iterator for a forall loop, in which the iteration space is divided into
two spaces: a CPU and GPU space. The original forall iterating over the CPU
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Listing 1.1. A Chapel program with the GPUIterator module.

1 use GPUIterator;
2 proc GPUCallBack(lo: int, hi: int, nElems: int) {
3 // The GPU portion (lo, hi, nElems) is automatically computed
4 // even in multi-node + multi-GPUs settings.
5 // Also, hi-lo+1 == nElems
6 myGPUCode(...);
7 };
8 var CPUpercent = x; // X% goes to the CPU
9 // (100 - X)% goes to the GPU

10 // D can be a distributed domain
11 forall i in GPU(D, GPUCallBack, CPUPercent) {...}

space is executed on the CPUs. Similarly, for the GPU space, it invokes a user-
written callback function where a low-level GPU program is invoked with the
divided GPU space.

Listing 1.1 shows an example of a Chapel program with the module. The
domain D is wrapped in the GPU() iterator. The GPUCallBack() is invoked once
the module has computed a CPU and GPU space, and the user is supposed
to write the invocation of low-level GPU code (myGPUCode()) in the callback.
Also, the user can tweak the CPU/GPU percentage by changing the CPUPercent
(100% goes to the GPU if the user omits the argument).

Let us emphasize that the module is designed to facilitate multi-node, multi-
GPUs, plus hybrid execution in a portable way. This feature is significant because
many of the past approaches that tackle GPU execution in PGAS languages do
not support such a feature. To handle multi-GPUs per node, the module auto-
matically computes a subspace for each GPU and implicitly calls the callback
function multiple times - i.e., the number of GPUs per node × the number of
nodes. Because the module implicitly sets the device ID for each GPU, all the
user has to do is 1) to write a code snippet that gets a local portion of a dis-
tributed array in the Chapel part, 2) to make the device part flexible to change
in iteration spaces -i.e., making it aware of lo, hi, nElems, and 3) not to put a
device setting call.

Listing 1.2 and Listing 1.3 illustrate an example distributed implementa-
tion of the STREAM benchmark (A = B + alpha*C) that enables distributed
hybrid execution on multple CPUs+GPUs nodes. On line 16 in Listing 1.2, in
the GPUCallBack function, it obtains a local portion of the distributed array A,
B, and C using the localSlice() API, which is fed into the external C function
cudaSTREAM() along with a subspace for each GPU (lo, hi, and nElems). The
GPU part in Listing 1.3 includes a typical host program including device memory
(de)allocation, data transfer, and kernel invocation. Note that the kernel (line 3
in Listing 1.3) is flexible to change in iteration space because it only iterate over 0
to nElems-1 that is given by the Chapel part. Also, since localSlice(lo..hi)1

returns a pointer to the head of the local slice, it is safe to assume that &A[0],

1 In Chapel, lo..hi means a range starting with lo and ending in hi (inclusive).
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Listing 1.2. An example distributed implementation of STREAM (The Chapel part).

1 /* stream.chpl */
2 use BlockDist; use GPUIterator; use GPUAPI;
3
4 extern proc cudaSTREAM(A: [] real(32), B: [] real(32), C: [] real(32),
5 alpha: real(32), lo: int, hi: int, nElems: int);
6
7 config const n = 1024: int;
8 config const CPUPercent = 0: int;
9 var D: domain(1) dmapped Block(boundingBox={0..#n}) = {0..#n};

10 // distributed arrays (A, B, C) with the domain D
11 var A: [D] real(32); var B: [D] real(32); var C: [D] real(32);
12 var alpha: real(32) = 0.5;
13
14 proc GPUCallBack(lo: int, hi: int, nElems: int) {
15 // lo, hi, nElems plus device ID is automatically set here
16 cudaSTREAM(A.localSlice(lo..hi), B.localSlice(lo..hi),
17 C.localSlice(lo..hi), alpha, lo, hi, nElems);
18 };
19 ...
20 forall i in GPU(D, GPUCallBack, CPUPercent) { A[i] = B[i] + alpha * C[i]; }

Listing 1.3. An example distributed implementation of STREAM (The GPU part)

