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Preface

The ISC High Performance 2022 conference was held in Hamburg, Germany. Due
to the lingering effects of the COVID-19 pandemic and the ongoing changes in the
corresponding regulations for travel restrictions, the 37th edition of ISC was conducted
in a hybrid fashion with both in-person and online components during the period from
May 29 to June 2, 2022.

In the organization and execution of this edition of the conference, the organizing
team benefited heavily from the lessons learned during the ISC 2021 digital edition as
well as the countless virtual meetings that have become the cornerstone of ISC com-
munities’ collaboration in the recent years. These experiences resulted in tapering the
steep learning curve and the hard work of the committees paid off because the HPC
community responded enthusiastically as manifested by over 3,000 attendees from over
50 countries.

As in past years, ISC 2022was accompanied by the ISCHigh Performanceworkshop
series. In total, 7 workshops chose the option to contribute to this edition of proceedings:
Compiler-assisted Correctness Checking and Performance Optimization for HPC, HPC
on Heterogeneous Hardware (H3), Malleability Techniques Applications in High Per-
formance Computing, the Fifth Workshop on Interactive High Performance Computing,
the 3rd ISC HPC International Workshop on Monitoring & Operational Data Analytics,
the 6th International Workshop on In Situ Visualization, and the 17th Workshop on Vir-
tualization in High Performance Cloud Computing. Also, even more workshops opted
for a presentation-only format.

In total, 27 high-quality papers were accepted that all underwent thorough review
by their respective workshops’ Program Committees. Each of the 43 submitted papers
received on average almost 4 reviews, either single- or double-blind. Each chapter of
this proceedings book contains the accepted and revised papers for a single workshop.
For some workshops, an additional preface describes the review process and provides a
summary of the outcomes.

We hope that with the effects of the COVID-19 pandemic fading away, wewill gather
next year in Hamburg, Germany, for another successful ISC High Performance work-
shops series with the majority of participants attending in person. Until then, we want
to thank our workshop committee members, workshop organizers, and all contributors
and attendees of the ISC 2022 workshops, and we are proud to present the latest find-
ings on the topics related to the research, development, and applications of large-scale,
high-performance systems.

September 2022 Hartwig Anzt
Amanda Bienz
Piotr Luszczek
Marc Baboulin



Organization

Workshops Committee

Hartwig Anzt (Chair) Karlsruhe Institute of Technology, Germany;
University of Tennessee, USA

Amanda Bienz (Deputy Chair) University of New Mexico, USA
Cody Balos Lawrence Livermore National Laboratory, USA
Harun Bayraktar NVIDIA, USA
Natalie Beams University of Tennessee, USA
Luc Berger-Vergiat Sandia National Laboratories, USA
George Bosilca University of Tennessee, USA
Lisa Claus Lawrence Berkeley National Laboratory, USA
Terry Cojean Karlsruhe Institute of Technology, Germany
Anthony Danalis University of Tennessee Knoxville, USA
Edoardo Di Napoli Jülich Supercomputing Centre, Germany
Markus Goetz Karlsruhe Institute of Technology, Germany
Aditya Kashi Karlsruhe Institute of Technology, Germany
Sarah Knepper Intel, USA
Andreas Knuepfer Technische Universität Dresden, Germany
Martin Kronbichler Technical University of Munich, Germany
Weifeng Liu China University of Petroleum, Beijing, China
Simone Pezzuto Università della Svizzera italiana, Switzerland
Enrique S, Quintana-Orti Universitat Politècnica de València, Spain
Estela Suarez Jülich Supercomputing Centre, Germany
Nico Trost AMD, Germany
Markus Wittmann Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany

Proceedings Chairs

Piotr Luszczek (Chair) University of Tennessee, USA
Marc Baboulin (Deputy Chair) Université Paris-Saclay, France



Contents

Compiler-Assisted Correctness Checking and Performance
Optimization for HPC

Compiler-Assisted Instrumentation Selection for Large-Scale C++ Codes . . . . . 5
Sebastian Kreutzer, Christian Iwainsky, Jan-Patrick Lehr,
and Christian Bischof

Lightweight Array Contraction by Trace-Based Polyhedral Analysis . . . . . . . . . . 20
Hugo Thievenaz, Keiji Kimura, and Christophe Alias

Detecting Scale-Induced Overflow Bugs in Production HPC Codes . . . . . . . . . . . 33
Justs Zarins, Michèle Weiland, Paul Bartholomew, Leigh Lapworth,
and Mark Parsons

HPC on Heterogeneous Hardware (H3)

AI Benchmarking for Science: Efforts from the MLCommons Science
Working Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Jeyan Thiyagalingam, Gregor von Laszewski, Junqi Yin, Murali Emani,
Juri Papay, Gregg Barrett, Piotr Luszczek, Aristeidis Tsaris,
Christine Kirkpatrick, Feiyi Wang, Tom Gibbs, Venkatram Vishwanath,
Mallikarjun Shankar, Geoffrey Fox, and Tony Hey

Performance Analysis of Matrix Multiplication for Deep Learning
on the Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Cristian Ramírez, Adrián Castelló, Héctor Martínez,
and Enrique S. Quintana-Ortí

Strategies for Efficient Execution of Pipelined Conjugate Gradient Method
on GPU Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Manasi Tiwari and Sathish Vadhiyar

A Multi-Level Platform-Independent GPU API for High-Level
Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Akihiro Hayashi, Sri Raj Paul, and Vivek Sarkar



viii Contents

Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

René Caspart, Sebastian Ziegler, Arvid Weyrauch, Holger Obermaier,
Simon Raffeiner, Leon Pascal Schuhmacher, Jan Scholtyssek,
Darya Trofimova, Marco Nolden, Ines Reinartz, Fabian Isensee,
Markus Götz, and Charlotte Debus

Malleability Techniques Applications in High Performance Computing

Detecting Interference Between Applications and Improving
the Scheduling Using Malleable Application Proxies . . . . . . . . . . . . . . . . . . . . . . . 129

Alberto Cascajo, David E. Singh, and Jesus Carretero

An Emulation Layer for Dynamic Resources with MPI Sessions . . . . . . . . . . . . . 147
Jan Fecht, Martin Schreiber, Martin Schulz, Howard Pritchard,
and Daniel J. Holmes

Exploiting OpenMP Malleability with Free Agent Threads and DLB . . . . . . . . . . 162
Joel Criado, Victor Lopez, Joan Vinyals-Ylla-Catala,
Guillem Ramirez-Miranda, Xavier Teruel, and Marta Garcia-Gasulla

QR Factorization Using Malleable BLAS on Multicore Processors . . . . . . . . . . . 176
Adrián Castelló, Sandra Catalán, Francisco D. Igual,
Enrique S. Quintana-Ortí, and Rafael Rodríguez-Sánchez

IMSS: In-Memory Storage System for Data Intensive Applications . . . . . . . . . . . 190
Javier Garcia-Blas, David E. Singh, and Jesus Carretero

On the Convergence of Malleability and the HPC PowerStack: Exploiting
Dynamism in Over-Provisioned and Power-Constrained HPC Systems . . . . . . . . 206

Eishi Arima, A. Isaías Comprés, and Martin Schulz

The Fifth Workshop on Interactive High Performance Computing

Interactive, Cloud-Native Workflows on HPC Using KNoC . . . . . . . . . . . . . . . . . . 221
Evangelos Maliaroudakis, Antony Chazapis, Alexandros Kanterakis,
Manolis Marazakis, and Angelos Bilas

Workflows to Driving High-Performance Interactive Supercomputing
for Urgent Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Nick Brown, Rupert Nash, Gordon Gibb, Evgenij Belikov,
Artur Podobas, Wei Der Chien, Stefano Markidis, Markus Flatken,
and Andreas Gerndt



Contents ix

The 3rd ISC HPC International Workshop on Monitoring and
Operational Data Analytics

Data Center Facility Monitoring with Physics Aware Approach . . . . . . . . . . . . . . 251
Hilary Egan, Avi Purkayastha, and David Sickinger

Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems . . . . . . . . . . . . 262
Mohsen Seyedkazemi Ardebili, Andrea Bartolini, Andrea Acquaviva,
and Luca Benini

The 6th International Workshop on In Situ Visualization

In Situ Analysis and Visualization of Extreme-Scale Particle Simulations . . . . . . 283
Soumya Dutta, Dan Lipsa, Terece L. Turton, Berk Geveci,
and James Ahrens

Insite: A Pipeline Enabling In-Transit Visualization and Analysis
for Neuronal Network Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Marcel Krüger, Simon Oehrl, Ali C. Demiralp, Sebastian Spreizer,
Jens Bruchertseifer, Torsten W. Kuhlen, Tim Gerrits, and Benjamin Weyers

The Need for Pervasive In Situ Analysis and Visualization (P-ISAV) . . . . . . . . . . 306
David Pugmire, Jian Huang, Kenneth Moreland, and Scott Klasky

Interactive Visualization of Large-Scale Oil and Gas Reservoir Simulation
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Pavel Novikov, Denis Sabitov, Nikita Bukhanov, Marwan Charara,
Michel Cancelliere, Fahad Rashed, and Abdulaziz Baiz

Cinema Transfer: A Containerized Visualization Workflow . . . . . . . . . . . . . . . . . . 324
Isaac Nealey, Nicola Ferrier, Joseph Insley, Victor A. Mateevitsi,
Michael E. Papka, and Silvio Rizzi

The 17th Workshop on Virtualization in High Performance Cloud
Computing

Virtual Clusters: Isolated, Containerized HPC Environments in Kubernetes . . . . 347
George Zervas, Antony Chazapis, Yannis Sfakianakis,
Christos Kozanitis, and Angelos Bilas

Analyzing Unikernel Support for HPC: Experimental Study of OpenMP . . . . . . 358
Pierre Jacquot, Pierre Olivier, Christian Perez, and Abdulrahman Azab



x Contents

On the Use of Linux Real-Time Features for RAN Packet Processing
in Cloud Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Luca Abeni, Tommaso Cucinotta, Balázs Pinczel, Péter Mátray,
Murali Krishna Srinivasan, and Tobias Lindquist

eBPF-based Extensible Paravirtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Luigi Leonardi, Giuseppe Lettieri, and Giacomo Pellicci

Correction to: Compiler-Assisted Instrumentation Selection
for Large-Scale C++ Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1

Sebastian Kreutzer, Christian Iwainsky, Jan-Patrick Lehr,
and Christian Bischof

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395



Compiler-Assisted Correctness Checking
and Performance Optimization for HPC



Preface to the Third Workshop on
Compiler-Assisted Correctness Checking

and Performance Optimization for
HPC (C3PO’22)

Julien Jaeger1,2 and Emmanuelle Saillard3
1 CEA, DAM, DIF, 91297 Arpajon, France

2 Universite Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour
le Calcul et la simulation, 91680 Bruyeres-le-chatel, France

julien.jaeger@cea.fr
3 Inria Bordeaux Sud-Ouest Talence, France
emmanuelle.saillard@inria.fr

1 Introduction

Changing HPC architecture and software stack create enormous challenges for HPC
application developers that need to write performance portable code and keep existing
applications up to speed. Purely manual solutions are cost prohibitive. Source-to-source
translators are poised to address these challenges automatically or with user input semi-
automatically. Practical compiler-enabled programming environments, applied analysis
methodologies, and end-to-end toolchains are crucial to performance portability in the
exascale era.

C3PO is a workshop at the intersection of compilers/translators, HPC middleware,
and HPC applications. The workshop brings together researchers with a shared interest
in applying compilation and source-to-source translation methodologies to enhance
parallel programming, including explicit programming models such as MPI, OpenMP,
and hybrid models.

2 Organization

Five papers were submitted, and after a double-blind review process, three papers were
accepted. The workshop took place on June 2, 2022.

2.1 Organizing Committee

Julien Jaeger French Alternative Energies and Atomic Energy Commission
Emmanuelle Saillard Inria Bordeaux Sud-Ouest
Anthony Skjellum University of Tennessee at Chattanooga
Martin Ruefenacht University of Edinburgh
Purushotham Bangalore University of Alabama at Birmingham



Peter Pirkelbauer Lawrence Livermore National Laboratory and University of
Central Florida

Peter Thoman University of Innsbruck

2.2 Program Committee

Hadia Ahmed Bodo.ai
Patrick Carribault French Alternative Energies and Atomic Energy

Commission
Chunhua Liao Lawrence Livermore National Laboratory
Reed Milewicz Sandia National Laboratories
Amalee Wilson Stanford University
Sara Royuela Barcelona Supercomputing Center
Benson Muite Kichakato Kizito
Markus Schordan Lawrence Livermore National Laboratory
Aravind Sukumaran Rajam Washington State University

3 Program

The workshop content was built on two tracks: invited talk and research paper pre-
sentations. The invited talk was performed virtually using zoom while the research
paper presentations were performed live.

3.1 Invited Talk

Software has become indispensable in our daily lives, but if a software system fails it
can have considerable human or economical consequences. Dynamic and static anal-
ysis tools can aid developers in establishing and maintaining correctness of such
software systems.

Software has become indispensable in our daily lives, but if a software system fails
it can have considerable human or economical consequences. Dynamic and static
analysis tools can aid developers in establishing and maintaining correctness of such
software systems.

One concern regarding the correctness of HPC applications is the existence of data
races. Markus described his design decisions in the development of his data race
benchmark suite DataRaceBench and reflected on how his design principles may have
contributed to its acceptance by the community. He also summarized his own expe-
rience as participants in software verification competitions and what contributed to his
error-free submissions throughout several years, also discussing the challenges in
achieving the correctness of correctness tools.

Preface to the Third Workshop on Compiler-Assisted 3



3.2 Research Papers

The first speaker was Hugo Thievenaz from Inria. He presented a four steps process to
reduce the storage requirements of a temporary array of a given scheduled program. He
used an algorithm to deduce array access functions for which bounds are modulos of
affine functions of parameters of the program.

In the next presentation, Justs Zarins from EPCC talked about an extension of an
existing algorithm that can find scaling bugs in complex real applications.

Finally, Sebastian Kreutzer from TU Darmstadt described a new instrumentation
tool called CaPI (short for Compiler-assisted Performance Instrumentation) that can
instrument large-scale scientific codes.

The workshop program information, including the keynote presentation slides is
available under https://c3po-workshop.github.io/2022/program.

4 J. Jaeger and E. Saillard
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Compiler-Assisted Instrumentation
Selection for Large-Scale C++ Codes

Sebastian Kreutzer1(B) , Christian Iwainsky2 , Jan-Patrick Lehr1 ,
and Christian Bischof1

1 Scientific Computing, Department of Computer Science, Technical University of
Darmstadt, Darmstadt, Germany

{sebastian.kreutzer,jan-patrick.lehr,christian.bischof}@tu-darmstadt.de
2 Hessian Competence Center for High Performance Computing (HKHLR),

Darmstadt, Germany
christian.iwainsky@tu-darmstadt.de

Abstract. Code instrumentation is the primary method for collecting
fine-grained performance data. As instrumentation introduces an inher-
ent runtime overhead, it is essential to measure only those regions of the
code which are most relevant to the analysis. In practice, the typical app-
roach is to define filter lists manually. Prior projects aim to automate
this process using static analysis. Specifically, InstRO enables tailored
instrumentation via sophisticated user-defined selection of code regions.
However, due to the need for whole-program call-graph analysis, its appli-
cation on large-scale scientific codes is currently impractical. In this work,
we present the new instrumentation tool CaPI (short for “Compiler-
assisted Performance Instrumentation”), which is targeted towards such
large-scale applications. We demonstrate its application on the CFD
framework OpenFOAM. Our evaluation shows that a hybrid approach of
CaPI and existing profile-guided filtering outperforms profile-guided fil-
tering alone. Furthermore, we identify correctness and usability issues
and propose possible avenues to improve CaPI, as well as compiler-
assisted instrumentation tools in general.

Keywords: Instrumentation · Score-P · Static analysis · OpenFOAM

1 Introduction

Collecting performance data to examine the run-time behavior of a program is
essential for identifying regions in the code that benefit most from optimization
or parallelization [14]. Traditionally, this data is collected using either sampling
or instrumentation techniques. For use cases that require a more in-depth anal-
ysis, such as the creation of performance models [4,5] for specific functions,
accurate measurements are essential. Hence, instrumentation is better suited, as
it guarantees that every function invocation is recorded accurately.

However, instrumenting all functions in a program typically generates a large
overhead, which can increase the execution time by orders of magnitude [18].

The original version of this chapter was revised: this chapter was previously published
non-open access. The correction to this chapter is available at
https://doi.org/10.1007/978-3-031-23220-6_28
c© The Author(s) 2022, corrected publication 2023
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 5–19, 2022.
https://doi.org/10.1007/978-3-031-23220-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23220-6_1&domain=pdf
http://orcid.org/0000-0002-1641-4342
http://orcid.org/0000-0002-2020-8939
http://orcid.org/0000-0002-6330-4816
http://orcid.org/0000-0003-2711-3032
https://doi.org/10.1007/978-3-031-23220-6_28
https://doi.org/10.1007/978-3-031-23220-6_1
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This is in large part caused by frequently-called, short-running functions. Addi-
tionally, the insertion of measurement hooks can prohibit optimization in some
cases [25].

For this reason, a filtering approach is typically necessary to instrument only
those functions which are most relevant w.r.t. a user-defined metric, e.g. exe-
cution time. Excluding all other functions reduces the total number of calls to
the measurement tool and, thus, the execution overhead. We refer to the set of
instrumented functions as the instrumentation configuration (IC).

The simplest way to create a suitable IC is to define filter lists manually. The
typical workflow involves first profiling a fully-instrumented version of the code.
Subsequently, the user examines the resulting profile and selects the functions
that should be excluded from the measurement. The drawback with this app-
roach is that the user has to manually select the functions to instrument, which
may require multiple iterations of compiling the code, executing it to generate
a profile, and refining the IC. Hence, different tools to automate the selection
process have been proposed and mainly differ in whether they use runtime data
or rely on source-code features to determine a suitable IC. Unfortunately, the
application of current compiler-assisted static selection tools is tedious and error
prone, despite their general advantages in expressiveness and overhead reduction.

In this paper, we focus on the composable instrumentation selection mech-
anism introduced by the InstRO [10] project. In the context of the exaFOAM
project,1 we investigated its applicability for the instrumentation of the compu-
tational fluid dynamics (CFD) framework OpenFOAM [26]. However, due to the
scale and structure of OpenFOAM, we found that the current implementation
of InstRO is not suited to this task.

We present the Compiler-assisted Performance Instrumentation (CaPI) tool,
which adopts ideas from InstRO and makes them applicable for the selective
instrumentation of large-scale codes. We make the following contributions: (1)
Present a new instrumentation tool based on key principles of InstRO. (2)
Demonstrate its application on large-scale scientific software and identify specific
usability and validation impediments. (3) Identify key challenges for improving
CaPI specifically, as well as compiler-assisted selection tools in general.

The paper is structured as follows: Sect. 2 gives an overview of related work.
Section 3 explains particularities of OpenFOAM and how they stress limitations
of InstRO. Section 4 presents the CaPI toolchain to address these limitations.
Thereafter, CaPI is evaluated on OpenFOAM in Sect. 5. Usability and validation
impediments are highlighted in Sect. 6. The results are subsequently discussed
in Sect. 7. Finally, Sect. 8 summarizes the paper and gives a brief outline on how
remaining challenges may be addressed.

2 Related Work

Several tools have been developed to help automate the process of constructing
ICs for performance measurements, or reduce the overhead by filtering runtime
1 https://exafoam.eu/.

https://exafoam.eu/
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events. Their function selection methods can be divided into three categories,
for which we list some representative tools.

Profile-guided selection uses previously recorded profile data to determine
which functions to exclude or include in a subsequent measurement. An
example is the scorep-score utility of the Score-P measurement infrastruc-
ture [12]. It enables the user to define a set of threshold values for, e.g.,
execution time per invocation, which need to be exceeded by a function
to be considered for instrumentation. PerfTaint [6] applies a taint analy-
sis to determine which parts of the application depend on a given set of
input parameters, and only instruments dependent functions, as all others
are considered to have constant runtime w.r.t. the set of input parameters.

Compiler-assisted selection tools aim to semi-automatically determine a
suitable IC with the help of static code analysis. Tau [25] enables the selec-
tive instrumentation of functions via the use of its intermediate represen-
tation called PDT [19]. Cobi [21] requires the user to specify which points
in a program to instrument in an XML-based format. It relies on binary
instrumentation using the DynInst API [3], and, since it operates at the
binary level, ignores C++ virtual functions or function pointers for any path
analysis. The InstRO project [10] gives the user the ability to define selec-
tion passes that filter out functions based on statically collected information.
Notably, a static call graph (CG) is generated that gives information about
the call context of the respective function. This information can be used to
decide if the function is relevant for overall performance.

Hybrid selection tools combine profile- and static data for the creation of
IC files. PIRA [16] employs a static statement aggregation scheme [11] to
estimate the amount of work per function for an initial IC. Subsequently, the
IC is iteratively refined using profile information or empirically constructed
performance models [15]. X-Ray [1] instrumentation uses instruction-level
heuristics to estimate if a function should be instrumented, and, if so, inserts
no-op sleds into the binary. At runtime, the sleds can be patched to enable
or disable the recording of events, which may also be filtered based on their
occurrence or available memory.

3 Tailored Instrumentation for OpenFOAM

While the utility of compiler-assisted selection tools has been successfully demon-
strated on smaller applications, large scientific codes pose particular challenges.

OpenFOAM, a modular CFD framework, is a prime example of such a code.
It is comprised of a multitude of individual solvers, and applicable to a wide
variety of problems. OpenFOAM v2106 [22] consists of over 5000 C++ source
files and ≈1.2 million lines of code (counted with cloc [7]).
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Fig. 1. Example InstRO pass pipeline, adapted from [10]. MainSelector and
MPISelector select the main and all MPI_* functions, respectively. CallPathSelector
identifies the paths between the functions selected. The SubtractOP removes func-
tions which match either the InlineSelctor (all inline-marked functions) or
the NameSelector (functions matching a certain regular expression). Finally, the
GPIAdapter inserts the instrumentation hooks.

Its philosophy centers around an extendable toolbox for physics simulation.
Hence, OpenFOAM provides many libraries that implement different solver algo-
rithms, preconditioners, and other utilities required to develop simulation soft-
ware. These libraries are employed in various solvers for specific use cases and
physical phenomena, e.g., multi-phase flows or fluid-structure interaction, requir-
ing a high degree of flexibility and configurability in the code base. One of Open-
FOAM’s very particular properties is the use of the project-specific build system
wmake. Build systems, particularly custom and niche ones, commonly pose chal-
lenges in their application [8], e.g., maintaining multiple configurations. For such
systems, the application of static analysis and instrumentation tools can be chal-
lenging.

The following section outlines how these features of OpenFOAM make the
application of the existing InstRO tool impractical.

3.1 Design and Limitations of InstRO

InstRO provides a configurable set of passes, which can be combined by the
user to perform customized source-to-source code transformations on selected
code regions. Passes can be divided into three categories: Selectors select code
regions for instrumentation based on code features. Transformers perform nec-
essary source code transformations, e.g., to canonicalize certain constructs for
instrumentation. Finally, Adapters implement the actual instrumentation of the
code. Figure 1 provides an example of how passes may be combined for selective
instrumentation of functions related to MPI [20] usage.

This abstract pass design makes InstRO highly configurable, and, together
with its whole-program analysis, a powerful instrumentation tool. Moreover,
the layered design of InstRO makes many parts of the tool—theoretically at
least—independent of the compiler technology used underneath. However, most
of InstRO’s features have been implemented on top of the ROSE source-to-source
translator. A Clang-based implementation exists, but provides, in comparison,
only limited functionality.

For the application to OpenFOAM, both versions proved unsuitable. The
main issue is the need for a global CG analysis in order to enable the selection
of specific call-paths. In the ROSE implementation, this requires the parsing
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and merging of all 5000 source files at once, which is impractical due to time
and memory constraints. The Clang implementation lacks global CG analysis
capabilities altogether.

To overcome this obstacle, we developed the new CaPI tool based on the
InstRO paradigms, but capable for application to large-scale codes. We demon-
strate its capabilities on OpenFOAM and construct a low-overhead IC that
focuses on analyzing functions that use MPI communication.

4 The CaPI Instrumentation Toolchain

In this section, the CaPI workflow and its implementation are introduced and
explained in further detail.

We reworked the InstRO toolchain in order to make it applicable for the
OpenFOAM use case. Most notably, we switched from a source-to-source trans-
formation to a more flexible compiler instrumentation approach. This neces-
sitated moving from the abstract pass formulation to a more concrete work-
flow comprised of analysis, selection and instrumentation steps. CaPI employs
MetaCG [17] for global CG analysis, which was developed for a similar purpose
in the automatic instrumentation refinement tool PIRA [16]. We use a custom
domain-specific language (DSL) to implement the user-defined selection mecha-
nism, designed with a focus on ease-of-use and conciseness.

4.1 Instrumentation Workflow

The toolchain consists of two main phases: In the analysis and selection phase
the code is analyzed statically and relevant code regions are selected for instru-
mentation. We employ a stand-alone selection tool to process the collected data
and generate the IC. The final instrumentation step is implemented using a cus-
tom LLVM [13] optimizer plugin. During compilation, hooks are inserted into
the selected functions to interface with the measurement library. These steps are
illustrated in Fig. 2.

4.2 Implementation

The implementation distinguishes between the selection phase, which is imple-
mented in a stand-alone tool, and the compilation phase, in which an LLVM
plugin is used to insert the instrumentation hooks. We provide a more detailed
explanation on how the selection is implemented and how different selection
passes are combined. Thereafter, we briefly explain the compilation phase.

Analysis and Selection. The selection is applied to the whole-program CG rep-
resentation provided by MetaCG. Hence, selectors can match function names,
or structural properties of functions within the CG. The whole-program view
enables the selectors to maintain full context information for the functions
selected, when desired.
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Fig. 2. Our instrumentation toolchain consists of these steps: (1) Preparation of the
target code’s build system, in case it is required. (2) Generation of a compilation
data base for Clang-based tools. (3) Translation-unit local CG construction, given the
MetaCG workflow. (4) Whole-program CG construction, manually combining relevant
source files. (5) Definition of the selection specification. (6) Execution of the CaPI
analysis to create the IC. (7) Compilation of target code with IC instrumentation.

One of the fundamental paradigms of InstRO is the composability of its selec-
tor modules. We realize this composability via a lightweight DSL. This DSL
enables the user to easily instantiate a nested sequence of parameterized selec-
tors. We found that, compared to an alternative XML or JSON based format,
this approach results in a much more concise and comprehensible specification.
A simplified grammar definition is shown in Fig. 3.

A selection specification consists of a sequence of selector definitions, which
may be named or anonymous. The last of these definitions serves as the entry
point to the selection pipeline. Each definition starts with the name of the
selector module, followed by a list of arguments enclosed in parentheses. Aside
from basic data types, i.e. strings, booleans, integers and floating-point numbers,
selector modules may accept other selector definitions as input. These can be
defined in-place or passed as a reference to a previously defined (named) selector
instance. Such references are marked with a leading %, followed by the identifier.
The reference %% is pre-defined and corresponds to the set of all functions.

Listing 1 shows an example for a call-path selection pipeline that instruments
functions on paths to MPI calls.

The user can choose from a set of predefined selectors that can be cus-
tomized for the specific use case. The following selectors are currently available:
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Fig. 3. BNF grammar of the CaPI DSL. Some nonterminals related to the parsing of
literals have been omitted for brevity. The full, up-to-date grammar is available in the
project repository (https://github.com/tudasc/CaPI).

Include/exclude lists: Select functions by name based on regular expres-
sions.
Specifier selection: Select functions w.r.t. specifiers, e.g., the inline key-
word.
Call-path selection: Select all functions that are in the call chain below or
above a previously selected function.
Unresolved call selection: Select functions that contain calls via function
pointers, which may not be statically resolvable.
Set operations: Merge selection sets using basic operations such as union,
intersection and complement.

The selection pipeline is applied to all functions in the CG, resulting in the
final IC file. This file consists of the list of functions to be instrumented and is
compatible with the Score-P filter file format. Hence, Score-P can be used as an
alternative to our compiler plugin for the instrumentation step.

Compilation. We use the Clang/LLVM compiler toolchain to build the tar-
get code and perform the instrumentation. A custom LLVM plugin reads the
IC file and identifies all functions in the current translation unit that are con-
tained in the IC. These functions are then marked with LLVM function instru-
mentation attributes. Subsequently, the instrumentation attributes are con-
sumed by the existing post-inline LLVM pass and the measurement hooks
are inserted accordingly. We apply the instrumentation after inlining, in order
to pre-emptively reduce instrumentation overhead. The enter and exit hooks con-
form to the GNU profiling interface, which is used by GCC compatible compilers
for function instrumentation via the -finstrument-functions flag [9].

4.3 Score-P Integration

In principle, CaPI is compatible with any measurement tool that supports the
GNU interface. Our main target, however, is the Score-P measurement infras-

https://github.com/tudasc/CaPI
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1 mpi = onCallPathTo(byName("MPI_.*", %%))
2 exclude = join(byPath(".*\/ OpenFOAM \/db\/.*", %%),
3 inlineSpecified (%%))
4 subtract (%mpi , %exclude)

Listing 1. The selector mpi selects all functions that match the name "MPI_*", uses
the result to select all functions that are on a path through the CG to an MPI function,
and finally subtracts all inlined functions and those defined in a certain directory from
the result.

tructure, which is commonly available in HPC environments. While Score-P pro-
vides support for the GNU profiling interface as well as defining its own measure-
ment API, the GNU version is limited to recording only statically linked func-
tions. This is due to the fact that only symbols with statically known addresses
are collected from the main executable. As a result, the corresponding function
names of calls to shared libraries cannot be identified and are thus ignored in
the measurement.

We have developed the Score-P symbol injector library to identify and register
these missing symbols [24]. Linked into the instrumented executable, it queries
the /proc/self/maps pseudo-file at start-up to obtain information about the
memory mapping of the loaded shared libraries. Each of these libraries is then
analyzed with nm. Using the previously-collected information, each symbol is
mapped to its address in the running program. Functions that are included in
the IC are then registered in Score-P’s internal address-resolution hash map.

5 Evaluation on OpenFOAM

In this section, we demonstrate the presented CaPI toolchain on OpenFOAM
and examine the obtained measurement results.

We evaluated the ICs with two OpenFOAM test cases: 3-D Lid-driven cav-
ity (cavity), a well-known benchmark problem for incompressible flow [2],
and HPC_Motorbike (motorbike), a simulation of flow around a motorbike
model [23]. The executables applied in the main solve phase are icoFoam and
simpleFoam, respectively. We measured the execution time for the Score-P pro-
filing mode on a single node of the Lichtenberg 2 cluster, running with 4 MPI
processes.2

The compatibility of CaPI with the Score-P filter file format enables the com-
parison of various combinations of the available selection and instrumentation
methods. This is illustrated in Fig. 4.

The full specification of the evaluated variants is shown in Table 1. All instru-
mented variants rely on Score-P’s compile-time filtering method, using an IC
generated by either scorep-score or CaPI. The scorep-full variant corresponds
to Score-P’s default full instrumentation, which does not perform any explicit

2 https://www.hhlr.tu-darmstadt.de/.

https://www.hhlr.tu-darmstadt.de/


Compiler-Assisted Instrumentation Selection for Large-Scale C++ Codes 13

Fig. 4. Interoperability of Score-P and CaPI selection and instrumentation methods.
The IC generated by CaPI or scorep-score can be combined with CaPI’s Clang-based
instrumenter or the GCC-based Score-P instrumenter. Note that using the GNU inter-
face requires the inclusion of the symbol injector library to record calls to shared
libraries.

filtering but excludes all functions declared as inline. The hybrid variant com-
bines both selection methods by performing additional runtime filtering. All
variants were compiled with -O2 optimization.

Table 1. Build configurations used in the evaluation.

Name Compiler Instrumentation interface Filter
Compile-time Run-time

vanilla-gcc GCC – – –
vanilla-clang Clang – – –
scorep-full GCC Score-P – –
scorep-filt GCC Score-P scorep-score –
capi-gnu Clang GNU CaPI –
capi-scorep GCC Score-P CaPI –
hybrid GCC Score-P CaPI scorep-score

For the scorep-score IC, we filtered out all functions that are called at
least a million times and take less than 10 µs to execute. This yielded a filter
file that excludes 17 functions for cavity and 38 functions for motorbike that
are responsible for a majority of the overhead.

For the CaPI variants, we used the selection specification shown in Listing
1, which selects all call paths performing MPI communication. Additionally, we
filtered out functions defined in files from a directory that contains mostly code
related to I/O operations, as well as functions specified as inline.

We manually validated these ICs by comparing the resulting profiles with the
results from scorep-full. Both profiles represented the behavior of the program
accurately and preserved the call paths comprising hot spots.
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Figure 5 shows the execution time measured for each variant. For both
benchmarks, vanilla-gcc performed slightly better than vanilla-clang. For
cavity, however, this difference is miniscule.

Compared to vanilla-gcc, the unfiltered instrumentation scorep-full pro-
duced only 8% overhead for cavity, but 135% for motorbike. Using the profile-
guided filter variant scorep-filt reduced the overhead significantly to 3% for
cavity and 44% for motorbike. The capi-gnu variant, however, was slower than
scorep-filt in both cases. This is in part due to the initial look-up and regis-
tration of the shared library symbols. This step is quite time consuming because
the CaPI-generated IC consists of an include list of about 110k entries, which
have to be cross-checked with the found symbols. In the capi-scorep variant,
the performance penalty due to the initialization overhead is eliminated, thus
showing better results in both cases. The discrepancy in the execution time of
main between capi-gnu and capi-scorep are likely due to the differences in
compilers and the Score-P measurement API.

The hybrid variant showed the most promising results. For cavity, it reduces
the instrumentation overhead to below 1%. Similarly, hybrid yielded the overall
best results for motorbike with an overhead of 30% compared to vanilla-gcc.

Fig. 5. Mean execution time of the instrumentation variants for the cavity and
motorbike benchmarks over 5 runs. The total time is split into contributions from
initialization and the execution of the main function. The error bars indicate the stan-
dard deviation. Note that the lower limits of the y-axes have been adjusted for better
visibility.

6 Usability and Validation Impediments

In this section, we highlight some of the usability impediments that we had to
overcome in the instrumentation of OpenFOAM.

As mentioned earlier, dealing with the particularities of uncommon build
systems can be cumbersome and tedious. As such, OpenFOAM’s wmake made
certain aspects of the tool application more difficult. We do not consider it as a
separate issue in this list. Nonetheless, it should be noted that the chosen build
system heavily influences the ease-of-use of any instrumentation workflow.
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Whole-Program CG. The generation of the whole-program CG is the most
time-consuming part of our toolchain, and took several hours for OpenFOAM.
The main difficulty, however, lies in setting up the analysis correctly. It has to be
executed as a preprocessing step and is therefore not easily applied via the build
system. This makes it difficult to identify which source files should be included.

For the initial local CG analysis, it is sufficient to search the code base for C++
files. The subsequent merging into a whole-program CG, however, requires addi-
tional care. OpenFOAM builds a large number of individual solver executables.
Merging them all together is not sensible, as their behavior varies significantly.
Hence, to generate the CG for each solver, we first merge all local CGs of the
OpenFOAM libraries into a large library CG. We then identify the source files
specific to the solver and merge the corresponding CGs with the library CG.

In general, this requires the user to have detailed knowledge about the build
process of the target application. In its current form, the setup of the CG analysis
therefore constitutes a significant barrier.

Limitations of Static Analysis. Due to the inherent limitations of static
analysis, some call paths cannot be correctly identified by MetaCG. The resulting
CG is therefore not guaranteed to be complete. A common reason for missed call
edges is the use of function pointers [17]. For OpenFOAM, this played a minor
role. In general, however, we cannot guarantee that there are no other issues
that lead to missed calls, e.g., due to bugs in the analysis or misconfigured
selection specifications. Unfortunately, there is no direct way to reliably check
that a recorded profile is complete. Hence, it is the responsibility of the user to
manually verify that no major parts of the code are missing.

To mitigate the issue, MetaCG provides a tool that compares the statically
constructed CG with one constructed from a full-instrumentation profile and
adds missing edges. This approach, however, introduces additional steps into the
instrumentation workflow and requires a fully-instrumented build of the target.
Furthermore, the resulting CG is only valid for the specific program inputs used
to generate the profile. In order to guarantee completeness, this validation step
must be repeated every time the program calling behavior changes based on
inputs. For large code bases, this is impractical.

Managing Multiple Configurations. In the use case of OpenFOAM, it is
sensible to create separate ICs for different solvers, as they may use completely
different parts of the main library. As the instrumentation of the selected func-
tions happens at compile-time, every new IC requires a rebuild of the program.
Moreover, for multiple, different ICs, a separate build folder per IC is required.

This is especially tedious in OpenFOAM because the build system is designed
to have only one build for each compiler configuration. Maintaining multiple
instrumented builds is doable, but requires tedious configuration work. In addi-
tion, the user needs to keep track of the purpose of each build and document
the configuration steps. If this is done poorly, the wrong build may be used,
potentially leading to incomplete profiling data.
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Furthermore, having multiple builds of a large program can waste significant
amounts of disk space, despite the binaries being virtually identical.

In order to avoid these issues altogether, Score-P provides an option for
run-time filtering. Using this method, all functions are initially instrumented.
At run-time, the entry/exit hooks are still called, but measurements are only
recorded for functions that pass the filter. As a result, the overhead is generally
bigger compared to compile-time filtering, which may lead to skewed measure-
ments. This is especially apparent with our toolchain, which generates a filter list
containing ≈29k entries for the cavity case. We observed a significant increase
in overhead using run-time filtering with this CaPI-generated filter, compared
to the compile-time filtering method.

7 Discussion

We have demonstrated that our tool is capable of generating instrumentation
configurations for large-scale codes. The results show that a hybrid approach,
which combines the tailored CaPI selection with run-time filtering to remove
remaining high-overhead functions, proved to be especially effective in mitigating
the overhead, while preserving relevant call paths. This demonstrates that the
compiler-assisted instrumentation workflow is in principle feasible to apply and
beneficial w.r.t. overhead reduction.

In practice, however, the application on OpenFOAM proved to be quite time-
consuming and required a good understanding of the code base and build system.
We can therefore conclude that for most cases, the use of existing profile-guided
filtering techniques with manual adjustments is preferable, as they require far
less configuration overhead. The issues we identified are in large part applicable
to other compiler-assisted instrumentation tools that rely on prior static analysis.
This relates to PIRA in particular, which uses the same CG analysis workflow.
In order for compiler-assisted instrumentation tools to be a viable alternative,
the following key challenges must be addressed:
Simplification of the Analysis Workflow: The global static CG analysis is
a requirement for the presented selection techniques. Currently, this step is very
time-consuming. In order to simplify the workflow, the manual set-up must be
reduced, by providing better integration into the compilation process.
Management of Build Configurations: Different instrumented versions of
a code currently require maintaining multiple program builds. Instrumentation
tools should aid in organizing and identifying them. Ideally, the need for sepa-
rate builds should be eliminated altogether by providing an alternative run-time
adaptation method that introduces little overhead.
Detection of Missed Calls: Currently, the user is unable to tell if function
calls are missing due to limitations in the static analysis. A manual comparison
with a complete instrumentation of the same program is possible, but requires
extra steps that have to be repeated for every input configuration. Ideally, the
static analysis phase should detect situations where such problems might occur
and insert run-time checks to detect missed calls.
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8 Conclusion and Future Work

Fig. 6. Envisioned workflow with embedded CG: The CG analysis is performed as
link-time-optimization (LTO) on all object files of a shared library or executable and
the CG is embedded into it. At run time, the CaPI runtime library queries the objects
for their respective CGs and merges them to construct the whole-program CG.

We presented the Compiler-assisted Performance Instrumentation tool for user-
defined selective program instrumentation. CaPI was demonstrated by creat-
ing tailored instrumentation for the CFD framework OpenFOAM. Our evalua-
tion showed that a hybrid selection approach, comprised of static selection and
run-time filtering, is effective in eliminating overhead. However, the amount of
required manual work for CaPI is undesirable. Hence, we identified key areas for
improvement to make such techniques more accessible.

Currently, the biggest usability issue for CaPI and similar tools is the require-
ment for a separate analysis phase. This issue could be mitigated by shifting
the whole-program CG construction to link-time and embedding the CG into
the generated binary, as illustrated in Fig. 6. In this proposed toolchain, a suit-
able dynamic instrumentation method enables the selection and instrumentation
steps at program start. This opens up opportunities for dynamic instrumenta-
tion refinement based on collected run-time information, as employed by PIRA,
without the need to rebuild the program. In addition, the availability of the CG
at run-time would enable the assessment of the IC’s completeness. Further work
is required to assess the feasibility of this approach.

CaPI is available at https://github.com/tudasc/CaPI under the BSD 3-
Clause license.
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Abstract. Array contraction is a compilation optimization used to
reduce memory consumption, by reducing the size of temporary arrays
in a program while preserving its correctness. The usual approach to
this problem is to perform a static analysis of the given program, cre-
ating overhead in the compilation cycle. In this work, we take a look at
exploiting execution traces of programs of the polyhedral model, in order
to infer reduced sizes for the temporary arrays used during calculations.
We designed a four step process to reduce the storage requirements of
a temporary array of a given scheduled program, in which we used an
algorithm to deduce array access functions for which bounds are modulos
of affine functions of parameters of the program. Our results show mem-
ory reductions of an order of magnitude on several benchmarks examples
from PolyBench, a collection of programs from the polyhedral commu-
nity. Execution time is compared to a baseline implementation of a static
algorithm, and results show speed-up factors up to 20.

Keywords: Compilation · Array contraction · Polyhedral model ·
Dynamic analysis · Memory allocation

1 Introduction

The problem of temporary memory allocation is a challenge for programs meant
to be running on platforms that have limited computing resources. Such tempo-
rary arrays manipulate results of intermediate computations that are disposed
of at the end of the program. They are therefore sometimes oversized, when
array cells are left unused and not overwritten by following computation despite
their value no longer being used. Array contraction is a program transformation
whose goal is to detect such unused array cells and replace a write to another
cell to an unused one, in order to reduce the effective memory footprint of the
array and shrink its maximum size, allocating less memory to the buffer while
keeping program correctness intact.

Figure 1 introduces two direct applications of this method. Both the local
memories used by the CPUs, and the buffer(s) used for communicating between
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Fig. 1. Two CPUs perform computations on local memories and communicate data
through a buffer

themselves, benefit from allocating smaller arrays. More precisely, many com-
puting units require or may use on-the-fly memory sizing to exploit their struc-
ture (scratchpad memories, systems on chips). The class of programs studied
for this optimization are affine loop kernels manipulating arrays (SCoPs, static
control parts [2]), and this form of loop nest is the most common in many High-
Performance Computing examples. The polyhedral model provides the neces-
sary mathematical foundations to develop compiler optimizations such as array
contraction, that focuses on compute-intensive scientific kernels containing such
SCoPs. In this context, compilers rely on static analysis of the program to reduce
the memory footprint of the program. Static analysis has been the basis of many
works in the field [1–3,5,7,13]. However, dynamic analysis outclass static com-
piler ones when small execution traces can be efficiently produced and analysed.
Static methods use polyhedral projections and Integer Linear Programming,
which can be expensive depending on the shape of the code.

It would seem that no approach to this problem, to our knowledge, has
explored the option of using dynamic analysis of the program in order to infer
compilation optimizations. In this work, we contradict this habit and study the
problem of determining a buffer allocation function from analysis of several
execution traces. The problem can be formulated as follows: given a program
manipulating a temporary array A, we want to infer allocations functions σA,
of minimal image cardinal, such that any access A[i] can be safely replaced by
Â[σA(i)]. Our general approach is then to apply a lightweight analysis on a few
offline execution traces, with the assumption that the input parameter instances
chosen for those traces are small enough that the execution time is significantly
smaller.

In this paper, we make the following contributions:

– We present a new method for storage optimization, a dynamic approach that
uses offline execution trace analysis. In particular, we describe a liveness algo-
rithm from such execution trace, and another to compute the maximum num-
ber of variables alive alongside a dimension, from which we get our scalar
modular mappings.
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– We show, through the use of interpolation, that we can identify parameters
from said modulo and deduce a generalized mapping.

– We implement this method on several benchmarks from the polyhedral com-
munity and show reductions both in implementation execution time and stor-
age mappings deduced.

Our paper is structured as follows. Section 2 outlines the polyhedral model
and the array contraction problem. Section 3 discusses related work. Section 4
describes our trace-based approach. Section 5 presents experimental results.
Finally, Sect. 6 concludes this paper and draws research perspectives.

2 Background

We present the necessary background to the problem. We define the polyhedral
model, and what is an usual polyhedral compilation flow. Then, we define the
problem at hand, array contraction, and the related notions.

2.1 Polyhedral Model

Fig. 2. Motivating example: 2D Blur filter

The polyhedral model defined by [8] is an intermediate representation of a loop
nest as a graph over points of Zn. The class of programs that can be represented
in this model, and therefore are subject to polyhedral optimizations, is poly-
hedral programs. These are (sequences of, possibly nested) for loops where all
loop bounds and conditions are affine functions of the surrounding loop iterators
and program parameters. Each execution of a statement S, nested in a n-depth
loop, namely an instance or operation, can be represented by 〈S, i〉 where i is
a n-dimensional iteration vector of the surrounding loop indices. Its iteration
domain D, the set of all possible iteration vectors for S, forms a graph over
points of Zn.
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Running Example. We illustrate our algorithm on the 2D Blur filter illustrated
with its iteration domains on Fig. 2. This is a well-known example of the poly-
hedral community, that applies two consecutive elementary convolutions on the
input signal in. We have represented the iteration domains of S, T and U as
colored symbols.

Fig. 3. Simplified polyhedral compilation flow of our method

Polyhedral Compilation Flow. Compilation flows usually produce an in-between
form of the program at hand, named Intermediate Representations (IR), on
which transformations can be applied more easily to optimize its execution.
Polyhedral compilation is no different, and in the case of our method, we produce
those IRs as a pre-analysis step, separated from the algorithm. Figure 3 describes
our simplified polyhedral compilation flow. Source code gets transformed once to
an intermediate representation through polyhedral raising, who is then subject
to possibly multiple affine transformations in order to optimize execution of
the target code. The focus of our algorithm, and its performance, is therefore
focused entirely on the application of such polyhedral optimization, for which
ours is Array Contraction.

Affine Transformations. At the heart of a polyhedral compiler, code transfor-
mations are expressed by affine mappings specifying a new execution order:

Definition 1 (Affine Scheduling). A schedule maps each execution instance
〈S, i〉 to an execution date θS(i). In the polyhedral model, schedules are affine per
statement, i.e. θS(i) = ASi+bS, and dates are vectors of Zp ordered with the lex-
icographic ordering �. A schedule maps each iteration vector to its counterpart
in the transformed, scheduled program.

A possible schedule for our motivating example is the canonical sequential
schedule θ, which is the order specified by the original for statements of the
program: θS(y, x) = (0, y, x, 0), θT (y, x) = (1, y, x, 0), θU (y, x) = (1, y, x, 1).
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Correctness. In the polyhedral model, data dependencies might be expressed
between iterations. In the computation of the blur-interleaved example, for any
instance where y ≥ 3, we have that an instance of 〈U, x, y〉 of the second convolu-
tion depends (flow) on the preceding instances 〈T, x, y〉, 〈T, x, y−1〉, 〈T, x, y−2〉
of the first convolution. Anti- and output- dependencies are expressed in the
same way. The dependence relation is denoted by →. Of course, the schedule is
constrained by data dependencies:

〈S, i〉 → 〈T, j〉 ⇒ θS(i) � θT (j) (1)

This gives affine constraints which allow to compute affine schedules [8].

2.2 Array Contraction

The problem of array contraction, given a temporary array A, consists in finding
a mapping A[i] → Â[σA(i)] reducing or matching the unknown required size of
A, minimal size for which the correctness of the program is intact. In our case,
we seek memory mappings of the form σA(i) = i mod b(N), where b is an affine
function of program’s structure parameters N (e.g. array size).

Definition 2 (Conflict Relation). A conflict relation ��θ is defined as the set
of array cells whose lifetimes intersect during the execution of the program for
the schedule θ.

The conflict relation induces a correctness condition on array contraction, as
conflicting array cells might be mapped to different places:

a[i] ��θ a[j] ∧ i 	= j ⇒ σa(i) 	= σa(j) (2)

Running Example (cont’d). With the original loop schedule, the temporary array
blurx might be contracted with the mapping (y, x) 
→ (y mod 3, x mod N),
when N ≥ 3. Indeed, blurx bufferizes the first convolution (S,T) before applying
the next convolution (U) which only needs three rows y. This way, the footprint
is reduced to 3 × N array elements.

The successive minima technique [10] is the state-of-the-art approach to com-
pute such mappings. The method of this work by Lefebvre and Feautrier can be
boiled down to the following process. The conflict relation is represented as a dif-
ference set Δa = {i−j | a[i] �� a[j]} for each array a; Then, for each array dimen-
sion k, the modulos are computed with bk(N) = 1+max{δk | (δ1, . . . , δn) ∈ Δa}.
Finally, resolved conflicts are removed before iterating on the next array dimen-
sion : Δa := Δa ∩ {δ | δk = 0}.

Our contribution, as we will show later, consists in a lightweight instantia-
tion of this algorithm on several small execution traces, followed by an interpo-
lation to obtain a general mapping. We show experimentally that our results are
obtained way faster than with the Lefebvre-Feautrier method, the latter dealing
with costly parametric Integer Linear Programming (ILP). More fundamentally,
this work is a proof-of-concept that costly polyhedral analysis might
be rephrased as lightweight trace analysis. This opens new perspec-
tives to scale polyhedral compilers.
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3 Related Work

We quickly go over the multiple works related to our subject. We first present
defining works on the subject. We then go over closely related work on the
subject of array contraction. Finally, we present loosely related work on trace
manipulation and analysis, but no work on dynamic array contraction by trace
analysis has crossed our eyes.

Affine Array Contraction. As described by [3,10], and again in this work, the
successive modulo technique seeks to reduce the memory storage requirements of
an already scheduled program, by performing static analysis in order to construct
a conflict set. The array dimensions are reduced by finding contraction moduli
along the array’s axes. While recalling that the method of Lefebvre and Feautrier
[10] obtains on the example blur-interleaved a storage mapping (y, x) 
→ (y mod
3, x mod N), the more advanced work of Bhaskaracharya et al. [3] infers a more
refined mapping (y, x) 
→ 2x − y mod (2N +1), because their approach consider
the change to a better basis for the contraction vectors.

Inter-array and Intra-array Contraction. The type of optimization we are look-
ing for in this paper is an intra-array optimization as designed by [3], and ref-
erences such as [1,8,11] focus on this intra-array analysis. This means that the
analysis performed is done on a per-array basis. [3,4] build a technique for intra-
array as well as inter-array optimization, a technique that consider the reduction
of multiple temporary arrays, allowing them to find even more reduced mapping
by changing (often reducing) the dimensionality of the array(s) considered for
the analysis. [6] calculate the memory requirements of a program by approach-
ing them as a polynomials in the parameters of the program, but their method
has to relax the solutions as rational instead of integer, and only give an upper
bound of the memory consumption.

Trace Analysis. In terms of trace analysis, some work has already covered sim-
ilar topics such as loop recognition and trace prediction [9] and trace-based
affine loop reconstruction [12]. The former compresses traces (as sequences of
scalars) and constructs a loop nest producing such sequence of numbers. The
latter focuses on reconstructing loops based on their predictable affine behavior,
from the addresses of the memory accesses, and presents a terminating algorithm
to reconstruct the loop function entirely. These works, therefore, focus only on
rebuilding incomplete traces, and not on the usage of traces in a compilation
process.

4 Our Approach

This section presents the contributions made to the problem of array contraction,
and detail our method of offline trace execution and analysis to infer a general
mapping.
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4.1 Overview of the Approach

Fig. 4. Our approach

Figure 4 depicts our approach. We start with an input Intermediate Represen-
tation, comprised of the program, its schedule θ, and its Dependence Graph.
We also input the code generated from θ (Template code), which will allow to
produce traces.

First, we compute the input parameter instances on which running the pro-
gram to obtain interesting traces. We also instrument the template code to
prepare the trace generation. Then, for each input parameter instance N , we
generate the trace (Log trace) and we apply a lightweight instance of the suc-
cessive minima method (Get trace mapping). We end up with a collection of
trace mappings. Finally, we infer the general mapping (working for any input
parameter) from an interpolation between each input parameter instance and
its corresponding output modulo mapping (Interpolation). All these steps are
detailed thereafter.

4.2 Generating Input Parameter Instances

Our trace analysis operates on execution traces of programs, meaning we have to
instantiate our kernel program with scalar values for its parameters N . Since we
would like to interpolate modulos as an affine forms of parameters N 
→ bk(N),
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we need |N | + 1 parameter instances. Also, the parameter instances must be
independent to enforce a unique interpolation. We first explain how the first
parameter instance is computed. Then, we explain how we get the remaining
parameter instances.

First parameter instance, O We derive the set of parameters covering all the
dependencies by projecting the dependency constraints of the program on each of
the parameters. Then, we compute a minimum value for each of the parameters.
Usually the constraints are of the form N ≥ � with � some constant lower bound.
Hence, we may infer a lower bound for each parameter with a simple syntactic
heuristic without using expensive linear programming techniques. This gives the
first parameter instance, denoted as O (for “origin”).

This heuristic assumes that in the main program execution, all the depen-
dencies are reached. However, this is not always the case, and if we deal with
imperfect loop nests, then the result is an upper bound, giving potential addi-
tional overhead by operating on traces with bigger parameter instances than
needed. How to extend this heuristic to the general case is left to future work.
In our running example, the intersection of all the dependence constraints boils
down to the polyhedron {N |N ≥ 3}. Hence O = (3), denoting the parameter
instance N = 3.

Remaining Parameter Instances. One set of parameter values is not sufficient
to establish an interpolation. For each parameter Ni, 1 ≤ i ≤ p, we create a new
parameter instance, linearly independent from the rest. A straightforward way
to compute such new instances is to build the set of increments by each canonical
vector ei: I = (O,O + e1, . . . ,O + ep), where O + ei = (N1, ..., Ni + 1, ..., Np).
These parameter instances will lead to a unique affine interpolation, as we will see
later. On our example, we would obtain (3, 4), denoting the parameter instances
N = 3 and N = 4.

4.3 Inferring a Mapping on a Trace

The following Algorithm 1 describes our lightweight instance of the successive
minima method to compute a mapping from an execution trace.

We apply a direct liveness analysis on the trace to compute the difference set
Δa we defined earlier, then each modulo is computed as the maximum difference
measured alongside each array dimension i, following the lines of the successive
minima algorithm. Since we deal with finite (and small) integer sets, no ILP is
required.

This method is an instance of the Lefebvre-Feautrier algorithm [10] since
we produce the same mapping while operating on a trace, i.e. an instantiated
program. Since the mapping is affine, we can directly apply a linear interpolation
to deduce a generalized parametrized mapping, as we will describe in the next
section.
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Algorithm 1: Find the mapping for the array a on the trace T

Result: mapping i �→ i mod m
function GetMapping(T ,a)
(In, Out) ← liveness(T )
CS ← ⋃

p

{(a[i], a[j]) | a[i], a[j] ∈ In(p)}
Δa ← {i − j | (a[i], a[j]) ∈ CS}
for each array dimension i, starting from 0, in increasing order do

mi ← 1 + max{δi | (0, ..., 0, δi, ...) ∈ Δa}
end

Running Example (cont’d). For our blur-interleaved example, such analysis
would show, on the trace for N = 3, for the blurx array, that the biggest
width alongside the y axis is 2, so there are a maximum of 2+1 array cells in
conflict at any given control point p. The observation on x is similarly done, and
again we measure a width of 2, and so a number of conflicts of 3. Hence, we
obtain (y, x) 
→ (y mod 3, x mod 3). This is repeated for the trace with N = 4
where we obtain (y, x) 
→ (y mod 3, x mod 4).

4.4 Interpolation

From the mapping instances deduced, we show how to interpolate a generalized
mapping that depends on program parameters. We retrieve mappings of the form
i 
→ i mod b(N) by a direct affine interpolation from the pairs of inputs (param-
eter instances) and outputs (modulo scalars found). We realise this by solving
the following systems of equations. Let p be the number of program parameters
(N = (N1, . . . , Np)), and k the number of array indices (i = (i1, . . . , ik)). Then:

σa(i) =

⎛
⎜⎝

i1 mod f1(N1, ..., Np)
...

ik mod fk(N1, ..., Np)

⎞
⎟⎠ (3)

This system of Eq. (3) defines the f� functions that we are determining.
Expecting to deal with affine functions, each f� can be written in the homoge-
neous form:

f�(N) = τ � ·
(

N
1

)
(4)

where τ � is a vector of size p + 1, τi being the coefficient of Ni, for 1 ≤ i ≤ p,
and τp+1 being the constant coefficient.

We have collected sample values from these affine functions, for each array
index �, represented by: ⎧⎪⎨

⎪⎩

f�(O) = m0

...
f�(O + ep) = mp

(5)
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Which can be written as Aτ � = m:
⎛
⎜⎜⎜⎝

O 1
O + e1 1

...
...

O + ep 1

⎞
⎟⎟⎟⎠ τ � =

⎛
⎜⎝

m0

...
mp

⎞
⎟⎠ (6)

We now show that this system has always a unique solution in Z
p+1:

Theorem 1. A is unimodular.

Proof. We apply the Gaussian elimination method to express the determinant
of A. We may subtract from each of the first p columns that we label each ai,
the last column ap+1 multiplied by Ni without changing the determinant. The
resulting matrix is as such:

detA =

∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0 1
1 0 · · · 0 1
0 1 · · · 0 1
...

. . . . . .
...

...
0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣
It immediately follows that the determinant of this matrix is (−1)p+1 × det Ip,
the permutation of the p + 1-th and the first column leading to the (−1)p+1

factor, and det Ip the determinant of the lower-left matrix which is the identity.
Therefore, detA = ±1 and so A is unimodular. ��
Because A is unimodular, the linear equation system always has integer solu-
tions. Therefore, for any given program with p parameters, p+1 traces are both
necessary and sufficient to produce an interpolation.

Running example (cont’d) On traces, we obtained the trace mappings (y, x) 
→
(y mod 3, x mod 3) for N = 3, and (y, x) 
→ (y mod 3, x mod 4) for N = 4.
Denoting (y, x) 
→ (y mod b1(N), x mod b2(N)) the general mapping, we have

b1(3) = 3 and b1(4) = 3. Hence we solve: Aτ 1 =
(
3 1
4 1

)
τ 1 =

(
3
3

)
from which

we deduce τ 1 =
(
0
3

)
. Hence b1(N) = τ 1 ·

(
N
1

)
= 3.

Also, b2(3) = 3 and b2(4) = 4. Hence we solve: Aτ 2 =
(
3 1
4 1

)
τ 2 =

(
3
4

)
from

which we deduce τ 2 =
(
1
0

)
. Hence b2(N) = τ 2 ·

(
N
1

)
= N .

Hence, we get the parametrized program mapping (y, x) 
→ (y mod 3, x mod N).

5 Experimental Results

This section presents our implementation and the results obtained with our
approach, and make a comparison with the successive minima approach.
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5.1 Experimental Setup

We have implemented our method as an automatic code generator in C++
named PoLi. Our tool takes as input an intermediate representation of a kernel
and first outputs a C program where its statements have been swapped out
with calls to trace generation methods. Then, the lifetime analysis is performed
on several execution traces, from a remote compilation and execution of the
modified kernel. Finally, the deduced mapping is directly applied by modifying
the access functions of the temporary arrays to the ones deduced.

The baseline implementation, used to compare our analysis time and storage
requirement measurements with, is an implementation of the successive modulo
technique [10]. The C kernels have been compiled using gcc 9.3.0 with flags “-
fPIC -O3”, while the implementation itself has been compiled using g++ 9.3.0
using flags “-O3 -ldl -lstdc++fs”. Every compilation and execution of the kernels,
and so their time measurements have been done on an Intel Core i5-1135G7 CPU
running at 2.40GHz. No HPC computer is required, as we deal with compilation,
not execution. The LF method is compiled with the same directives. We list the
examples present in our benchmarks, which are part of the PolyBench test suite1:

– fibonacci computes the n-th term of the fibonacci sequence. It showcases
very low runtime because of a very simple single loop nest.

– pc-2d and pc-2d-line, two examples of a producer-consumer mechanic in
two dimensions, respectively without and with the last 2 rows of A explicitly
being output dependencies. Those show the relevance of the method to only
temporary memory.

– blur-interleaved and blur-tiled, two examples of the 2D blur filter, respec-
tively with producer-consumer statements interleaved (motivating example),
and tiled scheduling. Together, they highlight the versatility of the method,
matching the Lefebvre-Feautrier approach for the interleaved case, but out-
paces it when the loop nest gets more complex with more loop counters added
for the tiling.

– 2 mm, example of two successive matrix multiplication and assignment. This
example shows that the Lefebvre-Feautrier method also suffers from the mul-
tiplicity of arrays in the program, which skyrockets its runtime compared to
our approach.

5.2 Results

Table 1 depicts the kernels and their targeted temporary array, alongside its
original size, and the mapping found is the reduced size inferred from our algo-
rithm. Parameter instance represents the starting parameter values chosen for
the analysis. The execution times shown are not the ones of the modified kernels’
executions, as the mappings found are the same for both methods. Rather, the
first average runtime describes, for our method PoLi, the sum of the measured

1 Available at https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/.

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
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Table 1. Mappings and runtimes obtained using our approach (PoLi) compared to the
baseline successive modulo method (LF) [10]

Kernel Mapping found Parameters PoLi time (ms) LF time (ms) Speed-up

fibonacci i mod 2 N = 2, 3 0.00103 0.024221 23.5
pc-2d i mod N j mod N N = 2, 3 0.00284 0.045513 16.0
pc-2d-line i mod 2 j mod N N = 3, 4 0.01022 0.064114 6.3
blur-2d y mod 3 x mod N N = 5, 6 0.15636 0.187037 1.2
blur-tiled y mod 3 x mod 4 N = 5, 6 0.166067 4.041242 24.3
2 mm i mod N j mod N N = 2, 3 0.096936 2.228872 23.0

time spent on the generation of the parameter instance, the time spent instan-
tiating the trace and the time spent interpolating the resulting mappings. This
is compared to the baseline runtime which represents the time spent applying
the instance of the Lefebvre-Feautrier approach we have implemented, and we
show the speed-up factor between the two methods ran successively. We can
observe that the fibonacci example has a speedup of more than 20, explained
by the small trace parameters chosen, as the runtime of PoLi on this exam-
ple is noticeably the lowest out of all. blur-tiled and 2 mm have respectively
bigger iteration dimension and a greater overall number of arrays, meaning the
Lefebvre-Feautrier approach irremediably takes more time projecting over those
several dimensions, whereas our method takes advantage of the smallness of
the parameter instances selected and suffers way less from more arrays and
array dimensions. The complexity of the LF method is directly tied to the iter-
ation dimension in an exponential fashion, while our approach is less sensitive
to it. blur-interleaved and pc-2d-line both present smaller speed-up fac-
tors, as our parameter instance generation gives an upper bound too big, while
the dependencies can still be respected with lower parameter values. Therefore,
more carefulness is required in the selection of the starting parameter instance,
meaning that a better method to infer parameter instances is also of the essence.
On these two examples, our approach still manages to match or outperform the
Lefebvre-Feautrier method while having unnecessarily large starting parameter
instances.

6 Conclusion

In this paper, we have presented a novel lightweight method for array contrac-
tion in the polyhedral model. This work is the very first step towards a new
paradigm of trace-based analysis to scale polyhedral compilation and demon-
strate a promising proof of concept on the array contraction problem. We design
and implement an automatic array contraction tool, that takes as input the
source code of the kernel and outputs optimized target code in regards to stor-
age space consumption. We present the algorithms and methodology used in
our tool. Execution times are compared to those of the Lefebvre and Feautrier
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method and shows promising speed-up factors. Results answers positively to the
question of the possibility of generalization from a subset of execution traces.

In the future, we seek to apply another methodology to the starting parame-
ter instance deduction, in order to choose minimal parameters regardless of the
form of the loop. We also look forward to deduce more complex mappings, of
the form i 
→ Ai mod b(N), similarly to [1,3]. More generally, we seek to apply
the paradigm of trace analysis to other problems of the polyhedral compilation,
to further study the potential yield of trace analysis in the compilation process.
Finally, we plan to address the interaction of array contraction and other opti-
mizations passes by integrating our implementation in an automatic parallelizer.
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Abstract. Scaling bugs – errors that only manifest at large scale simu-
lations, in terms of number of parallel workers or input size – are critical
to detect early in the testing of HPC codes. If missed, these bugs can
cause applications to either crash at runtime during production runs or,
even worse, silently continue and corrupt results. This results in wasting
vast amounts of resources and the crash might not provide any useful
debugging information. Laguna et al. presented a method for solving
this in [13] using an approach where scale variables are traced through-
out an application statically and potentially overflowing instructions are
detected, with further refinements done by running a few small scale
experiments. However, their algorithm is not able to trace multiple code
patterns found in production HPC applications, for example code mod-
ularity, and has not been applied to Fortran applications. We present an
extension to their algorithm which addresses these issues thus enabling
us to find scaling bugs in complex real applications where they could not
be found before. The key features that enable this are backward/forward
tracing and optimistic GEP comparison.

Keywords: Scaling bugs · Correctness · LLVM

1 Introduction

Verifying the correctness of supercomputing applications is a significant chal-
lenge, not least due to the ever increasing scale that these applications run at.
The majority of testing is done with either serial or small scale parallel runs,
with the largest scales reserved for production jobs. This approach of testing
at small scale cannot catch “scaling bugs” – errors that occur as the number
of processes used by a program, or the size of the simulation, increases. As a
result, an application that is deemed to be correct may fail only on a large scale
production run, at which point the cost of the failure is huge and debugging
information likely unavailable. It is therefore desirable to be able to anticipate
and report such issues based on small scale testing only.

A promising approach was presented by Laguna and Schulz [13] to predict
integer overflow bugs and pinpoint their location in an application’s code. In
c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 33–43, 2022.
https://doi.org/10.1007/978-3-031-23220-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23220-6_3&domain=pdf
http://orcid.org/0000-0002-0633-1404
http://orcid.org/0000-0003-4713-3073
http://orcid.org/0000-0001-7413-670X
http://orcid.org/0000-0002-5705-8102
http://orcid.org/0000-0003-4097-7468
https://doi.org/10.1007/978-3-031-23220-6_3


34 J. Zarins et al.

their method, an application is analysed at the LLVM bitcode level, marking
scale dependent variables (such as the number of MPI ranks or the size of the
input) and identifying integer arithmetic instructions that are influenced directly
or indirectly by the scale variables. The marked instructions are narrowed down
to the most likely to cause overflow bugs by running an instrumented version of
the application at small scales and logging the relationship between the resulting
values of the instructions and the scale of each run. Their method proved to be
successful in finding many scaling bugs in multiple C/C++ test applications and
benchmarks, as well as the widely used MPICH library [10].

We adopted their method to analyse the scaling behaviour of supercomputing
applications of interest to our research. However we encountered a number of
significant limitations in the power of the method, most importantly the ability
to verify Fortran applications (which continue to represent a very large fraction of
applications run on supercomputers). Additionally, the complexity of production
applications, which caused no instructions to be traced at all (see Sect. 3), also
needed to be addressed in order for the approach to be viable for our purposes.
Real world supercomputing applications are often structured in a modular way,
which precludes straight-forward tracing between scale variables and the affected
instructions, but this can be disentangled with “optimistic” analysis. In this
paper we present OFT,1 the Overflow Tool, which includes an extension to the
tracing algorithm first presented in [13] to handle modular code, with a view to
support Fortran applications in particular, and significantly expand the ability
to find scaling bugs in production codes.

Our specific contributions presented in this paper are:

– Enable the tracing of integer overflow bugs in Fortran-based applications;
– Present an extension to the tracing algorithm that uses a backwards/forwards

approach to support tracing of modular code;
– Enable tracing of complex data structures, such as allocatable arrays in For-

tran and heap allocated structures in C.

2 Tracing Algorithm Extension

OFT is implemented as an LLVM Module pass and analyses an application in
two steps, a static and a dynamic one. The static step detects scale variables
that are marked either by MPI communicator size functions or by the user in
a whole-application bitcode. These variables are traced to find all 32-bit integer
arithmetic operation instructions that are influenced by the scale variables. The
user is presented with a list of these instructions, including their location in the
source code. Additionally, a modified version of the bitcode is generated, where
all scale affected instructions are instrumented to record their maximum value
encountered at runtime.

1 The code is available at https://github.com/asimovpp/oft.

https://github.com/asimovpp/oft
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Listing 1.1. Limited backward tracing used in [13]. A scale variable is marked on
line 5, and influences a potentially overflowable instruction on line 8.

1 %rank_299 = alloca i32 , align 4

2 ...

3 %2 = bitcast i32* %rank_299 to i8*

4 %3 = bitcast void (..)* @oft_mark_ to void (i8*, ..)*

5 call void (i8*, ..) %3(i8* %2)

6 ...

7 %15 = load i32 , i32* %rank_299 , align 4

8 %16 = mul nsw i32 %15 , 3

The user may run the instrumented application to perform the dynamic part
of the analysis to reduce the number of false positives. This can be done by
running the instrumented application at a few small scales and passing the out-
put to our analysis tool. The tool fits a linear or polynomial function to the
max-value versus scale-size relationship of each recorded instruction. The fitted
lines can then be extrapolated to scales relevant to each application and it can
be seen whether any instruction will overflow. The amount of overhead intro-
duced by instrumentation depends on the number of instructions instrumented,
but this can be significantly reduced by focusing on instructions most likely to
overflow [13]. Note that multiple test cases may be required in order to exercise
every part of a codebase.

Listing 1.2. Common pattern that requires advanced tracing.

1 struct my_mpi { int rank; int size; };

2

3 void set_scale_var(struct my_mpi *sv) {

4 MPI_Comm_size(MPI_COMM_WORLD , &(sv->size))

5 MPI_Comm_rank(MPI_COMM_WORLD , &(sv->rank))

6 }

7

8 int main() {

9 struct my_mpi *sv = malloc(sizeof(struct my_mpi));

10 set_scale_var(sv);

11 return sv->rank * 3 + sv ->size * 7;

12 }

In the method presented in [13] scale variables can only be traced if the
emitted instructions are close in scope, for example the scale variable has to be
declared, set and then used in subsequent instructions (see Listing 1.1). However,
more complicated patterns are often used in real applications, for example to
organise the information pertaining to the configuration of a simulation (see
Listing 1.2). In such a scenario there may be an initialisation function that sets
the MPI environment and other scale variables in a container data structure,
which is accessed later in the application’s code. As a result, there will be a local
pointer in an initialisation function which is set as the scale variable; its tracing
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is contained within the initialisation function and the rest of the application
cannot be reached when tracing. Examples such as the one in Listing 1.3 were
not traceable prior to the extensions we introduced as part of OFT.

Listing 1.3. An example of extended tracing enabled by the method presented
in this paper. A scale variable is marked on line 10, and influences a potentially
overflowable instruction on line 20.

1 %.Z0632_306 = alloca i32*, align 8

2 ...

3 %16 = load i32*, i32** %.Z0632_306 , align 8

4 %17 = bitcast i32* %16 to i8*

5 %18 = getelementptr i8 , i8* %17 , i64 4

6 %19 = load i64 , i64* %z_b_3_302 , align 8

7 %20 = mul nsw i64 %19 , -4

8 %21 = getelementptr i8 , i8* %18 , i64 %20

9 %22 = bitcast void (..)* @oft_mark_ to void (i8*, ..)*

10 call void (i8*, ..) %22(i8* %21)

11 ...

12 %48 = load i32*, i32** %.Z0632_306 , align 8

13 %49 = bitcast i32* %48 to i8*

14 %50 = getelementptr i8 , i8* %49 , i64 4

15 %51 = load i64 , i64* %z_b_3_302 , align 8

16 %52 = mul nsw i64 %51 , -4

17 %53 = getelementptr i8 , i8* %50 , i64 %52

18 %54 = bitcast i8* %53 to i32*

19 %55 = load i32 , i32* %54 , align 4

20 %56 = mul nsw i32 %55 , 3

To address this scenario, it is necessary to trace the scale variable back to
its “root”, i.e. the first instruction defining the variable: we call this part of
the analysis “backward tracing”. If GetElementPointer (GEP) instructions2 are
involved, additional steps are required to find instructions performing equivalent
memory accesses to the one of the original scale variable. This can result in
multiple instructions from which to start tracing the rest of the application.

There are three stages in the backward/forward tracing method:

1. Trace the scale variable backwards to its root and record a track.
2. Analyse the track, resolving the root and GEPs in the track, to identify

accesses equivalent to the one made by the originally marked scale variable.
3. Trace the accesses forwards to the rest of the application.

Stage 1. Firstly, marked scale variables are traced backwards as far as pos-
sible in order to find the originally allocated variable. This tracing is done by
following bitcast, load, store and GEP operators, as well as function arguments.

2 GEP instructions calculate addresses of sub-elements of data structures based on a
base pointer and one or more indices into the data structure [2].
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All encountered instructions form a list and are stored as a trace. Traced back-
ward, one scale variable may result in multiple traces due to the possibility of a
function being called from multiple locations in the analysed application.

Stage 2. Secondly, the traces produced in stage 1 are analysed to find all
instructions that access the marked scale variable either directly or via a GEP
instruction. The trace is iterated through and the GEP instructions are added
to a list. The iteration stops when an stack allocation or global variable, or
a call instruction to a predefined function (e.g. malloc), are encountered. The
terminating instruction is recorded as the “root” of the trace. The “transitional”
instructions like bitcasts and loads/stores are skipped while traversing the trace.

Next, the reduced traces are used to generate a list of scale instructions that
indirectly connect to the originally traced scale variable.

1. If a root has been recorded without any GEPs, the root is returned.
2. If a root and a single GEP have been recorded, find and return all equivalent

GEPs to the one that was recorded.
3. If a root and multiple GEPs have been recorded, find equivalent GEPs for

each recorded GEP in reverse order (resetting the root at each level to the
intermediate GEP), and return the last level of equivalent GEPs.

In order to connect a scale variable set via a GEP to further uses of that
scale variable, we must find equivalent GEPs to the source GEP. We do this
by first finding all GEPs that use the same base pointer as the source GEP by
following the define-use relationship chain of the base pointer, including through
store and call instructions. The search stops on each branch when the first GEP
operation is encountered on that branch, or if there are no further instructions
to follow.

Each discovered GEP is compared to the source GEP by comparing the
indices of both instructions (the base pointers have already been established to be
equal due being results of tracing). Supported types of indices are simple integers,
results of load instructions and results of arithmetic operations. For indices that
are the results of other instructions, the comparison is applied recursively, thus
supporting a sequence of arithmetic operations which computes an index. Nested
GEPs with complex index calculations can be generated by Fortran applications
that use allocatable arrays which are supported by array descriptors.

Listing 1.3 shows an example where GEP comparison is required, resulting
from a Fortran array descriptor. A scale variable is marked on line 10 and can be
traced backwards through two GEP instructions (including index calculations) to
an alloca instruction root. The same variable is accessed (and used thereafter)
on line 17, which can be seen by comparing lines 3–8 with lines 12–17.

