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Abstract. Computer applications are growing in terms of data man-
agement requirements. In both scientific and engineering domains, high-
performance computing clusters tend to experience bottlenecks in the
I/O layer, limiting the scalability of data-intensive based applications.
Thus, minimizing the number of cycles required by I/O operations consti-
tutes a widely addressed challenge. In order to cope with that constraint,
distributed in-memory store solutions provide a network-attached stor-
age system using the compute nodes main memory as storage device.
This solution provides a temporary but faster storage approach than
those based on non-volatile memory like SSDs. This work presents a
novel ad-hoc in-memory storage system focused on data management
and data distribution, namely IMSS. Our solution accelerates both data
and metadata management, taking advantage of ZeroMQ, a fast and
flexible communication mechanism. One of the main contributions of
IMSS is that it incorporates multiple distribution policies for both opti-
mizing network performance and increasing load-balance. The experi-
mental evaluation demonstrates that our proposal outperforms Redis, a
well-known in-memory data structure store, outperforming Redis in both
write and read data accesses.
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1 Introduction

Current scientific and engineering applications running on today’s large-scale
supercomputers are usually characterized by a data-intensive nature. A single
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application’s workflow easily generates tens of terabytes of data, mostly produced
by on-line operations. As M. Radulovic et al. [14] stated, from the performance
point of view, that a set of tested applications behave as data intensive ones
when all of them, but two, spent a significant portion of time with a memory
bandwidth utilization above 60% or even 80%. Due to the appearance of these
data-demanding high-performance applications, multiple software solutions have
been introduced in an attempt to cope with challenges along the entire I/O soft-
ware stack [6], such as high-level I/O libraries, parallel file systems, and I/O
middleware, with a final objective consisting on reducing the amount of file sys-
tem calls and offloading I/O functionalities from compute nodes, respectively.
Those optimizations are even more important for data-intensive workflows, con-
sisting of interdependent data processing tasks often connected in a DAG-style
sequence, which communicate through intermediate storage abstractions, typi-
cally files. While workflow management systems deployed on HPC systems (e.g.,
parallel machines) typically exploit a monolithic parallel file system that ensures
a high efficiency in data access [18], workflow systems implemented on distributed
infrastructures (most often, a public Cloud) must borrow techniques from the
Big Data computing field [7].

For several years, I/O-intensive HPC-based applications have been primarily
based on distributed object-based file systems, which separate data from meta-
data management and allow each client to communicate in parallel directly with
multiple storage servers. Exascale I/O raises the throughput and storage capac-
ity requirements by several orders of magnitude. Therefore, to develop methods
that can manage the network and storage resources accordingly is a must [12]. It
is assumed that the systems already developed for data analytics are not directly
applicable to HPC due to the fine-granularity I/O involved in scientific appli-
cations. Another weakness of existing systems is the semantic gap between the
application requests and the way they are managed by the storage back-end at
the block level.

Addressing the challenge, different solutions have been implemented through-
out the years. Alluxio [9] conforms a storage solution located between computa-
tion frameworks and persistent data stores that aims to reduce the complexity of
storage APIs while taking advantage of memory speed I/O. However, the former
does not provide an application-dedicated ad-hoc storage facility. Approaching
another viewpoint, Hermes [11] focuses on the implementation of a MRAM-
based storage system improving file system performance through the effective
use of MRAM devices. Nevertheless, it does not provide locality policies. Also,
solutions, such as WekaIO1, that provide a high-performance storage architec-
ture, do not consider locality within the implementation neither ad-hoc storage
characteristics.

This work presents the design, implementation, and evaluation of a dis-
tributed ad-hoc in-memory storage system (IMSS), a proposal to enhance I/O
in both traditional HPC and High-Performance Data Analytics (HPDA) sys-
tems. The architectural design follows a client-server design model where the

1 https://www.weka.io.

https://www.weka.io
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client itself will be responsible of the server entities deployment. We propose
an application-attached deployment constrained to application’s nodes and an
application-detached considering offshore nodes. The client layer is in charge of
dealing with data locality exploitation alongside the implementation of multiple
I/O patterns providing diverse data distribution policies.