1 /* stream.cu */
2 // the kernel part
3 __global__ void stream(float *dA, float *dB, float *dC,
4 float alpha, int nElems) {
5 int id = blockIdx.x * blockDim.x + threadIdx.x;
6 if (id < nElems) dA[id] = dB[id] + alpha * dC[id];
7 }
8 // the host part
9 extern "C" {

10 void cudaSTREAM(float* A, float *B, float *C, float alpha,
11 int64_t start, int64_t end, int64_t nElems) {
12 assert((end-start+1) == nElems);
13 float *dA, *dB, *dC; size_t nBytes = sizeof(float) * nElems;
14 cudaMalloc(&dA, nBytes);
15 cudaMalloc(&dB, nBytes);
16 cudaMalloc(&dC, nBytes);
17 cudaMemcpy(dB, B, nBytes, cudaMemcpyHostToDevice);
18 cudaMemcpy(dC, C, nBytes, cudaMemcpyHostToDevice);
19 stream<<<ceil(((float)nElems)/)1024, 1024>>>(dA, dB, dC, alpha, nElems);
20 cudaDeviceSynchronize();
21 cudaMemcpy(A, dA, nBytes, cudaMemcpyDeviceToHost);
22 cudaFree(dA);
23 cudaFree(dB);
24 cudaFree(dC);
25 }}
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&B[0], and &C[0] in the host part point to A[lo], B[lo], and C[lo] in the
Chapel part respectively.

For completeness, for the CPU space, it is possible to optimize the CPU part
for multiple sub-nodes such as NUMA domains thanks to Chapel. Specifically,
the user may let Chapel’s tasking runtime map sub-nodes to NUMA domains
by doing export CHPL_LOCALE_MODEL=numa.

3 Design

3.1 Motivation

While the GPUIterator module provides a portable way to perform distributed,
hybrid, and multi-GPU execution, in terms of productivity, there is room for
further improvements. As shown in Listing 1.3, most of the host part includes
device memory (de)allocation and host-to-device/device-to-host transfer, which
is relatively larger than the kernel invocation and the kernel itself. Note that
the complexity of the host part can significantly grow as the kernel part grows.
More importantly, in this low-level program, the user has to deal with raw C
pointers and the size of the allocated memory regions, which is abstracted away
in the main Chapel program. This motivates us to design and implement a set of
Chapel-level GPU API which mitigates the complexity of handling the low-level
host part, thereby improving productivity.

As discussed in Sect. 1, our main focus is to develop MID-level/MID-LOW-
level explicit GPU API. We believe this level of abstraction is still important
even when fully automatic approaches (the HIGH-level abstraction) are available
because 1) compiler-generated kernels would not always outperform user-written
kernels or highly-tuned GPU libraries, and 2) it would not be always trivial for
the compiler to perform data transfer optimizations such as data transfer hoist-
ing. Therefore, MID-level/MID-LOW-level GPU API comes in portions that
remain as performance bottlenecks even after automatic compilation approaches.

Also, related to the point on data transfer optimizations, it is worth noting
that, while the calls to our GPU API routines are inside the callback function in
the code examples below, this does not necessarily mean that these calls should
be placed there. The user has the option of placing these calls outside of the
callback function to optimize data transfers.

3.2 MID-LOW-level API: Thin Wrappers for Raw GPU Routines

At the MID-LOW-level, most of the low-level 1) device memory allocation, 2)
device synchronization, and 3) data transfer can be written in Chapel. This level
of abstraction only provides thin wrapper functions for the CUDA/HIP/SYCL-
level API functions, which requires the user to directly manipulate C types like
c_void_ptr and so on. The MID-LOW level API is helpful, particularly when
the user wants to fine-tune the use of GPU API but still wants to stick with
Chapel.
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Listing 1.4. An example distributed implementation of STREAM (The MID-LOW
version).