The GEPs found in this way are not guaranteed to resolve to the same
memory accesses in runtime because we do not consider all possible memory
interactions that could have happened between the accesses. Doing a definitive
trace statically is expensive and impossible for most complex applications. Hence
we call these GEPs equivalent, not equal. However, scale variables are normally
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set at the beginning of an application run and remain unchanged and are not
overwritten. Therefore, performing “optimistic” GEP comparisons will produce
the correct results in this use case.

Stage 3. Finally, the list of scale instructions are passed on to forward tracing
where their influence on the rest of the application is established, as in [13].
Scale instructions are iteratively traced via define-use relationships, including
store and load pairs, up to function calls and those calls expanded until no more
changes occur.

2.1 Fortran Support

In principle, performing analysis at bitcode level should allow Fortran support
automatically. However, in practice, there are key differences between how For-
tran bitcode and, for example, C bitcode is generated, which prevent tracing. In
Fortran bitcode function calls are performed with an intermediate bitcast oper-
ation, which obscures the function name and thus the starting points of tracing
cannot be identified. Also, global variables stored in modules are accessed like
structure elements, not directly. These issues can be overcome, but they require
special cases in the analysis code. However, dynamic arrays in Fortran are signif-
icantly more challenging to handle, due to the reliance on array descriptors, and
require multi-step processing, such as backwards/forwards tracing described in
this paper.

3 Evaluation

To evaluate OFT, we compare its results in two configurations: one that repli-
cates the functionality of the original tool in [13], and the second where we
extend its functionality with backward/forward tracing.

The evaluated applications were compiled using LLVM 12.0.0 clang and clas-
sic flang [1] without optimisations (-O0). We chose to use -O0 to retain a close
link between generated bitcode and the source code, which facilitates identifi-
cation of scale bugs in the analysed application. Whole-application bitcode was
generated at link time using the LLVM gold linker plugin by adding -flto
to compilation steps and -fuse-ld=gold -Wl,-plugin-opt=emit-llvm to the
linking step. OFT analyses the bitcode and detects functions that set MPI rank
and size automatically for tracing. User defined scale variables are detected if
they are passed to a function called oft mark (variable); the function does not
perform any actions, OFT merely registers arguments passed to it for tracing.
Note that constant variables defined using macros (e.g. #define in C) cannot
be marked in this way. Also, dynamically linked libraries, where the bitcode has
not been generated and linked during compilation, are not traced.
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Xcompact3d. Xcompact3d [5,14,15] is an open source [4] solver for the incom-
pressible and low Mach number Navier-Stokes equations focused on Large Eddy
and Direct Numerical Simulations (LES and DES) of turbulent flows. It is based
on a fractional step method for time advancement with a direct Poisson solver
based on FFTs for the enforcement of the velocity divergence constraint [5,15].
Combined with 6th order accurate compact finite difference schemes [17] for
derivative approximations a quasi-spectral accuracy is achieved. Both the FFTs
for the Poisson solver and the compact finite difference schemes map naturally to
a 2D pencil-based parallel decomposition as provided by the 2DECOMP&FFT
library [18]. As the FFTs and compact finite differences operate in a single pencil
at a time the data must be transposed between different decompositions for each
spatial dimension, these are implemented using MPI ALLTOALL(V) and the code
makes multiple MPI calls per time step.

Implemented in approximately 50k lines of Fortran the resulting whole-
application bitcode for the analysis is about 1M lines long. The program accepts
as input numerous parameters related to the problem to be studied, in terms of
scale-dependence these include the mesh size nx×ny×nz and the prow×pcol = np
pencil decomposition where np is the number of MPI ranks.
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Fig. 1. Potentially overflowable instruction values at small scale in Xcompact3d. When
extrapolated, (a) will overflow when MPI ranks exceed around 1,000 and (b) when the
problem size exceeds 1,291. The problem size is defined as 3

√
nx × ny × nz.

It was found that without backward/forward tracing no tracing was pos-
sible at all for Xcompact3d, resulting in no marked overflowable instructions.
The reason is that in Xcompact3D the scale variables are stored in a module
separate from where they are initialised. With our new backward/forward trac-
ing enabled, OFT reported around 1,000 potentially overflowable instructions.
Among these, the value of two calculations grew rapidly in the dynamic part
of the analysis, as shown in Fig. 1. These corresponded to two code locations,
one initialising random number generator seeds based on the MPI rank and the
other printing the total size of the problem. Based on the rate of growth of the
values observed in small scale runs, the value in Fig. 1a extrapolated linearly
would overflow at around 1,000 MPI ranks and the value in Fig. 1b extrapolated
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exponentially would overflow with a 1, 2913 problem size. These values are rep-
resentative of real-world code use: production runs of 1,000 MPI ranks or more
are very common, with scaling demonstrated well beyond this [5,15], and prob-
lems in excess of 1, 0003 mesh nodes have been used to assess performance at
extreme scales [8]. While the two bugs that we identified are not critical to the
application’s successful execution per se (it will run and produce correct results),
detecting them demonstrates the necessity for our tracing extensions for produc-
tion HPC applications. The random seed-related overflow bug in particular has
potentially serious implications for reproducibility and validation of results in
the future. It is worth noting that it only took a few hours to analyse Xcom-
pact3d, with most of that time spent compiling code and running small scale
experiments, thus this is an efficent method for assessing application correctness.

OPlus Parallel Library. The Oxford Parallel Library for Unstructured Solvers
(OPlus) [6] aims to ease the development of parallel solvers for unstructured grids
written in Fortran by insulating the programmer from the burden of writing par-
allel code. To do so OPlus introduces parallel abstractions such as op par loop
which allow the application to be written as though serial and executed in parallel
by the OPlus framework. By abstracting the parallel execution a program writ-
ten in the OPlus framework may be executed in a distributed or shared memory
context without changes to the source code [6]. This not only allows applica-
tion experts to focus on their problem domain but also opens the possibility for
significant impact through optimisations to the OPlus framework benefiting the
whole ecosystem of OPlus programs. The library has been applied to real world
problems, for example Crumpton et al [7] show results obtained using a multi-
grid solver parallelised with OPlus to perform aerodynamic calculations of an
aircraft and it has been used in developing industrial CFD codes [16]. The suc-
cess of this approach has led to the development of a follow on OP-DSL effort [3]
which will be the focus of future work. Also studied as part of this work is the
ParMETIS [11] parallel graph partitioning library that can be used by OPlus to
decompose and reorder the input mesh for parallel processing. It is written in C
and parallelised using MPI.

Our analysis shows that without backward/forward tracing some scale
instructions are marked, but many more are identified with our extensions to
tracing (see Table 1). This shows better code coverage and increases the confi-
dence in the program’s correctness after analysis.

We used a 3D Poisson solver which uses multigrid with Jacobi smoothing as
a test case to drive the OPlus library for the dynamic part of the analysis. No
MPI size related issues were found in OPlus, even when projecting out to 500,000
MPI ranks. However, problem scaling (which is defined by the size of the finest
grid) revealed potential overflow bugs related to checking buffer sizes (shown
with coloured lines in Fig. 2) which may be triggered with problem size of 1024
and greater. Multiple other instructions (shown in grey in Fig. 2) would overflow
if extrapolated exponentially further to 2048. Unfortunately, the test program
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does not exercise ParMETIS code so we plan to investigate this in future work,
in addition to the instructions that may overflow at very large scales.
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Fig. 2. Potentially overflowable instruction values at small scale in OPlus. When
extrapolated, the coloured instruction lines will overflow when the problem size exceeds
1,024 and the gray instruction lines when the problem size exceeds 2,048. The problem
size is defined by the size of the finest grid.

Table 1. OFT static analysis result summary. *Lines of Bit Code are given for a test
application which includes both OPlus and ParMETIS.

Application LoBC Instructions marked (old) Instructions marked (new)

Xcompact3d 1,167,461 0 1,058

OPlus 154,109* 121 1,156

ParMETIS 154,109* 48 130

4 Related Work

Verification and validation are two intensely studied areas in software develop-
ment. In the world of scientific and large-scale parallel computing, they have
added layers of complexity: will the answer remain correct for an arbitrary level
of parallelism, will the application complete successfully when it is scaled up, and
are the scale and level of parallelism themselves potential sources of incorrect-
ness? The “Report of the HPC Correctness” summit [9] provides a comprehensive
overview of these different topics.

Laguna et al. [12] discuss the general challenges when it comes to trying to
address errors at scale. Aside from it being technically challenging, with poor
support from debugging tools at very large scales, it is also expensive and time
consuming. The conclusion is that ideally it should be possible to predict errors
that occur when running at scale based on much smaller job sizes. In [13], the
paper that describes the method on which OFT is based, the authors take this
learning and apply it to scaling bugs using tracing and dynamic analysis.
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Another approach for detecting scaling bugs is presented in [19]. The authors
favour a statistical approach, building and applying models of known bug
free behaviour at small scale. When an application is run at larger-scale, the
behaviour should remain the same; if an error is detected, the correlation will
break. A follow-on paper [20] extends the method by adding automatic pinpoint-
ing of errors to a region of the code, which was previously not possible. Although
both approaches can make use of small-scale runs, and are implementation lan-
guage agnostic, they rely on data from larger scales in order to detect and locate
issues with the application.

5 Conclusion

We have presented an extension to the scale variable tracing algorithm presented
in [13]. The backward/forward tracing algorithm enables us to detect more inte-
ger oveflow bugs than was possible before as well as to analyse modular Fortran-
based applications. For the first time, we were able to evaluate the correctness
of Xcompact3d application, finding two scaling bugs, and greatly expanded the
analysis coverage for the OPlus and ParMETIS libraries. We plan to expand the
capabilities of OFT to detect other kinds of scaling issues, for example memory
usage scaling.
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Abstract. With machine learning (ML) becoming a transformative tool
for science, the scientific community needs a clear catalogue of ML tech-
niques, and their relative benefits on various scientific problems, if they
were to make significant advances in science using AI. Although this
comes under the purview of benchmarking, conventional benchmark-
ing initiatives are focused on performance, and as such, science, often
becomes a secondary criteria.

In this paper, we describe a community effort from a working group,
namely, MLCommons Science Working Group, in developing science-
specific AI benchmarking for the international scientific community.
Since the inception of the working group in 2020, the group has worked
very collaboratively with a number of national laboratories, academic
institutions and industries, across the world, and has developed four
science-specific AI benchmarks. We will describe the overall process, the
resulting benchmarks along with some initial results. We foresee that
this initiative is likely to be very transformative for the AI for Science,
and for performance-focused communities.

Keywords: Machine learning · Benchmarks · Science · AI for Science

1 Introduction

Recently, owing to the advances in deep learning, the AI, has been transfor-
mational in various aspects of our life. These advances have resulted in machine
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learning being one of the effective techniques for scientific data analysis, covering
a number of domains of sciences, such as material, life, and environmental sci-
ences, particle physics and astronomy [1,9–11,13,22,24]. With AI becoming one
of the underpinning technologies for science, there is a considerable amount of
attention on several aspects of AI, including, but not limited to, understanding
the general applicability of AI/ML to various scientific problems, role of high
performance computing on AI/ML, datasets, explainability and robustness of
AI/ML techniques, role of small-scale devices on AI/ML, AI/ML-specific algo-
rithms, and scalability of AI/ML techniques with varying volumes of data or
varying computational capabilities. With each of these areas being considerably
large, it is a substantial undertaking for any single organization or community
for developing an overall understanding of various initiatives and their corre-
sponding impacts, particularly across different domains of applications. Ideally,
multiple communities should join forces to understand these issues and to make
relevant progresses in AI.

MLCommons is one such global initiative with the mission being acceler-
ate machine learning innovation and increase its positive impact on society.
Although MLCommons™ initiatives were legally setup in 2020, the initiatives
originated along with the MLPerf™ benchmarking efforts in 2018. The overar-
ching strands are: benchmarks, datasets, and best practice systems and usage.
The current MLCommons initiatives retain the core activities of MLPerf across
six distinct focus areas: Training, Training HPC, Inference Datacenter, Infer-
ence Edge, Inference Mobile, and Inference Tiny. With application and impact
of AI being rather broad, MLCommons is setup along with a number of research
working groups with the vision of creating an open “AI for Research” ecosystem
that is driven by the community for the community.1 These groups are open
to the public, including academics and researchers. The philosophy of MLCom-
mons is to support open-source “AI for Research”. The MLCommons Research
organization is responsible for overseeing new activities that can lead to new
scientific methods in ML, as well as new applications of ML, and currently
houses a number of working groups that focus on various areas of ML. These
include: ML algorithms (Algorithms), dataset benchmarking (DataPerf), build-
ing shared resource infrastructure (Dynabench), benchmarking and best prac-
tices for healthcare (Medical), storage benchmarking for ML (Storage), and AI
benchmarking for science (Science) [6].

In this paper, we describe the benchmarking initiatives of the Science Work-
ing Group, covering our initial set of benchmarks, datasets, policies that govern
our benchmarks and benchmarking, rules around submitting new benchmarks
or datasets, and some initial results on the evaluation of these benchmarks.

The rest of this paper is organized as follows: In Sect. 2, we describe the
working group, goals of the group, and policies adopted by the working group
towards science benchmarking. This is then followed by Sect. 3, where we describe
the initial set of benchmarks curated by the working group. In Sect. 4, we provide
some initial evaluations and discuss the results, and we conclude the paper with
future directions in Sect. 5.

1 https://mlcommons.org/en/groups/research/.

https://mlcommons.org/en/groups/research/
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2 MLCommons Science Working Group

2.1 About the Working Group

The Science working group [6] was an early member of MLCommons Research,
created by the international community working on AI for Science, such as var-
ious national laboratories, large-scale experimental facilities, universities and
commercial entities, to advance AI for Science along with other national and
international level initiatives (e.g., [2]). The overarching drive of the WG is to
support various scientific communities that are trying to leverage AI for advanc-
ing scientific discoveries. Since the inception, the WG has expanded to include
almost 120 members, located across various organizations. The group also works
with a number of other working groups within MLCommons, such HPC WG [5],
where there are a number of overlapping issues of interest. The overall mission of
the group entails collaborative engagements across different domains of sciences.

2.2 Science Benchmarking

Achieving the overall goals of the working group requires a number of sub-aspects
to be covered by the WG, such as, (a)identifying a number of representative sci-
entific problems where AI can make a difference, (b) engineering at least one ML
solution to the problem, to be considered as a baseline implementation, (c) iden-
tifying relevant datasets upon which the ML models can be trained or tested,
(d) identifying a scientifically-driven metric that can help recognizing the sci-
entific advancement to the problem, (e) curating and publishing those relevant
datasets, (f) publishing the scientific results that can help the communities to
develop improve these solutions, and (g) fostering collaborations and scientific
achievements across multidisciplinary communities. All these activities are akin
to conventional benchmarking, but with a major difference of focusing on scien-
tific merits than pure performance, and hence the notion of science benchmark-
ing. Since the formation, the WG has consulted a large number of scientific orga-
nizations, and worked with scientists in achieving some of the sub-aspects listed
above. In particular, the WG has succeeded in identifying four science bench-
marks derived from different branches of sciences, namely, (a) Cloud masking
(cloud-masking) [23]—atmospheric sciences, (b) Space group classification of
solid state materials from Scanning Transmission Electron Microscope (STEM)
data using Deep Learning (stemdl) [14]—solid state physics, (c) Time evolution
operator (tevelop) [7] exemplified using predicting earthquakes—earth sciences
and (d) predicting tumor response to drugs (candle-uno)—healthcare.

We discuss these benchmarks in detail in Sect. 3. The key aspect here is that
a single benchmark is actually a combination of a baseline or reference imple-
mentation and one or more datasets. The scientific data here requires a special
attention. Although scientific datasets are widespread and common, curating,
maintaining, and distributing large-scale, scientific datasets for public consump-
tion is a challenging process, covering various aspects, from abiding by the FAIR
principles [26] to distribution to versioning of the datasets. These benchmarks
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have a multitude of purpose, which are discussed at length in [11,24]. However, it
is worth highlighting that these scientific benchmarks serve one important pur-
pose to the wider AI community: offering an unprecedented pedagogical value
across domain boundaries.

2.3 Policies for Benchmarking

Benchmarking is an art and can be very subjective. Without clear policies, the
benchmarking results can be subjectively and differently interpreted, leading
to the whole initiative not serving the intended purpose. As such, establishing
a set of policies, rules and guidelines for evaluating and reporting results for
the benchmarks is an important step. The Science WG is in the process of
drafting a detailed policy statement, and, here, we mention some of the key
points for the reasons of brevity. The overarching policy will cover training and
inference benchmarks, with a number of sub-policies focusing on each and every
benchmark, as no two benchmarks are the same. In general, the policies will cover
the evaluation of benchmarks under two divisions, namely, Open and Closed
divisions. Benchmark evaluation under the former will focus on achieving better
scientific results (using the established scientific metric). As such, the community
has considerable amount of freedom to enhance the underlying ML models or
pre- or post-processing aspects of the benchmarks, including data augmentation,
wherever that is possible or sensible. Evaluation under the Closed division, on the
other hand, limits the freedom and often will list permissible changes for each and
every benchmark. In general, pre- and/or post-processing, and data aspects are
often kept fixed, with flexibility to change or fine-tune the underling ML model.
Similarly, policies around submission of results may also vary across benchmarks.
For example, some benchmarks may insist on certain set of measurements to
be submitted, such as power or network performance, while some may rely on
generic details along with scientific metrics.

3 Benchmarks for the First Release

As outlined in Sect. 2, the WG has consolidated four different benchmarks from
four different branches of sciences, namely, cloud-mask, stemdl, candle-uno
and tevelop. We describe each of these benchmarks in detail, covering the sci-
ence case, objectives, metrics, data and outline the baseline reference implemen-
tation. The aim here is to ensure that the community is aware of these challenges,
and can develop techniques outperforming the baseline cases.

3.1 Cloud Masking (cloud-mask)

Sea and land surface temperatures (SST and LST), have a significant influence
on the Earth’s weather, and as such, estimation of SST from space-borne sen-
sors, such as satellites, is crucial for a number of applications in environmental
sciences. Satellites are often equipped with special sensors for this purpose, such
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as the Sea and Land Surface Temperature Radiometer (SLSTR) on board the
Sentinel-3 satellite. In principle, it is possible to make direct measurements of
surface temperature from these satellites everywhere, except when clouds are
present. Clouds can really affect the signals measured by satellites making it
much harder to retrieve the temperature measurements. One of the aspects that
underpins the derivation of SST is cloud screening, which is a step that marks
each pixel of thousands of satellite images as containing cloud or clear sky. This
has been, historically, performed using either thresholding or Bayesian method.
The purpose of this benchmark is to perform this using machine learning. An
example input and output images are given in Fig. 1. We also summarize the key
features of this benchmark in Table 1. Details around objective of the benchmark,
description of relevant datasets, and reference implementation are given below.

Table 1. Summary of the cloud-mask Benchmark.

Description Image classification at pixel level of satellite imagery

Objective Classification of pixels of satellite images into cloud and
clear sky categories using machine learning

Challenge Stream Image Segmentation

Domain Atmospheric Sciences

Metrics Classification accuracy

Data Type: Images ([2400 × 3000 × 6] and [1200 × 1500 × 3])

Size: 180 GB

Source: CEDA

Location: STFC Servers [23]

Reference implementation SciML-Bench Cloudmask Benchmark [12]

Benchmarking Objectives and Metrics: The scientific objective of the prob-
lem is to develop a segmentation model for classifying the pixels in satellite
images. This classification allows determining whether the given pixel belongs
to a cloud or to a clear sky. The Bayesian techniques [17] used conventionally
can lead to sub-optimal outputs in a number of cases, and hence the scope of the
cloud-mask benchmark is to explore whether ML-driven algorithms can outper-
form the Bayesian techniques. Although various options are there, in its present
form, the cloud-mask benchmark is set as a supervised learning problem, with
cloud images are treated as inputs. However, like all science cases, the “true”
ground truth (or labels), are never available for this case. Hence, the bench-
mark uses the Bayesian masks, supplied by the provider of the satellite images,
as the ground truth. While this is arguable, we believe that in the absence of
any ground truth, this is a valid and perfect choice. However, with Bayesian
masks not always being accurate or not offering a gold-standard for masks, the
resulting model is likely to suffer from learnability issues, which sets the per-
fect challenge for an ML-driven case. The benchmark can be considered as both
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Fig. 1. Cloud mask example. The left column shows the raw images from the Sentinel-3
satellite while the images on the right column shows the predicted probability that a
particular pixel is cloud.

training and inference focused, where the science metric is same as the classifi-
cation accuracy—number of pixels classified correctly. The performance metric,
can be inference timing and scalability on the training across a number of GPUs.

Data: The masking can be performed across different satellite imaging modal-
ities. This particular benchmark relies on satellite imagery obtained from the
SLSTR sensors equipped as part of the Sentinel-3 satellite. More specifically,
the benchmark operates on multi-spectral image data. The overall dataset iden-
tified for this benchmark is split into two distinct sets: training set (163 GB)
and an inference set (1.7 GB). Each dataset inside these sets is made up of two
parts: reflectance and brightness temperature. The reflectance is captured across
six channels with the resolution of 2400 × 3000 pixels, and the brightness tem-
perature is captured across three channels with the resolution of 1200 × 1500
pixels. Although the raw satellite images are free to download from the CEDA
archive,2 the curated datasets are available as part of this benchmark, located in
object store within the STFC servers. The exact instructions for securing these
datasets are outlined in the WG pages.

Reference Implementation: The current reference implementation is vari-
ation of the U-Net deep neural network [20], implemented using TensorFlow
and Keras, with the support for distributed training using TensorFlow’s native
library, Distributed Mirrored Strategy. The model represents a U-Net network
and consists of 39 layers with two million trainable parameters. Further details
can be found in [23].

2 https://www.ceda.ac.uk/.

https://www.ceda.ac.uk/
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3.2 STEMDL (stemdl)

State of the art Scanning Transmission Electron Microscopes (STEM) produce
focused electron beams with atomic dimensions, and allow capturing diffraction
patterns arising from the interaction of incident electrons with nano-scale mate-
rial volumes. Backing out the local atomic structure of said materials requires
compute- and time-intensive analyses of these diffraction patterns (known as
convergent beam electron diffraction or CBED). Traditional analyses of CBED
requires iterative numerical solutions of partial differential equations and com-
parison with experimental data to refine the starting material configuration. This
process is repeated anew for every newly acquired experimental CBED pattern
and/or probed material (Table 2).

Table 2. Summary of the stemdl benchmark.

Description Classification and reconstruction of convergent beam
electron diffraction, CBED

Objectives Classification for crystal space groups and reconstruction
for local electron density using machine learning

Challenge Stream Classification

Domain Solid-state Physics

Metrics Classification accuracy and/or F1-score

Data Type: Images

[512 × 512 × 3], label: [200] (Classification)

[256 × 256 × 256], label: [256 × 256] (Reconstruction)

Size: 548.7 GB for Classification

Training samples: 138.7K

Validation samples: 48.4

Reconstruction: 10 TB

Source: Oak Ridge National Laboratory (ORNL)

Location: OSTI Servers [14]

Reference Implementation AAIMS repository [21]

Model: ResNet-50

Run Instructions: [21]

Time-to-solution: 40 min on 60 V100 GPUs

References [14,15,19]

Benchmark Objectives and Metrics: The scientific objective of the bench-
mark is to develop a universal classifier for space group of solid state materials,
and reconstruction of local electron density. As stated before, this is convention-
ally performed using expensive simulations. The goal here is to use explore the
suitability of ML algorithms for performing advanced analysis of CBED. This
benchmark aims to quantify this using a classification task. As such, the bench-
mark is set with the supervised learning focus where both the scientific metric
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is reflected by the classification accuracy of the ML model. The benchmark also
desires to achieve better top-1 classification accuracy and/or F1-score compared
to the reference implementation.

Data: A single data sample [14] from this dataset is given by a three-dimensional
array formed by stacking various CBED patterns simulated from the same mate-
rial at different distinct material projections (i.e. crystallographic orientations).
Each CBED pattern is a two-dimensional array with 32-bit floating-point image
intensities. Associated with each data sample in the dataset is a host of material
attributes or properties which are, in principle, retrievable via analysis of this
CBED stack. The dataset has (1) 200 crystal space groups out of 230 unique
mathematical discrete space groups and (2) local electron density which governs
material’s property. A more detailed description of the data can be found in
CBED database [14]. The dataset is divided into three distinct sets, split across
training (148,006 files), testing (18,749 files), and development (20,400 files). The
distinct nature of these sets ensures that the model learns the generic symmetry
based on space groups instead of memorizing a particular pattern for a material.

Reference Implementation: A detailed description of the baseline implemen-
tation method can be found in [19] and [15] along with the reference implemen-
tation deposited into the AAIMS repository [21].

3.3 CANDLE-UNO (candle-uno)

The CANDLE (Exascale Deep Learning and Simulation Enabled Precision
Medicine for Cancer) project3 aims to implement deep learning architectures
that are relevant to problems in cancer research, addressing problems at three
biological scales: cellular (Pilot1 or P1), molecular (Pilot2 or P2), and population
(Pilot3 or P3), resulting three mainstreams of benchmarks covering these pilots.
The UNO version of the CANDLE suite is a P1 benchmark, which is formed out
of problems and data at the cellular level. The high level goal of the problems
behind the P1 benchmarks is to predict drug response based on molecular fea-
tures of tumor cells and drug descriptors. We summarize the key aspects of this
benchmark in Table 3, and a detailed description of the objectives, metrics, data
and the reference implementation below.

Benchmarking Objectives and Metrics: The goal is to predict tumor
response to single and paired drugs, based on molecular features of tumor cells
across multiple data sources. It aims to accelerate the scientific goal of estab-
lishing the effectiveness of drugs. The ML component aims to accelerate this
aspect using ML-based prediction of response values. As such, it is a regression
problem, with the science metric being mean absolute error (MAE) between
the predicted and ground truth values. On the performance front, the metric is
responses predicted per second for a given batch size.
3 https://github.com/ECP-CANDLE/Benchmarks.

https://doi.ccs.ornl.gov/ui/doi/70
https://github.com/ECP-CANDLE/Benchmarks
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Table 3. Summary of the candle-uno benchmark.

Description The Pilot 1 Unified Drug Response Predictor benchmark,
Uno to enable drug discovery, drug response prediction
from cell lines

Objectives Predictions of tumor response to drug treatments, based
on molecular features of tumor cells and drug descriptors

Challenge Stream Regression

Domain Healthcare

Metrics Validation loss with a minimum score of 0.0054

Data Type:

Size: 6.4 GB

Training samples: 423,952

Validation samples: 52,994

Location: ALCF Servers [25]

Reference implementation Model: Multi-task Learning-based custom model

Code & Instructions: [4] (see README)

Ideal performance: 10,667 samples/sec on a single A100
GPU for a batch size of 64

Data: Combined dose response data relies on a number of sources that are spe-
cific drug responses to cancer conditions. These include The Cancer Therapeutics
Response Portal (CTRP), The Genomics of Drug Sensitivity in Cancer (GDSC),
The NCI Sarcoma (SCL), The NCI Small Cell Lung Cancer (SCLC), The NCI-60
Human Cancer Cell Line Screen single drug response (NCI60), A Large Matrix
of Anti-Neoplastic Agent Combinations drug pair response (ALMANAC.FG,
ALMANAC.FF, ALMANAC.1A), The Genentech Cell Line Screening Initia-
tive (gCSI) and The Cancer Cell Line Encyclopedia (CCLE). The ML model
can be trained on any subset of a dataset obtained from these dose response
data sources. The benchmark relies on a dataset that includes both single drug
dose response measurements pair dose response measurements. More specifically,
there are 27,769,716 single drug dose response measurements and 3,686,475 drug
pair dose response measurements. The combined raw dose response data has
3,070 unique samples and 53,520 unique drugs. For the scope of this work, we
used the AUC configuration of Uno that utilizes a single data source, namely,
CCLE. We show the data distribution between the samples in Table 4. The train-
ing can be accelerated by using a pre-staged dataset file. This static dataset
can, however, be pre-built. The datasets are publicly available from the CAN-
DLE site [25]. These are directly downloadable with relevant download scripts,
including a pre-built static dataset to simplify the deployment.

Reference Implementation: The reference implementation implements a
deep learning architecture with 21 M parameters in TensorFlow framework in
Python. The code is publicly available on GitHub. It can be run in both training
and inference modes. However, this benchmark is defined to be training focused.
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Table 4. The data distribution between the single and pair drug samples.

Growth Sample Drug1 Drug2 MedianDose

ALMANAC.1A 208,605 60 102 102 7.000000

ALMANAC.FF 2,062,098 60 92 71 6.698970

ALMANAC.FG 1,415,772 60 100 29 6.522879

CCLE 93,251 504 24 0 6.602060

CTRP 6,171,005 887 544 0 6.585027

GDSC 1,894,212 1,075 249 0 6.505150

NCI60 18,862,308 59 52,671 0 6.000000

SCL 301,336 65 445 0 6.908485

SCLC 389,510 70 526 0 6.908485

gCSI 58,094 409 16 0 7.430334

A dedicated script in the repository downloads all required datasets. The pri-
mary metric to evaluate for this application is the model throughput (samples
per second). The model is said to converge when the validation loss reaches a
certain threshold, for example 0.0054. The throughput is then measured for the
last epoch when the model converges. With the required packages in the software
stack, Uno can be run on diverse systems. More details on running Uno can be
found in the repository (Table 4).

3.4 Time Series Evolution Operator (tevelop)

Time series capture the variation of values against time, and common to a num-
ber of scientific problems. Time series can be multiple dimensions. For example
geospatial datasets are two-dimensional series, based both on time and spatial
position. One of the common tasks when dealing with time series is the abil-
ity to predict or forecast them in advance. Such a task is considerably easier
if the underlying time series has a clear evolution structure across dimensions.
For example, if the evolution structure can be established on the spatial aspects
(i.e. there is a strong correlation between nearby spatial points), estimating the
evolution becomes relatively easier. The problem chosen is termed as a spatial
bag where there is spatial variation, but it is not clearly linked to the geomet-
ric distance between spatial regions. In contrast, traffic-related time series have
a strong spatial structure. As such, identifying the evolution in time series is
a common problem across a number of domains. This particular benchmark
focuses on extracting the evolution, using earthquake as the driving example.
We summarize the key features of the benchmark in Table 5.

Benchmarking Objectives and Metrics: The scientific objective is to
extract the evolution of a time series, exemplified using earthquake forecast-
ing. To make the benchmarking exercise more focused, this forecasting is done
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Table 5. Summary of the tevelop Benchmark

Description Earthquake Forecasting [3,7,8,16]

Objectives Improve the quality of Earthquake forecasting in a
region of Southern California.

Metrics Normalized Nash-Sutcliffe model efficiency
coefficient (NNSE) with 0.8 ≤ NNSE ≤ 0.99

Data Type: Richter Measurements with spatial and
temporal information (Events)

Input: Earthquakes since 1950

Size: 11.3 GB (Uncompressed), 21.3 MB
(Compressed)

Training samples: 2,400 spatial bins

Validation samples: 100 spatial bins

Source: USGS Servers [3]

Reference Implementation [8]

on a subset of the overall earthquake dataset for the region of Southern Califor-
nia. Conventional methods for forecasting relies on statistical techniques. Here,
the aim is to use ML for not only extracting the evolution, but also to test the
effectiveness using forecasting. The exact scientific metric for quantifying the
benefit of the forecasting is the Nash Sutcliffe Efficiency (NSE) [18]. It is also
possible to qualitatively asses prediction by comparing the observed earthquake,
if one desires, but the benchmarks relies on the former [7].

Data: The benchmark relies on a very small subset of the earthquake data
from United States Geological Survey (USGS) focused between the regions of
Southern California (latitude: 32◦N to 36◦N, longitude: −120◦S to −114◦S). The
subset of the data for this region covers all earthquakes in that region since 1950.
There are four measurements per record, namely, magnitude, spatial location,
depth from the crust, and time. The curated dataset is organized to cover this
in different temporal and spatial bins. Although the actual time lapse between
measurements is one day, we accumulate this into a fortnightly data. The region
is then divided into a grid of 40 × 60 with each pixel covering actual zone of
0.1◦× 0.1 or 11 km × 11 km grid. The dataset also includes an assignment of
pixels to known faults, and a list of the largest earthquakes in that region from
1950. We have chosen various samplings of the dataset to provide both input
and predicted values. These include time ranges from a fortnight up to four
years. Furthermore, we calculate summed magnitudes and depths and counts of
significant quakes (magnitude < 3.29).

Reference Implementation: The benchmark includes three distinct deep
learning-based reference implementations. These are Long short-term memory
(LSTM)-based model, Google Temporal Fusion Transformer (TFT) [16]-based
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model, and a custom hybrid transformer model. The TFT-based model uses two
distinct LSTMs, covering a an encoder a decoder with a temporal attention-
based transformer. The custom model includes a space-time transformer for the
Decoder and a two-layer LSTM for the encoder. Each model predicts NSE and
generates visualizations illustrating the TFT for interpretable multi-horizon time
series forecasting [16]. Details of the current reference models can be found in [7].

4 Results from Initial Evaluations

In this section, we present some of the early results obtained initial evaluations
of our benchmarks. As this is the first time we are presenting these findings, it is
worth noting that the initial evaluations are far from being complete or perfect,
especially when lacking any relative measures to benchmark against. However,
these initial evaluations are likely to provide more insight into how these eval-
uations should be tuned or scoped in future releases. We outline these aspects
in Table 6. We relied on three different platforms, namely, Pearl,4 Summit5 and
Theta,6 along with other architectures, for our evaluations.

Table 6. Summary of the Evaluation.

Benchmark Platforms/(architectures) Science metric(s) Performance metric(s)

cloud-mask Pearl (V100) Accuracy Scalability

Summit (V100)

stemdl Summit (V100) Accuracy, F1 –

candle-uno Theta (A100) – Throughput

tevelop K80, P100, V100 NNSE Training time

A100, RTX3080, RTX3090

4.1 Results for the cloud-mask Benchmark

We show the masking accuracy for the training and validation cases in Fig. 2a,
and the scalability results in Fig. 2b. We show two different performance results.
In the former, we show how the accuracy of the classification varies against the
number of epochs, either trained or tested. The latter shows how the benchmark
training scales (average time per epoch) on the Pearl and Summit platforms when
the number of GPUs are varied up to 32. There are a number of observations
here:

– The accuracy improves with the number of epochs (both testing and training),
but they do not exceed 95% of the accuracy shows by the Bayesian mask-
based ground truth. However, this has to be interpreted very carefully. The

4 https://www.turing.ac.uk/research/asg/pearl.
5 https://www.olcf.ornl.gov/summit/.
6 https://www.alcf.anl.gov/alcf-resources/theta.

https://www.turing.ac.uk/research/asg/pearl
https://www.olcf.ornl.gov/summit/
https://www.alcf.anl.gov/alcf-resources/theta
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Bayesian-based mask is not necessarily the best either [17]. Hence the sub-
optimal outputs does not mean, the ML model is not being effective. We are
exploring different means for verifying the real accuracy of the model (such
as using data from LIDAR and ground sensors).

– Pearl offers better scalability when more than two GPUs are used, while for
Summit this has to be four GPUs. However, interestingly, both Pearl and
Summit are based on V100 GPUs with totally two different configurations.
However, there are performance differences between these platforms when
a few GPUs are used. A more detailed investigation is needed both on the
scalability and why few GPUs offer sub-optimal performance.

It is very important to note that these conclusions would not have been possible
without these initial evaluations.

Fig. 2. Performance of cloud-mask. The classification accuracy against the number of
epochs (on Pearl), and the training scalability of benchmark both on Pearl and Summit
platforms are shown in (a) and (b), respectively.

4.2 Results for the stemdl Benchmark

We used the Namsa simulation code7 on the Summit to generate CBED pat-
terns for well over 60,000 solid-state materials, representing nearly every known
crystal structure, on which we used the reference implementation. Although the
classification accuracy is the ultimate metric, this is influenced by a number of
hyper-parameters that underpin our network architecture. As such, it is impor-
tant to ensure that the best classification is achieved through hyper-parameter
search. Although various techniques exist for hyper-parameter search, and that
itself can be a separate benchmarking challenge, here we show the validation
accuracy and F1-score for various hyper-parameter sets. There are a number
of observations here, but to highlight two: first, as expected, hyper-parameters
have an overall influence on the rate and best performance of the benchmark,
and secondly the performance converges rapidly for some of the hyper-parameter
7 https://www.osti.gov/biblio/1631694.

https://www.osti.gov/biblio/1631694
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settings, namely, for the ResNet-101 model. We also show how the accuracy
can further be improved from baseline performance in Fig. 4, where the raw
performance is marked as (1), along with various optimizations, including, pre-
processing (2), time augmentation (3), regularization (4), and by using deeper
models (5). These optimizations improve the accuracy from 14% to 57% through
these optimizations (Fig. 3).

Fig. 3. Performance of stemdl on the Summit platform. The classification accuracy
and F1-Score against the number of epochs for various hyper-parameter settings are
shown in (a) and (b), respectively. See text for more details.

Fig. 4. Accuracy improvements. Fig. 5. Throughput of candle-uno.

4.3 Results for the candle-uno Benchmark

We used the reference implementation on the ThetaGPU platform. As stated
before, our metric is throughput (i.e., number of samples processed per second)
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for varying batch sizes on a single GPU. We present the results in Fig. 5. The
results show that the overall throughput increases with the batch size, showing
a trend of saturation, and highlights that more investigation is needed to qualify
future implementations, especially across different platforms.

4.4 Results for the tevelop Benchmark

The tevelop benchmark is evaluated by using it to predict earthquakes over
the Southern Californian region. The earthquake data is often binned to gener-
ate the spatial time series, and for this evaluation, we consider the bin size of
two-weeks. With this, we used our reference model with three baseline implemen-
tations, namely, LSTM, TFT and Transformer-based models. We first present
the performance results of the LSTM-based model focused on science metric in
Fig. 6. The results show that ML can, indeed, offer significant benefits. Addi-
tional examples ranging from a week to a year are presented in [7].

Fig. 6. Performance of the tevelop in predicting earthquakes, for two-week window
periods. The training performance and the validation accuracy are shown in (a) and
(b), respectively covering real and predicted values and the error.

To compare and contrast the performance of different baseline models, we use a
subset of the full dataset (which has 2,400 pixels) consisting of 500 most active
pixels, divided at the ratio of 4:1 for training and validation. We then compare
these models, across a number of time periods, ranging from two-weeks to four
years, and compare their normalized NSE (NNSE) values, with the interpreta-
tion of increasing NNSE values imply better predictions. We show the resulting
performance in Table 7. A more detailed set of examples, and illustrations can be
found in [7]. Finally, we compare the performance of this benchmark on different
architectures, and show the results in Fig. 7.
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Table 7. Comparison of different models for earthquake prediction.

Period LSTM TFT Transformer

Train Test Train Test Train Test

2 weeks 0.902 0.869 0.931 0.885 0.893 0.856

4 weeks 0.896 0.883 – – 0.866 0.883

2 months 0.887 0.881 – – 0.865 0.881

3 months 0.925 0.893 0.976 0.922 0.919 0.881

6 months 0.950 0.900 0.972 0.882 0.954 0.896

1 year 0.923 0.865 0.976 0.853 0.955 0.876

2 years 0.928 0.830 – – 0.855 0.830

4 years 0.937 0.770 – – 0.817 0.770

Fig. 7. Evaluation of the tevelop benchmark across a range of architectures and stor-
age systems. Figure (a) shows the training performance while (b) shows the impact of
different storage systems (such as, local HDD, local NVMe, NFS).

5 Conclusions

In this paper, we have discussed the initiatives of the MLCommons Science
Working Group for advancing the AI for Science through science-specific bench-
marks. By collaboratively working with multiple communities, covering various
international laboratories, academic institutes and industries, the working group
has succeeded in identifying a number of key scientific problems, and developed
benchmarks for them. While this is a notable step forward for AI benchmarking,
it is significant step for AI benchmarking focused on science. The working group
is also actively working on a number of future benchmarks, drawing expertise
from various domains. These future benchmarks will cover additional domains,
and will also include a variety of classes of ML algorithms, such as surrogate
models, inference- and training-based evaluations, and generative models, to
mention a few. The future work will also give emphasis to the FAIR aspects of
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the data, ensuring that all our datasets are FAIR compliant. The working group
is aspiring to support submissions of evaluations, so that the community is aware
of performance benefits of different systems.

We are very hopeful that this initiative becomes beneficial to the scientific
community in a number of different ways, such as supporting easy selection of
ML algorithms for a given scientific problem, or for pedagogical purposes. With
such purposes, we are hopeful the combined effect of MLCommons is likely to
make a significant difference in the AI community.
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Abstract. The devices designed for the Internet-of-Things encompass a
large variety of distinct processor architectures, forming a highly hetero-
geneous zoo. In order to tackle this, we employ a simulator to estimate
the performance of the matrix-matrix multiplication (gemm) kernel on
processors designed to operate at the edge. Our simulator adheres to the
modern implementations of gemm, advocated by GotoBLAS2, BLIS,
OpenBLAS, etc., to carefully account for the amount of data transfers
across the memory hierarchy of different algorithmic variants of the ker-
nel. A small collection of experiments provide the necessary data to
calibrate the simulator and deliver highly accurate estimations of the
execution time for a given processor architecture.

Keywords: Performance analysis · Matrix multiplication · High
performance · IoT processors

1 Introduction

Deep learning (DL) technologies are currently being deployed at the edge in
order to improve safety and privacy, reduce the latency for the end-user, and/or
decrease energy consumption [4,7,12]. The IoT (Internet-of-Things) appliances
operating in this scenario comprise a myriad of different processor designs, facing
limited computational and memory capacities as well as strict restrictions in
power supply and, sometimes, time-to-response. As a consequence, the software
running on these devices has to be carefully optimized.

The general matrix-matrix multiplication (gemm) is a key kernel for the
realization of the convolutional deep neural networks (DNNs) employed in sig-
nal processing and computer vision, as well as for the transformers applied to
natural language processing tasks [10]. However, developing an efficient realiza-
tion of gemm is a time-consuming chore, aggravated by the heterogeneity of
IoT architecture designs, which requires a good expertise on high performance
computing and computer architecture.
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In this paper we contribute toward dealing with the development of optimized
realizations of gemm for IoT processors leveraging a performance simulator to
experiment with different algorithmic alternatives for this kernel, prior to actu-
ally implementing and testing them. Our simulator, built upon the GotoBLAS2
ideas [2] and the BLIS framework [5,11], mimics the algorithm behavior in order
to capture the data transfers across the memory hierarchy, and requires only
a few experimental data which can be collected via simple calibration experi-
ments. The result delivers highly accurate estimations of the execution time on
an GAP8 parallel-ultra-low power processor (PULP).

2 Blocked Algorithms for GEMM

2.1 The Baseline Algorithm for GEMM

Consider the gemm C += AB, where the dimensions of the matrix operands A,
B and C are m×k, k×n and m×n, respectively. Many current high performance
realizations of this kernel, in open-source as well as commercial linear algebra
libraries, adhere to the GotoBLAS ideas [2] to implement it as a collection of five
nested loops around a micro-kernel that performs a tiny gemm. In rough detail,
the instances of gemm in these libraries apply tiling (blocking) to the matrix
operands so that 1) a kc×nc block of B is packed into a buffer Bc that is intended
to reside in the L3 cache memory; 2) an mc × kc block of A is packed into a
buffer Ac for the L2 cache memory; and 3) a specific kc ×nr block of Bc, say Br,
is expected to reside in the L1 cache memory during the execution of the micro-
kernel. Furthermore, 4) the micro-kernel performs all the arithmetic, retrieving
the data of Ac from the L2 cache, Br from the L1 cache, and C directly from
memory; see Fig. 1. These techniques are adopted, for example, in BLIS [11],
OpenBLAS [6], AMD BLIS and, presumably, Intel MKL, among others.

The baseline algorithm for gemm presented in this section, hereafter referred
to as B3A2C0,1 features a micro-kernel that comprises a sixth loop, and is usually
encoded directly in assembly (or in C with vector intrinsics). At each iteration,
this loop updates an mr × nr micro-tile of C, say Cr, by performing an outer
product involving (part of) one row of Ac and one column of Br, as illustrated by
loop L6 in Fig. 1. The cost of loading/storing Cr can be expected to be amortized
over the kc iterations of this loop, as mr, nr � kc in practice. Furthermore, a
specialized packing of Ac and Bc ensures that their entries are retrieved with
unit stride from the micro-kernel; see Fig. 2.

2.2 A Family of Algorithms for GEMM

A different re-ordering of the gemm loops, combined with an appropriate selec-
tion of the loop strides, result in other variants for gemm, which favor that the
1 The notation introduced in [9] refers to the baseline algorithm as B3A2C0, where

each letter denotes one of the matrix operands, and the subsequent number indi-
cates the cache level where that operand resides (with 0 referring to the processor
registers). The same matrix operand resides in both the L1 and L3 caches.
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Loop L3

Loop L4

Loop L5

Loop L6
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AC B

L1 | for ( jc=0; jc<n; jc+=nc )

L2 | for ( pc=0; pc<k; pc+=kc ) {

| Bc := B(pc:pc+kc-1,jc:jc+nc-1); (Mem->L3)

L3 | for ( ic=0; ic<m; ic+=mc ) {

| Ac := A(ic:ic+mc-1,pc:pc+kc-1); (Mem->L2)

L4 | for ( jr=0; jr<nc; jr+=nr )

L5 | for ( ir=0; ir<mc; ir+=mr )

| // Micro-kernel

L6 | for ( pr=0; pr<kc; pr++ )

| Cc(ir:ir+mr-1,jr:jr+nr-1) (Mem->Reg)

| += Ac(ir:ir+mr-1,pr) (L2->Reg)

| * Bc(pr,jr:jrnr-1); (L1->Reg)

| } }

Fig. 1. The baseline algorithm of gemm. Here Cc is a notation artifact, introduced to
ease the presentation of the algorithm while Ac and Bc are actual buffers that maintain
copies of certain blocks of A and B.
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Fig. 2. Packing in the baseline algorithm of gemm. Note how the entries of A,B are
re-organized into Ac, Bc in micro-panels of mr rows, nr columns, respectively.

matrix blocks of A,B,C reside in specific levels of the memory hierarchy, from
the main memory to the cache(s) and processor registers. This was analyzed
in [3,9], and more recently, in the context of DL inference, in [1].

Figure 3 shows the algorithms for two of these variants: C3B2A0 and
B3C2A0. In the former case, 1) an mc × nc block of C is packed into a buffer
Cc for the L3 cache memory; 2) a kc × nc block of B is packed into a buffer Bc

for the L2 cache memory; and 3) an mr × nc block of Cc, say Cr, is intended
to reside in the L1 cache memory. In the B3C2A0 case, the roles of C and B
are swapped. Furthermore, 4) in both variants the micro-kernel operates with
a mr × kr micro-tile of A, streamed directly from the memory to the registers,
performing a small, mr × kr matrix-vector product per iteration of Loop L6 (nc

iterations), each involving a single column of Cr and (part of) Bc; see Fig. 3. In
addition, in order to ensure accessing the entries of C and B with unit stride
from the micro-kernel, both Cc and Bc are stored following the same pattern
shown for Ac in Fig. 2, with Cc also re-organized in micro-panels of mr rows but
Bc in micro-panels of kr rows.

To close this section, we note that swapping the roles of A and B in the
three previous algorithms, yields three alternative variants: A3B2C0, C3A2B0,
A3C2B0 [1]. However, given the symmetric role of the input operands of gemm
(A,B), these other variants present no significant differences from the point of
view of the performance model proposed in this work and, therefore, we do not
consider in the following.

3 A Performance Simulator for GEMM Algorithms

3.1 IoT Architecture Model

We make the following considerations with respect to the target IoT processor:

– The processor is equipped with a single core, with a SIMD (single instruction
multiple data) arithmetic units capable of working with 32 vector registers of
width 32 bits (4 INT8 numbers).



Performance Analysis of Matrix Multiplication on the Edge 69

Fig. 3. Variants of the family of algorithms for gemm with A resident in the processor
registers: C3B2A0 (top) and B3C2A0 (bottom).

– The memory comprises four levels, from fastest/smallest to slowest/largest
referred to as R (for processor registers), L1, L2, and M (for main memory).

– There is a strict control of the data transfers between memory levels. The
L1 and L2 levels can thus be viewed as “scratchpad” memories instead of
conventional caches.

– The capacity of each memory level will be denoted as CL, with L denoting
the corresponding level.

– The transfer rates between two levels will be referred to as TO,D, with the
subindices O/D specifying the origin/destination memory levels.

From the point of view of the algorithms, for simplicity we assume that compu-
tation is not overlapped with data transfers involving the scratchpad memories.

3.2 Validation

Hardware Platform. For the validation of our performance simulator, in this
work we target the GAP8 PULP, from GreenWaves Technologies. This system
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Table 1. Transfers rates in the GAP8 FC. The packing/unpacking rates (three first
rows) were measured when transferring chunks of r = 4 elements at a time.

Transfer Mbytes/s B3A2C0 C3B2A0 B3C2A0

Packing TM,M 1.62E + 00 B to Bc C to Cc B to Bc

Packing TM,L2 5.30E− 01 A to Ac B to Bc C to Cc

Unpacking TL2,M 6.54E− 01 – – Cc to C

Copy TM,L1 8.81E + 00 Bc to Br Cc to Cr Bc to Br

Stream from TM,R 4.87E− 01 C to reg. A to reg. A to reg.

Micro- TL1,R 1.78E + 02 Br to reg. Cr to reg. Br to reg.

Kernel TL2,R 7.18E + 00 Ac to reg. Bc to reg. Cc to reg.

comprises 1) a fabric controller (FC) core for control, communications, and secu-
rity functions; 2) a cluster of 8 cores designed for the execution of parallel algo-
rithms; and 3) a specialized accelerator (HWCE). All these components share
the same 512-KB L2 memory area (MA). Furthermore, the FC has a 16-KB L1
MA while the cluster cores and HWCE share a 64-KB multi-banked TCDM L1
(data/instruction) MA. Several DMA (direct memory access) units allow fast
transfers between MAs. The banks of the shared L1 MA can be accessed from
the cluster cores in a single cycle. In comparison, accessing data in external
MAs (referred to as L3 memory,) incurs a very high cost and, therefore, should
be avoided whenever possible. The GAP8 relies on DMA units to transfer data
to/from peripherals and in between the internal L1 and L2 MAs, which can
be viewed as “scratchpads”. The DMA unit is used to transfer data to/from
peripherals, including the L3 memory.

Following our assumptions on the IoT processor, we only target the FC core,
and associated MAs, for the validation and experimentation in the remainder of
the paper. Repeating the analysis for the GAP8 cluster, using a multi-threaded
version of gemm, is left as part of future work.

Calibration. We conducted a series of experiments to estimate the data transfer
rates between the MAs in the GAP8 FC, with the results offered in Table 1.
The first block-row there comprises the packing/unpacking operations associated
with blocking (tiling) and are performed by the three outermost loops of the
algorithms. They all involve the L3 MA (M in the model), and the results were
obtained using DMA programmed transfers of r = 4 elements “at a time”. This
type of calibration is required because packing/unpacking the matrix operands
into their corresponding buffers, requires a reorganization that copies the data
in “chunks” of r consecutive elements in memory; see Fig. 2. We could also verify
that, when multiplying r by a factor s, the transfer rate also increased in the
same proportion. For example, for algorithm B3A2C0, B is packed into the buffer
Bc taking into account the dimension nr = 4 of the micro-kernel, and proceeds
at a rate of 1.62 MBytes/s. If the micro-kernel for this algorithm is modified
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to use nr = 8, we experimentally observed that the rate was doubled, to 3.24
MBytes/s. Our simulator takes this consideration into account.

The second block-row in the table (consisting of a single row) corresponds
to the copy between the L3 and L1 MAs. This copy is implicit in the case of
the conventional gemm algorithms, which assume a cache system (and therefore,
they do not appear reflected in the formulation of the algorithms), but they need
to be explicitly programmed in the case of scratchpads.

The third block-row of results are for the data streaming performed from
inside the micro-kernel.

A separate experiment with a micro-kernel designed for the GAP8 FC, with
A resident in the processor registers and the two other operands placed in the
proper MAs, showed an arithmetic performance of 5.64 billions of INT8 arith-
metic operations per second (INT8 GOPS).
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Fig. 4. Distribution of costs among the different components of the B3C2A0 algorithm
using micro-kernels of dimension 4 × 4, 4 × 8, and 4 × 12. The labels starting with
“E” and “T” below each bar distinguish between results from experimentation and the
simulator, respectively.

Validation. We next leveraged our implementation of the C3B2A0 algo-
rithm for the GAP8 FC described in [8] in order to assess the accuracy of
our simulator. For this purpose, we selected a gemm of moderate dimensions:
m,n, k = 256, 784, 2304. (These particular dimensions were chosen because they
arise when applying the lowering approach [10] to transform the convolution
operator in layer #10 of MobileNetV1 DNN into a gemm.) Once we fixed
the micro-kernel dimension (mr × kr, for this particular variant), we then set
the scratchpad configuration parameters (mc, nc, kc) so that Cr, Bc respectively
maximize the occupancy of the L1, L2 MAs of the GAP8 FC.
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Figure 4 shows that the simulator, tuned with the calibrated transfer and
arithmetic rates, estimates the execution time of the actual implementation
remarkably well. Overall, the relative errors of the simulator in all these tests
remained below 2%.

4 Performance Analysis

As argued in the introduction of this paper, the ultimate goal of our performance
simulator for gemm is to experiment with different algorithmic alternatives for
the kernel, prior to going through the effort of implementing and testing any of
them on a specific IoT processor.

In this section we evaluate the three algorithmic variants for gemm discussed
earlier: B3A2C0, C3B2A0 and B3C2A0, comparing their estimated performance
as a function of the dimension of the internal micro-kernel (mr ×nr for the first
variant; and mr × kr for last two), and initially leveraging the same problem
case from the previous section: m,n, k = 256,784,2304. The size of the selected
micro-kernels was determined following the assumptions on the width of the
SIMD arithmetic unit (32 bits) and number of vector registers (32) made in
Sect. 3.

Figure 5 shows the distribution of the arithmetic and data/transfer costs, for
the three variants, using the performance simulator calibrated for the GAP8
platform. An assumption of our basic simulator is that the arithmetic rate is
independent of the micro-kernel dimension and this results in all cases reporting
the same cost due to arithmetic. (This assumption may be reasonable for very
simple IoT processor designs, but we will discuss this aspect further at the end of
this section.) In contrast, for this particular gemm shape, the distribution of costs
and the global execution time is highly dependent on the algorithmic variant and
micro-kernel dimensions. Thus, for this particular layer of MobileNetV1, both
B3A2C0 and B3C2A0 tend to favor “low-and-fat” micro-kernels, such as 4× 24,
while C3B2A0 yields better performance for “squarish” ones: 8 × 12 and 12 × 8.

Finally, Fig. 6 compares the estimated execution time for the gemm resulting
from the application of lowering to all the convolution layers of MobileNetV1.
The particular dimensions of these layers are specified in Table 2, together with
the optimal micro-kernel dimension for each algorithmic variant and layer dimen-
sions. (Layer #28 is skipped because it does not correspond to a convolution
operator.)

The results in this final experiment show that a high variability of the exe-
cution time, in accordance with the heterogeneity of the gemm shapes for the
distinct layers, but also a general advantage of the B3A2C0 variant. This was not
totally unexpected as B3A2C0 mimics the baseline algorithm in BLAS instances
such as those in GotoBLAS2, OpenBLAS and BLIS, and presents the advantage
of reducing the number of stores in memory during the update of the result
C. However, we note that this variant depends on the underlying architecture
offering an efficient SIMD support for the outer product, which may not be
the case for all Iot processors. For example, the GAP8 architecture is especially
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Fig. 5. Execution time of the three algorithms for the gemm in layer #10 of
MobileNetV1 estimated using the performance simulator calibrated for the GAP8.

designed to deliver high performance for the scalar (or dot) product, which
favors the gemm variants with A resident in the processor registers (C3B2A0
and B3C2A0). This would be reflected in a different (INT8) GOPS rates in our
simulator, depending on the type of micro-kernel and architecture design. This
architecture-specific adaptation of the simulator to the arithmetic units in the
target processor is left as part of future work.
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Fig. 6. Execution time of the three algorithms for the gemm in MobileNetV1 estimated
using the performance simulator calibrated for the GAP8.

Table 2. gemm operations in the convolution layers arising in MobileNetV1 trans-
formed via lowering, and dimension of the optimal micro-kernel.

#Layer ID m n k B3A2C0 C3B2A0 B3C2A0

1 32 12544 27 4 × 24 24 × 4 8 × 12

2 32 12544 288 4 × 24 8 × 12 4 × 24

3 64 12544 32 4 × 24 24 × 4 12 × 8

4 64 3136 576 4 × 24 12 × 8 4 × 24

5,7 128 3136 128 4 × 24 24 × 4 4 × 24

6 128 3136 1152 4 × 24 12 × 8 4 × 24

8 128 784 1152 4 × 24 12 × 8 4 × 24

9 256 784 128 4 × 24 24 × 4 8 × 12

10 256 784 2304 4 × 24 12 × 8 4 × 24

11 256 784 256 4 × 24 12 × 8 4 × 20

12 256 196 2304 4 × 24 12 × 8 4 × 24

13 512 196 256 4 × 24 24 × 4 4 × 24

14, 16, 18, 20, 22 512 196 4608 4 × 24 12 × 8 4 × 24

15, 17, 19, 21, 23 512 196 512 4 × 24 12 × 8 4 × 24

24 512 49 4608 8 × 12 12 × 8 4 × 24

25 1024 49 512 8 × 12 12 × 8 4 × 24

26 1024 49 9216 8 × 12 12 × 8 4 × 24

27 1024 49 1024 8 × 12 12 × 8 4 × 24

29 1024 1000 1 4 × 24 24 × 4 24 × 4

5 Discussion and Future Work

In order to address the heterogeneous zoo of IoT processor designs for edge com-
puting, we have leveraged a performance simulator for estimating the execution
costs of gemm that offers very useful information about which algorithmic vari-
ant can better fit a particular architecture.
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At the same time, we recognize this work needs to be extended and improved
along several paths. As part of future work, we plan to explore several avenues:

– Micro-kernels with A/B or C resident in registers are usually cast in terms of
distinct assembly SIMD (single instruction, multiple data) instructions. This
needs to be taken into account in the calibration experiments.

– Also, most current processors architectures are equipped with DMA con-
trollers. This complicates programming in order to orchestrate asynchronous
transfers with computation, and requires double buffering thus reducing the
amount of memory for the buffers in the intermediate memory levels.

– Finally, we plan to modify the memory model to take into account actual
cache memories instead of scratchpads. This introduces challenges associated
with modeling the effects of cache associativity, cache eviction, and replace-
ment policies.
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Abstract. The Preconditioned Conjugate Gradient (PCG) method is
widely used for solving linear systems of equations with sparse matri-
ces. A recent version of PCG, Pipelined PCG (PIPECG), eliminates the
dependencies in the computations of the PCG algorithm so that the
non-dependent computations can be overlapped with communication.
In this paper, we develop three methods for efficient execution of the
Pipelined PCG algorithm on GPU accelerated heterogeneous architec-
tures. The first two methods achieve task-parallelism using asynchronous
executions of different tasks on multi-core CPU and a GPU. The third
method achieves data parallelism by decomposing the workload between
multi-core CPU and GPU based on a performance model. We performed
experiments on both the K40 and V100 GPU systems and our methods
give up to 8x speedup and on average 3x speedup over PCG CPU imple-
mentation of Paralution and PETSc libraries. They also give up to 5x
speedup and on average 1.45x speedup over PCG GPU implementation
of Paralution and PETSc libraries. The third method also provides an
efficient solution for solving problems that cannot be fit into the GPU
memory and gives up to 6.8x speedup for such problems.

Keywords: Preconditioned conjugate gradient · Pipelined methods ·
Heterogeneous architectures · GPU · Asynchronous executions

1 Introduction

Conjugate Gradient (CG) [7] is one of the most widely used iterative methods
for finding the solution of linear systems Ax = b with symmetric positive definite
sparse matrices. A preconditioner can be applied to the system to condition the
input system and to improve convergence.

Today’s HPC systems have accelerators like GPUs along with traditional
multi-core CPUs. The programming models for these accelerators are different
from that of the multi-core processors as well. In order to use all the resources
available within a compute node efficiently, we must interleave the features in the
programming models in such a way that we achieve the best possible performance
from the platform.
c© Springer Nature Switzerland AG 2022
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The main computational kernels in the PCG method are Sparse Matrix Vec-
tor Product (SPMV), Preconditioner Application (PC), Vector-Multiply-Adds
(VMAs) and Dot Products. For distributed memory systems, the bottleneck
in PCG is the synchronization that occurs on all cores due to the allreduce
in the dot products of the algorithm. Pipelined PCG (PIPECG) proposed
by Ghysels et al. [6], on which this work is based, has one allreduce per itera-
tion. By introducing extra VMAs, they eliminate the dependencies between the
dot products and PC+SPMV of PCG. The aim of doing this is to overlap the
communication introduced by dot products with PC and SPMV. The resulting
algorithm offers another advantage which makes it a perfect candidate for our
hybrid executions on a single node-single GPU system. As the PC and SPMV in
PIPECG do not depend on results of the previous dot products, we can execute
them simultaneously on multi-core CPU and GPU. This would require commu-
nicating data between CPU and GPU, thus introducing additional costs. We
show that by using asynchronous streams efficiently, we can hide the complete
time for data movement between CPU and GPU.

We develop three methods for efficient execution of PIPECG on a single node-
single GPU system. The first two methods, Hybrid-PIPECG-1 and Hybrid-
PIPECG-2, achieve task-parallelism by simultaneous execution of the dot prod-
ucts on multi-core CPU and PC and SPMV on the GPU. They are different in
the amount of data that needs to be moved between the CPU and GPU in
every iteration of PIPECG. The third method, Hybrid-PIPECG-3, achieves
data parallelism by decomposing the workload between multi-core CPU and
GPU based on a performance model and then using asynchronous data transfers
for PIPECG iterations. We use CUDA streams for asynchronous data trans-
fers between CPU and GPU. We performed experiments on both the K40 and
V100 GPU systems and our methods give up to 8x speedup and on average 3x
speedup over PCG CPU implementation of Paralution and PETSc libraries. Our
methods give up to 5x speedup and on average 1.45x speedup over PCG GPU
implementation of Paralution and PETSc libraries. Hybrid-PIPECG-3 method
also provides an efficient solution for solving problems that cannot be fit into
the GPU memory and gives up to 6.8x speedup for such problems.

2 Related Work

To achieve optimum performance of the PCG method on GPU systems, many
works have concentrated on efficient GPU implementation of the PC kernel.
Algebraic Multigrid GPU implementations are presented in [3]. Incomplete LU
and Cholesky factorizations on GPUs are presented in [9]. Research works also
concentrate on optimizing the most time consuming kernel in PCG, the SPMV
kernel [5]. Different sparse matrix formats have been proposed in [4] to improve
SPMV performance on GPUs. All the works mentioned above concentrate on
kernel executions only on the GPUs. They do not utilize the multi-core CPU
present in the system. Our work is different from all the works described above
since we aim to utilize all the available resources of the system and accelerate
the performance of the PCG method as a whole. Furthermore, our work can be
used in conjunction with the enhanced kernels on the GPUs mentioned above.
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3 Background

PCG: PCG introduced by Hestenes [7] is given in Algorithm 1. The computa-
tional kernels in PCG are SPMV in line 10, PC in line 15, VMAs in lines 9, 13
and 14 and dot products in lines 11, 16 and 17. In PCG, we can see that the
operation in every line depends on the operation in the previous line. There are
no independent computations in each iteration which can be executed simulta-
neously.

PIPECG: PIPECG was proposed by Ghysels et al. [6]. As shown in Algorithm
2, PIPECG introduces extra VMAs (on lines 11, 12, 13, 17, 18) to remove the
dependencies between the dot products (lines 19, 20, 21) and PC (line 22) and
SPMV (line 23) so that PC and SPMV can be computed while dot products
are being computed. We can use PIPECG for our hybrid executions as the dot
products can be executed on the CPU while PC+SPMV can be executed simul-
taneously on GPU as they are not dependent on each other. This strategy helps
us utilize all the resources in the GPU accelerated node and achieve optimum
performance.

Algorithm 1 PCG Method
1: r0 = b − Ax0; u0 = M−1r0;
2: γ0 = (u0, r0); norm0 =

√
(u0, u0)

3: for i=0,1... do
4: if i > 0 then
5: βi = γi/γi−1

6: else
7: βi = 0
8: end if
9: pi = ui + βipi−1

10: s = Api

11: δ = (s, pi)
12: α = γi/δ
13: xi+1 = xi + αpi

14: ri+1 = ri − αs
15: ui+1 = M−1ri+1

16: γi+1 = (ui+1, ri+1);
17: normi+1 =

√
(ui+1, ui+1)

18: end for

Algorithm 2 PIPECG Method
1: r0 = b − Ax0;u0 = M−1r0;w0 =

Au0;
2: γ0 = (r0, u0);δ = (w0, u0);norm0 =√

(u0, u0)
3: m0 = M−1w0; n0 = Am0

4: for i=0,1... do
5: if i > 0 then
6: βi = γi/γi−1;
7: αi = γi/(δ − βiγi/αi−1);
8: else
9: βi = 0; αi = γi/δ

10: end if
11: zi = ni + βizi−1

12: qi = mi + βiqi−1

13: si = wi + βisi−1

14: pi = ui + βipi−1

15: xi+1 = xi + αipi

16: ri+1 = ri − αisi
17: ui+1 = ui − αiqi
18: wi+1 = wi − αizi
19: γi+1 = (ri+1, ui+1)
20: δ = (wi+1, ui+1)
21: normi+1 =

√
(ui+1, ui+1)

22: mi+1 = M−1wi+1

23: ni+1 = Ami+1

24: end for
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4 Methodology

4.1 Hybrid-PIPECG-1 Method

In the standard GPU implementation of PCG, the CPU launches CUDA kernels
for VMAs, dot products, PC and SPMV on the GPU and then remains idle. In
PIPECG, we have independent kernels and thus, we can make use of the idle
CPU cores. We show the execution flow of Hybrid-PIPECG-1 in Fig. 1(a).

The rectangular boxes show the operation performed and the number within
the bracket is the line number of Algorithm 2 that the box executes. The solid
thick arrow represents data movement and its direction shows the source and
destination of the data movement. The matrix A, the vectors b and x have been
moved to the GPU prior to this execution flow.

The implementation starts with executing the initialization steps on the
GPU. After this, the for loop starts which iterates until the preconditioned
residual norm becomes smaller than the user defined tolerance. In each iter-
ation, α and β are calculated on the CPU. Then the Vector Operations are
executed on the GPU which update the vectors w, r and u among others. We
know that dot products γ, δ and norm can be executed simultaneously with
PC and SPMV. For executing these dot products on the CPU cores, the CPU
needs to have the vectors w, u and r but as the updated vectors are on the
GPU, we have to copy them to the CPU at every iteration. So here, we define
a stream which asynchronously copies w, r and u while GPU carries on with its
kernel executions. The CPU waits on this stream till the copy is completed and
then proceeds to calculate γ, δ and norm by using all available cores. Thus, in
Hybrid-PIPECG-1, PC and SPMV computations on the GPU are overlapped
with the data movement from GPU to CPU and the dot product calculation on
the CPU cores.

4.2 Hybrid-PIPECG-2 Method

Hybrid-PIPECG-1 requires copy of 3N elements from GPU to CPU in every
iteration which can become costly for linear systems with vectors with large N, as
the time for copying will exceed the PC + SPMV times thus degrading the overall
performance. Therefore, we develop Hybrid-PIPECG-2 shown in Fig. 1(b) to
reduce the number of vectors to be copied from GPU to CPU in every iteration.

If we want to compute the dot products γ, δ and norm on the CPU, we need
to have w, u and r vectors on the CPU. Instead of copying the updated vectors
from the GPU at every iteration, we can update them on the CPU itself. In
PIPECG method in Algorithm 2, we see that we can update w, u and r on the
CPU using the vectors z, q and s. In turn, we would need n and m for updating
z and q. This means the CPU should have a copy of z, q, s, n, m, w, u and r. For
updating these vectors on the CPU, we can copy only n from the GPU to CPU.
As shown in Fig. 1(b), in the for loop, after calculating α and β, the vector n is
copied from the GPU to the CPU on the user defined stream. While the copy is
progressing, both CPU and GPU perform their operations. GPU proceeds with
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Fig. 1. Task parallel algorithms

its Vector Operations, PC and SPMV kernels. On the CPU, we observe that for
updating the vectors z, w and m, CPU needs the vector n. While n is being
copied, CPU can proceed with the update of vectors q, s, r and u as they don’t
need n. After vector updates, γ and norm can be calculated. Then the CPU
waits on the user defined stream until the copy is copied. After n is successfully
received, CPU can proceed to update z, w and m vectors and compute δ.

Thus, with Hybrid-PIPECG-2, we are able to reduce the number of vector
copies to one per iteration. Moreover, the data movement is hidden by compu-
tations on the CPU so the CPU doesn’t have to be idle while the copy proceeds.

4.3 Hybrid-PIPECG-3 Method

Hybrid-PIPECG-1 and Hybrid-PIPECG-2 achieve task parallelism by executing
independent kernels on CPU and GPU simultaneously. But for linear systems
with even larger N, executing redundant computations for complete vectors of
length N on both CPU and GPU proves to be counter-productive. Thus, we
propose a data parallel version of PIPECG, Hybrid-PIPECG-3, where the matrix
and vectors are decomposed between the CPU and GPU and both these entities
carry out PIPECG on their data with communication between each other for
important data. This method can also be used for problems that cannot fit in
the GPU memory. Hybrid-PIPECG-3 consists of 3 parts: Performance modelling,
Data decomposition, and the actual PIPECG iterations.
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1. Performance Modelling: We want to calculate the relative performances
of the CPU and GPU so that we can decompose data between them according
to these relative performances. For this, we execute the SPMV kernel for the
complete matrix A (nnz elements) on CPU and GPU separately. We select the
SPMV kernel because that is the most time dominating kernel in the PIPECG
iteration. If we decompose the data in a way such that the time taken by CPU
for SPMV kernel on its data is equal to the time taken by GPU for the SPMV
kernel on its data, then complete overlap of the most time consuming kernel is
achieved. Hence, we perform five executions of SPMV on both CPU and the GPU
for nnz elements. We perform five executions so that effects of cache locality that
become prevalent in the later iterations are also be taken into consideration.

Once we have the time taken by CPU cores, tcpu and the time taken by GPU,
tgpu, we calculate the performance of CPU cores, scpu and the performance of
GPU, sgpu as follows:
scpu = nnz/tcpu
sgpu = nnz/tgpu
Then, we calculate the relative performance rcpu and rgpu as follows:
rcpu = scpu/(scpu + sgpu)
rgpu = sgpu/(scpu + sgpu)
After we obtain rcpu and rgpu, we now divide the nnz into two parts, nnzcpu
and nnzgpu as follows:
nnzcpu = nnz ∗ rcpu
nnzgpu = nnz − nnzcpu

For ease of implementation, we do not assign exact nnzcpu elements to CPU
and nnzgpu elements to GPU. Instead, we find out the number of rows to be
assigned to the CPU, Ncpu, which would contain either equal to or slightly less
number of non-zeroes than nnzcpu. This gives a 1-D decomposition of the A
matrix. Ngpu is then obtained by N − Ncpu.

2. Data Decomposition: Now that we have Ncpu and Ngpu, we assign Ncpu

rows to the CPU and Ngpu rows to the GPU. We also divide the vectors between
the CPU and GPU using same parameters. The division of vectors ensures that
there are no redundant computations as both CPU and GPU will be acting on
just their local elements. But in every iteration, the SPMV kernels of both CPU
and GPU will require the full m vector. After 1-D decomposition, the CPU has
Ncpu elements of the m vector and the GPU has the other Ngpu elements. It is
clear that we need to copy these partial vectors from their home device to the
other device.

In order to hide the time taken for this copy, we perform a further decompo-
sition of the nnzcpu into nnz1cpu and nnz2cpu in such a way that all the nnz’s
in nnz1cpu need only the local Ncpu elements of m for the SPMV. When SPMV
kernel acts on just nnz1cpu elements, we call it SPMV part 1. After the copy
of Ngpu elements of m is complete, we will then commence SPMV part 2 on
nnz2cpu elements which will complete the entire SPMV. We perform the same
for nnzgpu. So, through this further local decomposition, we are able to achieve
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better overlap of computations with communication. In effect, we have achieved
the 2-D decomposition of the matrix A. This is illustrated in Fig. 2.

Fig. 2. 2-D decomposition of Matrix A

3. Execution Flow of Hybrid-PIPECG-3 Method: Fig. 3 shows the exe-
cution flow of the Hybrid-PIPECG-3 method.

For Performance Modelling, we execute the SPMV kernel on CPU and GPU
simultaneously. After we get Ncpu and Ngpu, we perform 2-D decomposition of
the matrix A and also decompose the vectors. After the decomposition step, the
PIPECG method starts. Both CPU and GPU perform the initialization steps on
their data except the computation of n vector. Then the for loop starts. After
checking the residual norm, CPU calculates α and β. Then asynchronous copy
of m vector is started from CPU to GPU as well as GPU to CPU. These two
Copy’s are executed simultaneously using two user defined streams, Stream 1
and Stream 2. Similar to Hybrid-PIPECG-2 method, while CPU and GPU wait
for m vector to be copied so that they can calculate vector n, the vectors that
do not depend on n can be updated. This results in vector operations for q,
s, p, x and r. After these vector updates, γ and norm can be computed. To
further use the waiting time, CPU and GPU can compute SPMV part 1 as
described in Sect. 4.3. Both CPU and GPU then wait for the Copy’s to finish.
With proper data decomposition, this wait is negligible as the data movement
time is completely overlapped with useful computations. Then, CPU and GPU
execute SPMV part 2 and obtain the vector n. They update the vectors that
depend on n and apply PC. Finally, they compute δ and follow the same steps
iteratively.

Thus, with Hybrid-PIPECG-3, we achieve data parallelism by decomposing
data between CPU and GPU and the simultaneous operations on CPU and GPU
are overlapped with the asynchronous data movement.
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Fig. 3. Execution flow of Hybrid-PIPECG-3 method
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5 Experiments and Results

Experimental Setup: We run our tests on two systems: first, a Tesla K40
GPU with 15 Streaming Multiprocessors (SMX), 5 GB memory, 16 core Intel
CPU and second, a Volta V100 GPU with 80 SMX, 32 GB memory and 32 core
Intel CPU. We employ OpenMP for using all CPU cores and we employ CUDA
kernels, cublas and cusparse libraries for GPU. We run experiments on matrices
from the SuiteSparse Matrix Collection [1] as well our own generated Poisson
matrices shown in Table 1. N is the number of rows and nnz is the number of
non-zeroes in the matrix. We solve a linear system of equations Ax = b with the
exact solution x0 = 1/

√
N , where N is the number of rows of A and b = Ax0.

We set the absolute tolerance to 10−5, maximum number of iterations to 10000
and use Jacobi preconditioner. We run all tests to convergence and compare
the total execution times of Hybrid-PIPECG-1, Hybrid-PIPECG-2 and Hybrid-
PIPECG-3 with the PCG CPU and GPU implementations in the widely used
Paralution [8] and PETSc [2] libraries. We also compare our methods with the
CPU and GPU implementations of PIPECG method. Here, we note that the
total execution time for the Hybrid-PIPECG-3 method always includes the time
consumed for performance modelling and data decomposition.

