
Interactive, Cloud-Native Workflows
on HPC Using KNoC

Evangelos Maliaroudakis1,2(B), Antony Chazapis1, Alexandros Kanterakis1,
Manolis Marazakis1, and Angelos Bilas1,2

1 Institute of Computer Science, FORTH, Heraklion, Greece
{malvag,chazapis,kantale,maraz,bilas}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece

Abstract. Cloud and HPC platforms differentiate by many aspects,
but both can run applications in identical contexts using containers.
In this paper we present KNoC, an open-source virtual node (kubelet)
for Kubernetes that transparently manages the container lifecycle on a
remote HPC cluster using Slurm and Singularity. Our goal is on one hand
to allow HPC users to leverage existing cloud-native tools, such as the
popular Argo Workflows language to express complex data-processing
pipelines, while on the other hand enabling Cloud setups to exploit
computing resources available in HPC centers. KNoC bridges Cloud
and HPC, transforming Argo to a cross-environment, portable solution,
which allows the combination of Cloud-based tools and HPC steps into
the same workflow, controlled and monitored through an interactive fron-
tend. Deploying KNoC requires only a secure shell connection to the clus-
ter’s login node. We describe the design and implementation of KNoC,
and evaluate the integration using several proof-of-concept workflows.

Keywords: Cloud-HPC convergence · Reproducible workflows ·
Kubernetes extensions · Virtual kubelet

1 Introduction

As we are gradually transitioning into the exascale era, there is no shortage of
infrastructure to process large datasets: the Cloud provides an abundance of
storage and computing resources, while High-Performance Computing (HPC)
facilities around the globe are constantly powering on bigger and more power-
ful machines, each combining thousands of general-purpose and domain-specific
processing units [16]. The increasing complexity of applications shifts the devel-
opers’ focus to higher-level, more expressive languages, while the heterogeneous
computing landscape places the emphasis on portability and integration issues.
Large processing pipelines should ideally be synthesized as portable workflows
that can move between setups, enabling deployment flexibility and reusability,
while being able to combine existing data organization and processing compo-
nents (i.e. libraries and computing frameworks) from different environments.
c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 221–232, 2022.
https://doi.org/10.1007/978-3-031-23220-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23220-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-23220-6_15


222 E. Maliaroudakis et al.

HPC users typically integrate different stages of computation in custom
scripts. In an effort to find a more expressive and portable language for defin-
ing application pipelines, we turned to existing work available in the “cloud-
native” ecosystem. Bridging the two worlds is now possible as HPC installations
increasingly support containers: reusable units of integrated, pre-packaged soft-
ware that can run unmodified using different runtimes with minimal performance
overheads. Singularity1 [1] has become the de facto container runtime in HPC.

In Kubernetes [4] setups in the Cloud, Argo Workflows [2] is quickly gain-
ing ground as the industry-standard workflow environment, providing a lan-
guage and runtime to model and execute applications as directed acyclic graphs
(DAGs). In Argo, every node of the graph is a container. The Argo controller
processes each workflow by submitting respective containers for execution, mon-
itoring their status, and collecting their outputs; all presented via a user-friendly,
interactive, web-based frontend. The frontend also allows organizing workflows
using templates, as well as planning repeated execution with a crontab-like syn-
tax. Under the hood, Kubernetes delegates execution to available nodes. In this
paper, we extend Kubernetes with a virtual node using KNoC (Kubernetes Node
on HPC Cluster), which receives container management operations and forwards
them to the cluster over ssh. KNoC consists of two main components: the vir-
tual node at the Kubernetes side, which is implemented as a Virtual Kubelet
[8] plug-in, and an executable (called Door) automatically installed at the HPC
side, which provides a simple API for running the commands required to start
and stop Singularity containers using Slurm [7]. KNoC is open-source [3].

