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Abstract. Recent High-Performance Computing (HPC) systems are
facing important challenges, such as massive power consumption, while
at the same time significantly under-utilized system resources. Given the
power consumption trends, future systems will be deployed in an over-
provisioned manner where more resources are installed than they can
afford to power simultaneously. In such a scenario, maximizing resource
utilization and energy efficiency, while keeping a given power constraint,
is pivotal. Driven by this observation, in this position paper we first high-
light the recent trends of resource management techniques, with a par-
ticular focus on malleability support (i.e., dynamically scaling resource
allocations/requirements for a job), co-scheduling (i.e., co-locating mul-
tiple jobs within a node), and power management. Second, we consider
putting them together, assess their relationships/synergies, and discuss
the functionality requirements in each software component for future
over-provisioned and power-constrained HPC systems. Third, we briefly
introduce our ongoing efforts on the integration of software tools, which
will ultimately lead to the convergence of malleability and power man-
agement, as it is designed in the HPC PowerStack initiative.

Keywords: Malleability · Dynamic resource management · Power
management · Over-provisioning · Co-scheduling · Heterogeneity

1 Introduction

The power consumption of top-class supercomputers or High-Performance Com-
puting (HPC) systems have been increasing considerably over the past few
decades. As a result, one of the most powerful supercomputers in the world
now consumes an enormous amount of power, almost hitting 30MW [4]. Mean-
while, energy costs have been raising significantly in general, and thus setting a
power constraint on the entire HPC system in order to keep within a budgetary
upper limit is becoming more and more critical. As a consequence, future HPC
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systems will be deployed in an over-provisioned manner, i.e., installing more
resources than the facility can (or wants to) afford in terms of supplied power at
one time, and will be operated under a certain power constraint depending on
the operation cost at the time, and using techniques like active power shifting
to direct the limited resource power to the system components that require it
most to optimize performance and/or throughput.

For this approach to work, though, we require significant flexibility in the
entire system software stack. One promising solution for this is supporting
dynamic malleability, i.e., dynamically scaling resource request/allocation to
exploit the dynamism inside of an application. Because current standard resource
schedulers in HPC employ static resource allocation policies, there is a signifi-
cant room for system efficiency improvement by introducing dynamism at this
level. Another promising solution is co-scheduling, i.e., co-locating multiple jobs
that utilize complementary resources on the same node. As a compute node
in an HPC system is becoming increasingly fat with heterogeneous processing
elements, co-scheduling is indispensable to fully utilize the resources inside a
node.

In this position paper, we explicitly target the near-future over-provisioned
and power-constrained HPC systems and consider applying these novel
approaches, which both boil down to sophisticated resource handling mecha-
nisms, to these systems. More specifically, we first highlight the trends of HPC
architectures, malleability support, co-scheduling, and power-aware HPC. We
then discuss what would happen when these were combined together while pro-
viding some fundamental analyses on the convergence as well as clarifying the
functionality requirements in each software component. We finally introduce our
ongoing efforts on our software stack tool integration, which will ultimately lead
to the convergence of malleability and power management, as e.g., targeted in
the HPC PowerStack efforts [2].

2 Technology Trend

In this section, we first summarize the trend of hardware architecture in HPC
systems. We second introduce several prior and ongoing efforts for the malleabil-
ity support in HPC systems. We third highlight existing co-scheduling techniques
for HPC systems. We finally present power management studies in HPC systems.

2.1 Hardware Architecture

Driven by the end of Dennard scaling in mid 2000s, the industry had to change
their system designs toward multi-core and heterogeneous systems, instead of
merely increasing the clock frequency [20,22]. As a consequence, CPU-GPU het-
erogeneous supercomputers have appeared around a decade ago, and now about
30% of the HPC systems ranked in the Top500 list are equipped with GPUs [4].
Nevertheless, we are now facing another serious issue, namely the slowing of
Moore’s law, and with that the end of the exponential growth that continued
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over the past 50 years is inevitable in the near future [22]. To keep the historical
performance/energy-efficiency growth ratio, both hardware-/software-level sys-
tem optimizations or even radical redesigns are essential. To this end, adopting
extremely heterogeneous architectures that consist of multiple different special-
ized hardware components is a promising solution, in particular to maximize
the performance or energy efficiency of various common HPC workloads [32].
However, this hardware architecture trend, i.e., compute nodes will become fat-
ter and more heterogeneous, will make it even harder to fully utilize the available
resources, which will require more sophisticated resource management method-
ologies including co-scheduling, power management, and malleability support.