1 /* steram-mid-low.chpl */
2 use BlockDist; use GPUIterator; use GPUAPI; use CTypes;
3 proc GPUCallBack(lo: int, hi: int, nElems: int) {
4 var dA, dB, dC: c_void_ptr; // device memory pointers
5 ref lA = A.localSlice(lo..hi);
6 ref lB = B.localSlice(lo..hi);
7 ref lC = C.localSlice(lo..hi);
8 const size: c_size_t = (lA.size:c_size_t * c_sizeof(lA.eltType));
9 Malloc(dA, size);

10 Malloc(dB, size);
11 Malloc(dC, size);
12 Memcpy(dB, c_ptrTo(lB), size, H2D);
13 Memcpy(dC, c_ptrTo(lC), size, H2D);
14 cudaSTREAM_kernel(dA, dB, dC, alpha,
15 lo, hi, nElems);
16 DeviceSynchronize();
17 Memcpy(c_ptrTo(lA), dA, size, D2H);
18 Free(dA);
19 Free(dB);
20 Free(dC);
21 };
22 ...
23 /* stream-kernel.cu or equivalent (HIP, DPC++, ...) */
24 void cudaSTREAM_kernel(float* dA, float *dB, float *dC, float alpha,
25 int start, int end, int nElems) {
26 // the kernel code remains the same
27 stream<<<ceil(((float)nElems)/1024), 1024>>>(dA, dB, dC, alpha, start, end, nElems);
28 }

Listing 1.4 is an example program written with the MID-LOW-level API.
On line 2, use GPUAPI; is added to use the GPUAPI module. Also, since this
version manipulates raw C pointers, use CTypes;2 is also required. From line 9
to line 20, there is a sequence of the host code including Malloc(), Memcpy(), a
kernel invocation, DeviceSynchronize(), and Free(). Each GPU API routine is
essentially a thin wrapper for the corresponding CUDA API (e.g., cudaMalloc(),
cudaMemcpy(), cudaDeviceSynchronize(), and cudaFree()).

Now that all of the host part except for the kernel invocation is done at the
Chapel level, the low GPU program part only includes a CUDA kernel invocation
(see line 24). Note that the user has the option of writing the kernel part in
another language (e.g., HIP, DPC++, and so on). For more details, please see
Sect. 4. While this MID-LOW-level abstraction simplifies the host code compared
to the original host part in Listing 1.3, notice that the user still needs to handle
C pointers explicitly (e.g., c_void_ptr, c_sizeof, and c_ptrTo()).

Pitched Memory Allocation and 2D Data Transfer: In addition to
Malloc() and Memcpy(), which are linear memory allocation and data transfer,
the GPUAPI module also supports pitched memory allocation (MallocPitch())
and 2D data transfer (Memcpy2D()). The pitched memory allocation API takes
2D shape information - i.e., width and height, and the underlying raw routine

2 In Chapel 1.27, 1) SysCTypes is replaced with CTypes, and 2) size_t is replaced
with c_size_t.
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Listing 1.5. Allocating pitched memory and perform 2D memcpy

1 var D = {0..255, 0..255};
2 var A: [D] real(32) = 1.0;
3 var widthInBytes: c_size_t = D.dim(1).size:c_size_t * c_sizeof(A.eltType);
4 var spitch = widthInBytes;
5 var dA: c_void_ptr;
6 var dpitch: c_size_t;
7 MallocPitch(dA, dpitch, widthInBytes, D.dim(0).size:c_size_t);
8 Memcpy2D(dA, dpitch, c_ptrTo(A), spitch, widthInBytes,
9 D.dim(0).size:c_size_t, 0);

Listing 1.6. An example distributed implementation of STREAM. (The MID version)

1 use BlockDist; use GPUIterator; use GPUAPI; /* use CTypes; is no longer required */
2 proc GPUCallBack(lo: int, hi: int, nElems: int) {
3 // nElems * sizeof(int) will be automatically allocated onto the device
4 var dA = new GPUArray(A.localSlice(lo..hi));
5 var dB = new GPUArray(B.localSlice(lo..hi));
6 var dC = new GPUArray(C.localSlice(lo..hi));
7 dB.toDevice();
8 dC.toDevice();
9 cudaSTREAM_kernel(dA.dPtr(), dB.dPtr(), dC.dPtr(), alpha, lo, hi, nElems);

10 DeviceSynchronize();
11 dA.fromDevice();
12 // allocate GPU memory automatically deallocated
13 }

may add a fixed pad (pitch) to ensure high memory bandwidth on the device.
The 2D data transfer API is a variant of Memcpy(), which is aware of the pad
information.