In contrast to related works which bridge Cloud with HPC facilities through
special “cluster job” objects in Kubernetes or other constructs, our approach
allows us to transparently delegate execution to external compute clusters, while
defining HPC-specific parameters directly in the workflow language. KNoC effec-
tively elevates Argo workflows into a cross-platform standard, which can support
open, reproducible science on heterogeneous computing facilities. With KNoC,
Cloud users can easily tap on the vast amount of high-performance computing
resources available in HPC centers, while HPC users can leverage the expres-
siveness and the interactivity of the Argo environment, while also exploiting
the integration by mixing HPC workflow steps with other cloud-native utili-
ties and runtimes. For instance, Argo Events enables triggering workflows on
events coming from a variety of sources. The Kubernetes installation hosting
the KNoC node may run locally to the user (in a simple virtual machine), or
even in a “sidecar” environment offered by the HPC center.

2 Related Work

A tool for seamlessly combining jobs that run either in Kubernetes or in HPC
environments is presented in [15]. hpc-connector acts as an HPC job proxy: users
submit their jobs as hpc-connector instances with specific settings at the Kuber-
netes side, and hpc-connector forwards them to the HPC cluster, monitors their
1 The Singularity project has recently been renamed to Apptainer.



Interactive, Cloud-Native Workflows on HPC Using KNoC 223

execution, and collects their results. Docker and Singularity containers are also
used to address portability issues. The authors identify five requirements for a
system that allows running the same workloads on Cloud and HPC. Our work
addresses all five, and extends the focus on workflow reproducibility and ease
of use. We not only require the same method for job execution in both environ-
ments, but also the same language for defining workflows. With hpc-connector,
users have to format their workloads to explicitly use it as a job-forwarding util-
ity. Furthermore, since KNoC implements the functionality at the Kubernetes
node level, it offers a generalized solution for forwarding container execution at
the HPC side—not only for specific types of jobs. In [18], a Kubernetes instal-
lation is interfaced to a Torque-based HPC cluster, using a custom tool called
Torque-Operator. Although this study offers the flexibility of running container-
ized Cloud and HPC jobs over the same front end interface through the WLM
operator [9], it again uses a different language for describing jobs targeted for
the HPC cluster.

Workflow reproducibility has recently been in the spotlight, especially in life
sciences. Driven by the need to share both results and methods in a collaborative
environment, as well as the need to verify the accuracy of computational results,
a number of “infrastructure-agnostic” tools have been proposed. In the area of
bioinformatics, examples include Nextflow [13], Snakemake [14] and Arvados [11].
These systems typically define their own DSLs (Domain Specific Languages) to
construct workflows and most support containers for transparent job submission
to either Cloud or HPC environments. As another example, the StreamFlow
[12] runtime allows the execution of workflow steps onto multiple heterogeneous
sites, automatically copying required data where needed. Groups of workflow
steps may require specific environments to run, which are translated to runtime
deployment dependencies. A proof-of-concept implementation uses the Common
Workflow Language (CWL). In this paper we use the Argo language, however
the hybrid Cloud-HPC platform offered by KNoC is language-independent and
should be able to support other workflow runtimes as well. Also, it allows running
workflows combining steps using other cloud-native frameworks, external to the
workflow environment (within the limits described in Sect. 4.3).

3 Design

KNoC is implemented as a virtual node at the Kubernetes level—a virtual
kubelet. The kubelet is the primary agent that runs on each node of a Kuber-
netes cluster. It is responsible for starting and stopping containers, reporting on
their status, gathering their logs, etc. Each kubelet receives PodSpecs, which are
Kubernetes objects that describe Pods and ensures that the containers compris-
ing those Pods are running and healthy. Kubelets running on physical machines
practically implement the interfacing between Kubernetes and the underlying
container runtime; typically Docker or containerd. KNoC, on the other hand,
directly manages containers that run on a remote HPC cluster. KNoC is imple-
mented using Virtual Kubelet, an open source kubelet implementation featuring



224 E. Maliaroudakis et al.

a pluggable architecture for extensions that connect Kubernetes to other con-
tainer execution environments. Virtual Kubelet provides the necessary features
to support the lifecycle management of Pods (as a collection of containers) and
supporting resources in the context of Kubernetes, while exposing simpler APIs
at the back-end for plug-ins.