2.2 Malleability Support

Malleability is the property of jobs or applications to remap themselves to vary-
ing numbers of compute resources at runtime [21]. When these resources are
CPU cores in a shared memory environment, this kind of remapping requires
less complicated data movements. In contrast, when whole nodes are added or
removed from the resources available to a job or application, then network-
based data re-distributions need to take place. In addition to this, communi-
cation software needs to be able to account for these changes, and update its
internal data structures to represent the changes in resources. This is the case
with MPI libraries or PGAS run-time systems. There has been active research
in both shared-memory [30] and distributed-memory [17,19,23,24,33] malleable
systems.

In distributed memory systems, as may be expected, the number of changes
to support malleability is larger: Nearly the entire software stack needs to be
updated to support malleability. The scheduler, node management, process man-
agements, communication libraries, programming models, tools and applications,
among other things, require changes to support malleability in distributed mem-
ory systems. Furthermore, existing elastic distributed memory systems, such
as cloud software stacks, are incompatible with the bulk synchronous patterns
that are common in scientific and engineering simulations. Therefore, systems
like Kubernetes, that already support malleability for cloud computing work-
loads, cannot be reused without important changes. In spite of the larger scope
and challenges, researchers have been exploring updates to systems such as
schedulers [19,33], programming models [17,23] and applications [24] in the
distributed-memory supercomputing field in recent years. Further, as power is
becoming more and more precious in supercomputers, in particular for over-
provisioned systems, we should target power budgeting and compute resources at
the same time.

2.3 Co-scheduling

Ever since multi-core processors appeared on the market, a variety of co-
scheduling techniques have been widely studied. In general, these techniques
are useful in order to fully utilize the resources inside of a chip/node by mixing
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processes/applications/jobs which require complementary resources. R. Cochran
et al. proposed Pack & Cap that co-locates multi-threaded applications on a
multi/many-core processor while optimizing the number of threads for each
of the applications [16]. M. Bhadauria et al. explored the feasibility of space-
shared scheduling using a greedy-based co-run job selection and resource allo-
cation policy [8]. J. Breitbart et al. created a resource monitoring tool useful
for co-scheduling HPC applications [10] and provided a memory-intensity-aware
co-scheduling policy [11]. Q. Zhu et al. targeted CPU-GPU heterogeneous proces-
sors and proposed a co-scheduling approach suitable for them [36]. Others exam-
ined the impact of hardware cache partitioning when co-running HPC jobs [6].
In general, these seminal studies are not aware of malleable HPC applications.

2.4 Power-Aware HPC

Since power consumption has become the first class design constraint when
building supercomputers, there have been a variety of activities or studies on
power-aware HPC. T. R. W. Scogland et al. developed a comparative power
measurement methodology through the Energy Efficient HPC Working Group,
which is used for the Green500 ranking today [31]. T Patki et al. firstly explored
the feasibility of over-provisioning for HPC systems [26], and following this study,
there have been various resource management and scheduling researches for over-
provisioned and power-constrained HPC systems [27–29]. The PowerStack ini-
tiative community [2] was launched based on these studies, and now we should
extend the scope to cover malleability and co-scheduling to fully exploit the energy
efficiency of HPC systems.

3 Problem Statement

Our ultimate goal is to provide a software stack that is capable of handling
malleable jobs while providing co-scheduling and power management features
for near-future over-provisioned and power-constrained HPC systems. In this
section, we cover the fundamental aspects such as job classification and the
relationship between malleability, co-scheduling, and power management.

