
Exploiting OpenMP Malleability
with Free Agent Threads and DLB

Joel Criado(B) , Victor Lopez , Joan Vinyals-Ylla-Catala ,
Guillem Ramirez-Miranda , Xavier Teruel , and Marta Garcia-Gasulla

Barcelona Supercomputing Center, Barcelona, Spain
{jcriado,vlopez,jvinyals,gramire1,xteruel,martag}@bsc.es

http://www.bsc.es

Abstract. This paper presents the evolution of the free agent threads
for OpenMP to the new role-shifting threads model and their integra-
tion with the Dynamic Load Balance (DLB) library. We demonstrate
how DLB efficiently manages the malleability exposed by the role-shifting
threads to address load imbalance issues. We use two real-world scientific
applications, one of them with a coupling case, to illustrate the potential
of this approach. In addition, we also demonstrate that the new imple-
mentation is more usable than the former one, letting the runtime system
automatically make decisions that were to be made by the programmer
previously. All software is released open source.

Keywords: Dynamic load balancing · Free agents · OpenMP ·
Tasking · Malleability

1 Introduction

During the last years in the HPC community, both hardware and software are
getting ready for the exascale era. On the one hand, hardware boosts the com-
putational power of nodes by increasing the number of cores per node and using
different accelerators as much as augmenting the number of nodes. On the other
hand, software needs to evolve to use this massive computational power effi-
ciently.

One of the main characteristics of software that has proven necessary to
deal with the immense computational power is malleability. Malleability allows
dealing with heterogeneous hardware, noise at all levels, load imbalance, com-
munication inefficiencies, and dynamic workloads, among other issues.

Moreover, with the growing variety in hardware architectures, portability
is another must-have characteristic for all the software components because it
is not a sustainable approach to port every software to each newly designed
platform.

In this challenging scenario, all the software stack layers must be malleable,
flexible, and portable. We have already seen this direction in using workloads

c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 162–175, 2022.
https://doi.org/10.1007/978-3-031-23220-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23220-6_11&domain=pdf
http://orcid.org/0000-0002-6482-0214
http://orcid.org/0000-0002-3113-9166
http://orcid.org/0000-0002-4711-6815
http://orcid.org/0000-0003-2741-3705
http://orcid.org/0000-0001-5181-7545
http://orcid.org/0000-0003-3682-9905
https://doi.org/10.1007/978-3-031-23220-6_11


Exploiting OpenMP Malleability with Free Agent Threads and DLB 163

instead of monolithic applications [6], job schedulers managing adaptable appli-
cations [7,17], the development of malleable codes [8], and parallel programming
models offering dynamic malleability [10].

In this work, we focus on OpenMP; the OpenMP parallel programming model
has embraced malleability since its appearance, instead of much more rigid par-
allel models such as MPI, which only recently has started to offer this feature.
However, even the original malleability of the OpenMP model has proven not to
be enough. For this reason, we extend our previous free agent threads proposal
that expands the malleability of the programming model outside the parallel con-
struct. This new feature allows the Dynamic Load Balancing (DLB) library to
exploit the malleability of hybrid MPI+OpenMP applications further, achieving
better efficiencies.

The main contributions of this paper are the following: a new implementation
of the free agent threads; this new implementation aims to add a lower overhead,
be more usable, and offer an extensible framework; the integration of the free
agent threads with the DLB library, and the demonstration using two real HPC
applications.

The remaining of this document is organized as follows. Section 2 reviews the
related work that can be found in the literature. In Sect. 3, we explain the details
of the proposed implementation and how it has been integrated with the DLB
library. In Sect. 4, we present the performance evaluation, and finally, in Sect. 5,
we summarize the paper’s findings in the conclusions.

2 Related Work

This work relies on two main principles: a task-based programming model, where
the parallel decomposition leverages the creation of unstructured work units
(called tasks), and runtime malleability, in terms of resource allocation, of the
associated task-based programming runtimes.

Among the set of task-based programming models currently used in HPC,
we can find:

The OmpSs programming model [1,9] expresses parallelism using compiler
directives. These directives are transformed at compile time into runtime services
with well-defined semantics. Among others, programmers may create new tasks,
wait for their execution, establish the proper order of task executions, atomic/-
critical memory updates, etc. When ignoring directives, sequential behavior is
expected.