API server

KNoC Virtual Kubelet

Kubernetes

Argo Workflows 
controller

Door executable

Slurm controller

Login node

Slurm agent

Singularity runtime

Cluster node

ContainerContainerContainer

Network

Workflow YAML HPC cluster

Fig. 1. Running a cloud-native workflow on an HPC cluster using KNoC

An overview of the main components involved in KNoC’s deployment envi-
ronment is shown in Fig. 1. The main goal is to run the container-based workflow
provided by the user in Argo format (top-left) on the HPC cluster with Singu-
larity containers (bottom-right). The Argo Workflows engine receives the work-
flow YAML and creates the corresponding Pods through the Kubernetes API.
Then Kubernetes selects “KNoC” as the execution node to run the respective
containers. If other, physical nodes also exist, this can be accomplished using
node-selection constraints in the workflow language.

When KNoC receives a request to create a container as part of a Pod speci-
fication, it forwards the request to the remote HPC system supplied in the con-
figuration. The assumption is that all interfacing with the remote environment
can only happen by running commands through a secure shell (ssh) connection.
To simplify the integration and add an abstraction layer at the remote end, the
KNoC virtual kubelet installs and runs the Door agent remotely. Door receives
simple requests from KNoC related to container creation and tear down, and
produces the commands necessary to perform the respective actions. A tempo-
rary folder for each container at the HPC side keeps all runtime outputs and
state, and is used by KNoC for monitoring the status of execution.

Door may implement different container execution plug-ins: it currently runs
containers using Singularity, through Slurm, by creating sbatch scripts that form
an execution environment for launching the containers. However, it can be easily
reimplemented to use a different container runtime. Slurm is one of the most pop-
ular job schedulers used in HPC environments. It will distribute jobs—in our case



Interactive, Cloud-Native Workflows on HPC Using KNoC 225

Singularity containers—across available resources. Singularity will automatically
convert the Docker images used in the workflow to create Singularity-compatible
image files that run with the same commands as their entrypoints. We use Singu-
larity for container execution due to its wide-spread availability in HPC, thanks
to its performance and security characteristics.

To access special hardware features of the HPC environment (such as GPUs),
or specify other requirements or constraints at the level of the generated Slurm
job (such as MPI parameters), the user can use specific labels in the workflow,
which Door includes as flags in the respective Slurm command.

4 Implementation

4.1 The KNoC Virtual Kubelet Provider

KNoC is implemented as a Virtual Kubelet provider. Providers use Virtual
Kubelet as a library which implements the core logic of a Kubernetes node agent
(kubelet), and wire up their implementations for performing necessary actions.
There are 3 main interfaces that a provider may offer:

– PodLifecycleHandler is consumed by the PodController which implements
the core logic for managing Pods assigned to the node. Creating, updating, or
deleting Pods in Kubernetes results in API calls for performing corresponding
actions at the kubelet level.

– NodeProvider is responsible for notifying Virtual Kubelet about node sta-
tus updates. Virtual Kubelet will periodically check the status of the node
and update Kubernetes accordingly. The implementation of this interface is
optional.

– PodNotifier is used by the provider to notify the Virtual Kubelet about Pod
status changes. The implementation of this interface is optional.

The KNoC virtual kubelet implements the PodLifecycleHandler and Pod-
Notifier interfaces. KNoC also introduces the RemoteExecutionHandler module
that complements the PodLifecycleHandler, to handle the interaction with the
remote execution environment. KNoC is written in Go, using approximately 1200
lines of code.

When a new Pod is created, KNoC’s implementation of the PodLifecycle-
Handler will first go through the description and isolate any initContainers. A
Pod can have multiple initContainers that need to run to completion sequentially
before any other containers are started. Once the ordering of container execution
is decided, KNoC will submit the containers in phases: first the initContainers,
wait for them to complete, then the rest of the Pod members.

KNoC connects via ssh to the remote HPC cluster. The network address,
username, and ssh key necessary to perform the connection are stored in a Kuber-
netes Secret and passed as environment variables to the KNoC executable on
initialization. Also, on deployment, KNoC should be configured to advertise the
total CPU cores and memory that are available at the cluster side, as Kubernetes
keeps track of what resources have been allocated on each node.