Listing 1.5 shows a standalone example program with the pitched memory
allocation and 2D data transfer. First, the 2D domain (D) on line 1 is used to
construct the 2D array (A) on line 2. The arguments to MallocPitch() on line
7 are as follows: dA is a ref variable that stores a pointer to allocated device
memory, dpitch is also a ref variable that stores pitch on the device, hpitch is
the width of the Chapel array in bytes, and the last argument is the height of
the Chapel array (# of elements).

3.3 MID-level API: A Chapel Programmer Friendly GPU API

At the MID-level, as with the MID-LOW-level, most of the low-level 1) device
memory allocation, 2) device synchronization, and 3) data transfer can be written
in Chapel. The key difference between the MID-LOW and the MID levels is that
the MID-level API utilizes Chapel features so the programming style can be more
Chapel programmer-friendly. For example, the user can allocate GPU memory
using the new keyword and no longer need to manipulate C types explicitly.

Listing 1.6 shows an example program written with the MID-level API. As
shown on line 4–6, device memory allocation can be done using new GPUArray().
The corresponding device pointer can be obtained by invoking dPtr() (line 9).



98 A. Hayashi et al.

Host-to-device and device-to-host transfer can be done by using toDevice()
and fromDevice() respectively (line 7, 8, and 11) Note that no device memory
deallocation is required because the deinitializer of GPUArray is automatically
invoked to handle the deallocation as with typical Chapel class objects. In case
the user wants to manually manage device memory, this can be done by doing
var dA = new unmanaged GPUArray(A); and delete dA;.

Comparing Listing 1.6 with Listing 1.4 and Listing 1.3, one can see that the
use of the MID-level API significantly simplifies the host part.

The following discusses the details of API provided at the MID level.

class GPUArray: This class encapsulates the allocation, deallocation, and trans-
fer of device memory. It can accept a multi-dimensional Chapel array and inter-
nally allocates linear memory for it. For 2D Chapel arrays, the user has the
option of using pitched memory by adding pitched=true to the constructor
call, and the allocated pitch can be obtained using pitch() method.

class GPUJaggedArray: This class encapsulates the allocation, deallocation,
and transfer of jagged device memory. We introduce this class because a real-
world Chapel program [10] heavily uses this pattern. Let us discuss our motiva-
tion using a simple Chapel program. Consider the Chapel code shown in Listing
1.7. There is a declaration of class C (line 1–5), which includes an array (x).
Also, on line 7, an array of C, namely Cs, is created. When mapping Cs onto
the device, since Cs is a heterogeneous array, it is required to create an array of
an array using Malloc(). Line 10 shows an example implementation using the
MID-LOW level API. Essentially, it first performs Malloc() and Memcpy() for
each Cs[0].x and Cs[1].x, then performs another Malloc() and Memcpy() for
allocating a device memory region that stores pointers to the device counterpart
of Cs[0].x and Cs[1].x. On the other hand, the MID-level version (line 24)
saves a lot of lines. Essentially like the GPUArray class, all the user has to do
is put Cs.x into the constructor of GPUJaggedArray. Thanks to the promotion
feature of Chapel, Cs.x is promoted to Cs[0..#2].x and the jagged array class
internally performs the same thing as the MID-LOW version does.

3.4 Supporting Asynchrony

While the current implementation of the GPUAPI module does not directly sup-
port asynchronous calls, one can asynchronously invoke GPU-related routines
using Chapel’s async API. Listing 1.8 shows an example of an asynchronous
GPU invocation. Line 1 creates a lambda function that performs the boiler-
plate GPU invocation code with the MID-level API routines. First, the async
API returns a future variable (F) immediately after the lambda function is
asynchronously spawned. Then, the completion of F can be detected by call-
ing F.get() (on Line 9). Note that F.get() blocks until the returning value is
available.

We also plan to directly support asynchronous GPUAPI routines in the
future.
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Listing 1.7. A jagged array example.