The Intel Threading Building Blocks (TBB) [13] is a C++ template library
that allows program parallelization through tasks. Programmers may use high-
level or low-level interfaces to spawn tasks; with such information, the runtime
creates a Task Dependency Graph and executes tasks in parallel when possible.

The Intel Cilk++ SDK [12] is a C++ language extension that includes a
runtime library within the family of Intel compilers. It allows expressing the
parallelism through a few language keywords (similar to compiler directives),
which ease iteration space decomposition, stand-alone tasks creations, and the



164 J. Criado et al.

synchronization among these work units. The current version of this approach
is the OpenCilk project [15], under the Massachusetts Institute of Technology
(MIT) supervision.

The OpenMP programming model [16] includes a task-based approach (in
addition to its traditional work-sharing model). The tasking sub-model allows
creating new tasks, waiting for their execution, and adequately ordering tasks
using data dependences. This tasking approach is similar to the aforementioned
OmpSs programming model, although the execution model is still bound to the
creation of parallel regions.

Resource usage malleability is the other pillar on which our implementa-
tion relies. Changing the number of assigned processing elements at runtime
requires a parallel decomposition that does not depend on them. This require-
ment removes from the equation the traditional OpenMP work-sharing con-
structs. Once we start a parallel region, the number of threads participating in it
must remain constant until the end of the construct. Otherwise, some fundamen-
tal definitions will be broken (e.g., the barrier directive or a static distribution
of iterations among threads).

Task-based approaches, instead, will ease resource malleability. As the cre-
ated tasks are not bound to a particular thread before starting their execution,
the number of threads (and the number of cores, consequently) may change at
runtime. Several existing implementations leverage such malleability:

The OmpSs programming model implements a Thread Manager module,
which provides support to the number of threads and their bindings to the under-
lying CPUs. The OmpSs Thread Manager may also interact with the Dynamic
Load Balance library [7,11]. This library gathers information about the system
occupancy beyond the process level, having an overall picture of the whole node
status. With this information, it can decide and change which should be instant
resource ownership for each of the processes along with the program execution.

Some OpenMP implementations also include the idea to use additional
threads, not directly included in the parallel region, to help execute tasks. The
Hidden Helper Threads feature [18] implemented in the LLVM compiler presents
a common use case in which the target construct may leverage the presence of
these other threads to relieve the critical path. The main differences with our
current implementation are: 1) the Hidden Helper Threads approach does not
allow to change the number of threads; and 2) it is restricted to the use of target
tasks, while our proposal intends to be more generic1.

Our initial implementation of free agent threads [14] combines two previous
approaches. On one hand, we implement the mechanism on top of an OpenMP
runtime fully integrated as a standard programming model. On the other hand,
we implement it in such a generic way that all the instantiated tasks could lever-
age the presence of these additional threads to be executed. The DLB component
is responsible for increasing or reducing the number of threads participating in

1 This is also the reason we are not comparing against this proposal; the study’s use
cases do not take any benefit from the Hidden Helper Threads implementation.



Exploiting OpenMP Malleability with Free Agent Threads and DLB 165

the process. This previous work demonstrated how free agent threads could
address load imbalances problems inherent in some HPC applications.

The current version, presented in this work, generalizes and simplifies the
implementation by allowing an existing thread to change its role during the exe-
cution. Taking advantage of existing threads that no longer participate in the
parallel region reduces the cost of creating and managing such threads. In addi-
tion, the implementation is more consistent with the definitions of the model
itself regarding the limit of threads. We also prepare the runtime to host other
types of roles in the future. We believe it is interesting for OpenMP users and
developers to increase the model’s extensibility further. For instance, the stan-
dard could consider dedicating specific threads to execute communication tasks
(i.e., the thread role will be communicator). Finally, it also simplifies the way
programmers interact with the execution of the resulting programs by pushing
the rationale of specific decision-making configurations as part of the OpenMP
runtime (i.e., automatize parameters). The evaluation section will show that the
runtime’s automated decisions always improve the best configuration used in the
previous implementation.

3 Implementation

Our previous free agent thread implementation used a mechanism of two pools
of threads, one containing the initial plus the worker threads and the other
pool containing the set of free agent threads. The idea behind was to have a
representative thread per processor and enable either the worker thread or the
free agent thread depending on whether the thread on that processor was needed
for a parallel region.