226 E. Maliaroudakis et al.

For each container to be created, KNoC will:

1. Check if the Door binary is available remotely; if not, transfer it over.
2. Create a temporary folder in the form ~/.KNoC/<namespace>/<pod uuid>

/<container name>/ for keeping files related to the execution of the respec-
tive container.

3. Place any attached Kubernetes Secrets and container environment variables
as files in the temporary folder in key-value form.

4. Create folders for any attached Kubernetes emptyDir volumes in the tempo-
rary folder.

5. Run Door submit in the background, handing it over a JSON with details
about the container and its environment, including references to the files and
folders created above.

When the PodNotifier API implementation is triggered, KNoC starts a timer
to periodically check the status of all Pods. The container execution command
generated by Door places the containers’ output and error streams, along with
their exit codes into different files inside their temporary folders. KNoC uses
the exit code files to monitor changes of container states, which are then con-
solidated to devise the corresponding Pod states that must be reported back to
Kubernetes. To delete a Pod, KNoC calls Door stop remotely for each container.
After the containers are stopped, the monitoring function will note the changes
in exit codes and update their Pod status in Kubernetes.

4.2 The Door Executable

Our initial KNoC implementation produced a full Singularity command with
environmental variables, mount paths, container commands, and arguments to
be submitted over ssh. However, we decided to abstract this interaction into
a simple API and synthesize the command at the remote end, using different
implementations supporting different execution environments. This also solved
the potential problem of having to run several commands (or a complete script)
to manage container execution at the HPC cluster side. The remote functionality
is realized by the Door executable, written in Go, using approximately 200 lines
of code. Door started by using “plain” Singularity, while it currently uses Slurm
to submit Singularity commands. Other Door implementations may use different
container runtimes.

When Door is called to create a container:

1. It converts the given JSON description to an sbatch script that runs the
respective Singularity command, including environment variables, values from
Secrets, volumes, etc.

2. It submits the job to Slurm.
3. It writes down the resulting job id into a file in the container’s temporary

folder, which is used in case it needs to stop or cancel the job.



Interactive, Cloud-Native Workflows on HPC Using KNoC 227

1 kind: Workflow
2 metadata:
3 ...
4 spec:
5 podMetadata:
6 annotations:
7 slurm -job.knoc.io/flags: "--mem=32gb"
8 slurm -job.knoc.io/mpi -flags: "..."
9 ...

Listing 1.1. Adding Slurm-specific annotations to workflows

Through Slurm, jobs may request exclusive or non-exclusive resources for
execution. Door will pass particular annotations in the container description
(coming from the respective Pod) to the generated Slurm command, so that the
corresponding container will run with the specified resources. A simple example
is shown in Listing 1.1, where the annotations used in the Workflow will be
copied over by Argo Workflows to the Pods submitted for each step, and Door
will use the value --mem=32gb verbatim when invocating the sbatch executable.
If mpi-flags are defined, Door will invoke MPI to run the container with the
additional parameters given. Also, container names may refer to either Docker
images (which will automatically be converted to Singularity upon execution),
or Singularity .sif files.

4.3 Integration with Argo Workflows

To successfully run Argo workflows with KNoC, we had to overcome several
issues related to the availability of the Kubernetes API, volumes and associated
data at the remote side. KNoC implements general-purpose remote container
execution—amid, however, practical limitations. Local and remote systems may
not share the same storage facilities. Also, the Kubernetes volume abstractions
and mechanics are not available in the HPC environment.

For each workflow step, the Argo Workflows controller runs a sidecar con-
tainer, called executor, in parallel to the “main” container defined by the user.
The controller communicates with the executor to perform control actions (like
kill, suspend, abort, etc.), monitor the state of execution, and collect outputs.
Several executor implementations are available; each for a different container
runtimes. When running Argo Workflows in Kubernetes, we select the “k8sapi”
executor that actually uses the Kubernetes API to retrieve information and sub-
mit commands.

Running the Argo executor container remotely did not initially work. First,
the executor could not communicate with the Kubernetes API. For this reason,
we require that a ~/.kube/config file is placed at the remote side, configured
appropriately so that Kubernetes is accessible from the HPC cluster. This file is
then available within containers, as Singularity automatically mounts the user’s
home folder in all containers. Most applications using Kubernetes API libraries
will work without changes, as the libraries check for the file at predefined paths
and use it. Future versions of KNoC will automatically create the Kubernetes
configuration file inside the remote container’s temporary folder, depending on
the Namespace and ServiceAccount of the running Pod.