1 class C {
2 var n: int;
3 proc init(_n: int) { n = _n; }
4 var x: [0..#n] int;
5 }
6
7 var Cs = [new C(256), new C(512)];
8 const N = Cs.size;
9

10 // MIDLOW
11 {
12 var dA: [0..#N] c_void_ptr;
13 var dAs: c_ptr(c_void_ptr);
14 for i in 0..#N {
15 const size = Cs[i].x.size:c_size_t*c_sizeof(int);
16 Malloc(dA[i], size);
17 Memcpy(dA[i], c_ptrTo(Cs[i].x), size, 0);
18 }
19 const size = N: c_size_t * c_sizeof(c_ptr(c_void_ptr));
20 Malloc(dAs, size);
21 Memcpy(dAs, c_ptrTo(dA), size, 0);
22 // kernel invocation
23 }
24 // MID
25 {
26 var dAs = new GPUJaggedArray(Cs.x);
27 dAs.toDevice();
28 // kernel invocation
29 }

Listing 1.8. An asynchronous GPU invocation example.

1 var F = async(lambda () {
2 writeln("GPU Ctrl Thread");
3 var dA = new GPUArray(A);
4 dA.toDevice();
5 kernel(dA.dPtr());
6 dA.fromDevice();
7 return 1;
8 });
9 if (F.get() == 1) { // F is done }

4 Implementation

4.1 Library Implementation

We implemented the GPUAPI module as an external Chapel module. The module
can be used either standalone or with the GPUIterator module. The actual
implementation and the detailed documentation can be found at [11].

In the current implementation, the module mainly supports NVIDIA CUDA-
supported GPUs, AMD ROCm-supported GPUs, Intel DPC++ (SYCL) sup-
ported GPUs (and FPGAs) through different vendor-provided libraries/frame-
works as shown in Fig. 1. One of the interesting aspects of our implementation
is that there is only a CUDA implementation of the GPUAPI module. We utilize
the hipify from AMD and dpct from Intel to convert the CUDA implementa-
tion to a HIP and DPC++ version respectively. Also, for Intel platforms, it is
possible to run the hipifyed code with hipLZ [14]. More specifically, at the time
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Table 1. How user-written kernels work on different GPU platforms.

CUDA HIP SYCL

NVIDIA � � �
AMD � (via hipify) � �
Intel � (via dpct) � (via hipLZ) �

of installation, our cmake-based build system identifies installed GPUs and gen-
erates an appropriate static (.a) and/or shared (.so) library with the conversion.
(Fig. 2).

Because the cmake-generated library (.a and/or .so) includes all of the MID-
LOW-level API routines and we provide a cmake file that helps an external
cmake project to find this module, it is technically possible to link the MID-
LOW-level library from other languages than Chapel. Also, while the MID-level
API is tightly-coupled with Chapel, we believe it is feasible to port our module
to other PGAS languages.

4.2 The GPU Kernel Part by the User

As we discussed, the user is supposed to write the kernel part using vendor-
provided GPU libraries/frameworks such as CUDA, HIP, SYCL, and so on. The
user can simply write their kernels using their favorite framework and link it with
the corresponding version of GPUAPI library (libGPUAPICUDA.so, and so on).
If there is any conversion required, the user can also utilize our cmake-based
build system. Table 1 summarizes how user-written kernels work on different
GPU platforms.

Fig. 1. Multi-platform support in the GPUAPI module.
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GPUAPI.chpl

GPUAPI module

GPUAPI.cu Binary for NVIDIA 
GPUs

Binary for
AMD GPUs

nvcc

hipify hipcc

dpct
Binary for
Intel GPUs

hipLZ

Fig. 2. The implementation of the GPUAPI module.

Also, it is also worth noting that this auto-conversion approach works very
well even with real-world applications. For example, while the kernel part of
the distributed tree search application in Sect. 5 was originally implemented in
CUDA, the hipify tool was able to produce the HIP version flawlessly. Simi-
larly, in [10], we were able to produce the HIP version of a computational fluid
dynamics (CFD) application.

5 Performance and Productivity Evaluations

Purpose: In this evaluation we validate our GPUAPI implementation on different
CPU+GPU platforms. We mainly discuss the performance and productivity of
different levels of GPU API (LOW, MID-LOW, MID) with the GPUIterator
module. The goal is to demonstrate 1) there is no significant performance dif-
ference between the LOW, MID-LOW, and MID versions, and 2) the use of a
higher-level API improves the productivity in terms of lines of code.