Table 1. Matrices used for Experiments

System Matrix N nnz

K40 bcsstk15 3,948 117,816

gyro 17,361 1,021,159

boneS01 127,224 6,715,152

hood 220,542 10,768,436

offshore 259,789 4,242,673

Serena 1,391,349 64,531,701

Queen 4147 4,147,110 329,499,284

K40 4.5 M Poisson 4,492,125 549,353,259

5 M Poisson 4,913,000 601,211,584

6 M Poisson 5,929,741 726,572,699

V100 17.5 M Poisson 17,576,000 2,166,720,184

20 M Poisson 19,902,511 2,454,911,549

25 M Poisson 24,897,088 3,073,924,664

Figure 4 compares the performance of our hybrid methods with CPU imple-
mentations of PCG in Paralution and PETSc, and with our CPU implementation
of PIPECG method on a single node with 16 CPU cores and a K40 GPU. We
present the speedups obtained by each method wrt to our PIPECG-OpenMP
implementation. We observe that PIPECG-OpenMP performs the worst for
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every matrix. This is because the PIPECG method introduces extra VMAs to
remove the dependencies. This VMA overhead is less pronounced for distributed
memory systems but more pronounced for multi-core CPU in a single node.
We see that PETSc-PCG-MPI always performs worse than Paralution-PCG-
OpenMP. Finally, we observe that our hybrid methods perform better than all
the CPU versions for all matrices because we use GPU cores as well.

For bcsstk15 and gyro, Hybrid-PIPECG-1 performs the best. The same
behaviour is observed for matrices with N from 100 to 36000. The other hybrid
methods don’t perform well for these matrices with small N as Hybrid-PIPECG-
2 has redundant computations on the CPU cores and Hybrid-PIPECG-3 has
extra overhead of performance modelling and data decomposition. For boneS01,
hood and offshore, Hybrid-PIPECG-2 performs the best. The same behaviour is
observed for matrices with N from 36000 to 260,000. Hybrid-PIPECG-1 doesn’t
perform well for larger matrices because copying 3N elements becomes costly for
large N. Hybrid-PIPECG-2 copies only N elements. Hybrid-PIPECG-3 performs
worse than Hybrid-PIPECG-2 because in Hybrid-PIPECG-2, the vector copy is
overlapped by the full SPMV kernel, whereas in Hybrid-PIPECG-3 method, it
is overlapped by only SPMV part 1 kernel. For Serena and Queen 4147, Hybrid-
PIPECG-3 performs the best. Similar behavior is observed for matrices with N
from 260,000 to 4M. Hybrid-PIPECG-1 copies 3N elements in every iteration and
hence performs poorly for matrices with very large N. Hybrid-PIPECG-2 copies
N elements but performs redundant computations on CPU and GPU which pro-
vide great overhead for very large N. So, for very large N (and consequently
large nnz), Hybrid-PIPECG-3 provides almost perfect overlap of operations on
the CPU and GPU and is the best suited. Thus, we find that different hybrid
methods give the best performance for different matrix size ranges.

Figure 5 compares the performance of our hybrid methods with GPU imple-
mentations of PCG in Paralution, PCG in PETSc and PIPECG method in
PETSc. We present the speedups obtained by each method wrt to PETSc-
PIPECG-GPU implementation. Similar trends as the CPU comparison are
observed here as well and we observe that different hybrid methods give the
best performance for different matrix size ranges.

Until now, we have presented results on matrices from the SuiteSparse col-
lection that can be fit in K40’s memory. Queen 4147 is the largest matrix size
that we are able to run on a single K40 GPU. We now analyse Poisson matrices
that cannot be fit in K40 and V100 memory (shown in the last 6 rows of Table
1). Hybrid-PIPECG-1 and Hybrid-PIPECG-2 launch the SPMV kernel on only
the GPU and thus require the complete matrix to be on the GPU. Hence, these
methods cannot be used for these cases. We can use Hybrid-PIPECG-3 method
because it decomposes data between multi-core CPU and GPU. We compare
Hybrid-PIPECG-3 with CPU-only implementations of our PIPECG, PETSC
PCG and Paralution PCG methods. We show the performance comparisons
on various Poisson Matrices in Figure 6. We find that our Hybrid-PIPECG-3
method gives 2–2.5 times speedup over the other methods on K40 and 2.5-6.8
times speedup on V100.
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Fig. 4. Comparison of Hybrid methods with various CPU versions on a single node
with 16 CPU cores and K40 GPU. Speedup presented wrt PIPECG-OpenMP.

Fig. 5. omparison of Hybrid methods with various GPU versions on a single node with
16 CPU cores and K40 GPU. Speedup presented wrt PETSc-PIPECG-GPU.
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Fig. 6. Comparison of Hybrid-PIPECG-3 with CPU versions for various Poisson prob-
lems on K40 and V100. Speedup presented wrt PIPECG-OpenMP.

6 Conclusion and Future Work

In this work, we proposed three methods for efficient execution of PIPECG
method on GPU accelerated systems. Hybrid-PIPECG-1 and Hybrid-PIPECG-
2 methods achieve task parallelism by executing dot products on the CPU while
GPU executes PC and SPMV kernels. Hybrid-PIPECG-3 method achieves data
parallelism by decomposing the workload between multi-core CPU and GPU
based on a performance model. Our methods give up to 8x speedup and on
average 3x speedup over PCG CPU implementation of Paralution and PETSc
libraries. Our methods give up to 5x speedup and on average 1.45x speedup over
PCG GPU implementation of Paralution and PETSc libraries. Hybrid-PIPECG-
3 method also provides an efficient solution for solving problems that cannot be
fit into the GPU memory and gives up to 6.8x speedup for such problems. In the
future, we plan to extend this single node single GPU work to multiple nodes
with multiple GPUs.
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Abstract. While there has been a growing interest in supporting accel-
erators, especially GPU accelerators, in large-scale systems, the user
typically has to work with low-level GPU programming models such as
CUDA along with the low-level message passing interface (MPI).

We believe higher-level programming models such as Partitioned
Global Address Space (PGAS) programming models enable productive
parallel programming at both the intra-node and inter-node levels in
homogeneous and heterogeneous nodes. However, GPU programming
with PGAS languages in practice is still limited since there is still a big
performance gap between compiler-generated GPU code and hand-tuned
GPU code; hand-optimization of CPU-GPU data transfers is also an
important contributor to this performance gap. Thus, it is not rare that
the user eventually writes a fully external GPU program that includes
the host part -i.e., GPU memory (de)allocation, host-device/device-host
data transfer, and the device part - i.e., GPU kernels, and calls it from
their primary language, which is not very productive.

Our key observation is that the complexity of writing the external
GPU program comes not only from writing GPU kernels in the device
part, but also from writing the host part. In particular, interfacing
objects in the primary language to raw C/C++ pointers is tedious and
error-prone, especially because high-level languages usually have a well-
defined type system with type inference.

In this paper, we introduce the GPUAPI module, which offers multiple
abstraction levels of low-level GPU API routines for high-level program-
ming models with a special focus on PGAS languages, which allows the
user to choose an appropriate abstraction level depending on their tuning
scenarios. The module is also designed to work with multiple standard
low-level GPU programming models: CUDA, HIP, DPC++, and SYCL,
thereby significantly improving productivity and portability.

We use Chapel as the primary example and our preliminary perfor-
mance and productivity evaluations show that the use of the GPUAPI
module significantly simplifies GPU programming in a high-level pro-
gramming model like Chapel, while targeting different multi-node
CPUs+GPUs platforms with no performance loss.
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1 Introduction

There has been a growing interest in accelerators, especially GPU accelerators,
in large-scale systems. In the Top 500 list, one can see that a significant num-
ber of systems consist of heterogeneous nodes with GPUs. As with homogeneous
systems, software productivity and portability is still a profound issue for hetero-
geneous systems. We believe that the use of PGAS (Partitioned Global Address
Space) languages [2,5,15] including Chapel, is a scalable and portable way to
achieve high-performance without sacrificing productivity.

As for GPU support in PGAS languages, some of the past approaches [6,
13] aim at compiling high-level parallel constructs (e.g., Chapel’s forall) to
GPUs. Also, from Chapel 1.24 onwards, a preliminary full automatic approach is
available [4,12]. However, in general, there is still a big performance gap between
compiler-generated GPU code and hand-tuned GPU code. Thus, it is possible
that the user ends up writing a low-level GPU program that includes the host
part—i.e., GPU memory (de)allocation, host-device/device-host data transfer,
and the device part—i.e., GPU kernels, and call it from their primary language.

Our key observation is that there are only two ultimate GPU programming
approaches in PGAS languages: fully automatic and fully manual, and there
is no “intermediate” approach. Also, our another key observation is that the
complexity of the fully manual approach comes not only from writing GPU
kernels in the device part, but also from writing the host part. In particular,
interfacing objects in the primary language to raw C/C++ pointers is tedious
and error-prone, especially because PGAS languages have a well-defined type
system with type inference.

In this paper, we propose the GPUAPI module, which offers “medium-level
(MID-level)” abstraction of low-level GPU API routines for high-level program-
ming models with a special focus on PGAS languages, which fills the gap between
the fully automatic approach (we call it HIGH-level) and fully manual approach
(we call it LOW-level). In our design, MID-level includes two sub-levels:

– MID-level: Provides GPU API that is more natural to the user of the pri-
mary language -i.e., use the new keyword to allocate GPU memory.

– MID-LOW-level: Provides simple wrapper functions for raw GPU API
functions -i.e., use the Malloc function to allocate GPU memory.

This multi-level design allows the user to choose an appropriate one depend-
ing on their tuning scenarios. Specifically, the user has the option of 1) providing
a high-level specification (HIGH-level) and letting the compiler do the job, and
2) diving into lower-level details to incrementally evolve their implementations
for improved performance (MID-level → MID-LOW-level → LOW-level). Also,
the module is designed to work with multiple standard low-level GPU program-
ming models: CUDA, HIP, DPC++, and SYCL, thereby significantly improving
productivity and portability.

To the best of our knowledge, this paper is the first paper that discusses
the design and implementation of “intermediate-level” GPU API for multiple
CPUs+GPUs platforms.
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This paper makes the following contributions:

– The design and implementation of multi-level platform-independent GPU
API for high-level languages.

– Performance evaluations and productivity discussion using different dis-
tributed mini applications and a real-world application [1] on different
CPU+GPU systems.

While we use Chapel as the primary language, our discussion should apply
to other PGAS languages.

2 Background

2.1 Chapel

Chapel has been one of the most active PGAS languages for decades. Chapel
is designed to express parallelism as part of language rather than include it as
libraries or language extensions such as compiler directives or annotations. Due
to this design, many of the constructs that support parallelism are treated as
first-class citizens of the language. Since locality is also important in achieving
performance in parallel programs, the locality constructs are also included as a
first-class citizen in the Chapel language. Chapel allows expressing parallelism
at various granularity for a wide range of platforms without the need for code
specialization. This expressiveness of parallelism helps programmers to create
portable parallel programs, thereby improving their productivity.

Also, Chapel’s “global-view” programming model allows the user to easily
write a multi-node program as if they are writing a program for a single-node.
For example, suppose D is a distributed domain, which is an iteration space that
is distributed across multiple nodes, one can write the following code to create
a distributed array A with the length of n and assign 1 to it:

1 // D is a block distributed domain, n is a big number
2 var D: domain(1) dmapped Block(boundingBox = {1..n}) = {1..n};
3 var A[D]: int;
4 forall i in D {
5 A[i] = 1;
6 }

Space limitations prevent us from including more details on Chapel. For more
details, see [3].

2.2 Chapel’s GPUIterator Module

In our past work [9], we introduced the GPUIterator module, which facilitates
the invocation of a user-written low-level GPU program. The module provides
a parallel iterator for a forall loop, in which the iteration space is divided into
two spaces: a CPU and GPU space. The original forall iterating over the CPU
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Listing 1.1. A Chapel program with the GPUIterator module.

1 use GPUIterator;
2 proc GPUCallBack(lo: int, hi: int, nElems: int) {
3 // The GPU portion (lo, hi, nElems) is automatically computed
4 // even in multi-node + multi-GPUs settings.
5 // Also, hi-lo+1 == nElems
6 myGPUCode(...);
7 };
8 var CPUpercent = x; // X% goes to the CPU
9 // (100 - X)% goes to the GPU

10 // D can be a distributed domain
11 forall i in GPU(D, GPUCallBack, CPUPercent) {...}

space is executed on the CPUs. Similarly, for the GPU space, it invokes a user-
written callback function where a low-level GPU program is invoked with the
divided GPU space.

Listing 1.1 shows an example of a Chapel program with the module. The
domain D is wrapped in the GPU() iterator. The GPUCallBack() is invoked once
the module has computed a CPU and GPU space, and the user is supposed
to write the invocation of low-level GPU code (myGPUCode()) in the callback.
Also, the user can tweak the CPU/GPU percentage by changing the CPUPercent
(100% goes to the GPU if the user omits the argument).

Let us emphasize that the module is designed to facilitate multi-node, multi-
GPUs, plus hybrid execution in a portable way. This feature is significant because
many of the past approaches that tackle GPU execution in PGAS languages do
not support such a feature. To handle multi-GPUs per node, the module auto-
matically computes a subspace for each GPU and implicitly calls the callback
function multiple times - i.e., the number of GPUs per node × the number of
nodes. Because the module implicitly sets the device ID for each GPU, all the
user has to do is 1) to write a code snippet that gets a local portion of a dis-
tributed array in the Chapel part, 2) to make the device part flexible to change
in iteration spaces -i.e., making it aware of lo, hi, nElems, and 3) not to put a
device setting call.

Listing 1.2 and Listing 1.3 illustrate an example distributed implementa-
tion of the STREAM benchmark (A = B + alpha*C) that enables distributed
hybrid execution on multple CPUs+GPUs nodes. On line 16 in Listing 1.2, in
the GPUCallBack function, it obtains a local portion of the distributed array A,
B, and C using the localSlice() API, which is fed into the external C function
cudaSTREAM() along with a subspace for each GPU (lo, hi, and nElems). The
GPU part in Listing 1.3 includes a typical host program including device memory
(de)allocation, data transfer, and kernel invocation. Note that the kernel (line 3
in Listing 1.3) is flexible to change in iteration space because it only iterate over 0
to nElems-1 that is given by the Chapel part. Also, since localSlice(lo..hi)1

returns a pointer to the head of the local slice, it is safe to assume that &A[0],

1 In Chapel, lo..hi means a range starting with lo and ending in hi (inclusive).
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Listing 1.2. An example distributed implementation of STREAM (The Chapel part).

1 /* stream.chpl */
2 use BlockDist; use GPUIterator; use GPUAPI;
3
4 extern proc cudaSTREAM(A: [] real(32), B: [] real(32), C: [] real(32),
5 alpha: real(32), lo: int, hi: int, nElems: int);
6
7 config const n = 1024: int;
8 config const CPUPercent = 0: int;
9 var D: domain(1) dmapped Block(boundingBox={0..#n}) = {0..#n};

10 // distributed arrays (A, B, C) with the domain D
11 var A: [D] real(32); var B: [D] real(32); var C: [D] real(32);
12 var alpha: real(32) = 0.5;
13
14 proc GPUCallBack(lo: int, hi: int, nElems: int) {
15 // lo, hi, nElems plus device ID is automatically set here
16 cudaSTREAM(A.localSlice(lo..hi), B.localSlice(lo..hi),
17 C.localSlice(lo..hi), alpha, lo, hi, nElems);
18 };
19 ...
20 forall i in GPU(D, GPUCallBack, CPUPercent) { A[i] = B[i] + alpha * C[i]; }

Listing 1.3. An example distributed implementation of STREAM (The GPU part)

1 /* stream.cu */
2 // the kernel part
3 __global__ void stream(float *dA, float *dB, float *dC,
4 float alpha, int nElems) {
5 int id = blockIdx.x * blockDim.x + threadIdx.x;
6 if (id < nElems) dA[id] = dB[id] + alpha * dC[id];
7 }
8 // the host part
9 extern "C" {

10 void cudaSTREAM(float* A, float *B, float *C, float alpha,
11 int64_t start, int64_t end, int64_t nElems) {
12 assert((end-start+1) == nElems);
13 float *dA, *dB, *dC; size_t nBytes = sizeof(float) * nElems;
14 cudaMalloc(&dA, nBytes);
15 cudaMalloc(&dB, nBytes);
16 cudaMalloc(&dC, nBytes);
17 cudaMemcpy(dB, B, nBytes, cudaMemcpyHostToDevice);
18 cudaMemcpy(dC, C, nBytes, cudaMemcpyHostToDevice);
19 stream<<<ceil(((float)nElems)/)1024, 1024>>>(dA, dB, dC, alpha, nElems);
20 cudaDeviceSynchronize();
21 cudaMemcpy(A, dA, nBytes, cudaMemcpyDeviceToHost);
22 cudaFree(dA);
23 cudaFree(dB);
24 cudaFree(dC);
25 }}
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&B[0], and &C[0] in the host part point to A[lo], B[lo], and C[lo] in the
Chapel part respectively.

For completeness, for the CPU space, it is possible to optimize the CPU part
for multiple sub-nodes such as NUMA domains thanks to Chapel. Specifically,
the user may let Chapel’s tasking runtime map sub-nodes to NUMA domains
by doing export CHPL_LOCALE_MODEL=numa.

3 Design

3.1 Motivation

While the GPUIterator module provides a portable way to perform distributed,
hybrid, and multi-GPU execution, in terms of productivity, there is room for
further improvements. As shown in Listing 1.3, most of the host part includes
device memory (de)allocation and host-to-device/device-to-host transfer, which
is relatively larger than the kernel invocation and the kernel itself. Note that
the complexity of the host part can significantly grow as the kernel part grows.
More importantly, in this low-level program, the user has to deal with raw C
pointers and the size of the allocated memory regions, which is abstracted away
in the main Chapel program. This motivates us to design and implement a set of
Chapel-level GPU API which mitigates the complexity of handling the low-level
host part, thereby improving productivity.

As discussed in Sect. 1, our main focus is to develop MID-level/MID-LOW-
level explicit GPU API. We believe this level of abstraction is still important
even when fully automatic approaches (the HIGH-level abstraction) are available
because 1) compiler-generated kernels would not always outperform user-written
kernels or highly-tuned GPU libraries, and 2) it would not be always trivial for
the compiler to perform data transfer optimizations such as data transfer hoist-
ing. Therefore, MID-level/MID-LOW-level GPU API comes in portions that
remain as performance bottlenecks even after automatic compilation approaches.

Also, related to the point on data transfer optimizations, it is worth noting
that, while the calls to our GPU API routines are inside the callback function in
the code examples below, this does not necessarily mean that these calls should
be placed there. The user has the option of placing these calls outside of the
callback function to optimize data transfers.

3.2 MID-LOW-level API: Thin Wrappers for Raw GPU Routines

At the MID-LOW-level, most of the low-level 1) device memory allocation, 2)
device synchronization, and 3) data transfer can be written in Chapel. This level
of abstraction only provides thin wrapper functions for the CUDA/HIP/SYCL-
level API functions, which requires the user to directly manipulate C types like
c_void_ptr and so on. The MID-LOW level API is helpful, particularly when
the user wants to fine-tune the use of GPU API but still wants to stick with
Chapel.
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Listing 1.4. An example distributed implementation of STREAM (The MID-LOW
version).

1 /* steram-mid-low.chpl */
2 use BlockDist; use GPUIterator; use GPUAPI; use CTypes;
3 proc GPUCallBack(lo: int, hi: int, nElems: int) {
4 var dA, dB, dC: c_void_ptr; // device memory pointers
5 ref lA = A.localSlice(lo..hi);
6 ref lB = B.localSlice(lo..hi);
7 ref lC = C.localSlice(lo..hi);
8 const size: c_size_t = (lA.size:c_size_t * c_sizeof(lA.eltType));
9 Malloc(dA, size);

10 Malloc(dB, size);
11 Malloc(dC, size);
12 Memcpy(dB, c_ptrTo(lB), size, H2D);
13 Memcpy(dC, c_ptrTo(lC), size, H2D);
14 cudaSTREAM_kernel(dA, dB, dC, alpha,
15 lo, hi, nElems);
16 DeviceSynchronize();
17 Memcpy(c_ptrTo(lA), dA, size, D2H);
18 Free(dA);
19 Free(dB);
20 Free(dC);
21 };
22 ...
23 /* stream-kernel.cu or equivalent (HIP, DPC++, ...) */
24 void cudaSTREAM_kernel(float* dA, float *dB, float *dC, float alpha,
25 int start, int end, int nElems) {
26 // the kernel code remains the same
27 stream<<<ceil(((float)nElems)/1024), 1024>>>(dA, dB, dC, alpha, start, end, nElems);
28 }

Listing 1.4 is an example program written with the MID-LOW-level API.
On line 2, use GPUAPI; is added to use the GPUAPI module. Also, since this
version manipulates raw C pointers, use CTypes;2 is also required. From line 9
to line 20, there is a sequence of the host code including Malloc(), Memcpy(), a
kernel invocation, DeviceSynchronize(), and Free(). Each GPU API routine is
essentially a thin wrapper for the corresponding CUDA API (e.g., cudaMalloc(),
cudaMemcpy(), cudaDeviceSynchronize(), and cudaFree()).

Now that all of the host part except for the kernel invocation is done at the
Chapel level, the low GPU program part only includes a CUDA kernel invocation
(see line 24). Note that the user has the option of writing the kernel part in
another language (e.g., HIP, DPC++, and so on). For more details, please see
Sect. 4. While this MID-LOW-level abstraction simplifies the host code compared
to the original host part in Listing 1.3, notice that the user still needs to handle
C pointers explicitly (e.g., c_void_ptr, c_sizeof, and c_ptrTo()).

Pitched Memory Allocation and 2D Data Transfer: In addition to
Malloc() and Memcpy(), which are linear memory allocation and data transfer,
the GPUAPI module also supports pitched memory allocation (MallocPitch())
and 2D data transfer (Memcpy2D()). The pitched memory allocation API takes
2D shape information - i.e., width and height, and the underlying raw routine

2 In Chapel 1.27, 1) SysCTypes is replaced with CTypes, and 2) size_t is replaced
with c_size_t.
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Listing 1.5. Allocating pitched memory and perform 2D memcpy

1 var D = {0..255, 0..255};
2 var A: [D] real(32) = 1.0;
3 var widthInBytes: c_size_t = D.dim(1).size:c_size_t * c_sizeof(A.eltType);
4 var spitch = widthInBytes;
5 var dA: c_void_ptr;
6 var dpitch: c_size_t;
7 MallocPitch(dA, dpitch, widthInBytes, D.dim(0).size:c_size_t);
8 Memcpy2D(dA, dpitch, c_ptrTo(A), spitch, widthInBytes,
9 D.dim(0).size:c_size_t, 0);

Listing 1.6. An example distributed implementation of STREAM. (The MID version)

1 use BlockDist; use GPUIterator; use GPUAPI; /* use CTypes; is no longer required */
2 proc GPUCallBack(lo: int, hi: int, nElems: int) {
3 // nElems * sizeof(int) will be automatically allocated onto the device
4 var dA = new GPUArray(A.localSlice(lo..hi));
5 var dB = new GPUArray(B.localSlice(lo..hi));
6 var dC = new GPUArray(C.localSlice(lo..hi));
7 dB.toDevice();
8 dC.toDevice();
9 cudaSTREAM_kernel(dA.dPtr(), dB.dPtr(), dC.dPtr(), alpha, lo, hi, nElems);

10 DeviceSynchronize();
11 dA.fromDevice();
12 // allocate GPU memory automatically deallocated
13 }

may add a fixed pad (pitch) to ensure high memory bandwidth on the device.
The 2D data transfer API is a variant of Memcpy(), which is aware of the pad
information.

Listing 1.5 shows a standalone example program with the pitched memory
allocation and 2D data transfer. First, the 2D domain (D) on line 1 is used to
construct the 2D array (A) on line 2. The arguments to MallocPitch() on line
7 are as follows: dA is a ref variable that stores a pointer to allocated device
memory, dpitch is also a ref variable that stores pitch on the device, hpitch is
the width of the Chapel array in bytes, and the last argument is the height of
the Chapel array (# of elements).

3.3 MID-level API: A Chapel Programmer Friendly GPU API

At the MID-level, as with the MID-LOW-level, most of the low-level 1) device
memory allocation, 2) device synchronization, and 3) data transfer can be written
in Chapel. The key difference between the MID-LOW and the MID levels is that
the MID-level API utilizes Chapel features so the programming style can be more
Chapel programmer-friendly. For example, the user can allocate GPU memory
using the new keyword and no longer need to manipulate C types explicitly.

Listing 1.6 shows an example program written with the MID-level API. As
shown on line 4–6, device memory allocation can be done using new GPUArray().
The corresponding device pointer can be obtained by invoking dPtr() (line 9).
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Host-to-device and device-to-host transfer can be done by using toDevice()
and fromDevice() respectively (line 7, 8, and 11) Note that no device memory
deallocation is required because the deinitializer of GPUArray is automatically
invoked to handle the deallocation as with typical Chapel class objects. In case
the user wants to manually manage device memory, this can be done by doing
var dA = new unmanaged GPUArray(A); and delete dA;.

Comparing Listing 1.6 with Listing 1.4 and Listing 1.3, one can see that the
use of the MID-level API significantly simplifies the host part.

The following discusses the details of API provided at the MID level.

class GPUArray: This class encapsulates the allocation, deallocation, and trans-
fer of device memory. It can accept a multi-dimensional Chapel array and inter-
nally allocates linear memory for it. For 2D Chapel arrays, the user has the
option of using pitched memory by adding pitched=true to the constructor
call, and the allocated pitch can be obtained using pitch() method.

class GPUJaggedArray: This class encapsulates the allocation, deallocation,
and transfer of jagged device memory. We introduce this class because a real-
world Chapel program [10] heavily uses this pattern. Let us discuss our motiva-
tion using a simple Chapel program. Consider the Chapel code shown in Listing
1.7. There is a declaration of class C (line 1–5), which includes an array (x).
Also, on line 7, an array of C, namely Cs, is created. When mapping Cs onto
the device, since Cs is a heterogeneous array, it is required to create an array of
an array using Malloc(). Line 10 shows an example implementation using the
MID-LOW level API. Essentially, it first performs Malloc() and Memcpy() for
each Cs[0].x and Cs[1].x, then performs another Malloc() and Memcpy() for
allocating a device memory region that stores pointers to the device counterpart
of Cs[0].x and Cs[1].x. On the other hand, the MID-level version (line 24)
saves a lot of lines. Essentially like the GPUArray class, all the user has to do
is put Cs.x into the constructor of GPUJaggedArray. Thanks to the promotion
feature of Chapel, Cs.x is promoted to Cs[0..#2].x and the jagged array class
internally performs the same thing as the MID-LOW version does.

3.4 Supporting Asynchrony

While the current implementation of the GPUAPI module does not directly sup-
port asynchronous calls, one can asynchronously invoke GPU-related routines
using Chapel’s async API. Listing 1.8 shows an example of an asynchronous
GPU invocation. Line 1 creates a lambda function that performs the boiler-
plate GPU invocation code with the MID-level API routines. First, the async
API returns a future variable (F) immediately after the lambda function is
asynchronously spawned. Then, the completion of F can be detected by call-
ing F.get() (on Line 9). Note that F.get() blocks until the returning value is
available.

We also plan to directly support asynchronous GPUAPI routines in the
future.
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Listing 1.7. A jagged array example.

1 class C {
2 var n: int;
3 proc init(_n: int) { n = _n; }
4 var x: [0..#n] int;
5 }
6
7 var Cs = [new C(256), new C(512)];
8 const N = Cs.size;
9

10 // MIDLOW
11 {
12 var dA: [0..#N] c_void_ptr;
13 var dAs: c_ptr(c_void_ptr);
14 for i in 0..#N {
15 const size = Cs[i].x.size:c_size_t*c_sizeof(int);
16 Malloc(dA[i], size);
17 Memcpy(dA[i], c_ptrTo(Cs[i].x), size, 0);
18 }
19 const size = N: c_size_t * c_sizeof(c_ptr(c_void_ptr));
20 Malloc(dAs, size);
21 Memcpy(dAs, c_ptrTo(dA), size, 0);
22 // kernel invocation
23 }
24 // MID
25 {
26 var dAs = new GPUJaggedArray(Cs.x);
27 dAs.toDevice();
28 // kernel invocation
29 }

Listing 1.8. An asynchronous GPU invocation example.

1 var F = async(lambda () {
2 writeln("GPU Ctrl Thread");
3 var dA = new GPUArray(A);
4 dA.toDevice();
5 kernel(dA.dPtr());
6 dA.fromDevice();
7 return 1;
8 });
9 if (F.get() == 1) { // F is done }

4 Implementation

4.1 Library Implementation

We implemented the GPUAPI module as an external Chapel module. The module
can be used either standalone or with the GPUIterator module. The actual
implementation and the detailed documentation can be found at [11].

In the current implementation, the module mainly supports NVIDIA CUDA-
supported GPUs, AMD ROCm-supported GPUs, Intel DPC++ (SYCL) sup-
ported GPUs (and FPGAs) through different vendor-provided libraries/frame-
works as shown in Fig. 1. One of the interesting aspects of our implementation
is that there is only a CUDA implementation of the GPUAPI module. We utilize
the hipify from AMD and dpct from Intel to convert the CUDA implementa-
tion to a HIP and DPC++ version respectively. Also, for Intel platforms, it is
possible to run the hipifyed code with hipLZ [14]. More specifically, at the time
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Table 1. How user-written kernels work on different GPU platforms.

CUDA HIP SYCL

NVIDIA � � �
AMD � (via hipify) � �
Intel � (via dpct) � (via hipLZ) �

of installation, our cmake-based build system identifies installed GPUs and gen-
erates an appropriate static (.a) and/or shared (.so) library with the conversion.
(Fig. 2).

Because the cmake-generated library (.a and/or .so) includes all of the MID-
LOW-level API routines and we provide a cmake file that helps an external
cmake project to find this module, it is technically possible to link the MID-
LOW-level library from other languages than Chapel. Also, while the MID-level
API is tightly-coupled with Chapel, we believe it is feasible to port our module
to other PGAS languages.

4.2 The GPU Kernel Part by the User

As we discussed, the user is supposed to write the kernel part using vendor-
provided GPU libraries/frameworks such as CUDA, HIP, SYCL, and so on. The
user can simply write their kernels using their favorite framework and link it with
the corresponding version of GPUAPI library (libGPUAPICUDA.so, and so on).
If there is any conversion required, the user can also utilize our cmake-based
build system. Table 1 summarizes how user-written kernels work on different
GPU platforms.

Fig. 1. Multi-platform support in the GPUAPI module.



GPUAPI 101

GPUAPI.chpl

GPUAPI module

GPUAPI.cu Binary for NVIDIA 
GPUs

Binary for
AMD GPUs

nvcc

hipify hipcc

dpct
Binary for
Intel GPUs

hipLZ

Fig. 2. The implementation of the GPUAPI module.

Also, it is also worth noting that this auto-conversion approach works very
well even with real-world applications. For example, while the kernel part of
the distributed tree search application in Sect. 5 was originally implemented in
CUDA, the hipify tool was able to produce the HIP version flawlessly. Simi-
larly, in [10], we were able to produce the HIP version of a computational fluid
dynamics (CFD) application.

5 Performance and Productivity Evaluations

Purpose: In this evaluation we validate our GPUAPI implementation on different
CPU+GPU platforms. We mainly discuss the performance and productivity of
different levels of GPU API (LOW, MID-LOW, MID) with the GPUIterator
module. The goal is to demonstrate 1) there is no significant performance dif-
ference between the LOW, MID-LOW, and MID versions, and 2) the use of a
higher-level API improves the productivity in terms of lines of code.

Machine: We present the performance results on three platforms: a GPU cluster
and a supercomputer. The first platform is the Cori GPU nodes at NERSC, each
node of which consists of two sockets of 20-core Intel Xeon Gold 6148 running at
2.40GHz with a total main memory size of 384GB and 8 NVIDIA Tesla V100
GPUs, each with 16 GB HBM2 memory, connected via PCIe 3.03. The second
platform is the Summit supercomputer at ORNL, which consists of the IBM
Power System AC922 nodes. Each node contains two IBM POWER9 running
at 3.45GHz with a total main memory size of 512GB and 6 NVIDIA Tesla
V100 GPUs, each with 16GB HBM2 memory, connected via NVLink. The third
platform is a single-node AMD server, which consists of 12-core Ryzen9 3900X
running at 3.8GHz and a Radeon RX570 GPU with 8GB memory.

Benchmarks: We use four distributed mini-applications (Stream, BlackSc-
holes, Matrix Multiplication, and Logistic Regression) and a distributed Tree
Search implementation as a real-world example. We use an input data size of
n = 230 (Stream, BlackScholes), n × n = 4096 × 4096 (MM), nFeatures =

3 Interconnection network between the GPUs is NVLink.
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218, nSamples = 24 (Logistic Regression), and n = 218 (Tree Search). We report
the average performance number from 5 runs.

Experimental Variants: Each benchmark is evaluated by comparing the fol-
lowing variants:

– Chapel-CPU: Implemented in Chapel using a forall with the default par-
allel iterator that is executed on CPUs.

– Chapel-GPU: Implemented using a forall with the GPUIterator module
with CPUPercent=0.

• MID-level: All the GPU part except for GPU kernels is implemented
using the MID-level API, which is a Chapel class based abstraction of
GPU arrays.

• MID-LOW-level: All the GPU part except for GPU kernels is imple-
mented using the MID-LOW-level API, which is a set of thin wrappers
for raw GPU API routines.

• LOW-level: The GPU part is fully implemented in CUDA (on NVIDIA
GPUs) or HIP (on AMD GPUs).

5.1 Distributed Mini Applications

Figure 3, 4, and 5 show speedup values relative to the Chapel-CPU version on
a log scale. In the figures GPU(M), GPU(ML), GPU(L) refers to MID-level,
MID-LOW-level, and LOW-level respectively. While we use the Chapel compiler
version 1.20 with the –fast option, CHPL_COMM=gasnet, CHPL_COMM_SUBSTRAT
E=ibv, and CHPL_TASK=qthreads in this evaluation, we believe the performance
trend will not change when the latest Chapel version is used.

As shown in these figures, for all the benchmarks, there is no significant
performance difference between the MID, MID-LOW, and LOW versions, which
indicates that the overhead of the GPUAPI module can be ignored.

Table 2 shows source code additions and modifications required for using the
GPUAPI. We measure the productivity in term of source lines of code4. The goal
of this productivity experiment is to demonstrate SLOC for both the Chapel part
and the host part are reduced when the MID-level API is used. Note that the
CUDA kernel part is out of the scope of this paper. The results show 1) the
MID-LOW level version requires almost the same lines of code as the LOW-
level version, and 2) the use of the MID-level API significantly decreases the
lines of code. Let us reiterate that the MID-level simplifies the host part more
than what it appears as the lines of code reduction because it avoids the explicit
manipulation of raw C pointers.

4 Our definitions of source code “lines” is based on common usage.



GPUAPI 103

Table 2. Source code additions and modifications required for using the GPUAPI module
in terms of source lines of code (SLOC).

Application Level Chapel Host (CUDA) Kernel (CUDA)

Stream LOW 4 13 6

MID-LOW 16 1 6

MID 8 1 6

BlackScholes LOW 4 13 68

MID-LOW 16 1 68

MID 8 1 68

Matrix multiplication LOW 3 12 10

MID-LOW 14 1 10

MID 8 1 10

Logistic regression LOW 2 15 13

MID-LOW 16 1 13

MID 10 1 13

Tree search LOW 2 16 71

MID-LOW 13 4 71

MID 9 4 71

In terms of performance improvements over Chapel-CPU, for Blackscholes,
Matrix Multiplication, and Logistic Regression, the kernels have enough workloads,
and the GPU variants significantly outperform the Chapel-CPU. Specifically,
the results show a speedup of up to 21k × on the Cori supercomputer, 20k ×
on the Summit supercomputer. For Stream, the Chapel-CPU outperforms the
GPU variants because the data transfer time is significantly larger than the
kernel time. Note that if we only compare the kernel times, the GPU kernel is
faster. However, let us reiterate that our primary focus is to prove that there is
no significant performance difference between the three Chapel-GPU variants.
Also, the use of the GPUIterator can help the user to easily switch back and
forth between the Chapel-CPU and the Chapel-GPU versions.

5.2 Real-world Example: Distributed Tree Search

Here we present the performance and productivity of the GPUAPI module using a
real-world application: distributed tree search [1]. In this evaluation, we use the
latest Chapel compiler version 1.24 with the –fast option, CHPL_COMM=gasnet,
CHPL_COMM_SUBSTRATE=ibv, and CHPL_TASK=qthreads. Note that there is no
Chapel-CPU version of this application.

Figure 6a, 6b, and 6c show speedup values relative to the LOW version on
a single node of each platform with the 95% confidence intervals. Note that, on
the Summit supercomputer, 6 GPUs/node are used without any modifications
to the source code thanks to the GPUIterator module, while the use of multiple
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Fig. 3. Performance improvements of mini applications on the Cori GPUs (log scale,
multi-nodes: 1GPU/node)

Fig. 4. Performance improvements of mini applications on the Summit supercomputer
(log scale, multi-nodes: 1GPU/node)

Fig. 5. Performance improvements of mini applications on the AMD server (log scale,
single-node:1GPU/node)

GPUs gives an error that is unrelated to our modules on the Cori GPUs. Also,
in Fig. 6c, the intervals are not very visible because the numbers are very stable.
As with the mini applications discussed in Sect. 5.1, while there are slight perfor-
mance differences, the use of the 95% confidence intervals indicates that there
is no statistically significant performance difference between the LOW, MID-
LOW, and MID versions. Because this application is highly irregular, the strong
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scalability is not as good as that of the mini applications. However, improving
the scalability is orthogonal to this work.

Fig. 6. Performance improvements of the distributed tree search application.

Also, the last row of Table 2 shows source code additions and modifications
required for this application. The results also show the same trends as the other
mini-applications, where a higher-level GPU API simplifies the Chapel and host
parts.

6 Related Work

In the context of compiling PGAS langauges to GPUs, X10CUDA [7] uses the
concept of places to map a nested parallel loop to blocks and threads on a
GPU. It also provides thin wrappers for low-level GPU API rountines, which is
analogous to our MID-LOW API.

For Chapel, while Sidelnik et al. [13], Chu et al. [6], and recent versions of
Chapel compiler compile Chapel’s forall constructs to GPUs, it is unfortunate
that these approaches are still early and do not support multi-node GPUs or
multiple GPUs on a single node. Also, Ghangas [8] compiles a Chapel statement
containing multiple arrays GPUs with a single kernel. However, performance
results have not been demonstrated yet.

In contrast, our approach is designed to facilitate manual CPU-GPU pro-
gramming for multi-node platforms with Chapel, while keeping Chapel con-
structs as much as possible.
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7 Conclusions

In this paper, we introduced the GPUAPI module, which allows PGAS program-
mers to have the option of explicitly manipulating device memory (de)allocation
API, and data transfer API in their primary language. While it can be used
standalone, when it is used with the GPUIterator module [9], it significantly
facilitates distributed and hybrid execution on multiple CPU+GPU nodes.

We use Chapel as the primary example. Our preliminary performance evalua-
tion using mini-applications and a real-world application is conducted on a wide
range of CPU+GPU platforms. The results show that the use of the GPUAPI
module significantly simplifies GPU programming in a high-level programming
model like Chapel, while targeting different multi-node CPUs+GPUs platforms
with no performance loss.

In future work, we plan to explore further the possibility of using our modules
in different real-world Chapel applications.
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Abstract. With the rise of artificial intelligence (AI) in recent years
and the subsequent increase in complexity of the applied models, the
growing demand in computational resources is starting to pose a signif-
icant challenge. The need for higher compute power is being met with
increasingly more potent accelerator hardware as well as the use of large
and powerful compute clusters. However, the gain in prediction accuracy
from large models trained on distributed and accelerated systems ulti-
mately comes at the price of a substantial increase in energy demand,
and researchers have started questioning the environmental friendliness
of such AI methods at scale. Consequently, awareness of energy effi-
ciency plays an important role for AI model developers and hardware
infrastructure operators likewise. The energy consumption of AI work-
loads depends both on the model implementation and the composition
of the utilized hardware. Therefore, accurate measurements of the power
draw of respective AI workflows on different types of compute nodes is
key to algorithmic improvements and the design of future compute clus-
ters and hardware. Towards this end, we present measurements of the
energy consumption of two typical applications of deep learning models
on different types of heterogeneous compute nodes. Our results indicate
that 1. contrary to common approaches, deriving energy consumption
directly from runtime is not accurate, but the consumption of the com-
pute node needs to be considered regarding its composition; 2. neglecting
accelerator hardware on mixed nodes results in overproportional ineffi-
ciency regarding energy consumption; 3. energy consumption of model
training and inference should be considered separately – while training
on GPUs outperforms all other node types regarding both runtime and
energy consumption, inference on CPU nodes can be comparably effi-
cient. One advantage of our approach is the fact that the information on
energy consumption is available to all users of the supercomputer and not
just those with administrator rights, enabling an easy transfer to other
workloads alongside a raise in user-awareness of energy consumption.
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1 Introduction

In the past decade, artificial intelligence (AI) methods have yielded great
advances in many areas of science and technology. However, growing complexity
in prediction tasks is followed by an equally growing size and complexity in the
AI models. Training such large models requires an enormous amount of compute
resources, as demonstrated by recent publications [1,9]. In addition, the develop-
ment process usually includes multiple test runs and hyperparameter optimiza-
tion, further increasing the needed compute time. While modern accelerator
hardware and large-scale computer clusters allow AI researchers to implement
such models, the extraordinary need for electricity of these IT-infrastructures
poses an increasing challenge, especially with regards to climate change. Recent
studies have therefore placed a focus not only on the predictive accuracy of
modern AI models, but also on their environmental friendliness in terms of
energy consumption and CO2 footprint [23]. Yet, current efforts rely mainly
on estimating electricity consumption from training and prediction (inference)
runtimes [26]. Such approaches can only give a rough approximation and do not
factor in consumption differences of specific hardware components or executed
tasks. To properly gauge the gain in prediction accuracy versus the additional
model complexity, as well as raise user awareness on the energy consumption of
their AI applications accurate measurements of AI workload energy consumption
are needed.

In conventional high-performance-computing, measuring energy consumption
of computer code has been investigated thoroughly. Several studies have used
either external or internal power meters for assessing the power consumption
of commonly used numeric algorithms [5]. For AI models, however, there exists
little work on actual measurements of electricity consumption.

Modern deep learning models are increasingly trained on large computer
clusters, where measurements via external power meters are not feasible. An
alternative is investigating electricity draw of a single device, e.g. a single GPU
via NVIDIAs management library (NVML). However, AI workloads are typically
run on entire compute nodes, which host nodes with more than one accelerator
device or multiple thereof, connected via a fabric. Thus, the energy consumption
of the entire training pipeline cannot be precisely captured by linear scaling
with the number of GPUs utilized as this would neglect the consumption of the
enclosing environment of the accelerator, e.g. CPU, RAM, local disks, fabric,
and so forth. Furthermore, despite the tremendous success of GPUs for deep
learning applications, access to accelerator hardware is still limited, and many
super-computers still host mainly CPU-only nodes.

In order to assess the energy consumption of large-scale neural network train-
ing as well as raising user awareness on the carbon footprint of extensive, and
potentially inefficient, AI workloads, comprehensive, easily accessible and yet
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precise assessment of the nodes energy consumption is needed. However, the
information on hardware power draw usually requires root access to the system
and is therefore not available to common users. Towards this end, the following
study presents whole node energy measurements of two use cases representing
typical deep learning applications, an image classification problem and a time
series forecasting problem. Energy profiles and consumption of these workloads
were evaluated in a way that is available to all users of the system. To highlight
the differences in heterogeneous hardware compositions, model training and pre-
diction is run on different compute node types with and without GPUs. For all
of the experiments, we limit ourselves to measuring the energy consumption in
an as-is state of the worker nodes of the HPC cluster. We explicitly do not opti-
mize the node configuration, power limits and CPU frequencies to the specific
use case, to imitate the usage scenario of a typical user of an HPC system.

The remainder of the paper is organized as follows: Sect. 2 discusses prior
work on the topic of measuring power consumption of compute hardware and
energy-efficient AI. Section 3 introduces the use cases, including model architec-
tures and datasets, as well as the compute environment and energy measurement
tools utilized in the study. Results of the energy measurements are presented in
Sect. 4. Finally, Sect. 5 discusses the found results and future studies.

2 Related Work

Power Aware Computing. Energy Efficient HPC is an important topic for
the HPC community, specifically in the light of exascale clusters. Many efforts
to study and improve the overall energy efficiency of HPC clusters and corre-
sponding aspects are coordinated and conducted as part of the “Energy Efficient
High Performance Computing Working Group” [29].

Many studies are conducted on the energy consumption of HPC systems to
guide the design and develop strategies to improve the energy efficiency of an
HPC clusters as a whole, e.g. [4,16,18]. Additional studies consider optimizing
the energy distribution in an HPC cluster [6,31]. These focus on improving the
overall performance of a cluster, while respecting an overall power limit. Patel
et al.[20,21] and Shin et al. [24] studied the power consumption and behaviour
of an HPC center across many different jobs. Our work shares commonalities
with these studies, however, we focus ourselves on AI/ML workflows and aim at
providing a view of the energy consumption of typical workloads in this domain,
as they are performed by users of HPC clusters on a daily basis. We explore and
compare different possible usage options for these jobs on the cluster, aiming to
incentivise energy efficiency considerations among the users in this domain.

Several authors have published studies on energy measurements utilizing
power meters, which can be categorized into two different approaches: inter-
nal or external ones. Among others Suda et al. [27] used external power meters
via clamp probes with the aim of verifying a power model for workloads. On their
own, these types of measurement are not practical, since their implementation
requires substantial efforts and the approach is hardly suited for larger cluster



Precise Energy Consumption Measurements of Heterogeneous AI Workloads 111

setups, such as high-performance computing clusters. Internal power meters can
be further subdivided based on which parts of a system are measured by it.
On most nowadays available NVIDIA and AMD GPUs internal power meters
are available. These can be read out using high-level libraries and tools, such as
NVML [17] or corresponding tools for AMD. Using NVML to provide real-time
power measurement data for GPUs has been studied and compared to a pro-
posed power model used for predicting power demands of linear algebraic kernels
on GPUs [10]. However, utilizing libraries and tools like NVML yield only power
metrics for the GPUs in a system, which makes out only one part of the energy
consumption of the full system. Other components such as CPU, memory or
local disk, are not taken into account with this approach. Considering the power
draw of all components of a node becomes particularly important for scientists
having the choice of different compute nodes to run their computation on, e.g.
CPU-only nodes and nodes also equipped with GPU accelerators.

Many system vendors are integrating internal solutions for measuring the
power demand of a system, which provide important information to HPC opera-
tors. A study to make information relying on these tools also available to users of
the systems is for example the joint HDEEM project between Bull and Technical
University Dresden (TUD), which aims to provide high resolution and accurate
power consumption metrics [8]. The approach is also used in production at TUD
enabling users to gain information on the energy consumption of their workloads.

Energy Efficiency in AI. Recently, awareness on the energy consumption
and eco-friendliness of modern AI methods has been raised [23]. Yet, there are
only few reports studying the actual energy consumption of modern day AI
algorithms. In general, it is assumed that a reduction in runtime, especially for
training, and/or number of parameters results in more energy efficient networks.
Several authors rely on estimating power consumption based on the number of
used floating point operations per second (FLOPs), e.g. Brown et al. [1]. To
reduce training time, authors employ approaches like pre-training and few-shot
learning [3]. To reduce the parameter count, sparsity is extensively explored in
the literature. So far, these approaches are mostly limited to inference models,
i.e. pruning fully trained models to smaller sizes for deployment on low-energy
(embedded) hardware, e.g. FPGAs or ASICs [14]. However, direct measurements
of the entire energy consumption including all hardware components is rarely
performed. Strubell et al. [26] estimated electricity usage and carbon dioxide
footprint of training, tuning and inference of several well-known large deep
learning models. Their method is based on the runtime of these models, also
factoring in the effects of hyperparameter tuning. In an attempt to further raise
awareness around the carbon emissions of machine learning methods Lacoste et
al. [12] presented a Machine Learning Emissions Calculator, that estimates the
CO2 emission of a given model based on the geographical location of the utilized
server, the type of utilized accelerator and the overall training time of the model.

Li et al. [13] evaluated the power behavior and energy efficiency of convolu-
tional neural networks (CNN) in commonly used deep learning frameworks on
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Table 1. Summary of the computational properties of the use cases Health and Energy.

Use case Model Parameters FLOPs/sample

Health CNN 20.4M 10.14G

Energy LSTM 9.79K 16.13K

both, CPUs and GPUs, namely Intel Xeon CPUs, NVIDIA K20 and Titan X
GPUs. Power draw of different CNNs were assessed via Intel’s Running Average
Power Limit (RAPL) interface for CPU and VRAM [2], and via the NVIDIA
System Management Interface for GPUs. Our work is similar to that performed
by Hodak et al. [7]. In their study, the authors perform measurements of the total
consumed energy as well as relative CPU, GPU and other hardware contribu-
tions in a typical image recognition task. They ran training of an ImageNet-based
Tensorflow benchmark on multi-GPU-Servers, comprising four 32 GB NVIDIA
V100 GPUs and two Intel Xeon Gold 6142 CPUs, and measured both AC and
DC draw over the entire AI workload through power meters embedded in the
servers power supplies as well as through NVML.

3 Experimental Evaluation

In order to evaluate energy consumption of different AI workloads on hetero-
geneous hardware nodes, we performed experimental runs of two types of deep
learning applications (use cases) on different types of compute nodes on a high-
performance computer cluster.

3.1 Workloads

For the use cases, two common types of AI tasks were chosen: a computer vision
classification task and a time series regression task. With the aim of measuring
energy consumption of AI workloads representing typical scientific applications
of deep neural networks, real-world datasets for these two tasks were selected
from the research fields Health and Energy. For both use cases, training and
prediction runs with realistic model configurations were conducted on different
types of large scale compute nodes, and the overall energy consumption was mea-
sured. Table 1 shows a high-level summary of the computational characteristics
of the used deep learning models.

Use Case Energy. For the use case Energy, we chose the task of predicting
future electricity consumption (load) over a 7-day period based on historic data.
In terms of AI workloads, this corresponds to a classical time-series forecasting,
i.e. regression problem. The dataset was derived from the Western Europe Power
Consumption Dataset [22], which consists of five years of load data of 15 Euro-
pean countries. The datasets was prepared to be continuous and complete, i.e.
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Fig. 1. Schematic LSTM architecture for the use case Energy to forecasting electrical
load for a 7-day period.

NaNs were removed and all load curves were brought to a temporal resolution of
1 h through averaging. Samples were normalized separately for each country to
the interval [0, 1]. Training data covers the years 2014–2017, validation and test
data was taken from the years 2018 and 2019, respectively.

A single layer long-short term memory (LSTM) architecture (cf. Fig. 1) with
48 hidden nodes was used to forecast the hourly electric demand for the next
seven days based on the prior seven days load profiles as input [11,15]. The
resulting 48 output features were mapped to the required single output feature
with one fully-connected layer, i.e. each recurrent loop of the model produces
a one-week ahead forecast. While the model itself is rather small in terms of
trainable parameters (cf. Table 1) the recurrence in sequence processing results
in a substantial computation workload.

The model was trained for 30 epochs with the Adam optimizer at a learning
rate of 10−3 and a batch size of 64. Loss was calculated as the mean squared
error (MSE). All related scripts can be found on GitHub1.

Use Case Health. The second use case Health covered the task of predicting
a COVID-19 infection based on an lung x-ray images, i.e. an image classifica-
tion problem. The dataset was taken from the COVID-Net Open Initiative [30]
on Kaggle [32]. It comprises 2,358 images of COVID-19-positive patients and
13,993 images of COVID-19-negative patients, collected from various sources.
We employed a different data split than the one provided by Kaggle, to pre-
vent data sources in training and test data from overlapping. The training set
contains 2,088 positive and 13,696 negative samples, the validation set contains
74 positive and 76 and negative samples and the test set contains 196 positive
and 221 negative samples. Images were transformed by applying a logarithmic
transform and random blurring. For the prediction model we followed the VGG-
19 architecture [25], adding batch normalization and replacing the three fully
connected layers in the end by an average pooling and one fully connected layer.
The model was trained for 250 epochs using the SGD optimizer with a Cosine
Annealing learning rate scheduler at an initial learning rate of 0.1 and a batch
size of 64. Data was augmented during training by resizing, applying random
horizontal flips and random rotations, taking a random crop of 224× 224 pixels
and finally normalizing the image. For validation and testing the images only

1 https://github.com/Helmholtz-AI-Energy/AI-HERO-Energy.

https://github.com/Helmholtz-AI-Energy/AI-HERO-Energy
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Fig. 2. VGG model architecture for the use case Health to predict a COVID-19 infection
based on the x-ray input images.

got resized to the respective size and normalized. The entire code used to run
the model can be found on GitHub2.

3.2 Computation Environment

All experiments are conducted on the Tier-2 HoreKa supercomputing system,
an innovative hybrid cluster with nearly 60 000 Intel Xeon “Ice Lake” processor
cores, more than 220 terabytes of main memory, and nearly 700 NVIDIA A100
Tensor Core GPUs. The system is designed as an energy efficient system, peaking
at rank 25 in the Green500 [28]. HoreKa consists of two partitions, a CPU-only
partition (HoreKa-Blue) designed for highly parallel MPI applications with large
memory bandwidth and an accelerated partition (HoreKa-Green) equipped with
state-of-the-art accelerators for extremely data- and compute-intensive applica-
tions in machine learning. Each of the nodes is a two socket system with Intel
Xeon Platinum 8368 CPUs, 38 cores per socket, and two threads per core. It has
64 KB L1 and 1 MB L2 cache per core and 57 MB shared L3 cache per CPU.
Horeka-Blue nodes feature 256 GB of main memory and one 960 GB NVMe SSD
each. HoreKa-Green nodes are equipped with 512 GB of main memory and four
NVIDIA A100-40 GPUs. The operating system of the nodes is Red Hat Enter-
prise Linux 8.2 with kernel version 4.18.0-193.60.2.el8 2.x86 64, with NVIDIA
driver version 470.57.02, and CUDA version 11.4 for the nodes equipped with
A100 accelerators. Our use cases are implemented in Python 3.8.0 compiled
with GCC 8.3.1 20191121 (Red Hat 8.3.1–5) using the PyTorch framework [19]
versioned 1.11.0.dev20210929+cu111. For the interactive access to the compute
resources, we utilize the available Jupyterhub service, which uses jupyterlab 3.3.2
and jupyter server 1.16.0.

2 https://github.com/Helmholtz-AI-Energy/AI-HERO-Health.

https://github.com/Helmholtz-AI-Energy/AI-HERO-Health
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3.3 Measurement Setup

AI workloads, containing the full pipeline of either model training or inference
for the two different use cases, were run as batch jobs on the HoreKa system. For
measuring energy consumption, we consider four different cases of run setups,
depending on the utilized hardware:

– GPU : The workload was run as exclusive on one A100 GPU of a HoreKa-
Green node, while the other three GPUs were kept idle

– CPU-mix : The workload was run on all 76 CPU cores of a HoreKa-Green
node, while all of the four GPUs were kept idle

– CPU-only : The workload was run on all 76 CPU cores of a HoreKa-Blue
node, which do not contain any GPUs

– Jupyter : Additionally, an entire analysis pipeline including data exploration
and plotting was created in a Jupyter notebook and run on one GPU of a
HoreKa-Green node.

Energy consumption of the workloads was assessed via two different sources.
For one, internal power sensors of the HoreKa nodes were used to measure
whole node energy consumption of the entire workflow. These sensors are part
of Lenovo’s XClarity Controller (XCC), which can be read via IPMI. To enable
access to the energy consumption information without requiring root access on
the nodes or sharing of access credentials to the management interfaces of the
nodes, a slurm plugin is used. This plugin queries the information from XCC and
stores it in slurm’s accounting database as accumulated energy consumption. To
facilitate a reproducibility of our results and applicability of the method also to
other workloads, we rely solely on information which can easily be accessed by
any user of the HoreKa system. For the evaluation, we query the average and
total energy consumption for the jobs from slurm. As a second source of informa-
tion, we utilize NVML to assess the individual energy consumption of the GPUs
for the workloads GPU and Jupyter running on accelerator hardware. In order
to profile the power draw on the GPUs, NVML was queried every 500 ms. For
statistical assessment, runs were repeated five times. We report average measure-
ment parameters for job wall-clock time, average node power draw and overall
workload energy consumption.

4 Results

Use Case Energy. The LSTM model achieved a mean absolute percentage
error (MAPE) of 5.65% on the unnormalized test dataset within the 30 epochs.
Since the test dataset is comparably small and would result in very short infer-
ence runtimes with consequently little to no noticeable energy consumption
above baseline, measurements of prediction energy consumption were conducted
on a separate dataset containing five copies of the training dataset.
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Fig. 3. Jobprofile of the Energy use case, as acquired via NVML.

Table 2. Results of the Energy use case.

Node Consumption [kJ] Average power draw [W] Runtime

Training GPU 680.7± 6.7 665.8± 9.7 00:17:02

CPU-mix 4 856.0± 43.6 644.4± 9.9 02:05:37

CPU-only 2 821.5± 70.8 374.1± 11.0 02:05:42

Prediction GPU 156.9± 3.4 606.6± 8.8 00:04:18

CPU-mix 320.2± 5.9 621.5± 7.9 00:08:35

CPU-only 189.5± 4.8 370.6± 8.7 00:08:31

Jupyter GPU 701.9 – 00:17:26

Figure 3 shows the power draw of the LSTM training and inference workload
on HoreKa-Green nodes both with (green, GPU ) and without (blue, CPU-Mix )
usage of the GPU, as measured by NVML. As expected, when running the
model on the nodes CPU-partition, the GPU stagnates at an idle consumption of
roughly 55 W. For running the model, the GPU consumes an additional energy of
≈30 W, with small drops between epochs being visible. For prediction, a similar
increment in energy consumption can be observed (between 0.05 and 0.3 of the
fractional runtime), with the much longer low-energy idle time towards the end
of the inference run attributed to result saving.

Results of the overall node energy consumption, average power draw and
runtimes of the workload on different node types are given in Table 2. Training
of the LSTM network on one NVIDIA A100 GPU is superior to running it on 76
CPU cores with respect to both runtime and energy efficiency: While GPU runs
consumed only one quarter of the energy the CPU-only runs required, they was
faster by a factor of ≈7.4. Although the average power draw of the GPU runs
is almost twice as much as that of the CPU-only runs, the immense speed-up
achieved through vector processing of the GPU still results in a reduced energy
consumption, even for a inherently sequential problem that is a recurrent neural
network. Interestingly, while runtimes on were very similar for the CPU-only and
the CPU-Mix runs, the additional idle consumption of the GPUs on mixed nodes
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Fig. 4. Jobprofile of the Health use case, as acquired via NVML.

led to a significant increase in energy consumption by a factor of 1.7. Results
for the inference runs however show, that even though jobs utilizing the GPUs
run faster by a factor of 2, CPU-only provides comparable energy consumption.
Again, runtimes on both CPU-only and CPU-mix were comparable, but the
additional power draw of the idle GPUs leads to a higher energy consumption of
the mixed nodes. Furthermore, we find that running a full analysis pipeline (data
exploration, training and inference) in a Jupyter notebook on an A100 of the
HoreKa-Green nodes results in similar energy consumption and runtimes as bash
processing. However, this is under the assumption, that all cells of the notebook
are executed immediately one after another, with no idle-time in between. Since
this is usually not the utilization mode of Jupyter notebooks, additional baseline
consumption of ≈300 W for notebook idle time will be added for real-world
applications.

Use Case Health. The VGG model of the use case Health achieved an accuracy
of 63.79% on the test set. Training the model to full convergence (250 epochs)
took 2 h and 34 min on one A100 GPU, with an overall energy consumption
of 7723.958 kJ and an average node power draw of 835.4W. Since running full
training on CPUs of an entire node would have taken several weeks to complete,
we conducted shortened experiments of 25 epochs to train the VGG model. Due
to the small size of the test dataset and the subsequent difficulties in accurately
assessing inference power draw, prediction runs were modified such that each
sample in the test set was used 10 times for prediction. Results are presented
in Fig. 4 and Table 3. The GPU power draw profile exhibits a similar behavior
as previously the Energy use case: While for the CPU-Mix run on mixed nodes
the GPU stagnates at an idle consumption around 55 W, the training workload
with individual epochs can be clearly seen in the GPU run. With this use case
however being much more compute intensive due to the processing of images
instead of single-value time-series, the additional power draw from the workload
amounts to about 300 W on top of the baseline consumption. For prediction,
a major fraction of the job runtime was used for data loading, which resulted
only in a small increase in energy consumption. The largest contribution to the
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Table 3. Results of the Health use case.

Node Consumption [kJ] Average power draw [W] Runtime

Training GPU 761.7± 17.0 835.6± 6.8 00:15:11

CPU-mix 109 477.1± 1 104.9 651.7± 7.4 1-22:39:43

CPU-only 65 796.7± 4 899.4 392.1± 28.8 1-22:36:31

Prediction GPU 46.7± 2.0 549.5± 14.3 00:01:25

CPU-mix 367.8± 10.2 644.5± 17.1 00:09:30

CPU-only 213.5± 8.6 377.4± 15.6 00:09:25

Jupyter GPU 783.6 – 00:16:06

power draw budget stems from running model predictions towards the end of
the workflow.

Total node energy consumption and runtime of GPU runs is superior to runs
using only CPUs in training as well as inference, even though the CPU-only runs
provide a much lower average power draw. Runs on CPU-only require about 86
times more energy for training than those on GPU, and 4.5 times more energy
for inference. The increase in consumed energy of runs on CPUs is not directly
proportional to the increase in runtime, since prediction runs on CPUs take
≈ 6.3 times as long as runs on the GPU and training runs took about 194 times
as long as on the GPU. Hence the electricity demand of workloads cannot safely
be extrapolated from runtime alone, but there is a hardware specific component,
making CPU-only nodes still relatively efficient in terms of energy consumption.
In any case, runs on CPU-mix yielded the poorest results with respect to energy
consumption as well as runtime.

Running the full training and inference pipeline in a Jupyter notebook results
again in similar values for runtime and energy consumption as the batch job on
a GPU. The power draw resulting from data exploration and plotting appears
to be negligible in comparison to the training workload of the model.

5 Conclusion

In this study, we presented high-precision measurements of whole-node energy
consumption of two different AI workloads run on different heterogeneous node
types of a large scale supercomputer. Our results show that for image-related
deep learning models, running training and inference on a single GPU provides
both shorter runtimes and lower power draw than multi-core CPU nodes. The
massively parallel processing capabilities of the A100 lead to higher energy effi-
ciency due to the significant reduction in runtime. For non-imaging workloads
such as recurrent neural networks for sequential data, inference on CPU yields a
comparably low energy consumption as the GPU runs, providing a valid alter-
native for production runs if there are no runtime constraints.

Our results further demonstrate that energy consumption of composite com-
pute nodes cannot be estimated accurately from linear scaling in runtime of GPU
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consumption. Especially for sequential data problems, a significant contribution
of the energy consumption originates from the baseline of the entire node, e.g.
CPU usage and memory access.

From our experiments, it is further evident that GPU idle time results in a
non-negligible portion of energy consumption. Hence, GPUs should be utilized
for deep learning workflows when available, even if the problem size or network
architecture do not demand it straight away. This aspect also makes a strong
argument for data parallel multi-GPU training, leveraging the compute power
of all accelerators on a node. Finally, we showed that running AI workloads in
Jupyter provides comparable energy consumption to submission via batch jobs,
thereby facilitating the usage of GPUs and allowing for rapid prototyping while
still maintaining energy efficiency.

A major advantage of our approach is the fact that access to metrics of node
power consumption measurements is not restricted to users with administration
rights, but can be queried by every user of the system for his or her workloads.
With this, AI model developers will be sensitized towards the energy footprint of
their models and are able to include considerations on energy efficiency into every
step of the development process. In future studies, we aim to further map out
the energy consumption of different parts of AI workflows through accurately
profiling entire node power draw, as well as investigate the energy efficiency
of modern AI models, namely self-attention-based architectures. Furthermore,
studies taking into account system-level optimization for the power consumption
are foreseen.
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Abstract. The continuously growing complexity and heterogeneity of
system architectures, together with the increased usage of complex and
dynamic workflow, makes the current static usage model of HPC systems
increasingly inefficient. Malleability techniques that allow dynamically
increasing or reducing the hardware allocation of a given application
promise a much more flexible usage mode, in which the use of resources
in a shared system can be maximized. This ISC 2022 workshop has
presented current research and challenges in the area of malleability.
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1 Motivation and Objectives

The current static usage model of HPC systems is becoming increasingly inefficient.
This is driven by the continuously growing complexity and heterogeneity of system
architectures, in combination with the increased usage of coupled applications, the need
for strong scaling with extreme scale parallelism, and the increasing reliance on
complex and dynamic workflows. Therefore, we see a rise in research on malleable
systems, middleware software and applications, which can adjust resources usage
dynamically in order to extract a maximum of efficiency. By providing an intelligent
global coordination of resources usage, through runtime scheduling of computation,
network usage and I/O across all components of the system architecture, malleable
HPC systems can maximize the exploitation of their resources, while at the same time
minimizing the makespan of applications in many, if not most, cases.

Of particular concern is the emerging class of data-intensive applications and their
interaction with classic simulation workloads, driven by the growing need to process
extremely large data sets. However, uncoordinated file access in combination with
limited bandwidth make the I/O system a serious bottleneck. Emerging multi-tier
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storage hierarchies come with the potential to remove this barrier, but maximizing
performance still requires careful control to avoid congestion. Malleability allows
systems to dynamically adjust the computation and storage needs of applications, on
the one side, and the global system on the other.

Such malleable systems, however, face a series of fundamental research challenges,
including: who initiates changes in resource availability or usage? How is it commu-
nicated? How to compute the optimal usage? How can applications cope with
dynamically changing resources? What should malleable programming models and
abstractions look like? How to design resource management frameworks for malleable
systems? Which resources benefit from malleability, and which (if any) should still be
managed statically?

In order to address these challenges, the HPCMALL workshop brought together
researchers from diverse areas of HPC that are impacted or actively pursuing mal-
leability concepts, from application developers to system architects, from programming
model to system software researchers. The workshop also provided a lively discussion
forum for researchers working in HPC and pursuing the concepts of and around
malleability topics shown below.

2 Topics

The workshop targeted original high-quality research and position papers on applica-
tions, services, and system software for malleable high-performance computing sys-
tems. Topics of interest included:

– System and system architecture considerations in designing malleable architectures.
– Emerging software designs to achieve malleability in high-performance computing.
– High-level parallel programming models and programmability techniques to

improve applications malleability.
– Run-time techniques to provide malleable execution models for computation,

communication and I/O.
– Resource management frameworks and interfaces supporting malleable scheduling,

resource allocations and application execution.
– Computing and I/O scheduling algorithms providing and/or exploiting static or

dynamic malleability.
– Use of AI and ML techniques to steer malleability in systems and applications.
– Ad-hoc storage systems and I/O scheduling techniques helping I/O malleability.
– Support for malleable execution of applications in performance, debugging and

correctness tools.
– Energy efficiency and malleability (applications, over-provisioned systems wrt.

power/energy, storage systems, etc.).
– Experiences and use cases applying malleability to HPC applications.

Regular 10-12 page research papers, as well as 6-7 page short or position papers
were considered, in order to cover both more mature approaches in the area as well as
hot and novel concepts in their early stages.
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3 Contributions

The workshop received 10 papers. All of them went through a peer-review process with
at least 3 reviewers. After the review process, 7 good quality papers were accepted:

– IMSS: In-Memory Storage System for Data Intensive Applications. Javier Garcia
Blas, David E. Singh, and Jesús Carretero.

– An Emulation Layer for Dynamic Resources with MPI Sessions. Jan Fecht, Martin
Schreiber, and Martin Schulz, Howard Pritchard, and Daniel J. Holmes.

– On the Convergence of Malleability and the HPC PowerStack: Exploiting Dyna-
mism in Over-Provisioned and Power-Constrained HPC Systems. Eishi Arima,
Isaías Comprés, and Martin Schulz.

– Exploiting OpenMP malleability with free agent threads and DLB. Joel Criado,
Victor Lopez, Joan Vinyals-Ylla-Catala, Guillem Ramirez-Miranda, Xavier Teruel,
and Marta Garcia-Gasulla.

– Detecting interference between applications and improving the scheduling task
using malleable proxies based on application models. Alberto Cascajo, David E.
Singh, and Jesus Carretero.

– QR factorization using Malleable BLAS on Multicore Processors. Adrian Castelló,
Sandra Catalán, Francisco D. Igual, Enrique S. Quintana-Ortí, and Rafael Rodrí-
guez-Sánchez.

4 Workshop organization

4.1 Workshop Chairs

The chairs of this workshop are the three authors of this introduction paper.

– Prof. Jesus Carretero, University Carlos III of Madrid, Spain.
– Prof. Martin Schulz, Technical University of Munich, Germany.
– Prof. Estela Suarez, Juelich Supercomputing Centre, Forschungszentrum Juelich

GmbH, Germany

4.2 Program Committee

The workshop program committee was composed of the following members:

– Fabio Affinito. Cineca. Italy
– Alexander Antonov. Moscow State University, Russia
– Jean-Baptiste Besnard. ParaTools SAS. France
– Andre Brinkmann. Johannes Gutenberg-Universitüt Mainz. Germany
– Iacopo Colonnelli, University of Totino. Italy.
– Norbert Eicker. JSC and Univ. Wuppertal. Germany.
– Hamid Mohammadi Fard. Technical University of Darmstadt. Germany
– Hal Finkel, Department of Energy, USA.
– Javier Garcia Blas. Carlos III University. Spain
– Michael Gerndt. Technical University of Munich. Germany.
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– Balazs Gerofi. RIKEN. Japan.
– Emmanuel Jeannot. INRIA. France.
– Michael Klemm. AMD. Germany.
– Masaki Kondo. Keio University. Japan.
– Erwin Laure. MPCDF. Germany.
– Stefano Markidis. KTH. Sweden.
– Ramon Nou. Universitat Politécnica de Catalunya. Spain
– Ariel Oleksiak. Poznan Supercomputing and Networking Center. Poland.
– David E. Singh. Universidad Carlos III de Madrid. Spain
– Martin Schreiber University of Grenoble-Alpes. France
– Sameer Shende. ParaTools SAS. USA.
– Miwako Tsuji. RIKEN AICS. Japan.
– Marc André Vef. Johannes Gutenberg-Universität Mainz. Germany.
– Carlos A. Varela. Rensselaer Polytechnic Institute. USA.
– Vladimir Voevodin. Moscow State University. Russia.
– Mohamed Wahib. AIST/TokyoTech. OIL Japan.
– Josef Weidendorfer. Technical University of Munich. Germany
– Michele Weiland. EPCC- The University of Edinburgh. UK.
– Roman Wyrzykowski. Czestochowa University of Technology. Poland.
– Shahbaz Memon. Juelich Supercomputing Centre, Forschungszentrum Juelich

GmbH, Germany.

5 Workshop background and perspective

This was the first edition of this workshop, but the intention is to make this an active
workshop over many years. The topic of malleability is under investigation in many
projects and research groups and is seen by many experts as one of the key challenges
to operate systems at Exascale and beyond.

This proposal is a joint effort of the EuroHPC projects ADMIRE, REGALE,
DEEP-SEA, and TIME-X.
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Abstract. LIMITLESS is a lightweight and scalable framework that pro-
vides a holistic view of the system employing the combination of both plat-
form and application monitoring. This paper presents a novel feature for
improving the scheduling process based on the performance prediction and
the detection of interference between real applications. This feature con-
sists of using malleable synthetic benchmark clones (proxies) for the appli-
cations executed in the system with two objectives: (1) build large and rep-
resentative datasets that can be used to train the machine learning algo-
rithms for predicting, and (2) evaluate if two applications can share the
same compute node in order to leverage the unused node resources.

Other related works use detailed micro-architecture independent met-
rics obtained from functional simulators, which are hard to generate in
many new applications. The results are proxies that preserve many of
the original features of the applications (control flow, memory access
pattern, etc.), and their code needs obfuscation to make impossible the
use of reverse engineering. LIMITLESS generates application proxies
based on generic-purpose performance information collected from moni-
toring. It means that other methods may obtain more accurate execution
behaviours. However, LIMITLESS’ proxies generate similar performance
without extracting data from the binaries, without the necessity of man-
aging code or data from the applications, and they can be shared securely
because they have not been generated using any piece of the original code.

LIMITLESS leverages the generated proxies to execute them offline.
Each execution increases the datasets of the machine learning algorithms
to improve the application scheduling. Besides, the executions between
proxies are combined to detect performance degradation (interference)
without the necessity of waiting for the execution of the real applications,
which depends on the users. In this work, we evaluate the proposed proxy
generation approach on a set of benchmarks and applications. We com-
pare the performance obtained during the execution of the proxies and

This work has been partially funded by the European High-Performance Computing
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the applications to show their similarity. Finally, we include an evalua-
tion of the interference detection using this approach. As far as we know,
this is the first work that uses malleable proxies.

Keywords: Malleable proxy · Malleable synthetic benchmarks ·
Performance cloning · Interference detection · Application scheduling

1 Introduction

One of the key challenges in large-scale clusters is to determine as accurately as
possible the status of the system. In this work, we combine system and applica-
tion monitoring in order to provide, not only a more accurate cluster monitoring
but also a scheme that permits to model the application behaviour. The goal
is to generate proxies that can be used as benchmarks and to use those prox-
ies to generate more information to improve the application scheduling in two
ways: by predicting the performance of the applications and by detecting inter-
ference between applications. Initially, we depend on the user and the executions
he wants to run. However, LIMITLESS can perform different actions without
waiting for the original executions due to the proxies.

The use of benchmarks is one of the keys for assessing computer systems per-
formance. Researchers and engineers need to quantify the performance of their
applications by running them many times and in different architectures. Some
uses of those benchmarks are to compare the design alternatives during develop-
ment, test computer systems for guiding development, or enable a fair evaluation
of the performance in different architectures. For example, SPEC, CPU2006,
ImplanBench, PARSEC, etc., are benchmarks that provide suites for evaluating
the performance of general-purpose processors. These standard benchmarks are
generally generated based on open-source programs. Their main limitation is
that they are not representative of real-life applications, and usually, they are
very different from the applications of interest to the developers and researchers.
The alternative consists of using real-life applications, but the code are typically
proprietary. The industry could benefit from the researchers because they can
improve their applications: the computer systems could be designed to provide a
good performance of these applications, or by applying new optimizations. And
the researchers could benefit from the industry by using their real applications to
find better design solutions or studying new research lines based on the results.

This paper presents a new alternative for proxies creation based on the generic
performance information obtained by the LIMITLESS system monitor. The mon-
itor collects the performance metrics during the execution of an application in a
compute node and stores them in a database. Then, the analytic component pro-
cesses those metrics to generate a malleable proxy (using FlexMPI [10]) that repro-
duces the same performance metrics and can be reconfigured in run time.

The proposed proxy generation features three key properties: (1) no infor-
mation of the proprietary application is revealed, (2) the performance metrics
obtained by executing the proxy are similar to the original application so that
the proxy can serve as a benchmark to evaluate possible performance behaviours
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in whatever architecture, and (3) related to the last point, an intelligent sched-
uler could combine executions of proxies, and applications and proxies, to check
if there is interference between them, allowing the system to share nodes between
non-conflicting applications. Note that the malleability in already implemented
in the proxies due to their integration with FlexMPI.