228 E. Maliaroudakis et al.

Second, the default Argo k8sapi executor (in version 3.0.2) uses the Kuber-
netes Downward API to examine the Pod’s status. The Downward API is a
method to provide Pod introspection in Kubernetes. When the Downward API
is “mounted” within a Pod, all containers can access the Pod’s status and anno-
tations as files. Moreover, applications can monitor these files for changes to
the Pod’s state or configuration. In Argo Workflows 3.0.2, the controller mounts
a Downward API volume at each executor instance, which is then used to get
updates on the main container’s execution status. Instead of implementing the
Downward API functionality at the HPC cluster side, we changed the Argo con-
troller and executor to not use it at all. This was already a request by the Argo
Workflows community, as some Cloud providers do not support the Downward
API in their Kubernetes nodes (i.e., in AKS virtual nodes). Our changes have
been approved by the project’s maintainers and the Downward API is no longer
necessary.

Argo
Workflow
Controller

WorkflowCreated

Kubernetes
Master

KNoC
Virtual Kubelet

Remote
System

WorkflowRunning WorkflowSucceeded

CreatePodRequest PodRunning PodSucceeded

ContainerStatus: Terminated

CheckPodStatusCheckPodStatusCreatePod runRemoteExecution

RemoteExecution
Started

RemoteExecution
Finished

Status Update Triggers

Check exit status of
containers

Fig. 2. Lifecycle of containers as part of an Argo workflow submitted to a remote
system through KNoC

Figure 2 depicts the timeline of status updates, as workflow steps, corre-
sponding Pods, and remote containers are created during the execution of an
Argo workflow. A WorkflowCreated event happens when a workflow YAML is
submitted to Kubernetes as a CRD instance. Then the Argo Workflows controller
requests the creation of a number of Pods that relate to the workflow steps, by
issuing respective CreatePodRequest calls at Kubernetes. Each call results in
Kubernetes picking an appropriate Node to assign the Pod, and instructing that
Node (through the kubelet API) to create the Pod including every container
inside it. In the case of KNoC, once every container in the given Pod has been
sent for remote execution, KNoC updates the Pod status to “Running”. In turn,
the workflow controller, which monitors Pod status changes, updates the work-
flow status to “Running”. During this time, KNoC periodically polls for changes
in remote container state. When the process running the container finishes, the
exit code is written to a file. KNoC will pick up the change, and set the con-
tainer status as “Terminated”. If every container exits without errors, then the
Pod status is updated to “Succeeded”. As a result, the Argo controller marks
the workflow step as “Succeeded” and moves on.



Interactive, Cloud-Native Workflows on HPC Using KNoC 229

5 Evaluation

To evaluate KNoC, we deploy a minimal Kubernetes setup using minikube [5]
in one machine, and configure KNoC to use the login node of our HPC cluster.
As highlighted in Sect. 4.1, we instruct KNoC to report the sum of all cluster
CPUs and memory to Kubernetes, so the latter will take full advantage of the
available resources. We use Kubernetes version 1.19.10, Slurm 20.11.8, and Sin-
gularity 3.8.5. In our setup, we only use the KNoC node for scheduling pods, so
all workflow steps will be sent to the cluster. In case KNoC runs alongside phys-
ical nodes, workflow specifications should be augmented with the appropriate
NodeSelector, so their containers will be routed to the HPC side.

The KNoC source repository includes several workflow examples that we
have used to evaluate the integration, including workflows defined as DAGs,
loops, conditionals, etc. A simple example of an HPC workflow running the
“embarassingly parallel” NAS benchmark [6] is shown in Listing 1.2. We use the
language’s withItems construct to spawn 4 parallel steps, each running another
instance of the executable with different parameters. Also, note the use of the
Slurm flag, defined as an annotation on the step template, to control the number
of tasks used for each instance. This template showcases a method to run a
parallel parameter sweep as part of a larger workflow. The “items” used may be
explicitly set or be dynamically generated as the output of a previous step.