After evaluating our first approach, we observed two undesirable situations.
Firstly, a worker thread and a free agent thread both bound to the same proces-
sor could be active simultaneously. When the first was needed for a new parallel
region while the second was still executing an explicit task, i.e., a task generated
by a task construct, thus provoking a short time-lapse of processor oversubscrip-
tion. Secondly, should the OpenMP model implement a new type of thread, its
implementation may also be done using a third pool of threads overcomplicating
the implementation. Our new implementation solves both problems by using the
same thread running with different roles and adding extensibility to the model.

The new free agent thread and role-shifting implementation presented in this
paper are based on the LLVM OpenMP runtime version 14.0.0.

3.1 The LLVM OpenMP Runtime

The LLVM OpenMP runtime implements parallel regions as follows. When a
thread encounters a parallel construct, the thread creates the structure for the
team of threads and assigns as many threads as needed to the team. Threads will
be created the first time that the runtime needs such threads. Upon completion of
the parallel region, threads are suspended and moved to a thread pool structure



166 J. Criado et al.

until another parallel region is encountered. If subsequent parallel regions do
not need more threads than any other previous region, existing threads will be
reused.

The LLVM OpenMP runtime implements the thread fork-join model using
two different kinds of barriers. The first kind of barrier is called fork-barrier, and
this is where all idle threads are waiting until they are needed for some team.
When an idle thread is assigned to a team, the thread is released and executes
an implicit task, which is the task assigned to each team member that includes
all the parallel region code. One particularity of this barrier is that a thread is
released as soon as it is ready; whether the other threads participating in the
same parallel region have arrived at the barrier is irrelevant.

The second kind of barrier is called join-barrier, and it is used to join all
threads at the end of a parallel region. It is a more traditional barrier where
all threads must reach the barrier before the rest may proceed. After that, all
threads again enter the fork-barrier.

Fig. 1. OpenMP worker thread flowchart.

The described flowchart of a worker thread is shown in Fig. 1. A thread may
reach task scheduling points while executing its implicit task, typically when
encountering taskgroup, taskwait, barrier constructs, etc. The implementa-
tion may perform a task switch at this point, beginning or resuming the execution
of an explicit task bound to the same team. Once it reaches the implicit barrier,
a worker thread may also execute explicit tasks.

3.2 The Role-Shifting Threads

The role-shifting threads are an evolution of the current OpenMP threads. We
can differentiate two types of OpenMP threads: the initial and worker threads.
When a non-nested parallel region ends, all the worker threads become idle until
the initial thread encounters another parallel region. The idea behind role-shifting
threads is to use the already existing idle threads to perform different jobs based
on their available roles.

Under the new model, all threads, including the initial thread, can have from
0 to n potential roles, but only one of them can be active at a time. The initial



Exploiting OpenMP Malleability with Free Agent Threads and DLB 167

thread may not, and probably must not, use any role, but we do not enforce
the restriction for simplicity in the specification. The worker role is implicit in
all the threads since they may be able to participate in a parallel region at any
time.

Fig. 2. OpenMP role-shifting thread flowchart.

A thread can shift its active role at different points. At the start of a parallel
region, all the required threads must abandon their current role and execute their
assigned implicit task ; after finishing it, they may shift to one of their potential
roles. Regarding the free agent role, these threads may change their role before
and after executing an explicit task. These role-shifting points are depicted in
Fig. 2. In the future, other roles may use the same shifting points and introduce
new ones if required.

New API Routines. We have extended the OpenMP API to interact with the
role-shifting threads model and introduced the concept of global thread id in the
runtime to interact with the API. This thread id is a unique identifier assigned
at thread creation and lasts for the entire execution. The global thread id must
not be confused with the current OpenMP thread number, which identifies each
thread participating within a parallel region.

– int omp_get_thread_id(void): Obtains the global thread id of that thread.
– int omp_get_thread_roles(int tid, omp_role_t *roles): Returns the

number of potential roles for thread with global id tid and sets roles to the
potential roles of the thread.

– void omp_set_thread_roles(int tid, omp_role_t roles): Sets the
potential roles of the thread with global id tid to roles. It will remove
all previous potential roles from the thread. If tid is higher than the current
number of threads, the runtime will create a new thread with the appropriate
roles.