Our approach offers the following benefits. First, the storage facility provides
a flexible API tackling the storage servers’ elastic deployment. It is possible
to specify the number of servers to be deployed as well as the compute nodes
where those servers will execute. Each server will have a storage buffer, whose
size is specified at server creation. Second, IMSS makes use of main memory
as the storage device so as to reduce as much as possible response time within
requests, avoiding querying data from disk. IMSS provides multiple data dis-
tribution policies, which consider data scattering among storage processes and
adapts the distribution behavior to each application’s use case. Finally, IMSS
exposes a non-POSIX interface so as to cope with the semantic gap existing in
current high-performance I/O systems. The interface provided relies on get-set
functions that enable non-contiguous data-related operations, unlike the tradi-
tional POSIX interface.

The rest of the paper is structured as follows. Section 2 presents related work
to our research. Section 3 introduces the architectural design of the IMSS system.
Section 4 introduces the deployment options of IMSS. In Sect. 5, we discuss the
experimental evaluation results. Finally, Sect. 6 closes the paper with the main
conclusions from our work.

2 Related Work

General-purpose parallel file systems such as GPFS [16] and Lustre [2] have
been providing for a long time well-known solutions for long term persistent
storage. However, they are very rigid and cannot be modified or suited to an
application one they are deployed. To avoid this problem, new distributed storage
architectures, like CEPH, have been proposed. CEPH storage system provides a
distributed architecture that can be deployed on virtual systems, allowing block-
and file-level storage, replication, and custom storage backends in Distributed
Storage Systems [1]. However, current HPC systems and applications are not
well suited to that kind of systems.

Moreover, increasing the complexity of the I/O stack with traditional I/O
devices, generates an increasing in I/O operations latency that hampers appli-
cations’ performance. Thus, nowadays use cases have empowered the prolifer-
ation of low-latency storage systems using local or remote in-memory storage
devices as a feasible approach to the problem [10,23]. Such has been the impact
of these storage systems [24] that multiple solutions, such as in-memory rela-
tional databases, in-memory NoSQL databases, in-memory cache systems, and
in-memory data processing systems, have been implemented in the last years.

Considering the widespread spectrum of solutions, Redis [15] is a well-known
key-value in-memory store that offers storage support for multiple data struc-
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tures. Redis’ implementation employs a single thread in charge of both, I/O com-
munications and data storage/retrieval operations. Redis provides a distributed
version called Redis Cluster, which provides an absolute decentralization through
a hash slot partition strategy to find out which server within the deployment
will store a certain record. Nevertheless, our tool has significant enhancements
over Redis. First of all, the IMSS storage system follows a multi-threaded design
architecture. Secondly, our IMSS provides to the applications a set of distribu-
tion policies that can be chosen at dataset level. As a result, IMSS will increase
awareness in terms of data distribution at the client side, providing benefits such
as a better data locality exploitation.

Another alternative that has been explored in order to approach the data
challenge is ad-hoc file systems [3]. Ad-hoc file systems provide a custom data
resource at application level, taking advantage of internal storage devices while
acting as a middleware between persistent storage entities and the application
itself. Major features are: (i) negligible deployment overhead, to be deployed
either on a HPC cluster for lifetimes as small as the runtime of a single job; (ii)
global name space for all nodes linked to the same ad-hoc file system; and (iii)
interaction with the back-end storage system through data staging.

Within the current state-of-the-art ad-hoc file systems, GekkoFS [19] con-
forms an exemplary implementation of an ad-hoc file system which offers a
user-space file system that combines application’s node-local persistent storage
devices in order to provide a global name space within the context of a partic-
ular use case, such as an HPC job, distribution of data and metadata as evenly
as possible among the nodes conforming the file system instance by using hash
indexing to discover which server will be storing each data element. GekkoFS
relaxes the POSIX semantics and relies on the application in order to ensure
that data overlapping conflicts do not arise. Therefore, the main differences con-
sidering GekkoFS and IMSS involves data distribution strategies and storage
resources. On the one hand, IMSS enables multiple data distribution policies
at dataset level increasing the application’s awareness about the location of the
data itself. On the other hand, IMSS uses main memory so as to store records
and also the possibility of persistent storage.