1 kind: Workflow
2 metadata:
3 ...
4 spec:
5 entrypoint: npb -with -mpi
6 templates:
7 - name: npb -with -mpi
8 dag:
9 tasks:

10 - name: A
11 template: npb
12 arguments:
13 parameters:
14 - {name: cpus , value: "{{ item }}"}
15 withItems:
16 - 2
17 - 4
18 - 8
19 - 16
20 - name: npb
21 metadata:
22 annotations:
23 slurm -job.knoc.io/flags: "--ntasks ={{ inputs.parameters.cpus }}"
24 slurm -job.knoc.io/mpi -flags: "..."
25 inputs:
26 parameters:
27 - name: cpus
28 container:
29 image: mpi -npb:latest
30 command: ["ep.A.{{ inputs.parameters.cpus }}"]

Listing 1.2. A simple workflow executing parallel MPI steps

On the other hand, to better understand the issues involved in compiling
workflows that can easily migrate from a cloud-native to a KNoC-based setup,



230 E. Maliaroudakis et al.

we use a real-life Argo workflow from the bioinformatics domain. This workflow
performs genotype imputation [17], a computational method which is used to
artificially increase the number of identified mutations in an input human DNA
using a large dataset containing several thousand samples as a reference. The
process, from a computational perspective, involves two basic steps: extracting
the chromosomes from the input DNA and performing quality control/phasing,
and then doing the actual imputation in batches of chromosomes, each mea-
suring 5,000,000 base pairs long. The respective tools have been packaged into
a container image, which is then used by the workflow. Each chromosome and
each batch can be processed independently of each other, so each workflow phase
deploys multiple containers in parallel, as shown in Fig. 3. The first phase pro-
cesses 22 chromosomes and the second 589 ranges in parallel.

Fig. 3. The genotype imputation workflow as shown in Argo

A major point that should be considered when preparing cross-platform work-
flows (running on both Cloud and HPC sides) is data availability. Workflow



Interactive, Cloud-Native Workflows on HPC Using KNoC 231

stages may require shared datasets or a mechanism for communicating processed
data from one stage to the next. This can be achieved by using an Argo artifact
repository, as a common place to deposit files, or a shared folder, mounted across
all containers at a known path. Argo supports many S3-compatible services for
artifacts; the executor will copy in specific files so they are available to running
containers before startup and copy out results after stage completion. On the
other hand, a shared folder has the benefit of avoiding data copies. Currently,
for simplicity, we use USL [10] at the Kubernetes side, to provide all contain-
ers with a common mountpoint, and allow Door to use the default Singularity
behavior of mounting the user’s home folder at the cluster side. Then we define a
workflow parameter that determines the base path that the workflow will use at
runtime for data. In the imputation workflow, one preparatory step downloads
the reference dataset in the shared folder (which is about 11 GB in size), and
subsequent steps use it for writting out intermediate files and results. We plan
to address data availability across environments in more detail in future work.

By using KNoC, we are able to easily scale out the workflow using the
resources available at the HPC side. Argo provides a “parallelism” parameter
to specify the maximum number of parallel pods that can run at the same
time during execution, which in turn allows controling the maximum number of
Slurm jobs that are submitted in parallel to the cluster. At the cluster side, job
scheduling is exclusively handled by Slurm.

6 Conclusion

The distributed computing landscape is continuously growing with new Cloud
and HPC offerings. Applications, expressed as workflows, deal with increasingly
large and diverse datasets, requiring more and more processing capacity, as well
as the integration of a variety of tools from both domains. The Cloud heavily
relies on container-based technologies to provide standardization across providers
and portability of execution. With the same abstractions available at “tradi-
tional” HPC installations, we can now embrace the heterogeneity of available
platforms under a common higher-level workflow language and enable work-
loads to exploit all available resources. KNoC is a step in the direction of bridg-
ing Cloud and HPC computing. It adds a virtual node at the Kubernetes layer,
which acts as a proxy orchestrating container execution at the HPC cluster using
Slurm and Singularity. KNoC allows any Kubernetes Pod to run remotely—not
just workflow steps. In this paper, we present the design and implementation of
KNoC, and focus on its applicability from both the HPC and Cloud perspec-
tives, by examining the integration of Argo Workflows within the KNoC-based
system and discussing on the issues that must be considered when constructing
applications.