168 J. Criado et al.

Environment Variables. We propose a unique environment variable to unify
all the role-shifting threads model:

OMP_ROLES: Indicates the initial number of threads with the desired potential
roles. Usage examples:

OMP_ROLES="{role1},{role2},{role1,role3}". Three different threads,
one with role1, one with role2, and another with role1 and role3.

OMP_ROLES="{role1},{role2,role4}*3". Four different threads, one with
role1 and three with role2 and role4.

New OMPT Callback Signature. We propose a new OMPT callback to
identify when a thread shifts its active role.

void ompt_callback_thread_role_shift(ompt_data_t *thread_data,
ompt_role_t prior_role, ompt_role_t next_role): Each thread emits the
callback each time it changes the active role: prior_role indicates the previous
active role, and next_role indicates the new active role of that thread.

3.3 Integration with DLB

We have integrated the free agent threads role from the role-shifting threads
implementation with the Lend When Idle (LeWI) module of DLB. LeWI aims at
optimizing the performance of hybrid applications (MPI+OpenMP) by improv-
ing their load balance. Figure 3 shows how LeWI operates for an unbalanced
application. When an MPI process executes a blocking call, it lends all the
CPUs it has at that moment, and other processes may acquire them for their
use. After exiting the MPI call, the process reclaims all the CPUs it owns, and
it can continue its execution transparently.

Fig. 3. Example of DLB and LeWI balancing algorithm. On the left is an unbalanced
hybrid application. On the right, the application is balanced using LeWI.



Exploiting OpenMP Malleability with Free Agent Threads and DLB 169

Regarding the OpenMP integration, we capture specific OMPT callbacks and
perform different actions with DLB:

– Parallel begin: We must register when executing a parallel region and the
number of threads associated with it. Those threads are required for the entire
execution of the region and cannot shift their role at any moment.

– Parallel end: The parallel region ends, and DLB may use the threads from
the former parallel region for load balancing purposes.

– Task schedule: When starting the execution of a task, DLB tries to acquire
a CPU from any other process if there are more pending tasks. When a free
agent thread ends the execution of a task, it returns the CPU if it has been
reclaimed, or it lends the CPU if there are no more pending tasks, or it
proceeds silently.

– Thread begin: We extract the global thread id for each thread and set the
affinity of the free agents to their correspondent CPU.

– Thread role shift: When a thread changes from worker to free agent, we
deactivate it if the CPU has been reclaimed or there are no more pending
tasks.

When an MPI process receives a CPU for the first time, it creates a new
thread with the role of free agent, and it assigns that CPU for the rest of the
execution to that thread. When it receives that same CPU in the future, instead
of creating a new thread, it will change the role of that thread with the API.
We also tried a different strategy where we rebind inactive threads to new CPUs
when possible, but it had more overhead and was more sensitive to system noise
(e.g., CPU preemptions by the OS), so it was discarded.

4 Evaluation

In this section, we present the performance evaluation of the proposed imple-
mentation. In this evaluation, we will compare three versions of each application:

– Original: The original application executed as in a production run.
– Double-pool: The original application using the DLB load balancing library

with the LLVM free agent threads implementation based on the double pool
of threads. For this implementation, the user must provide the maximum
number of free agent threads used per MPI process. We will consider this
variable in the evaluation as Num. free agent threads.

– Role-shifting: The original application using the DLB load balancing library
with the LLVM free agent threads implementation based on the role-shifting.
This version does not need additional parameters, and the runtime automat-
ically decides the number of free agent threads.

4.1 HPC Environment

All the experiments presented in this work have been obtained using MareNos-
trum4. MareNostrum4 is a supercomputer based on Intel Xeon Platinum pro-
cessors; each node comprises two sockets (Intel Xeon Platinum 8160 CPU) with



170 J. Criado et al.

24 cores each at 2.10 GHz for a total of 48 cores per node and 96 GB of main
memory. Its nodes are connected using a 100 Gbit/s Intel Omni-Path network.
It houses 3456 nodes accounting for a total of 165888 cores.

The runtime, DLB, and all the applications have been compiled using the
Intel 2017.4 suite, and the MPI library used to run is Intel MPI 2017.4 version.
We use DLB version 3.0 [2] and the extended LLVM OpenMP runtime library [3]
to support the free agent threads in all cases.

For the evaluation, we test 2 HPC applications used in production runs, a
parallel remesher, ParMmg, and a simulation code for high-performance compu-
tational mechanics, Alya.