BurstFS [20] constitutes a burst-oriented storage system that shares basic
design considerations with GekkoFS. The main difference between them involves
write operations: BurstFS clients always write to the corresponding local storage
in a log-type manner. BurstFS instances are dynamically deployed along with
the allocation of a job over a set of compute nodes. Then, the storage system will
be using whatever node-local burst buffers are available, which may consist of
SSDs or any other fast storage device. Moreover, BurstFS uses the key-value data
model in order to handle metadata. In this case, the distribution policies enabled
by our IMSS arise as an advantage against the BurstFS system. The IMSS client
will be able to write to local/internal storage devices and to distribute the same
workload among the set of servers conforming the storage entity by means of
different data distribution strategies achieving improved load-balance strategies
respect to BurstFS. BurstFS system makes use of persistent storage devices
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while IMSS store makes use primarily of main memory resources. As a result,
the benefits of the data-locality exploitation will be achieved more easily using
the IMSS tool.

In a previous work, we presented Hercules [4], a hierarchical parallel stor-
age system based on distributed memory. IMMS differs in the following aspects.
First, Hercules was based on Memcached [13] for both front and back-end layers.
This approach suffers from the limitation of the Memchached protocol for data
transferring modes, such as inter-process communication and inter-thread com-
munication. IMSS employs its own communication protocol based on ZeroMQ,
offering more flexible communication patterns. In contrast to Hercules, IMSS
provides its own in-memory storage back-end. This alternative outperforms
Memcached by eliminating the global cache lock system [22]. IMSS offers an
ad-hoc oriented deployment, which facilitates the integration of IMSS in both
applications and systems. Finally, IMSS offers a scalable metadata management
layer that exploits data locality in large supercomputers.

3 IMSS Architecture Design

As, shown in Fig. 1, the architectural design of IMSS follows a client-server design
model where the client itself will be responsible of the server entities deploy-
ment. We propose an application-attached deployment constrained to applica-
tion’s nodes and an application-detached considering offshore nodes.
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Fig. 1. Representation of an IMSS deployment.

The development of the present work was strictly conditioned by a set of well-
defined objectives. Firstly, IMSS should provide flexibility in terms of deploy-
ment. To achieve this, the IMSS API provides a set of deployment methods where
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the number of servers conforming the instance, as well as their locations, buffer
sizes, and their coupled or decoupled nature, can be specified. Second, parallelism
should be maximized. To achieve this, IMSS follows a multi-threaded design
architecture. Each server conforming an instance counts with a dispatcher thread
and a pool of worker threads. The dispatcher thread distributes the incoming
workload between the worker threads with the aim of balancing the workload in
a multi-threaded scenario. Main entities conforming the architectural design are
IMSS clients (front-end), IMSS server (back-end), and IMSS metadata server.
Addressing the interaction between these components, the IMSS client will exclu-
sively communicate with the IMSS metadata server whenever a metadata-related
operation is performed, such as: create dataset and open imss. Data-related oper-
ations (get data & set data) will be handled directly by the corresponding stor-
age server. Finally, IMSS offers to the application a set of distribution policies
at dataset level increasing the application’s awareness about the location of the
data. As a result, the storage system will increase awareness in terms of data dis-
tribution at the client side, providing benefits such as data locality exploitation
and load balancing.