The main contributions of this work are:

– A proxy generation feature to provide synthetic malleable micro-benchmarks
based on the collected performance behaviour.

– An improvement in the application scheduling employing machine learning
algorithms trained with proxies executions.

– A methodology to improve the application scheduling through the malleable
proxies, combining them with the real applications to identify interference.
In this context, malleability means that the system can use a single proxy for
evaluating different configurations (number of processes) at run-time.

The structure of the paper is as follows: Sect. 2 describes the architecture
organization; Sect. 3 describes LIMITLESS’s features for providing proxy gener-
ation, Machine Learning training algorithms, and the studies of the interference
between applications; Sect. 4 provides a practical evaluation of the performance
metrics obtained from the proxy executions, the accuracy of the prediction algo-
rithms, and the results of the studies related to the interference between appli-
cations; Sect. 5 shows relevant works related to our proposal. Finally, Sect. 6
summarizes the main conclusions and future work.

2 Monitor Architecture

Fig. 1. General overview of the system architecture and interrelation with other com-
ponents.

LIMITLESS is a light-weight scalable monitor that operates on each compute
node and provides information about available system resources and the per-
formance of the applications that are being executed. Figure 1 shows a general
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overview of the LIMITLESS architecture. It is integrated with other compo-
nents like the application scheduler, FlexMPI and CLARISSE runtimes to extend
its capabilities, for example, including features for application-level monitoring.
LIMITLESS includes four main modules: a System monitor that collects the
performance metrics from the cluster, an ElasticSearch database [6] that pro-
vides persistent storage, Kibana, a GUI for displaying the cluster information
in a user-friendly format, and an Analytic component that analyses and models
the executing applications, and generates proxies.

LIMITLESS Analytics (LAN) is the component that deals with the storage,
visualization, communication with the scheduler and is responsible of the appli-
cation performance prediction. It stores and manages the application models,
generates the predictors, trains and executes the machine learning algorithms,
and it generates the malleable proxies.

In order to explain the system dataflow, the arrows in Fig. 1 include numbers.
When one application is executed, the scheduler notifies LIMITLESS Analytics
(arrow 1) about the application characteristics (which is used to identify and clas-
sify the application). After that, when the applications are executed two different
metrics are collected simultaneously: at node level to the monitor (arrow 2) and
application level to FlexMPI and CLARISSE (arrow 3). Then, both metrics are
processed by the respective runtimes and are written into Elastic search (arrows
4 and 5). Then, the LIMITLESS analytics creates an application model using
the information stored in ElasticSearch (arrow 6). Once the application model is
generated, the analytics also creates the proxy associated with the application,
which can be used to generate more performance metrics to increase the size
of the dataset. Then, the predictors are refined using this offline information.
And finally, the prediction model (arrow 7) is sent to LIMITLESS to predict
the performance of the applications on each node. During all these processes,
Kibana may be used to visualize (arrow 8) the cluster status.

2.1 System Monitor

The LIMITLESS monitor is designed to provide performance information of the
nodes and applications in large scale systems. LIMITLESS allows to change the
the monitoring period (also called sample interval) online, having one different
for each node, and without the necessity of restarting the system or the monitor.
The monitoring interval can be set in a range of time from hours to seconds and
also sub-second. Moreover, the overhead in the compute nodes is low (<1% in
CPU consumption and a memory footprint of 3890 KB in resident), which means
that the monitoring does not interfere with the applications.

The system monitor consists of one LIMITLESS Daemon Monitor (LDM)
per node, which periodically collects the performance metrics; a set of LIM-
ITLESS DaeMon Aggregators (LDAs), that forwards the information from the
LDMs to other aggregators or servers; and the LIMITLESS DaeMon Server
(LDS) that gathers and stores the monitoring information in ElasticSearch. The
deployment over the architecture is done hierarchically, generating a data flow
from the nodes (LDMs) to the main server (LDS) and the database. The user
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Fig. 2. Designed methodology to create the proxy benchmarks based on the monitoring
data, and how that new data is used to produce more accurate predictors.

defines the hierarchy, but the optimal design consists of mapping the hierarchy
with the network topology.

3 Building Synthetic Micro-benchmarks

The proposed proxy generation process can be seen in Fig. 2. The first step is the
application characterization. This process consists of collecting the performance
metrics associated with the running applications. The LIMITLESS Monitor is in
charge of providing this collection of metrics. The execution time is also obtained
from the scheduler. The second step consists of storing the performance metrics
associated with each application in the database. Then, the analytic component
generates a model of each application based on the collected performance met-
rics. Finally, the last step is to generate the proxy based on that model, resulting
in an executable that tries to reproduce the same performance metrics as the
original application.

The LIMITLESS Analytic component uses the performance models to gen-
erate the proxy benchmark. We extend the previous works by a new lightweight
proxy generation that do not contain proprietary information, can be shared
without any issue, do not need input data, and it is malleable. However, there
are also some weaknesses. Note that the resulting proxies are not as accurate as
other proposals due to the general-purpose source data.

The LIMITLESS’ scheduling policies have been designed for clusters that
use shared nodes. They can be applied to clusters with exclusive resource allo-
cations, but they have no potential for improvement. There are three strategies
to schedule the applications: the first one is based on monitoring information,
the second one is based on prediction, and the last one is based on proxies uti-
lization. The first alternative was implemented in [2] and uses the monitoring
information to make decisions about the application schedule depending on the
available resources, the performance of the running applications and other user-
defined metrics. The second alternative uses the generated application models to
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predict the future performance of the applications to make decisions about appli-
cation scheduling in advance, which is a process that does not consume resources
or CPU. However, this alternative depends on the accuracy of the predictors.
The third strategy consists of using the proxies to combine their executions with
other applications to identify pairs of applications that can run concurrently in
the same compute node (to leverage the unused resources). The concepts of the
second and third strategies are explained below.

In order to have a large dataset for the training and test phases, the frame-
work executes the proxies multiple times until the accuracy of the prediction
algorithms enhanced until 85%. Typically, during our tests, this value is achieved
when the applications have been executed three times. However, the proxies are
not as much accurate as the original application, which means that the training
with proxies needs more executions. During our tests, we achieved that accuracy
with 10 executions. Instead, LIMITLESS uses the compute-nodes to execute the
proxies when there are free computational resources, and the scheduler does not
have tasks ready to be run.

3.1 Application for Improving Machine Learning Algorithms

Deep-learning networks perform automatic feature extraction from the datasets
independently. Most traditional machine-learning algorithms need to analyze
large amounts of data in order to provide accurate predictions, and those datasets
has to be large and representative enough of the features that the users want to
extract.

The feature extraction process can take a long time to accomplish using sta-
tistical analysis by hand. Besides, there is no applications for generating well
datasets for training, validating and processing. However, the more data a net
can train on, the more accurate it is likely to be. So, the fact of having large
datasets with representative data for each feature is directly related to the accu-
racy improvement.

Following this idea, LIMITLESS uses the proxy generator to produce new
synthetic micro-benchmarks to execute at non critical hours and generate more
data. Each execution of an application proxy is stored as a model of the original
application, increasing the dataset for that application. Then, this dataset is
used by the prediction algorithms to predict the performance of the running
applications. Predicting the performance behaviour permits the scheduler to
improve its policies, making decisions based on possible future scenarios. This
proposal is the continuation of a previous work [2] and [3], in which LIMITLESS
uses monitoring information to schedule the jobs dynamically. The proxies allow
the scheduler to predict possible future states of the nodes and applications.
Currently, this information is used to perform dynamic application scheduling
based on predicting the future states of the cluster.

Note that this scheduling strategy can be used when an application has run
one time because LIMITLESS generates the proxy. Then, the proxy model is used
to train and predict. This process substitutes the human action of executing the
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applications by hand, saving time until the users re-run their applications, and
without consuming resources.

3.2 Application for Application Interference Analysis

One of the main objectives to generate these proxies based on application mon-
itoring is the interference evaluation when two applications are running in the
same node (note that one application could use more than one node with a
different number of processes). This situation can occur when the scheduler allo-
cates the jobs in non-exclusive nodes in order to perform a better utilization of
the resources. With this configuration, depending on the available resources of a
certain compute node, another application can share the unused ones. However,
there is a potential risk of performance degradation (interference) between them.
To improve the scheduling task, we propose the use of our malleable proxies to
generate a profiling study under different workloads while a real application is
running in the system.

To know if there is interference between two jobs (two applications, an appli-
cation and a proxy, or two proxies), the system collects the performance metrics
of the applications at the beginning, during a short period of time when the
application is running exclusively in the node. Then, when another application is
allocated in the same compute node the same performance counters are collected.
By comparing the exclusively-collected and the shared-collected metrics, the sys-
tem can identify if there is performance degradation. Using this information, the
scheduler can make decisions about the scheduling, for instance migrating one
of them to avoid the interference, or evaluating if that interference is mitigated
when the number of processes is increased or decreased.

The collected information results in three performance counters: RTIME indi-
cates the CPU time per group of iterations, CTIME is the communication time
per group of iterations, and finally the execution time TIME. The execution time
indicates if there is generic interference between two applications: if the execution
time of an application is lower than the obtained when another application is
running in the same node, it means that the second application is interfering with
the first one. However, using the other counters, the system can identify more
details about the reasons behind the performance degradation. This information
contributes to making decisions to avoid it. For instance, if the interference is
produced at CPU-level, the second application could reduce its processes to mit-
igate it, or the scheduler could move the second application to another compute
node. FlexMPI performs these operations of expanding, reducing and migrating.
It allows the application to increase or decrease its processes and redistribute
the data every reconfiguration. Note that there is no necessity to kill the job
and restart it with the new configuration. In the case of communication-based
interference, the solution could be the reduction of the number of processes to
reduce the communication between them.

Currently, the malleable proxies are relevant because, during the execution
of the real application, the proxies can be run with different configurations: the
scheduler, employing FlexMPI, can reconfigure a proxy from 2 processes to n to
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collect information about the performance and the interference. The objective
is to evaluate different configurations to generate a scalability model that could
support the scheduler with the scheduling making decisions. Note that, different
from the last strategy, this one consumes computational resources due to the
concurrent execution of the proxy and the applications. However, the interference
evaluation is done with only one execution of the original application and one
execution with the proxy to evaluate the different scenarios, which is faster than
executing the original application and every configuration of the proxy.

4 Evaluation

We have implemented a proof-of-concept of application proxy generation based
on CPU, memory and communication usage. We do not use profilers or perform
reverse engineering like other related works.

The evaluation has been divided into three sections. The first one shows a
comparison between the original benchmark and the proxy based on it. The
original benchmarks used come from the Princeton Application Repository for
Shared-Memory Computers (PARSEC) [14], which is a benchmark suite com-
posed of multi-threaded programs that are focused on emerging workloads, and
NASA Advance Supercomputing (NAS) Parallel Benchmarks (NPB) [11], which
consists of a small set of applications designed to evaluate the performance of
parallel supercomputers. The second section consists of a brief evaluation of the
predictors when LIMITLESS uses the proxies to train the algorithms instead of
the original applications. Finally, the third section corresponds to the evaluation
of the interference produced between applications and proxies.

The evaluation has been done in a physical platform that consists of eight
compute nodes. One partition of the cluster contains six nodes with Intel(R)
Xeon(R) E7 with 12 cores and 128GB of RAM in the other. The second partition
contains two nodes with Intel(R) Xeon(R) Gold 6212U CPU @ 2.40GHz with 24
cores and 315GB of RAM. The connection between nodes is a 10 Gbps Ethernet.
The I/O is based on Gluster parallel file system.

4.1 Proxy Accuracy

The different benchmarks used for this evaluation includes, as we have indicated
before, a set of applications from PARSEC, NPB and the Jacobi method. The
used benchmarks are:

– Jacobi: This is an algorithm for determining the solutions of a diagonally
dominant system of linear equations. Each diagonal element is solved for,
and an approximate value is plugged in. The process is then iterated until it
converges.

– Integer-Sort: This is a kernel that performs random memory access. It belongs
to the class of bucket sort algorithms which perform an all-to-all communi-
cation pattern (through OpenMP in this case).
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– Multi-grid: This benchmark solves a 3D Poisson equation using a V-cycle
multigrid method. It exhibits structured, long range communications.

– Bodytrack: This application tracks a human body with multiple cameras
through an image sequence.

– Blackscholes: This application calculates the prices for a portfolio of Euro-
pean options analytically with the Black-Scholes partial differential equation
(PDE). There is no closed-form expression for the Black-Scholes equation and
as such it must be computed numerically [13].

Figure 3a shows the performance behavior of the Jacobi method. It exhibits
characteristic CPU, memory and communication patterns. The CPU phases are
correlated to the memory and the communication phases. Once LIMITLESS
has modelled the application, the LAN component generates its proxy, which
produces the performance behavior that can be seen in Fig. 3b.

Fig. 3. Jacobi I/O model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

The next two figures (Figs. 4a and 4b show the performance behavior of
Integer-sort (IS) and Multi-grid (MG) benchmarks from the NAS Parallel Bench-
marks. Figure 4a shows the performance behavior of the Integer-sort benchmark.
In this case, the execution performs a series of computations, including a gradual
increase in memory usage until the data load is complete (the first 30 s of the
execution). Figure 4b corresponds to the performance behavior obtained from
the proxy execution. In this case, the CPU usage is a bit higher as the original
due to the overhead of the memory replication.

Figure 5a shows the performance behavior of the Multi-Grid benchmark. This
use case is similar to the last one (and similar to the rest of the benchmarks of
the NPB 1). MG also performs a series of computations keeping the CPU and the
memory barely constant along the execution time. Figure 5b corresponds to the
performance behaviour obtained from the proxy execution, which is reproduced
with high fidelity.

Figures 6a and 6b show the performance behavior of Bodytrack and Blacksc-
holes benchmarks from the PARSEC Benchmarks. The first one corresponds
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Fig. 4. Integer-Sort model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

Fig. 5. Multi-Grid model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

to a computer vision workload, which performs medium working sets of com-
putation. The second one is the simplest of all PARSEC workloads because it
performs small working sets with no communication until execution end. The
first one shows the performance behavior of Bodytrack benchmark. It consists
of seventeen computation phases that are well replicated by the proxy in the
second figure. There are no significant changes in the memory consumption, and
it keep constant along the time.

The performance of the last original use case can be seen in Fig. 7a, which
corresponds to Blackscholes benchmark. It performs an unique computation (but
longer) phase at the middle of the executions. At the end of the execution there
is a peak of communication. The performance metrics obtained from the proxy
execution can be seen in Fig. 7b.

As it can be seen, in all the cases the proxy program is able to reproduce
the original workload, despite the fact of existing small differences between the
original program and the proxy. It is due to LIMITLESS does not perform deep
profiling of the applications to produce 100% accurate proxies. Instead, LIMIT-
LESS tries to build generic proxies that reproduce, with certain accuracy, the
performance behaviour, the computation phases, the memory consumption and
the network traffic. Taking all into account, LIMITLESS uses these proxies offline
to generate new data to refine faster the performance predictors. It is important
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Fig. 6. Bodytrack model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

Fig. 7. Blackscholes model. The X-axis represents the time in seconds while the Y-axis
represents the usage percentage.

to highlight that the predictors are re-built every time new model is stored in
the LIMITLESS database, so the proxy programs improve their accuracy over
the time.

4.2 Prediction Algorithms Improvement

LIMITLESS includes one analysis method to predict the performance of the
applications. It is based on multi-variable analysis, and uses a federation of
machine learning algorithms: Nearest Neighbour (NN), AdaBoost and Support
Vector Machines (SVM). The purpose of having this prediction feature is to
improve the application scheduling by means of evaluating possible future states
of the system. If the scheduler needs to schedule an application App, it can
predict the complete behaviour of App, select better nodes to run App, or decide
if any of the current running applications could share a node with App.

Regarding the accuracy by using proxies, Table 1 shows the accuracy of the
predictors using the five use cases previously described. Only the first execution
stores real data in the dataset. Hence, another 20 execution patterns are stored
using proxies. At first, it is important to know that these machine learning
algorithms showed an average accuracy of 97% by using real executions and
patterns. As it can be seen in Table 1, the average accuracy for all these use
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cases is 87.5% (77.6% for memory patterns and 97.4% for CPU patterns). Note
that these values include a tolerance of 3% (if both, the original and predicted
values, have a difference within this range, we consider the prediction a hit). CPU
is better predicted because generating CPU loads is easier than other factors.
However, memory, I/O, and communications are harder to replicate without
using the same code structure and operations, as [8] and [17] suggest. In our case,
we do not try to consider the memory pattern, the execution flow, the system
calls used, etc., which should improve the accuracy. Instead, we try to generate
generic algorithms to provide similar proxies to replicate the performance of the
original applications.

Table 1. Accuracy of the machine learning algorithms using datasets without real
application executions, taking into account a tolerance of +/–3%. Note that the first
execution is provided by the real application (first execution in the system), and then
it is used as a model for generating the proxies.

Application Memory CPU

BS 55% 97%
BT 92% 98%
IS 50% 99%
MG 99% 99%
JIO 92% 94%

4.3 Interference Detection Using Malleable Proxies

Fig. 8. Use case Jacobi - comparison between the execution time of Jacobi instances
running concurrently in the same compute node and the same executions using proxies.
The interference is directly related to the execution time.
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Fig. 9. Use case Gradient - comparison between the execution time of Conjugate Gradi-
ent instances running concurrently in the same compute node and the same executions
using proxies. The interference is directly related to the execution time.

In this section we show two examples of how the system studies the interfer-
ence between two applications using the malleable proxies. With the information
related to the interference analysis, the scheduler is able to make more precise
decisions for future executions, knowing which applications are compatible (i.e.
both can share a node without performance degradation). The following tests
have been focused on the second partition of the cluster. Note that the applica-
tions can be run in more compute nodes, however only the last allocated node
could have available resources to share with other applications. For example,
App1 requires 28 processes and App2 20 in a cluster with two nodes with 24
cores each. The scheduler will allocate 24 processes in the first node and the other
4 processes in the second node for App1. As there are enough free resources in
the second compute node, the scheduler can allocate App2 on them.

Following this idea, the first use case corresponds to the Jacobi I/O appli-
cation. The second use case corresponds to the Conjugate Gradient algorithm.
Figure 8 shows the execution time of the Jacobi use case under different condi-
tions. The experiments start with the execution time of the Jacobi application
running in an exclusive node. Then, each experiment corresponds to a Jacobi
instance with 12 processes (in blue) combined with another instance with pro-
cesses from 8 to 28 (in orange). The objective is to quantify the interference
under different scenarios. As it can be seen, the interference reaches the max-
imum value with 12 processes per application because all the cores are in use,
and both instances are performing the same operations.

The same scenario is proposed in Fig. 9 with the Conjugate Gradient use case.
In this scenario, the evaluation is done between 8 and 16 processes due to the
size of the problem. There is no possibility to increase the processes because of
the data redistribution. The same behaviour can be observed in the 12-processes
experiment. Before and after this, the interference is lower because the interfere
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operations overlap in a lower percentage in the time because the load changes
on each experiment (load distribution between processes).

The last scenarios have been done statically, with the proxies previously con-
figured with the concrete number of processes. However, due to the malleability,
the same experiments can be done in a row, executing one instance of Jacobi
or Gradient, and a malleable proxy that increases its number of processes peri-
odically. The results of these experiments can be seen in Tables 2 and 3. They
show the overhead of performing the interference study using malleability. Note
that each experiment takes the time per iteration instead of the execution time
(which multiplied by the number of iterations results in the estimated execution
time). Taking into account the overheads, the difference between the static and
the malleable evaluation is the time needed to get the results: 32,734 s for the
first use case and 44,868 s for the second one with the static model. In the case
of the malleable mode, the time needed is 3850 s for the first one, and 6003 s
for the second one. Note that the executions start with 8 processes. Malleability
generates overheads for process creation/destruction, but it is compensated by
the time saved when the application is running with more processes.

Table 2. Jacobi use case - Interference evaluation using malleability with one proxy,
from 8 processes to 28.

N. procs Expand/shrink time (s) Data redistribution

8 to 12 0.891120 0.121103

12 to 14 0.949042 0.116333

14 to 16 0.898925 0.114143

16 to 18 0.901130 0.120974

18 to 20 0.908145 0.114886

20 to 24 0.909972 0.104716

24 to 28 0.907456 0.104094

28 to 8 0.017645 0.131265

Total overhead 6.383435 0.927514

Table 3. Gradient use case - Overhead using malleability with one proxy, from 8
processes to 16.

N. procs Expand/shrink time Data redistribution time

8 to 12 0.087823 0.125488

12 to 14 0.088597 0.105049

14 to 16 0.935568 0.115070

16 to 8 0.002273 0.158980

Total overhead 1.111978 s. 0.5048587 s.
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5 Related Work

In this section we introduce some related works that are relevant in fields of
monitoring, application proxy generation and scheduling. Unfortunately, it does
not contains any related work about malleable proxies, because, as far as we
know, our proposal is a novelty.

The main goal of the authors in [9] is to provide easy-to-use, portable, trans-
parent, and efficient instrumentation tools (called Pintools) that are written in
C/C++ using Pin’s rich API. They provide different instrumentation than other
similar tools, for example, Valgrind and dynamoRIO. The instrumentation does
not interfere with the loads/stores in the registers. The authors provide a com-
parison between PIN, Valgrind and dinamoRIO, where we can observe that PIN
and dinamoRIO outperform Valgrind without instrumentation, and PIN out-
performs both Valgrind and dinamoRIO when we consider performance with
instrumentation.

In [4] the authors proposed a synthetic proxy generation to (1) reduce the
simulation time employing these proxies generated instead of the original appli-
cations, and (2) share these proxies for computer architects, as some of the
specific target applications are proprietary, and vendors hesitate to share them.
They provided the synthetic clones for CPU2006 and ImplanBench workloads.
The metrics used include the Memory Level Parallelism (MLP) of those work-
loads to estimate the burstiness of accesses to the main memory, and the features
needed to characterize a benchmark are: a Statistical Flow Graph (SFG) that
is used to capture the control flow behaviour; a branch prediction algorithm
based on the branch transition rate; the Instruction Level Parallelism (ILP)
in the workload; and the memory access pattern. Instead of capturing data to
get the memory access pattern, the authors used a stride base memory access
(because Joshi et al. concluded previously in [7] that most of the load and store
instructions in CPU200 workloads have that pattern).

Later, in [5], the authors proposed a framework that can generate proxies for
real-world multi-threaded applications based on: shared caches, coherence logic,
out-of-order cores, interconnection network and DRAM. This framework is eval-
uated by generating proxies from the PARSEC benchmark suite and comparing
their results in terms of performance. Their solution consists of extracting per-
formance information from the applications and then generating the code for
the proxies based on a C template with some options. The main benefit of cre-
ating and using these proxies is that they have used a simulator to calculate
the energy consumption of different workloads and different parameters, and the
simulations are four magnitude orders faster using the proxies due to the number
of instructions executed (millions versus thousands of instructions).

In [16] the authors proposed code mutation (to generate application prox-
ies), a technique that mutates the original code of a real application to make
harder/impossible reverse engineering. Their objective consists of allowing the
distribution of those proxies that have the same behaviour (in terms of perfor-
mance) as the original. To test the results, they use the SPEC CPU2000 and
MiBench benchmarks. They also provide a comparison between the different
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related works for code mutation, because the approaches differ in the way to pre-
serve the proprietary application’s memory accesses and control flow behaviour.
The code mutation uses the same code structure by maintaining the execution
flow but using different instructions, operations and registers. In these cases, the
mutant code has the same execution time as the original application, which is
one of the main objectives.

In [15] the same authors as the last related work propose a framework to
generate synthetic benchmarks based on real applications. To do that, the frame-
work performs different profiling analyses, similar to reverse engineering. Based
on that set of instructions, data and code information, the framework generates
an application in a high-level programming language (C) that fulfils the perfor-
mance requirements. Finally, the framework performs a semi-random obfuscation
for avoiding the possibility of generating similar code as the original application,
but with smaller number of instructions.

Clone morphing [17] is different from Clone workloads. The second one tries
to copy in an application its performance behaviour, without providing real
information about the original application. The first one proposes systematic
changes to clone the behaviour of the application focusing on certain features.
In this case, this program copies the cache/memory patterns for each application.
Their main contribution is the systematic method for producing new proxies with
performance behaviours that are the result of the combination of more than one
application. The main weakness of this work is that the authors focus their work
on the cache and memory patterns.

In [12] the authors proposed PerfProx, another alternative to build proxies
based on real applications. However, this related work differs from other previ-
ous works because their proxy generator tries to replicate the performance of the
applications based on the performance counters (similar to our proposal), and
it is only focused on database processes. PerfProx directly genetares a general-
purpose proxy executable. They have evaluated their proposal on Casandra,
MongoDB and MySQL running both the data-serving and data-analysis on dif-
ferent platforms.

In [1] the authors proposed SynFull, a synthetic traffic generator that cap-
tures both applications and cache coherence behaviour to evaluate NoCs (Net-
works on chips). SynFull provides a novel technique for modelling real application
traffic without the need for expensive, detailed simulation of all levels of the sys-
tem. The authors determined the key traffic attributes that a cache-coherent
application-driven traffic model must capture, including coherence-based mes-
sage dependencies, application phase behaviour and injection process. So, this
work is focused on modelling the network and the cache coherence traffic. As a
result, SynFull attains an overall accuracy of 10.5% across the three configura-
tions for all benchmarks relative to full-system simulation.

In contrast to the previous related works, the objective of this proposal is
not to replicate the applications accurately. Instead, our goal is to reproduce
the performance of the applications without extracting data from the binaries,
without the necessity of dealing with code or data from the applications, and
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without a big penalty in terms of overhead. However, this research line is relevant
because more accurate proxies will produce more accurate performance counters,
and they will increase the accuracy of the predictors. Moreover, the LIMITLESS’
proxies are malleable using FlexMPI, which allows dynamic reconfiguration of
the number of processes in run time. Due to this, the system is able to analyze
different configurations of the same application proxy to discover its scalability
and its impact on other applications (interference).

6 Conclusion

In this paper, we introduce a new feature on LIMITLESS, a lightweight mon-
itoring and scheduling framework that was designed to monitor and schedule
the execution of the applications on large-scale computing infrastructures. This
feature consists of creating synthetic micro-benchmarks (proxies) from the appli-
cations executed in the cluster, based on the performance models that LIMIT-
LESS already produces in an iterative fashion. One of the main characteristics
of the framework is the performance prediction, which allows the scheduler to
improve its tasks. It generates proxies based on the collected data and then uses
those proxies to generate new execution data, which are included in the dataset
to train the networks and the machine learning algorithms. With this proposal,
LIMITLESS can predict the application performance with one execution and
without user intervention. Besides, those application proxies can be shared to
exhibit the performance of the real applications that have been running in the
platforms because they do not contain proprietary information nor include any
piece of code of the original application. Moreover, the system uses different
application proxies to perform interference studies between applications, which
allows the scheduler to share nodes between compatible applications. Note that,
in case of performance degradation (interference) during the execution of real
applications, the system will detect that situation, avoiding it by means of appli-
cation migration or increasing or decreasing the processes using the malleability
features.

As future work, we are studying the possibility of including a more precise
application characterization to replicate, not only the performance metrics but
the performance behaviour: FLOPs, IPC, syscalls, I/O phases, etc. Currently, it
is not an option because we want to keep the overhead in the compute nodes as
lower as possible.
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Abstract. The current static job scheduling on supercomputers for
MPI-based applications is well known to be a limiting factor for the
exploitation of a system’s top performance in terms of application
throughput. Hence, allowing fully flexible and dynamically varying job
sizes would provide multiple advantages compared to the current app-
roach, e.g., by prioritizing jobs dynamically and optimizing resource
usage by transferring resources economically.

A critical step in achieving dynamic resource management with
MPI on supercomputers is the development of sound and robust inter-
faces between MPI applications and the runtime system. Our approach
extends the concept of MPI Sessions, a new concept introduced with
MPI 4.0, by adding new features to support varying computing resources
via the MPI process set abstraction. We then show how these features
can be used, as a proof of concept, to request (active) and cope with
(passive) varying resources from an application’s perspective. To vali-
date of our approach, we develop libmpidynres, a C library providing an
emulated MPI Sessions environment on top of existing MPI implementa-
tions without MPI Sessions support, which we then use to integrate our
proposed extensions to the interface specification. Using this proof-of-
concept environment, we show how an MPI Sessions enabled application
can use process sets to handle dynamically varying resources.

Keywords: MPI · MPI Sessions · Dynamic resources · Resource
management

1 Introduction

1.1 Motivation

Job scheduling systems for MPI-based applications allocate a fixed amount of
resources (cores, nodes, GPUs, FPGAs, . . . ) for the job’s runtime. This is a
strong constraint on resource usage, leading to various inefficiencies, e.g., idling
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cores, lack of taking runtime-changing resource requirements into account, to
name just a few.

To solve this issue, dynamic resources, meaning that the number of available
resources can change during an application’s execution, need to be introduced
to and supported by applications as well as the runtime. For example, with
dynamic resources, the job scheduler can withdraw resources from an applica-
tion and transfer them to another application. This could potentially lead to a
higher throughput of application on the entire system, hence an overall better
parallel efficiency. Furthermore, this approach allows the job scheduler to prior-
itize certain jobs dynamically by having more flexibility and scheduling abilities
than in the static resource allocation case.

To use dynamic resources in high-performance scenarios, the following com-
ponents need to be carefully designed and realized:

1. API: a flexible, robust interface for dynamic resources that can be used by
MPI applications.

2. Runtime: dynamic resource support in the runtime (MPI library, job sched-
uler, . . . ).

3. Applications: MPI-based software using this interface to handle dynamic
resource changes including all required changes in the software.

Having all three components working together in the right way is a very long
lasting process and this work is on the first component.

Our contributions are a proposal of an API for robust and flexible dynamic
resource changes based on the new MPI Sessions concept introduced with MPI
4 [16]. In addition to this, we evaluate our proposal based on a library called
libmpidynres which emulates a dynamic resource environment on top of an exist-
ing MPI communicator.

1.2 Related Work

MPI 2’s Dynamic Process Model: The MPI Forum already addressed the
need for a more dynamic process management approach with the introduction
of the MPI dynamic process model in the MPI 2 standard [17]. However, the
number of running MPI processes is still limited to MPI UNIVERSE SIZE, which
is typically equal to the number of resources reserved by the job scheduler.

Task-based Parallelization Models: Another set of applications are task-
based parallel programs. E.g. DucTeip is a framework for creating task-based
MPI programs [19]. That could be exploited rather in a straight-forward manner
by, e.g., executing different applications using the same MPI context in parallel.
In such a scenario, having a separate MPI context with dynamic resources could
be used not only to avoid idling MPI processes, but also to avoid applications
influencing each other, e.g., due to a bug.

Invasive Computing (IC): The IC paradigm suggests varying resource uti-
lization for embedded systems [15] with certain progress to adopt this also in
HPC. As a first step, the OpenMP and Threading Building Blocks paralleliza-
tion models have been modified to allow for varying resources, see e.g. [13].
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Here, the underlying idea has been to allow a resource manager to improve the
system-wide efficiency for concurrently running applications and to start appli-
cations at arbitrary points in time where the present work also borrows this
idea of a resource manager. Based on the aforementioned work, an extension
for distributed-memory systems with MPI was developed [3]. However, this led
to several drawbacks of this approach, such as that resource changes are solely
based on MPI COMM WORLD (which is obviously a serious problem for, e.g., coupled
simulations) and that only specialized cases have been taken into account.

MPI Fault Tolerance: Work on MPI fault tolerance approaches, including
MPI global restart [9] and the Fenix project [5], share some of the features of
libmpidynres. Both provide mechanisms for an application to recover from an
initial loss of compute resources and utilize replacing resources when available,
but their functionality is limited in scope to resilience. Our proposed approach,
on the other hand, covers a much wider field, but can be used to implement the
recovery models supported by these approaches to fault tolerance.

Malleability in MPI: Dynamic resource management in MPI has been studied
intensively over the last years, usually under the umbrella term of “malleabil-
ity”. Since then, multiple frameworks have been created to support malleability
in MPI applications [4,6,8,11,14]. These frameworks used different techniques
and APIs to achieve malleability. For example, some authors propose process
splitting and merging for expansion and shrinking of the application [4,8]. Other
authors start new processes while keeping the old, existing processes running [14].
Another approach is to use checkpointing systems and restart the actual MPI
application for resizing it [10,12].

Although there has been much research around malleability, there is still a
lack of a highly flexible, efficient and future proof API. The work presented in
this paper takes the attempt to propose such an API and further differs from
previous approaches by its use of MPI Sessions for malleability.

2 MPI Sessions

We start with a brief introduction to MPI Sessions since this is at the core of
our proposal.

Fig. 1. The process sets of an application example. Process sets are represented as
curly brackets. MPI Process 1’s view on its process sets is highlighted in green. (Color
figure online)
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The concept of MPI Sessions was first introduced in 2016 [7] and was later
included into the MPI standard with the release of MPI 4.0 in June 2021 [7,16]. It
defines a new object, the MPI Session, which is a lightweight handle to the MPI
runtime. Using a session, MPI can be initialized without the MPI COMM WORLD
communicator. Further, an application and its libraries can allocate multiple
independent sessions allowing for better isolation and a higher degree of com-
posability compared to traditional global MPI intitialization. MPI Sessions also
offer a tighter runtime integration by allowing the runtime to expose available
resources via process sets. A process set groups together multiple potential MPI
processes and is identified by a name in a URI-like format (e.g., “mpi://world”,
“mpi://self”). Using process sets, an application can create local MPI groups,
which can be further used to create communicators that connect MPI processes
contained in the respective process sets.

Process sets allow the runtime to expose available resources to the application.
Figure 1 shows an example view of an application’s process sets. A process set
can represent something of a static nature (e.g., a NUMA node, “mpi://numa/0”
in Fig. 1), but it can also represent more dynamic groups of resources (e.g., a
specific task in an application: “app://atmos/task/1” in Fig. 1). There is still
ongoing discussion about the exact nature of process sets, their lifetime, scope
and dynamic behavior. Our approach takes a look at process sets from a more
dynamic perspective, which leads to the following assumptions for the remainder
of the paper:

Immutability: A process set identified by a unique name will always represent
the same resources, even if resources are not actually available to an MPI appli-
cation, e.g., because the job scheduler removed the resource during a resource
change. This property avoids race conditions in cases where an MPI group is
created from the process sets by different MPI processes.

Change of Process Sets: We expect the available process sets to change fre-
quently during an application run. At the same time, the number of available
process sets at any point in time is expected to remain small as process sets that
become invalid (due to an MPI process exiting a process set) are removed in our
model (compare with Sect. 4.2).

3 Dynamic Resources with MPI Sessions

3.1 MPI Sessions Advantages Compared to MPI COMM WORLD

Dynamic resources are non-trivial to implement in the traditional global MPI
architecture with MPI COMM WORLD. This is because MPI COMM WORLD needs to be
mutated or invalidated when resources are added or removed. As a consequence,
communicators that originate from MPI COMM WORLD would need to adapt or get
invalidated together with associated rank and size information, which is hard to
do in a consistent fashion that is transparent to an application.
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MPI Sessions provide one way to tackle the aforementioned problem by allow-
ing MPI COMM WORLD to be avoided entirely. Besides various other benefits, we
briefly discuss the main advantages in the context of varying resources.

In our work, process sets are used to globally express resource changes. Once
an MPI object is invalidated, new MPI objects from process sets can be created
without the need for complex application coordination. Also, there is no need to
change the mechanism and semantics of MPI groups and communicators like we
would may need to do in the mutable MPI COMM WORLD case. Another advantage of
MPI Sessions is given by the current interfaces that already permit the dynamic
modification of an applications point of view on available MPI processes by
changing the process sets that are exposed to the application.

3.2 Resource Changes with Process Sets

Next, we discuss our strategy to realize dynamic resource changes. We would
like to point out, though, that our approach focuses on loop-based applications
similar to the application shown in Sect. 6.

Resource changes happen when the runtime removes or adds new resources
from/to an application. For our dynamic resource model we assume that the
runtime does not implicitly add new resources in the form of a new process
set, but an explicit function call needs to be made by the application. From
the application point of view, implicit adding of resources is problematic due
to assumptions on a particular number of resources in a communicator, e.g.
the number of ranks. This explicit approach is also useful as the application
might need to do load balancing/process coordination work after each resource
change. Once a resource change arrives, the application has a time window to do
cleanup/load balancing and then accepts the resource change. This is especially
important when MPI processes are being removed because the data from these
MPI processes needs to be transmitted to avoid data loss.

A resource change consists of a resource change type and a resource change
process set :

The resource change type indicates how the application’s resources are mod-
ified. In the present work, we only investigate two resource change types: addi-
tion and removal of processes. To migrate resources, both operations have to
be applied sequentially. Obviously, a replace resource change type could be also
implemented that both removes and adds processes, as well as a split/join change
that (de-)partitions existing process sets. However, these type of changes are not
the focus of this work.

The resource change process set, on the other hand, describes the difference
between the current set of processes and the set of processes after the resource
change. In the case of MPI process addition, the resource change process set will
contain all to-be-started MPI processes and in the case of MPI process removal
all to-be-removed MPI processes.
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4 Interface Design

4.1 MPI Sessions Interface

libmipdynres’s MPI Sessions interface was developed along the lines of the Ses-
sions interface in the MPI 4.0 draft from November 2020 [18]. The draft’s inter-
face description matches the one that was finally published with the official MPI
4.0 standard in June 2021 [16].

The MPI 4.0 standard document defines multiple C signatures of MPI Ses-
sions functions and explains the semantics of these functions. However, the doc-
ument does not fully define all concepts of MPI Sessions. Many questions remain
open in regard to process sets. Because of that, we have modified and extended
the MPI Sessions interface to fit the way process sets are viewed in this work (see
Sect. 2). The MPI Sessions interface that is included in our library, libmpidynres,
contains the following functions:

– MPI Session init - initialize an MPI Session
– MPI Session finalize - finalize an MPI Session
– MPI Session get info - query information about an MPI Session
– MPI Session get psets - query for available process sets
– MPI Session get pset info - query information about a process set
– MPI Group from session pset - create an MPI group from a process set
– MPI Comm create from group - create an MPI communicator from an MPI group

without a parent communicator

These functions match the functionality and semantics described in MPI
4.0 [16], except for MPI Session get psets, which we discuss in the next section.

4.2 MPI Session get psets

The signature of MPI Session get psets is shown in Fig. 2.
The function replaces two functions in MPI 4.0: MPI Session get num psets
and MPI Session get nth pset. These two functions assume a more static
behavior of process sets, as they use a virtual array model for querying process
sets. With the MPI Session get num psets function one can query the length
of the virtual array and with the MPI Session get nth pset one can query a
process set at a specific index. The runtime can only append new process sets
to the array, an index can become invalid if the process set does not exist any-
more. This approach has multiple disadvantages with our assumed process set
properties (see Sect. 2):

1. The frequent change of process sets leads to an ever-growing array that will
lead to increasing memory usage and increasing access times.

2. The frequent change will also lead to most indices being invalidated at some
point in time. This in return increases the chance of invalid requests and
creates an additional management overhead on the application side.
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Fig. 2. libmpidynres API for querying available process sets.

Fig. 3. Proposed API for creating process sets by applying a set operation on existing
process sets.

To adapt the API to our model, we replace the two function calls with one.
Instead of querying each process set on its own, the application queries the names
and sizes of available process sets at once. The result is returned in the psets
argument of MPI Session get psets. It consists of an MPI Info object with
process set names as the keys and the respective process set size as the value,
basically representing a snapshot of the current process set state. While this
leads to more data being transferred, we expect the number of active process
sets at any point in time to remain low. However, to make the API more future-
proof and allow for more complex process set situations, an MPI Info object can
be passed to the function. This object could be used to filter the results and only
return a subset of available process sets.

4.3 Process Set Management Interface

When dealing with resource changes, an application must be able to establish
communication with new resources. In our work, new resources are expressed
via process sets. To establish communication, an application can create an MPI
Group from the new process set and use MPI group operations to create a group
that both contains the new processes and old application processes. However,
this approach has to be made by each process in the new group. This can become
quite complex with increasingly more resource changes and is hard to coordinate.
This is especially a problem for the newly created processes as they need to
know which process sets they need to use to create MPI groups containing old
application processes. To avoid these problems, we allow the application to create
new process sets.

In our design, only one MPI process, which we will refer to as “main process”,
is responsible for operations on process sets. Note that these operations could be
executed by all involved MPI processes, but leave this to future work and here
strictly follow the “main process” approach.
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To create new process sets, the application must call the
[4] MPIDYNRES pset create op function, whose signature is shown in Fig. 3. The
names of two existing process sets need to be given in the pset1 and pset2 argu-
ments. Additionally, a set operation to be applied needs to be passed in the op
argument. Calling the function has the effect that, if the arguments are valid, the
runtime will create a new process set containing the result of the set operation
on the process sets. Currently, three set operations are supported, see also Fig. 4:

– Union: The result contains all processes from both psets. This can be used
to add new processes from a resource change set to the application’s main
process set.

– Difference: The result contains all processes from pset1 that are not in
pset2. This is useful to remove a resource change set (if the resource change
takes away resources) from the application’s main process set.

– Intersection: The result contains all processes that are both in pset1 and
pset2.

Fig. 4. Venn diagrams of the process set operations. Process set A contains the pro-
cesses P1, P2, P3 and P4; Process set B contains the processes P3, P4, P5 and P6.
The operation’s result is written underneath each Venn diagram.

Allowing these fundamental set operations has multiple advantages which we
like to summarize as follows:

– Process set changes do not rely on collective operations involving, e.g., pro-
cesses which have not yet been started. Therefore, process sets including
processes not yet available to the application (see Fig. 8) can be created.

– Since resource changes can be abstractly described as a directed acyclic graph
as transitions on resource sets, designing an interface supporting such resource
changes should also cover the typical requirements of such resource changes
without taking application-specifics into account.

– A “main process” driven change of resources makes the process coordination
easier since all management can happen in a single process. The only infor-
mation that needs to be shared with other processes are process set names
which are available globally. An extension to a consensus-based management
should still be possible.

– Process set operations fit nicely into applications that rely on a single com-
municator during their runtime. There, the operations can be used to derive a
new “main process set” from the previous “main process set” and the resource
change process set (see Fig. 5).
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Our main goal is the creation of rather generic interfaces to cover various
requirements on resource change patterns. As usual, there are always optimiza-
tions possible by providing specialized interfaces or more feature-rich interfaces,
however this is left for future work.

4.4 Resource Change Management Interface

To implement the mechanisms described in Sect. 3.2, the resource change API
has to provide a way to a) query for pending resource changes and b) accept
and apply these resource changes.

For a), libmpidynres offers the MPIDYNRES RC get function. Its signature is
shown in Fig. 6. If there is a resource change, the type of resource change and
the resource change process set are returned in the rc type and delta pset
respectively. Furthermore, a handle to the resource change is returned in the
tag argument.

Fig. 5. Diagram showing how to use process set operations for resource changes.

Fig. 6. Proposed API for managing resource changes.

For b), libmpidynres offers the MPIDYNRES RC accept function. Using this
function, the application can tell the runtime to apply the resource change refer-
enced by the tag argument. The info argument can be used to pass information
new processes. Once this function is called with valid arguments, the runtime
will start new processes in the case of resource addition. If the resource change
removes resources, the application has to shutdown the relevant processes itself.
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If possible, the runtime can try to enforce the shutdown by forcefully shutting
down running processes after a specific amount of time. In the case of libmpi-
dynres, due to its architecture, the shutdown cannot be enforced.

An example application execution with both resource changes and process set
operations in shown in Fig. 5. The application shown constructs a new “main
pset” after each resource change. Note that the “main process” main thread
is not highlighted, as it is application dependent to choose a main rank. One
possible way to choose a “main process” is to use rank 0 of the communicator
based on the “main pset”.

5 libmpidynres

In order to evaluate our proposal, we implement the runtime component in
the form of a C library, called libmpidynres, that emulates a dynamic resource
environment on top of an existing MPI communicator.

Fig. 7. The different components of an application using libmpidynres. Both the appli-
cation and libmpidynres access the same MPI library. However, the application should
derive most of its MPI objects from libmpidynres.

The library uses a communicator of fixed size to emulate an MPI Sessions
environment with dynamic resources by using subsets of the fixed-size communi-
cator. This is achieved by hiding and exposing the processes of the communicator
to the application. Using this emulated environment, applications can use the
MPI Sessions and dynamic resource management API described in Sect. 4, hence
already explore and test these features even if the underlying MPI implemen-
tation and job scheduler do not support MPI Sessions and dynamic resource
management. For sake of reproducibility and open science, the source code of
libmpidynres is available on GitHub.1.

1 https://github.com/boi4/libmpidynres.

https://github.com/boi4/libmpidynres
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5.1 libmpidynres as an Emulation Layer on Top of MPI

libmpidynres is implemented as a C library that is used on top of an existing
MPI library. This means that libmpidynres uses MPI calls internally for commu-
nication and management. From the application’s point of view, it extends the
available MPI API with additional functions.

Before the MPI Sessions environment becomes active, the application has to
configure libmpidynres and initialize MPI. This part of the user application is
called the application wrapper. The application wrapper then passes an entry
point and a communicator for the emulated application to libmpidynres.

From there, libmpidynres manages the communicator’s processes and runs the
emulated application from the given entrypoint. The emulated application should
only use MPI communicators and groups that are returned by libmpidynres or
were derived from these. This ensures that libmpidynres has full control over the
available processes. This architecture is illustrated in Fig. 7.

5.2 Emulated Process States

libmpidynres emulates dynamic resources on a communicator of fixed size (typ-
ically MPI COMM WORLD). This is achieved by selectively exposing a subset of the
communicator’s processes to the application as its world process set. Conse-
quently, the maximum number of processes that can be scheduled is limited by
the size of the communicator used for emulation. Inactive processes are idling (in
an MPI Recv operation) and are waiting to be requested and then made available
to the MPI application. However, unlike a full implementation inside a runtime,
such processes cannot be made available to other, separate applications. There-
fore, it is again important to stress that libmpidynres is only a proof-of-concept
library for testing the interface and real support for dynamic resources has to
be included in the various software components of the MPI stack.

The process of starting and stopping resources is quite complex and involves
multiple temporary states a process can be in. These states are illustrated in
Fig. 8. Note that these are the states from the library’s point of view.

Fig. 8. The different states that an emulated process can be in, from libmpidynres’
point of view. States where the application has control over the (OS-)process are high-
lighted in green. (Color figure online)
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5.3 Resource Manager

libmpidynres uses a server-client model for managing process sets and resource
change states. For that, the MPI process with rank zero of the libmpidynres MPI
communicator acts as a dedicated resource manager.

This server-client approach avoids race conditions and assures a consistent
state across all MPI ranks. However, the additional communication overhead
leads to decreased performance especially with redundant requests from multiple
ranks and to increased latency when doing API calls. However, the proof-of-
concept, emulating nature of libmpidynres justifies this trade-off.

6 Case Study

To evaluate the proposed interface and libmpidynres, we implement an appli-
cation example that is based on a loop where work is distributed among
all processes in each iteration. In the following, we describe this example
application.

Let us first look at the initialization part of the application given in lines 1–10
in Fig. 9. When an MPI process is started, it needs to set up and gain information

Fig. 9. Pseudo code showing using the proposed interface to successfully query and
adapt to dynamic resources changes.
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about its environment. For that, the application initializes an MPI Session using
MPI Session init. Furthermore, the application queries its process sets using
MPI Session get psets. If the process is part of the “mpi://world” process set,
the process was started together with the start of the application. If it is not
part of the process set, the process was started because of a resource change
and has to query some information to successfully join the application. In this
example, it queries the current loop iteration and the process set that should be
used for communication from its MPI session (the information was passed with
an Info object when the resource change was accepted).

Once a communicator is created from the main pset, the main loop is started.
This is shown in lines 11–25 of Fig. 9. The application queries for resource changes
at the beginning of each loop iteration. When dealing with resource changes,
the application follows the strategy from Fig. 5. This means that the application
tries to have all of its available resources grouped together in one process set, the
“main process set”. If a resource change adds new resources, the union process
set operation is used to create a new “main process set”. If a resource change
removes existing resources, the difference process set operation is used instead.
When the application accepts a resource change using MPIDYNRES RC accept,
some information (the main process set name and the current loop iteration) are
passed to newly started processes.

Using this system, the application is able to handle and adapt to resource
changes while constantly having a valid MPI communicator. A concrete C imple-
mentation of this application was tested and evaluated using different scheduling
algorithms and different communicator sizes. The application could successfully
finish all of its loop iterations without any crashes or race conditions in the appli-
cation or libmpidynres. More libmpidynres examples can be found on GitHub.2.

7 Conclusion

In this work, we presented an interface that uses new MPI Sessions concepts to
handle dynamically varying resources. The interface uses process sets to express
resource differences that will be applied to the application. We implemented an
emulation layer that allows applications to use the new interface. This makes
prototyping of malleable applications with the proposed interface possible, even
without MPI providing support for this, yet. Furthermore, using an example
application built on top of this emulation layer, we have validated that using
this interface, applications are capable of dealing with resource changes.

Regarding future work, one of the next steps is an extension of the proto-
type with the implementation of different parallel programming patterns (beside
the loop pattern) and combine them with the interface proposed in this work.
While the current interface is quite general and therefore may be useful for other
programming patterns, it still provides some global changes that may affect all
processes of the application. For more distributed programming patterns, a less

2 https://github.com/boi4/libmpidynres/tree/master/examples.

https://github.com/boi4/libmpidynres/tree/master/examples
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global approach is needed where the application can group its own processes and
tell the runtime that only certain groups should be affected by resource changes.

Another interesting area to apply this new interface to are existing tools for
dynamic computing. For example, tools like p4est and PETSc can help with
automating parts of the load balancing process in dynamic mesh refinement
applications [1,2]. Integrating dynamic resources into these tools is currently
work-in-progress and could abstract the dynamic resources away from the library
user and ease the creation of scalable parallel applications.

Besides many other future research aspects, we like to finally point out the
problem of scheduling, which will require disruptive algorithms to cope with
runtime-varying resources.
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Abstract. This paper presents the evolution of the free agent threads
for OpenMP to the new role-shifting threads model and their integra-
tion with the Dynamic Load Balance (DLB) library. We demonstrate
how DLB efficiently manages the malleability exposed by the role-shifting
threads to address load imbalance issues. We use two real-world scientific
applications, one of them with a coupling case, to illustrate the potential
of this approach. In addition, we also demonstrate that the new imple-
mentation is more usable than the former one, letting the runtime system
automatically make decisions that were to be made by the programmer
previously. All software is released open source.

Keywords: Dynamic load balancing · Free agents · OpenMP ·
Tasking · Malleability

1 Introduction

During the last years in the HPC community, both hardware and software are
getting ready for the exascale era. On the one hand, hardware boosts the com-
putational power of nodes by increasing the number of cores per node and using
different accelerators as much as augmenting the number of nodes. On the other
hand, software needs to evolve to use this massive computational power effi-
ciently.

One of the main characteristics of software that has proven necessary to
deal with the immense computational power is malleability. Malleability allows
dealing with heterogeneous hardware, noise at all levels, load imbalance, com-
munication inefficiencies, and dynamic workloads, among other issues.

Moreover, with the growing variety in hardware architectures, portability
is another must-have characteristic for all the software components because it
is not a sustainable approach to port every software to each newly designed
platform.

In this challenging scenario, all the software stack layers must be malleable,
flexible, and portable. We have already seen this direction in using workloads
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instead of monolithic applications [6], job schedulers managing adaptable appli-
cations [7,17], the development of malleable codes [8], and parallel programming
models offering dynamic malleability [10].

In this work, we focus on OpenMP; the OpenMP parallel programming model
has embraced malleability since its appearance, instead of much more rigid par-
allel models such as MPI, which only recently has started to offer this feature.
However, even the original malleability of the OpenMP model has proven not to
be enough. For this reason, we extend our previous free agent threads proposal
that expands the malleability of the programming model outside the parallel con-
struct. This new feature allows the Dynamic Load Balancing (DLB) library to
exploit the malleability of hybrid MPI+OpenMP applications further, achieving
better efficiencies.

The main contributions of this paper are the following: a new implementation
of the free agent threads; this new implementation aims to add a lower overhead,
be more usable, and offer an extensible framework; the integration of the free
agent threads with the DLB library, and the demonstration using two real HPC
applications.

The remaining of this document is organized as follows. Section 2 reviews the
related work that can be found in the literature. In Sect. 3, we explain the details
of the proposed implementation and how it has been integrated with the DLB
library. In Sect. 4, we present the performance evaluation, and finally, in Sect. 5,
we summarize the paper’s findings in the conclusions.

2 Related Work

This work relies on two main principles: a task-based programming model, where
the parallel decomposition leverages the creation of unstructured work units
(called tasks), and runtime malleability, in terms of resource allocation, of the
associated task-based programming runtimes.

Among the set of task-based programming models currently used in HPC,
we can find:

The OmpSs programming model [1,9] expresses parallelism using compiler
directives. These directives are transformed at compile time into runtime services
with well-defined semantics. Among others, programmers may create new tasks,
wait for their execution, establish the proper order of task executions, atomic/-
critical memory updates, etc. When ignoring directives, sequential behavior is
expected.

The Intel Threading Building Blocks (TBB) [13] is a C++ template library
that allows program parallelization through tasks. Programmers may use high-
level or low-level interfaces to spawn tasks; with such information, the runtime
creates a Task Dependency Graph and executes tasks in parallel when possible.

The Intel Cilk++ SDK [12] is a C++ language extension that includes a
runtime library within the family of Intel compilers. It allows expressing the
parallelism through a few language keywords (similar to compiler directives),
which ease iteration space decomposition, stand-alone tasks creations, and the
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synchronization among these work units. The current version of this approach
is the OpenCilk project [15], under the Massachusetts Institute of Technology
(MIT) supervision.

The OpenMP programming model [16] includes a task-based approach (in
addition to its traditional work-sharing model). The tasking sub-model allows
creating new tasks, waiting for their execution, and adequately ordering tasks
using data dependences. This tasking approach is similar to the aforementioned
OmpSs programming model, although the execution model is still bound to the
creation of parallel regions.

Resource usage malleability is the other pillar on which our implementa-
tion relies. Changing the number of assigned processing elements at runtime
requires a parallel decomposition that does not depend on them. This require-
ment removes from the equation the traditional OpenMP work-sharing con-
structs. Once we start a parallel region, the number of threads participating in it
must remain constant until the end of the construct. Otherwise, some fundamen-
tal definitions will be broken (e.g., the barrier directive or a static distribution
of iterations among threads).

Task-based approaches, instead, will ease resource malleability. As the cre-
ated tasks are not bound to a particular thread before starting their execution,
the number of threads (and the number of cores, consequently) may change at
runtime. Several existing implementations leverage such malleability:

The OmpSs programming model implements a Thread Manager module,
which provides support to the number of threads and their bindings to the under-
lying CPUs. The OmpSs Thread Manager may also interact with the Dynamic
Load Balance library [7,11]. This library gathers information about the system
occupancy beyond the process level, having an overall picture of the whole node
status. With this information, it can decide and change which should be instant
resource ownership for each of the processes along with the program execution.

Some OpenMP implementations also include the idea to use additional
threads, not directly included in the parallel region, to help execute tasks. The
Hidden Helper Threads feature [18] implemented in the LLVM compiler presents
a common use case in which the target construct may leverage the presence of
these other threads to relieve the critical path. The main differences with our
current implementation are: 1) the Hidden Helper Threads approach does not
allow to change the number of threads; and 2) it is restricted to the use of target
tasks, while our proposal intends to be more generic1.

Our initial implementation of free agent threads [14] combines two previous
approaches. On one hand, we implement the mechanism on top of an OpenMP
runtime fully integrated as a standard programming model. On the other hand,
we implement it in such a generic way that all the instantiated tasks could lever-
age the presence of these additional threads to be executed. The DLB component
is responsible for increasing or reducing the number of threads participating in

1 This is also the reason we are not comparing against this proposal; the study’s use
cases do not take any benefit from the Hidden Helper Threads implementation.
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the process. This previous work demonstrated how free agent threads could
address load imbalances problems inherent in some HPC applications.

The current version, presented in this work, generalizes and simplifies the
implementation by allowing an existing thread to change its role during the exe-
cution. Taking advantage of existing threads that no longer participate in the
parallel region reduces the cost of creating and managing such threads. In addi-
tion, the implementation is more consistent with the definitions of the model
itself regarding the limit of threads. We also prepare the runtime to host other
types of roles in the future. We believe it is interesting for OpenMP users and
developers to increase the model’s extensibility further. For instance, the stan-
dard could consider dedicating specific threads to execute communication tasks
(i.e., the thread role will be communicator). Finally, it also simplifies the way
programmers interact with the execution of the resulting programs by pushing
the rationale of specific decision-making configurations as part of the OpenMP
runtime (i.e., automatize parameters). The evaluation section will show that the
runtime’s automated decisions always improve the best configuration used in the
previous implementation.

3 Implementation

Our previous free agent thread implementation used a mechanism of two pools
of threads, one containing the initial plus the worker threads and the other
pool containing the set of free agent threads. The idea behind was to have a
representative thread per processor and enable either the worker thread or the
free agent thread depending on whether the thread on that processor was needed
for a parallel region.

After evaluating our first approach, we observed two undesirable situations.
Firstly, a worker thread and a free agent thread both bound to the same proces-
sor could be active simultaneously. When the first was needed for a new parallel
region while the second was still executing an explicit task, i.e., a task generated
by a task construct, thus provoking a short time-lapse of processor oversubscrip-
tion. Secondly, should the OpenMP model implement a new type of thread, its
implementation may also be done using a third pool of threads overcomplicating
the implementation. Our new implementation solves both problems by using the
same thread running with different roles and adding extensibility to the model.

The new free agent thread and role-shifting implementation presented in this
paper are based on the LLVM OpenMP runtime version 14.0.0.

3.1 The LLVM OpenMP Runtime

The LLVM OpenMP runtime implements parallel regions as follows. When a
thread encounters a parallel construct, the thread creates the structure for the
team of threads and assigns as many threads as needed to the team. Threads will
be created the first time that the runtime needs such threads. Upon completion of
the parallel region, threads are suspended and moved to a thread pool structure
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until another parallel region is encountered. If subsequent parallel regions do
not need more threads than any other previous region, existing threads will be
reused.

The LLVM OpenMP runtime implements the thread fork-join model using
two different kinds of barriers. The first kind of barrier is called fork-barrier, and
this is where all idle threads are waiting until they are needed for some team.
When an idle thread is assigned to a team, the thread is released and executes
an implicit task, which is the task assigned to each team member that includes
all the parallel region code. One particularity of this barrier is that a thread is
released as soon as it is ready; whether the other threads participating in the
same parallel region have arrived at the barrier is irrelevant.

The second kind of barrier is called join-barrier, and it is used to join all
threads at the end of a parallel region. It is a more traditional barrier where
all threads must reach the barrier before the rest may proceed. After that, all
threads again enter the fork-barrier.

Fig. 1. OpenMP worker thread flowchart.

The described flowchart of a worker thread is shown in Fig. 1. A thread may
reach task scheduling points while executing its implicit task, typically when
encountering taskgroup, taskwait, barrier constructs, etc. The implementa-
tion may perform a task switch at this point, beginning or resuming the execution
of an explicit task bound to the same team. Once it reaches the implicit barrier,
a worker thread may also execute explicit tasks.

3.2 The Role-Shifting Threads

The role-shifting threads are an evolution of the current OpenMP threads. We
can differentiate two types of OpenMP threads: the initial and worker threads.
When a non-nested parallel region ends, all the worker threads become idle until
the initial thread encounters another parallel region. The idea behind role-shifting
threads is to use the already existing idle threads to perform different jobs based
on their available roles.

Under the new model, all threads, including the initial thread, can have from
0 to n potential roles, but only one of them can be active at a time. The initial
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thread may not, and probably must not, use any role, but we do not enforce
the restriction for simplicity in the specification. The worker role is implicit in
all the threads since they may be able to participate in a parallel region at any
time.

Fig. 2. OpenMP role-shifting thread flowchart.

A thread can shift its active role at different points. At the start of a parallel
region, all the required threads must abandon their current role and execute their
assigned implicit task ; after finishing it, they may shift to one of their potential
roles. Regarding the free agent role, these threads may change their role before
and after executing an explicit task. These role-shifting points are depicted in
Fig. 2. In the future, other roles may use the same shifting points and introduce
new ones if required.

New API Routines. We have extended the OpenMP API to interact with the
role-shifting threads model and introduced the concept of global thread id in the
runtime to interact with the API. This thread id is a unique identifier assigned
at thread creation and lasts for the entire execution. The global thread id must
not be confused with the current OpenMP thread number, which identifies each
thread participating within a parallel region.

– int omp_get_thread_id(void): Obtains the global thread id of that thread.
– int omp_get_thread_roles(int tid, omp_role_t *roles): Returns the

number of potential roles for thread with global id tid and sets roles to the
potential roles of the thread.

– void omp_set_thread_roles(int tid, omp_role_t roles): Sets the
potential roles of the thread with global id tid to roles. It will remove
all previous potential roles from the thread. If tid is higher than the current
number of threads, the runtime will create a new thread with the appropriate
roles.
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Environment Variables. We propose a unique environment variable to unify
all the role-shifting threads model:

OMP_ROLES: Indicates the initial number of threads with the desired potential
roles. Usage examples:

OMP_ROLES="{role1},{role2},{role1,role3}". Three different threads,
one with role1, one with role2, and another with role1 and role3.

OMP_ROLES="{role1},{role2,role4}*3". Four different threads, one with
role1 and three with role2 and role4.

New OMPT Callback Signature. We propose a new OMPT callback to
identify when a thread shifts its active role.

void ompt_callback_thread_role_shift(ompt_data_t *thread_data,
ompt_role_t prior_role, ompt_role_t next_role): Each thread emits the
callback each time it changes the active role: prior_role indicates the previous
active role, and next_role indicates the new active role of that thread.

3.3 Integration with DLB

We have integrated the free agent threads role from the role-shifting threads
implementation with the Lend When Idle (LeWI) module of DLB. LeWI aims at
optimizing the performance of hybrid applications (MPI+OpenMP) by improv-
ing their load balance. Figure 3 shows how LeWI operates for an unbalanced
application. When an MPI process executes a blocking call, it lends all the
CPUs it has at that moment, and other processes may acquire them for their
use. After exiting the MPI call, the process reclaims all the CPUs it owns, and
it can continue its execution transparently.

Fig. 3. Example of DLB and LeWI balancing algorithm. On the left is an unbalanced
hybrid application. On the right, the application is balanced using LeWI.
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Regarding the OpenMP integration, we capture specific OMPT callbacks and
perform different actions with DLB:

– Parallel begin: We must register when executing a parallel region and the
number of threads associated with it. Those threads are required for the entire
execution of the region and cannot shift their role at any moment.

– Parallel end: The parallel region ends, and DLB may use the threads from
the former parallel region for load balancing purposes.

– Task schedule: When starting the execution of a task, DLB tries to acquire
a CPU from any other process if there are more pending tasks. When a free
agent thread ends the execution of a task, it returns the CPU if it has been
reclaimed, or it lends the CPU if there are no more pending tasks, or it
proceeds silently.

– Thread begin: We extract the global thread id for each thread and set the
affinity of the free agents to their correspondent CPU.

– Thread role shift: When a thread changes from worker to free agent, we
deactivate it if the CPU has been reclaimed or there are no more pending
tasks.

When an MPI process receives a CPU for the first time, it creates a new
thread with the role of free agent, and it assigns that CPU for the rest of the
execution to that thread. When it receives that same CPU in the future, instead
of creating a new thread, it will change the role of that thread with the API.
We also tried a different strategy where we rebind inactive threads to new CPUs
when possible, but it had more overhead and was more sensitive to system noise
(e.g., CPU preemptions by the OS), so it was discarded.

4 Evaluation

In this section, we present the performance evaluation of the proposed imple-
mentation. In this evaluation, we will compare three versions of each application:

– Original: The original application executed as in a production run.
– Double-pool: The original application using the DLB load balancing library

with the LLVM free agent threads implementation based on the double pool
of threads. For this implementation, the user must provide the maximum
number of free agent threads used per MPI process. We will consider this
variable in the evaluation as Num. free agent threads.

– Role-shifting: The original application using the DLB load balancing library
with the LLVM free agent threads implementation based on the role-shifting.
This version does not need additional parameters, and the runtime automat-
ically decides the number of free agent threads.

4.1 HPC Environment

All the experiments presented in this work have been obtained using MareNos-
trum4. MareNostrum4 is a supercomputer based on Intel Xeon Platinum pro-
cessors; each node comprises two sockets (Intel Xeon Platinum 8160 CPU) with
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24 cores each at 2.10 GHz for a total of 48 cores per node and 96 GB of main
memory. Its nodes are connected using a 100 Gbit/s Intel Omni-Path network.
It houses 3456 nodes accounting for a total of 165888 cores.

The runtime, DLB, and all the applications have been compiled using the
Intel 2017.4 suite, and the MPI library used to run is Intel MPI 2017.4 version.
We use DLB version 3.0 [2] and the extended LLVM OpenMP runtime library [3]
to support the free agent threads in all cases.

For the evaluation, we test 2 HPC applications used in production runs, a
parallel remesher, ParMmg, and a simulation code for high-performance compu-
tational mechanics, Alya.

4.2 ParMmg

ParMmg [5] is a parallel remesher developed by INRIA, based on top of the
sequential Mmg remesher. Mesh adaptation is widely used in computational solid
mechanics (CSM) and computational fluid dynamics (CFD) domains to improve
the quality of the solution. The application is written in C and parallelized with
MPI. The input set used in the study is prepared to do a weak scaling using
power of two MPI ranks from 2 to 256 processes.

We added an OpenMP taskification on the main loop iterations to implement
a second level of parallelism in that region that allows us to exploit the load
balancing capabilities of DLB.

Fig. 4. Top: ParMmg Paraver trace execution of 3 iterations using 32 MPI ranks.
Bottom: Same execution using role-shifting threads and DLB. Each color represents
different MPI ranks, and both traces are at the same duration scale.
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ParMmg presents an irregular load imbalance among the different iterations,
as seen in the top trace of Fig. 4. In this figure, we show a Paraver trace of an
execution of ParMmg using 32 MPI ranks; each horizontal line corresponds to
one MPI process, and in the x axis is represented the time. White means that
the MPI process is not doing useful computation, i.e., it is inside an MPI call,
and any other color means computing. In this trace, we can identify three steps
and observe that the load distribution changes from one iteration to another. For
these two reasons, ParMmg can benefit from the load balancing capabilities of
DLB because the load imbalance can not be predicted and changes dynamically
during the execution.

We can see the same execution using DLB and role-shifting threads in the
bottom trace of the same figure. We can observe that each MPI process can now
have more than one OpenMP thread; these are the different lines below an MPI
process. We can also observe how the additional threads are used to speed up
the execution of the most loaded MPI ranks.

Fig. 5. ParMmg speedup with DLB and
different free agents implementations.

Fig. 6. ParMmg execution time.

In Fig. 5, we show the speedup obtained with the different versions with
respect to the original execution of ParMmg without DLB add free agent threads.
In the x-axis, we show the different versions of the free agent threads implemen-
tations and the different number of free agent threads used for the Double-pool
implementation. There are two important outcomes from this plot. On the one
hand, the role-shifting implementation obtains the same performance as the best
configuration of the double-pool implementation. On the other hand, the per-
formance of the double-pool implementation depends highly on the number of
free agent threads that the user specifies.

Figure 6 displays the execution time of ParMmg using different number of
MPI ranks (and cores) on the x-axis. The different versions are represented by
different lines. The number of free agent threads allowed per MPI rank is set to
the best configuration measured in the previous experiment for the Double-pool
version. As ParMmg is a weak scaling application, the ideal execution would
be a flat line. We can see that for all the cases, the execution using DLB and
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free agent threads improves the performance of the vanilla ParMmg code. For
all the executions, the role-shifting implementation performs as well as the best
configuration of the double-pool implementation.

4.3 Alya

Alya [19] is a high-performance computational mechanics code that can solve
multiple physics, standalone or coupled. Most of the problems it can address
come from the engineering realm. Among the different physics solved by Alya, we
can mention incompressible and compressible flows, non-linear solid mechanics,
chemistry, particle transport, heat transfer, turbulence modeling, electrical prop-
agation, etc. Alya was specially designed for massively parallel supercomputers
and is part of the Unified European Application Benchmark Suite (UEABS), a
set of 13 highly scalable, relevant, and publicly available codes. Alya is written in
Fortran and parallelized at different levels, including MPI, SIMD, OpenMP, and
GPUs. This paper will use the MPI+OpenMP version, and the OpenMP paral-
lelization will be used only for load balancing. The executions will be launched as
an MPI-only execution (one core per MPI rank, 1 OpenMP thread per process).
This is because the OpenMP parallelization of Alya is not exhaustive in all the
code and is not used in production runs.

The use case executed in this paper is a production combustion problem,
coupling the fluid solution on the one hand with the chemical reaction on the
other [4,20]. In Fig. 7, we can see a trace of the execution of Alya with 768 MPI
ranks. The first 96 MPI ranks are solving the fluid, and the remaining 672 the
chemical reaction. In this trace, the grey color represents useful computation, the
other colors represent the MPI calls executed by the program. We can identify
two time steps and the two coupled problems in the trace. We can observe that
the computing region before the MPI Barrier (red) is the more time-consuming
one, and at the same time, it presents a significant load imbalance.

We evaluate three different executions of Alya, the original code, using DLB
and the double-pool implementation of the free agent threads, and using DLB
with the role-shifting version. In Fig. 8a, we can see the speedup obtained when
using DLB and free agents with the different versions with respect to the original
execution of Alya, using 768 MPI ranks in 768 cores for all cases. In the x-axis,
we show the different number of free agent threads enabled for the double-
pool implementation. We can see that the role-shifting version achieves a better
speedup than the best configuration of the double-pool implementation. We can
also observe that the performance of the double-pool implementation depends
on the number of free agent threads enabled by the user.

In Figs. 8b and 8c, we can see the same study running Alya with 1152 and
1536 MPI ranks. In both plots, we can see that the role-shifting implementation
outperforms all the configurations of the double-pool one. Alya’s tasks have finer
grain than ParMmg (a few milliseconds per task), and the program benefits from
the reduction in overhead in the runtime and DLB integration. It is also inter-
esting to notice that the best configuration of the double-pool implementation is
not consistent between the executions with the different number of MPI ranks.



Exploiting OpenMP Malleability with Free Agent Threads and DLB 173

Fig. 7. Alya Paraver trace execution of 2 iterations coupling 96 MPI ranks for the fluid
simulation and 672 MPI Ranks for the chemical simulation.

Fig. 8. Speedups obtained running Alya with different implementations of free agents
and DLB, and execution time with different number of MPI ranks

Figure 8d shows the execution time achieved by the different versions when
running Alya varying the number of MPI ranks. We show that the use of DLB
and free agent threads improves the performance of the original Alya code in all
the cases. In this plot, we use the best configuration achieved in the previous
experiments for the double-pool implementation. However, the best option is to
use the role-shifting version of the free agent treads implementation.
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5 Conclusions

This paper presents a new extension of the OpenMP programming model, allow-
ing their threads to have different roles. The previous free agent threads have
been merged into this new implementation as a role. With this approach, the
model has a unique pool of threads, in contrast to the previous one, employ-
ing fewer resources. Moreover, the role-shifting approach is an opportunity to
include more roles in the model, which may lead to more improvements in terms
of malleability and flexibility.

Previously, the user had to select the desired number of free agent threads
at the start of the execution, but the role-shifting allows for changes at runtime.
This change makes the model more flexible for the users and tools using the
OMPT interface from OpenMP. This fact is reflected in the evaluation, where
the role-shifting model delivered the same or better performance than the double-
pool model without any tunning required.

Furthermore, we demonstrate how the free agent threads proposal increases
the malleability of the OpenMP standard, thus, allowing tools like DLB to
exploit it to achieve better efficiencies. To this end, the role-shifting model has
been integrated with DLB.

In Sect. 4, we have demonstrated how DLB improves the performance of
hybrid applications, exploiting the malleability exposed by OpenMP tasks by
enabling and disabling threads with the free agent role. The results showed
speedups from 1.2x to 1.62x in two real-world scientific applications, mending
their load imbalances.

Overall we show the relevance of malleability at the different levels of the
software stack, such as applications and different programming models to achieve
performance. Also, the need to isolate the user from these low-level decisions and
that the different runtime systems must coordinate to use the computational
resources efficiently.
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Abstract. We demonstrate that significant performance benefits can be
obtained via the exploitation of malleability in a framework designed to
implement portable and high-performance BLAS-like kernels. For this
purpose, we integrate thread-level malleability within the BLIS library,
providing an experimental evaluation for a representative dense lin-
ear algebra operation such as the QR factorization for dense matrices
enhanced with look-ahead.

Keywords: Malleability · Basic Linear Algebra Subprograms
(BLAS) · High performance · Multi-threading · Multicore processors

1 Introduction

Thread-level malleability aims at dynamically scaling up (or down) the degree of
thread parallelism exploited by parallel applications, at runtime, possibly while
parallel regions are already under execution. Unfortunately, as of today, the sup-
port for this type of malleability is scarce or non-existent in many fundamental
libraries and parallel software infrastructures. For example, for portability and
performance, many scientific applications rely on computational Linear Alge-
bra (LA) kernels specified in the Basic Linear Algebra Subprograms (BLAS)
interface [10], and implemented in the form of high performance instances of the
BLAS specification such as those in Intel MKL, AMD AOCL, ARM PL, NVIDIA
cuBLAS, OpenBLAS, BLIS, etc.; see, e.g., [14,17,21]. When mapped to paral-
lel architectures, including multicore platforms and hardware accelerators, these
threaded libraries (TLs) realizations of the BLAS are not thread-malleable at
the kernel level in the sense that, when an application invokes one of their rou-
tines, its execution is configured to exploit a certain degree of parallelism, and
this setting remains unchanged till the completion of the routine execution.

In an application (mainly) composed of LA kernels, parallelism can be
exploited in three different ways:

1. From inside the LA kernels, that is, extracting only intra-task parallelism
via a threaded instance of the BLAS, but avoiding the execution of different
kernels in parallel. This is the conventional approach to exploit parallelism in
the Linear Algebra PACKage (LAPACK) [1].

c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 176–189, 2022.
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2. From inside the application only, exposing independent kernels as tasks that
can run in parallel but internally invoke sequential versions of the LA kernels
(inter-task parallelism) [3,4,7,8].

3. Leveraging a combination of both (hybrid parallelism) [9].

In this paper, we revisit the third option, introducing and evaluating the
benefits of introducing a few subtle yet important changes in the design of
applications featuring hybrid parallelism. Concretely, in our case, we combine
the Task-parallel Application approach (TA, second option) with a thread-level
parallel malleable (MLB) BLAS (first option). For this purpose, similarly to pre-
vious efforts that follow a hybrid approach, we divide the existing threads into
a number of teams, controlled by the application, with each team in charge of
exploiting intra-task parallelism. However, the main difference of our work lies in
that threads cannot only migrate between teams dynamically during the times-
pan of the application (as is the case in previous hybrid efforts), but also during
the execution of each individual linear algebra kernel (task).