4.2 ParMmg

ParMmg [5] is a parallel remesher developed by INRIA, based on top of the
sequential Mmg remesher. Mesh adaptation is widely used in computational solid
mechanics (CSM) and computational fluid dynamics (CFD) domains to improve
the quality of the solution. The application is written in C and parallelized with
MPI. The input set used in the study is prepared to do a weak scaling using
power of two MPI ranks from 2 to 256 processes.

We added an OpenMP taskification on the main loop iterations to implement
a second level of parallelism in that region that allows us to exploit the load
balancing capabilities of DLB.

Fig. 4. Top: ParMmg Paraver trace execution of 3 iterations using 32 MPI ranks.
Bottom: Same execution using role-shifting threads and DLB. Each color represents
different MPI ranks, and both traces are at the same duration scale.



Exploiting OpenMP Malleability with Free Agent Threads and DLB 171

ParMmg presents an irregular load imbalance among the different iterations,
as seen in the top trace of Fig. 4. In this figure, we show a Paraver trace of an
execution of ParMmg using 32 MPI ranks; each horizontal line corresponds to
one MPI process, and in the x axis is represented the time. White means that
the MPI process is not doing useful computation, i.e., it is inside an MPI call,
and any other color means computing. In this trace, we can identify three steps
and observe that the load distribution changes from one iteration to another. For
these two reasons, ParMmg can benefit from the load balancing capabilities of
DLB because the load imbalance can not be predicted and changes dynamically
during the execution.

We can see the same execution using DLB and role-shifting threads in the
bottom trace of the same figure. We can observe that each MPI process can now
have more than one OpenMP thread; these are the different lines below an MPI
process. We can also observe how the additional threads are used to speed up
the execution of the most loaded MPI ranks.

Fig. 5. ParMmg speedup with DLB and
different free agents implementations.

Fig. 6. ParMmg execution time.

In Fig. 5, we show the speedup obtained with the different versions with
respect to the original execution of ParMmg without DLB add free agent threads.
In the x-axis, we show the different versions of the free agent threads implemen-
tations and the different number of free agent threads used for the Double-pool
implementation. There are two important outcomes from this plot. On the one
hand, the role-shifting implementation obtains the same performance as the best
configuration of the double-pool implementation. On the other hand, the per-
formance of the double-pool implementation depends highly on the number of
free agent threads that the user specifies.

Figure 6 displays the execution time of ParMmg using different number of
MPI ranks (and cores) on the x-axis. The different versions are represented by
different lines. The number of free agent threads allowed per MPI rank is set to
the best configuration measured in the previous experiment for the Double-pool
version. As ParMmg is a weak scaling application, the ideal execution would
be a flat line. We can see that for all the cases, the execution using DLB and



172 J. Criado et al.

free agent threads improves the performance of the vanilla ParMmg code. For
all the executions, the role-shifting implementation performs as well as the best
configuration of the double-pool implementation.

4.3 Alya

Alya [19] is a high-performance computational mechanics code that can solve
multiple physics, standalone or coupled. Most of the problems it can address
come from the engineering realm. Among the different physics solved by Alya, we
can mention incompressible and compressible flows, non-linear solid mechanics,
chemistry, particle transport, heat transfer, turbulence modeling, electrical prop-
agation, etc. Alya was specially designed for massively parallel supercomputers
and is part of the Unified European Application Benchmark Suite (UEABS), a
set of 13 highly scalable, relevant, and publicly available codes. Alya is written in
Fortran and parallelized at different levels, including MPI, SIMD, OpenMP, and
GPUs. This paper will use the MPI+OpenMP version, and the OpenMP paral-
lelization will be used only for load balancing. The executions will be launched as
an MPI-only execution (one core per MPI rank, 1 OpenMP thread per process).
This is because the OpenMP parallelization of Alya is not exhaustive in all the
code and is not used in production runs.

The use case executed in this paper is a production combustion problem,
coupling the fluid solution on the one hand with the chemical reaction on the
other [4,20]. In Fig. 7, we can see a trace of the execution of Alya with 768 MPI
ranks. The first 96 MPI ranks are solving the fluid, and the remaining 672 the
chemical reaction. In this trace, the grey color represents useful computation, the
other colors represent the MPI calls executed by the program. We can identify
two time steps and the two coupled problems in the trace. We can observe that
the computing region before the MPI Barrier (red) is the more time-consuming
one, and at the same time, it presents a significant load imbalance.