Machine: We present the performance results on three platforms: a GPU cluster
and a supercomputer. The first platform is the Cori GPU nodes at NERSC, each
node of which consists of two sockets of 20-core Intel Xeon Gold 6148 running at
2.40GHz with a total main memory size of 384GB and 8 NVIDIA Tesla V100
GPUs, each with 16 GB HBM2 memory, connected via PCIe 3.03. The second
platform is the Summit supercomputer at ORNL, which consists of the IBM
Power System AC922 nodes. Each node contains two IBM POWER9 running
at 3.45GHz with a total main memory size of 512GB and 6 NVIDIA Tesla
V100 GPUs, each with 16GB HBM2 memory, connected via NVLink. The third
platform is a single-node AMD server, which consists of 12-core Ryzen9 3900X
running at 3.8GHz and a Radeon RX570 GPU with 8GB memory.

Benchmarks: We use four distributed mini-applications (Stream, BlackSc-
holes, Matrix Multiplication, and Logistic Regression) and a distributed Tree
Search implementation as a real-world example. We use an input data size of
n = 230 (Stream, BlackScholes), n × n = 4096 × 4096 (MM), nFeatures =

3 Interconnection network between the GPUs is NVLink.
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218, nSamples = 24 (Logistic Regression), and n = 218 (Tree Search). We report
the average performance number from 5 runs.

Experimental Variants: Each benchmark is evaluated by comparing the fol-
lowing variants:

– Chapel-CPU: Implemented in Chapel using a forall with the default par-
allel iterator that is executed on CPUs.

– Chapel-GPU: Implemented using a forall with the GPUIterator module
with CPUPercent=0.

• MID-level: All the GPU part except for GPU kernels is implemented
using the MID-level API, which is a Chapel class based abstraction of
GPU arrays.

• MID-LOW-level: All the GPU part except for GPU kernels is imple-
mented using the MID-LOW-level API, which is a set of thin wrappers
for raw GPU API routines.

• LOW-level: The GPU part is fully implemented in CUDA (on NVIDIA
GPUs) or HIP (on AMD GPUs).

5.1 Distributed Mini Applications

Figure 3, 4, and 5 show speedup values relative to the Chapel-CPU version on
a log scale. In the figures GPU(M), GPU(ML), GPU(L) refers to MID-level,
MID-LOW-level, and LOW-level respectively. While we use the Chapel compiler
version 1.20 with the –fast option, CHPL_COMM=gasnet, CHPL_COMM_SUBSTRAT
E=ibv, and CHPL_TASK=qthreads in this evaluation, we believe the performance
trend will not change when the latest Chapel version is used.

As shown in these figures, for all the benchmarks, there is no significant
performance difference between the MID, MID-LOW, and LOW versions, which
indicates that the overhead of the GPUAPI module can be ignored.

Table 2 shows source code additions and modifications required for using the
GPUAPI. We measure the productivity in term of source lines of code4. The goal
of this productivity experiment is to demonstrate SLOC for both the Chapel part
and the host part are reduced when the MID-level API is used. Note that the
CUDA kernel part is out of the scope of this paper. The results show 1) the
MID-LOW level version requires almost the same lines of code as the LOW-
level version, and 2) the use of the MID-level API significantly decreases the
lines of code. Let us reiterate that the MID-level simplifies the host part more
than what it appears as the lines of code reduction because it avoids the explicit
manipulation of raw C pointers.

4 Our definitions of source code “lines” is based on common usage.
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Table 2. Source code additions and modifications required for using the GPUAPI module
in terms of source lines of code (SLOC).