Two of the most suitable network interfaces are sockets and Remote Proce-
dure Calls (RPC). To choose the best one, we made a comparison between several
communication mechanisms (sockets, gRPC, and we chose ZeroMQ [5] in order
to handle communications between the different entities conforming an IMSS
instance2. ZeroMQ has been qualified as one of the most efficient libraries for
creating distributed applications [8]. ZeroMQ provides multiple communication
patterns across various transport layers, such as inter-threaded, inter-process,
TCP, UDP, and multicast. ZeroMQ provides a performance-friendly API with an
asynchronous I/O model that promotes scalability. In addition, ZeroMQ library
offers zero-copy messages, avoiding further overheads due to data displacements.

Furthermore, to deal with the IMSS dynamic nature, a distributed meta-
data server, resembling CEPH model [21], was included in the design step. The
metadata server is in charge of storing the structures representing each IMSS
and dataset instances. Consequently, clients are able to join an already created
IMSS as well as accessing an existing dataset among other operations.

3.1 Front-End Layer

The client application will handle IMSS and dataset instances through an IMSS
client library. The API provides a set of operations to create, join, get, set, and
release data, datasets, and IMSS instances.

Along any session, clients create and join multiple IMSS instances. An IMSS
instance is defined as an ephemeral dedicated storage entity conformed by mul-
tiple servers distributed along a set of user-defined machines that use main
memory in order to store datasets. An IMSS instance is identified by a unique
Uniform Resource Identifier (URI) and it is represented by a data structure

2 (https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/
Middleware Comparison.pdf).

https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf
https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf
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storing parameters such as the number of servers conforming the instance and
their respective location. Moreover, a dataset entity corresponds to a collection
of data elements with a constant size that are distributed among the storage
servers of a single IMSS instance following a certain data distribution policy.
As IMSS instances, datasets are identified by a unique URI, which reflects the
storing IMSS entity. A data structure representing the dataset abstraction is cre-
ated per instance, gathering parameters such as the distribution policy assigned
to the dataset, the number of data elements conforming the dataset, and the
replication factor, among others.

3.2 Back-End Layer

Each IMSS instance is formed by multiple IMSS storage servers. Each one stores
multiple data blocks of different datasets. Each IMSS server deploys a dispatcher
thread that distributes and balances client connection requests among worker
threads following a round-robin policy. In addition, worker threads belonging
to the same server associate data blocks’ identifiers to memory locations in a
map-based memory container.

In order to handle get and set requests, each worker thread exclusively
accesses the map container for the provided data block location. Afterwards,
the requested data block is wrapped into a message and is sent back to the
client in case of a get operation. If the requested data block is not found, an
error code is returned. If the operation is a set, the worker thread overwrites the
concerned block if it was already stored. Otherwise, the data block is written
and a new key-value pair representing the previous block is added to the map.

Data persistency is provided through period dump operations that write all
the buckets of an IMSS to SSD or hard disks. The period can be defined when
the IMSS is created.

3.3 IMSS Metadata Server

Dataset and IMSS data structures appear whenever the client creates one of the
previous instances. The metadata server was introduced in order to keep track
of the aforementioned structures. In terms of internal design, IMSS metadata
server aims to balance workload among a thread pool. The architecture con-
sists of a single dispatcher thread and multiple worker threads. The dispatcher
thread serves incoming connection requests distributing new clients between the
worker threads following a round robin policy. A map container, which associates
datasets’ and IMSS instances’ URIs to a memory location, is used to keep track
of the stored structures.

The metadata server implements a persistence module. The server is able to
write the structures associated to the dataset and IMSS entities handled along
the session once it is over, as well as reading them during the deployment of a
new session.
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3.4 Data Distribution Policies

Dataset distribution policies included in IMSS define the distribution of each
dataset in the instance deployed. The policy determines the back-end server
in charge of storing data blocks. The IMSS front-end layer handles the policy
assignment whenever a dataset is created. The IMSS metadata server maintains
the dataset’s data structure, annotating the distribution policies of each one.
The following policies have been developed:

– ROUND ROBIN: data blocks are distributed among the IMSS servers fol-
lowing a round-robin strategy.