We evaluate three different executions of Alya, the original code, using DLB
and the double-pool implementation of the free agent threads, and using DLB
with the role-shifting version. In Fig. 8a, we can see the speedup obtained when
using DLB and free agents with the different versions with respect to the original
execution of Alya, using 768 MPI ranks in 768 cores for all cases. In the x-axis,
we show the different number of free agent threads enabled for the double-
pool implementation. We can see that the role-shifting version achieves a better
speedup than the best configuration of the double-pool implementation. We can
also observe that the performance of the double-pool implementation depends
on the number of free agent threads enabled by the user.

In Figs. 8b and 8c, we can see the same study running Alya with 1152 and
1536 MPI ranks. In both plots, we can see that the role-shifting implementation
outperforms all the configurations of the double-pool one. Alya’s tasks have finer
grain than ParMmg (a few milliseconds per task), and the program benefits from
the reduction in overhead in the runtime and DLB integration. It is also inter-
esting to notice that the best configuration of the double-pool implementation is
not consistent between the executions with the different number of MPI ranks.



Exploiting OpenMP Malleability with Free Agent Threads and DLB 173

Fig. 7. Alya Paraver trace execution of 2 iterations coupling 96 MPI ranks for the fluid
simulation and 672 MPI Ranks for the chemical simulation.

Fig. 8. Speedups obtained running Alya with different implementations of free agents
and DLB, and execution time with different number of MPI ranks

Figure 8d shows the execution time achieved by the different versions when
running Alya varying the number of MPI ranks. We show that the use of DLB
and free agent threads improves the performance of the original Alya code in all
the cases. In this plot, we use the best configuration achieved in the previous
experiments for the double-pool implementation. However, the best option is to
use the role-shifting version of the free agent treads implementation.



174 J. Criado et al.

5 Conclusions

This paper presents a new extension of the OpenMP programming model, allow-
ing their threads to have different roles. The previous free agent threads have
been merged into this new implementation as a role. With this approach, the
model has a unique pool of threads, in contrast to the previous one, employ-
ing fewer resources. Moreover, the role-shifting approach is an opportunity to
include more roles in the model, which may lead to more improvements in terms
of malleability and flexibility.

Previously, the user had to select the desired number of free agent threads
at the start of the execution, but the role-shifting allows for changes at runtime.
This change makes the model more flexible for the users and tools using the
OMPT interface from OpenMP. This fact is reflected in the evaluation, where
the role-shifting model delivered the same or better performance than the double-
pool model without any tunning required.

Furthermore, we demonstrate how the free agent threads proposal increases
the malleability of the OpenMP standard, thus, allowing tools like DLB to
exploit it to achieve better efficiencies. To this end, the role-shifting model has
been integrated with DLB.

In Sect. 4, we have demonstrated how DLB improves the performance of
hybrid applications, exploiting the malleability exposed by OpenMP tasks by
enabling and disabling threads with the free agent role. The results showed
speedups from 1.2x to 1.62x in two real-world scientific applications, mending
their load imbalances.

Overall we show the relevance of malleability at the different levels of the
software stack, such as applications and different programming models to achieve
performance. Also, the need to isolate the user from these low-level decisions and
that the different runtime systems must coordinate to use the computational
resources efficiently.

Acknowledgements. This work has received funding from the DEEP Projects, at
the European Commission’s FP7, H2020, and EuroHPC Programmes, under Grant
Agreements 287530, 610476, 754304, and 955606. In the latter (DEEP-SEA), national
contributions from the involved state members match the EuroHPC funding. It also
has the support of the Spanish Ministry of Science and Innovation (Computacion de
Altas Prestaciones VIII: PID2019-107255GB).