In [6] a prototype hybrid and malleable solution was reported to deliver con-
siderable benefits for the execution of the (dense) LU factorization on current
multicore processors in comparison with classical solutions that exploit paral-
lelism only from within the BLAS as well as more modern realizations of this
factorization that exploit parallelism only at the task/application level [4,18].
Later, we modified the BLIS application programming interface (API) to allow
that the application specifies the maximum number of threads that are initially
active when invoking a routine as well as the actual number of threads that will
actually execute the code of that routine [19]. This in turn accommodates the
malleability mechanism leveraged in our work at the application level. In this
paper we conduct a significant step forward toward demonstrating the practical
benefits of the TA+ MLB approach by making the following new contributions:

– For the particular case of the QR factorization, we propose a parallelization
scheme that integrates look-ahead [20] to expose coarse-grain task-parallelism
in the main loop, dividing the iteration workload into two large independent
kernels.

– We combine the TA scheme with a multi-threaded implementation of Basic
Linear Algebra Instantiation Software (BLIS) [21] that, in addition, accom-
modates thread malleability.

– We offer a full comparison between the new parallelization scheme against
efficient realizations of the pure conventional loop-parallel (BLAS-level) app-
roach and the task-parallel counterpart.

The rest of the paper is structured as follows. Section 2 provides a general
overview of the mechanisms to exploit parallelism in task-parallel applications.
Section 3 assesses the benefits gathered by the introduction of the malleability
mechanism in a representative LA application: The QR factorization. Finally,
Sect. 5 ends the paper with some concluding remarks and proposals for further
application of malleability in BLIS.
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2 Exploiting Parallelism in Task-Parallel Applications

We next elaborate in some detail the three approaches to exploit parallelism in
scientific applications that employ LA kernels. For this purpose, we will consider
a very simple workhorse application, divided into four tasks and with depen-
dencies among them, as shown in the task dependency graph (TDG) in Fig. 1:
The application consists of the tasks labelled as T0, T1, T2, T3 in the figure,
and the arrows represent the data dependencies among them. Because of these
dependencies, only T0 can run at the beginning of the application. Once T0 is
completed, both T1 and T2 can run simultaneously because there are no depen-
dencies between them. Finally, the execution of T3 must wait for the finalization
of both T1 and T2. For the sake of simplicity, the figure is intended to specify
the task dependencies, and the box sizes do not reflect execution time or task
granularity, which will be in general heterogeneous across tasks. In addition, we
consider that each task boils down to a LA kernel.

Fig. 1. A simple task dependency graph.

This type of application can be parallelized via one of the following four
schemes, each presenting its own advantages and caveats [9]:

– Sequential application invoking a sequential library (SA+SL). This is
the most basic scheme, in which only a single task is in execution at any given
time, and no parallelism is extracted within each task/LA kernel (that is, the
execution of a LA kernel is carried out by invoking a sequential BLAS/LA-
PACK library). Figure 2a illustrates this scenario, with the width of each
task roughly matching the time expected for the sequential execution of the
associated kernel.

– Sequential application invoking a threaded library (SA+TL). Here
“sequential” means that only a single task is in execution at any given time,
but parallelism is extracted, if possible, within the LA kernel corresponding
to each task. Thus, at any given point in time, all running threads can only
cooperate with the execution of the same single task. This scenario is illus-
trated in Fig. 2b. Again, the width of the tasks reflects the execution time
after parallelization.
Unfortunately, not all LA kernels (and to be more generic, not all tasks within
the application) are “sufficiently” parallel and a performance pitfall can thus
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Fig. 2. Sequential application invoking a sequential library (SA+SL, 2a) and a threaded
library (SA+TL, 2b) scheme.

appear. In the simple example in Fig. 2b this would occur, for example, if task
T1 was mostly sequential, so that its execution using several threads would
yield no reduction of its running time.

– TA invoking a sequential library (TA+SL). In this scheme parallelism
is extracted at the application level only, usually by a runtime that orches-
trates a dependency-aware execution of the tasks. Moreover, each task inter-
nally does not exploit parallelism but invokes sequential LA kernels. This is
illustrated in Fig. 3. The width of each box is proportional to the time cost
of each task, which is executed by a single thread, once the corresponding
dependencies are fulfilled. Here, tasks T1 and T2 can proceed simultaneously,
as they do no depend on each other.

Fig. 3. TA invoking a sequential library (TA+SL) scheme.

A drawback of this scheme is that it requires decomposing the application into
a “sufficient” number of tasks, of the “appropriate” granularity, exposing a
delicate balance:

– First, some applications cannot be easily divided into tasks and/or those that
can be obtained are too coarse constraining the application-level scalability.



180 A. Castelló et al.

– The opposite case results in the creation of too many fine-grain tasks, increas-
ing the overhead of performing a dependency-aware schedule of those tasks.
In addition, having fine-grain LA kernels can lead to a performance drop a
sub-optimal exploitation of the memory hierarchy of the node [16].

– Finally, it is usual that for large compute-bound embarrassingly parallel ker-
nels (such as the Level-3 BLAS kernels), the SA+TL scheme outperforms the
TA+SL scheme. In general, these kernels can be divided easily into finer-grain
sub-tasks, but this division usually leads to an overall performance drop [5,6].

– TA invoking a threaded library (TA+TL). This scheme is similar to
the one depicted in Fig. 3, in the sense that parallelism is extracted at the
application level (TA approach). However, additional (nested) parallelism is
extracted from within the LA kernels by, for example, relying on a multi-
threaded instance of the BLAS (TL approach). In this approach though,
regardless of their degree of parallelism, all the tasks are executed with the
same number of threads, for example using two threads as in Fig. 4.

Fig. 4. TA invoking a threaded library (TA+TL) scheme.

In this paper we revisit the TA+TL scheme enhanced with malleability in
order to obtain a more efficient solution. In particular, consider the execution
depicted in Fig. 4 and assume that we have a processor with 4 cores. There we
can identify two situations in which the resource utilization can be improved:
First, T0 and T3 are executed by a fixed number of threads, which assumes
that these two tasks may be running at the same time, but this is not the case.
Fortunately, this aspect is not a problem for state-of-the-art LA libraries as the
number of threads assigned to the execution of a task can be fixed at task level,
as it is depicted in Fig. 5. In principle, it could seem good enough to vary these
numbers of threads at the beginning of the execution of the TA (but not within
the kernels). With this intermediate solution, prior to executing a LA kernel, the
application team decides the number of threads that will produce an efficient
execution, and invokes the kernel with that number of threads (or less, to avoid
over-subscription.)
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Fig. 5. TA invoking a threaded library (TA+TL) scheme enhanced with task-level
specification.

However, the two threads that participate in the execution of task T2 now
must remain idle till the execution of task T1 is completed, see the area colored
in pink in the figure. Unlike the previous situation, this issue is not solved by
recent LA libraries, which are not thread-malleable. In response to this issue,
the approach proposed in this work goes one step further towards the complete
integration of malleability in a scientific application by allowing that the number
of threads that participate in the execution of a given task/LA kernel dynami-
cally varies at run time. This solution is illustrated in Fig. 6, where as soon as
the threads in charge of executing task T2 complete their job, they proceed to
collaborate in the execution of task T1, which contributes to accelerating the
execution of the final phase for the latter task by leveraging these (two) extra
threads (area colored in green).

Our dynamic and kernel-level malleable solution tackles the two previously
analyzed problems. To make this possible we use a task-parallel application exe-
cuted by a runtime using a number of “application thread teams”, with each
application team in charge of executing a single task at any given moment. Fur-
thermore, to avoid the aforementioned problems, we adopt a dynamic solution
where the threads migrate between application teams on-the-fly, during the exe-
cution of the LA kernels, using a particular malleability mechanism built on top
of BLIS [21]. The goal of this malleability mechanism is that, at any instant,
there are no idle threads in the platform.

In the next section, we illustrate the benefits of this approach using a repre-
sentative LA operation, such as the QR factorization enhanced with look-ahead,
running on a multi-core processor.
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Fig. 6. TA invoking a threaded library (TA+TL) scheme enhanced with Malleability.

3 QR Factorization with Look-Ahead

Consider an m × n nonsingular matrix A, and its QR factorization given by
A = QR, where Q is an m × m orthogonal matrix and R is an m × n upper
triangular factor [12]. Assume for simplicity that n is an integer multiple of the
“algorithmic block size” b, and consider a column partitioning scheme of A into
s = n/b blocks, each one comprising b columns. Hereafter, A(:, c1 : c2) refers to
the submatrix that spans the c1, c1 + 1, . . . , c2-th panels (or column blocks) of
A, consisting of the matrix columns c1 · b, c1 · b + 1, . . . , c2 · b − 1.1

Listing 1.1 displays the structure of a blocked algorithm for the QR factor-
ization of A expressed with a high level of abstraction. The algorithm performs
s = n/b iterations, with the loop body first processing the “current” panel (that
is, the k-th column block of the matrix) in routine PF (for panel factorization); to
next update the panels to its right with respect to the corresponding orthogonal
transforms via routine TU (for trailing update). From the performance point of
view, PF is mostly a sequential operation while TU can be performed via highly
parallel Level-3 BLAS.

The conventional approach to exploit parallelism for this LAPACK matrix
factorization is to target loop-parallelism in the (Level-3) BLAS only, which
corresponds to the SA+TL scheme discussed in Sect. 2. Alternatively, task-
parallelism can be leveraged from the LAPACK routines themselves, yet com-
bined with calls to a sequential version of the BLAS; see also Sect. 2. For the
target factorization, this can be attained by 1) dividing both PF and TU into finer-
grain tasks; 2) leveraging a runtime to orchestrate a dependency-aware parallel
scheduling of these tasks; and 3) employing a sequential version of the BLAS to
execute each individual task [4,18].

In this work, we exploit a hybrid TA+TL scheme that exploits task-
parallelism at the factorization level and loop-parallelism from within the invoked
routines of BLAS. For TAs composed of compute-intensive BLAS kernels, this
approach offers competitive performance compared with the SA+TL and TA+SL

1 Note that, in our notation, the indices for blocks and elements start at 0.
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1 void QR( matrix A, int s )

2 {

3 for ( k = 0; k < s; k++ ) {

4 // Factorize panel k
5 PF( A(k : s − 1, k) );

6 // Update panels k + 1 : s − 1 w.r.t. panel k
7 TU( A(k : s − 1, k), A(k : s − 1, k + 1 : s − 1) );

8 }

9 }

Listing 1.1. Simplified routine for the QR factorization.

schemes [5,6]. Nevertheless, in order to expose nested parallelism for this TA+
TL scheme, we first need to reformulate the basic algorithm in Listing 1.1, in
order to eliminate the strict task dependency between the two operations in the
loop body. In order to attain this, we adopt a variant of this blocked algorithm
enhanced with look-ahead [20], where an iteration of the loop body comprises
the update of the trailing sub-matrix with respect to the current panel and the
factorization of the “next” panel (k + 1-th column block). Concretely, the loop
body of this variant then becomes:

1 // Update panel k + 1 w.r.t. panel k
2 TU( A(k : s − 1, k), A(k : s − 1, k + 1) );

3 // Factorize panel k + 1 (if k + 1 < s)
4 PF( A(k + 1 : s − 1, k + 1) );

5 // Update panels k + 2 : s − 1 w.r.t. panel k
6 TU( A(k : s − 1, k), A(k : s − 1, k + 2 : s − 1) );

For simplicity, in the following we compile the update of the trailing (k + 1)-th
panel and the subsequent factorization of the same panel in this code excerpt
into a single operation named panel update (PU). The (high-level) structure of
the resulting QR factorization with look-ahead is shown in Listing 1.2.

The variant with look-ahead consists of a loop body comprising two tasks: PU
and TU. The former is still mostly sequential while the latter can be performed via
highly parallel Level-3 BLAS. However, in contrast with the standard algorithm,
in Listing 1.1, the two tasks in the loop body are now independent and, therefore,
they can run simultaneously. This is relevant since, as the number of cores grows,
the panel update cannot take advantage of the increasing volume of hardware
resources, and eventually becomes a performance bottleneck.

In order to exploit the task independence in the look-ahead variant via nested
parallelism (TA+TL) we proceed as follows: We divide the threads into two
application thread teams so that, at each iteration of the loop, team TP is in
charge of PU while team TT tackles TU. In addition, to handle the different degrees
of parallelism of the two tasks, we naturally assign many more threads to team
TT than to team TP .
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1 void QR_LA( matrix A, int s )

2 {

3 // Factorize first panel

4 PF( A(:, 0) );

5 for ( k = 0; k < s; k++ ) {

6 // Update panel k + 1 w.r.t. panel k, and factorize

7 // panel k + 1 (if k + 1 < s)
8 PU( A(k : s − 1, k), A(k : s − 1, k + 1) );

9 // Update panels k + 2 : s − 1 w.r.t. panel k
10 TU( A(k : s − 1, k), A(k : s − 1, k + 2 : s − 1) );

11 }

12 }

Listing 1.2. Simplified routine for the QR factorization with look-ahead.

In [5], we analyzed how to integrate task-parallelism with MLB, from the
point of view of parallel programming. That work evaluated this solution for
three matrix factorizations: LU (with partial pivoting), QR, and reduction to
symmetric band form. However, the study performed there made several rele-
vant simplifications: 1) the team in charge of the panel factorization comprised
a single thread only; 2) the solution did not include an early termination safe-
guard [6]; and 3) the malleability mechanism was not integrated into BLIS but
was manually inserted into the application code. In this paper we overcome these
issues to offer a more complete experimental assessment of the benefits of the
nested TA+TL scheme.

4 Performance Evaluation

The following experiments were carried out on a platform equipped with a 20-
core Intel R© Xeon R© Gold 6138 processor [13] (Skylake micro-architecture). In
addition, in order to analyze the impact of integrating malleability running on
different core count configurations, we use the taskset tool to simulate a processor
of the same Skylake family but containing a smaller number of cores. In order
to avoid the performance distortions caused by the aggressive utilization of the
power modes (and associated frequencies) featured by Linux governor of the
processor, the operating frequency for all cores was set to 1.7 GHz.

In this work, the reference codes are linked with either BLIS v0.5.1 or MKL
2018.1.163. Malleability is integrated within an independent instance of the
aforementioned version of the BLIS library [19]. All experiments were performed
using IEEE double precision arithmetic.

Figure 7 reports the GFLOPS rates (billions of floating-point operations per
second) of the following codes for the QR factorization of square (m = n) matri-
ces:
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– MKL. The multi-threaded implementation of this operation in Intel MKL.
As this library offers a “black-box” solution, it is not possible to infer how
parallelism is exploited from within the Intel realization.

– SQR+MKL/BLIS. C implementation of the LAPACK routine to calculate
the QR factorization (routine dgeqrf) enhanced with some algorithmic opti-
mizations (in particular, the Level-3 BLAS scheme to accumulate the orthog-
onal transforms described in [15]), and linked with multi-threaded (TL)
instances of either Intel MKL or BLIS to execute the kernels invoked from
within the LAPACK routine. The implementation exclusively relies on Level-
3 BLAS kernels, that is, no Level-1 and Level-2 BLAS kernels are instantiated.
Note that this corresponds to a SA+TL scheme as the algorithm for the QR
factorization is “sequential” but invokes BLAS kernels from a multi-threaded
LA library.

– TQR+LA. A variant of the SQR implementation modified to encode look-
ahead, linked with BLIS, and with task parallelism exploited using OpenMP.
This is the baseline version to obtain a TA+TL scheme.

– TQR+MLB. Same variant as TQR+LA, but linked with our malleable version
of BLIS and enhanced with the early termination mechanism.

TQR+LA and TQR+MLB are both realizations of the TA+TL scheme. At
the beginning of each algorithm iteration, both options split the threads into
two teams, TP + TT , with the team in charge of the panel update comprising
one thread, and the remaining t − 1 threads dedicated to the trailing update (t
equals the number of available cores on each tested configuration). The difference
between both options is that the malleability mechanism allow us to “migrate”
the thread in charge of the panel update to help with the update as soon as this
task is completed. In all cases (except MKL, for which we have no control), the
algorithmic block size was manually tuned to optimize performance.

The plots report the performance results of the execution of the routines for
the QR factorization using 4, 12 and 20 cores (that is, the full socket in the latter
case). Focusing on the SQR curves, the plots reveal that the version linked with
Intel MKL outperforms that with BLIS by a large margin. The reason for this is
that MKL is able to extract higher parallel performance than BLIS for certain
GEMM shapes (in particular, those involving very narrow panels) that appear
in the panel factorization. At this point, we would like to clarify that this feature
is out of our control and that the SQR implementation linked with BLIS is the
starting point of this work.

The introduction of look-ahead (TQR+LA lines) improves the performance
results of the SQR + BLIS option and, for certain problem dimensions, it even
improves the results obtained with the SQR version that is linke to MKL. By
integrating the look-ahead mechanism, the cost of the mostly sequential panel
factorization is (partially or totally) hidden with the embarrassingly parallel
execution of the trailing update. An exception to this observation can be found
in the 4-core configuration. There, for mid to large problem dimensions, the
look-ahead-based implementation is inferior to the baseline SQR version. The
reason for this behaviour is that, for this small core count and large problem
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Fig. 7. Performance evaluation of different QR factorization implementations on the
Skylake platform.
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dimension, the panel factorization does not represent a performance bottleneck,
and therefore it is more beneficial to use all cores from the beginning to perform
the trailing update.

Focusing on the TQR+MLB results, the plots reveal that the integration of
malleability largely outperforms its counterparts that only leverage look-ahead.
By adding this technique there appear no idle threads during the execution of the
entire QR factorization and, as a consequence, the resources are more efficiently
utilized. Again, an exception to this positive scenario is found in the 4-core
configuration, but in this case for small problem dimensions. In this case, the
early termination mechanism is applied in most of the factorization iterations
and, the fact of dedicating only 3 threads to the trailing update, makes the
next block size to be used reasonably small. The reduced size of the new block
size results in the execution of sub-optimal BLAS-3 operations during the panel
update (due to the participation of narrow panels in GEMM) and, thus, in a
performance reduction.

Finally, the approach proposed in this work outperforms the routine in MKL
for the QR factorization for medium to large problems when 4 or 12 cores are
employed. This benefit is not repeated for 20 cores as, with this configuration,
the execution of the panel factorization becomes critical, and the baseline kernels
in BLIS are not as efficient as those in MKL with the operand shapes that appear
in this particular LA operation.

5 Conclusions

In this paper, we have demonstrated the performance benefits of integrating
malleability into the BLIS framework to avoid the rigidity of current instances
of BLAS, for which the number of threads used for the execution of a routine or
kernel is fixed from the beginning to the end. In practice, this new functionality is
exposed to the programmer via a minimal modification of the BLIS expert API.
The programmer just needs to identify the code points where the distribution
of the computation threads must be modified and the change is seamless.

The performance results expose that the benefits of this approach are widely
appealing in scenarios where the parallelism is extracted at both application-
and library-level. More specifically, when the workload is not equally balanced at
application-level, the malleability allows us to modify, at runtime, the parallelism
at the library-level with the net result of improving the overall core occupation.

Considering future work, we believe that malleability can also offer significant
advantages in runtime-based task scheduling or popular task-based programming
models such as StarPU [2] and OmpSs [11]. There, the scarce task-level paral-
lelism in some parts of the application can be by-passed by means of dynamically
increasing the parallelism within the tasks. Hence, a fully malleable underlying
library becomes mandatory.
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Abstract. Computer applications are growing in terms of data man-
agement requirements. In both scientific and engineering domains, high-
performance computing clusters tend to experience bottlenecks in the
I/O layer, limiting the scalability of data-intensive based applications.
Thus, minimizing the number of cycles required by I/O operations consti-
tutes a widely addressed challenge. In order to cope with that constraint,
distributed in-memory store solutions provide a network-attached stor-
age system using the compute nodes main memory as storage device.
This solution provides a temporary but faster storage approach than
those based on non-volatile memory like SSDs. This work presents a
novel ad-hoc in-memory storage system focused on data management
and data distribution, namely IMSS. Our solution accelerates both data
and metadata management, taking advantage of ZeroMQ, a fast and
flexible communication mechanism. One of the main contributions of
IMSS is that it incorporates multiple distribution policies for both opti-
mizing network performance and increasing load-balance. The experi-
mental evaluation demonstrates that our proposal outperforms Redis, a
well-known in-memory data structure store, outperforming Redis in both
write and read data accesses.

Keywords: HPC · Data intensive · In-memory storage

1 Introduction

Current scientific and engineering applications running on today’s large-scale
supercomputers are usually characterized by a data-intensive nature. A single
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application’s workflow easily generates tens of terabytes of data, mostly produced
by on-line operations. As M. Radulovic et al. [14] stated, from the performance
point of view, that a set of tested applications behave as data intensive ones
when all of them, but two, spent a significant portion of time with a memory
bandwidth utilization above 60% or even 80%. Due to the appearance of these
data-demanding high-performance applications, multiple software solutions have
been introduced in an attempt to cope with challenges along the entire I/O soft-
ware stack [6], such as high-level I/O libraries, parallel file systems, and I/O
middleware, with a final objective consisting on reducing the amount of file sys-
tem calls and offloading I/O functionalities from compute nodes, respectively.
Those optimizations are even more important for data-intensive workflows, con-
sisting of interdependent data processing tasks often connected in a DAG-style
sequence, which communicate through intermediate storage abstractions, typi-
cally files. While workflow management systems deployed on HPC systems (e.g.,
parallel machines) typically exploit a monolithic parallel file system that ensures
a high efficiency in data access [18], workflow systems implemented on distributed
infrastructures (most often, a public Cloud) must borrow techniques from the
Big Data computing field [7].

For several years, I/O-intensive HPC-based applications have been primarily
based on distributed object-based file systems, which separate data from meta-
data management and allow each client to communicate in parallel directly with
multiple storage servers. Exascale I/O raises the throughput and storage capac-
ity requirements by several orders of magnitude. Therefore, to develop methods
that can manage the network and storage resources accordingly is a must [12]. It
is assumed that the systems already developed for data analytics are not directly
applicable to HPC due to the fine-granularity I/O involved in scientific appli-
cations. Another weakness of existing systems is the semantic gap between the
application requests and the way they are managed by the storage back-end at
the block level.

Addressing the challenge, different solutions have been implemented through-
out the years. Alluxio [9] conforms a storage solution located between computa-
tion frameworks and persistent data stores that aims to reduce the complexity of
storage APIs while taking advantage of memory speed I/O. However, the former
does not provide an application-dedicated ad-hoc storage facility. Approaching
another viewpoint, Hermes [11] focuses on the implementation of a MRAM-
based storage system improving file system performance through the effective
use of MRAM devices. Nevertheless, it does not provide locality policies. Also,
solutions, such as WekaIO1, that provide a high-performance storage architec-
ture, do not consider locality within the implementation neither ad-hoc storage
characteristics.

This work presents the design, implementation, and evaluation of a dis-
tributed ad-hoc in-memory storage system (IMSS), a proposal to enhance I/O
in both traditional HPC and High-Performance Data Analytics (HPDA) sys-
tems. The architectural design follows a client-server design model where the

1 https://www.weka.io.

https://www.weka.io
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client itself will be responsible of the server entities deployment. We propose
an application-attached deployment constrained to application’s nodes and an
application-detached considering offshore nodes. The client layer is in charge of
dealing with data locality exploitation alongside the implementation of multiple
I/O patterns providing diverse data distribution policies.

Our approach offers the following benefits. First, the storage facility provides
a flexible API tackling the storage servers’ elastic deployment. It is possible
to specify the number of servers to be deployed as well as the compute nodes
where those servers will execute. Each server will have a storage buffer, whose
size is specified at server creation. Second, IMSS makes use of main memory
as the storage device so as to reduce as much as possible response time within
requests, avoiding querying data from disk. IMSS provides multiple data dis-
tribution policies, which consider data scattering among storage processes and
adapts the distribution behavior to each application’s use case. Finally, IMSS
exposes a non-POSIX interface so as to cope with the semantic gap existing in
current high-performance I/O systems. The interface provided relies on get-set
functions that enable non-contiguous data-related operations, unlike the tradi-
tional POSIX interface.

The rest of the paper is structured as follows. Section 2 presents related work
to our research. Section 3 introduces the architectural design of the IMSS system.
Section 4 introduces the deployment options of IMSS. In Sect. 5, we discuss the
experimental evaluation results. Finally, Sect. 6 closes the paper with the main
conclusions from our work.

2 Related Work

General-purpose parallel file systems such as GPFS [16] and Lustre [2] have
been providing for a long time well-known solutions for long term persistent
storage. However, they are very rigid and cannot be modified or suited to an
application one they are deployed. To avoid this problem, new distributed storage
architectures, like CEPH, have been proposed. CEPH storage system provides a
distributed architecture that can be deployed on virtual systems, allowing block-
and file-level storage, replication, and custom storage backends in Distributed
Storage Systems [1]. However, current HPC systems and applications are not
well suited to that kind of systems.

Moreover, increasing the complexity of the I/O stack with traditional I/O
devices, generates an increasing in I/O operations latency that hampers appli-
cations’ performance. Thus, nowadays use cases have empowered the prolifer-
ation of low-latency storage systems using local or remote in-memory storage
devices as a feasible approach to the problem [10,23]. Such has been the impact
of these storage systems [24] that multiple solutions, such as in-memory rela-
tional databases, in-memory NoSQL databases, in-memory cache systems, and
in-memory data processing systems, have been implemented in the last years.

Considering the widespread spectrum of solutions, Redis [15] is a well-known
key-value in-memory store that offers storage support for multiple data struc-
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tures. Redis’ implementation employs a single thread in charge of both, I/O com-
munications and data storage/retrieval operations. Redis provides a distributed
version called Redis Cluster, which provides an absolute decentralization through
a hash slot partition strategy to find out which server within the deployment
will store a certain record. Nevertheless, our tool has significant enhancements
over Redis. First of all, the IMSS storage system follows a multi-threaded design
architecture. Secondly, our IMSS provides to the applications a set of distribu-
tion policies that can be chosen at dataset level. As a result, IMSS will increase
awareness in terms of data distribution at the client side, providing benefits such
as a better data locality exploitation.

Another alternative that has been explored in order to approach the data
challenge is ad-hoc file systems [3]. Ad-hoc file systems provide a custom data
resource at application level, taking advantage of internal storage devices while
acting as a middleware between persistent storage entities and the application
itself. Major features are: (i) negligible deployment overhead, to be deployed
either on a HPC cluster for lifetimes as small as the runtime of a single job; (ii)
global name space for all nodes linked to the same ad-hoc file system; and (iii)
interaction with the back-end storage system through data staging.

Within the current state-of-the-art ad-hoc file systems, GekkoFS [19] con-
forms an exemplary implementation of an ad-hoc file system which offers a
user-space file system that combines application’s node-local persistent storage
devices in order to provide a global name space within the context of a partic-
ular use case, such as an HPC job, distribution of data and metadata as evenly
as possible among the nodes conforming the file system instance by using hash
indexing to discover which server will be storing each data element. GekkoFS
relaxes the POSIX semantics and relies on the application in order to ensure
that data overlapping conflicts do not arise. Therefore, the main differences con-
sidering GekkoFS and IMSS involves data distribution strategies and storage
resources. On the one hand, IMSS enables multiple data distribution policies
at dataset level increasing the application’s awareness about the location of the
data itself. On the other hand, IMSS uses main memory so as to store records
and also the possibility of persistent storage.

BurstFS [20] constitutes a burst-oriented storage system that shares basic
design considerations with GekkoFS. The main difference between them involves
write operations: BurstFS clients always write to the corresponding local storage
in a log-type manner. BurstFS instances are dynamically deployed along with
the allocation of a job over a set of compute nodes. Then, the storage system will
be using whatever node-local burst buffers are available, which may consist of
SSDs or any other fast storage device. Moreover, BurstFS uses the key-value data
model in order to handle metadata. In this case, the distribution policies enabled
by our IMSS arise as an advantage against the BurstFS system. The IMSS client
will be able to write to local/internal storage devices and to distribute the same
workload among the set of servers conforming the storage entity by means of
different data distribution strategies achieving improved load-balance strategies
respect to BurstFS. BurstFS system makes use of persistent storage devices



194 J. Garcia-Blas et al.

while IMSS store makes use primarily of main memory resources. As a result,
the benefits of the data-locality exploitation will be achieved more easily using
the IMSS tool.

In a previous work, we presented Hercules [4], a hierarchical parallel stor-
age system based on distributed memory. IMMS differs in the following aspects.
First, Hercules was based on Memcached [13] for both front and back-end layers.
This approach suffers from the limitation of the Memchached protocol for data
transferring modes, such as inter-process communication and inter-thread com-
munication. IMSS employs its own communication protocol based on ZeroMQ,
offering more flexible communication patterns. In contrast to Hercules, IMSS
provides its own in-memory storage back-end. This alternative outperforms
Memcached by eliminating the global cache lock system [22]. IMSS offers an
ad-hoc oriented deployment, which facilitates the integration of IMSS in both
applications and systems. Finally, IMSS offers a scalable metadata management
layer that exploits data locality in large supercomputers.

3 IMSS Architecture Design

As, shown in Fig. 1, the architectural design of IMSS follows a client-server design
model where the client itself will be responsible of the server entities deploy-
ment. We propose an application-attached deployment constrained to applica-
tion’s nodes and an application-detached considering offshore nodes.
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Fig. 1. Representation of an IMSS deployment.

The development of the present work was strictly conditioned by a set of well-
defined objectives. Firstly, IMSS should provide flexibility in terms of deploy-
ment. To achieve this, the IMSS API provides a set of deployment methods where
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the number of servers conforming the instance, as well as their locations, buffer
sizes, and their coupled or decoupled nature, can be specified. Second, parallelism
should be maximized. To achieve this, IMSS follows a multi-threaded design
architecture. Each server conforming an instance counts with a dispatcher thread
and a pool of worker threads. The dispatcher thread distributes the incoming
workload between the worker threads with the aim of balancing the workload in
a multi-threaded scenario. Main entities conforming the architectural design are
IMSS clients (front-end), IMSS server (back-end), and IMSS metadata server.
Addressing the interaction between these components, the IMSS client will exclu-
sively communicate with the IMSS metadata server whenever a metadata-related
operation is performed, such as: create dataset and open imss. Data-related oper-
ations (get data & set data) will be handled directly by the corresponding stor-
age server. Finally, IMSS offers to the application a set of distribution policies
at dataset level increasing the application’s awareness about the location of the
data. As a result, the storage system will increase awareness in terms of data dis-
tribution at the client side, providing benefits such as data locality exploitation
and load balancing.

Two of the most suitable network interfaces are sockets and Remote Proce-
dure Calls (RPC). To choose the best one, we made a comparison between several
communication mechanisms (sockets, gRPC, and we chose ZeroMQ [5] in order
to handle communications between the different entities conforming an IMSS
instance2. ZeroMQ has been qualified as one of the most efficient libraries for
creating distributed applications [8]. ZeroMQ provides multiple communication
patterns across various transport layers, such as inter-threaded, inter-process,
TCP, UDP, and multicast. ZeroMQ provides a performance-friendly API with an
asynchronous I/O model that promotes scalability. In addition, ZeroMQ library
offers zero-copy messages, avoiding further overheads due to data displacements.

Furthermore, to deal with the IMSS dynamic nature, a distributed meta-
data server, resembling CEPH model [21], was included in the design step. The
metadata server is in charge of storing the structures representing each IMSS
and dataset instances. Consequently, clients are able to join an already created
IMSS as well as accessing an existing dataset among other operations.

3.1 Front-End Layer

The client application will handle IMSS and dataset instances through an IMSS
client library. The API provides a set of operations to create, join, get, set, and
release data, datasets, and IMSS instances.

Along any session, clients create and join multiple IMSS instances. An IMSS
instance is defined as an ephemeral dedicated storage entity conformed by mul-
tiple servers distributed along a set of user-defined machines that use main
memory in order to store datasets. An IMSS instance is identified by a unique
Uniform Resource Identifier (URI) and it is represented by a data structure

2 (https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/
Middleware Comparison.pdf).

https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf
https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf
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storing parameters such as the number of servers conforming the instance and
their respective location. Moreover, a dataset entity corresponds to a collection
of data elements with a constant size that are distributed among the storage
servers of a single IMSS instance following a certain data distribution policy.
As IMSS instances, datasets are identified by a unique URI, which reflects the
storing IMSS entity. A data structure representing the dataset abstraction is cre-
ated per instance, gathering parameters such as the distribution policy assigned
to the dataset, the number of data elements conforming the dataset, and the
replication factor, among others.

3.2 Back-End Layer

Each IMSS instance is formed by multiple IMSS storage servers. Each one stores
multiple data blocks of different datasets. Each IMSS server deploys a dispatcher
thread that distributes and balances client connection requests among worker
threads following a round-robin policy. In addition, worker threads belonging
to the same server associate data blocks’ identifiers to memory locations in a
map-based memory container.

In order to handle get and set requests, each worker thread exclusively
accesses the map container for the provided data block location. Afterwards,
the requested data block is wrapped into a message and is sent back to the
client in case of a get operation. If the requested data block is not found, an
error code is returned. If the operation is a set, the worker thread overwrites the
concerned block if it was already stored. Otherwise, the data block is written
and a new key-value pair representing the previous block is added to the map.

Data persistency is provided through period dump operations that write all
the buckets of an IMSS to SSD or hard disks. The period can be defined when
the IMSS is created.

3.3 IMSS Metadata Server

Dataset and IMSS data structures appear whenever the client creates one of the
previous instances. The metadata server was introduced in order to keep track
of the aforementioned structures. In terms of internal design, IMSS metadata
server aims to balance workload among a thread pool. The architecture con-
sists of a single dispatcher thread and multiple worker threads. The dispatcher
thread serves incoming connection requests distributing new clients between the
worker threads following a round robin policy. A map container, which associates
datasets’ and IMSS instances’ URIs to a memory location, is used to keep track
of the stored structures.

The metadata server implements a persistence module. The server is able to
write the structures associated to the dataset and IMSS entities handled along
the session once it is over, as well as reading them during the deployment of a
new session.
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3.4 Data Distribution Policies

Dataset distribution policies included in IMSS define the distribution of each
dataset in the instance deployed. The policy determines the back-end server
in charge of storing data blocks. The IMSS front-end layer handles the policy
assignment whenever a dataset is created. The IMSS metadata server maintains
the dataset’s data structure, annotating the distribution policies of each one.
The following policies have been developed:

– ROUND ROBIN: data blocks are distributed among the IMSS servers fol-
lowing a round-robin strategy.

– BUCKETS: each dataset is divided into the same number of chunks as
number of servers. Each chunk is composed by a consecutive number of data
blocks, equally distributed. Then, each chunk is assigned to a unique server.

– HASHED: a hash operation is applied over each data block key to discover
the mapped server.

– CRC16bits & CRC64bits: similar to HASHED policy, but a sixteen/sixty
four bits CRC operation is applied over the data block key.

– LOCAL: each data block is handled by the IMSS server running in the same
node that the client. The data block key is not considered in this policy. If
no IMSS server was deployed in the client node, every dataset’s data-related
operation will return an error.

With those policies, IMSS enables the possibility to tune the dataset distribu-
tion. These distribution policies aim to increase performance. As demonstrated
in Sect. 5, the LOCAL policy experimentally obtains the greatest performance
due to the exploitation of locality. In the current prototype, the distribution pol-
icy is established at creation time and it cannot be modified. In the future, we
plan implement a dynamic distribution policy that enables to adapt the behav-
ior in terms of system metrics (CPU, memory consumption, etc.). Within the
previous possibilities, a LOCAL policy should be highlighted as it will have the
objective of exploiting data locality as much as possible: data requests will be
forwarded to the storage server running in the same machine where the request
was made. Finally, a non-POSIX get-set interface will be provided in order to
manage datasets, which conform a storage abstraction used by IMSS instances
in order to manage data blocks (smallest data unit considered within the storage
system).

4 Deployment Strategies

Two strategies were considered so as to adapt the storage system to the appli-
cation’s requirements. On the one hand, the application-detached strategy, con-
sisting of deploying IMSS clients and servers as process entities on decoupled
nodes. IMSS clients will be deployed in the same computing nodes as the appli-
cation, using them to take advantage of all available computing resources within
an HPC cluster, while IMSS servers will be in charge of storing the application
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datasets and enabling the storage’s execution in application’s offshore nodes.
In this strategy, IMSS clients do not store data locally, as this deployment was
thought to provide an application-detached possibility. In this way, persistent
IMSS storage servers could be created by the system and would be executed
longer than a specific application, so as to avoid additional storage initializa-
tion overheads in execution time. Figure 2 (left) illustrates the topology of an
IMSS application-detached deployment over a set of compute and/or storage
nodes where the IMSS instance does not belong to the application context nor
its nodes.

On the other hand, the application-attached deployment strategy seeks
empowering locality exploitation constraining deployment possibilities to the
set of nodes where the application is running, so that each application node will
also include an IMSS client and an IMSS server, deployed as a thread within the
application. Consequently, data could be forced to be sent and retrieved from
the same node, thus maximizing locality possibilities for data. In this approach
each process conforming the application will invoke a method initializing certain
in-memory store resources preparing for future deployments. However, as the
attached deployment executes in the applications machine, the amount of mem-
ory used by the storage system turns into a matter of concern. Considering that
unexpectedly bigger memory buffers may harm the applications performance,
we took the decision of letting the application determine the memory space that
a set of servers (storage and metadata) executing in the same machine shall use
through a parameter in the previous method. This decision was made because
the final user is the only one conscious about the execution environment as well
as the applications memory requirements. Flexibility aside, as main memory
will be used as storage device, an in-memory store will be implemented so as
to achieve faster data-related request management. Figure 2(right) displays the
topology of an IMSS application-attached deployment where the IMSS instance
is contained within the application.
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5 Experimental Evaluation

An IMSS prototype, as well as micro-benchmarks used for evaluation are avail-
able3. IMSS has been evaluated in different scenarios in order to ascertain the
tool’s appropriateness for the task addressed in the current work. First, we eval-
uated IMSS in a bare-metal cluster. Second, in order to evaluate the scalability
of IMSS, we carried out experiments using the Google Cloud infrastructure. The
former evaluations aimed to measure the system’s scalability reaching up to 128
nodes. The workload was fixed to a single dataset of 8 GB that clients handle
collectively: one client creates it and the remaining open it. Multiple distribution
policies and block sizes were once again considered.

The Google Cloud Platform4 was chosen as a feasible solution. The virtual
instances are composed by nodes with 4 cores and 16 GB of RAM memory. We
have employed up to 128 virtual nodes. The software layer is based on Ubuntu
18.10 LTS, GCC compiler 7.3.0, and MPICH 3.2.0. The results shown in the
experiments correspond with the average value of five consecutive executions. In
order to depict the performance of IMSS, we have compared our solution with
four storage alternatives. First, IMSS was directly compared with the Redis
object store. Second, IMSS was compared with maximum network bandwidth
(in terms of MB/s), denoted in the plots with the label network limit. The net-
work throughput was obtained by using the iperf tool [17]. Within the results
presented, Redis deployment time is not considered. However, it is important to
note that the deployment step of IMSS is significantly smaller than Redis.

5.1 Block Size Variation

The first scenario presents the aggregated performance obtained from writing
and further reading steps of an 8 GB dataset achieved by 128 clients. Figure 3
represents the aggregated throughput obtained from the previous experiments.
In this case, the lack of variation of any kind is differentiated. In the first place,
there is no performance increment with bigger block sizes. This takes place as
the dataset’s portion left to each client is so small (64 MB) that it does not
leave possibility for improvement. There is no difference in writing such a small
number of bytes with a block size of 4 KB (16384 blocks) or 16 MB (4 blocks)
taking into account the asynchronous nature of the operation. Secondly, the
previous condition plus the minimal number of write operations per compute
node leaves no chance for any LOCAL policy improvement. Besides, another
factor that locates the observed performance under the referenced corresponds
to the reduction in the number of write operations per client and create dataset
call.

Moreover, Fig. 4 shows the aggregated throughput obtained from the conse-
quent reading step. In this case, a significant improvement paired to the block
size is ascertained. The previous fact takes place as the read operations involve

3 https://gitlab.arcos.inf.uc3m.es/mandres/IMSS.
4 (https://cloud.google.com).

https://gitlab.arcos.inf.uc3m.es/mandres/IMSS
https://cloud.google.com
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Fig. 3. Single dataset WRITE evaluation.

network overheads, which suffer from small blocks. In addition, a performance
improvement could be noticed regarding the LOCAL distribution. The policy
turns to be favored as each client’s requests are handled by the server running in
the same machine. As a whole, the LOCAL policy’s effectiveness is once again
justified through the results obtained in the reading step. In addition, the meta-
data influence is ascertained once more regarding the writing one.

5.2 Scalability

This scenario considers a scalability evaluation of the IMSS starting from 4 nodes
up to 128 by writing and reading an 8 GB dataset collectivelly using a 16 MB
block size. Figure 5 plots the performance obtained in the writing step. As it can
be seen, the performance degradation detailed in the writing step explanation of
Sect. 5.1 turns to be justified. The number of metadata operations also increases
reaching a point where the number of clients is no longer an advantage, but a
constraint. In case of IMSS, each execution involved both the initialization of the
storage instances and the creation of datasets. We observe that as we increase
the number of clients, IMSS suffers from a little metadata overhead due to the
management of blocks and the distribution policies. In contrast, Redis does not
suffer this constrains as it lacks those features. In addition, the asynchronous
nature of the write operations is again considered as it justifies the lack of any
LOCAL case improvement.

Reading results are shown in Fig. 6. In this case, the 4 and 8 clients cases stick
out as the BUCKETS policy is able to reach the performance of the LOCAL
policy. Consequently, considering the previous context and the BUCKETS dis-
tribution policy, the network limits the performance of the LOCAL policy’s
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Fig. 4. Single dataset READ evaluation.

performance until the number of clients and the network topology constraint
the case. Regarding the obtained results, the performance improvement of the
LOCAL distribution policy through the exhaustive and aware exploitation of
data locality are once again justified as well as the influence performed by the
metadata operations.

5.3 Metadata Overhead

The last scenario evaluates the time required for invoking each API call of IMSS.
Figure 7 plots the mean time required in milliseconds to perform every

metadata-related call. As shown in the figure, INIT operations are more compu-
tationally expensive as they have to create all IMSS environment. Thus, stat init
method produces an execution overhead as it initially creates the communication
channel with the metadata server. Besides, this call involves the initialization of
multiple internals required for an execution. We also observe that both init imss
and open imss invocations constitute another couple of computationally expen-
sive functions as they involve creating the corresponding communication chan-
nels with each server conforming the IMSS deployment. However, the init imss
execution time is above the open imss one as the first function will initialize
all server entities. It is important to highlight that the number of servers con-
forming the IMSS deployment significantly influences the execution time of the
aforementioned functions as the number of servers to be awakened and the num-
ber of communications to be created increases with it. It is important to notice
that those operations are executed only once at IMSS creation or opening.
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Fig. 5. Scalability evaluation. WRITE step of an 8 GB dataset.

However, status and operation calls creates a very low overhead. The
stat release and release imss calls require a small execution time as they exclu-
sively release the aforementioned communication resources and internals. Any-
way, they are used only once, when the IMSS is destroyed. Moreover, stat imss
function, that requests an IMSS metadata structure to the metadata server, also
creates a small execution overhead. Considering the set of metadata operations,
create dataset, open dataset and stat dataset methods, no significant execution
overhead is created as they exclusively involve a request-reply dialogue with the
metadata server, plus additional queries performed over the internal vectors stor-
ing datasets’ metadata structures. Again, the release dataset function will not
suppose a significant overhead as it will just mark as free the position storing
the involved metadata structure within the internal entity that keeps track of
them.

As may be seen, the overhead of dataset operations is almost negligible. Those
results are possible due to the usage of a metadata cluster, with a minimum of
3 nodes. The cluster could be enlarged, if needed, to ensure scalability and to
keep performance.
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Fig. 6. Scalability evaluation. READ step of an 8 GB dataset.

Fig. 7. Mean execution time of each IMSS API call.

6 Conclusions

In this work, we have introduced IMSS, an in-memory ad-hoc storage system
for data intensive-based applications that provides a flexible API tackling the
storage servers’ elastic deployment, usage of main memory as the storage device
so as to reduce as much as possible response time within requests, multiple data
distribution policies at the dataset level to increased awareness at application
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level, and a non-POSIX interface that relies on get-set functions. Evaluation
results presented in Sect. 5, comparing IMSS, Redis and a POSIX-compliant ext4
file system with caching techniques under different scenarios, show that our IMSS
performs better in any operation involving distributed datasets, outperforming
Redis and POSIX file systems. Moreover, we showed a low overhead for the
execution of IMSS’s API operations.

Future work guidelines involve the development of a more sophisticated per-
sistence storage module. This new module will allow to provide more efficient
operations to dump data from IMSS to the persistent storage back-end. We are
currently working on a extended evaluation that covers an experimental evalua-
tion under larger scenarios in terms of number of clients involved and workload
in order to provide a more detailed performance analysis.
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Abstract. Recent High-Performance Computing (HPC) systems are
facing important challenges, such as massive power consumption, while
at the same time significantly under-utilized system resources. Given the
power consumption trends, future systems will be deployed in an over-
provisioned manner where more resources are installed than they can
afford to power simultaneously. In such a scenario, maximizing resource
utilization and energy efficiency, while keeping a given power constraint,
is pivotal. Driven by this observation, in this position paper we first high-
light the recent trends of resource management techniques, with a par-
ticular focus on malleability support (i.e., dynamically scaling resource
allocations/requirements for a job), co-scheduling (i.e., co-locating mul-
tiple jobs within a node), and power management. Second, we consider
putting them together, assess their relationships/synergies, and discuss
the functionality requirements in each software component for future
over-provisioned and power-constrained HPC systems. Third, we briefly
introduce our ongoing efforts on the integration of software tools, which
will ultimately lead to the convergence of malleability and power man-
agement, as it is designed in the HPC PowerStack initiative.

Keywords: Malleability · Dynamic resource management · Power
management · Over-provisioning · Co-scheduling · Heterogeneity

1 Introduction

The power consumption of top-class supercomputers or High-Performance Com-
puting (HPC) systems have been increasing considerably over the past few
decades. As a result, one of the most powerful supercomputers in the world
now consumes an enormous amount of power, almost hitting 30MW [4]. Mean-
while, energy costs have been raising significantly in general, and thus setting a
power constraint on the entire HPC system in order to keep within a budgetary
upper limit is becoming more and more critical. As a consequence, future HPC
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systems will be deployed in an over-provisioned manner, i.e., installing more
resources than the facility can (or wants to) afford in terms of supplied power at
one time, and will be operated under a certain power constraint depending on
the operation cost at the time, and using techniques like active power shifting
to direct the limited resource power to the system components that require it
most to optimize performance and/or throughput.

For this approach to work, though, we require significant flexibility in the
entire system software stack. One promising solution for this is supporting
dynamic malleability, i.e., dynamically scaling resource request/allocation to
exploit the dynamism inside of an application. Because current standard resource
schedulers in HPC employ static resource allocation policies, there is a signifi-
cant room for system efficiency improvement by introducing dynamism at this
level. Another promising solution is co-scheduling, i.e., co-locating multiple jobs
that utilize complementary resources on the same node. As a compute node
in an HPC system is becoming increasingly fat with heterogeneous processing
elements, co-scheduling is indispensable to fully utilize the resources inside a
node.

In this position paper, we explicitly target the near-future over-provisioned
and power-constrained HPC systems and consider applying these novel
approaches, which both boil down to sophisticated resource handling mecha-
nisms, to these systems. More specifically, we first highlight the trends of HPC
architectures, malleability support, co-scheduling, and power-aware HPC. We
then discuss what would happen when these were combined together while pro-
viding some fundamental analyses on the convergence as well as clarifying the
functionality requirements in each software component. We finally introduce our
ongoing efforts on our software stack tool integration, which will ultimately lead
to the convergence of malleability and power management, as e.g., targeted in
the HPC PowerStack efforts [2].

2 Technology Trend

In this section, we first summarize the trend of hardware architecture in HPC
systems. We second introduce several prior and ongoing efforts for the malleabil-
ity support in HPC systems. We third highlight existing co-scheduling techniques
for HPC systems. We finally present power management studies in HPC systems.

2.1 Hardware Architecture

Driven by the end of Dennard scaling in mid 2000s, the industry had to change
their system designs toward multi-core and heterogeneous systems, instead of
merely increasing the clock frequency [20,22]. As a consequence, CPU-GPU het-
erogeneous supercomputers have appeared around a decade ago, and now about
30% of the HPC systems ranked in the Top500 list are equipped with GPUs [4].
Nevertheless, we are now facing another serious issue, namely the slowing of
Moore’s law, and with that the end of the exponential growth that continued
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over the past 50 years is inevitable in the near future [22]. To keep the historical
performance/energy-efficiency growth ratio, both hardware-/software-level sys-
tem optimizations or even radical redesigns are essential. To this end, adopting
extremely heterogeneous architectures that consist of multiple different special-
ized hardware components is a promising solution, in particular to maximize
the performance or energy efficiency of various common HPC workloads [32].
However, this hardware architecture trend, i.e., compute nodes will become fat-
ter and more heterogeneous, will make it even harder to fully utilize the available
resources, which will require more sophisticated resource management method-
ologies including co-scheduling, power management, and malleability support.

2.2 Malleability Support

Malleability is the property of jobs or applications to remap themselves to vary-
ing numbers of compute resources at runtime [21]. When these resources are
CPU cores in a shared memory environment, this kind of remapping requires
less complicated data movements. In contrast, when whole nodes are added or
removed from the resources available to a job or application, then network-
based data re-distributions need to take place. In addition to this, communi-
cation software needs to be able to account for these changes, and update its
internal data structures to represent the changes in resources. This is the case
with MPI libraries or PGAS run-time systems. There has been active research
in both shared-memory [30] and distributed-memory [17,19,23,24,33] malleable
systems.

In distributed memory systems, as may be expected, the number of changes
to support malleability is larger: Nearly the entire software stack needs to be
updated to support malleability. The scheduler, node management, process man-
agements, communication libraries, programming models, tools and applications,
among other things, require changes to support malleability in distributed mem-
ory systems. Furthermore, existing elastic distributed memory systems, such
as cloud software stacks, are incompatible with the bulk synchronous patterns
that are common in scientific and engineering simulations. Therefore, systems
like Kubernetes, that already support malleability for cloud computing work-
loads, cannot be reused without important changes. In spite of the larger scope
and challenges, researchers have been exploring updates to systems such as
schedulers [19,33], programming models [17,23] and applications [24] in the
distributed-memory supercomputing field in recent years. Further, as power is
becoming more and more precious in supercomputers, in particular for over-
provisioned systems, we should target power budgeting and compute resources at
the same time.

2.3 Co-scheduling

Ever since multi-core processors appeared on the market, a variety of co-
scheduling techniques have been widely studied. In general, these techniques
are useful in order to fully utilize the resources inside of a chip/node by mixing
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processes/applications/jobs which require complementary resources. R. Cochran
et al. proposed Pack & Cap that co-locates multi-threaded applications on a
multi/many-core processor while optimizing the number of threads for each
of the applications [16]. M. Bhadauria et al. explored the feasibility of space-
shared scheduling using a greedy-based co-run job selection and resource allo-
cation policy [8]. J. Breitbart et al. created a resource monitoring tool useful
for co-scheduling HPC applications [10] and provided a memory-intensity-aware
co-scheduling policy [11]. Q. Zhu et al. targeted CPU-GPU heterogeneous proces-
sors and proposed a co-scheduling approach suitable for them [36]. Others exam-
ined the impact of hardware cache partitioning when co-running HPC jobs [6].
In general, these seminal studies are not aware of malleable HPC applications.

2.4 Power-Aware HPC

Since power consumption has become the first class design constraint when
building supercomputers, there have been a variety of activities or studies on
power-aware HPC. T. R. W. Scogland et al. developed a comparative power
measurement methodology through the Energy Efficient HPC Working Group,
which is used for the Green500 ranking today [31]. T Patki et al. firstly explored
the feasibility of over-provisioning for HPC systems [26], and following this study,
there have been various resource management and scheduling researches for over-
provisioned and power-constrained HPC systems [27–29]. The PowerStack ini-
tiative community [2] was launched based on these studies, and now we should
extend the scope to cover malleability and co-scheduling to fully exploit the energy
efficiency of HPC systems.

3 Problem Statement

Our ultimate goal is to provide a software stack that is capable of handling
malleable jobs while providing co-scheduling and power management features
for near-future over-provisioned and power-constrained HPC systems. In this
section, we cover the fundamental aspects such as job classification and the
relationship between malleability, co-scheduling, and power management.

3.1 Job Classification

Before go into the details, we first classify jobs with respect to the applicability
of the advanced resource management features in Table 1. The classification is
based on the following two points: (1) whether or not the application supports
the malleability; (2) whether or not the user accepts the slowdown caused by the
power capping and/or node sharing (or co-scheduling). Even though introduc-
ing the malleability feature has various advantages by exploiting the dynamic
behaviors of both systems and applications, as it requires code modifications,
which can be significant depending on the complexity of the application, some
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Table 1. Job classification

Malleability Accept
slowdown

Power
capping

Node
sharing

Job Class1

Job Class2 � � �
Job Class3 �
Job Class4 � � � �

Fig. 1. Malleable job

Fig. 2. Malleability handling policies
and power constraint

Fig. 3. Our target strawman architecture

users may choose the traditional rigid option. Similarly, some users may pre-
fer to exclusively utilize compute nodes without any power capping even if the
administrators encourage the users to accept the slowdown (with an acceptable
performance degradation rate) by offering them incentives, in terms of such as
queuing priority and pricing. Therefore, these different classes of jobs will co-
exist in future HPC systems with these advanced resource management features,
and the entire software stack as well as the administrators must carefully han-
dle them accordingly, in terms of resource allocations, queuing priority, token
accounting, and so forth, which will be discussed later in this paper.

3.2 Malleable Jobs Under Power Constraint

Next we focus on malleable jobs and their dynamic behaviors (Job Class 3/4 )
as depicted in Fig. 1. The X-axis indicates time (t), while the Y-axis represents
the number of requested nodes or the scale of MPI rank (Nnode(t)). Nmax is the
maximum of Nnode(t) throughout the job execution.

We have several options to deal with the dynamic resource re-allocations to
malleable jobs, and an optimal choice highly depends on the remaining resources
in terms of both compute nodes and power. If available compute nodes are not
very plentiful, dealing compute nodes across the job is a suitable choice. If no
compute node is available (but power budget is still remaining), node sharing
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(or co-scheduling) should be considered. Note that the system must care about
the job classes and the acceptable slowdown ratios designated by the users in
this case. For an over-provisioned system with a very strict power constraint,
allocating Nmax nodes to a malleable job and sleeping/awaking them to deal
compute nodes will be an option to be considered. As available compute nodes
are very plentiful (but most of them must be in the low-power or sleep states)
in such a system, the malleability can be handled by just turning them into the
sleep/awake state.

Figure 2 intuitively summarizes the conditions mentioned above, and it is
important for current/future HPC systems to analyze, model, and quantify the
exact boundaries to determine the policy selection from these different resource
management options. This exploration is a new research opportunity, and we
need theoretical studies to demystify them by using such as job traces obtained
from supercomputers and putting them into simulators with realistic setups. In
this fundamental study, we will estimate or set some assumptions to classify the
jobs in the trace into the categories shown in Table 1, in terms of number of
jobs, job scale distributions, and execution time distributions, because the opti-
mal policy setups and the effectiveness of these approaches will highly depend on
these factors. To make the exploration more realistic, analyzing the scalability
of representative applications at the granularity of application phase will help
to assess the dynamic behavior. Further, quantifying the benefits of our app-
roach from both the systems’ and users’ point of views will be essential, which
includes the exploration on what incentives we should provide to users. Once
a policy selection methodology established throughout this study, that will be
deployed/implemented on the software stack.

4 Toward Convergence of Malleability and PowerStack

Driven by the problem statement and the basic assessment described in the last
section, here we describe our high-level solution and ongoing efforts to realize
it. First, we introduce our reference strawman software architecture. Second, we
explain our high-level architectural solution and the detailed roles of components
in the strawman architecture. We then finally highlight our ongoing efforts on
the software integration to realize it.

4.1 Strawman Architecture

Figure 3 illustrates our high-level software architecture, consisting of several com-
ponents and actors. The roles of the components are summarized as follows:

System Manager. The system manager receives a set of jobs to be scheduled
within the system and indicatively decides upon when to schedule each job,
to which specific compute nodes to map it, and under which power budget or
setting. It also handles any dynamic resource/power requests from the job/node
managers at runtime.
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Fig. 4. Hierarchical and dynamic resource management

Job Manager. The job manager performs optimizations considering the per-
formance behaviour of each application, its fine-grained resource footprint, its
phases and any interactions/dependencies dictated by the entire workflow. It
provides an option to users for a fine-tuned application-level hardware knob
controlling and also provides the functionality to scaling up/down the job size.

Node Manager. The node manager provides access to node-level hardware
controls and monitors. Moreover, the node manager implements processor level
and node level power management or resource partitioning policies, and it medi-
ate all the hardware control requests coming from the software stack.

Monitor. The monitor is responsible for collecting in-band and out-of-band
data for performance, scheduling, resource management, and so forth. The mon-
itor operates continuously without interfering with running jobs, and collects,
aggregates, records, and analyses various metrics, and pushes necessary real-time
or profiling data to the other components.

4.2 Solution Overview and Requirements

Figure 4 illustrates the high-level concept of our solution. Overall, we apply a
hierarchical and feedback-driven resource management approach. The require-
ments for each software component and the administrators are as follows:

System Manager. The system manager mainly deals with two different tasks:
(1) job scheduling, which is based on proactive decisions; and (2) dynamic
and reactive resource adjustment across jobs/nodes. For the former, as the job
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scheduling decisions cannot be changed after job launches (unless we apply check-
pointing and migrations that however can induce significant overheads), they
are basically proactive relying on static information such as job profiles. Naive
heuristics such as the FCFS with back-filling are widely used, however as we
support malleable jobs, prediction-based approaches will be more important,
e.g., those based on estimated dynamic behaviors of malleable jobs using such
as profiling or any other information given by such as users. Further, as we apply
co-scheduling and/or power capping to some classes of jobs, we need to revisit
even the conventional back-filling strategy, e.g., choosing back-filling jobs based
also on the remaining/requested power budget and the impact of node sharing.
As for the dynamic resource management, we consider a hierarchical approach
as shown in the figure: (1) jobs trade the power budgets and nodes by interact-
ing with the system manager depending on their needs; (2) the system manager
monitors the remaining nodes/power and governs the redistribution based on
the requests; and (3) the node manager scales the power cap accordingly and
optimizes the node resource partitioning (if co-scheduled). Note that if other
components (e.g., I/O nodes or cooling facilities) support the power capping
capability, the system manager should handle the power trading across compute
nodes and them as well.

Job Manager. The major role of the job manager in this software stack is sup-
porting the malleability functions and providing proper interfaces to the system
manager, the node manager, and the developers. Beyond that, as the power bud-
geting should be supported for over-provisioned and power-constrained systems,
the interface should also be able to handle the power budget requesting function-
alities, not limited to removing/adding compute nodes. The power management
should cover not only the sleeping/awaking decisions for the malleability behav-
ior, but also should care about the per-phase/-loop characteristics (e.g., compute
intensity, cache hit/miss, accelerator utilization, etc.) to determine the setups of
hardware knobs during the active state. The characterizations should be based
on such as profiling provided by the monitor tool, and the hardware knob setups
are sent to the node manager and are handled by it.

Node Manager. The node manager mainly focuses on the hardware knob con-
trol, instructed by the job manager, or optimize the knobs by itself if the job
manager (or the application) doesn’t apply any application-oriented optimiza-
tions. It optimizes the power knob setup for each target hardware component
inside a node while keeping the total node power constraint given by the system
manager (or the job manager). In case the node becomes idle and unused for
a malleable job, that should turn the node into the sleep state based on the
instruction given by the system/job manager. Further, if multiple jobs are run-
ning the same node in a space sharing manner, it should handle the resource
partitioning properly to meet the performance requirement for both of the co-
running applications. For these decisions, the node manager can utilize statistics
given by the monitor tool.
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Monitor. The monitoring tool must be able to keep track of the power,
resource usage information, and so forth, associated with each job/application,
which will be ultimately utilized for various objectives. For instance, these col-
lected information is useful for the other software components in their decisions,
mainly the job profiling purpose as described before. In addition, the collected
power/resource utilization information should be used for the human actors.
One example is the job pricing purpose determined by the site administrators,
which will be described later. Further, more advanced functionalities including
modeling and analysis would help. One option is pointing out resource wastes
or potential benefits of introducing malleability, power capping, or co-scheduling
for users who submit jobs belong to Job Class 1 (see Table 1). More specifically,
notifying the estimated queuing time and cost reduction by applying/accepting
these features would be a great encouragement for users to apply/accept these
features.

Site Administrators. One of the major roles of the administrators is setting
up the system configurations, including the total system power constraint or
dividing the job queue per job class. Further, as introducing malleability into an
application requires extra efforts to modify their codes, the administrators need
to clarify the benefits to encourage their use. This is also the case for applying
power capping and/or co-scheduling as they incur performance degradation even
though the resource manager attempts to minimize the impact. One option is
taking these advanced resource management features into account in the token
consumption calculations, i.e., how much they charge for a job. The cost is
usually calculated based on the number of occupied nodes multiplied by the job
runtime. As the number of nodes dynamically changes during the execution of
a malleable job, the cost should be significantly reduced. Further, if the power
capping and/or co-scheduling is applied to the job as well, that should be also
reflected on the cost, i.e., energy-based pricing or interference-aware pricing [12].

4.3 Our Ongoing Efforts on Software Tool Integration

To realize the high-level solution described above, several software integration
projects are ongoing. One is DEEP-SEA project [1] that aims at providing a
programming environment for European exascale systems, which includes the
malleability support, and the other one is REGALE project [3] that focuses on
realizing the HPC PowerStack [2], including both power management and co-
scheduling aspects. In this subsection, we briefly introduce the current status of
them, and our ambition is combining these two integration paths together in the
near future.

Malleability Support. At the system management level, we are engaged in
experimental development with resource managers like FLUX [5] and Slurm [35]
as a part of DEEP-SEA project [1]. These are being extended with dynamic
job allocation functionalities. In addition to this, new experimental scheduling
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heuristics are being developed. Currently, these are extensions to the well estab-
lished FCFS with back-filling heuristic already available in these frameworks. We
are also in collaboration with developers of monitoring and data-capture frame-
works, such as DCDB [25], to identify metrics that are relevant to allocation size
updates in jobs. These monitors are being updated to capture data of jobs with
changing allocation sizes.

A set of application processes is created for workloads to run in our systems,
in one or more nodes. These processes require relevant metadata and synchro-
nization operations to establish communication, among other things. Between
these system managers and the run-time systems of programming models, there
are process management interfaces, that allow the exchange of such metadata.
These interfaces have traditionally been vendor specific, and as a result has
increased the challenge of developing run-time systems, especially in distributed
memory systems. The PMIx [14] standard aims to remove these additional com-
patibility challenges. We are engaged in its standardization efforts, as well as in
the development of its Open PMIx library. Both the standard and the library are
being extended to better support the dynamic exchange of allocation metadata,
required by malleable systems.

PowerStack Support. As an initial step, we are developing a software stack to
realize the PowerStack [2] that enables a variety of power management function-
alities from naive to a more sophisticated one in REGALE project [3]. We have
already completed defining the initial software architecture, requirements, and
supported use cases, and now we are working on the software tool integration
based on the architectural definition. For the system manager, in particular the
job scheduling, we are going to cover Slurm [35] and OAR [13], i.e., we are going
to provide multiple different software stack instances to realize the architecture.
For the job manager, EAR [18], Countdown [15], or BDPO [34] will be used.
Note EAR has a variety of functionalities ranging from the system, job, and
node manager, and thus is one of the key tools. Countdown tries to minimize
the power consumption while waiting for the completion of an MPI commu-
nication, by scaling down the clock frequency or going into one of the CPU
sleep states (C-state). BDPO is a job-oriented profile-based power-performance
optimization tool, which optimizes clock frequency to trade-off performance and
energy or to minimize energy while using its phase detection mechanism. As
for the node manager, aside from EAR, BEO [34] and PULP Controller [7]
are promising tools. BEO is an out-of-band power monitoring and controlling
tool. PULP Controller is a low-level power controller, works transparently to
the application, user, and system software, currently targeting EPI processors.
As for the monitor, DCDB [25] and EXAMON [9] will be used, both of which
support in-band/out-of-band monitoring properties as well as the functionalities
to analyze/model the monitored data.

Some of the tools have been already integrated, and other integration is
under construction. In addition to the tool integration, some sophistication paths
are ongoing, one of which is the co-scheduling support. After completing the
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integration in this PowerStack implementation phase, we are planning to extend
it to converge with the malleability software stack.

5 Conclusion

Near-future HPC systems will be over-provisioned and power-constrained. In
this position paper, we explicitly target such systems and discussed the neces-
sity/requirements of sophisticated resource handling mechanisms, i.e., the com-
bination of malleability support, co-scheduling, and power management. More
specifically, we first introduced the trends of HPC architectures and the prior
studies on these resource management concepts. We second discussed what would
happen when these were combined together while providing several prominent
use cases as well as some fundamental analyses. We finally introduced our ongo-
ing efforts on our software stack tool integration, which will ultimately lead to
the convergence of malleability and PowerStack, leaving a significant impact on
both of these communities.
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Abstract. Cloud and HPC platforms differentiate by many aspects,
but both can run applications in identical contexts using containers.
In this paper we present KNoC, an open-source virtual node (kubelet)
for Kubernetes that transparently manages the container lifecycle on a
remote HPC cluster using Slurm and Singularity. Our goal is on one hand
to allow HPC users to leverage existing cloud-native tools, such as the
popular Argo Workflows language to express complex data-processing
pipelines, while on the other hand enabling Cloud setups to exploit
computing resources available in HPC centers. KNoC bridges Cloud
and HPC, transforming Argo to a cross-environment, portable solution,
which allows the combination of Cloud-based tools and HPC steps into
the same workflow, controlled and monitored through an interactive fron-
tend. Deploying KNoC requires only a secure shell connection to the clus-
ter’s login node. We describe the design and implementation of KNoC,
and evaluate the integration using several proof-of-concept workflows.

Keywords: Cloud-HPC convergence · Reproducible workflows ·
Kubernetes extensions · Virtual kubelet

1 Introduction

As we are gradually transitioning into the exascale era, there is no shortage of
infrastructure to process large datasets: the Cloud provides an abundance of
storage and computing resources, while High-Performance Computing (HPC)
facilities around the globe are constantly powering on bigger and more power-
ful machines, each combining thousands of general-purpose and domain-specific
processing units [16]. The increasing complexity of applications shifts the devel-
opers’ focus to higher-level, more expressive languages, while the heterogeneous
computing landscape places the emphasis on portability and integration issues.
Large processing pipelines should ideally be synthesized as portable workflows
that can move between setups, enabling deployment flexibility and reusability,
while being able to combine existing data organization and processing compo-
nents (i.e. libraries and computing frameworks) from different environments.
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HPC users typically integrate different stages of computation in custom
scripts. In an effort to find a more expressive and portable language for defin-
ing application pipelines, we turned to existing work available in the “cloud-
native” ecosystem. Bridging the two worlds is now possible as HPC installations
increasingly support containers: reusable units of integrated, pre-packaged soft-
ware that can run unmodified using different runtimes with minimal performance
overheads. Singularity1 [1] has become the de facto container runtime in HPC.

In Kubernetes [4] setups in the Cloud, Argo Workflows [2] is quickly gain-
ing ground as the industry-standard workflow environment, providing a lan-
guage and runtime to model and execute applications as directed acyclic graphs
(DAGs). In Argo, every node of the graph is a container. The Argo controller
processes each workflow by submitting respective containers for execution, mon-
itoring their status, and collecting their outputs; all presented via a user-friendly,
interactive, web-based frontend. The frontend also allows organizing workflows
using templates, as well as planning repeated execution with a crontab-like syn-
tax. Under the hood, Kubernetes delegates execution to available nodes. In this
paper, we extend Kubernetes with a virtual node using KNoC (Kubernetes Node
on HPC Cluster), which receives container management operations and forwards
them to the cluster over ssh. KNoC consists of two main components: the vir-
tual node at the Kubernetes side, which is implemented as a Virtual Kubelet
[8] plug-in, and an executable (called Door) automatically installed at the HPC
side, which provides a simple API for running the commands required to start
and stop Singularity containers using Slurm [7]. KNoC is open-source [3].

In contrast to related works which bridge Cloud with HPC facilities through
special “cluster job” objects in Kubernetes or other constructs, our approach
allows us to transparently delegate execution to external compute clusters, while
defining HPC-specific parameters directly in the workflow language. KNoC effec-
tively elevates Argo workflows into a cross-platform standard, which can support
open, reproducible science on heterogeneous computing facilities. With KNoC,
Cloud users can easily tap on the vast amount of high-performance computing
resources available in HPC centers, while HPC users can leverage the expres-
siveness and the interactivity of the Argo environment, while also exploiting
the integration by mixing HPC workflow steps with other cloud-native utili-
ties and runtimes. For instance, Argo Events enables triggering workflows on
events coming from a variety of sources. The Kubernetes installation hosting
the KNoC node may run locally to the user (in a simple virtual machine), or
even in a “sidecar” environment offered by the HPC center.

2 Related Work

A tool for seamlessly combining jobs that run either in Kubernetes or in HPC
environments is presented in [15]. hpc-connector acts as an HPC job proxy: users
submit their jobs as hpc-connector instances with specific settings at the Kuber-
netes side, and hpc-connector forwards them to the HPC cluster, monitors their
1 The Singularity project has recently been renamed to Apptainer.
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execution, and collects their results. Docker and Singularity containers are also
used to address portability issues. The authors identify five requirements for a
system that allows running the same workloads on Cloud and HPC. Our work
addresses all five, and extends the focus on workflow reproducibility and ease
of use. We not only require the same method for job execution in both environ-
ments, but also the same language for defining workflows. With hpc-connector,
users have to format their workloads to explicitly use it as a job-forwarding util-
ity. Furthermore, since KNoC implements the functionality at the Kubernetes
node level, it offers a generalized solution for forwarding container execution at
the HPC side—not only for specific types of jobs. In [18], a Kubernetes instal-
lation is interfaced to a Torque-based HPC cluster, using a custom tool called
Torque-Operator. Although this study offers the flexibility of running container-
ized Cloud and HPC jobs over the same front end interface through the WLM
operator [9], it again uses a different language for describing jobs targeted for
the HPC cluster.

Workflow reproducibility has recently been in the spotlight, especially in life
sciences. Driven by the need to share both results and methods in a collaborative
environment, as well as the need to verify the accuracy of computational results,
a number of “infrastructure-agnostic” tools have been proposed. In the area of
bioinformatics, examples include Nextflow [13], Snakemake [14] and Arvados [11].
These systems typically define their own DSLs (Domain Specific Languages) to
construct workflows and most support containers for transparent job submission
to either Cloud or HPC environments. As another example, the StreamFlow
[12] runtime allows the execution of workflow steps onto multiple heterogeneous
sites, automatically copying required data where needed. Groups of workflow
steps may require specific environments to run, which are translated to runtime
deployment dependencies. A proof-of-concept implementation uses the Common
Workflow Language (CWL). In this paper we use the Argo language, however
the hybrid Cloud-HPC platform offered by KNoC is language-independent and
should be able to support other workflow runtimes as well. Also, it allows running
workflows combining steps using other cloud-native frameworks, external to the
workflow environment (within the limits described in Sect. 4.3).

3 Design

KNoC is implemented as a virtual node at the Kubernetes level—a virtual
kubelet. The kubelet is the primary agent that runs on each node of a Kuber-
netes cluster. It is responsible for starting and stopping containers, reporting on
their status, gathering their logs, etc. Each kubelet receives PodSpecs, which are
Kubernetes objects that describe Pods and ensures that the containers compris-
ing those Pods are running and healthy. Kubelets running on physical machines
practically implement the interfacing between Kubernetes and the underlying
container runtime; typically Docker or containerd. KNoC, on the other hand,
directly manages containers that run on a remote HPC cluster. KNoC is imple-
mented using Virtual Kubelet, an open source kubelet implementation featuring
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a pluggable architecture for extensions that connect Kubernetes to other con-
tainer execution environments. Virtual Kubelet provides the necessary features
to support the lifecycle management of Pods (as a collection of containers) and
supporting resources in the context of Kubernetes, while exposing simpler APIs
at the back-end for plug-ins.

API server

KNoC Virtual Kubelet

Kubernetes

Argo Workflows 
controller

Door executable

Slurm controller

Login node

Slurm agent

Singularity runtime

Cluster node

ContainerContainerContainer

Network

Workflow YAML HPC cluster

Fig. 1. Running a cloud-native workflow on an HPC cluster using KNoC

An overview of the main components involved in KNoC’s deployment envi-
ronment is shown in Fig. 1. The main goal is to run the container-based workflow
provided by the user in Argo format (top-left) on the HPC cluster with Singu-
larity containers (bottom-right). The Argo Workflows engine receives the work-
flow YAML and creates the corresponding Pods through the Kubernetes API.
Then Kubernetes selects “KNoC” as the execution node to run the respective
containers. If other, physical nodes also exist, this can be accomplished using
node-selection constraints in the workflow language.

When KNoC receives a request to create a container as part of a Pod speci-
fication, it forwards the request to the remote HPC system supplied in the con-
figuration. The assumption is that all interfacing with the remote environment
can only happen by running commands through a secure shell (ssh) connection.
To simplify the integration and add an abstraction layer at the remote end, the
KNoC virtual kubelet installs and runs the Door agent remotely. Door receives
simple requests from KNoC related to container creation and tear down, and
produces the commands necessary to perform the respective actions. A tempo-
rary folder for each container at the HPC side keeps all runtime outputs and
state, and is used by KNoC for monitoring the status of execution.

Door may implement different container execution plug-ins: it currently runs
containers using Singularity, through Slurm, by creating sbatch scripts that form
an execution environment for launching the containers. However, it can be easily
reimplemented to use a different container runtime. Slurm is one of the most pop-
ular job schedulers used in HPC environments. It will distribute jobs—in our case
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Singularity containers—across available resources. Singularity will automatically
convert the Docker images used in the workflow to create Singularity-compatible
image files that run with the same commands as their entrypoints. We use Singu-
larity for container execution due to its wide-spread availability in HPC, thanks
to its performance and security characteristics.

To access special hardware features of the HPC environment (such as GPUs),
or specify other requirements or constraints at the level of the generated Slurm
job (such as MPI parameters), the user can use specific labels in the workflow,
which Door includes as flags in the respective Slurm command.

4 Implementation

4.1 The KNoC Virtual Kubelet Provider

KNoC is implemented as a Virtual Kubelet provider. Providers use Virtual
Kubelet as a library which implements the core logic of a Kubernetes node agent
(kubelet), and wire up their implementations for performing necessary actions.
There are 3 main interfaces that a provider may offer:

– PodLifecycleHandler is consumed by the PodController which implements
the core logic for managing Pods assigned to the node. Creating, updating, or
deleting Pods in Kubernetes results in API calls for performing corresponding
actions at the kubelet level.

– NodeProvider is responsible for notifying Virtual Kubelet about node sta-
tus updates. Virtual Kubelet will periodically check the status of the node
and update Kubernetes accordingly. The implementation of this interface is
optional.

– PodNotifier is used by the provider to notify the Virtual Kubelet about Pod
status changes. The implementation of this interface is optional.