– BUCKETS: each dataset is divided into the same number of chunks as
number of servers. Each chunk is composed by a consecutive number of data
blocks, equally distributed. Then, each chunk is assigned to a unique server.

– HASHED: a hash operation is applied over each data block key to discover
the mapped server.

– CRC16bits & CRC64bits: similar to HASHED policy, but a sixteen/sixty
four bits CRC operation is applied over the data block key.

– LOCAL: each data block is handled by the IMSS server running in the same
node that the client. The data block key is not considered in this policy. If
no IMSS server was deployed in the client node, every dataset’s data-related
operation will return an error.

With those policies, IMSS enables the possibility to tune the dataset distribu-
tion. These distribution policies aim to increase performance. As demonstrated
in Sect. 5, the LOCAL policy experimentally obtains the greatest performance
due to the exploitation of locality. In the current prototype, the distribution pol-
icy is established at creation time and it cannot be modified. In the future, we
plan implement a dynamic distribution policy that enables to adapt the behav-
ior in terms of system metrics (CPU, memory consumption, etc.). Within the
previous possibilities, a LOCAL policy should be highlighted as it will have the
objective of exploiting data locality as much as possible: data requests will be
forwarded to the storage server running in the same machine where the request
was made. Finally, a non-POSIX get-set interface will be provided in order to
manage datasets, which conform a storage abstraction used by IMSS instances
in order to manage data blocks (smallest data unit considered within the storage
system).

4 Deployment Strategies

Two strategies were considered so as to adapt the storage system to the appli-
cation’s requirements. On the one hand, the application-detached strategy, con-
sisting of deploying IMSS clients and servers as process entities on decoupled
nodes. IMSS clients will be deployed in the same computing nodes as the appli-
cation, using them to take advantage of all available computing resources within
an HPC cluster, while IMSS servers will be in charge of storing the application
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datasets and enabling the storage’s execution in application’s offshore nodes.
In this strategy, IMSS clients do not store data locally, as this deployment was
thought to provide an application-detached possibility. In this way, persistent
IMSS storage servers could be created by the system and would be executed
longer than a specific application, so as to avoid additional storage initializa-
tion overheads in execution time. Figure 2 (left) illustrates the topology of an
IMSS application-detached deployment over a set of compute and/or storage
nodes where the IMSS instance does not belong to the application context nor
its nodes.

On the other hand, the application-attached deployment strategy seeks
empowering locality exploitation constraining deployment possibilities to the
set of nodes where the application is running, so that each application node will
also include an IMSS client and an IMSS server, deployed as a thread within the
application. Consequently, data could be forced to be sent and retrieved from
the same node, thus maximizing locality possibilities for data. In this approach
each process conforming the application will invoke a method initializing certain
in-memory store resources preparing for future deployments. However, as the
attached deployment executes in the applications machine, the amount of mem-
ory used by the storage system turns into a matter of concern. Considering that
unexpectedly bigger memory buffers may harm the applications performance,
we took the decision of letting the application determine the memory space that
a set of servers (storage and metadata) executing in the same machine shall use
through a parameter in the previous method. This decision was made because
the final user is the only one conscious about the execution environment as well
as the applications memory requirements. Flexibility aside, as main memory
will be used as storage device, an in-memory store will be implemented so as
to achieve faster data-related request management. Figure 2(right) displays the
topology of an IMSS application-attached deployment where the IMSS instance
is contained within the application.

COMPUTE NODE

APPLICATION

IMSS Client 1

IMSS Server 1

COMPUTE NODE

APPLICATION

IMSS Client 2

IMSS Server 2

COMPUTE NODE

APPLICATION

IMSS Client n

IMSS Server n

. . .

IMSS Metadata Server

. . .

COMPUTE NODE

APPLICATION

IMSS Client 1

COMPUTE NODE

APPLICATION

IMSS Client 2

COMPUTE NODE

APPLICATION

IMSS Client n

. . .