References

1. Barcelona Supercomputing Center: OmpSs Specification. https://pm.bsc.es/
ompss, Accessed Mar 2022

2. DLB repository. https://github.com/bsc-pm/dlb/commit/7e91a80a, Accessed
Mar 2022

3. LLVM repository. https://github.com/bsc-pm/llvm/commit/3c5352db, Accessed
Mar 2022

https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
https://github.com/bsc-pm/dlb/commit/7e91a80a
https://github.com/bsc-pm/llvm/commit/3c5352db


Exploiting OpenMP Malleability with Free Agent Threads and DLB 175

4. Cavaliere, D.E., Kariuki, J., Mastorakos, E.: A comparison of the blow-off
behaviour of swirl-stabilized premixed, non-premixed and spray flames. Flow
Turbulence Combust. 91(2), 347–372 (2013). https://doi.org/10.1007/s10494-013-
9470-z

5. Cirrottola, L., Froehly, A.: Parallel unstructured mesh adaptation using iterative
remeshing and repartitioning. Research Report RR-9307, INRIA Bordeaux, équipe
CARDAMOM (2019). https://hal.inria.fr/hal-02386837

6. Conejero, J., Corella, S., Badia, R.M., Labarta, J.: Task-based programming in
COMPSs to converge from HPC to big data. Int. J. High Perf. Comput. Appl.
32(1), 45–60 (2018)

7. D’Amico, M., Garcia-Gasulla, M., López, V., Jokanovic, A., Sirvent, R., Corbalan,
J.: DROM: enabling efficient and effortless malleability for resource managers. In:
Proceedings of the 47th International Conference on Parallel Processing Compan-
ion, p. 41. ACM (2018)

8. Desell, T., Maghraoui, K.E., Varela, C.A.: Malleable applications for scalable high
performance computing. Clust. Comput. 10(3), 323–337 (2007)

9. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21, 173–193 (2011)

10. El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleabil-
ity in iterative mpi applications. In: Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2007), pp. 591–598. IEEE (2007)

11. Garcia, M., Labarta, J., Corbalan, J.: Hints to improve automatic load balancing
with LeWI for hybrid applications. J. Parallel Distrib. Comput. 74(9), 2781–2794
(2014)

12. Intel Corporation: Intel Cilk++ SDK Programmer’s Guide (2009). https://www.
clear.rice.edu/comp422/resources/Intel Cilk++ Programmers Guide.pdf

13. Intel Corporation: Intel Threading Building Blocks (2011). https://www.inf.ed.ac.
uk/teaching/courses/ppls/TBBtutorial.pdf

14. Lopez, V., Criado, J., Peñacoba, R., Ferrer, R., Teruel, X., Garcia-Gasulla, M.: An
OpenMP free agent threads implementation. In: McIntosh-Smith, S., de Supin-
ski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 211–225.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 15

15. Massachusetts Institute of Technology: OpenCilk Language Extension Speci-
fication Version 1.0 (2021). https://cilk.mit.edu/docs/OpenCilkLanguageExten-
sionSpecification.htm

16. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 5.2 (2021). https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5-2.pdf, Accessed 14 Mar 2022

17. Prabhakaran, S., Neumann, M., Rinke, S., Wolf, F., Gupta, A., Kale, L.V.: A batch
system with efficient adaptive scheduling for malleable and evolving applications.
In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp.
429–438 (2015)

18. Tian, S., Doerfert, J., Chapman, B.: Concurrent execution of deferred openmp
target tasks with hidden helper threads. In: Chapman, B., Moreira, J. (eds.) Lan-
guages and Compilers for Parallel Computing, pp. 41–56. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-95953-1 4

19. Vázquez, M., Houzeaux, G., Koric, S., et al.: Alya: multiphysics engineering sim-
ulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

20. Zhang, H., Garmory, A., Cavaliere, D.E., Mastorakos, E.: Large eddy simulation/-
conditional moment closure modeling of swirl-stabilized non-premixed flames with
local extinction. Proc. Comb. Inst. 35(2), 1167–1174 (2015)

https://doi.org/10.1007/s10494-013-9470-z
https://doi.org/10.1007/s10494-013-9470-z
https://hal.inria.fr/hal-02386837
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf
https://doi.org/10.1007/978-3-030-85262-7_15
https://cilk.mit.edu/docs/OpenCilkLanguageExten-sionSpecification.htm
https://cilk.mit.edu/docs/OpenCilkLanguageExten-sionSpecification.htm
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1007/978-3-030-95953-1_4

	Exploiting OpenMP Malleability with Free Agent Threads and DLB
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 The LLVM OpenMP Runtime
	3.2 The Role-Shifting Threads
	3.3 Integration with DLB

	4 Evaluation
	4.1 HPC Environment
	4.2 ParMmg
	4.3 Alya

	5 Conclusions
	References