The KNoC virtual kubelet implements the PodLifecycleHandler and Pod-
Notifier interfaces. KNoC also introduces the RemoteExecutionHandler module
that complements the PodLifecycleHandler, to handle the interaction with the
remote execution environment. KNoC is written in Go, using approximately 1200
lines of code.

When a new Pod is created, KNoC’s implementation of the PodLifecycle-
Handler will first go through the description and isolate any initContainers. A
Pod can have multiple initContainers that need to run to completion sequentially
before any other containers are started. Once the ordering of container execution
is decided, KNoC will submit the containers in phases: first the initContainers,
wait for them to complete, then the rest of the Pod members.

KNoC connects via ssh to the remote HPC cluster. The network address,
username, and ssh key necessary to perform the connection are stored in a Kuber-
netes Secret and passed as environment variables to the KNoC executable on
initialization. Also, on deployment, KNoC should be configured to advertise the
total CPU cores and memory that are available at the cluster side, as Kubernetes
keeps track of what resources have been allocated on each node.
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For each container to be created, KNoC will:

1. Check if the Door binary is available remotely; if not, transfer it over.
2. Create a temporary folder in the form ~/.KNoC/<namespace>/<pod uuid>

/<container name>/ for keeping files related to the execution of the respec-
tive container.

3. Place any attached Kubernetes Secrets and container environment variables
as files in the temporary folder in key-value form.

4. Create folders for any attached Kubernetes emptyDir volumes in the tempo-
rary folder.

5. Run Door submit in the background, handing it over a JSON with details
about the container and its environment, including references to the files and
folders created above.

When the PodNotifier API implementation is triggered, KNoC starts a timer
to periodically check the status of all Pods. The container execution command
generated by Door places the containers’ output and error streams, along with
their exit codes into different files inside their temporary folders. KNoC uses
the exit code files to monitor changes of container states, which are then con-
solidated to devise the corresponding Pod states that must be reported back to
Kubernetes. To delete a Pod, KNoC calls Door stop remotely for each container.
After the containers are stopped, the monitoring function will note the changes
in exit codes and update their Pod status in Kubernetes.

4.2 The Door Executable

Our initial KNoC implementation produced a full Singularity command with
environmental variables, mount paths, container commands, and arguments to
be submitted over ssh. However, we decided to abstract this interaction into
a simple API and synthesize the command at the remote end, using different
implementations supporting different execution environments. This also solved
the potential problem of having to run several commands (or a complete script)
to manage container execution at the HPC cluster side. The remote functionality
is realized by the Door executable, written in Go, using approximately 200 lines
of code. Door started by using “plain” Singularity, while it currently uses Slurm
to submit Singularity commands. Other Door implementations may use different
container runtimes.

When Door is called to create a container:

1. It converts the given JSON description to an sbatch script that runs the
respective Singularity command, including environment variables, values from
Secrets, volumes, etc.

2. It submits the job to Slurm.
3. It writes down the resulting job id into a file in the container’s temporary

folder, which is used in case it needs to stop or cancel the job.
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1 kind: Workflow
2 metadata:
3 ...
4 spec:
5 podMetadata:
6 annotations:
7 slurm -job.knoc.io/flags: "--mem=32gb"
8 slurm -job.knoc.io/mpi -flags: "..."
9 ...

Listing 1.1. Adding Slurm-specific annotations to workflows

Through Slurm, jobs may request exclusive or non-exclusive resources for
execution. Door will pass particular annotations in the container description
(coming from the respective Pod) to the generated Slurm command, so that the
corresponding container will run with the specified resources. A simple example
is shown in Listing 1.1, where the annotations used in the Workflow will be
copied over by Argo Workflows to the Pods submitted for each step, and Door
will use the value --mem=32gb verbatim when invocating the sbatch executable.
If mpi-flags are defined, Door will invoke MPI to run the container with the
additional parameters given. Also, container names may refer to either Docker
images (which will automatically be converted to Singularity upon execution),
or Singularity .sif files.

4.3 Integration with Argo Workflows

To successfully run Argo workflows with KNoC, we had to overcome several
issues related to the availability of the Kubernetes API, volumes and associated
data at the remote side. KNoC implements general-purpose remote container
execution—amid, however, practical limitations. Local and remote systems may
not share the same storage facilities. Also, the Kubernetes volume abstractions
and mechanics are not available in the HPC environment.

For each workflow step, the Argo Workflows controller runs a sidecar con-
tainer, called executor, in parallel to the “main” container defined by the user.
The controller communicates with the executor to perform control actions (like
kill, suspend, abort, etc.), monitor the state of execution, and collect outputs.
Several executor implementations are available; each for a different container
runtimes. When running Argo Workflows in Kubernetes, we select the “k8sapi”
executor that actually uses the Kubernetes API to retrieve information and sub-
mit commands.

Running the Argo executor container remotely did not initially work. First,
the executor could not communicate with the Kubernetes API. For this reason,
we require that a ~/.kube/config file is placed at the remote side, configured
appropriately so that Kubernetes is accessible from the HPC cluster. This file is
then available within containers, as Singularity automatically mounts the user’s
home folder in all containers. Most applications using Kubernetes API libraries
will work without changes, as the libraries check for the file at predefined paths
and use it. Future versions of KNoC will automatically create the Kubernetes
configuration file inside the remote container’s temporary folder, depending on
the Namespace and ServiceAccount of the running Pod.
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Second, the default Argo k8sapi executor (in version 3.0.2) uses the Kuber-
netes Downward API to examine the Pod’s status. The Downward API is a
method to provide Pod introspection in Kubernetes. When the Downward API
is “mounted” within a Pod, all containers can access the Pod’s status and anno-
tations as files. Moreover, applications can monitor these files for changes to
the Pod’s state or configuration. In Argo Workflows 3.0.2, the controller mounts
a Downward API volume at each executor instance, which is then used to get
updates on the main container’s execution status. Instead of implementing the
Downward API functionality at the HPC cluster side, we changed the Argo con-
troller and executor to not use it at all. This was already a request by the Argo
Workflows community, as some Cloud providers do not support the Downward
API in their Kubernetes nodes (i.e., in AKS virtual nodes). Our changes have
been approved by the project’s maintainers and the Downward API is no longer
necessary.

Argo
Workflow
Controller

WorkflowCreated

Kubernetes
Master

KNoC
Virtual Kubelet

Remote
System

WorkflowRunning WorkflowSucceeded

CreatePodRequest PodRunning PodSucceeded

ContainerStatus: Terminated

CheckPodStatusCheckPodStatusCreatePod runRemoteExecution

RemoteExecution
Started

RemoteExecution
Finished

Status Update Triggers

Check exit status of
containers

Fig. 2. Lifecycle of containers as part of an Argo workflow submitted to a remote
system through KNoC

Figure 2 depicts the timeline of status updates, as workflow steps, corre-
sponding Pods, and remote containers are created during the execution of an
Argo workflow. A WorkflowCreated event happens when a workflow YAML is
submitted to Kubernetes as a CRD instance. Then the Argo Workflows controller
requests the creation of a number of Pods that relate to the workflow steps, by
issuing respective CreatePodRequest calls at Kubernetes. Each call results in
Kubernetes picking an appropriate Node to assign the Pod, and instructing that
Node (through the kubelet API) to create the Pod including every container
inside it. In the case of KNoC, once every container in the given Pod has been
sent for remote execution, KNoC updates the Pod status to “Running”. In turn,
the workflow controller, which monitors Pod status changes, updates the work-
flow status to “Running”. During this time, KNoC periodically polls for changes
in remote container state. When the process running the container finishes, the
exit code is written to a file. KNoC will pick up the change, and set the con-
tainer status as “Terminated”. If every container exits without errors, then the
Pod status is updated to “Succeeded”. As a result, the Argo controller marks
the workflow step as “Succeeded” and moves on.
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5 Evaluation

To evaluate KNoC, we deploy a minimal Kubernetes setup using minikube [5]
in one machine, and configure KNoC to use the login node of our HPC cluster.
As highlighted in Sect. 4.1, we instruct KNoC to report the sum of all cluster
CPUs and memory to Kubernetes, so the latter will take full advantage of the
available resources. We use Kubernetes version 1.19.10, Slurm 20.11.8, and Sin-
gularity 3.8.5. In our setup, we only use the KNoC node for scheduling pods, so
all workflow steps will be sent to the cluster. In case KNoC runs alongside phys-
ical nodes, workflow specifications should be augmented with the appropriate
NodeSelector, so their containers will be routed to the HPC side.

The KNoC source repository includes several workflow examples that we
have used to evaluate the integration, including workflows defined as DAGs,
loops, conditionals, etc. A simple example of an HPC workflow running the
“embarassingly parallel” NAS benchmark [6] is shown in Listing 1.2. We use the
language’s withItems construct to spawn 4 parallel steps, each running another
instance of the executable with different parameters. Also, note the use of the
Slurm flag, defined as an annotation on the step template, to control the number
of tasks used for each instance. This template showcases a method to run a
parallel parameter sweep as part of a larger workflow. The “items” used may be
explicitly set or be dynamically generated as the output of a previous step.

1 kind: Workflow
2 metadata:
3 ...
4 spec:
5 entrypoint: npb -with -mpi
6 templates:
7 - name: npb -with -mpi
8 dag:
9 tasks:

10 - name: A
11 template: npb
12 arguments:
13 parameters:
14 - {name: cpus , value: "{{ item }}"}
15 withItems:
16 - 2
17 - 4
18 - 8
19 - 16
20 - name: npb
21 metadata:
22 annotations:
23 slurm -job.knoc.io/flags: "--ntasks ={{ inputs.parameters.cpus }}"
24 slurm -job.knoc.io/mpi -flags: "..."
25 inputs:
26 parameters:
27 - name: cpus
28 container:
29 image: mpi -npb:latest
30 command: ["ep.A.{{ inputs.parameters.cpus }}"]

Listing 1.2. A simple workflow executing parallel MPI steps

On the other hand, to better understand the issues involved in compiling
workflows that can easily migrate from a cloud-native to a KNoC-based setup,
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we use a real-life Argo workflow from the bioinformatics domain. This workflow
performs genotype imputation [17], a computational method which is used to
artificially increase the number of identified mutations in an input human DNA
using a large dataset containing several thousand samples as a reference. The
process, from a computational perspective, involves two basic steps: extracting
the chromosomes from the input DNA and performing quality control/phasing,
and then doing the actual imputation in batches of chromosomes, each mea-
suring 5,000,000 base pairs long. The respective tools have been packaged into
a container image, which is then used by the workflow. Each chromosome and
each batch can be processed independently of each other, so each workflow phase
deploys multiple containers in parallel, as shown in Fig. 3. The first phase pro-
cesses 22 chromosomes and the second 589 ranges in parallel.

Fig. 3. The genotype imputation workflow as shown in Argo

A major point that should be considered when preparing cross-platform work-
flows (running on both Cloud and HPC sides) is data availability. Workflow
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stages may require shared datasets or a mechanism for communicating processed
data from one stage to the next. This can be achieved by using an Argo artifact
repository, as a common place to deposit files, or a shared folder, mounted across
all containers at a known path. Argo supports many S3-compatible services for
artifacts; the executor will copy in specific files so they are available to running
containers before startup and copy out results after stage completion. On the
other hand, a shared folder has the benefit of avoiding data copies. Currently,
for simplicity, we use USL [10] at the Kubernetes side, to provide all contain-
ers with a common mountpoint, and allow Door to use the default Singularity
behavior of mounting the user’s home folder at the cluster side. Then we define a
workflow parameter that determines the base path that the workflow will use at
runtime for data. In the imputation workflow, one preparatory step downloads
the reference dataset in the shared folder (which is about 11 GB in size), and
subsequent steps use it for writting out intermediate files and results. We plan
to address data availability across environments in more detail in future work.

By using KNoC, we are able to easily scale out the workflow using the
resources available at the HPC side. Argo provides a “parallelism” parameter
to specify the maximum number of parallel pods that can run at the same
time during execution, which in turn allows controling the maximum number of
Slurm jobs that are submitted in parallel to the cluster. At the cluster side, job
scheduling is exclusively handled by Slurm.

6 Conclusion

The distributed computing landscape is continuously growing with new Cloud
and HPC offerings. Applications, expressed as workflows, deal with increasingly
large and diverse datasets, requiring more and more processing capacity, as well
as the integration of a variety of tools from both domains. The Cloud heavily
relies on container-based technologies to provide standardization across providers
and portability of execution. With the same abstractions available at “tradi-
tional” HPC installations, we can now embrace the heterogeneity of available
platforms under a common higher-level workflow language and enable work-
loads to exploit all available resources. KNoC is a step in the direction of bridg-
ing Cloud and HPC computing. It adds a virtual node at the Kubernetes layer,
which acts as a proxy orchestrating container execution at the HPC cluster using
Slurm and Singularity. KNoC allows any Kubernetes Pod to run remotely—not
just workflow steps. In this paper, we present the design and implementation of
KNoC, and focus on its applicability from both the HPC and Cloud perspec-
tives, by examining the integration of Argo Workflows within the KNoC-based
system and discussing on the issues that must be considered when constructing
applications.
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Abstract. Interactive urgent computing is a small but growing user of
supercomputing resources. However there are numerous technical chal-
lenges that must be overcome to make supercomputers fully suited to
the wide range of urgent workloads which could benefit from the compu-
tational power delivered by such instruments. An important question is
how to connect the different components of an urgent workload; namely
the users, the simulation codes, and external data sources, together in a
structured and accessible manner.

In this paper we explore the role of workflows from both the perspec-
tive of marshalling and control of urgent workloads, and at the individual
HPC machine level. Ultimately requiring two workflow systems, by using
a space weather prediction urgent use-cases, we explore the benefit that
these two workflow systems provide especially when one exploits the
flexibility enabled by them interoperating.

Keywords: Workflows · Interactive HPC · Urgent computing

1 Introduction

From human health emergencies to natural disasters, the global pandemic and
the recent bouts of extreme climate events have demonstrated the need to make
urgent, accurate, decisions for complex problems. The use of near real time
detection of unfolding disasters and computational modelling of such situations
is a powerful tool in aiding urgent responders to tackle such disasters and dis-
ease outbreaks. Combining HPC computational models with real-time data and
interactive user interaction can significantly aid in such urgent decision-making
for disaster response and other societal issues, which ultimately saves lives and
reduces economic loss.

However the major challenge is that whilst HPC machines have a long tra-
dition of simulating disasters in retrospect, they have not been commonly used
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in-the-loop whilst a disaster is unfolding in real-time. There are numerous rea-
sons for this including limits imposed based upon the classical way in which users
interact with HPC machines via the batch queue system. Recent years have seen
numerous advances in technologies and machine access policies that open up the
possibility of using such HPC machines in a more interactive fashion for urgent
workloads, and a major question is how we should best develop our codes to
most effectively exploit these technologies.

In this paper we explore the role of workflows in high-performance interactive
supercomputing for supporting urgent decision making. The paper is structured
as follows, after briefly describing the background to this work in Sect. 2 we then
explore the use of our workflows in Sect. 3. Section 4 uses a space weather predic-
tion urgent workload to explore key facets of our approach on ARCHER2, the
UK national supercomputer, before drawing conclusions and discussing further
work in Sect. 5.

2 Background

There are numerous examples of emergency situations that we face as soci-
ety including COVID, wildfires, hurricanes, extreme flooding, earthquakes,
tsunamis, winter weather conditions, public unrest, food and energy resource
management, and traffic accidents. Numerical modelling has already demon-
strated [3–5] that it can contribute to insights which will then benefit these
areas. However this alone is not enough, as in order to drive these codes for
such workloads then the ability to consume real-time input data [6], and enable
interaction with emergency responders in the field using rich visualisation tech-
nologies such as ParaView [7] is required.

However a key challenge is that there are numerous facets at play, often
comprising multiple simulation codes that might need to be coupled in non-trivial
ways, numerous data sources which might publish new data at unpredictable
times when it becomes available (and which might then require the creation of
new simulation instances), and the end-users who need to interact with running
simulations or view processed results. An important question is how to connect
all of these together in the most efficient manner which is complicated by the
fact that we aim to support a general solution that can be applied to many
different urgent workloads. We have found that the answer to this is the use of
workflows however there is not a simple one size fits all approach, but instead
different workflow technologies suit different parts of the technology stack.

Workflows are highly popular in other fields such as bioinformatics [2], and
are becoming steadily more popular in HPC especially as the community con-
tinues to embrace data workloads. There are numerous workflow technologies
and choices, with the most popular including the Common Workflow Language
(CWL) [1]. Nevertheless, there is still work to be done in successfully exploiting
many of these in the field of supercomputing.
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3 The Anatomy of Our Workflows

In our approach we deploy workflows in two major areas, and these are illustrated
in Fig. 1. The first is in our marshalling and control system which is a standalone
system, represented by VESTEC in Fig. 1, and drives the execution of workloads
across the HPC machines. The second is on the HPC machines themselves where
the simulation codes and supporting functionality will actually execute.

Fig. 1. Overview of VESTEC system and interaction with users, data sources, and
HPC machines.

3.1 Marshalling and Control System Workflows

The VESTEC marshalling and control system drives the execution of workloads
across HPC machines. It is not installed on a supercomputer, as the system
is not intended to undertake any computationally intensive tasks. Instead, this
middleware technology resides on a server, most likely enterprise class, and will
manage the life span of urgent workloads when responding to specific disasters.

Figure 2 illustrates the technology stack view of our marshalling and con-
trol system, where the two black boxes on the bottom layers represent support
required by the hosting server that the system is running on, namely Linux OS
and Python. In green are a subset of the major Python packages that are in
use by the system. The blue boxes above represent constituent components of
the VESTEC system, where at the top the external services presents a publicly
accessible API for clients to integrate with the system for the management of
incidents, users, and the system itself. The external data interface enables the
system to both poll for new data from sources such as sensors, and for external
sources, such as client GUIs, to push data into the system.

However the major way in which urgent workload owners integrate with the
system is by developing their own workflows definitions and plugging these into
the system which is represented by workflows in Fig. 2. Our view is for lower
layers of the system stack to provide a series of services and managers that
undertake specific activities required by the workflows and can be called using
a well documented API. Put simply, we provide a separation of concerns where
lower layers of the stack provide the mechanism that urgent workload owners
can leverage by developing their bespoke workflows which constitute the policy
side of what such workloads require.
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Fig. 2. Illustration of technology stack of the marshalling and control system

Moreover, we have found that it is effective to present the marshalling and
control system to users as primarily a workflow system, where each workflow
stage represents progression through a disaster’s lifetime and these stages are
triggered by some combination of external stimulus and/or preceding workflow
stages. Consequently, to integrate a disaster scenario with the system then one
must develop a workflow description. Individual stages can undertake a wide
range of functionality including data transformation, preparation and submission
of job to an HPC machine, and data clean-up activities. At any point during
execution, stages can send messages to corresponding queues which will activate
other stages. We provide in our workflow manager the building blocks required
for users to express workflows, and Listing 1.1 illustrates a sketch of workflow
code where programmers are interacting with the simulation manager to submit
a job to an HPC machine. There are two phases required for job submission,
firstly the creation of the job which determines which machine to allocate to
[3] and creates the necessary folders, and secondly the submission of the job to
the batch queue system. The reason for this multi-phase approach is that in the
middle the workflow code can then create, copy, or move data to this location
before submission, for example in Listing 1.1 the data manager is called to put
some configuration onto the HPC machine between lines 10 and 15.

1 try:
2 callbacks = { ’COMPLETED’: callback }
3 sim_id = createSimulation(incidentID, 120, "00:15:00", "Example
4 simulation", "submit.sh", callbacks,
5 template_dir="templates/mysimulation")
6
7 simulation=Simulation[sim_id]
8 machine_name=simulation.machine.machine_name
9

10 try:
11 putByteDataViaDM("myconfig", machine_name, "Simulation
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12 configuration", "text/plain", configuration_data,
13 path=simulation.directory)
14 except DataManagerException as err:
15 print("Can not write simulation configuration "+err.message)
16
17 submitSimulation(sim_id)
18 except SimulationManagerException as err:
19 print("Error creating or submitting simulation "+err.message)

Listing 1.1. Sketch of workflow code required for creating and submitting a simulation
on an HPC machine

The overarching flow and interaction with underlying services for this exam-
ple is illustrated in Fig. 3, where it can be seen that the user’s workflow code (on
the left in yellow) calls into the simulation manager which itself will then issue
calls to other parts of the technology stack into order to undertake the required
activities. This call is non-blocking, where once job submission has completed
and the job is waiting in the queue then control flow will return to the work-
flow, and once the job reaches a successful completion stage then the callback
workflow stage will be executed. This is provided via the callbacks dictionary in
Listing 1.1, again leveraging the workflows concept, to execute a workflow stage
provided by the user once a job has reached a specific state of execution (in this
case completion, but it can also be when the job has started to run or an error
has occurred).

The purpose of this paper is not to describe the underlying services or activi-
ties in detail, as there are many such processes involved in the system but instead
to illustrate how our approach provides overarching infrastructure for the devel-
opment and management of workflows via the workflow manager, which then
call into a set of internal services via their APIs in order to undertake specific
actions on the HPC machines.

3.2 HPC Machine Side Workflows

In Sect. 3.1 we described the role of workflows from the VESTEC middleware
perspective which provide marshalling and control functionality. Additionally,
workflows are also useful on the HPC machines themselves to support inter-
active urgent workloads. The initial reason for this was to enable coupling of
applications on an HPC machine, where the results from one application feed
in as input to a subsequent code which is run when the former terminates.
This requirement for coupling is commonplace, for instance undertaking pre-
processing before execution of the main simulation code or post-processing of
results. In this work we have adopted the Common Workflow Language (CWL)
[1] which is a specification for workflows common in fields such as bioinformatics.
There is a CWL reference runner tool, which is used in this work, to drive these
workflows and in previous work this was extended to increase compatibility with
expressing MPI workloads [8]. The intention of using CWL has been to describe
the simulation steps on the HPC machine as workflow stages in CWL, with the
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Fig. 3. Illustration of how the workflow creates and submits jobs on the HPC machines
by calling into the simulation manager which itself will call other appropriate internal
services

reference runner tool then submitted to the batch queue system and executing
the workflow on the allocated nodes. We found that the benefits of driving the
HPC simulation jobs via CWL include:

– Being able to inject configuration options that are specific to a disaster, sce-
nario, or HPC machine via YAML configuration file(s). The overarching CWL
workflow, that has been provided as a skeleton, is then concretised, or fleshed
out, based upon this information.

– The ability to write a generic workflow description for a disaster only once
which is independent across HPC machines. Whilst some machine configu-
ration specifics might need to be provided, these can sometimes be shared
across use-cases and/or represent a small number of machine specific tuning
parameters injected via YAML.

– A structured way in which simulation codes can be coupled together, with
the outputs of one fed into another based upon the workflow logic.

– Usage of a standardised technology which is well documented and supported.
Therefore use-case owners can enjoy a wealth of documentation and tutorials
when developing their own CWL workflows.

The interplay between CWL and configurations is illustrated in Fig. 4, where
a generic CWL configuration file is provided to the reference runner tool which
defines the inputs and outputs for the file, along with the coupling of stages,
but does not contain the concrete values. These are defined once for a simu-
lation code and do not change between different scenarios or from machine to
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Fig. 4. Illustration of CWL workflow on HPC machine coupling execution with con-
figurations injected

machine because, furthermore, a machine and execution specific YAML file is
injected in. The idea is that not only can configuration options required from
one execution of the code to the next be specialised, but furthermore config-
urations for different HPC machines exist which enable specialisation of the
code between supercomputers in a portable manner. It can be thought of as the
generic CWL configuration providing a skeleton which is then fleshed out by the
YAML files. Listing 1.1 provided an example of placing configuration data on
the HPC machine before simulation execution, and commonly this configuration
is in the form of YAML file(s) which concrete the generic CWL configuration.

4 Case-Study: Interactive Urgent Space Weather
Ensembles

The study of space weather [9] involves modelling magnetic reconnection under
several different condition. This involves a study of the configuration of the
Earth’s magnetotail, can be applied for studying magnetic reconnection under
different conditions, and is important because it is the magnetotail which pro-
tects the Earth and orbiting bodies from solar emissions. Phenomena in this
magnetotail results in expensive satellite electrical failures and can also lead to
electrical storms that short out earth-bound power networks.

The magnetic reconnection simulation code works on the basis of ensemble
modelling, where many distinct permutations are executed and the results inte-
grated. However HPC machines are often not suited for scheduling large numbers
of individual jobs, for instance in our case when interactively simulating space
weather, as the batch schedulers often tend to work in units of nodes. Conse-
quently if the simulation is executing a low number of cores per ensemble then,
on a machine with large numbers of cores per node such as ARCHER2 the UK
national supercomputer, this can result in significant wasted resource.

CWL provides two benefits which can ameliorate this problem; firstly a scat-
ter mode which creates a number of concurrent workflow stages across a node
and waits for these to complete. In the case of ensembles, these stages will be
running the same executable, but with different parameters spread across the
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cores of a node. Secondly it provides a choice around granularity between the
HPC machine and VESTEC marshalling and control system that was discussed
in Sect. 3.1. For example, if there are numerous simulations that must be cou-
pled together then there is a choice of the marshalling and control system driving
each of individually, submitting the next job when the previous one completes,
and this is the finest grained approach. At the other extreme there is the coarse-
grained view, where a single CWL workflow can be written which itself couples
the jobs and is submitted to the HPC machine. As the execution of each CWL
workflow is atomic, as far as the marshalling and control system is concerned,
then the entire workflow will run through to completion before the marshalling
and control system is notified it has finished.

To explore the performance benefits of CWL scatter against batch queuing all
ensembles separately, a synthetic benchmark has been developed. This provides
a configurable number of ensemble members, each with a single-core job and we
ran an experiment on ARCHER2 which imposes a maximum of 64 jobs queued
at any one time and 16 jobs running concurrently. Due to this limitation, as
the number of ensembles was increased, using the batch queue-only approach
the marshalling and control system was forced to queue up submissions for the
HPC machine and submit these only when an existing job had completed and
left the queue. Otherwise the 64 limit would be reached and job rejected by
ARCHER2. Each individual job in this benchmark is effectively a no-operation,
completing immediately. By comparison, the CWL scatter mode will schedule
ensemble members across the cores of nodes, enabling sharing of a node between
many ensembles. Even though there is still a separate submission for each node,
the overall number of nodes is greatly reduced as all the cores of a node are
utilised running a member.

Figure 5 illustrates the time to the last job being queued on the HPC system
for this synthetic benchmark, where the Y axis is log scale. This metric was
adopted as it measures the time to interact with the HPC system rather than for
jobs to run on the machine which depends upon a simulation code by simulation
code basis. The major limitation of the batch queue only approach is that as
each ensemble can only exploit one individual core, there are therefore very many
queue submissions required, which equals the number of ensembles. Conversely,
for the CWL scatter approach as CWL can scatter ensembles over the cores of a
single node, there are 128 ensembles per node. Therefore, whilst there is still an
individual submission required for each node, now the number of nodes needed
is the number of ensembles divided by 128. It can be seen from Fig. 5 that, as
the number of ensembles is scaled, the completion time of the batch queue only
approach is very significantly higher than that of the CWL scatter approach,
most importantly because at 2048 ensembles batch queue only approach must
submit 2048 separate jobs with the marshalling and control system having to
queue up and track the completion of each and each progress through the queue,
whereas the CWL scatter approach only needs to submit 16. It can be seen with
the batch queue only approach how there is a sharp jump at 128 ensembles, this
is because there is a maximum of 64 jobs in the batch queue and-so beyond that
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Fig. 5. Time to last job being queued on HPC machine (ARCHER2) based on total
number of ensembles and whether this is driven by the marshalling and control system
(fine grained) or CWL workflow (coarse grained)

number of jobs the marshalling and control system must wait for existing jobs
to complete before subsequent ensemble jobs can be submitted.

The experiment presented in Fig. 5 is rather extreme, and the synthetic
benchmark is a little artificial. Many, but not all, HPC systems provide job
launching capabilities that enable the ability to run different executables across
the cores of nodes. However, the downside is that often these can be fairly com-
plex to interact with, driven by multiple issues of the launch command in a
loop, and require support from the batch queue system. Such approaches can
add complexity when preparing the job and limit the ability to target many
different HPC machines irrespective of exactly what their batch queue system
supports. From the marshalling and control system’s perspective it is desirable
for the workflow to be machine agnostic and not have to be concerned with such
specific details. By contrast, the settings for the CWL scatter approach can be
provided via machine specific YAML which is created when the use-case was
installed on the machine, and/or by higher level parameters sent from the mar-
shalling and control system. Nevertheless, this experiment illustrates one of the
challenges faced when designing our general approach, namely the diversity of
the urgent applications that we aim to support. This means that there are many
different possible usage modes, ranging from large numbers of ensembles illus-
trated in Fig. 5, to single distributed memory applications that run over large
numbers of cores. Consequently, one single approach to all these possibilities
is not appropriate and instead selecting technologies that enable flexibility was
required, and this has been demonstrated with the use-case implementations.
Thus, giving the use-case developer a choice around key aspects by designing
flexibility and generality into the approach is highly beneficial.
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Considering interactive space weather prediction as a motivation, there is
significant flexibility around scheduling the required ensembles and parallelism
(i.e. number of cores) allocated to each individual member. We therefore under-
took an experiment across space weather simulation ensembles on ARCHER2
where each member comprises 8 cores (which is optimal for the problem size
being studied), with each core running an MPI process. Figure 6 presents the
results of this performance experiment where three configurations were tested;
MPI+Scatter which uses a combination of MPI parallelism for each ensemble
(8 MPI processes per ensemble) and CWL scatter to run 16 of these ensembles
per node. Scatter only which is using CWL scatter in isolation, where each
ensemble member is running over one core only and 128 ensembles per node.
Lastly MPI only using the batch-queue system to schedule jobs only so there
is one ensemble per node, but with MPI parallelism enabled for each ensemble
member and hence each member is running over all 128 cores of a node.

Fig. 6. Total runtime of multiple B0z0.0 ensembles from space weather simulation on
ARCHER2 as the number of ensembles is scaled and different approaches to scheduling
these adopted.

It can be seen from Fig. 6 that the approach we have adopted is generally
most efficient, especially for larger ensemble sizes. The Scatter only approach is
uniformly consistent and always slower than the MPI+Scatter approach. This
is because it only allocates one core per ensemble and-so is dominated by the
runtime that this configuration results in. The MPI only approach is fastest for
smaller numbers of ensembles because all 128 cores of the node are allocated
to each ensemble member rather than the 8 cores as used by the MPI+Scatter
approach. However, there is a trade-off, namely that with 8 cores per ensemble
it is possible to run 16 ensembles per node compared with one ensemble member
per node when allocating all 128 cores per ensemble. Consequently, for the MPI
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only case as the number of ensembles increases, especially after 64 ensembles
where the marshalling and control system must queue these up and wait for
others to complete due to limits imposed by the batch queue system, then the
overhead of queuing up ensembles jobs and tracking them outweighs the benefits
gained by running each member over 128 cores compared with 8 cores. This
behaviour drives the very significant increase in overall runtime for the MPI
only approach beyond 64 members, as the marshalling and control system must
wait for ensemble jobs to complete before queuing up new ones. In consequence,
for 1024 ensembles the MPI+Scatter approach requires the allocation of 64 nodes
in total which can all fit as a single submission into the queue system, whereas
the MPI only approach requires the allocation of 1024 nodes and this must be
undertaken in segments.

The purpose of the experiments described in this section have been to illus-
trate the flexibility provided by workflows for urgent, interactive, use-cases.
Whilst it has been highlighted that some batch queue systems provide their
own functionality to achieve similar scheduling flexibility, the benefit of exploit-
ing this via CWL is that such decisions are undertaken in a standard manner
across machines, irrespective of exactly what the batch queue system supports or
not, with the marshalling and control system only needing to provide numeric
settings via YAML files in combination with any pre-defined machine specific
configurations also in YAML.

5 Conclusions

In this paper we have explored the role of workflows for expressing and running
interactive urgent workloads on HPC machines. With two separate workflow
systems, one in the VESTEC middleware system which provides marshalling
and control functionality, and the other on the individual HPC machines, not
only do these provide complimentary support for different facets but furthermore
can work together to provide additional flexibility and most effectively suit the
codes being run.

Using the space weather prediction urgent workload we then explored the
challenges around ensemble scheduling on modern HPC machines, where we
demonstrated that the flexibility provided by the two workflow systems working
in combination is a powerful enabler for such situations. For future work we
believe that it would be worthwhile to integrate the CWL and marshalling and
control workflows, not necessarily at the underlying technology level but instead
exploiting some of the safety provided by CWL definitions to ensure that those
workflows expressed in the marshalling and control system are suitable.
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1 Introduction

Computing at the Exascale poses significant challenges for the collection and analysis
of the vast amount of data that current and future Exascale HPC systems will produce,
in terms of increasing complexity of the machines, scalability of the adopted moni-
toring solution, minimizing monitoring intrusiveness, maximizing the interpretability
and effective response, driven by inference from the acquired data.

After two very successful installments of the International Workshop on Moni-
toring and Operational Data Analytics in 2020 and 2021, we were excited to organize
the 3nd ISC-HPC International Workshop on Monitoring and Operational Data Ana-
lytics (MODA22).

The goal of the MODA workshop series is to provide a venue for sharing insights
into current trends in MODA for HPC systems and data centres, identify potential gaps,
and offer an outlook into the future of the involved fields of high performance com-
puting, databases, machine learning, and possible solutions that can contribute to the
co-design and procurement of future computing and data processing systems. To this
end, we solicited contributions related to:

– Challenges and currently envisioned solutions and best practices for monitoring
systems at data and computing centers. Of particular focus are operational data
collection mechanisms i) covering different system levels, from building infras-
tructure sensor data to CPU-core performance metrics, and ii) targeting different
end-users, from system administrators to application developers and computational
scientists.

– Effective strategies for analyzing and interpreting the collected operational data. Of
particular focus are visualization approaches and machine learning-based tech-
niques, potentially inferring knowledge of the system behavior and allowing for the
realization of a proactive control loop.

Topics that fall outside the scope of the MODA workshop series include: new
solutions proposed in the context of application performance modeling and/or appli-
cation performance analysis tools; and novel contributions in the area of compiler
analysis, debugging, programming models, and/or sustainability of scientific software.



While MODA is already common practice at various data and computing centers,
each site adopts a different, insular approach, rarely adopted in production environ-
ments and mostly limited to the visualization of the system and building infrastructure
metrics for health check purposes. In this regard, we observe a gap between the
collection of operational data and its meaningful and effective analysis and exploita-
tion, which prevents the closing of the feedback loop between the monitored HPC
system, its operation, and its end-users.

Under these premises, the goals of the MODA22 workshop are summarized as:

1. Gather and share knowledge and establish a common ground within the interna-
tional community with respect to best practices in monitoring and operational data
analytics.

2. Discuss future strategies and alternatives for MODA, potentially improving existing
solutions and envisioning a common baseline approach in data and computing
centers.

3. Establish a debate on the usefulness and applicability of AI/ML techniques on
collected operational data for optimizing the operation of production systems (e.g.
for practices such as predictive maintenance, runtime optimization, optimal and
adaptive resource allocation and scheduling).

MODA22 offered a forum for invited presentations, technical contributions, and
discussions on:

– Monitoring and operational data analysis challenges and approaches (data collec-
tion, storage, visualization, integration into system software, adoption).

– State-of-the-practice methods, tools, techniques in monitoring at various HPC sites.
– Solutions for monitoring and analysis of operational data that work very well on

large- to extreme-scale systems with a large number of users.
– Solutions that have proven limitations in terms of efficiency of operational data

collection in real-time or in terms of the quality of the collected data.
– Opportunities and challenges of using machine learning methods for efficient

monitoring and analysis of operational data.
– Integration of monitoring and analysis practices into production system software

(energy and resource management) and runtime systems (scheduling and resource
allocation).

– Explicit gaps between operational data collection, processing, effective analysis,
highly useful exploitation, and propose new approaches to closing these gaps for the
benefit of improving HPC and data centres planning, operations, and research.

– Means to identify (intentional or unintentional) misuse of resources, and methods to
mitigate its effects: taking automatic steps to contain the effects of one
application/job/user allocation on others, supporting users to identify causes for the
misbehavior of their application, linking to intrusion detection and safe
multitenancy.

– Concepts to integrate MODA into the system design at all levels, including dedi-
cated hardware components, middleware features, and tool support that make
`monitoring and analysis by default' a viable option without sacrificing
performance.
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– FAIR data practices, including sharing of monitoring workflows and tools across
sites while ensuring compliance with GDPR regulations and user access
agreements.

2 Workshop Organisation

The workshop organising and program committees consist of academics and
researchers at leading HPC sites and in industry. The workshop is unique to the
European HPC arena being the among the few to address the topic of monitoring and
operational data analytics for improving HPC operations and research.

2.1 Organising Committee

Workshop Chairs

– Florina Ciorba – University of Basel, Switzerland
– Utz-Uwe Haus – HPE HPC/AI EMEA Research Lab, Switzerland
– Nicolas Lachiche – niversity of Strasbourg, France
– Martin Schulz – Technische Universität Munich, Germany

Publicity Chairs

– Thomas Jakobsche – University of Basel, Switzerland

Program Committee

– Norm Bourassa – NERSC Lawrence Berkeley National Laboratory, USA
– Jim Brandt – Sandia National Labs, USA
– Daniele Cesarini – CINECA, Italy
– Ann Gentile – Sandia National Laboratories, USA
– Victor Holanda – Swiss National Supercomputing Centre, Switzerland
– Thomas Ilsche – Technische Universität Dresden, Germany
– Terry Jones – Oak Ridge National Laboratory, USA
– Jacques-Charles Lafoucriere – CEA, France
– Erwin Laure – Max Planck Computing and Data Facility, Germany
– Filippo Mantovani – Barcelona Supercomputing Center, Spain
– Diana Moise – Cray/HPE, Switzerland
– Dirk Pleiter – KTH, Sweden
– Melissa Romanus – NERSC Lawrence Berkeley National Laboratory, USA
– Dominik Strassel – Fraunhofer ITWM Kaiserslautern, Germany
– Keiji Yamamoto – RIKEN, Japan
– Aleš Zamuda – University of Maribor, Slovenia

Technical Program The reviewing of the submitted papers was balanced among
the program committee members, and each paper received three or more high quality
reviews. The following papers were accepted and presented at MODA22:
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– Wholistic and Physics-Based Data Center Monitoring, by Hilary Egan, Avi Pur-
kayastha, and David Sickinger

– Rule-based Thermal Anomaly Detection for Tier-0 HPC systems, by Mohsen
Seyedkazemi Ardebili, Andrea Bartolini, Andrea Acquaviva, and Luca Benini

MODA22 was held as an in-person (with ad-hoc solution for camera and micro-
phone to support presenters that could not travel in-person present online) half-day
workshop with a balanced mix between technical paper presentations, keynote and
invited talks, and a discussion panel. The full live program is available on the
MODA22 website1.

The workshop debuted with the live keynote address

– [Keynote presentation] Deploying and Managing the LUMI Supercomputer,
Sustainably by Dr. Pekka Manninen (LUMI Leadership Computing Facility,
Finland)

followed by a lively questions and answers (Q&A) session.
The workshop continued with the presentation of one of the accepted papers fol-

lowed by an invited talk:

– [Accepted paper] Wholistic and Physics-Based Data Center Monitoring, by Hilary
Egan, Avi Purkayastha, and David Sickinger,

– [Invited talk] A Conceptual Framework for HPC Operational Data Analytics, by
Torsten Wilde (HPE),

which led to engaging discussions that also continued in the coffee breaks.
The second part of the MODA22 workshop consisted of the presentation of the

other accepted paper followed by another invited talk:

– [Accepted paper] Wholistic and Physics-Based Data Center Monitoring, by Hilary
Egan, Avi Purkayastha, and David Sickinger,

– [Invited talk] Opportunities & Challenges with Quantitative Codesign, by Terry
Jones (Oak Ridge National Laboratory, USA).

MODA22 was concluded with a panel discussion on Recent Developments in
MODA including speakers at the workshop as well as the organizers (in the role of
moderators). This panel ended up being very interactive and turned into a direct dis-
cussion with the audience. The panel focused on the following questions, mostly
targeted on majority interest and implementable techniques for production systems,
which the panelists were able to make short intro statements before turning to a wider
discussion.

– Multitenancy monitoring: How to deal with the fact that monitoring data is a perfect
side-channel even in trusted execution systems?

– Bridging user-side and system-side monitoring: How much system-side monitoring
data can and should be exposed to users.

1 https://moda.dmi.unibas.ch/program/.

The 3rd International Workshop on Monitoring and Data Analytics (MODA22) 249

https://moda.dmi.unibas.ch/program/


– Where are we regarding cross-vendor data schemata?
– How do you deal with the ETL-process?

Overall, this resulted in nice and quick paced discussion, despite the hybrid setup of
the workshop using ad-hoc solution for camera and microphone.

3 Conclusion

The MODA22 paper presentations, keynote and invited talks and discussions showed
the broad scope of topics addressed, as well as the continued growth in importance of
this topic for the HPC and data analysis communities. At the same time, they docu-
mented to progress that has been made since MODA21, but also showed the current
state-of-the-art and the missing breadth of solutions as well as their reliability and
stability. It further also showed that the key challenges still remain. In particular, to
name just a few:

– To understand how different data sources or different data formats influence the
analytics that can be performed.

– To interpret and annotate the collected data to increase their likelihood of being
identified with analytic methods.

– The availability of open-source datasets and traces to allow open, reproducible
research on MODA and associated topics.

We hope that these and other aspects will figure prominently in submissions to the
next edition(s) of the MODA workshop.
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Abstract. U.S. Department of Energy’s National Renewable Energy
Laboratory (NREL) hosts one of the world’s most energy-efficient HPC
data centers; this system uses component-level warm-water liquid cool-
ing to efficiently remove heat from the data center and capture it for
reuse in the building or rejection to the atmosphere. Given the complex-
ity of this system, building data-driven tools for holistically monitoring
and operating the entire data center is a priority for ensuring maximal
efficiency and resiliency. In this advanced smart facility, over one million
metrics are recorded per minute using state-of-the-art streaming data
architecture and software to capture and process the state of the system
in real time. Here we detail two efforts to effectively analyze, visualize,
and interpret this large volume streaming data. We have developed a
novel, flexible system for identifying and visualizing individual metric
anomalies and component performance across the data center through
automatic metadata extraction and physically-motivated visualization
for quick interpretation. Additionally, to directly connect system main-
tenance to data stream processing we explore a physics informed multi-
metric drift and anomaly detection application to detect scale-build up
in heat exchangers.

Keywords: Anomaly detection · Visualization · Data center
monitoring

1 Introduction

The Energy Systems Integration Facility (ESIF) at the U.S. Department of
Energy’s National Renewable Energy Laboratory (NREL) currently hosts one
of the world’s most energy efficient HPC data centers [2], maintaining a trailing
12-month average PUE of 1.06 or better since opening in 2013. The data cen-
ter was designed to both capture waste heat and to facilitate the efficient use
of energy resources. Where traditional data center designs rely on rows of air-
cooled components, the NREL ESIF data center relies on component-level warm-
water liquid cooling. Furthermore, the waste heat is captured for reuse within
ESIF or rejected to the atmosphere without any mechanical compression cooling.

c© Springer Nature Switzerland AG 2022
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This facility represents a unique opportunity to design and demonstrate next-
generation methods for optimizing facility operations and maximizing energy
efficiency through data center monitoring and control.

Given the complexity of this system and continual growth of HPC scales,
building data-driven tools for holistically monitoring and operating the entire
data center is a priority for ensuring maximal efficiency and resiliency. Here
we detail two efforts to effectively analyze, visualize, and interpret this large
volume streaming data. In Sect. 2 we describe our data collection infrastruc-
ture and methodology for the large volume streaming data. Section 3 we illus-
trate the novel, flexible system for identifying and visualizing individual met-
ric anomalies and component performance across the data center. This effort
includes automatic metadata extraction and physically-motivated visualization
for quick interpretation. In Sect. 4 we demonstrate our work on directly connect-
ing system maintenance to data stream processing through an exploration of
physics informed multi-metric drift and anomaly detection applications. Finally,
in Sect. 5 we summarize our conclusions and directions for future investigation.

2 Data Collection Infrastructure

Over 1 million metrics are collected per minute related to NREL’s flagship super-
computer Eagle [1], and more than 4,000 metrics are collected per minute related
to the ESIF data center and facilities. The full facility heat rejection hierarchy
and energy flow is depicted in Fig. 1. The facility metrics are tracked for data
center components including data center cooling towers and thermosyphon [7]
(advanced dry cooler), pumps, fan walls, heat exchangers, hydronic loops, as well
as environmental conditions (e.g., outdoor air temperatures and humidity). For
individual devices, metrics include power, temperature, flow rate, pressure, and
other states (e.g., alarm, position, speed). Eagle hardware metrics include both
rack level hardware data such as air temperature, fan speeds, rack hardware,
water temperatures, and inverter data. Data from the cooling distribution units
(CDUs) and HPE Adaptive Rack Cooling System (ARCS) includes tempera-
tures, flow rates, and pressures. Node metrics such as memory, disk, network,
processor, and GPU utilization, InfiniBand, Lustre, and application metrics are
also collected and correlated to integrated eagle job logs. Many of these metrics
are collected every few seconds, while some are collected at 1-minute intervals.

The data architecture was implemented with a focus on open-source plat-
forms and highly scalable systems. The data sources either push data to a single-
node Influx database running at the network interface to enable meter collection
(device historian) or push data directly to a five-node Apache Kafka streaming
data cluster. Data collected into the device historian is periodically queried and
pushed to the streaming data cluster. This architecture is depicted in Fig. 2.

The data streams are then accessible from a number of clients for either real-
time visualizations and analytics or are collected into a time-series cluster for
storage. The time-series cluster is an Apache Druid installation: an open-source,
distributed data store that is designed to quickly ingest massive quantities of
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Fig. 1. System components and associated heat flow.

Fig. 2. Data collection architecture.

event data and allows for real-time analytics on top of the data. The data is per-
sistent in the time-series cluster for historical analysis and interactive dashboards
over the entire dataset.

3 Data Center Anomaly Detection and Visualization

A major task in data center monitoring and operations is identifying anomalies
in data streams that are indicative of larger system issues. Given the number
complexity of these data streams, it is critical to automate this process as much
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as possible while displaying the results in an immediately intuitive and quickly
digestible manner for system administrators. Furthermore, to ensure tools stay
relevant they must be easily adaptable to changing system configurations and
have a low overhead for re-training and re-deployment.

Monitoring and diagnostic techniques like anomaly detection are an impor-
tant component of data-driven techniques for ensuring system resiliency. Run-
time data at the node level (including e.g. CPU utilization, node temperatures,
memory efficiency) has been incorporated into anomaly detection modules using
statistical feature extraction and supervised learning [8,9], principal component
analysis [6], and autoencoders [3]. Further methods have been developed to asso-
ciate detected outliers with root cause analysis [5]. Relatively fewer efforts have
been made to develop anomaly detection methods across facility infrastructure
beyond node level performance, though supervised statistical methods have been
used to isolate component level failures across facility infrastructure [4].

While there a large variety of sophisticated AI-based anomaly detection
methods, the deployment overhead for implementing such methods is substan-
tial, especially for constantly changing systems. We have therefore implemented a
baseline, low-maintenance method for implementing simple statistical tests com-
bined with automated metadata generation methods. For a given data stream
(e.g., a single pump speed) we generate alerts if the data exceeds either a soft or
hard upper (or lower) limit. A soft alert is indicative of behaviour slightly out-
side of typical parameterization, while a hard alert indicates extreme behaviour.
This distinction is useful for both a quick indication of severity and the ability
to flag low level data irregularities that may only be meaningful in sum.

A key aspect for success in this method is generating the associated meta-
data limits in an automated, verifiable, and reproducible manner. While system
administrators may have intuitive knowledge on reasonable value ranges for a
given measurement, with constantly growing system complexity and number of
tracked metrics it is unreasonable to manually set the associated measurements
limits for every metric. However, given a well constructed visualization one can
quickly verify the learned metadata in comparison to historical data; this is
demonstrated in Fig. 3.

To automatically generate limits for each metric we use historical data to
calculate the 0.02 and 99.8 percentiles (soft limits) and the absolute max and
minimum plus/minus 0.5* the standard deviation (hard limits). Any time peri-
ods that are deemed irregular, e.g., system time, are masked out. The results of
the metadata generation are then stored in a database for use in the anomaly
detection summary visualization. The complete pipeline can then be re-run for
either individual metrics or the system as a whole over different time periods in
the event of a configuration change. In the event of a metric where this parame-
terization does not work, the pipeline can also accept manual overrides for limits
of individual metrics.

Figure 4 shows an example of the summary dashboard for the anomaly detec-
tion system. On the left are a selection of data center subsystems from the Energy
Recovery Water (ERW) loop to the Eagle supercomputer nodes. Each subsystem
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Fig. 3. Automated metadata generation verification figure example; the figure shows
data from the corresponding metric (ERW outflow water temperature from heat
exchanger 605A) binned by time (x-axis) and value (y-axis). The histograms on the
sides show the same distribution collapsed over time/value for the y and x axis accord-
ingly. The dashed (solid) lines indicate the soft (hard) limits identified by the automated
metadata generation procedure.

is coupled with a status indicator for a simple overview of the entire system as
a glance. The right panel shows a schematic figure of the components that make
up the selected subsystem (in this case the ERW loop) with status indicators
for each component. The schematic figure for each subsystem were designed in
collaboration with data center experts to facilitate interpretation and are tied
to the physical subsystem layout. Each component has another corresponding
status indicator that indicates alert status, if the component is off, or if the
component is missing data. When hovering over the status indicator additional
metadata describing the component and current status is displayed.

Below the schematic figure is a list of associated metrics either for the entire
subsystem or an individual component if selected via the schematic figure, this
lower panel is depicted in Fig. 5. Each row of the table indicates the device,
metric, mean value, and anomaly score. If a metric is selected in the table, the
associated data is shown in the time series figure below for the past 6 h, along
with the associated hard and soft metadata limits. Any points that exceed the
limits are highlighted in red.

All together, this dashboard creates the opportunity for both high-level, at
a glance understanding, as well as increasingly fine resolution via data drill-
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Fig. 4. Upper panels of the data center anomaly detection dashboard. The left panel
shows a selection of subsystems and corresponding status indicators while the right
panel shows a physical layout of devices for a subsystem and corresponding status
indicators.

down. This workflow was developed in conjunction with system administrators
to reflect the manner in which problems are typically investigated. Additionally,
tying the visualization to the physical layout has been a well received improve-
ment over simple metric lists. Finally, the entire dashboard and underlying meta-
data generation system was designed to be flexible and easily re-configurable via
database infrastructure and templated software development paradigms. As the
system is continually updated and devices gain or lose function this allows the
anomaly detection infrastructure to be similarly flexible with a minimal amount
of overhead. Furthermore, this will also allow the easy inclusion on multi-metric
anomalies in the future.

4 Physics-Informed Anomaly Monitoring

In Sect. 3 we described our data stream monitoring and visualization infrastruc-
ture. While useful for identifying potential issues, it is limited by design in not
being able to associate an anomaly with an underlying maintenance issue. To
address this short-coming, we have begun to explore physically motivated met-
rics and associated anomaly and drift models; here we describe a case study in
connecting heat exchanger data streams with scale build-up detection.

Heat exchangers remove heat from a system by flowing two separate streams
of water through a series of baffles. Scaling is a type of fouling caused by inorganic
salts in the water circuit; a build-up of these inorganic salts will insulate the
heat transfer surface, preventing efficient heat transfer. While the build-up will
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Fig. 5. Lower panels of the data center anomaly detection dashboard. The upper panel
shows a table of metrics associated with a selected device, with columns indicating the
label of the point in the streaming database, the name of the associated device, a short
description of the metric, the mean value over the past six hours, and the current
anomaly status shown as a bar progressing from green (OK) to red (high alert). The
lower panel shows a time-series of the selected point over the past six hours with points
exceeding the anomaly thresholds highlighted in red. The soft and hard anomaly shown
as red dashed and solid lines. (Color figure online)

increase the pressure drop across the water circuit, this change is both gradual
and easily masked by the varying conditions of the heat exchanger over the
course of operation.

We address this by calculating the effective K-value of the flow through the
heat exchanger over time. Flow rate through a constriction (Q) is related to the
pressure drop (ΔP ) via constants K and C as

Q = K
√

ΔP + C (1)

where K and C depend on properties of the physical system. A significant scale
build up will slowly decrease the corresponding value of K over time.

Figure 6 shows a series of histograms of hourly averaged flow rate Q vs the
square root of the differential pressure

√
ΔP for each heat exchanger device

indicated by the panel labels. Over each histogram we plot a line of best fit
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Fig. 6. Relationship of the square root of differential pressure and flow rate for a
variety of heat exchanger devices (indicated by text labels). The blue points indicate a
histogram of previously measured data with darker blue indicating more points, while
the dashed lines show a line of best fit of the distribution. (Color figure online)

for the entire data set. While some devices show reasonably tight and linear
correlations (HX 605A, HX 604C) the data for the HX 604B in the rightmost
panels does not show a well fitting relationship, indicating a systematic problem.

A straightforward visualization of this effect over time is shown in Fig. 7,
where the residual from applying the fits shown in Fig. 6 to each data point
is averaged by day and plotted over time. Heat exchanger 604B Direct Cool-
ing Tower water (DCT) has continually had performance issues that have been
traced to scale build-up. The bottom most panel showing the DCT portion of
HX 604B shows a smooth yet steady increase in residual values after May 2019,
this is a clear signature of scale build up that can be monitored for intervention
prior to cooling tower failure. The sharp transition at May 2019 is due to a
chemical cleaning in order to resolve previous scale build-up issues.

This combination of identifying physically motivated meta-metrics and visu-
alization over long time periods can both give proactive warnings that may be
obfuscated by looking at individual metric anomalies and connect these warnings
to physical issues and maintenance solutions.
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Fig. 7. Residuals from data points to the best fit relationship shown in Fig. 6 for each
heat exchanger plotted over time. Data is averaged by day. HX-604B DCT shows signs
of scale build up from the gradual increase of residual values from May 2019 on; the
sharp drop at May 2019 is due to device maintenance at that time.

5 Conclusions

In this paper we have described two efforts to effectively analyze, visualize, and
interpret the large volume streaming data associated with the ESIF data cen-
ter. We have developed a novel, flexible system for identifying and visualizing
individual metric anomalies and component performance across the data center,
which includes work on automatic metadata extraction and physically-motivated
visualization for quick interpretation. We also prototyped an example on using
physically motivated meta-metrics to directly connect data stream processing to
system maintenance with a specific focus on scale build-up in heat exchangers.

Through discussion with system experts we have determined that key priori-
ties for monitoring infrastructure and visualization include low maintenance and
setup overhead, ease of interpretability, and providing useful feedback without
an overburden of extraneous information; our dashboards have been developed
with these needs in mind. In particular our templated approach to device level
metadata generation and anomaly detection can drastically reduce maintenance
overhead, particularly as new devices come on and off line, and the system under-
goes standard operating procedure changes. Without developing a systematic
templated approach we have found that custom dashboards can quickly become
out of date and fall to disuse or require an undue burden to retrain and redeploy.
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These considerations are also important when considering deploy more ML
based anomaly detection methods rather than simple statistical tests we have
shown here. Often we have found that the amount of tuning required for ML
techniques to properly alert based on a given data stream without over alerting
(and causing user alert fatigue and subsequent disregard) can be quite large, par-
ticularly when taking into account retraining overhead. While we will continue
to investigate these more sophisticated methods in parallel to the work shown
here, we will continue to put a particular focus on minimizing overhead and
automating as much of the retraining and redeployment as possible. Regardless,
we have designed our dashboard in such a way to seamlessly incorporate the
results of these more sophisticated models using Kafka streams into the same
easily interpretable framework, allowing maximum flexibility for future efforts.

Additional future work will involve developing more physically motivated
meta-metrics and directly integrating these into our anomaly detection dash-
board. Furthermore, we will also continue development on a historic trends dash-
board for better understanding and identifying long term behaviour trends and
drift. In conjunction these efforts will allow us to establish and evaluate next-
generation methods for optimizing facility operations and maximizing energy
efficiency through data center monitoring and control.
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Abstract. Today, significant advances in science and technology can
not be envisioned without high computing capacity. To solve large prob-
lems in science, engineering, and business, data centers provide High-
Performance Computing (HPC) systems with aggregation of the com-
puting capacity of thousand of computing nodes with the cost of mil-
lions of euros per year [12]. In the datacenter, an anomaly is a suspi-
cious/abnormal pattern in the monitoring signals. The severity of the
anomaly can be different, and in extreme conditions, it can yield the
outage of the datacenter. By defining complex statistical rules-based
anomaly detection methods, this paper investigates the thermal anomaly
detection task in one of the most powerful HPC systems in the world,
namely Marconi100 hosted at CINECA. The suggested anomaly detec-
tion method is successfully validated against real thermal hazard events
reported for the studied HPC cluster while in production.

Keywords: HPC · Anomaly detection · HPC Monitoring Systems

1 Introduction

High-performance computing (HPC) most generally refers to the practice of
aggregating computing power in a way that delivers much higher performance
than one could get out of a typical desktop computer or workstation in order to
solve large problems in science, engineering, or business [2]. HPC rooms are com-
posed of thousands of computing nodes and may consume megawatts of electrical
power, which is entirely converted into heat; to achieve efficient heat dissipation
requires to (i) leverage sophisticated cooling system, design the cooling system
targeting the typical workload power consumption and not worse-case one [15],
and account for the dependency of the cooling cost with absolute ambient tem-
perature which may change during seasons [16]. When an unbalance between
the cooling capacity and the computational demand happens we are in pres-
ence of a thermal anomaly. This can be the result of: (i) an abnormal working
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condition of the cooling system, (ii) abnormal power fluctuation as well as a
computing demand above the typical case, (iii) cooling capacity reduction due
to an abnormal ambient temperature, (iv) different response latency of comput-
ing and cooling elements to workload variations. The severity of the thermal
anomaly can be different - ranging from a mechanical fault in the cooling system
to node’s temperature fluctuation.

Anomaly detection is an important research topic and is applied in a wide
range of fields. A common problem in anomaly detection is the fact that anoma-
lies are rare events. Solutions in the state of art overcome this issue by employing
test suites or other software which simulates the anomaly condition. In contrast
in this study, we used the real monitoring data of an in-production HPC cluster
and cooling infrastructure. The data was collected for 4 months of 2021 (2021-
04-08 to 2021-08-18) from one the HPC room which hosts the Marconi100 HPC
cluster in the CINECA data center. To collect the monitoring data, we used a
holistic monitoring system, namely ExaMon [7]. During the monitored period
the system experienced a real/physical thermal failure on the day of the 28-
07-2021. We introduced a rule-based statistical method for anomaly detection,
which uses statistical characteristics of data to define a set of simple rules for
detecting anomalies. The main advantages of this method are that it is fast and
easy to implement, which makes it a practical approach for implementation as
online anomaly detection on large-scale HPC systems. We focus our approach
to the central rack of Marconi100 and its cooling infrastructure. Based on that
we defined 281 rules that we refer to as flags. Each flag checks a rule in the
monitoring signals for anomaly detection. We validated the performance of the
introduced method in anomaly detection by a detailed study of monitoring sig-
nals around the real/physical failure on 28-07-2021.

1.1 Background

CINECA is a non-profit consortium of 69 Italian universities, 27 national public
research centers, the Italian Ministry of Universities and Research (MUR), and
the Italian Ministry of Education (MI). Marconi100 HPC cluster of CINECA is
a Tier-0 cluster, with about 32 PFlop/s, is ranked 9th (list of June 2020) and
18th (list of November 2021) in the list of the most powerful supercomputers
worldwide [1].

Cooling Systems: CINECA datacenter has three HPC rooms. This study
mainly focused on the room that hosts the Marconi100 HPC cluster, the most
powerful HPC cluster of CINECA. Marconi100 HPC rooms are cooled with
Computer Room Air Conditioning (CRAC) units by the Direct Expansion (DX)
Air-conditioning system. In DX Air-conditioning, the air used for cooling the
room is directly passed over the cooling coil. There are six CRAC units in the
room, and four of these CRAC units support the Direct Free Cooling (DFC)
system, which is referred to by the CRAC+DFC in this study. The DFC system
is designed to reduce energy dissipation and improve the carbon footprint by
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utilizing the external cold air for cooling the room. In this case, the DFC system
starts to work when the outdoor temperature is lower than 18 ◦C. Without the
DFC system, the CRAC units work in standard air recirculation mode with
refrigeration-based cooling. Empowering the CRAC units with a DFC system
can reduce the compressor’s operation.

Also, there is a water cooling system for Rear Door Heat Exchangers
(RDHX), with the chiller loop (cold loop) temperature around 12 ◦C to 17 ◦C,
and RDHX loop (hot loop) temperature around 23 ◦C to 30 ◦C. The RDHX
device is placed in front of the hot outlet airflow of the compute node. During
operation, the compute node’s hot airflow is forced through the RDHX device by
the compute node fans and exchanges heat from the hot air to circulating water
from a chiller. Thus, the compute node outlet air temperature reduces before its
discharge into the datacenter. RDHX is used to augment the computing density
in air-cooled computing rooms.

The hot/cold aisle approach is employed to cool the room. Six computer room
air conditioning (CRAC) units support two cold aisles. The cold airflow moves
under the raised floor and gets to the loaded areas; then, the hot air returns to
the CRAC units above the raised floor. All racks are equipped with RDHX, and
RDHX of racks are in the hot aisle.

HPC Cluster: The Marconi100 HPC cluster started production in April 2020.
Figure 1a depicts the racks and cooling facilities arrangement in the room. Mar-
coni100 is an accelerated cluster based on IBM Power9 architecture and Volta
NVIDIA GPUs with a computing capacity of about 32 PFlops. The HPC room
(Fig. 1a) hosts 55 racks (49 computing racks), and each rack has 20 chassis, and
each chassis host one computing node. Marconi100 comprises 980 nodes; each
node has 2 × 16 cores IBM POWER9 (@3.1GHz) processors and is empowered
with 4 x NVIDIA Volta V100 GPU accelerators (16GB), RAM: 256 GB/node.

Fig. 1. Schematic of Marconi100 HPC room in CINECA datacenter.
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Monitoring System: The CINECA datacenter features a holistic monitor-
ing framework, namely ExaMon, which aggregates a wide set of telemetry data
[7]. ExaMon is one of the state-of-the-art datacenter monitoring systems [25].
For each node and its associated components, such as voltage regulators and
fans, the Intelligent Platform Management Interface (IPMI) provides remote
telemetry access to the built-in sensors [21]. The ExaMon monitoring system
collects sensor data with the IPMI interface with 20 s sampling rate [7]. From
April 2021, ExaMon, in addition to nodes metrics, starts to collect important
metrics of CRAC room facilities (CRAC units, RDHX, and Modbus). ExaMon
monitored data is stored in its internal KairosDB database as time traces and
remotely accessible through RESTfull APIs [7]. These are the low-level compo-
nents having the task of reading the data from several sensors scattered across
the system and deliver them, in a standardized format, to the upper layer of
the stack. These software components are composed of two main objects, the
MQTT API and the Sensor API object. The former implements the MQTT
protocol functions, and it is the same among all the collectors, while the lat-
ter implements the custom sensor functions related to the data sampling and
is unique for each kind of collector. Considering the specific sensor API object,
we can distinguish collectors that have direct access to hardware resources like
PMU, IPMI, accelerators, sensor nodes, and collectors that sample data from
other applications as switchboards Modbus collectors.

2 Related Work

By approaching exascale computing systems [20], the importance of anomaly
detection research topics in HPC systems increases [5]. In the HPC system,
anomalies reduce the performance and increase the cost by affecting the comput-
ing capacity and energy of HPC systems. Anomalies are reported due to network
contention [9], shared resources contention [8,19], hardware-level problems [23],
memory [3], CPU [14], and cooling system failure [26,27]. Some researchers used
the rule-based analysis to define the anomalies; researchers manually, or based
on the statistical analysis or recommendations, set thresholds for system metrics
[4,22]. The monitoring data of the system and component is investigated to find
the correlation between the different problems (like detecting I/O congestion
and out-of-memory) and causes by other studies [3,14]. ML-based approaches
are used by researchers for anomaly detection [5,5,6,10,11,13,17,18,24,28].

Most studies investigate the anomalies employing one of the statistical rule-
based or ML-based methods for anomaly detection at the application or node
levels without considering the room level facilities, which can create severer
anomalies than the application and node levels. This study employed a compre-
hensive statistical rule-based method on a big dataset composed of node-level
metrics as well as room-level facilities metrics (like two different sophisticated
cooling systems metrics, total power consumption metrics of different parts of
HPC room collected from Modbus, etc.) to anomaly detection at room-level,
node-level, system-level, and subsystem-level. Anomalies are infrequent, so some
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studies employed synthetic anomalies at the test state and out of production
HPC. In this study, all the data is collected from the in-production HPC cluster
(one of the most powerful computing systems worldwide). Moreover, the study
and approach are validated against the real physical failure of the in-production
HPC cluster. So, to the best of our knowledge, this is the first time that a study
employed rule-based statistical tools on different levels of monitoring signals of
an in-production HPC cluster to anomaly study at different levels of node, sys-
tem, subsystem, and HPC room. This study included a detailed study of the
real thermal failure, which caused the outage of half of the computing nodes of
the HPC cluster.

The rest of the paper is organized as follows: First in methodology section,
we introduce the rule-based statistical anomaly method and severity level of
anomaly. We then discuss the experimental results, and as proof of the perfor-
mance of the proposed method in anomaly detection, we validated the method
with real thermal failure of the HPC cluster. Finally, we provide a summary of
the study along with ideas about future work regarding this framework.

3 Methodology

3.1 Dataset

This study is done on the monitoring signals (data collected in ExaMon) of the
Marconi100 cluster. In Fig. 1b, the schematic of the HPC room’s facilities and a
rack is depicted. For the computing nodes, we studied different metrics like inlet,
PCIe, CPU [0,1], and GPU [0,1,2,3] temperatures, fan speed, and power supply.
The racks are equipped with RDHX, and for this cooling system, we studied differ-
ent essential metrics, such as water flow rate, inlet, and outlet water temperature,
the position of the three-way valve, and delta temperature of the water. Moreover,
there are six CRAC units in the room; for CRAC units, we studied metrics like
compressor utilization, free cooling, free cooling valve open position, fan speed,
return, and supply air temperature. From the main electrical power distributions
system (from Modbus), we extracted the metrics: total power consumption of ICT,
total power consumption of RDHX pumps, total power consumption of chillers,
and total power consumption of CRAC units. In total, for one rack with 20 nodes
and room facilities, 242 metrics are collected. The data collection period starts on
2021-04-08 and ends on 2021-08-21.

3.2 Rule-Based Statistical Method (Flags)

We find two main groups of abnormal patterns with the study of the monitoring
signals in normal and abnormal conditions. Figure 2 shows the two monitoring
signals blue line on the right y-axis shows the total power consumption of the
chillers, while the red line on the left y-axis shows one random node’s inlet
temperature. The green zone demonstrates part of the signal that we know the
cluster is in normal production; in contrast, the red zone is the failure zone



Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems 267

(reported by the experts of CINECA). The inlet temperature of a node (red
line) in the abnormal zone (red zone) reaches a very high value compared to the
normal zone (green zone); we name this pattern 1 Constraint Violations
condition for this signal. Moreover, the total power consumption of chillers (blue
line) has a high variation in a small time interval in the abnormal zone (red
zone); we name this pattern 2 High Derivative condition for this signal.
Considering these two abnormal patterns of the monitoring signal, we used High
Derivative and Constraint Violations in the definitions of the flags to find the
anomalous and suspicious patterns. A set of flags is defined for all the critical
metrics of computing nodes and room facilities (CRAC Units, RDHX, Modbus,
etc.).

Fig. 2. Comparison of normal and abnormal signals. (Color figure online)

3.3 Mathematical Definition of the Flags

In this section, the mathematical formula of the flags is presented. Each rack
of Marconi-100 has 20 chassis, and each chassis host one node. From chassis 1
to 20 from bottom to top. So for Marconi100, we can interchangeably use the
chassis temperature, and node temperature since each chassis hosts one node.
Chart 3 shows the different parts of the set of flags. In the top, chart 3 shows two
main groups of flags: 1 Constraints violation; M(t) > threshold or M(t) <
threshold, M(t) is a metric, and t shows time, and 2 High derivative; M(t)−
M(t − 1) > threshold or M(t) − M(t − 1) < threshold.

Group 1 Constraints violation has three subgroups: (a) Cooling Short-
age, indicating a part of the cooling system reached its maximum capacity
(M(t) > threshold), or the failure of one part (M(t) < threshold). (b) Ther-
mal/ASHRAE, which shows CPU/GPU or inlet temperature of the node, vio-
lated the ASHRAE recommendations. (c) The Computing Load shows that the
Rack/Room consumes more power than typical and reaches its maximum com-
puting capacity based on the history. In group 2 high derivative, there are
flags due to the high variation of the signals, for example, a high derivative of
the power consumption or temperature. In total, we defined 281 flags for 242
metrics.
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Fig. 3. Different parts of flags set.

In the following, the thresholds are different individually for each formula,
and we set them based on the recommendations like ASHRAE or historical data
analysis for metrics with no recommendation. For example, for historical data
analysis, for inequality like M > threshold with no recommendation, we can
use a quantile of 0.99 of the parameter as a threshold, or for inequality like M <
threshold quantile of 0.01, this is a straightforward approach. In the equations,
M(t) is a metric, and t shows time. M(t) can be power consumption of node,
chiller, CRAC unit, pumps or temperature of GPU, CPU, PCIe, Inlet, water
of RDHX, Air of CRAC, or the fan speed of node, CRAC units or compressor
utilization of CRAC units, the position of the valve of RDHX, CRAC units, water
flow rate, etc. Each rack has 20 nodes/chassis; each node experiences a different
inlet, CPU core, and GPU temperatures. rackMmax(t) and rackMmin(t) show
the maximum and minimum value measured for a metric by these 20 nodes of
the rack at time t. Flag 1 and 2 check if a metric experience is higher and lower
than a threshold. This is a constraint violation check flag.

rackMmax(t) > majorthreshold (1)

rackMmin(t) < minorthreshold (2)

The Flag 3 checks the maximum heterogeneity of measured value by a metric at
one timestamp for the nodes of a rack.

rackMmax(t) − rackMmin(t) > threshold (3)
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Flag 4 and 5 examine the rack’s maximum and minimum value variation for a
metric, respectively.

|rackMmax(t) − rackMmax(t − 1)| > threshold (4)

|rackMmin(t) − rackMmin(t − 1)| > threshold (5)

Flag 6 controls the number of items of a metric that violate the threshold. For
example how many GPUs experience high temperature in the rack.

20∗C∑

i=1

(rackMi(t) > threshold) (6)

Flag 7, 8, and 9 how many items of a metric experience abnormal variation and
C for CPU, GPU, inlet, and PCIe temperature is 2, 4, 1, and 1, respectively.

20∗C∑

i=1

(|rackMi(t) − rackMi(t − 1)| > threshold) (7)

20∗C∑

i=1

(rackMi(t) − rackMi(t − 1) > +threshold) (8)

20∗C∑

i=1

(rackMi(t) − rackMi(t − 1) < −threshold) (9)

Flags 10, 11, 12, and 13 check the metrics’ constraint violation and abnormal
variation (except the node metrics).

majorM(t) > threshold (10)

minorM(t) < threshold (11)

M(t) − M(t − 1) > +threshold (12)

M(t) − M(t − 1) < −threshold (13)

Flags 14 check the number of metric items that experience abnormal value based
on their own history. There is a difference between this flag 14 and flag 6 which
checks the number of the items of metric which violate a defined threshold for
all of the items, i.e., in flag 14, GPU-1 has a threshold based on the history of
just GPU-1. However, flag 6 has a fixed value as a threshold for all GPUs of the
rack, which can be based on the ASHRAE recommendation or history of all the
GPUs in the rack.

20∗C∑

i=1

(rackMi(t) > cthresholds) (14)
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Flag 15 checks the number of nodes that are in an odd situation due to the
abnormal value of a metric, while the flag 16 controls the number of nodes that
have strange variations in a metric.

20∑

i=1

(
C∑

c=1

(rackMi,c(t) > cthresholds) ≥ 1) (15)

20∑

i=1

(
C∑

c=1

(|rackMc(t) − rackMc(t − 1)| > cthresholds) ≥ 1) (16)

Variation of Coldest Chassis at a Rack: Subscript i shows chassis/node
number. Cinlet(t) shows chassis-number of coldest chassis at time t, based on the
inlet temperature.

|rackCinlet(t) − rackCinlet(t − 1)| > threshold (17)

Thermal Rank of Chassis nodeRinlet
i (t): Index of the chassis/node in a sorted

list of chassis/node based on its inlet temperature at time t. For example, in
Marconi 100 chassis − 7 of rack-5 at 2021-02-05 15:50:00 is the coldest chassis,
so its thermal rank is one at that time nodeRinlet

7 (2021/02/01−15 : 10 : 00) = 1.

20∑

i=1

|nodeRinlet
i (t) − nodeRinlet

i (t − 1)| > threshold (18)

In general, this flag can detect a situation that there is switching in the thermal
rank of most of the chassis of the one rack, which mostly appears when chas-
sis temperatures of a rack quickly change from compact/dense to widespread
pattern or vice versa.

4 Experimental Results

4.1 Severity Level of Anomaly (
∑

F lags)

We have access to the dataset of monitoring signals of the HPC cluster is, but it
does not contain any normal or abnormal labels to distinguish between the nor-
mal or abnormal samples. There are some reports related to the anomaly/failure
that the experts of CINECA provided. However, these reports are very rare and
just for situations where the bad side effects of the anomaly are evident, and
it caused a reduction of computing capacity or even an outage of the cluster.
Some abnormalities restrict the effective utilization of resources in HPC sys-
tems. Although these anomalies degrade the performance of HPC clusters, they
are not effortlessly noticeable to human experts. These anomalies can generally
affect energy-to-solution, time-to-solution, again of the nodes, etc. In this study,
the flags are introduced with accuracy to find the suspicious patterns (especially
related to the thermal and power characteristic of the HPC cluster) in the mon-
itoring signals of the Marconi100 HPC room and cluster. Therefore, the sum
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of the raised flags at each timestamp shows the severity level of the anomaly.
The first row of Fig. 4b shows the severity level of anomaly (sum of flags) with
the blue line on the left y-axis and the moving average (with a time window of
3 h) of the sum of flags with the red line on the right y-axis. A moving average
is a widely used statistical indicator that smooths out signals by filtering out
short-term fluctuations. There is a peak in the moving average of the sum of
flags in the yellow zone in Fig. 4b, which is related to the real physical failure on
2021-07-28. The second row of Fig. 4b illustrates the zoom-in version of the first
row around the real thermal failure of the HPC room. By expert reports, we
know point C is a real failure and as it is the evident severity level of anomaly
(sum of flags) and its moving average reached its peak at this point. As we can
see in Fig. 4b, before the failure, which caused an outage of half of the capacity
of the HPC cluster, there were two signs of future failure (zones A and B) in the
severity level of abnormality graph. The sign of a future disaster was unclear to
human experts without tools like the suggested one. So the suggested method
of definition of the flags and then severity level of anomaly and its moving aver-
age (which cancels fast fluctuations of signals) provides applicable metrics to
indicate anomalous patterns in the signals for anomaly detection and preventing
future disasters. In the following in the anomaly location section, we will show
a heatmap, which provides to the sysadmin the anomaly’s location and sources.