COMPUTE/STORAGE
NODE

IMSS Server 1

IMSS
Server2

IMSS DEPLOYMENT

IMSS Server n

COMPUTE/STORAGE
NODE

COMPUTE/STORAGE
NODE

IMSS DEPLOYMENT

IMSS DEPLOYMENT

IMSS
Metadata
Server

Fig. 2. IMSS application-detached deployment (left side) vs IMSS application-attached
deployment (right side)
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5 Experimental Evaluation

An IMSS prototype, as well as micro-benchmarks used for evaluation are avail-
able3. IMSS has been evaluated in different scenarios in order to ascertain the
tool’s appropriateness for the task addressed in the current work. First, we eval-
uated IMSS in a bare-metal cluster. Second, in order to evaluate the scalability
of IMSS, we carried out experiments using the Google Cloud infrastructure. The
former evaluations aimed to measure the system’s scalability reaching up to 128
nodes. The workload was fixed to a single dataset of 8 GB that clients handle
collectively: one client creates it and the remaining open it. Multiple distribution
policies and block sizes were once again considered.

The Google Cloud Platform4 was chosen as a feasible solution. The virtual
instances are composed by nodes with 4 cores and 16 GB of RAM memory. We
have employed up to 128 virtual nodes. The software layer is based on Ubuntu
18.10 LTS, GCC compiler 7.3.0, and MPICH 3.2.0. The results shown in the
experiments correspond with the average value of five consecutive executions. In
order to depict the performance of IMSS, we have compared our solution with
four storage alternatives. First, IMSS was directly compared with the Redis
object store. Second, IMSS was compared with maximum network bandwidth
(in terms of MB/s), denoted in the plots with the label network limit. The net-
work throughput was obtained by using the iperf tool [17]. Within the results
presented, Redis deployment time is not considered. However, it is important to
note that the deployment step of IMSS is significantly smaller than Redis.

5.1 Block Size Variation

The first scenario presents the aggregated performance obtained from writing
and further reading steps of an 8 GB dataset achieved by 128 clients. Figure 3
represents the aggregated throughput obtained from the previous experiments.
In this case, the lack of variation of any kind is differentiated. In the first place,
there is no performance increment with bigger block sizes. This takes place as
the dataset’s portion left to each client is so small (64 MB) that it does not
leave possibility for improvement. There is no difference in writing such a small
number of bytes with a block size of 4 KB (16384 blocks) or 16 MB (4 blocks)
taking into account the asynchronous nature of the operation. Secondly, the
previous condition plus the minimal number of write operations per compute
node leaves no chance for any LOCAL policy improvement. Besides, another
factor that locates the observed performance under the referenced corresponds
to the reduction in the number of write operations per client and create dataset
call.

Moreover, Fig. 4 shows the aggregated throughput obtained from the conse-
quent reading step. In this case, a significant improvement paired to the block
size is ascertained. The previous fact takes place as the read operations involve

3 https://gitlab.arcos.inf.uc3m.es/mandres/IMSS.
4 (https://cloud.google.com).

https://gitlab.arcos.inf.uc3m.es/mandres/IMSS
https://cloud.google.com
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Fig. 3. Single dataset WRITE evaluation.

network overheads, which suffer from small blocks. In addition, a performance
improvement could be noticed regarding the LOCAL distribution. The policy
turns to be favored as each client’s requests are handled by the server running in
the same machine. As a whole, the LOCAL policy’s effectiveness is once again
justified through the results obtained in the reading step. In addition, the meta-
data influence is ascertained once more regarding the writing one.

5.2 Scalability

This scenario considers a scalability evaluation of the IMSS starting from 4 nodes
up to 128 by writing and reading an 8 GB dataset collectivelly using a 16 MB
block size. Figure 5 plots the performance obtained in the writing step. As it can
be seen, the performance degradation detailed in the writing step explanation of
Sect. 5.1 turns to be justified. The number of metadata operations also increases
reaching a point where the number of clients is no longer an advantage, but a
constraint. In case of IMSS, each execution involved both the initialization of the
storage instances and the creation of datasets. We observe that as we increase
the number of clients, IMSS suffers from a little metadata overhead due to the
management of blocks and the distribution policies. In contrast, Redis does not
suffer this constrains as it lacks those features. In addition, the asynchronous
nature of the write operations is again considered as it justifies the lack of any
LOCAL case improvement.