232 E. Maliaroudakis et al.

Acknowledgements. We thankfully acknowledge the support of the European Com-
mission under the Horizon 2020 Programme through project HiPEAC (GA-871174), as
well as the European Commission and the Greek General Secretariat for Research and
Innovation under the EuroHPC Programme through projects EUROCC (GA-951732)
and DEEP-SEA (GA-955606). National contributions from the involved state mem-
bers (including the Greek General Secretariat for Research and Innovation) match the
EuroHPC funding.

References

1. Apptainer. https://apptainer.org
2. Argo workflows. https://argoproj.github.io/projects/argo
3. Knoc: A kubernetes node to manage the container lifecycle on an hpc cluster.

https://github.com/CARV-ICS-FORTH/KNoC
4. Kubernetes: Production-grade container orchestration. https://kubernetes.io
5. Minikube. https://minikube.sigs.k8s.io
6. Nas parallel benchmarks. https://www.nas.nasa.gov/software/npb.html
7. Slurm workload manager. https://slurm.schedmd.com/documentation.html
8. Virtual-kubelet. https://github.com/virtual-kubelet/virtual-kubelet
9. Wlm-operator. https://github.com/sylabs/wlm-operator

10. Chazapis, A., Pinto, C., Gkoufas, Y., Kozanitis, C., Bilas, A.: A unified storage
layer for supporting distributed workflows in kubernetes. In: Proceedings of the
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems. CHEOPS 2021 (2021)

11. Chojnacki, S., Cowley, A., Lee, J., Foix, A., Lopez, R.: Programmatic access
to bioinformatics tools from embl-ebi update: 2017. Nucleic Acids Res. 45(W1),
W550–W553 (2017)

12. Colonnelli, I., Cantalupo, B., Merelli, I., Aldinucci, M.: Streamflow: cross-breeding
cloud with hpc. IEEE Trans. Emerg. Topics Comput. 9(04), 1723–1737 (2021)

13. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame,
C.: Nextflow enables reproducible computational workflows. Nat. Biotechnol.
35(4), 316–319 (2017)

14. Köster, J., Rahmann, S.: Snakemake-a scalable bioinformatics workflow engine.
Bioinformatics 28(19), 2520–2522 (2012)

15. López-Huguet, S., Segrelles, J.D., Kasztelnik, M., Bubak, M., Blanquer, I.: Seam-
lessly managing HPC workloads through kubernetes. In: Jagode, H., Anzt, H.,
Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12321, pp.
310–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59851-8 20

16. Ungerer, T., Carpenter, P., et al.: Eurolab4HPC Long-Term Vision on High-
Performance Computing, 2nd edn. (2020). https://www.eurolab4hpc.eu/media/
public/vision/vision final.pdf

17. Van Leeuwen, E.M., et al.: Population-specific genotype imputations using mini-
mac or impute2. Nat. Prot. 10(9), 1285–1296 (2015)

18. Zhou, N., Georgiou, Y., Zhong, L., Zhou, H., Pospieszny, M.: Container orches-
tration on hpc systems. In: 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), pp. 34–36 (2020)

https://apptainer.org
https://argoproj.github.io/projects/argo
https://github.com/CARV-ICS-FORTH/KNoC
https://kubernetes.io
https://minikube.sigs.k8s.io
https://www.nas.nasa.gov/software/npb.html
https://slurm.schedmd.com/documentation.html
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/sylabs/wlm-operator
https://doi.org/10.1007/978-3-030-59851-8_20
https://www.eurolab4hpc.eu/media/public/vision/vision_final.pdf
https://www.eurolab4hpc.eu/media/public/vision/vision_final.pdf

	Interactive, Cloud-Native Workflows on HPC Using KNoC
	1 Introduction
	2 Related Work
	3 Design
	4 Implementation
	4.1 The KNoC Virtual Kubelet Provider
	4.2 The Door Executable
	4.3 Integration with Argo Workflows

	5 Evaluation
	6 Conclusion
	References