4.2 Detailed Study of Real Physical Failure

In this section, the method’s performance for anomaly detection is evaluated by
a detailed study of the monitoring signals at three critical points around the
physical failure 28-07-2021. To understand the reasons behind the high severity
level of anomaly (i.e., a high number of raised flags) of these points, we did a
detailed study by generating the line plots of all sensors’ signals, which are sum-
marized in the two Figs. 4c and 4a, and finally, heatmap Fig. 5 summarized the
location of the issues. In these two Figs. 4c, 4a, the colored lines show the value
of each sensor, and the black dashed line shows the average value of parameters
in each row. Figure 4c shows the monitoring signals of different metrics of the
computing nodes of one rack in the HPC room. It illustrates the CPU, GPU,
PCIe, Inlet temperature and fans speed, and finally, power consumption in rows
1 to 6. While Fig. 4c shows the node level metrics of the HPC room, Fig. 4a
shows room level metrics, especially the cooling system metrics. Figure 4a from
the first row to last row respectively shows: (i) total power consumption of the
ICT devices, (ii) CRAC units: total power consumption of the CRAC units,
fans speed of the CRAC units, compressors utilization of the CRAC units, Free
cooling valve open position of CRAC units, outlet and inlet temperature of the
CRAC units, (iii) RDHX: total power consumption of the chillers, total pumps
power consumption, inlet, outlet temperature of the water, the position of three-
ways valve, delta temperature of outlet and inlet water temperature, (iv) ambient
temperature (temperature of outside).
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Fig. 4. Experimental results (Color figure online)

Considering Point A: While nodes experience the normal inlet temperature,
the inside temperature (CPU, GPU, and PCIe) is high. So the room temperature
is normal, and the cooling system operates correctly. Before point A the power
consumptions of the nodes start to increase due to the computing demands,
which turns into the high temperature inside the nodes, and then quickly, the
computing loads are reduced. Meanwhile, the fans of nodes increase the speed,
and it seems that after point A the high power consumption of nodes is due to
the fans rather than the computing load. Although there is some fluctuation in
the compression utilization, and it reduces the outlet temperature of the CRAC
units, this is not enough to change the inlet temperature of the nodes. The
anomaly of point A was related more to some nodes’ computing load, and the
cooling system’s reaction was not fast enough to support this quick increase in



Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems 273

the computing demand or power consumption, which turned into the nodes as
a high temperature of nodes. So, while nodes’ inlet temperatures are normal,
computing loads are high, and the reaction of the cooling systems are not fast
enough to support computing load, which turns into high temperature at nodes
level.

Considering Point B: The node-level parameters of this point, like temper-
ature, fan speed, and power consumption of nodes, are completely normal. In
room-level parameters before this point, the free cooling activated (first two
CRAC units out of four units, then three out of four), and this is the primary
source of signal fluctuations of the other parts of the two cooling systems. Acti-
vating the free cooling has caused (i) an increase in the power consumption of
the RDHX, which means the water cooling system works more, and also (ii)
an increase in power consumption (fans speed and compressors utilization) of
CRAC units. This situation is controlled by deactivating the free cooling as well
as a reduction in computing load of the room, and as it is explicit, it is success-
ful, and there is no rise in the node level temperature. So node level parameters
are normal, and activation of free cooling is the primary source of signals’ fluc-
tuations of cooling systems, and flags identify these signals’ fluctuations as a
suspicious condition.

Considering Point C: All the node level parameters like temperature and fans
speed of the nodes are high, and nodes experience high inlet temperature, so the
cooling systems are in trouble. After a reduction of point B (some parameters
like total power consumption of the ICT and CRAC units), continuously the
power consumption of the CRAC units is increased, and it reached its peak at
C. Before C, the free cooling activated for four out of four CRAC units meanwhile
by activating of free cooling the power consumptions of the chillers of the RDHX
reduced, and in the same time, the computing load increased these three action
1- increasing the computing load 2- activation of free cooling and 3- reduction
in chillers cooling capacity, create thermal emergency which cause an increase
in the temperature of the room and temperature of the inlet and outlet water of
the RDHX and inlet and outlet temperature of the CRAC units which turn into
thermal emergency in the cores of nodes and it creates out of control situation
in node level and room level. So three actions create a thermal emergency; 1-
increasing the computing load, 2- activation of free cooling, and 3- reduction in
RDHX cooling capacity. Which increase: 1- room temperature, 2-inlet and outlet
water temperature of RDHX, and 3- inlet and outlet temperature of CRAC units,
which leads to out-of-control conditions in node level and room level.

4.3 Locations of Anomalies

Heatmap in Fig. 5 shows the severity and zone of anomalies that flags identified
in three points around failure. The figure is composed of two heatmaps; the first
heatmap from the left in the x-axis shows different parts of the HPC room: room
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level facilities metrics and node-level metrics, so it shows the zone of detected
anomalies, but the second heatmap shows total severity of anomalies in three
points. The annotation of the first heatmap is a normalized number, while the
annotation of the second one is the sum of the metrics identified as anomalies.
As reported in the second heatmap in point A, suggested methods identified
37 out of the 281 sub anomalies (37 raised flags) in different zones of the HPC
room; meanwhile, for point B, there are 46 sub anomalies, and finally, for point
C, which is the physical thermal failure, the system experienced maximum sub
anomalies (raised flags) of 92 out of 281. As reported in Fig. 5, at point A, the
temperature of node level for a few hours is high, and the suggested method
identified some anomalies in node level temperatures like CPU, GPU, and PCIe
and also the power consumption of nodes, and in the room level facilities, it
discovers some minor anomalies mostly on water cooling system (RDHX). In
point B, it recognizes the node level metrics as almost normal, but it sees some
anomalies in the cooling system and total power consumption (as is also evident
in the first two rows of Fig. 4a). There are raised flags in almost all parts of
systems for point C.

Fig. 5. Severity and zone of the anomaly in the HPC room.

5 Summary and Future Work

We employed monitoring signals of the in-production HPC cluster and HPC
room facilities for thermal anomaly detection in HPC room. We proposed a set
of rule-based statistical methods (flags) that explore different metrics at the HPC
room, system, sub-system, and node level to find abnormal patterns. Moreover,
we defined the sum of raised flags at each timestamp as metrics for the severity
level of abnormality in the HPC room. We show that this method successfully
could identify the thermal anomalies utilizing the telemetry system in the Exa-
Mon database. This approach generates a heatmap report which provides details
of locations and source of the anomaly in the HPC room. This report has high
potential in maintenance and troubleshooting.
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This study mainly focused on thermal anomaly detection, which can extend
to other kinds of anomalies (like application-level anomaly detection, etc.) in
future work. We are working to remedy flags’ weakness in analyzing the compli-
cated correlation of the signals in finding the anomalies or suspicious patterns by
employing a semi-supervised ML-based approach to improve anomaly detection
performance.

Acknowledgments. The study has been conducted in the context of EU H2020-
JTI-EuroHPC-2019-1 project REGALE (g.n. 956560), EuroHPC EU PILOT project
(g.a. 101034126), EU Pilot for exascale EuroHPC EUPEX (g.a. 101033975), European
Processor Initiative (EPI) SGA2 (g.a. 101036168), and CINECA.
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1 Background and Description

Large-scale HPC simulations with their inherent I/O bottleneck have made in situ an
essential approach for data analysis. In situ coupling of analysis and visualization to a
live simulation circumvents writing raw data to disk. Instead, data abstracts are gen-
erated that capture much more information than otherwise possible.

The “Workshop on In Situ Visualization’’ series provides a venue for speakers to
share practical expertise and experience with in situ visualization approaches. This 6th
edition of the workshop, WOIV’22, took place as an on-site half-day workshop on June
3rd, 2022, co-located with ISC High Performance, after half-day workshops in 2016,
2017, and 2021, and two full-day workshops in 2018 and 2019. In 2020 we had to
cancel the workshop due to the COVID-19 crisis. The goal of the workshop, in general,
is to appeal to a wide-ranging audience of visualization scientists, computational sci-
entists, and simulation developers, who have to collaborate to develop, deploy, and
maintain in situ visualization approaches on HPC infrastructures.

For WOIV’22, we again also encouraged submissions on approaches that did not
live up to their expectations. With this, we expected to get first-hand reports on lessons
learned. Speakers should detail if and how the application drove abstractions or other
kinds of data reductions and how these interacted with the expressiveness and flexi-
bility of the visualization for exploratory analysis or why the approach failed.

As in the previous year, WOIV’22 encouraged submissions describing new
developments for in situ software. These include both the creation of new in situ
software as well as additions to existing in situ software. These submissions with a
greater focus of “development’’ over “research’’ encourage the primary goal of WOIV
to connect in situ techniques with science practitioners.

In addition to two invited talks, presentations at WOIV’22 were selected from
submitted papers. These were reviewed by an international program committee com-
prising diverse members from academia, government, and industry and many nation-
alities. Each submitted paper received at least two reviews. Accepted papers were
invited to present at WOIV and are published in this LNCS volume.



2 Workshop Summary

2.1 Keynote

Tim Gerrits gave the keynote speech. He presented insights gained during the ongoing
project NHR4CES (National High Performance Computing Center for Computational
Engineering Sciences) which is part of the German association for National High
Performance Computing (NHR). NHR aims to provide scientists at German universi-
ties with the computing capacity they need for their research, and strengthen their skills
for the efficient use of this resource.

Tim Gerrits leads the Crossectional Group Visualization at the National High
Performance Computing Center for Computational Engineering Sciences (NHR4CES)
as well as the Visualization Group at RWTH Aachen University, Germany. He and his
team provide and develop visualization solutions for scientific data including interac-
tive and immersive analysis tools. Tim holds a Bachelor and Master degree in Com-
putervisualistics from the University of Magdeburg, Germany, where he also received
his PhD in Visualization, working on the visualization of second-order tensor data and
vector field ensembles.

2.2 Capstone

Chris R. Johnson gave the capstone speech. He presented an in depth view on the
history and motivation of in situ visualization. He also outlined in situ visualization
challenges and opportunities, ranging from reproducibility over adaptive meshes,
topological data analysis, and uncertainty all the way to computational steering.

Chris R. Johnson is a Distinguished Professor of Computer Science and founding
director of the Scientific Computing & Imaging (SCI) Institute at the University of
Utah. He also holds faculty appointments in the Departments of Physics and Bio-
engineering. His research interests are in the areas of scientific computing and scientific
visualization. In 1992, with Professor Rob MacLeod, Professor Johnson founded the
SCI research group, now the SCI Institute, which has grown to employ over 150
faculty, staff and students. Professor Johnson serves on a number of international
journal editorial and advisory boards to national and international research centers. He
is a Fellow of AIMBE (2004), AAAS (2005), SIAM (2009), and IEEE (2014) and was
inducted into the IEEE Visualization Academy (2019). He has received a number of
awards including the NSF Presidential Faculty Fellow (PFF) award from President
Clinton, a DOE Computational Science Award, the Governor’s Medal for Science and
Technology, the Utah Cyber Pioneer Award, the IEEE Visualization Career Award,
IEEE CS Charles Babbage Award, the IEEE Sidney Fernbach Award, Rosenblatt Prize
and most recently, the 2020 Leonardo Award.

2.3 Papers

Soumya Dutta et al., in their paper “In Situ Analysis and Visualization of Extreme-
Scale Particle Simulations’’, presented a new in situ visual analysis pipeline for the
extreme-scale multiphase flow simulation MFiX-Exa. They demonstrated how the

The 6th International Workshop on In Situ Visualization (WOIV’21) 279



pipeline can be used to process large particle fields in situ and produce informative
visualizations of the data features. Having deployed their analysis pipeline on Oak
Ridge’s Summit supercomputer they studied its in situ applicability and usefulness.

Isaac Nealey et al., in their paper “Cinema Transfer: a Containerized Visualization
Workflow’’, presented a containerized workflow demonstrating in situ analysis of
simulation data rendered by a ParaView/Catalyst adapter for the generic SENSEI in situ
interface which was then streamed to a remote site for visualization. They developed a
web socket tool, cinema_transfer, for transferring the generated cinema databases to a
remote machine while the simulation is running. They evaluated the performance of
this containerized workflow and identified bottlenecks for large scale runs.

David Pugmire et al., in their short paper “The Need for Pervasive In Situ Analysis
and Visualization (P-ISAV)’’, presented their thoughts and key properties on a fun-
damental requirement of future solutions: pervasive in situ visualization (P-ISAV).
They addressed the fact that coupling HPC, experimental and observational facilities
into computing ecosystems would lead to complex, distributed and heterogeneous
systems. These would pose a significant challenge for current visualization tools, yet
would provide unprecedented tools for scientific inquiry.

Marcel Krüger et al., in their paper “Insite: A Pipeline Enabling In-Transit Visu-
alization and Analysis for Neuronal Network Simulations’’, presented a pipeline for in-
transit analysis and visualization of data produced by neuronal network simulators. The
pipeline enabled querying, filtering, and merging data from multiple simulation
instances, and it applied traditional REST API paradigms and utilized data formats such
as JSON to provide easy access to the generated data. The authors assessed the pro-
posed architecture in the context of neuronal network simulations generated by the
NEST simulator.

Pavel Novikov et al., in their short paper “Interactive Visualization of Large-Scale
Oil and Gas Reservoir Simulation Models’’, presented the parallel implementation of a
slicing algorithm for MPI CPU and multi-GPU computational systems in a form of a
ParaView plugin. They compared the performance of their algorithm, an existing
commercial oil and gas reservoir simulation software, and the built-in ParaView tool
for model slicing. Their approach provided almost interactive visualization of a
reservoir model with 1.9 billion cells of unstructured mesh.

3 Organising Committee

3.1 Workshop Chairs

Peter Messmer NVIDIA, Switzerland
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3.2 Workshop Co-organizers
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Abstract. In situ analysis has emerged as a dominant paradigm for
performing scalable visual analysis of extreme-scale computational sim-
ulation data. Compared to the traditional post hoc analysis pipeline
where data is first stored into disks and then analyzed offline, in situ
analysis processes data at the time its generation in the supercomputers
so that the slow and expensive disk I/O is minimized. In this work, we
present a new in situ visual analysis pipeline for the extreme-scale multi-
phase flow simulation MFiX-Exa and demonstrate how the pipeline can
be used to process large particle fields in situ and produce informative
visualizations of the data features. We deploy our analysis pipeline on
Oak Ridge’s Summit supercomputer to study its in situ applicability and
usefulness.

Keywords: In situ analysis · Visualization · Feature detection · High
performance computing · Computational science · Particle data

1 Introduction

With increasing computing capabilities, scientific simulations are now producing
very large-scale spatio-temporal data sets, containing intricate features that need
to be analyzed and visualized efficiently to further scientific discoveries. While
domain scientists focus on making their simulations more accurate and efficient,
they need flexible and scalable analysis capabilities to study their data. Many
research studies have shown that the traditional post hoc analysis paradigm is
no longer scalable as handling, managing, and analysis of extreme-scale data sets
will be prohibitive [2,3,9]. This is primarily due to slow disk I/O speed compared
to the rate at which data is produced coupled with the post hoc processing needs
of extreme-scale data [6,11,28]. As a result, only a sparse set of time steps of
the simulation can typically be stored to disk for future analysis.

In situ analysis addresses this problem by deploying visualization algorithms
directly with the simulation, i.e., while the data is produced. This powerful strat-
egy has been shown very effective in producing high-quality visualization arti-
facts of the simulation data that otherwise would be significantly time-consuming
c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 283–294, 2022.
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to generate [3,16,19,25]. However, due to the complexity of the scientific data
sets and the domain-specific features within them, it is often less effective if only
the raw simulation data is visualized. An alternative approach is to first apply
an appropriate data analysis algorithm in situ and then produce visual arti-
facts of the derived data that highlight the complex data features more clearly
compared to the raw data. The informative visual artifacts generated from the
derived data can be used to explore the evolution of the data features during
the simulation run and application scientists can verify and/or validate various
scientific hypotheses.

In this work, we present the first ParaView Catalyst-based [14] in situ analysis
pipeline for the very large-scale multiphase simulation MFiX-Exa [20,21]. MFiX-
Exa is currently being developed at the National Energy Technology Laboratory
(NETL) and is on its way to harness the upcoming exascale supercomputers to
further scientific discoveries [12] as part of the Exascale Computing Project
(ECP) [13].

The primary focus of the MFiX-Exa simulation is to study the working prin-
ciples of complex and large-scale chemical looping reactors. To comprehend the
physics behind such rectors, MFiX-Exa developers study simulation cases where
millions of particles interact with each other inside a fluidized bed. The formation
of bubbles (void regions that are characterized by low particle density) in these
fluidized beds is a prime phenomenon of interest for domain scientists as the
evolution and characteristics of these bubbles can indicate the overall stability
of the reactor. To study the bubble dynamics, the simulation needs to run for a
sufficiently long duration, resulting in an extreme-scale spatio-temporal particle
data set with tens of thousands of time steps. Post hoc analysis of such time-
varying data is significantly time-consuming and so the experts typically run
small-scale test cases as they currently lack the capability to explore full-fledged
three-dimensional bubble dynamics.

Our in situ analysis pipeline addresses this issue and enables the domain
experts to perform in situ analysis and visualization of their simulation data
without needing to store the large-scale particle fields. We show that the
Catalyst-based in situ pipeline can generate informative visualizations of the
particle data and also can be used to apply data analysis algorithms so that the
final visual artifacts show the bubble features clearly. Since for these large-scale
particle simulations, it is impossible to see the bubbles clearly from the raw par-
ticle data, we first compute the particle density fields in situ and then produce
volume-rendered images of the particle density field that clearly show the bub-
bles in the simulation data. We contribute a new VTK-based particle density
estimation filter that users can use in their analysis pipeline to compute scalar
particle density fields from particle data. Our in situ pipeline also allows storing
of the in situ generated particle density fields which are significantly smaller
compared to the original raw particles fields. These particle density fields can be
used post hoc for further in-depth study of bubble dynamics.
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2 Related Works

The need for in situ data analysis and visualization has grown significantly in
recent years to address the problems arising from slow disk I/O. The visualization
community has developed several high-quality libraries to enable in situ analysis
and rendering of data. One of the early attempts of in situ visualization was
made by Haimes [15] to visualize large unsteady data sets. For performing in
situ analysis and visualization, Fabian et al. developed the Catalyst library [14],
which uses functionalities of ParaView during in situ run. Catalyst-based in situ
analysis has been widely adopted in the scientific visualization community [5,
8,29]. Similarly, run-time visualization with LibSim using VisIt was proposed
by Whitlock et al. [27]. In another work, Lofstead et al. added ADIOS as an
in situ visualization framework [18]. Vishwanath et al. enriched simulation time
data analysis by proposing GLEAN [26]. A more recent flyweight in situ analysis
infrastructure has been developed by Larsen et al. [17]. An open-source in situ
visualization infrastructure called SENSEI is also being developed that allows
interfacing between different in situ infrastructures with the simulation code [24].
For a more comprehensive guide of the various types of existing infrastructures,
readers are referred to the following state-of-the-art report [6]. To gain detailed
knowledge about the in situ relevant terminologies and standards, developed by
the visualization community, please refer to [10].

3 ParaView Catalyst-based in Situ Visual Analysis
Workflow

This section describes the analysis pipeline that we have developed to enable in
situ analysis and visualization for the MFiX-Exa simulation. Starting with an
overview of the Catalyst adapter, we describe its access of MFiX-Exa data in the
in situ environment and then discuss the visualization methods and algorithms
that are used to generate effective visual artifacts for MFiX-Exa data.

3.1 In Situ Catalyst Adapter Design

The first step to build an in situ analysis environment for a simulation code is
to design an efficient in situ adapter that can tap into the simulation memory
while the data is being generated. Making the data accessible in situ is necessary
to move post hoc analyses into the simulation while it is running. Since different
simulation codes have different data layouts in memory, designing a general in
situ adapter can be a challenging task.

The MFiX-Exa simulation uses the AMReX [4,30] library as its internal
software framework to store and process the simulated particle data. AMReX is
a software framework that facilitates the development of scalable, block-based,
massively parallel, and adaptive mesh refinement (AMR) applications. In this
work, we have developed a ParaView (version 5.9.1) Catalyst-based (version 1) in
situ adapter program that can read the particle data structures of AMReX (more
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Fig. 1. Schematic of the in situ analysis and visualization pipeline showing different
types of visualization and data artifact outputs.

specifically access the particle data from AMReX’s ParticleContainer Class) and
then convert it into a VTK-based [23] data structure and provide a handle to the
user in the in situ environment. To convert AMReX -based particle data into a
VTK-based data structure, currently the data is copied out. In the future, we will
move to VTK’s zero-copy capabilities to pass the pointers directly. Algorithm
developers can directly use this VTK data in their program to analyze or produce
visualizations of the data in situ. Since MFiX-Exa produces particle data, the
simulation data is represented as VTK Polydata in the in situ environment. The
in situ adapter also makes the simulation’s MPI communicator accessible in the
in situ environment so that users can deploy data processing and visualization
algorithms that require distributed communication.

One of the advantages of the Catalyst adapter is that since this adapter is
developed for the AMReX’s particle container, it can be generalized and reused
for performing in situ analysis for other simulations that use AMReX with mini-
mal modification. Hence, even though the focus in this work is on the MFiX-Exa
simulation, the in situ adapter and visualization techniques can be easily extend-
able to other particle-based simulations that use AMReX for data representation.

Figure 1 shows a schematic of the in situ analysis pipeline. Users can generate
a Catalyst script that contains the visual analysis pipeline to be executed during
the in situ run. This Python script is generated from the ParaView application
as shown. The script is deployed in situ using Catalyst’s in situ infrastructure.
During the in situ run, the in situ adapter makes the data available in this Python
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Fig. 2. Steps of in situ processing of the particle data for the proposed work.

script as a VTK Polydata at each MPI process, and the user can process and
analyze the data further. The pipeline uses MFiX-Exa’s MPI communicator and
using Catalyst’s built in fault tolerance capabilities, we ensure that even if our
script is unable to process the data, the simulation does not crash. At each time
step MFiX-Exa calls a Catalyst routine and passes it data. The Catalyst routine
calls the Python script that the user provides to do the analysis and visualization.
So on the cluster node, we run the MFiX-Exa simulation, which periodically
calls Catalyst. So the Python script is periodically called to do the visualization.
In Fig. 2, we present the in situ analysis and visualization tasks that we have
used in this work to explore the MFiX-Exa data set. We generate visualization
outputs of the raw particle data where each particle is rendered as a sphere and
colored by their velocity magnitude. The velocity magnitude is computed in situ
using ParaView’s Calculator function. Since one of the primary focuses of the
application developers is to study the bubble features in the simulation, we also
compute the particle density field and generate visualizations of this field that
can show the bubbles more clearly compared to the raw particle visualization.
To further analyze the particle density field and the bubble features, we also
allow storing the particle density fields onto disk. Note that, compared to the
raw particle data, the size of this particle density scalar fields are significantly
smaller and hence our method is also able to achieve sufficient data reduction.
Using these reduced density fields, flexible bubble dynamics analysis can be done
during post hoc analysis.

3.2 In Situ Particle Density Estimation for Effective Visualization
of Data Features

Since the raw data format for MFiX-Exa is particle-based, we first add the
capability to generate particle renderings at each time step. We also color each
particle using its velocity magnitude so that the domain experts can glean addi-
tional information about the particle dynamics. In Fig. 3(a), we show the particle
rendering of an MFiX-Exa simulation test case (MFiX-Exa Case 1), which con-
tains around 4 million particles. The low-density particle regions, bubbles, can be
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(a) Particle Rendering for
MFiX-Exa Case 1.

(b) Particle Rendering for MFiX-Exa Case 2.

Fig. 3. In situ generated visualization of raw particle fields for two different MFiX-Exa
simulation test cases where the particles are colored by their velocity magnitude. Red
particles indicate particles having higher velocity. (Color figure online)

seen in this figure. We also observe that particles underneath a bubble have high
velocity. This visualization is similar to a post hoc visualization workflow. Poten-
tial issues with this visualization include that the actual bubble features are not
seen and that smaller bubbles are difficult to visualize. These issues become much
more severe as the number of particles is increased in the simulation domain. In
Fig. 3(b), we present particle rendering of a much larger MFiX-Exa simulation
test case (MFiX-Exa Case 2), containing around 54 million particles. As can be
seen, even when the size of each particle radius is quite small, we barely see any
bubble feature in the data. It appears that this simulation does not have any
bubbles produced. Thus, the raw particle visualizations are not suitable when
the experts want to study the bubbles in their data.

To address the shortcomings of the raw particle-based in situ visualizations,
we use a particle density field-based visualization that clearly shows the bubble
features in the data set. The resultant visualizations are much more informative
and can be used to study bubble dynamics. Density estimation is often regarded
as a fundamental step necessary for sampling particle fields into a structured
continuous representation [22].

We have used a spatial histogram-based technique to group particles into
non-overlapping bins and then a density field is finally constructed. As the par-
ticles are distributed across multiple compute nodes, we compute the histogram
in the same distributed setting. A local histogram is first constructed at each
processing unit by binning the 3D locations of all particles available to each
processor. A 3D histogram is required since we are binning particle locations to
estimate spatial particle density. The number of bins and bin widths on each
local processing unit is the same and is estimated from the global bounds of the
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(a) Particle density rendering
for MFiX-Exa Case 1.

(b) Particle density rendering for MFiX-Exa Case 2.

Fig. 4. In situ generated visualization of particle density fields for two different MFiX-
Exa simulation test cases where the bubble features (blue regions with low density),
are clearly seen. Note the clear delineation of bubble features and the ability to see
the small bubbles, even for the large number of particles in MFiX-Exa Case 2. (Color
figure online)

particles. Finally, the partial histograms are combined to construct the global
density histogram by using a parallel reduction operation over all processing
units. Each bin in this global spatial histogram represents particle counts in
a local spatial region. The global 3D histogram is mapped into a 3D regular
grid-based scalar field where each 3D bin center is mapped to a voxel in the
regular grid data and the particle count for that bin is assigned as the particle
density value at that voxel. Specific details about this histogram-based density
estimation can be found in [7] where this technique was evaluated offline. Using
a spatial histogram-based approach to convert the particle data into a density
field can be efficiently performed in situ, keeping the computational cost low
during in situ processing. Note that other density estimation methods can be
used here to estimate the particle density field. However, we believe that the
histogram-based technique is generally suitable for distributed environments as
the histograms can be computed via parallel reduction operation efficiently and
gives good results for MFiX-Exa data.

We have implemented the density estimation function in a VTK filter form
so that it can be easily deployed from the Catalyst in situ script. The original
code is implemented in C++ and is first integrated into VTK as an MPI-enabled
parallel filter. Then we call the density estimation VTK filter from the Catalyst
script. The input to the filter is the particle data and the output is a scalar
field in the form of VTK ImageData. Once this field is produced, we generate
visualizations of this density field and also store the raw density field for further
post hoc analysis.
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Fig. 5. Post hoc visual analysis of bubbles using in situ generated particle density
fields. The left rendering window shows the density field and in the right rendering
window, the bubbles are extracted using a low-density threshold value and then the
connected component algorithm is applied to identify individual bubbles.

In Fig. 4(a), we show the in situ rendering of the particle density field for
a time step of MFiX-Exa simulation Case 1. The corresponding particle field
is shown previously in Fig. 3(a). We can observe that the low-density regions
in the density field, the blue regions, correspond to the bubbles in the data.
The effectiveness of the density field-based visualization can be compared to the
visualization of the raw particles as seen in Fig. 4(b) which shows the density
field visualization for the MFiX-Exa Case 2. The corresponding particle field is
depicted in Fig. 3(b). Comparing Fig. 3(b) and Fig. 4(b), one can observe that
the density field shows the bubbles in the data that are hard to see from the
particle-based visualization when the number of particles is large.

The in situ generated particle density fields can also be used to perform flex-
ible post hoc bubble analysis. Since the size of the density fields is significantly
smaller compared to the raw particle fields, they can be loaded into ParaView and
analyzed and visualized interactively. In Fig. 5, we show one such demonstration
where on the left rendering window, the density field is visualized using vol-
ume rendering. On the right window, the segmented bubble features are shown.
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Here, we first use a low-density value to threshold the density field and then
apply the connectivity filter so that each connected segment is identified as an
individual bubble feature.

4 Evaluation

We have tested the in situ pipeline on the Summit supercomputer [1], an IBM
system located at the Oak Ridge Leadership Computing Facility (OLCF). Each
compute node of Summit contains two IBM POWER9 processors, 512 GB of
DDR4 memory, 1.6 TB of non-volatile memory, and six NVIDIA Tesla V100
GPUs. We performed an initial evaluation of our in situ pipeline by running the
pipeline with two different test cases of MFiX-Exa. The first test case contains
around 4 million particles, which we call MFiX-Exa Case 1, and the second case
is a larger test case containing around 54 million particles. We denote the second
test case as MFiX-Exa Case 2. For each of these cases, we performed particle
rendering where the particles are colored with velocity magnitudes computed in
situ and also volume rendering of the particle density field. The density field
is first computed using a spatial histogram-based method as discussed before.
In Table 1, we provide the computational timings taken by the simulation and
the in situ methods. The renderings were done on GPUs and each MPI process
were assigned with 1 GPU. As this timings reflect the total time for the catalyst
script, they include the overhead due to data copying from AMReX to VTK
data structure, the communication time, and the relevant I/O times. Since the
simulation data evolves slowly over consecutive time steps and successive time
steps are typically very similar, we performed in situ analysis at every 5th time
step. Note that, we are reporting the initial performance of our in situ pipeline
and we plan to run our workflow on a much bigger case of MFiX-Exa, containing
hundreds of millions of particles, to conduct a full fledged performance study in
the future and further optimize our code. We also plan to implement our density
estimation filter as a VTKm filter so that we can execute the code with GPU
acceleration in the upcoming exascale machines.

Table 1. In situ timings compared to the simulation timings for two different MFiX-
Exa simulation test cases.

Configuration Avg. simulation
time per time
step (secs)

Avg. particle
rendering
time per time
step (secs)

Avg. density estimation
and rendering
time per
time step (secs)

MFiX-Exa Case 1
(∼4M particles)

256 MPI processes
with 1 GPU
per process

2.240 0.179 1.057

MFiX-Exa Case 2
(∼54M particles)

3072 MPI processes
with 1 GPU
per process

5.678 1.160 1.649
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5 Conclusions

We have presented a ParaView Catalyst-based in situ analysis pipeline infras-
tructure for the ECP application MFiX-Exa. We demonstrate how the users
can use our in situ pipeline to perform in situ analysis and produce various
types of visualization artifacts. We believe that our in situ interface, which is
able to read AMReX particle data structure, is an important capability for the
domain scientists who can analyze and produce visualization of their data for
extreme-scale simulation test cases with minimal effort to verify and validate
their simulation and further improve it. In the future, we plan to deploy this
in situ analysis pipeline in the upcoming exascale supercomputers to analyze
and visualize extreme-scale MFiX-Exa simulation data and also develop more
sophisticated in situ bubble detection algorithms.
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Abstract. Neuronal network simulators are central to computational
neuroscience, enabling the study of the nervous system through in-silico
experiments. Through the utilization of high-performance computing
resources, these simulators are capable of simulating increasingly com-
plex and large networks of neurons today. Yet, the increased capabilities
introduce a challenge to the analysis and visualization of the simula-
tion results. In this work, we propose a pipeline for in-transit analysis
and visualization of data produced by neuronal network simulators. The
pipeline is able to couple with simulators, enabling querying, filtering,
and merging data from multiple simulation instances. Additionally, the
architecture allows user-defined plugins that perform analysis tasks in
the pipeline. The pipeline applies traditional REST API paradigms and
utilizes data formats such as JSON to provide easy access to the gener-
ated data for visualization and further processing. We present and assess
the proposed architecture in the context of neuronal network simulations
generated by the NEST simulator.

Keywords: In-transit visualization · In-transit processing · Neuronal
networks · Simulation tools

1 Introduction

Activity within the nervous system occurs in and across groups of neurons assem-
bled into networks. Studying the operation principles of these neuronal networks
is important to our understanding of nervous system function [15]. Neuronal net-
work simulators take a computational approach to this study, in which the com-
ponents of the network are programmatically modeled and assembled to simulate
biological and artificial behavior. Through utilization of high-performance com-
puting resources, these simulators are capable of simulating increasingly complex
and large networks of neurons.
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The standard approach to the investigation of simulator outputs has been
post-hoc analysis and visualization, where data is persisted to disk through-
out the simulation and processed offline afterwards [10,17]. Yet, the increasing
size of data generated by simulators, as well as the necessity to adjust sim-
ulation parameters interactively have led to the development of in-situ meth-
ods [12,13], which perform visualization in conjunction with the simulation.
These approaches enable the users to get early feedback on their simulation
which allows for quicker turnaround times and lets experts discuss the prelim-
inary results shortly after the simulation has started. In this work we present
the Insite pipeline. Insite is an in-transit analysis and visualization system for
neuronal network simulations. Compared to existing in-transit/in-situ methods,
Insite focuses on ease-of-use and accessibility. Users who would like to use in-
transit capabilities are not required to change the simulator’s code or interact
with low-level programming APIs.

The pipeline integrates with neuronal network simulators in the form of
extensions, writing data to in-memory ring buffers as well as providing means
for front-end applications to query the data through a REST interface. Addi-
tionally, the architecture allows user-defined plugins that perform analysis tasks
in the pipeline. To make the pipeline accessible to a broad audience of users,
it uses traditional REST API paradigms and the JSON data format to provide
easy access to in-transit data.

2 Related Work

In the context of computational neuroscience, a variety of approaches exist for
simulation of neuronal activity. A major difference between simulators is the
abstraction level that is used. Simulators that are capable of simulating mor-
phology [1,4] require more complex computations than simulators that focus
on abstract brain regions [16]. The proposed pipeline is designed to work with
any simulator, however, this work particularly focuses on the Neural Simulation
Tool (NEST) [11]. NEST is an actively developed simulator, providing modeling
capabilities for biological and point neurons, and is capable of simulating large
scale spiking neural networks of point neurons in a distributed manner.

Insite is the successor of the modular pipeline design presented in [14] consist-
ing of a set of C++ libraries with corresponding Python wrappers. The earlier
approach suffers from limitations regarding applicability; for example, web appli-
cations based on JavaScript are not natively supported. Building the libraries
also requires a set of dependencies making the integration into potential clients
an involved process. These two factors lead to the re-design of the pipeline with
a strong focus on ease-of-use.

Post-processing of the simulation data is typically done using Python scripts
using general statistical analysis packages or specialized ones such as the Elec-
trophysiology Analysis Toolkit [8]. The results are then often visualized using
general plotting packages as the final step of this process. However, there is also
a variety of specialized visualization tools in the field of computational neuro-
science. ViSimpl is a tool that allows visualization of simulation data in a spatial
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and temporal context utilizing multiple linked views [10]. VIOLA is a web-based
application utilizing a similar method of multiple linked views [17]. Its main focus
is the visualization of temporally and spatially binned spike data in 2D views
along with a 3D visualization that combines the temporal and spatial aspects
of the spiking behavior. The approach presented in [13] applies in-situ visual-
ization and steering paradigms to the NEST simulator, focusing on connectivity
generation. Spreizer et al. [19] present a graphical user interface that is not only
able to visualize NEST simulations but also provides an easy-to-use interface for
constructing and executing them.

Aside from domain-specific solutions [5,7,9] there is a wide variety of frame-
works and tools that aim to provide generalized solutions for in-situ visual-
izations. Childs et al. [6] as well as Bauer et al. [3] presented an overview of
the general challenges and considerations of in-situ data processing. ParaView
Catalyst [2] provides a solution for generic in-situ visualization settings. The
library couples with arbitrary simulations, converting and streaming output in
the form of VTK primitives. Once received by a ParaView instance, the data
may be further processed using the filtering and mapping capabilities of VTK.
A similar alternative is VisIt LibSim [20], which enables interactive connections
between a live simulation and VisIt instances. However, potential users, such as
neuroscientists, often lack the knowledge of standard visualization libraries and
data formats. The pipeline presented in this work eliminates this requirement
by providing easy to use and widely supported data formats and protocols.

3 Method

The proposed pipeline enables the user to access data from neuronal network
simulations with a focus on easy integration rather than performance or scal-
ability. This is achieved by abstracting the internal representation and data
acquisition of the simulator. The abstraction allows the user to avoid implemen-
tation details and instead interact with an HTTP REST API. While this may
add more overhead than low-level transport protocols, the convenience aspect
drastically outweighs the drawbacks. The endpoints return the requested data in
a widespread and easy to handle JSON format. This way, front-end applications
are not forced into a specific development environment as nearly all program-
ming languages provide means to connect to such an API and parse the data.
Providing simplified access to the data makes it possible for experts in fields
other than computer science, such as neuroscientists, who might have limited
programming knowledge to use the pipeline for analysis of in-silico experiments.
Allowing the domain experts to access the data in a simplified manner eliminates
the necessity for computer science experts in order to benefit from the advan-
tages of in-situ processing. This is also in line with the development efforts of
the simulators, which increasingly hide programming complexity and give neu-
roscientists easy-to-use simulator APIs, thus, allowing a simple way to describe
simulations.
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On the other hand the impact of the pipeline on the simulation performance
is quite important, as a significant slow down in computation time would not be
justified by the advantages gained through the use of the pipeline.
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Fig. 1. Block Diagram showing all components of the pipeline and a client. Thick
arrows indicate the direction of the data flow while thin arrows indicate who initiates
the communication.

The pipeline consists of four different main components: the simulator mod-
ule, the pivot server, the processing server, and the access node which are shown
in Fig. 1. The following sections describe these components and their interaction
in more detail.

Access Node. The access node serves as the single point of contact (SPOC) for
any client interested in the data accessible through Insite. The role of the SPOC
is two-fold: The access node is the SPOC for requests originating from various
simulators but also for requests that require querying data from multiple nodes
of a distributed simulation. Using the access node, clients can query data via an
HTTP REST API that provides a corresponding response in JSON format. The
data can be either metadata such as the simulation’s neuron ids, neuron models,
or plugin properties, raw data such as spike data or voltages, or processed data
that are the result of in-transit processing. Additionally, each endpoint provides
optional parameters that let the user filter the requested data. Data can be
filtered by various properties, such as time, neurons, and properties that are
specific to neuronal networks.

One key property is that the access node does not store data itself and is
stateless towards clients. It gathers the data from either the simulation nodes or
the processing server and returns it as a single response to the client. Clients are
not notified but are responsible for querying the data regularly to avoid skipping
data. There are three distinct mechanisms to gather data. The mechanism that
is used depends on the type of the requested data:

Metadata such as the number of connected simulation nodes is known in prior
by the access node, hence requests querying such data may be responded to by
the access node without additional communication. For other requests, the access
node has to query the processing server or the simulation node(s). Raw data is
distributed across multiple simulator nodes and requests to the access node are
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forwarded to all simulation nodes. The responses are then aggregated by the
access node and passed to the client. All requests for processed data are resolved
through queries from the access node to the processing server. The response of
the processing server is then returned to the client in an HTTP response.

The biggest architectural benefit of this approach is the fact that the access
node hides any simulation-specific details such as how many simulation nodes
are used. The clients can be oblivious to, and perform the queries independent
of the existence or size of a distributed simulation.

Additionally, it is easy to provide different endpoints that add functionality
to improve the convenience of accessing data such as various filters mapping to
one or multiple endpoints in the simulator.

Simulator Module. For the collection of metadata and simulation data, the archi-
tecture uses modules or helper libraries that are developed as part of Insite. These
modules are simulator specific and hook into the simulation to gain access to
the required data. The integration of these modules should be easy for users
that want to leverage in-transit properties in new as well as existing simulation
description files. Users are only required to define which neurons’ data should
be made accessible in their network/simulation description. This can either be
a subset or all neurons that are part of the simulation.

In the proposed architecture, the simulator module is split into two parts. The
first part is responsible for raw simulation data, such as spike data or membrane
voltages, as well as metadata. Both, the metadata and simulation data are stored
locally in the module. The latter is stored in ring buffers which allows defining
an upper bound for the memory requirements when using the module. The data
is made available via an HTTP REST API that returns JSON allowing easy
retrieval of the data by either the access node or clients directly. In the case of
distributed simulations, each simulation module only holds an incomplete set of
the data due to its local-only storage. Therefore, the use of the aforementioned
access node is preferred for automatic data aggregation.

The second part of the module is responsible for data that is to be processed
in-transit. Spikes are collected and are proactively pushed via the pivot server
to the processing server using MPI as soon as a predefined amount is reached.
Compared to the reactive pull approach used for raw data, the advantage is that
the workload of processing the data can be distributed over time.

Pivot Server. Spike data is represented as a list of pairs consisting of spike times
and neuron IDs. However, it is preferable to have a representation as a spike
train for further processing. Generally, a spike train is represented such that each
neuron ID is mapped to a list of spike times. The Pivot Server1 developed by
Sontheimer et al. [18] transforms spike tuples into a spike train representation.
All of Insite’s simulator modules connect to the pivot server which sends the
aggregated spike trains to connected consumers.

1 https://gitlab.jsc.fz-juelich.de/eni/thesis-and-implementation.

https://gitlab.jsc.fz-juelich.de/eni/thesis-and-implementation
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Processing Server. The processing server is responsible for in-transit processing
of the raw data for further consumption by clients. This processing can be data
transformations as well as domain-specific analyses. We decided not to include
fixed processing functionality in the server. Instead, an architecture that allows
the end-users to provide custom-written plugins that perform the processing
in-transit was chosen. Plugins are written in Python through implementing an
abstract class interface. Python was chosen as it is a well-established language
in the field of computational neuroscience and offers libraries for domain-specific
analysis. The interface consists of functions that are called on initialization,
when new raw data is available or when data is explicitly requested by the
end-user. Users have the ability to include any kind of library that provides
Python bindings but can also choose to implement functionality on their own.
This empowers many kinds of users to provide domain-specific processing and
analysis plugins without prior knowledge regarding in-transit architectures or
simulator specifics. The processing function has access to two different data
buffers. The first buffer only contains spikes that were generated between the
current call and the last call. However, there are scenarios where this information
is not sufficient; for example, when temporal dynamics should be analyzed, the
temporal analysis might need a time window that is larger than the update rate.
Therefore, a second data buffer is accessible that stores spike data in a per-
neuron ring buffer. Spikes are only overwritten when the neurons’ ring buffer is
full.

Data is received by an ingress process that places the received data in the
shared memory buffers. A manager process is responsible for detecting plugins,
returning processed data to the access node and managing the plugins’ state.
Every time new data arrives, it spawns a new process for each plugin to execute
all computations in parallel.

Data processing happens asynchronously to the simulation, in a way that
prevents the processing to slow down the simulation. On the other hand, this
requires plugins to be fast enough to finish computation between the arrival of
two data frames. In case plugins take too long, spike data will be overwritten in
the ring buffer and data is lost. This is due to the current realization of the Pivot
Server. Currently, no visualization task experienced this issue when efficient
plugin implementations were used. A future rework of the server, however, could
alleviate this issue.

The data generated by the processing is stored locally in the plugin and
the plugin author defines the return format by overriding one of the interface
functions. This architecture allows for maximum flexibility regarding the data
format of the processed results. This is especially important because processing
can reduce the data or alter its dimensionality which makes finding a general
common representation challenging. The processed data of all plugins can be
accessed by the access node through the manager process.
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4 Application

In this section, we describe two use cases that benefit from using the functionality
provided by Insite. The first application makes use of Insite’s raw data interface
while the second use case leverages its capabilities to pre-process the data for
in-transit visualization.

Use Case 1: NEST Desktop2 is a classroom learning tool that enables students
and teachers to create, run and visualize neuronal network simulations in NEST
from the browser. It provides functionality to create network layouts graphically
and generates the corresponding simulation control code automatically. The sim-
ulation can then be run in the backend on a NEST instance that is controlled by
NEST Server. It is possible to visualize the results in various views that display
spike or voltage data, in 2D or 3D. Starting with version 3.1, NEST Desktop is
able to utilize Insite to provide in-transit enabled visualizations (Fig. 2).

Use Case 2: We present a prototype implementation that shows the use case
for in-transit processing. The prototype consists of an in-transit enabled re-
implementation of VIOLA’s 3D space-time view [17] which requires the mean
firing rate (MFR) of temporally and spatially binned neurons.

Fig. 2. Example use cases.

In the original version, the binning process and MFR calculation must be
manually performed by the user by running a Python script once the simulation
has finished. The processed data is then uploaded to a web application where it
is shown to the user. The in-transit enabled prototype moves the binning process
and the MFR calculation to a processing plugin. Additionally, the visualization
2 https://github.com/nest-desktop/nest-desktop.

https://github.com/nest-desktop/nest-desktop
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was re-implemented to be in-transit compatible. The mean firing rates of the
binned spikes are periodically requested from the access node via HTTP. A
timeline showing the available time steps as well as the progress of the simulation
in green was added to the visualization.

5 Performance

This section discusses the performance characteristics of the Insite pipeline. The
performance evaluation is done by integrating with the NEST simulator based on
a new pipeline implementation that is in active development. Results should be
seen as preliminary, as not all components of the pipeline are currently optimized.

One of the key metrics is the overhead in simulation time produced by using
the pipeline. Several simulation repetitions with different settings are used for
evaluation. To establish a baseline, the simulation was first run without the abil-
ity to record spike data. Additionally, we measure the simulation time overhead
of storing spike data in memory and writing the data in ASCII format to disk
using the built-in functionality of NEST. The next runs were performed with
Insite’s raw data interface enabled. With respect to the raw data access, the fre-
quency of requests and the amount of queried data might have an impact on the
performance of the simulation. To evaluate this, we benchmarked the run-time
of the simulation while querying spikes in intervals of 250 ms and 1000 ms. To
represent a realistic workload, we assume that a potential client wants to access
all spikes once, thus, every query requests all spikes that occurred since the last
query. To measure the overhead of the Insite module itself, e.g., the writes to
the spike buffers, we performed an additional run without any data queries.

All tests were executed on a single machine equipped with two Intel Xeon
CPU E5-2680 v3 processors resulting in a total of 24 cores/48 threads, 128 GB
2133 MT/s Hynix DDR4 RAM and a 1TB Samsung 980 PRO NVMe SSD.
Benchmarks for the baseline, memory, disk, and Insite’s raw interface were
repeated 40 times. Figure 3 shows the results of the benchmark for the raw data
interface. It can be seen that a small overhead is introduced for all recording
methods. On average the storage in memory has the lowest overhead of 1.41%.
However, these settings do not scale well with long simulations as the spike data
will grow linearly with the simulation time and is potentially uncapped. Per-
sisting the data to disk in ASCII format adds on average an overhead of 2.22%
compared to the baseline. This is still a minor impact and would not affect real-
world use cases. However, it is important to state that our test machine was
equipped with modern NVMe storage and results may change when writing to
hard disks or remote storage solutions.

Figure 3 shows that the overhead of using Insite was comparable between the
settings with no queries, 250 ms and 1000 ms. This suggests that the queries and
their intervals do not have a strong impact on the overhead. The overhead for
the three were around 4.61%, 4.60% and 3.72%, respectively. It is important to
note that in the case where Insite was enabled, the Access Node as described
in Sect. 3 was ran on the same machine but on resources that were not used for
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the simulation. One has to keep in mind that in a cluster setting our solution
would impose an additional architectural performance overhead by reserving one
cluster node for the access node, thus, removing one node from the simulation.
However, with larger numbers of simulation nodes, this overhead diminishes so
that it should not have a great impact on today’s large scale simulations.

The overhead of the processing interface was evaluated in a separate test on
the same machine. Its design of actively pushing all spikes to the pivot server and
the decoupled design of the processing server makes the overhead independent
of any incoming requests or time spent in the processing plugins. A simulation
was ran using two settings; storing spikes in memory and with Insite’s processing
interface enabled. The run for each setting was repeated five times. On average
the processing pipeline of Insite resulted in a 2% overhead compared to storing
the spikes in memory.

Additional benchmarks need to be performed in the future that can give
further insight into the performance of the single components and can be used
to optimize the existing implementation.

The results show that enabling Insite has a low impact on the simulation
time of under 5% compared to not storing spike data at all. Users can benefit
from in-transit enabled simulations and the easy to use architecture of Insite
without a serious impact on the simulation time and without modifications to
the simulators code.

Fig. 3. Box plots indicating the measured total simulation times for the different meth-
ods of recording spike data. The time below Insite denotes the query interval of the
connected client. No number means that no queries were performed.



304 M. Krüger et al.

6 Conclusion and Future Work

We have presented a novel pipeline for in-transit analysis and visualization of
neuronal network simulations. Its focus lies on the usability aspect and low
impact on simulation time. In addition, it provides a flexible, plugin-based pro-
cessing pipeline enabling in-transit processing and analysis for domain experts.
We introduced two example use-cases for the pipeline and showed that it is
feasible for live inspection of a running NEST simulation. The overhead of the
pipeline on NEST simulations has been evaluated.

Future work will focus on improving the capabilities of the pipeline: While
JSON is a flexible and easy-to-use format with good tooling support, it also
comes at the cost of converting the data to and from a text-based representation.
This could become a bottleneck for large-scale simulations and large amounts of
recorded neurons. It could hence be beneficial to provide mechanisms to query
the data in binary formats such as FlatBuffers3. REST API paradigms allow
this without breaking backward compatibility with earlier implementations by
adding new endpoints or adding new parameters to existing ones.

While this work focused on the integration with the NEST simulator, another
goal is to integrate Arbor [1] and TVB [16] into the Insite pipeline. Integration
of additional simulators would allow development of multi-scale visualizations.
These could be driven by co-simulation where multiple simulators are coupled
and cooperatively work on one simulation. Each simulator could be used to
simulate parts of the whole simulation on the abstraction level that it is designed
for.

Finally, another potential direction for future work could be adding steering
capabilities to the pipeline. Steering implies the ability to interact and change
the simulation during run-time. Pausing and resuming the simulation could be
seen as the simplest forms of steering while more advanced forms may modify the
simulation itself. These actions can be nicely mapped to HTTP terminology and
could be implemented as soon as they are properly supported by the underlying
simulators.
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Abstract. A major direction for big science is the coupling of HPC,
experimental and observational facilities into computing ecosystems.
These ecosystems will provide unprecedented tools for scientific inquiry.
At the same time, these systems, which are complex, distributed and
heterogeneous, will be a significant challenge for the visualization tools
of today. In this position paper, we present our thoughts and key prop-
erties on a fundamental requirement of future solutions: pervasive in situ
visualization (P-ISAV).

Keywords: Scientific visualization · In situ visualization

1 Introduction

In situ analysis and visualization (ISAV) emerged as a core research area since
the advent of petascale and exascale computing. Over the past decade, in situ
visualization has become a vibrant area with considerable progress that chal-
lenges previous assumptions of system design in many ways. Building upon such
a foundation, we believe it is time to consider pervasive in situ analysis and
visualization (P-ISAV) as a logical and pressing next step due to the following
trends.

Sensor and computing technology innovations are only accelerating. There
is a pervasive need for experimental, observational and computational facilities
to provide more powerful tools to support groundbreaking scientific inquiry. To
this end, efforts to combine these scientific facilities into an efficient ecosystem
will greatly expand the capabilities for scientific inquiry and discovery.

Simultaneously, this direction will also continue the trend for increasing vol-
ume, velocity and variety of data. In such a world, analysis and visualization will
become an even more important tool for scientists to extract understanding. The
illustration in Fig. 1 describes the complexity of a distributed computing ecosys-
tem for fusion scientists. Teams and resources are distributed around the world.
HPC simulations are used to prepare for and to steer experiments. Edge com-
puting is used to process data generated from experiment. In all places, in situ
processing is required to meet hard time constraints.
c© Springer Nature Switzerland AG 2022
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Fig. 1. An illustration on the complexity of efficient visualization in a distributed
computing ecosystem. Teams of scientists need a variety of visualizations in order to
understand and steer scientific campaigns. Efficiently running these tasks is a challenge
and requires a balance among algorithms, concurrency, resource allocations as well as
compute and network capabilities.

Specifically, computing resources across the world are used for analysis and
visualization of the generated data. These teams can be very large and dis-
tributed throughout the world. Individual team members are interested in partic-
ular areas, while the lead scientists need to understand the overall state. Ensuring
that the right analysis and visualizations of this streaming data are available to
scientists in a timely manner is critical for successful science at this scale.

A new class of opportunities, such as this example from fusion science, are
becoming common in all areas of science. But the complexity of these environ-
ments will bring significant challenges to gaining understanding from the data,
and making timely decisions during these scientific campaigns is critical. Sim-
ulations need to be monitored to ensure they are running as planned and to
do steering. During and between experiments, simulations and digital twins,
simulated counterparts to real processes, will be run to help understand the
data and to plan adjustments to experimental settings. Timely decision mak-
ing in such a complex environment will require new modes of collaboration and
increased efficiency among scientists. The scientific community needs tools that
foster increased collaboration and sharing of analyses of data and that provide
efficient ways to handle a wider variety of data, at higher velocity and in larger
volumes.

In such a setting, in situ processing will have to become pervasive, especially
to grow beyond the current confines of HPC, where in situ processing will exist
on HPC, on the edge, and all points in between.

From this respect, even though in situ visualization has been an active area
of research, production tools that are efficient and easily deployed across such
complex environments are lacking. At present, most in situ visualizations tend
to be problem specific, difficult to generalize and require collaborations between
application and computer scientists with at least some bespoke software (such as
adapters). Over the years there has been research that addresses some of these
issues, but issues still remain. One of the primary findings identified in recent
DOE workshop reports [21] is the need to overcome challenges that block in
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situ processing from being pervasive. For visualization, the challenge is driven
by the cost differences between algorithm selection, in situ placement strategy,
data complexity, timeliness requirements, adaptability and heterogeneous archi-
tectures (from HPC to edge). Wrong choices for in situ algorithms or placement
can have dramatic consequences. Allocating too many resources will be wasteful,
whereas allocating too few can lead to missed opportunities and delayed results.
Scientific campaigns can be highly dynamic — few resources may be needed until
something interesting begins to happen and then a large amount of resources are
needed for visualization. Scientific teams are distributed and need visualizations
at different times and places. At times, a human in the loop is needed, which
may have unique resource requirements. Depending on timeliness and accuracy
requirements, some tasks must be computed close to the data source, while oth-
ers can be performed at different points along the data lifecycle. Analyses and
visualizations need to be shared in real time so that teams can understand what
is going on and communicate with the lead scientists. During the course of a sci-
entific campaign, priorities may change requiring visualizations to be activated,
deactivated, or become a lower priority.

P-ISAV solutions to this changing landscape will require visualization and
analysis tools to be much more collaborative and shareable. A high degree of
composability is needed so that scientists can easily construct visualization tasks
and pipelines for their tool chains and workflows. Elasticity is critical, so that
tasks can efficiently scale up or down to meet the timeliness requirements on the
given data on available resources.

In this position paper, we advocate the importance of pervasive in situ by
providing visualization tools that are equipped for the future needs of scientific
inquiry. In Sect. 2 we provide a brief overview of related works. In Sect. 3 we
describe the details and properties that next generation tools should have and
offer suggested research directions. Finally, in Sect. 4 we discuss future directions
for our position.

2 Related Work

In situ visualization has been an active and fruitful area of research. In situ
processing is a rich space comprising numerous variations [5], but techniques
are often grouped into three broad catagories: in-line (synchronous), in-transit
(asynchronous), and hybrid. A major focus of in-line in situ has been on instru-
menting a simulation code so that visualization tools can process data as they are
produced. Libsim [30] and Catalyst [1] can be used to instrument a code so that
VisIt and Paraview, respectively, can used for synchronous in situ visualization.
Tools such as EPIC [8], Freeprocessing [9] and ICARUS [26] support an in tran-
sit model where the data producer and visualization run on separate resources.
SENSEI [2] and Ascent [16] use instrumentation to support both in-line and
in-transit models. The in-transit functionality in both of these is provided using
the ADIOS [10] middle-ware library. Bauer et al. [3] provide a more detailed
overview of contemporary in situ solutions.
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The rapid growth of heterogeneous compute nodes, coupled with in situ pro-
cessing, highlighted the need for portability across different architectures. VTK-
m [20] provides a portability layer for visualization algorithms. These efforts
have demonstrated the benefits of portable algorithm performance across a wide
variety of architectures [19].

Methods for interpretation of data streams are required for data producers
and data consumers to communicate, which has led to investigation of data
models and schemas. Ascent and recent versions of ParaView Catalyst use the
capabilities of BluePrint [17], whereas SENSEI and VisIt LibSim rely on the
Visualization Toolkit (VTK) data model. VizSchema [28] and later Fides [23]
provides an interpretation layer on top of ADIOS for streaming and file-based
data.

3 Our Position

Large scale science will continue to challenge current capabilities for the fore-
seeable future. The data problem will persist as the volumes and velocities will
continue to grow. The challenges of data variety will increase as simulations,
experiments and observational facilities are coupled together as computational
ecosystems. These ecosystems will be distributed, heterogeneous and require
complex workflows and large teams of scientists to successfully operate. In such
environments, significant challenges exist in minimizing the time required to
make important decisions, making significantly more collaboration and efficiency
paramount.

This new frontier requires cross cutting collaboration from experimental,
observational, computational, computer and data scientists. In terms of com-
plexity, the variety of high-value and high volume data sources is exploding. Be
it simulation, experiment or observation, these data come with distinctive char-
acteristics. The need to make high consequence decisions based on co-analyses of
many disparate sources of data presents a unique challenge. The complexity of
this challenge has significantly increased because of the rapidly growing problem
space.

The use of simulations and digital twins often requires expensive and limited
resources to make collaborative discoveries. However, the currently available tool
chains are often too brittle to quickly adapt to rapidly changing needs, especially
when data comes in different forms and from many sources. Typically, adaptation
of available tool chains requires deep collaborations with visualization scientists.
Due to resource constraints, these deep collaborations are often not possible. As
a result, domain scientists do not feel empowered to customize their visualization
tools, and even visualization researchers feel that it is cumbersome to keep up
with spontaneous domain needs.

Solutions to these challenges are dependent on P-ISAV. Post hoc analysis
and visualization will always be an important component in scientific discovery,
but it can be viewed as a solved problem. Solutions to these coming challenges
will require scientists to perform analysis and visualization on complex, remote
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streaming data and share their results without worrying about the data sources.
Data access must be as easy, transparent and pervasive as post hoc methods. In
other words, in situ visualization must become pervasive.

Key properties of P-ISAV are the following: agility, elasticity and intelligence,
which are discussed below.

Agility. Next-generation tools for scientific insight will be composed from a
large variety of production grade, highly scalable building blocks, many of which
already exist. These tools need to be easily assembled and used by people with
a wide range of specialties, including the lead scientist, domain scientists, post-
docs, graduate students and visualization experts. These tools need to be able to
leverage the range of distributed resources, from edge to HPC, in a scalable and
shareable manner. These tools must be portable and easily integrated into a wide
range of platforms (e.g., digital notebooks, web, etc.), and be easily modified and
rerun during project meetings and conference calls. Central to this is the need
for schemas and data models to provide the semantics of the underlying data and
to allow connectivity between tasks. It should be easy to discover, use, integrate
and share analysis and visualization tools. Most important, these tools must be
built upon the foundation of P-ISAV. That is, there cannot be restrictions on
where and when tools are run, on the source of input data, or the destination
of the output data. Using these highly specific and individually composed tools,
teams of scientists can make faster discoveries and more confident decisions in
any projects that depend on precious facility resources.

Elasticity. While elasticity and portability started as a cloud computing method,
the concepts are fundamental to meeting the time, complexity and adaptability
challenges to scientific discovery. Resources will always be shared, and visualiza-
tion tasks must provide on-demand or near real-time availability. Visualization
tasks need to be able to appropriately scale across the amount, type and con-
nectivity of resources, as well as consider the type and amount of data, the
requirements for accuracy, interactivity and timeliness so that decisions can be
made. Simply making visualization algorithms run on a different amount of com-
puting resources is far from enough. P-ISAV algorithms need to be cost-aware
and adaptive to optimally use computing resources with different levels of avail-
ability. Cost models can guide users to optimize resource configurations and
data requirements that meet their time requirements with minimum resources.
Finally, to be pervasive in these environments, resilience to network speeds and
availability is required. When needed, tasks should be able to seamlessly handle
variability in network availability and speeds.

Intelligence. When the amount, speed and variety of data are greater than the
available computing and cognitive resources, it is natural for scientists to rely
on their experience and intuition. However, in a complex computing ecosystem,
which requires larger teams, more diverse expertise and greater financial costs,
intuition is far from sufficient. The P-ISAV paradigm of composable applications
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enables each scientist to focus on their particular part of the problem and tai-
lor visualization and analysis to their personal needs and requirements. These
composed applications can be further composed into summary views that can
help lead scientists to make timely decisions. In so doing, instead of relying on
general purpose tools provided by the visualization community, scientists can
easily compose tools that are more lightweight and customized for their particu-
lar needs. Additionally, by collecting and studying these composable apps, there
is immense opportunity to leverage AI to better understand how scientists use
analysis and visualization. The composition of visualization tasks, the data they
consume, when and how they are used and who is using them can help the visu-
alization community understand how to provide better tools and assist scientists
in composing applications that fit their exact needs. AI can help make decisions
on which variables to visualize, how they can be visualized most efficiently, and
which resource is available and appropriate for the task.

In our view, a powerful paradigm that can be used as a foundation to address-
ing these P-ISAV challenges is the service-oriented architectures (SOA) [18]. At
a high level, SOA is characterized by a self-contained black box that provides a
well-defined set of features for users. SOA takes several forms, including infras-
tructure as a service (IaaS) [4], software as a service (SaaS) [11], and microser-
vices [7]. Cloud computing is the most common example of IaaS in which costs
are controlled by dynamically allocating resources in response to changing user
requirements. SaaS is characterized by delivering a capability using a thin client
or ergonomic application programming interface. Scalability for SaaS is pro-
vided by different types of back-end implementations that are appropriately
sized. Microservices are small, independently deployable executables with a dis-
tinct goal. Groups of microservices can be orchestrated to perform more complex
tasks.

The “as a Service (aaS)” paradigm has been explored in the context of
scientific visualization already. A set of abstractions for using this paradigm
for visualization has recently been published [22]. Tapestry is a system that
can deliver interactive volume renderings of large-scale scientific simulation into
the web browser on any device, including laptops, smart phones, and Microsoft
Hololens [24,25]. It uses Amazon AWS where the costs for usage are very small.
For another example, a group of small AWS instances can be organized into a
swarm to provide interactive comparative visualization of terabyte scale turbu-
lent flows [12] from NOAA/NCEP’s modeled vs. actual observation data repos-
itory [27], where the total cost of the AWS instances are also very low. In both
cases, the system can elastically scale up to support 20–100 concurrent users.

Using traditional approaches, these sophisticated visualization functionalities
can be expensive to integrate into domain science codes, both in terms of man
hours and runtime computing overheads. However, in the model of visualization
as a service (VaaS), these costs are minuscule, thereby making P-ISAV possible.

Overall, VaaS would be an application of the principles from the SOA
paradigm to provide flexible analysis and visualization for simulation, experi-
mental and observational science. One key principle in the SOA paradigm is the
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separation between functionality and implementation. This principle is key to
supporting both agility and elasticity properties discussed above, and underlies
the ability to compose building blocks into intelligent visualization workflows.

3.1 Suggested Research Directions

In this subsection we identify four significant challenges (CH1-4) to pervasive in
situ visualization and suggest research questions (RQ1-4) to provide solutions.
The illustration of how each of the research questions addresses each challenge
is shown in Fig. 2 and described below.

Research Challenges. In our view, there are four fundamental challenges that
must be overcome to provide the type of P-ISAV we envision, which are listed
below:

CH1: Difficulty in data ingestion across heterogeneous sources
CH2: Integration, use, and support costs of in-situ frameworks
CH3: Timely execution of visualization and efficient use of resources
CH4: Monolithic systems that are difficult to generalize, adapt and repurpose

First, CH1, getting data into the in-situ visualization tools can be a sig-
nificant challenge. Interfacing with the many data sources, for which the data
layouts, data types, and methods for data access can vary dramatically, can
be a show stopper for in-situ visualization. This makes the creation of general-
purpose, in-situ visualization tools challenging. Second, CH2, the cost for adopt-
ing an in-situ framework can be high, can have steep learning curves, and can
often require direct collaboration with visualization experts. Current solutions
require instrumentation that results in a tight coupling of simulation and visu-
alization codes and limits the tools that can be used by scientists for in-situ
visualization. Because of these problems, in-situ visualization is not even possi-
ble on pieces of a scientific workflow (both producers and consumers) that have
not been instrumented beforehand. This limits the flexibility for scientists to
investigate and probe unanticipated events during a simulation and imposes a
requirement that scientists foresee every situation that may require in-situ visu-
alization and then instrument, maintain, and support all of the code. Third,

Fig. 2. Illustration of how the four research questions will address each of the chal-
lenges.
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CH3, timely in-situ visualization results are imperative for scientists to obtain
results within an actionable time frame. Inefficiencies can cause the simulation
to block, thereby wasting costly resources or causing a loss of required results.
In a post-hoc use case, if a visualization is taking too long, then the task can
be killed and restarted with additional resources, or modified parameters can
be used to reduce the time required to complete. Finally, CH4, visualization
tools must be easy to generalize, adapt, and repurpose. Visualization tools must
be interoperable with other visualization tools, workflow systems, and modes
of interaction. Tools with specific capabilities should be combinable in different
ways to solve different problems, be controllable by different workflow systems,
be adaptable at both setup and run time, and operate on data from a spectrum
of data sources.

Research Questions. To address these challenges, we advocate for fundamen-
tal research to address the following questions.

RQ1: What are the right modes of access and data models for in situ visualiza-
tion?

RQ2: What are the required properties for a visualization service?
RQ3: How can services elastically scale at runtime?
RQ4: What are the required types of visualization pipelines needed for interop-

erability?

Our first question (RQ1) is to address the data access challenge described
in CH1. In order to be pervasive, in situ data access needs to be as easy and
straightforward as the post-hoc paradigm. The post-hoc paradigm is ubiquitous
because it is simple and uses a standard API. With post-hoc, the producer and
consumer are de-coupled and rely on files on disk to communicate. Similarly, in
situ visualization must be de-coupled from data producers in order to be perva-
sive, and the I/O approach of post-hoc tools is a good metaphor to follow. Key to
this will be identifying the right data models that can provide the semantics to
map (ideally using zero-copy) the underlying diversity of data layout, the type,
and the access mode onto structures that can be used by visualization algo-
rithms. Additionally, these models can also be used to determine if services can
be chained together to form more complex operations. In addition to addressing
the data access challenge, data models will also enable service connectivity that
will increase the adaptability of in-situ visualization (CH4).

A second research question (RQ2) will be to understand the properties
required for a visualization task to have the interoperability and ease of use
needed for deployment in an SOA environment (CH4). Services need to be
discover-able, easy to create and deploy. Services also need to provide portabil-
ity across a variety of platforms, including HPC centers, edge computing and
clouds. An additional property, that is key, is that the service must not rely on
integration with other codes (CH2).

Third (RQ3), visualization services needs to elastically scale in response to
dynamic changes in data and resource availability (CH3). Elastic scaling enables
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a visualization service to make efficient use of resources as the visualization
workload will often vary during the course of its use [6,29]. Cost models are
needed that can accurately predict the time and cost to perform a visualization
task on a given type of data [13–15]. Cost models and elasticity also allows
workflow systems to schedule, allocate and run visualizations in the course of
a scientific campaign. And finally, and most important, elasticity allows in situ
visualization to provide timely results needed by scientists, and in a manner that
does not throttle the simulation.

Finally, advanced hybrid visualization pipelines (RQ4) are needed to pro-
vide services with the flexibility needed for different modes of execution. In situ
visualization will require both data- and demand-driven pipelines, also known
as push and pull pipelines respectively. Support for both demand- and data-
driven pipelines will reduce the development costs for using in-situ visualization
(CH2) and provide significant increases to the generality and flexibility of in-situ
visualization (CH4).

4 Conclusion and Future Directions

Things are radically changing. The research in in situ has been important, but
it must be pervasive — that is, people shouldn’t have to think about it.

The landscape for scientific inquiry is quickly and radically changing. Com-
puting ecosystems that couple HPC, experiment and observational facilities will
become powerful tools for scientific inquiry. While the factors that challenge
HPC in situ visualization will continue, the complexity, heterogeneity and dis-
tributed nature of these environments, together with new types, greater volumes
and velocities of data are new and daunting challenges. This will require P-ISAV,
in situ visualization that can seamlessly span the diversity and locations of com-
puting environments, data types, workflows and tool chains. The same rigid,
customized, and closely collaborative model of in situ visualization is unlikely to
be sustainable in a pervasive data world.

However, the need for in situ visualization is the same. After all, in situ
literally means “in the original place”. When the producer of big data is the
HPC platforms, in situ needs to be on leadership class platforms. When the
producer of big data is distributed on experimental or observational platforms,
in situ needs to include and accommodate those scenarios as well.

Thankfully, many of the past successes have produced building blocks that
can be leveraged by future research towards P-ISAV. In this context, agility,
elasticity, and intelligence are new but key tenets of future in situ visualization.
To this end, in situ visualization research will become even more exciting and
inclusive than ever before.
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Abstract. Accurate simulation of the processes in oil and gas reservoirs requires
a detailed description of the geological and physical structure of the reservoir
that leads to models containing billions of cells. Conventional approaches to the
visualization of such largemodels are slow-going during the interactive processing
of the data. This study is dedicated to the development of parallel algorithms
suitable for interactive visualization of large-scale reservoir 3D models based on
the preselection of data needed for constructing the model representation from the
unstructured mesh. The key component of this workflow is the efficient slicing
algorithm of the large mesh. We present the parallel implementation of a slicing
algorithm for MPI CPU and multi-GPU computational systems in a form of a
plugin program extension for an open-source software ParaView. We tested the
performance of (1) our algorithm, (2) an existing commercial reservoir simulation
software, and (3) the built-in tool for model slicing of ParaView. Our approach
demonstrates an almost interactive visualization of the reservoir model with 1.9
billion cells of unstructured mesh with a slice viewing delay of 1.8 s using the
GPU algorithm implementation.

Keywords: High performance visualization · Reservoir modeling · Unstructured
mesh · 3D model slicing · GPU

1 Introduction

Optimization of the oil and gas fields development includes accumulating and processing
a large amount of static and dynamic data. Together with the long history of measure-
ments, it leads to a more accurate and detailed description of a reservoir’s geological and
physical structure. From a modeling perspective, this process produces large grid mod-
els that may contain billions and even trillions of cells. Designing efficient algorithms
to tackle such large-scale models is a challenge in the recent decade [1]. The needs of
the end-user include the ability to simulate the models in practical times together with
the conventional methods of processing the results, including the visualization of the
fields obtained as a solution during/after simulating the processes inside the reservoir. To
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achieve the interactive visualization speed, it is necessary to use both the advanced pro-
cessing algorithms for large data sets and the low-level architecture features of modern
HPC systems.

The current work is dedicated to the development of parallel algorithms for the load-
ing and visualization of a large reservoir 3D model based on fast preselection of data
subset that is needed to visualize at the current moment from the whole dataset. The
visible part of a spatial object is a surface, and the fast and efficient construction of the
surfaces from the meshed reservoir is the fundamental operation in the visualization of
the objects. Slicing of reservoir models is a valuable operation in the visual analysis
of simulated fields. Detailed reservoir models use a lot of local grid refinements that
lead to unstructured meshes. For the latter, slicing with an arbitrarily oriented plane is
the most reasonable operation. The recent developments in fast slicing algorithms for
large meshes are connected to additive manufacturing [2, 3], where the interest is mainly
focused on the efficient slicing process of STL files or complicated CAD models by a
large set of parallel planes. The performance of such slicing operations implemented
in conventional visualization software is not sufficient to provide an interactive user
interface that controls the position and orientation of slicing planes in the large-scale
reservoir models. We present the parallel implementation of the slicing algorithm for
MPI-multi-GPU computation systems. We also provide performance testing results for
our algorithm, the existing commercial reservoir simulation software, and the built-in
slicing tool of the specialized open-source visualization package ParaView. The fast slic-
ing algorithm is one of the key components in the development not of only the interactive
user interface but also the in situ visualization, allowing researchers to analyze the fluid
flow through porous media during the computation process and make modifications to
the model without restarting the whole simulation.

2 Visualization Workflow

Conventional algorithms for visualization utilize the entire information of the mesh and
data fields to construct the image. The typical manipulation of the image such as rotation
and zooming can be implemented effectively. However, the change of the timestep for
time-dependent data series or investigation of the inner structure of the model by slicing
the data in spatial dimensions becomes a more resource-consuming task. The situation
gets worse when the size of the mesh grows from millions of cells (Mcell) to billions
of cells (Bcell) coming in pieces from remote distributed machines. Each part of the
visualization procedure should be optimized both in memory usage and computation
demands to aim for the interactive analysis of collected data.

The visualization workflow for a large-scale reservoir model can be split into three
steps. First, we need to load the data containing vertex coordinates, 3D cells, and the
fields connected to the cells into RAM from the physical medium used for data storage.
Second, we need to preprocess the loaded mesh and remove the cells not required to
form the image. In the case of time-series data visualization, it makes sense to load only
field values for selected cells. The last step is to render the preparedmodel representation
to the screen.

During the second step, we need to choose potentially visible cells in the current
geometric configuration selected by the user. For the simple case, it can be just the
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cells that form the external surface of the model. In the case of reservoir modeling,
the exterior surface of the model is constant, and we can preselect corresponding cells
once on the initial stage of mesh loading. We should be able to construct the slice of the
model representing the inner reservoir structure at a user’s request. The slice position can
change many times during dynamic properties analysis. Therefore, the key part of the
visualization workflow is efficient mesh slicing. We demonstrate the process of visible
surface selection in Fig. 1.

Fig. 1. The processing workflow of a large-scale reservoir model for efficient visualization. The
initial 211 Mcell model (based on synthetic data) is used to construct a 2D slice (0.2 Mcell) and
exterior surfaces. The final lightweight mesh used for rendering consists of only 3.1 Mcell.

We used the open-source ParaViewvisualization software [4] as a platform for imple-
menting our visualization workflow. This platform offers the opportunity to extend its
functionality by developing plugin programs. The flexible API interface allows the plu-
gins to access the internal ParaView structures describing the mesh geometry and the
information stored on the drive. The native parallel structure of ParaView provides the
conventional MPI functions to control the process invocation and execution. The cur-
rent implementation of our plugin codes written in Python programming language uses
the MPI functions to load the data into ParaView in parallel and processes it to pre-
pare the mesh of the slice. The rendering procedures are provided by internal ParaView
functionality.

The first plugin extension for parallel loading and data preparation utilizes MPI
functionality to split the job into several parts. Each MPI process analyzes the structure
of the mesh and provides the grid partitioning procedure which divides the mesh into
the number of parts equal to the requested number of MPI processes and loads into the
memory only the data that is connected to its part. This procedure can be efficiently
run in parallel owing to the availability of several disk drive read channels in modern
computer hardware, and the speed of loading benefits from the number of drives in the
system. The parallel loading procedure is important for interactive user experience as it
allows to reduce the amount of time needed for loading the mesh and properties from
tens of minutes to tens of seconds for reservoir models with Bcell-sized unstructured
meshes. After the parallel loading procedure, each MPI process stores in memory the
independent piece of the initial grid and the field data which do not intersect with the
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neighbor processes, jointly representing the full reservoir model. These model parts feed
into another plugin program for parallel slicing procedures.