Reading results are shown in Fig. 6. In this case, the 4 and 8 clients cases stick
out as the BUCKETS policy is able to reach the performance of the LOCAL
policy. Consequently, considering the previous context and the BUCKETS dis-
tribution policy, the network limits the performance of the LOCAL policy’s
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Fig. 4. Single dataset READ evaluation.

performance until the number of clients and the network topology constraint
the case. Regarding the obtained results, the performance improvement of the
LOCAL distribution policy through the exhaustive and aware exploitation of
data locality are once again justified as well as the influence performed by the
metadata operations.

5.3 Metadata Overhead

The last scenario evaluates the time required for invoking each API call of IMSS.
Figure 7 plots the mean time required in milliseconds to perform every

metadata-related call. As shown in the figure, INIT operations are more compu-
tationally expensive as they have to create all IMSS environment. Thus, stat init
method produces an execution overhead as it initially creates the communication
channel with the metadata server. Besides, this call involves the initialization of
multiple internals required for an execution. We also observe that both init imss
and open imss invocations constitute another couple of computationally expen-
sive functions as they involve creating the corresponding communication chan-
nels with each server conforming the IMSS deployment. However, the init imss
execution time is above the open imss one as the first function will initialize
all server entities. It is important to highlight that the number of servers con-
forming the IMSS deployment significantly influences the execution time of the
aforementioned functions as the number of servers to be awakened and the num-
ber of communications to be created increases with it. It is important to notice
that those operations are executed only once at IMSS creation or opening.
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Fig. 5. Scalability evaluation. WRITE step of an 8 GB dataset.

However, status and operation calls creates a very low overhead. The
stat release and release imss calls require a small execution time as they exclu-
sively release the aforementioned communication resources and internals. Any-
way, they are used only once, when the IMSS is destroyed. Moreover, stat imss
function, that requests an IMSS metadata structure to the metadata server, also
creates a small execution overhead. Considering the set of metadata operations,
create dataset, open dataset and stat dataset methods, no significant execution
overhead is created as they exclusively involve a request-reply dialogue with the
metadata server, plus additional queries performed over the internal vectors stor-
ing datasets’ metadata structures. Again, the release dataset function will not
suppose a significant overhead as it will just mark as free the position storing
the involved metadata structure within the internal entity that keeps track of
them.

As may be seen, the overhead of dataset operations is almost negligible. Those
results are possible due to the usage of a metadata cluster, with a minimum of
3 nodes. The cluster could be enlarged, if needed, to ensure scalability and to
keep performance.
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Fig. 6. Scalability evaluation. READ step of an 8 GB dataset.

Fig. 7. Mean execution time of each IMSS API call.

6 Conclusions

In this work, we have introduced IMSS, an in-memory ad-hoc storage system
for data intensive-based applications that provides a flexible API tackling the
storage servers’ elastic deployment, usage of main memory as the storage device
so as to reduce as much as possible response time within requests, multiple data
distribution policies at the dataset level to increased awareness at application
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level, and a non-POSIX interface that relies on get-set functions. Evaluation
results presented in Sect. 5, comparing IMSS, Redis and a POSIX-compliant ext4
file system with caching techniques under different scenarios, show that our IMSS
performs better in any operation involving distributed datasets, outperforming
Redis and POSIX file systems. Moreover, we showed a low overhead for the
execution of IMSS’s API operations.

Future work guidelines involve the development of a more sophisticated per-
sistence storage module. This new module will allow to provide more efficient
operations to dump data from IMSS to the persistent storage back-end. We are
currently working on a extended evaluation that covers an experimental evalua-
tion under larger scenarios in terms of number of clients involved and workload
in order to provide a more detailed performance analysis.
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