Application Level Chapel Host (CUDA) Kernel (CUDA)

Stream LOW 4 13 6

MID-LOW 16 1 6

MID 8 1 6

BlackScholes LOW 4 13 68

MID-LOW 16 1 68

MID 8 1 68

Matrix multiplication LOW 3 12 10

MID-LOW 14 1 10

MID 8 1 10

Logistic regression LOW 2 15 13

MID-LOW 16 1 13

MID 10 1 13

Tree search LOW 2 16 71

MID-LOW 13 4 71

MID 9 4 71

In terms of performance improvements over Chapel-CPU, for Blackscholes,
Matrix Multiplication, and Logistic Regression, the kernels have enough workloads,
and the GPU variants significantly outperform the Chapel-CPU. Specifically,
the results show a speedup of up to 21k × on the Cori supercomputer, 20k ×
on the Summit supercomputer. For Stream, the Chapel-CPU outperforms the
GPU variants because the data transfer time is significantly larger than the
kernel time. Note that if we only compare the kernel times, the GPU kernel is
faster. However, let us reiterate that our primary focus is to prove that there is
no significant performance difference between the three Chapel-GPU variants.
Also, the use of the GPUIterator can help the user to easily switch back and
forth between the Chapel-CPU and the Chapel-GPU versions.

5.2 Real-world Example: Distributed Tree Search

Here we present the performance and productivity of the GPUAPI module using a
real-world application: distributed tree search [1]. In this evaluation, we use the
latest Chapel compiler version 1.24 with the –fast option, CHPL_COMM=gasnet,
CHPL_COMM_SUBSTRATE=ibv, and CHPL_TASK=qthreads. Note that there is no
Chapel-CPU version of this application.

Figure 6a, 6b, and 6c show speedup values relative to the LOW version on
a single node of each platform with the 95% confidence intervals. Note that, on
the Summit supercomputer, 6 GPUs/node are used without any modifications
to the source code thanks to the GPUIterator module, while the use of multiple
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Fig. 3. Performance improvements of mini applications on the Cori GPUs (log scale,
multi-nodes: 1GPU/node)

Fig. 4. Performance improvements of mini applications on the Summit supercomputer
(log scale, multi-nodes: 1GPU/node)

Fig. 5. Performance improvements of mini applications on the AMD server (log scale,
single-node:1GPU/node)

GPUs gives an error that is unrelated to our modules on the Cori GPUs. Also,
in Fig. 6c, the intervals are not very visible because the numbers are very stable.
As with the mini applications discussed in Sect. 5.1, while there are slight perfor-
mance differences, the use of the 95% confidence intervals indicates that there
is no statistically significant performance difference between the LOW, MID-
LOW, and MID versions. Because this application is highly irregular, the strong
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scalability is not as good as that of the mini applications. However, improving
the scalability is orthogonal to this work.

Fig. 6. Performance improvements of the distributed tree search application.

Also, the last row of Table 2 shows source code additions and modifications
required for this application. The results also show the same trends as the other
mini-applications, where a higher-level GPU API simplifies the Chapel and host
parts.

6 Related Work

In the context of compiling PGAS langauges to GPUs, X10CUDA [7] uses the
concept of places to map a nested parallel loop to blocks and threads on a
GPU. It also provides thin wrappers for low-level GPU API rountines, which is
analogous to our MID-LOW API.

For Chapel, while Sidelnik et al. [13], Chu et al. [6], and recent versions of
Chapel compiler compile Chapel’s forall constructs to GPUs, it is unfortunate
that these approaches are still early and do not support multi-node GPUs or
multiple GPUs on a single node. Also, Ghangas [8] compiles a Chapel statement
containing multiple arrays GPUs with a single kernel. However, performance
results have not been demonstrated yet.

In contrast, our approach is designed to facilitate manual CPU-GPU pro-
gramming for multi-node platforms with Chapel, while keeping Chapel con-
structs as much as possible.
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7 Conclusions

In this paper, we introduced the GPUAPI module, which allows PGAS program-
mers to have the option of explicitly manipulating device memory (de)allocation
API, and data transfer API in their primary language. While it can be used
standalone, when it is used with the GPUIterator module [9], it significantly
facilitates distributed and hybrid execution on multiple CPU+GPU nodes.

We use Chapel as the primary example. Our preliminary performance evalua-
tion using mini-applications and a real-world application is conducted on a wide
range of CPU+GPU platforms. The results show that the use of the GPUAPI
module significantly simplifies GPU programming in a high-level programming
model like Chapel, while targeting different multi-node CPUs+GPUs platforms
with no performance loss.

In future work, we plan to explore further the possibility of using our modules
in different real-world Chapel applications.
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