3.1 Job Classification

Before go into the details, we first classify jobs with respect to the applicability
of the advanced resource management features in Table 1. The classification is
based on the following two points: (1) whether or not the application supports
the malleability; (2) whether or not the user accepts the slowdown caused by the
power capping and/or node sharing (or co-scheduling). Even though introduc-
ing the malleability feature has various advantages by exploiting the dynamic
behaviors of both systems and applications, as it requires code modifications,
which can be significant depending on the complexity of the application, some
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Table 1. Job classification

Malleability Accept
slowdown

Power
capping

Node
sharing

Job Class1

Job Class2 � � �
Job Class3 �
Job Class4 � � � �

Fig. 1. Malleable job

Fig. 2. Malleability handling policies
and power constraint

Fig. 3. Our target strawman architecture

users may choose the traditional rigid option. Similarly, some users may pre-
fer to exclusively utilize compute nodes without any power capping even if the
administrators encourage the users to accept the slowdown (with an acceptable
performance degradation rate) by offering them incentives, in terms of such as
queuing priority and pricing. Therefore, these different classes of jobs will co-
exist in future HPC systems with these advanced resource management features,
and the entire software stack as well as the administrators must carefully han-
dle them accordingly, in terms of resource allocations, queuing priority, token
accounting, and so forth, which will be discussed later in this paper.

3.2 Malleable Jobs Under Power Constraint

Next we focus on malleable jobs and their dynamic behaviors (Job Class 3/4 )
as depicted in Fig. 1. The X-axis indicates time (t), while the Y-axis represents
the number of requested nodes or the scale of MPI rank (Nnode(t)). Nmax is the
maximum of Nnode(t) throughout the job execution.

We have several options to deal with the dynamic resource re-allocations to
malleable jobs, and an optimal choice highly depends on the remaining resources
in terms of both compute nodes and power. If available compute nodes are not
very plentiful, dealing compute nodes across the job is a suitable choice. If no
compute node is available (but power budget is still remaining), node sharing
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(or co-scheduling) should be considered. Note that the system must care about
the job classes and the acceptable slowdown ratios designated by the users in
this case. For an over-provisioned system with a very strict power constraint,
allocating Nmax nodes to a malleable job and sleeping/awaking them to deal
compute nodes will be an option to be considered. As available compute nodes
are very plentiful (but most of them must be in the low-power or sleep states)
in such a system, the malleability can be handled by just turning them into the
sleep/awake state.

Figure 2 intuitively summarizes the conditions mentioned above, and it is
important for current/future HPC systems to analyze, model, and quantify the
exact boundaries to determine the policy selection from these different resource
management options. This exploration is a new research opportunity, and we
need theoretical studies to demystify them by using such as job traces obtained
from supercomputers and putting them into simulators with realistic setups. In
this fundamental study, we will estimate or set some assumptions to classify the
jobs in the trace into the categories shown in Table 1, in terms of number of
jobs, job scale distributions, and execution time distributions, because the opti-
mal policy setups and the effectiveness of these approaches will highly depend on
these factors. To make the exploration more realistic, analyzing the scalability
of representative applications at the granularity of application phase will help
to assess the dynamic behavior. Further, quantifying the benefits of our app-
roach from both the systems’ and users’ point of views will be essential, which
includes the exploration on what incentives we should provide to users. Once
a policy selection methodology established throughout this study, that will be
deployed/implemented on the software stack.

4 Toward Convergence of Malleability and PowerStack

Driven by the problem statement and the basic assessment described in the last
section, here we describe our high-level solution and ongoing efforts to realize
it. First, we introduce our reference strawman software architecture. Second, we
explain our high-level architectural solution and the detailed roles of components
in the strawman architecture. We then finally highlight our ongoing efforts on
the software integration to realize it.

4.1 Strawman Architecture

Figure 3 illustrates our high-level software architecture, consisting of several com-
ponents and actors. The roles of the components are summarized as follows:

System Manager. The system manager receives a set of jobs to be scheduled
within the system and indicatively decides upon when to schedule each job,
to which specific compute nodes to map it, and under which power budget or
setting. It also handles any dynamic resource/power requests from the job/node
managers at runtime.
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Fig. 4. Hierarchical and dynamic resource management

Job Manager. The job manager performs optimizations considering the per-
formance behaviour of each application, its fine-grained resource footprint, its
phases and any interactions/dependencies dictated by the entire workflow. It
provides an option to users for a fine-tuned application-level hardware knob
controlling and also provides the functionality to scaling up/down the job size.

Node Manager. The node manager provides access to node-level hardware
controls and monitors. Moreover, the node manager implements processor level
and node level power management or resource partitioning policies, and it medi-
ate all the hardware control requests coming from the software stack.

Monitor. The monitor is responsible for collecting in-band and out-of-band
data for performance, scheduling, resource management, and so forth. The mon-
itor operates continuously without interfering with running jobs, and collects,
aggregates, records, and analyses various metrics, and pushes necessary real-time
or profiling data to the other components.

4.2 Solution Overview and Requirements

Figure 4 illustrates the high-level concept of our solution. Overall, we apply a
hierarchical and feedback-driven resource management approach. The require-
ments for each software component and the administrators are as follows:

System Manager. The system manager mainly deals with two different tasks:
(1) job scheduling, which is based on proactive decisions; and (2) dynamic
and reactive resource adjustment across jobs/nodes. For the former, as the job
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scheduling decisions cannot be changed after job launches (unless we apply check-
pointing and migrations that however can induce significant overheads), they
are basically proactive relying on static information such as job profiles. Naive
heuristics such as the FCFS with back-filling are widely used, however as we
support malleable jobs, prediction-based approaches will be more important,
e.g., those based on estimated dynamic behaviors of malleable jobs using such
as profiling or any other information given by such as users. Further, as we apply
co-scheduling and/or power capping to some classes of jobs, we need to revisit
even the conventional back-filling strategy, e.g., choosing back-filling jobs based
also on the remaining/requested power budget and the impact of node sharing.
As for the dynamic resource management, we consider a hierarchical approach
as shown in the figure: (1) jobs trade the power budgets and nodes by interact-
ing with the system manager depending on their needs; (2) the system manager
monitors the remaining nodes/power and governs the redistribution based on
the requests; and (3) the node manager scales the power cap accordingly and
optimizes the node resource partitioning (if co-scheduled). Note that if other
components (e.g., I/O nodes or cooling facilities) support the power capping
capability, the system manager should handle the power trading across compute
nodes and them as well.

Job Manager. The major role of the job manager in this software stack is sup-
porting the malleability functions and providing proper interfaces to the system
manager, the node manager, and the developers. Beyond that, as the power bud-
geting should be supported for over-provisioned and power-constrained systems,
the interface should also be able to handle the power budget requesting function-
alities, not limited to removing/adding compute nodes. The power management
should cover not only the sleeping/awaking decisions for the malleability behav-
ior, but also should care about the per-phase/-loop characteristics (e.g., compute
intensity, cache hit/miss, accelerator utilization, etc.) to determine the setups of
hardware knobs during the active state. The characterizations should be based
on such as profiling provided by the monitor tool, and the hardware knob setups
are sent to the node manager and are handled by it.

Node Manager. The node manager mainly focuses on the hardware knob con-
trol, instructed by the job manager, or optimize the knobs by itself if the job
manager (or the application) doesn’t apply any application-oriented optimiza-
tions. It optimizes the power knob setup for each target hardware component
inside a node while keeping the total node power constraint given by the system
manager (or the job manager). In case the node becomes idle and unused for
a malleable job, that should turn the node into the sleep state based on the
instruction given by the system/job manager. Further, if multiple jobs are run-
ning the same node in a space sharing manner, it should handle the resource
partitioning properly to meet the performance requirement for both of the co-
running applications. For these decisions, the node manager can utilize statistics
given by the monitor tool.



214 E. Arima et al.

Monitor. The monitoring tool must be able to keep track of the power,
resource usage information, and so forth, associated with each job/application,
which will be ultimately utilized for various objectives. For instance, these col-
lected information is useful for the other software components in their decisions,
mainly the job profiling purpose as described before. In addition, the collected
power/resource utilization information should be used for the human actors.
One example is the job pricing purpose determined by the site administrators,
which will be described later. Further, more advanced functionalities including
modeling and analysis would help. One option is pointing out resource wastes
or potential benefits of introducing malleability, power capping, or co-scheduling
for users who submit jobs belong to Job Class 1 (see Table 1). More specifically,
notifying the estimated queuing time and cost reduction by applying/accepting
these features would be a great encouragement for users to apply/accept these
features.

Site Administrators. One of the major roles of the administrators is setting
up the system configurations, including the total system power constraint or
dividing the job queue per job class. Further, as introducing malleability into an
application requires extra efforts to modify their codes, the administrators need
to clarify the benefits to encourage their use. This is also the case for applying
power capping and/or co-scheduling as they incur performance degradation even
though the resource manager attempts to minimize the impact. One option is
taking these advanced resource management features into account in the token
consumption calculations, i.e., how much they charge for a job. The cost is
usually calculated based on the number of occupied nodes multiplied by the job
runtime. As the number of nodes dynamically changes during the execution of
a malleable job, the cost should be significantly reduced. Further, if the power
capping and/or co-scheduling is applied to the job as well, that should be also
reflected on the cost, i.e., energy-based pricing or interference-aware pricing [12].

4.3 Our Ongoing Efforts on Software Tool Integration

To realize the high-level solution described above, several software integration
projects are ongoing. One is DEEP-SEA project [1] that aims at providing a
programming environment for European exascale systems, which includes the
malleability support, and the other one is REGALE project [3] that focuses on
realizing the HPC PowerStack [2], including both power management and co-
scheduling aspects. In this subsection, we briefly introduce the current status of
them, and our ambition is combining these two integration paths together in the
near future.

Malleability Support. At the system management level, we are engaged in
experimental development with resource managers like FLUX [5] and Slurm [35]
as a part of DEEP-SEA project [1]. These are being extended with dynamic
job allocation functionalities. In addition to this, new experimental scheduling
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heuristics are being developed. Currently, these are extensions to the well estab-
lished FCFS with back-filling heuristic already available in these frameworks. We
are also in collaboration with developers of monitoring and data-capture frame-
works, such as DCDB [25], to identify metrics that are relevant to allocation size
updates in jobs. These monitors are being updated to capture data of jobs with
changing allocation sizes.

A set of application processes is created for workloads to run in our systems,
in one or more nodes. These processes require relevant metadata and synchro-
nization operations to establish communication, among other things. Between
these system managers and the run-time systems of programming models, there
are process management interfaces, that allow the exchange of such metadata.
These interfaces have traditionally been vendor specific, and as a result has
increased the challenge of developing run-time systems, especially in distributed
memory systems. The PMIx [14] standard aims to remove these additional com-
patibility challenges. We are engaged in its standardization efforts, as well as in
the development of its Open PMIx library. Both the standard and the library are
being extended to better support the dynamic exchange of allocation metadata,
required by malleable systems.

PowerStack Support. As an initial step, we are developing a software stack to
realize the PowerStack [2] that enables a variety of power management function-
alities from naive to a more sophisticated one in REGALE project [3]. We have
already completed defining the initial software architecture, requirements, and
supported use cases, and now we are working on the software tool integration
based on the architectural definition. For the system manager, in particular the
job scheduling, we are going to cover Slurm [35] and OAR [13], i.e., we are going
to provide multiple different software stack instances to realize the architecture.
For the job manager, EAR [18], Countdown [15], or BDPO [34] will be used.
Note EAR has a variety of functionalities ranging from the system, job, and
node manager, and thus is one of the key tools. Countdown tries to minimize
the power consumption while waiting for the completion of an MPI commu-
nication, by scaling down the clock frequency or going into one of the CPU
sleep states (C-state). BDPO is a job-oriented profile-based power-performance
optimization tool, which optimizes clock frequency to trade-off performance and
energy or to minimize energy while using its phase detection mechanism. As
for the node manager, aside from EAR, BEO [34] and PULP Controller [7]
are promising tools. BEO is an out-of-band power monitoring and controlling
tool. PULP Controller is a low-level power controller, works transparently to
the application, user, and system software, currently targeting EPI processors.
As for the monitor, DCDB [25] and EXAMON [9] will be used, both of which
support in-band/out-of-band monitoring properties as well as the functionalities
to analyze/model the monitored data.

Some of the tools have been already integrated, and other integration is
under construction. In addition to the tool integration, some sophistication paths
are ongoing, one of which is the co-scheduling support. After completing the
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integration in this PowerStack implementation phase, we are planning to extend
it to converge with the malleability software stack.

5 Conclusion

Near-future HPC systems will be over-provisioned and power-constrained. In
this position paper, we explicitly target such systems and discussed the neces-
sity/requirements of sophisticated resource handling mechanisms, i.e., the com-
bination of malleability support, co-scheduling, and power management. More
specifically, we first introduced the trends of HPC architectures and the prior
studies on these resource management concepts. We second discussed what would
happen when these were combined together while providing several prominent
use cases as well as some fundamental analyses. We finally introduced our ongo-
ing efforts on our software stack tool integration, which will ultimately lead to
the convergence of malleability and PowerStack, leaving a significant impact on
both of these communities.
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