The second plugin extension program applies to the prepared data the vectorized
version of a slicing algorithm. It uses the description of a slicing plane as a unit normal
vector �n3×1 and a point on a plane �c1×3, which are controlled in a graphical user interface.
As an input, each MPI instance of the slicing algorithm has an array of the coordinates
of N mesh vertices PN×3, the information of the cell topology which describes the
unstructured 3D grid, and corresponding field data. Each plane in three-dimensional
space splits the space into two subspaces [5]. To construct the slice, we need to select
the cells which are intersected by the plane. These cells have at least one pair of vertices
which are located at different subspaces. To find the location of vertices relative to the
plane, we substitute them into the equation of the plane and check the sign of the result.
In the vectorized form this operation can be written in two steps. First, we compute the
projection of coordinates PN×3 on a unit normal to the plane as a multiplication of two
matrices:

�vN×1 = PN×3 · �n3×1 (1)

After that, we compute the scalar a = �c1×3 · �n3×1, which is the projection of the given
point �c1×3 on a slicing plane to the unit normal, and get the sign of the expression (vi−a)
for each i, which shows us the position of a vertex in one of two subspaces. After that,
we can obtain the sum of the vertex signs for each cell in the array and select the cells
where the absolute value of this sum differs from the number of vertices. This set of
cells is the sought for the goal. At the last step, a selected subset of cells can be sliced
by the same plane using existing algorithms (e.g., built-in ParaView’s filter “Slice with
plane”). Because of the small cell amount connected to the slice, the duration of this last
step is negligible compared with the previous operation.

All the operations for the construction of the slice can be performed in vectorized
form.We use the Python packageNumpy tomanipulate vectorized functions for theCPU
version of the slicing algorithm, and the Cupy package to address the GPU computations
in the accelerated implementation of the slicer.

3 Performance Testing

We provide the comparison of the efficiency of in-house CPU and GPU-based codes
for visualization with the original ParaView 5.9.1 slicing algorithm “Slice with Plane”
(PV-swp) and the commercially available software for reservoir modeling (CS). A range
of realistic data models with an unstructured 2.5D geometry grid was prepared in binary
format for testing purposes. The size of the testing grids varied from 101 Mcell to 1.9
Bcell. The grid geometry together with the scalar field properties was copied from the
open Johansen dataset [6]. The original size of the grid was 149 × 189 × 16 cells. We
applied several global grid refinement steps to obtain the range of models with different
grid sizes and changed the grid storage format to an unstructured one. The porosity
property from the data set was used to perform the visualization and slicing procedures.
An overview of one of the refined Johansen models obtained by our slicing algorithm is
shown in Fig. 2.
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Fig. 2. An example of visualization for the large-scaled Johansen data set is represented by three
slices. The grid size is 1145 million cells in total. The slices produced by the in-house algorithm
are located above the underlying surface and represent the values of porosity in the input model.
The size of the slices with the underlying surface is 4.6 million cells.

The testswere provided in two stages. In the first stage, wemeasured the performance
of our in-house CPU code, PV-swp slicer, and the CS visualization algorithms on a set of
models with increasingmesh size. The metric of performance was the time from the start
of the slicing procedure to the rendered picture appearing on the screen normalized by
the same parameter for PV-swp slicer applied to the testing model with 211 Mcell. Due
to the limitations of the commercial package, these tests were provided on OSWindows-
based workstation. It has two 16-core 3.6 GHz CPUs, 128 GB DDR4 RAM, 256 GB
NVME solid-state drive, and one GPU card with 16 GB onboard memory which was
used only for rendering purposes. The CS visualization algorithm successfully loaded
and processed the meshes with sizes from 101 to 309 Mcells. To load and process
the large-scale models, we switched to OS Linux-based workstation with one 64-core
CPU, 512 GB DDR4 RAM, 1.92 TB NVME solid-state drive, and 4 GPUs with 80 GB
onboard memory each. We used this system to measure the performance of CPU and
GPU versions of our in-house code and PV-swp slicer on models with the size of up to
1.9 Bcells. We compute two models with the size of 211 and 309 Mcells both on the
first and the second machine to show the performance ratio of two hardware platforms
for the same codes. We combine the results from two test stages in Fig. 3.

The memory usage of the original ParaView slicing algorithm and our in-house
codes is illustrated in Fig. 4. The ParaView slicer used only the CPU to provide the
computations, and the excessive memory usage of this algorithm allowed to process the
models up to 620 Mcells in size.
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Fig. 3. The results of the performance testing for commercial reservoir modeling software (CS),
the original ParaView “Slice with Plane” algorithm (PV-swp), and our in-house CPU and GPU
slicing algorithms. Bars on the plot represent the time from the start of the slicing procedure to
the rendered picture that appeared on the screen normalized by the same parameter for PV-swp
for 211 Mcell model. The hardware platforms are marked here as (win) and (lin) for the Windows
and Linux-based systems respectively and described in the text.

Fig. 4. The memory usage for the original ParaView slice algorithm (PV-swp) and our in-house
GPU code on a Linux machine for large-scale models normalized by the mesh size. The ParaView
slicing algorithm successfully works only with the model up to 620 Mcells on the Linux-based
workstation described in the text.

4 Discussion

The tested algorithms show almost linear scalability of slicing speed versus the model
size but utilize the hardware resources with different efficiency. The self-implemented
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simple slicing algorithm allows us to control both the organization of computations and
memory usage, making the performance comparable with an HPC application. The time
to get a slice from the 1.9 Bcell unstructured mesh is 15.1 s for the CPU version of
the algorithm. The GPU implementation reduces this delay to 1.8 s. Future work in this
direction lies in the development and implementation of more sophisticated geometric
algorithms, thus making the slicing faster for a user on a large-scale model.

Based on demonstrated performance, the presented approach for required data
preselection before generating an unstructured mesh slice can be considered in the
development of advanced visualization software.

5 Conclusions

We presented the algorithm for unstructured mesh slicing with an arbitrary plane and
its implementation for MPI CPU and multi-GPU platforms. This algorithm is a key
component of our visualization workflow for reservoir models. The efficiency of the
algorithm was demonstrated based on a comparison with commercially available soft-
ware and built-in tools of specialized open-source visualization software. The scalability
of our algorithm implementation allows reaching the interactive speed of visualization
for large-scale reservoir models. Performance tests showed a delay in construction and
view of a new slice of 1.8 s for a 1.9 billion cell reservoir model based on unstructured
mesh for the GPU version of the algorithm.

Acknowledgements. We are very grateful to our colleagues Tareq Shaalan, Tariq Qasim, Oleg
Kovalevskiy, and Mustafa AlAli for productive discussions.
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Abstract. We present a containerized workflow demonstrating in situ
analysis of simulation data rendered by a ParaView/Catalyst adapter
for the generic SENSEI in situ interface, then streamed to a remote site
for visualization. We use Cinema, a database approach for navigating
the metadata produced in situ. We developed a web socket tool, cin-
ema transfer, for transferring the generated cinema databases to a remote
machine while the simulation is running. We evaluate the performance of
this containerized workflow and identify bottlenecks for large scale runs,
in addition to testing identical containers at different sites with differing
hardware and Message Passing Interface (MPI) implementations.

Keywords: In situ visualization · Large-scale visualization · High
performance computing

1 Introduction

In recent years, there has been an increasing gap between the floating point
operations per second (FLOPs) and input/output (I/O) capabilities of state-of-
the-art supercomputers. This has led to increased adoption of in situ analysis,
circumventing traditional post-hoc methods which become prohibitively expen-
sive as the quantity of data produced by an algorithm grows beyond the means of
full-scale data transfer and analysis. As a result of this widening gap, tools have
been developed to orchestrate the analysis of simulation data while the algorithm
is still running. Our work focuses on the development of containers with Par-
aView/Catalyst [5] and SENSEI [4]. Catalyst is a library for in situ visualization
which provides an application programming interface (API) to the backend of
ParaView, allowing for the scripting of visualization and analysis tasks. SENSEI
is a framework designed to provide a standard interface to several existing in
situ infrastructures, including Catalyst, with the goal of providing a portable,
unified approach to various in situ analysis routines.

Concurrent with the rise of novel analysis frameworks for performing opera-
tions on a live simulation, a database approach to navigating the data produced
in situ was developed, known as Cinema [1]. Cinema databases consist of a map-
ping between a set of parameters and metadata, which can consist of any type
c© Springer Nature Switzerland AG 2022
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of information extracted from the simulation. We focus on images rendered by
Catalyst.

A Cinema viewer is a web application for navigating Cinema databases.
In short, a viewer consists of a set of widgets associated with the parameters
extracted from the data, which load the appropriate metadata dynamically. As
we extract only images at this time, our cinema viewer will load images corre-
sponding to the correct time step and viewing angle specified by the user. As
several images are generated at each time step, it is possible to emulate inter-
action with three dimensional objects. As a user navigates using widgets, the
corresponding image is loaded and displayed. Our goal was to combine these
tools into one cohesive containerized workflow, demonstrating in situ analysis of
simulation data rendered by a Catalyst adapter for SENSEI, then streamed to
a remote site for visualization. Some use cases we have in mind are simulation
configuration (a researcher may wish to run a small job and visually inspect
the results before starting a large run), checking up on long-running jobs, and
visualizing results on a multi-tiled display during and after a compute job in
cases where moving an entire dataset is expensive or infeasible.

In this paper we present in situ/in transit workflows based on containers,
where the simulation and analysis codes are bundled in producer and consumer
containers that are executed concurrently. We demonstrate these workflows on a
Kubernetes cluster and on a combination of leadership supercomputers and visu-
alization clusters. We leverage Docker [7] and Singularity [18] container technolo-
gies. Our contributions include an open source repository of container recipes,
configuration files, and scripts that other visualization researchers and students
can use in their own research.

2 Related Work

Containerized workflows for HPC applications is an open area of research, with
ongoing work towards end-to-end solutions [11,21]. These solutions and ours
place a large emphasis on the portability of complex software configurations and
reproducibility of experimental results. These container images, often shared
through public repositories such as Docker Hub [7], are host-agnostic, yielding
similar performance across systems regardless of the underlying operating sys-
tem or libraries installed on the host. Indeed, the distribution and deployment of
host-agnostic software is often the goal behind these efforts. A feature we wish
to highlight with our solution is the ability to dynamically link vendor-optimized
libraries if they are present on the host. We will discuss native MPI instances,
however the same concept will extend to any tools optimized for a specific ven-
dor’s hardware. By using prior knowledge about the native MPI on systems
we plan to run experiments on, we can enable the performance expected from
bare-metal HPC applications running on machines with vendor optimized MPI
libraries without sacrificing the portability afforded by using containers. We will
demonstrate this by running the same containers on hosts with no native MPI
and hosts with vendor-optimized MPI.
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3 Workflow Description

In order to illustrate in situ and in transit concepts, we designed a pipeline
that includes simulation, analysis, and remote visualization. Our workflow can
be understood as three separate phases which work in concert. First, a data
“producer” job runs, which consists of the containerized simulation code and
a SENSEI adapter which can either write the simulation data from each time
step to a shared filesystem or stream it over the network to a different compute
resource. Second, a data “consumer” job runs containerized SENSEI endpoints
and Catalyst instances, which read the simulation data and generate the analysis
specified by a user-defined script. Finally, a lightweight websocket application
reads the files generated by the Catalyst analysis and sends the metadata to a
remote site for the user to see and interact with. This application may reside in
its own containers, or run within a data consumer container, as its function is
closely tied to Catalyst.

Figure 1 shows a block diagram of the LAMMPS producer block instrumented
with SENSEI (top left), the consumer with SENSEI and Catalyst which perform
in situ or in transit rendering (top right), and the remote visualization on tiled
displays component (bottom right).

Fig. 1. A block diagram demonstrating data movement between simulation, in situ/in
transit analysis, and remote visualization
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4 System Configuration

4.1 Host Configuration

We conducted experiments on the Nautilus Cluster managed by the Pacific
Research Platform (PRP) [17], and at the Argonne Leadership Computing Facil-
ity (ALCF) [3]. We used Kubernetes [9] to orchestrate deployment and scaling
of Docker [7] containers across the PRP cluster, as well as the Cobalt HPC
scheduler [6] to launch Singularity [18] containers at ALCF. The same container
images are used with either Docker or Singularity, demonstrating the portability
of this approach.

4.2 Message Passing Interface in Containers

There are three primary approaches to executing Message Passing Interface
(MPI) applications in containers: embedded, host-based, and a hybrid app-
roach. The host-based and hybrid paradigms rely on the configuration of the
nodes upon which the containerized application executes. In the host-only app-
roach, the host’s MPI implementation is used to start the application, and all
necessary libraries are mounted into the container. For a hybrid approach, the
host’s MPI is still used, but the corresponding implementation is also present
inside the container, generally to build the MPI application. For a host-only
and hybrid approach, the MPI implementations inside and outside the container
must match, resulting in a less portable workflow. We tried both fully embedded
and hybrid approaches.

4.3 Embedded MPI with Kubernetes

To enable an embedded MPI environment, we build MPICH [12] from source
during one of our build stages and install openSSH [16] inside the containers.
At runtime, a bash script is invoked from a machine where kubectl [9] can
schedule the containers. This script creates and copies SSH keys into each con-
tainer in the deployment, then starts the SSH servers and writes an MPI host
configuration file. We use Kubernetes “statefulset” and “service” API objects
to ensure consistent object names and name resolution between containers. As
a result, we achieve an extremely portable MPI environment for our applica-
tions that requires no configuration, MPI implementation, or access to the bare
metal hosts. In addition to preventing version and implementation clashes, an
embedded approach also means that multiple containers may run concurrently
on the same host while participating in different MPI environments. This pro-
motes host sharing and reduction of idle resources, while also enabling in situ
workflows like ours in which some resources are producing data while others are
analyzing the data produced. The configuration scripts can be found in our Zen-
odo archive [15]. While these are written for Kubernetes, they could be easily
adapted for other containerized ecosystems.
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4.4 Hybrid MPI with Singularity

Some environments may have a vendor-optimized MPI build, such as the Cray
implementation on Argonne’s Theta supercomputer. While it would be possible
to run a containerized application with a built-in MPI instance, vendor-intended
performance can be achieved by leveraging the optimized build from within the
containers. In order to do this, the corresponding MPI version is installed during
container build time, and the desired application is compiled. At runtime, the
host’s MPI is linked instead of the embedded copy.

This is an important distinction from existing containerized in situ visual-
ization pipelines [21] available on Docker Hub, which sacrifice performance for
portability. As containers are so simple to build, it makes sense to use prior infor-
mation about possible environments where the application may run and generate
containers with corresponding MPI versions. In this way, the application is still
portable, yet can leverage native MPI implementations for better performance.

The build process is automated by exposing arguments at container build
time. If a hybrid configuration is desired, the user can input their host’s MPI
information as build flags, and the container will install the corresponding ver-
sion. Otherwise, a known working version will be used by default.

4.5 Tmpfs Filesystems

Many container runtime environments provide some kind of temporary filesystem
to be used for caching, sensitive files, etc. These filesystems, known as tmpfs
mounts [20], can reside in memory, resulting in a very fast but ephemeral place
to store data. We leverage a tmpfs filesystem to store the images generated by
Catalyst before they are sent to be visualized by a Cinema viewer. We measured
the performance difference between a volume on a local solid state drive (SSD)
and a tmpfs filesystem, and found that using a tmpfs volume can result in a
nearly 5x speedup [8,19,20].

4.6 Transferring Cinema Databases

Cinema transfer. We developed a web socket tool for transferring the gener-
ated cinema databases to a remote machine while the simulation is running [13].
While still a prototype written in Python, it has worked as a proof of concept in
our experiments and does not bottleneck performance. We will refer to this tool
as cinema transfer for ease of understanding. cinema transfer consists of a web-
socket server and client. The client runs alongside Catalyst, with read access to
the images stored in the memory filesystem. The server runs where visualization
will take place, be it a workstation or multi-tiled display. As each simulation
time step is completed, the client starts a connection to the server and sends all
the image data collected during that step to the remote site. Once the images
are received, the client closes the connection and waits for the next step to be
completed. In future iterations, cinema transfer can be easily extended to sup-
port connections from multiple simultaneous Catalyst instances, and could be
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optimized for faster transfer speeds. As we will show, however, rendering the
images which make up a Cinema database consumes the majority of the time
for a single step through the entire pipeline.

Algorithm 1. cinema transfer Client
while time steps < total time steps do

if new time step present then
open connection
send images
close connection

end if
end while

Leveraging the Cinema Viewer Design. A Cinema Viewer consists of a
web application which is used for navigating Cinema Databases. A set of widgets
associated with the parameters of the extracted metadata dynamically load the
appropriate files, in our case images, using HTTP GET requests. This means
that if the current file is present in cache it will load from there, else it will load
from the path specified. We use this design to prepare the Cinema Viewer to
load images extracted from simulation time steps which have not yet completed.

A spec D Cinema database is made up of the extracted metadata and a
descriptor file in comma separated value (.csv) format which defines the mapping
between parameters and metadata. In our experiments, we render 36 images per
time step via the Catalyst PNG extractor pipeline object, capturing 36 different
viewing angles of the simulation data. As Catalyst uses phi-theta angle pairs
to represent the camera position at each of these angles, the parameters for
our Cinema database in this case are time step, phi angle, and theta angle.
The Catalyst extractor object will generate an appropriate .csv descriptor file
after the last time step has finished rendering. However, if we wish to visualize
the database prior to simulation completion, we must generate this mapping
ourselves. Because these angles and the number of time steps are user-specified,
we pass them to the cinema transfer server and generate the proper descriptor
file before the run has even begun. As such, when new metadata is generated
and sent to the visualization server, the Cinema Viewer can load new images
without the need to refresh the web page and lose widget states.

Figure 2 shows a Cinema viewer running on a browser and visualizing atoms
of our LAMMPS simulations generated with the data “producer” container.

5 Evaluation

We evaluate the functionality and scalability of our workflow using the LAMMPS
Lennard-Jones benchmark [10] instrumented with SENSEI. The simulation can
be scaled along the three coordinate axes to create large datasets for testing
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Fig. 2. A cinema viewer instance running in the browser

performance. For our experiments, we ran a simulation of 131,072,000 (32, 000 ∗
163) atoms for 50 time steps and measured the wall time each time step took
to complete. We report the median loop time from these jobs. A producer time
step consists of the time needed to compute the Lennard-Jones potentials and
write the simulation results, which consume 12–14 GB of space per time step
depending on the data format used. A consumer time step consists of the time
needed to read the simulation data and render 36 images via Catalyst. Last, a
cinema transfer time step is simply the time needed to read and send the images
to a remote server, and ends when the client has sent the images and closes the
connection.

Table 1 presents a comparison between the disk space needed to save a time
step in VTK format, ADIOS BP4, and rendered images as part of a Cinema
database. Assuming that the Cinema database captures all the relevant informa-
tion needed for analysis, this comparison shows that we could achieve a decrease
of a few orders of magnitude in storage requirements by saving time step data as
rendered images. This agrees with observations from Ahrens et. al in the original
Cinema publication [2].

Table 1. Time step size

File format Size/Time step

VTK PolyData 14 GB

ADIOS2 Binary-Pack v4 12 GB

36 * 3840×2160 PNG Images, level 5 compression 105 MB
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5.1 Embedded MPI with Kubernetes, SENSEI In Situ

As demonstrated by Fig. 3, we observed strong scaling of the data producer when
increasing from 32 to 128 MPI ranks, yet saw no improvement by scaling to 256
ranks. This is most likely because we had saturated I/O to the CephFS shared
filesystem, as CPU and memory limits for the job were not breached.

Fig. 3. Producer loop time for increasing numbers of MPI ranks. Strong scaling was
observed up to 128 ranks but not for 256 ranks.

The data consumer job, Fig. 4, scaled weakly and is the clear bottleneck in
this pipeline. Note that the minimum number of MPI ranks was 32, as any fewer
would not meet the memory requirements for Catalyst to render each timestep
on the PRP hosts. As we later learned, the VTK distributed rendering and
compositing routines do not scale in our configuration. In future experiments,
we plan to isolate the cause of this issue, explore other scheduling configurations
such as a higher CPU and memory allocation per node, and test other shared
containerized filesystem solutions.

5.2 Hybrid MPI with Singularity, SENSEI In Situ

Having already observed strong scaling for the data producer job, we ran the
simulation on ALCF’s Theta across 8192 ranks on 128 compute nodes equipped
with Intel KNL processors, observing a median loop time of 0.369 s. The data
is saved to a shared Lustre filesystem in ADIOS BP4 format. The consumer
container runs on the Cooley visualization cluster, which also has access to the
shared file system. We scaled the consumer job on Cooley from 1 to 64 ranks and
observed the same rendering bottleneck as before, with minimal improvement
after 16 ranks, Fig. 5.
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Fig. 4. Consumer loop time for increasing numbers of MPI ranks showed weak scaling
and is clearly the bottleneck for this configuration.

5.3 Hybrid MPI with Singularity, SENSEI In Transit

For this experiment we use ThetaGPU, the GPU partition of the Theta super-
computer at ALCF, coupled with the Cooley GPU visualization cluster via net-
work. We run the producer with the LAMMPS simulation and SENSEI data
adapter on ThetaGPU compute nodes. Similarly, we run the consumer con-
tainer on Cooley and leverage its GPUs for rendering with Catalyst. ADIOS2
is configured to use its Sustainable Staging Transport (SST) with WAN for its
DataTransport parameter. We demonstrate MxN in transit communication, with
M=16 MPI producer ranks on ThetaGPU, and N = 2 MPI consumer ranks on
Cooley.

Please refer to the Appendix for a description of our artifacts containing a
video demonstration of this experiment.

5.4 Cinema transfer Loop Time

As transfer time is subjective to connection speeds, we measured a transfer
between containers running on two lab workstations connected at 1 GB/s, emu-
lating a scenario where a high speed network between rendering machine and
visualization machine is not available. The median loop time across 10 trials
for transferring 36 4K images with cinema transfer was 0.8826 s. Note that cin-
ema transfer is single threaded in its current state. It is unlikely that transferring
the images will bottleneck the pipeline performance, however, as in a case where
massive amounts of images are rendered in situ, the consumer (rendering) work-
load would also increase.
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Fig. 5. Rendering on ALCF’s Cooley machine showed strong scaling until 16 ranks,
where it plateaued with the same loop time observed during the consumer job scheduled
on PRP machines.

6 Discussion

When it comes to complex software stacks such as the simulation and in situ
visualization use case we have demonstrated, containers can greatly simplify
the process of deployment, especially to new systems which may have varying
host configurations. We have shown a reproducible workflow in which the same
software can be ported between drastically differing machines in terms of hard-
ware, architecture, operating system, file system, container runtime engine, MPI
implementation, and number of nodes.

In addition to the in situ visualization use case evaluated above, we also
demonstrated how the same workflow can be used for in transit visualiza-
tion, where the producer job runs on one machine and the consumer runs on
another [15]. This configuration is useful for cases like ours where a simulation
can scale dramatically across many compute nodes, but a rendering job requires
machines with graphics cards and abundant memory.

From our experiments, we can deduce that the bottleneck in our workflow
is not a result of a slow underlying file system or network, but is in fact a
result of the parallel rendering algorithms. If we are to use this software stack
to render simulation data in situ (and subsequently stream the results with
cinema transfer) at line rate, we first need to address the bottleneck at the
rendering step in this pipeline.

It would also be illuminating to experiment with passing and consuming the
simulation data using an in-memory solution, such as LibSim. This approach
would confront the file system I/O saturation issue as the simulation is scaled,
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but would require blocking logic to prevent the producer processes from rushing
ahead of the consumers.

7 Conclusion

We presented a containerized workflow for in situ visualization. To show its
efficacy, we demonstrated a use case using LAMMPS, SENSEI, Catalyst, and
a web socket tool for streaming rendered metadata. We showed how the same
containerized MPI application can run fully embedded in containers, or lever-
age a host’s implementation in the presence of vendor-specific optimized MPI
libraries. We moved containers between a Docker/Kubernetes deployment on the
PRP’s cloud infrastructure and a Singularity/Cobalt deployment on three ALCF
supercomputers by changing relevant environment variables and the directories
mounted for MPI libraries and shared filesystems.

To visualize results, we developed a web socket tool called cinema transfer
which streams images to a remote site (in our case, a multi-tiled display) as they
are rendered.

We have assessed the rendering step as a clear bottleneck in this pipeline,
as we observed similar rendering times on three different machines with varying
host configurations.

To conclude, we would like to emphasize that this work is absolutely repro-
ducible, and indeed needs attention from the in situ visualization community to
find solutions to the current rendering bottleneck. The entire software stack is
open source, and all configuration files and scripts specific to our experiments
are made available through public Github repositories [13,14] and our Zenodo
archive [15] which we prepared specifically as a supplement to this manuscript.
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Appendix: Reproducibility

We have aimed at making this work completely reproducible. For this purpose,
a Zenodo repository of artifacts is available [15].

The repository contains our producer and consumer container recipes as
Dockerfiles. These Docker images can be easily converted to Singularity images.
In addition, we also include LAMMPS, SENSEI, and Catalyst configuration files
to reproduce our experiments. The results of our experiments are also presented
in log files and spreadsheets. Finally, we present videos that illustrate our runs
with the producer and consumer running concurrently.

In addition to our Zenodo archive, we will present our container recipes below
in an effort to make this workflow as reproducible and as transparent as possible.
It may be informative to compare these with the block diagram above [Fig. 1] to
ascertain how the containers are built to support this portable workflow.

GCC Base Container:

ARG BASE_IMAGE

FROM $BASE_IMAGE

## set gcc version in .gitlab -ci.yml ##

ARG GCC_VERSION

ENV GCC_VERSION=$GCC_VERSION

## set cmake version in .gitlab -ci.yml ##

ARG CMAKE_VERSION

ENV CMAKE_VERSION=$CMAKE_VERSION

## environment for build paths ##

ENV SRCDIR =/src

ENV BUILDDIR =/build

ENV INSTALLDIR =/ install

WORKDIR $SRCDIR

## gcc dependencies ##

RUN yum -y install wget \

bzip2 \

gmp -devel \

mpfr -devel \

libmpc -devel

## install cmake ##

RUN wget "https :// github.com/Kitware/CMake/releases/download/

v$CMAKE_VERSION/cmake -$CMAKE_VERSION -linux -x86_64.sh" --

no-check -certificate && \

chmod +x cmake -$CMAKE_VERSION -linux -x86_64.sh && \

./cmake -$CMAKE_VERSION -linux -x86_64.sh --skip -license --

prefix =/usr
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## install new GCC ##

## see https :// bipulkkuri.medium.com/

## install -latest -gcc -on -centos -linux -release -7-6-

a704a11d943d ##

RUN wget https :// ftp.gnu.org/gnu/gcc/gcc -$GCC_VERSION/gcc -
$GCC_VERSION.tar.gz --no -check -certificate && \

tar xzvf gcc -$GCC_VERSION.tar.gz && \

rm gcc -$GCC_VERSION.tar.gz && \

mkdir -p $BUILDDIR/gcc && \

cd $BUILDDIR/gcc && \

$SRCDIR/gcc -$GCC_VERSION/configure --disable -multilib \

--enable -languages=c,c++ --prefix=$INSTALLDIR/gcc && \

make -j8 && \

make install

## remove default gcc ##

RUN yum -y remove gcc gcc -c++

## update environment ##

ENV PATH=$INSTALLDIR/gcc/bin:$PATH
ENV LD_LIBRARY_PATH=$INSTALLDIR/gcc/lib64:$LD_LIBRARY_PATH

WORKDIR /

Producer Build Container:

FROM gitlab -registry.nrp -nautilus.io/inealey/cudagl -build:

centos -gcc -9.2.0

ENV SRCDIR =/src

ENV BUILDDIR =/build

ENV INSTALLDIR =/ install

ENV MPICH_VERSION =3.2.1

WORKDIR $SRCDIR

## yum dependencies

RUN yum install -y git

#############################################

## install mpich ##

## disabling rpath to compiled executable allows use of host

mpich ##

RUN echo $MPICH_VERSION && \

wget -q https :// www.mpich.org/static/downloads/

$MPICH_VERSION/mpich -$MPICH_VERSION.tar.gz --no -check -

certificate && \
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tar xzvf mpich -$MPICH_VERSION.tar.gz && \

rm mpich -$MPICH_VERSION.tar.gz && \

mkdir -p $BUILDDIR/mpich && \

cd $BUILDDIR/mpich && \

$SRCDIR/mpich -$MPICH_VERSION/configure --prefix=$INSTALLDIR
/mpich \

--disable -wrapper -rpath --disable -fortran && \

make -j8 && \

make install

## update environment ##

ENV PATH=$PATH:$INSTALLDIR/mpich/bin/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$INSTALLDIR/mpich/lib/

#############################################

## build LAMMPS ##

RUN git clone https :// github.com/lammps/lammps && \

cd lammps/src && \

git checkout stable_29Sep2021 && \

sed -i ’0,/mpicxx /{s/mpicxx/gcc/}’ MAKE/Makefile.mpi && \

sed -i ’0,/-g�-O3/{s@-g�-O3@ -g�-O3�-std=c++11�-I� /install/

mpich/include/@}’ \

MAKE/Makefile.mpi && \

make yes -KSPACE && \

make yes -MOLECULE && \

make yes -RIGID && \

make mpi mode=lib -j8

#############################################

## install ADIOS2 v2.7.1 ##

RUN git clone https :// github.com/ornladios/ADIOS2.git adios2

&& \

cd adios2 && \

git checkout v2.7.1 && \

cmake -S $SRCDIR/adios2 -B $BUILDDIR/adios \

-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/adios \

-D ADIOS2_USE_Fortran=OFF \

-D ADIOS2_BUILD_EXAMPLES=OFF \

-D CMAKE_BUILD_TYPE =Release \

-D DHDF5_DIR=$INSTALLDIR/hdf5 && \

cd $BUILDDIR/adios && \

make -j8 && \

make install

#############################################

## install VTK 8.2 ##

RUN git clone https :// gitlab.kitware.com/vtk/vtk.git && \
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cd vtk && \

git checkout v8.2.0 && \

cmake -S $SRCDIR/vtk -B $BUILDDIR/vtk \

-D VTK_Group_Imaging=OFF \

-D VTK_Group_MPI=OFF \

-D VTK_Group_Qt=OFF \

-D VTK_Group_Rendering =OFF \

-D VTK_Group_StandAlone=ON \

-D VTK_Group_Tk=OFF \

-D VTK_Group_Views=OFF \

-D VTK_Group_Web=OFF \

-D VTK_RENDERING_BACKEND=None \

-D CMAKE_BUILD_TYPE =Debug \

-D BUILD_TESTING=OFF \

-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/vtk && \

cd $BUILDDIR/vtk && \

make -j8 && \

make install

#############################################

## install silvio ’s lammps fork of sensei ##

RUN git clone -b lammps https :// github.com/srizzi88/SENSEI.

git sensei && \

cd sensei && \

git checkout lammps && \

cmake -S $SRCDIR/sensei -B $BUILDDIR/sensei \

-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/sensei \

-D VTK_DIR=$INSTALLDIR/vtk/lib64/cmake/vtk -8.2 \

-D ENABLE_VTK_IO=ON \

-D ENABLE_PROFILER=ON \

-D LAMMPS_DIR=$SRCDIR/lammps \

-D ENABLE_LAMMPS=ON \

-D ENABLE_MANDELBROT=OFF \

-D ENABLE_OSCILLATORS=OFF \

-D ENABLE_ADIOS2=ON \

-D ADIOS2_DIR=$INSTALLDIR/adios/lib64/cmake/adios2
\

-D ENABLE_HDF5=OFF && \

cd $BUILDDIR/sensei && \

make -j8 && \

make install

Consumer Build Container:

FROM gitlab -registry.nrp -nautilus.io/inealey/cudagl -build:

centos -gcc -9.2.0

ENV SRCDIR =/src
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ENV BUILDDIR =/build

ENV INSTALLDIR =/ install

ENV MPICH_VERSION =3.2.1

WORKDIR $SRCDIR

## paraview yum packages ##

RUN yum install -y git \

python3 -devel \

mesa -libGL -devel \

java -11-openjdk -devel \

libX11 -devel \

tbb -devel \

epel -release

## epel packages ##

RUN yum -y install ninja -build

#############################################

## install mpich ##

## disabling rpath to compiled executable allows use of host

mpich ##

RUN wget -q https :// www.mpich.org/static/downloads/

$MPICH_VERSION/mpich -$MPICH_VERSION.tar.gz --no-check -

certificate && \

tar xzvf mpich -$MPICH_VERSION.tar.gz && \

rm mpich -$MPICH_VERSION.tar.gz && \

mkdir -p $BUILDDIR/mpich && \

cd $BUILDDIR/mpich && \

$SRCDIR/mpich -$MPICH_VERSION/configure --prefix=$INSTALLDIR
/mpich \

--disable -wrapper -rpath --disable -fortran && \

make -j8 && \

make install

## update environment ##

ENV PATH=$PATH:$INSTALLDIR/mpich/bin/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$INSTALLDIR/mpich/lib

#############################################

## install ADIOS2 v2.7.1 ##

RUN git clone https :// github.com/ornladios/ADIOS2.git adios2

&& \

cd adios2 && \

git checkout v2.7.1 && \

cmake -S $SRCDIR/adios2 -B $BUILDDIR/adios \
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-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/adios \

-D ADIOS2_USE_Fortran=OFF \

-D ADIOS2_BUILD_EXAMPLES=OFF \

-D CMAKE_BUILD_TYPE =Release \

-D DHDF5_DIR=$INSTALLDIR/hdf5 && \

cd $BUILDDIR/adios && \

make -j8 && \

make install

#############################################

## install paraview ##

RUN git clone https :// gitlab.kitware.com/paraview/paraview.

git && \

cd paraview && \

git checkout v5.9.1 && \

git submodule update --init --recursive && \

cmake -G Ninja -S $SRCDIR/paraview -B $BUILDDIR/paraview \

-D CMAKE_BUILD_TYPE =Release \

-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/paraview \

-D PARAVIEW_USE_CUDA=OFF \

-D PARAVIEW_ENABLE_ADIOS2=ON \

-D ADIOS2_DIR=$BUILDDIR/adios \

-D PARAVIEW_USE_MPI =ON \

-D PARAVIEW_USE_QT=OFF \

-D PARAVIEW_USE_PYTHON =ON \

-D VTK_OPENGL_HAS_EGL=ON \

-D VTK_USE_X=OFF && \

cd $BUILDDIR/paraview && \

ninja -j8 && \

ninja install

#############################################

## install forked sensei repo ##

RUN git clone -b lammps https :// github.com/srizzi88/SENSEI.

git sensei && \

cd sensei && \

git checkout lammps && \

cmake -S $SRCDIR/sensei -B $BUILDDIR/sensei \

-D CMAKE_INSTALL_PREFIX=$INSTALLDIR/sensei \

-D ENABLE_SENSEI=ON \

-D ENABLE_VTK_IO=ON \

-D ENABLE_MANDELBROT=OFF \

-D ENABLE_OSCILLATORS=OFF \

-D ENABLE_PROFILER=ON \

-D ENABLE_CATALYST=ON \

-D ParaView_DIR=$INSTALLDIR/paraview/lib64/cmake/
paraview -5.9 \

-D ENABLE_ADIOS2=ON \



Cinema Transfer: A Containerized Visualization Workflow 341

-D ADIOS2_DIR=$INSTALLDIR/adios/lib64/cmake/adios2 \

-D ENABLE_HDF5=OFF && \

cd $BUILDDIR/sensei && \

make -j8 && \

make install

#############################################

Producer Runtime Container:

FROM nvidia/cudagl :11.4.1 - runtime -centos7

## yum installs ##

#RUN yum install -y openssh -server openssh -clients

## environment ##

ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/ install/gcc/lib64 /:/
install/vtk/lib64 /:/ install/adios/lib64/

## copy built files ##

COPY --from=srizzi/woiv22producer:latest /install /install

## copy config files ##

#COPY utils /config

## allow exection for setup scripts ##

#RUN chmod +x /config/setup.sh && \

# chmod +x /config/updatepubkeys.sh

WORKDIR /install/sensei

Consumer Runtime Container:

FROM nvidia/cudagl :11.4.1 - runtime -centos7

## yum installs ##

#RUN yum install -y openssh -server openssh -clients

## environment ##

#ENV PATH=$PATH :/ install/mpich/bin/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/ install/gcc/lib64 /:/

install/vtk/lib64 /:/ install/adios/lib64

## copy built files ##

COPY --from=srizzi/woiv22consumer:latest /install /install

## copy config files ##

#COPY utils /config

## allow exection for setup scripts ##
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#RUN chmod +x /config/setup.sh && \

# chmod +x /config/updatepubkeys.sh

WORKDIR /install/sensei

It is our hope that the scientific visualization community will benefit from
this work and build on this material for future research.
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Abstract. Today, Cloud and HPC workloads tend to use different
approaches for managing resources. However, as more and more appli-
cations require a mixture of both high-performance and data processing
computation, convergence of Cloud and HPC resource management is
becoming a necessity. Cloud-oriented resource management strives to
share physical resources across applications to improve infrastructure
efficiency. On the other hand, the HPC community prefers to rely on job
queueing mechanisms to coordinate among tasks, favoring dedicated use
of physical resources by each application.

In this paper, we design a combined Slurm-Kubernetes system that
is able to run unmodified HPC workloads under Kubernetes, along-
side other, non-HPC applications. First, we containerize the whole HPC
execution environment into a virtual cluster, giving each user a pri-
vate HPC context, with common libraries and utilities built-in, like the
Slurm job scheduler. Second, we design a custom Slurm-Kubernetes pro-
tocol that allows Slurm to dynamically request resources from Kuber-
netes. Essentially, in our system the Slurm controller delegates placement
and scheduling decisions to Kubernetes, thus establishing a centralized
resource management endpoint for all available resources. Third, our cus-
tom Kubernetes scheduler applies different placement policies depending
on the workload type. We evaluate the performance of our system com-
pared to a native Slurm-based HPC cluster and demonstrate its ability
to allow the joint execution of applications with seemingly conflicting
requirements on the same infrastructure with minimal interference.

Keywords: Cloud-native HPC · Kubernetes scheduling · Slurm

1 Introduction

Cloud and HPC computing environments are mostly similar in hardware spec-
ifications, but differ largely in the software stack and how it manages available
resources. Cloud providers use virtualization mechanisms to facilitate sharing,
valuing colocation of workloads to the point of overprovisioning, whereas in HPC
clusters workloads are allocated exclusive resources, based on exact requirements
c© Springer Nature Switzerland AG 2022
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given by the user when submitting the respective job. As the complexity of mod-
ern applications increases, it is not uncommon for deployments to include parallel
provisioning of backend services, as well as on-demand execution of data analyt-
ics pipelines and HPC codes. For such workloads, it is essential to accommodate
both resource allocation schemes on the same hardware infrastructure, exploiting
resource sharing, but also avoiding interference as much as possible.

In this paper, we explore the convergence of Cloud and HPC in a common,
container-based environment, backed by Kubernetes, the most prominent dis-
tributed container orchestration framework [3]. Containers are gaining ground
as the preferred deployment method in the Cloud, as they implement a con-
venient packaging scheme for applications, they are lightweight when running,
and provide isolation between instances for security purposes. Kubernetes pro-
vides abstractions for hardware resources and automatically scales service repli-
cas to meet demand, while keeping redundancies to alleviate for unadvertised
failures. The HPC world has cautiously been following the trend, primarily uti-
lizing containers as a portable method to bundle applications with associated
library dependencies. These containers are then typically submitted as jobs using
Slurm, a popular workload manager responsible for coordinating the allocation
of resources throughout the cluster, via shared submission queues.

To run HPC applications in Kubernetes, we introduce the concept of the
virtual cluster, as a group of multiple container instances that function as a
unified cluster environment from the user’s perspective. Each node in a virtual
cluster embeds all necessary libraries and utilities, as well as a private Slurm
deployment; the user working inside a virtual cluster can only view and man-
age jobs submitted from within the same context. In practice though, each such
Slurm setup is not independent. We extend the Slurm controller with a custom
protocol, to communicate with the central Kubernetes scheduler when requiring
resources, effectively placing Kubernetes in charge of resource allocations for the
whole cluster. Moreover, we use Genisys, a custom Kubernetes scheduler that
distinguishes between “HPC” and “data center” services (typical Kubernetes
deployments that run in other containers), in order to apply different alloca-
tion policies and maximize overall usage. In cases where HPC workloads do not
consume all node-local resources, Genisys colocates data center services, while
constantly satisfying their user-defined performance targets. Therefore, HPC and
data center workloads execute transparently on the same infrastructure, achiev-
ing high levels of CPU utilization.

This integration has several benefits: [(i)] Compatibility: Supporting Slurm
inside virtual clusters is crucial in order to keep compatibility with existing Slurm
scripts. [(ii)] Colocation: By containerizing the whole runtime environment and
using Kubernetes as the substrate, we are able to run hybrid workloads on
top of the same physical cluster, optimizing for high utilization and avoiding
static cluster partitioning for HPC and data center tasks. [(iii)] Portability: The
containerized environment offered with virtual clusters allows users to install
different dependencies without polluting the bare metal infrastructure and avoid
issues with conflicting versions of the same libraries. It also makes migrating to



Virtual Clusters: Isolated, Containerized HPC Environments in Kubernetes 349

a different Kubernetes cluster possible, just by transferring the container images
to the other system and deploying them using the same Kubernetes objects.

2 Related Work

The integration of HPC job management in the context of Kubernetes has been
addressed in several studies. In [13], the authors use a utility called hpc-connector
that acts as an HPC job proxy: Users submit respective Kubernetes jobs with
the appropriate settings, and hpc-connector forwards them to the HPC cluster,
monitors their execution, and collects their results. This solution can probably
be used with containers to address portability issues. On the other hand, the
main focus is on HPC job management with a Kubernetes-compatible interface;
the HPC and cloud clusters are treated as two separate environments making
it impossible to monitor and place cloud and HPC workloads over the same
physical cluster. A similar approach is presented in [20], where a Kubernetes
installation is interfaced to a Torque-based HPC cluster.

One critical aspect of the containerization of HPC workloads is runtime per-
formance when compared to an actual physical cluster. Related work has mea-
sured the network performance of containerized HPC codes, and findings suggest
that there is little to no performance overhead when an InfiniBand network is
used [5]. In general, Docker containers do not introduce significant performance
overheads, while in some cases they can provide better QoS due to the usage of
cgroups resource limiting mechanisms when compared with a bare metal runtime
environment [8–10].

There is a plethora of papers that handle the scheduling of workloads with
the main goal of increasing the utilization in the infrastructure. Sparrow [16] and
Eagle [7], handle the scheduling of application tasks in clusters. Sparrow focuses
on speed, but can not handle workloads with conflicting goals as in our case.
Eagle follows a hybrid approach, with a centralized component that performs
careful placement of long-running tasks, and a distributed component empha-
sizing on quick placement. Our scheme is also hybrid, however, with different
goals. Ursa [11] is a task scheduler for spark-monotasks [15] and Rhythm [19]
is a data center scheduler that ensures the latency of latency-critical applica-
tions. Both works colocate “compatible” tasks to increase the utilization in the
underlying infrastructure, but do not effectively guard against interference. In
contrast, our approach constantly monitors application performance and adjusts
container placement and resource allocations at runtime to achieve a user-defined
performance target. Control loops for dynamically adjusting resources based on
runtime performance have been used in systems such as SLAOrchestrator [14]
and Skynet [17]. The former tries to optimize cost of services when running in
the Cloud, while the latter optimizes hardware efficiency by colocating more
applications on the same nodes, as long as they acheive their user-defined per-
formance targets. Genisys’s handling of data center tasks is based on Skynet,
extended to allocate HPC tasks with different, placement-based constraints.
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3 Design Overview

A virtual cluster is a group of container instances that virtualizes an environment
to run HPC workloads that use MPI and other software frameworks. From the
perspective of applications, virtual clusters are indistinguishable from physical
nodes that execute instances of MPI processes in parallel, as all physical pro-
cessing cores, RAM, the low-latency InfiniBand network, and accelerators are
available in each container context. Each virtual cluster spans all physical nodes
and multiple virtual clusters can co-exist over the same set of physical nodes, as
shown in Fig. 1, which presents the high-level design concept.

Inside each virtual cluster, as part of the bundled software stack, we deploy a
private Slurm context, so users can invoke existing scripts to run HPC workloads.
One of the virtual cluster nodes acts as the Slurm controller, while all virtual
cluster nodes run the Slurm agent and register with the controller. Configuration
of the Slurm deployment is automatically done at virtual cluster initialization.
Unmodified, the virtual-cluster-local Slurm would perform resource allocation
and scheduling of Slurm jobs as if it were in control of the whole cluster. Each
independent Slurm installation is isolated inside its own containers and does not
account for the presence of other containers running and consuming computing
resources; that being other virtual clusters or typical Kubernetes services.

To schedule and place workloads across multiple virtual clusters and prevent
the interference introduced by overlapping jobs, we have modified the Slurm con-
troller’s placement mechanism to delegate all respective decisions to the external
Kubernetes scheduler. The Kubernetes scheduler in this scheme is the central
authority that has the full knowledge of the cluster’s current resource allocations
and acts as a global coordinator for new requests. Moreover, Genisys, our cus-
tom Kubernetes scheduler implementation (described in Sect. 4) distinguishes
between “HPC” and “data center” type workloads, in order to improve the
overall utilization of available hardware. Data center services do not use virtual
clusters, but are deployed in Kubernetes as deployments, jobs, or other API
objects that execute in containers running alongside the ones used by virtual
clusters.

Genisys ensures each virtual cluster does not share resources with other vir-
tual clusters or data center services. When a new service is deployed, Genisys
iterates over an internal free resource list for each node and attempts to find
which nodes can accommodate it. If resource oversubscription is not enabled
Genisys will always place tasks on nodes with enough free resources to fit in.
Furthermore, the scheduler supports two different placement policies: [(i)] The
Least Loaded Selection Policy attempts to place tasks to the least loaded nodes
on the cluster, effectively spreading out the load, allowing to fit more jobs on a
given set of nodes to achieve higher cluster resource utilization. [(ii)] The Max
Loaded Selection Policy attempts to pack as many services in nodes, allowing for
higher energy efficiency, with the danger of not being able to fit as many tasks
on the cluster (as some “loaded” nodes will not have enough free resources).

For data center workloads, Genisys allows sharing of resources, by estimating
the aggregate resources that are required to achieve a user-defined performance



Virtual Clusters: Isolated, Containerized HPC Environments in Kubernetes 351

objective (i.e., latency, throughput). It manages four types of resources: number
of cores, memory size, I/O bandwidth, and network bandwidth. Genisys performs
its estimations using a feedback control loop similar to Skynet. Afterwards, it
decides on the size, the number, and the placement of containers in physical
nodes according to the selected policy.

Colocating HPC tasks with the data center services is configurable. The
default behaviour allows tasks of both types to use the same nodes and share
resources. The other option is to perform type-based placement, implicitly parti-
tioning the nodes by placing HPC tasks on some nodes and data center tasks on
others. This approach may minimize interference introduced by task colocation,
but also reduces efficiency, and is not used in this paper.

Fig. 1. Each container instance of a virtual cluster runs in a different physical machine,
while multiple virtual clusters may run in parallel. The custom Slurm job placement
plugin communicates with Genisys to perform job placement. These jobs are visible at
the Kubernetes level as “dummy allocations”.

Figure 1 illustrates the steps involved in the communication between virtual
clusters and the cluster-wide Kubernetes scheduler for HPC workloads: 1. On job
initialization Slurm sends an allocation request to the main Kubernetes controller
via a custom plugin. In this request Slurm specifies the resources needed for the
job (node count, CPU count, etc.). 2. The custom plugin forwards these allo-
cations to Genisys, by allocating “dummy pods” in Kubernetes, with resource
requirements matching the Slurm job’s specifications. Dummy containers are
practically idle; they consume no resources themselves, but act as placeholders
for the allocation of resources that will be used by the actual jobs inside the
virtual cluster. 3. On receiving a dummy allocation for a Slurm job placement,
Genisys iterates over the available nodes and checks if enough resources are avail-
able. If so, it schedules the dummy containers for execution. 4. The allocation is
communicated back to the custom Slurm plugin as a node list. 5. The plugin, in
turn, forwards the response to the Slurm controller. The node list contains the
selected nodes for the Slurm job deployment. If no suitable nodes are found, the
controller puts the job on hold.
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4 Implementation

Preparing and Deploying Virtual Clusters: Virtual cluster container
images are prepared as “typical” Docker images, by starting from some base
Linux distribution and adding layer after layer of development tools, libraries,
and other software. Our reference images are based on CentOS and the Mel-
lanox OpenFabrics Enterprise Distribution (OFED), which includes Open MPI
with InfiniBand support as well as other libraries. In addition, we install several
extra libraries and frameworks (i.e., CUDA, GROMACS, TensorFlow, Horovod),
Slurm, as well as utilities to help in evaluating application performance. This
base container recipe is available to our users, so they can tailor it to their needs,
using different software versions or supplementary libraries and tools.

Upon instantiation, each virtual cluster container actually runs the SSH dae-
mon as its primary process. The instance startup script first waits for all pods
(nodes in the virtual cluster) to be ready and then creates all necessary con-
figuration: keys for password-less SSH connectivity, MPI hostfile, and Slurm
configuration at /etc/slurm.conf. As the last step, it starts Slurm (the Slurm
controller runs in the first container). Each virtual cluster is deployed using a
Kubernetes DaemonSet, which assigns one pod per physical machine. As HPC
application developers usually assume similar capabilities and equal network-
level distances across nodes, placing a single pod in each node is convenient and
produces expected results.

Slurm-Kubernetes Interface: The Slurm controller uses a node bitmap in
order to represent resource reservations in available HPC nodes and find candi-
dates to place incoming jobs. For placement, Slurm uses the job test() func-
tion, which is called by the controller when a new job arrives. job test()
receives the job’s resource requirements and the node bitmap. It then checks
if a set of computing nodes is available by calling select nodes(), which
returns a list of selected nodes, so Slurm can proceed to mark them in the
node bitmap and start the job. If the selection process returns an empty node
list, then the job is rescheduled for later placement. To delegate all job placement
decisions externally to Kubernetes, we first ignore the node bitmap returned by
select nodes(). Instead, we implement a custom plugin written in Golang that
receives the job’s resource requirements (CPUs, RAM, node count) and creates
a mirror Kubernetes allocation of “dummy pods” using the same resources. The
plugin runs next to each Slurm controller communicating with Kubernetes via
the API server. When the dummy pods are placed, we return the node list for
the specified job back to the Slurm controller. On receiving the list, we trigger
Slurm to modify the node bitmap and place the job.

Scheduling Extensions: The scheduling of dummy pods does not require a
custom Kubernetes scheduler. However without special arrangements for HPC
workloads, the default scheduler may place multiple HPC jobs on the same nodes,
maximizing interference. To this end, we have extended our Genisys scheduler
to support both “HPC” and “data center” workloads and enforce different types
of placement policies. We label HPC workloads as “SLURM-JOB”, in order to
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distinguish them from other workloads running on the same cluster. Allocations
for Slurm applications happen in a static manner and Genisys can be configured
to avoid colocating them with other jobs marked as “SLURM-JOB” for optimal
performance. This policy may be selected because of the lack of available metrics
offered by MPI applications and their sensitivity due to synchronization barriers.

On the other hand, data center workloads include a user-defined performance
objective, which Genisys must achieve during their execution. Genisys monitors
periodically the performance of each running data center service to get feedback
about the effectiveness of its current resource allocation, using the Kubernetes
Custom Metric Server and Prometheus [1]. In case of a performance violation in
a workload, Genisys increases its resource allocation according to the measured
drop in performance and vice versa. For new resource estimations, Genisys also
considers the history of previous performance measurements, which is affected
mainly by the workload mix.

5 Evaluation

We evaluate our system by running a mixture of MPI workloads and other ser-
vices on the same cluster, and measuring the overall efficiency through the total
runtime of all applications combined and the individual runtime per application.
Our hardware setup consists of 5 servers, each with a single 32-core/64-thread
AMD EPYC 7551P processor (running at 2.00 GHz) and 128 GB of memory, for
320 threads in total. All servers have SSD storage devices and are interconnected
via 56 Gb/s InfiniBand. We run Kubernetes 1.19.7 on CentOS 7.6.

We have created a multi step MPI workload using benchmarks from the NAS
Parallel Benchmark Suite [4]. We choose realistic HPC task sizes and their dis-
tribution by following traces outlined in [18], which analyzes the HPC workloads
run on the Lomonosov-2 supercomputer, categorized according to resource allo-
cation sizes and CPU consumption. We allocate 5% of the workload’s CPU time
to 16 thread (small), 20% to 32 thread (medium), 65% to 64 thread (medium-
large), and 10% to 128 thread (large) jobs. The “data center” workload consists
of: [(i)] 5 Nginx servers offering static content, each allocating 6 CPU threads.
The servers are hit with 200,000 total requests from Apache Bench [2]. [(ii)] 5
memcached servers, each allocating 6 CPU threads. The servers are hit with a
200 million operation workload generated by YCSB [6]. [(iii)] Spark benchmarks
from the Spark-Bench [12] performance suite, using 5 Spark workers, each allo-
cating 20 CPU threads as a Kubernetes job.

As a baseline, we first run the full HPC workload on all nodes exclusively
and then the data center tasks, representing the typical scenario where Slurm
and Kubernetes time-share the same resources. For the other scenarios, we
deploy both workloads concurrently, colocating them over the same physical
resources, in 6 different configurations: [(i)] Genisys Least Loaded Policy: We
use the Genisys scheduler and our modified version of Slurm that communicates
with Genisys for placement decisions. In Genisys we select the Least Loaded Pol-
icy. [(ii)] Genisys Max Loaded Policy: Same as the previous configuration, but
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using Genisys’s Max Loaded Policy. [(iii)] Unmanaged: We use the default Kuber-
netes scheduler and unmodified Slurm in virtual clusters. [(iv)] Partitioned: Like
Unmanaged, but we statically partition the nodes into a 2-node Kubernetes and
a 3-node Slurm cluster. [(v)] Thread Partitioned 50%: Like Unmanaged, but
we partition the cluster’s nodes by giving 50% of each node’s CPU capacity to
Kubernetes and the rest 50% to Slurm. Kubernetes and Slurm are configured
to each use half of the CPU resources of each node. [(vi)] Thread Partitioned
75%: Same as the previous configuration, but by giving 75% of each node’s CPU
capacity to Kubernetes and 75% to Slurm. The HPC and data center workloads
partially overlap over the same physical resources, as Slurm and Kubernetes see
a total of (150%) of each node’s capacity available.

The execution time of each workload step for the different scenarios is shown
in Fig. 2. In the first graph we show the individual execution times of each work-
load step. The execution time is normalized to the execution of the workloads
when running in dedicated Slurm and Kubernetes installations. The last bar
group shows the execution time of the whole workload. In the second graph we
show the cluster’s CPU utilization over time for each different scenario.

Effect of Different Policies in Genisys: In general, the Least Loaded scenario
is able to run more tasks in parallel and achieve higher cluster utilization, as
spreading the tasks to the least loaded nodes allows for more efficient fitting
when compared to choosing the most loaded nodes. In the case of the Max
Loaded scenario, filling the most loaded nodes first, often leads to situations
where tasks that request a specific number of nodes cannot fit into the cluster.
Some nodes of the cluster are fully loaded and the number of nodes with enough
space is smaller than the requested number of nodes. The Least Loaded policy
achieved (14%) lower total execution times when compared to Max Loaded.

Fig. 2. Performance comparison of the different configurations
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There was also a (4%) higher individual task performance. In the next sections
we use the Least Loaded Policy in order to evaluate Genisys in contrast to other
configurations.

Genisys vs Unmanaged: The Unmanaged setup introduces high interference
between the tasks as Kubernetes and Slurm are not able to coordinate placement,
which leads to resource over-subscription (both Kubernetes and Slurm see each
individual node’s resources as 100% available). Especially in the case of MPI
tasks, this has catastrophic results in their performance, as threads running in
congested nodes will slow down the whole job. During the runs, we observe
that Slurm selects nodes serially, so jobs are packed in the first cluster nodes,
which leaves other nodes underutilized. The Kubernetes default scheduler, on
the other hand, places tasks in a round-robin fashion. The total execution time
needed by Genisys’s Least Loaded Policy to complete the combined workload is
11200 s, which is 25% faster when compared to Unmanaged (14633 s). On average
the individual execution times are 28% faster when using Genisys compared
to Unmanaged. Also, Genisys achieves higher average CPU utilization (90%),
compared to Unmanaged (71%).

Genisys vs Partitioned: The Partitioned approach allows both HPC and data
center tasks to have optimal performance as there is no resource overlapping,
sacrificing, however, overall utilization. Due to restricting workloads into their
corresponding partition, Slurm can not leverage resources from the Kubernetes
cluster even when the execution of the data center tasks finishes. This results in
a higher total workload execution time of 15800 s, 34% slower when compared to
Genisys (11200 s). The average individual task completion time is 4% lower in the
Genisys case. We assume that this is because Genisys spreads the tasks across
all the cluster nodes and is able to better utilize the RDMA network. Again,
Genisys achieves higher average CPU utilization (90%) compared to Partitioned
(75%).

Genisys vs Thread Partitioned: While partitioning the cluster at the CPU
level is an uncommon approach, it is interesting to compare it to Genisys, as
Genisys allows resource sharing between data center and HPC tasks over the
same physical nodes in a similar manner. The main goal of this experiment is
to show that with Genisys we are going to have better resource utilization as
workloads are not restricted to their respective partitions, so when one parti-
tion is underutilized the other will be able to leverage the free resources. The
Thread Partitioned 50% scenario results in higher total workload execution time,
44% slower when compared to Genisys. The average individual task completion
time is 4.5% lower in the Genisys case. Genisys achieves higher average CPU
utilization (82%), compared to Thread Partitioned 50% (56%). In the Thread
Partitioned case, when the data center workload finishes, Slurm is not able to
utilize the Kubernetes nodes. Also due to the smaller number of threads avail-
able to both Slurm and Kubernetes, the tasks can not fit as efficiently as when
running with Genisys. Similar results are obtained when overprovisioning, by
assigning 75% of the resources to each partition. In Thread Partitioned 75%,
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the average individual task completion time is 28% lower in the Genisys case,
which we attribute to even higher interference in congested nodes.

6 Conclusion

This paper presents a method to run HPC workloads in Kubernetes using
portable and extensible containerized environments called virtual clusters. Vir-
tual clusters include Slurm, so users can run existing scripts unmodified, and
are deployed alongside other Kubernetes services on the same physical nodes.
Without any additional changes, the resulting hybrid resource allocation envi-
ronment would have individual Slurm instances operating within their virtual
cluster constraints, unaware of what is happening at the overall cluster-level,
where decisions are made by Kubernetes. To avoid resource allocation conflicts,
we integrate Slurm with Kubernetes, by extending the Slurm controller to dele-
gate placement decisions to Genisys, our custom Kubernetes scheduler.

Our evaluation results indicate that it is not only possible to colocate data
center tasks with HPC jobs when remaining CPU cycles are available, but
with appropriate scheduling it can be beneficial to overall performance. Overall,
Genisys is able to integrate Slurm into the Kubernetes ecosystem with minimal
performance overhead across different task categories. The evaluation shows that
with the use of Genisys it is possible to reduce the execution time of combined
workloads compared to unmanaged and partitioned approaches.

Acknowledgement. We thankfully acknowledge the support of the European Com-
mission under the Horizon 2020 Programme through projects HiPEAC (GA-871174)
and EVOLVE (GA-825061).
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Abstract. Unikernels are single-application operating systems designed
to run as virtual machines. They are popular in the cloud domain and
are considered as a good alternative to containers due to the benefits
they provide in terms of performance, low resource consumption, and
security. This paper investigates the use of unikernels as a platform for
HPC applications. The performance and stability of two unikernel plat-
forms (HermitCore and HermiTux) are experimentally evaluated over
standard representative HPC OpenMP benchmarks. We observe that
unikernels remarkably reduce the overhead due to system calls, leading
to a significant speedup (up to 77%) in system-bound applications. For
applications that are not system-intensive, there are a few performance
differences between the unikernel and the vanilla Linux execution. It
should be remarked that modern unikernel projects are not yet fully
mature, and exhibit stability issues running some OpenMP benchmarks.

1 Introduction

The last decade saw the birth and growth of unikernels, a new field of systems
software research. Unikernels [16,18] are virtualized, lightweight, single-address-
space Operating System images. They are library operating systems (LibOSes)
developed mainly for cloud and networking applications [17]. They fit into small
Virtual Machine (VM) images, have low memory footprints, and boot in less
than a second. They also present performance benefits, such as low-latency sys-
tem calls, that have been demonstrated to significantly speed up cloud and net-
working applications [9,11,12,16]. In addition, Unikernels offer security advan-
tages [19,25], including a reduced attack surface and strong isolation through
hardware-assisted virtualization. Unikernels are thus seen as a potential future
alternative to containers [20], and are a popular research topic in the systems
community. They are mostly explored in the cloud domain [3,8,9,11–13,16,21].

c© Springer Nature Switzerland AG 2022
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Although many of the benefits they provide seem attractive in the field of
HPC, unikernels have not been much explored in this domain. The few related
studies either do not focus on performance [21] or present only microbench-
marks [13].

This paper investigates the applicability of unikernels to execute HPC appli-
cations. We start by reviewing the high-level strengths and limitations of the
unikernel OS design in the context of HPC. We identify the strengths in terms of
performance (fast system calls, reduced OS noise), security (strong isolation) and
lightweightness (low memory footprint). Concerning the limitations, we note that
unikernels are still at the state of prototypes and suffer from a lack of maturity:
they have a relatively poor degree of compatibility regarding hardware (Symmet-
ric Multiprocessing and GPU/Infiniband devices support) and software [14,21]
(programming languages, applications, libraries, toolchains) components. This
lack of maturity also translates into stability issues with some applications at
runtime. Finally, the fact that most unikernel models are developed by small
teams of volunteers/academics raises questions regarding the long-term mainte-
nance of these projects. Focusing on shared-memory multithreaded HPC appli-
cations (OpenMP), we study the existing unikernels models and identified the
best candidates for running such programs: HermitCore [13] and HermiTux [21].

Using standard OpenMP benchmarks, we evaluate the performance of uniker-
nels by comparing the execution times on HermitCore and HermiTux compared
to vanilla Linux. We observe that the fast system calls feature of unikernels can
bring significant speedups to the OpenMP applications for which are frequently
calling the operating system mainly through scheduler-related system calls. For
applications that are not OS-intensive, i.e. not performing frequent system calls,
the performance difference between unikernel and Linux execution is relatively
negligible.

Finally, we evaluate the stability of unikernels over the Bots [6] and
Rodinias [4] benchmarks and highlight the issues of crashes and deadlocks.

To sum up, this paper proposes the following contributions:

– A review of the current unikernel benefits and limitations in the context of
HPC applications.

– Based on that review and focusing on shared-memory multithreading, the
identification of the most suitable unikernel models to execute OpenMP pro-
grams: HermitCore [13] and HermiTux [21].

– A stability evaluation of these two unikernels highlighting maturity issues
with some programs.

– A performance evaluation of HermitCore and HermiTux over standard
OpenMP benchmarks demonstrating performance improvement for OS-
intensive applications.

This paper is organized as follows: Sect. 2 gives some background about
unikernels. Section 3 presents our experimental setup. Section 4 deals with the
experimental stability evaluation while Sect. 5 focuses on experimental perfor-
mance evaluation. Finally, Sect. 6 concludes the paper.
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2 A Background on Unikernels

The idea behind unikernels originates from the observation that in many virtu-
alization use cases, a full-fledged VM is deployed for the sole reason of running a
single application (e.g. a web server, a database, etc.). The vast amount of soft-
ware that is included in the VM, but that is not necessary to the application’s
execution represents as many software bloats [24]. Software bloat, also known as
bloatware, refers to unneeded software that is pre-installed (e.g. libraries, exe-
cutables) and running (e.g. deamons) in a traditional distribution, but also from
the large monolithic guest kernel (Linux), of which only a small subset of the
services are needed for the executed application. This software bloat impacts
performance as well as resource usage and thus costs. In terms of security it
also represents a wide attack surface. Although the use of containers [20] may
partially solve these issues, for security reasons practitioners do not fully trust
inter-container isolation [19] as shown by the current trend of running contain-
ers within VMs [22]. Originally proposed in the MirageOS seminal paper [16]
in 2013, with the unikernel OS model, an application is statically compiled into
a binary with only the necessary libraries and a thin OS layer, in order to be
executed as a virtualized guest on top of a hypervisor. The unikernel OS layer
is a LibOS [7], and as such when the unikernel is built at compile time, only the
necessary OS services are included [11]. Figure 1 illustrates how unikernels tackle
the previously mentioned issues By running only the necessary software. Uniker-
nels reduce resource consumption, increase efficient (i.e. application) resource
usage, and lower the attack surface. From the security standpoint, a unikernel
instance is in effect a VM and hence does not suffer from the isolation issues of
containers [19].

Fig. 1. Illustration of a traditional VM (left) and a unikernel (right).

A unikernel instance executes a single application within a single address
space. As such, within a guest OS the unikernel does not need to maintain
inter-application isolation. This removes the need for user-kernel isolation and
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Table 1. List of Bots benchmarks, and their respective OpenMP variants.

Implementation Alignment FFT Fib Floorplan Health NQueens Sort SparseLU Strassen

omp-tasks � � � � � � �
omp-tasks-tied � � � � � � �
omp-tasks-if_clause � � � � �
omp-tasks-if_clause-tied � � � � �
omp-tasks-manual � � � � �
omp-tasks-manual-tied � � � � �
for-omp-tasks � �
for-omp-tasks-tied � �
single-omp-tasks � �
single-omp-tasks-tied � �

all the code in a unikernel instance, including user code, executes on the pro-
cessor with full privileges (supervisor mode i.e. protection ring 0 for x86-64).
This has the interesting effect of transforming system calls into common func-
tion calls. A traditional system call is a costly operation [23] that is involving an
interrupt and a world-switch. Function calls’ latency being one to several orders
of magnitude faster, and thus unikernels can bring significant speedups to OS-
intensive applications [9,11,12]. It should be noted that the isolation between
different unikernel instances (i.e. different applications) running on the same host
is still maintained by the hypervisor. With their minimalist design, unikernels
represent a form of lightweight virtualization: their memory and disk footprints
can be as low as a few megabytes [11], and their boot time is in the order
of a few milliseconds [21]. There exist several unikernel platforms [3,5,8,11–
13,16,21,27], which can broadly be classified into two categories: Language-based,
and POSIX-Like unikernels. Language based unikernels support running appli-
cations which are written in a high level memory-safe language. Examples include
MirageOS [16] (OCaml), LING [5] (Erlang) or HalVM [26] (Haskell). Although
this provides some benefits in terms of security and optimizations, a major down-
side of language-based unikernels is the high cost of porting legacy applications
which are not originally written in the associated language. On the other hand,
POSIX-like unikernels aim at offering legacy application compatibility to some
extent. Some of those unikernels (e.g. Rumprun [8] and HermitCore [13]) are
source-level compatible, i.e. generally interfacing with the application at the
level of the C library. Others are binary-compatible in order to avoid recompi-
lation, which means that they can run unmodified binaries from a popular OS,
Linux. Binary compatibility can be achieved at the system call level as with
HermiTux [21] and Unikraft [11] or, in a more restrictive way, at the libc level
as with OSv [9] and Lupine Linux [12].
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3 Experimental Setup

Hardware Description. For the experimental evaluation, we have make use
of two nodes of two clusters of Grid’5000 [2]. The nova node is a Dell Pow-
erEdge R430 node equipped with two 8-core Intel Xeon E5-2620v4 Broadwell
CPU (2.10GHz). The gros node is a Dell PowerEdge R640 equipped with a
18-core Intel Xeon Gold 5220 Cascade Lake-SP CPU (2.20GHz). The hyper-
threading feature was disabled.

Unikernel Models. We use the HermitCore and HermiTux1 unikernels, and a
Debian 10 distribution (Linux kernel version 4.19.0-14-amd64) to have a base
reference.

Due to unikernels limitations regarding OpenMP and compilers, we have been
forced to compile specific executables for Linux and each unikernels. HermitCore
executables are compiled with HermitCore’s toolchain (GCC v6.3), and Hermit-
Core’s OpenMP Intel runtime (v5.0) compiled with GCC v6.3. Note that the use
of HermitCore’s toolchain is mandatory with this unikernel, forcing the use of
these relatively outdated compiler and OpenMP versions. HermiTux executables
are compiled with Clang/LLVM version 11, and linked with the LLVM OpenMP
runtime version 11 (compiled with Clang v11) thanks to HermiTux’ GCC wrap-
per. For our Linux baseline, executables are compiled with Clang/LLVM version
11, and use the LLVM OpenMP runtime version 11 (compiled with Clang v11).

Benchmarks. Experiments have been made with two set of benchmarks.

Bots Benchmarks. The Bots benchmarks [6] have been developed by the
Barcelona Supercomputing Center. They are used for evaluating various
OpenMP tasking implementations for some given problems. We make use of the
8 codes: alignement, fft, fib, floorplan, health nqueens, sort, sparselu,
as well as strassen. These codes have several OpenMP implementation variants
(from 2 to 6 versions). We are using all the variants to evaluate whether they
have an impact. Table 1 sumps up these variants.

To compile the Bots benchmarks for HermitCore, two modifications were
performed on the sources as HermitCore does not support the utsname structure
and the basename(). As they are not critical, we remove their usage. Compiling
for HermitCore further required to update the benchmarks’ build infrastructure
to make use of the unikernel specific toolchain. On the other hand, building
for HermiTux was as simple as a standard Linux build and required no source
modifications, demonstrating the benefits of binary-compatibility [21].

1 The commit used for HermiTux is: d92b5bd from https://github.com/ssrg-vt/
HermiTux; and for HermitCore the commit is: 2ff4836 from https://github.com/
hermitcore/libhermit.

https://github.com/ssrg-vt/HermiTux
https://github.com/ssrg-vt/HermiTux
https://github.com/hermitcore/libhermit
https://github.com/hermitcore/libhermit
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Rodinias Benchmarks. The Rodinias benchmarks [4] are designed to evaluate
different accelerators for compute-intensive applications: OpenMP, OpenCL, and
CUDA. They are composed of existing codes and come from many scientific
domains. Note that some of the Rodinia’s benchmarks showed some crashes and
strange behavior, and as such we present results here for the stable ones: Lud (LU
Decomposition) and LavaMD (3D Molecular Dynamics). These represent long and
compute-intensive applications. We only used the OpenMP versions.

4 Stability Evaluation

This section illustrates the stability evaluation of the HermitCore and HermiTux
unikernels on the Bots benchmarks.

Fig. 2. Percentage of crashes and deadlocks of all Bots benchmarks for HermitCore
and HermiTux, averaged across all variants, in function of the number of core.

While experimenting with these unikernels, we observed two types of faults:
crashes and deadlocks. A crash occurs when a program aborts its execution
prematurely through an exception such as a page fault or a general protection
fault. A deadlock occurs when a program’s execution seems stuck for an abnormal
amount of time. This limits has been arbitrarily fixed at the time measured on
our Linux baseline plus 20 s. Still on the baseline, please note that all benchmarks
considered here execute without any crash or deadlock on Linux (Debian 10).

For this study, we consider three parameters: the OS kernel type, the number
of cores, and the program. The three kernel types have been considered: Her-
mitCore, HermiTux and a Linux baseline (a Debian 10 distribution with Linux
v4.19). The number of cores varies from 1 to 16 cores. With respect to programs,
we make use of all the variants of the Bots benchmarks.

Stability Improvements of HermiTux. Preliminary experiments highlighted
two major bugs in HermiTux’ kernel. A first issue was a bug in the memory man-
agement subsystem, that occurred for a particular use case of the mmap system
call. The second issue was a thread management bug that caused deadlocks.
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After filing a bug report, these issues were fixed by HermiTux’ main developer
and in the rest of this section we give result for the version of HermiTux with
these bug fixes.

Impact of the Number of Cores on Stability. Figure 2 shows that Hermit-
Core and HermiTux have some differences in stability. For HermitCore, there
is at least one configuration that leads to a crash and/or a deadlock for all
benchmarks. However, there is only one situation (alignement, 1 core) that
systematically crashes. For other benchmarks, increasing the number of cores,
usually leads to a higher probability of crash and/or deadlocks. One and two
core execution do not show crash or deadlocks but for alignement.

For HermiTux, there are two benchmarks (alignement and strassen) that
are not able to complete (due to either crash or deadlock) in all configurations.
For strassen and sparselu, it is interesting to note that the crash probabil-
ity decreases with the number of cores. For the other benchmarks, HermiTux
experienced very few crashes and few deadlocks.

Impact of the OpenMP Parallelization on Stability. Figure 3 displays the
percentage of crashes and deadlocks for all Bots benchmarks in function of the
parallelization variants (c.f., Table 1). For HermitCore, the impact of the variant
is not very relevant but for floorplan, where there is a huge difference between
the if_clause (tied or nod) and the manual (tied or not). This situation is not
observed in other benchmarks.

The situation for HermiTux is very similar as the variants do not impact
stability but for floorplan and sparselu where each code has a variant that
crashes and/or deadlocks, respectively omp-task and single-omp-tasks.

Fig. 3. Percentage of crashes and deadlocks of all Bots benchmarks for HermitCore and
HermiTux, averaged across the number of cores, in function of the OpenMP variants.
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Fig. 4. Execution times for sparselu and fib benchmarks, omp-tasks variant.

5 Performance Evaluation

Overview. In this section, we evaluate the performance of the HermitCore and
HermiTux unikernels on a subset of the Bots and Rodinias benchmarks. Two
main metrics are used in the experiments: the execution time and the number
of systems calls executed. As this latter is difficult to measure with Unikernels,
we measure it on the vanilla Linux with the strace command.

We consider four parameters: the OS kernel version, the number of cores (1
to 16 cores), the program, and the CPU model (nova or gros node). Note that
we only use the omp-tasks variant as the goal is to study the impact of uniker-
nels. For executables that experienced some crashes or deadlocks, we execute
as many times it is required to obtained 20 successful executions. For the Bots
benchmarks, we mainly report the results for fib and sparselu as they are
representative of the rest of the benchmarks. From the Rodinias benchmarks, as
discussed above we select LavaMD and Lud.

Performance Results: Bots Benchmarks. The results fall into two classes.
For space constraints, we only present one typical example for each class: Fig. 4
displays the execution time for sparselu and fib. For sparselu, both unikernels
and Linux have similar and classical performance. In fact, this is the case for
most of the benchmarks. HermitCore tends to be slightly slower than HermiTux.
A potential explanation is that HermitCore’s executables are compiled with an
older compiler compared to HermiTux’ (GCC v6.3 vs. clang/LLVM 11).

For two particular benchmarks (fib and nqueens– not displayed), uniker-
nels dramatically accelerate execution time when the number of cores increases.
With 16 cores, fib.omp-tasks and nqueens.omp-tasks benchmarks are two
times faster when they are executed with a unikernel than with Linux. This is
due to the fast system calls feature of unikernels: indeed we observed that these
particulars benchmarks make very frequent scheduling-related system calls. Our
Linux’ baseline presents a high system call latency, while the unikernels signif-
icantly reduce it. We also observe that HermitCore is faster than HermiTux.
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Fig. 5. Systems calls performed during the execution of the benchmarks.

Fig. 6. LavaMD and Lud Rodinias benchmarks, executed on a gros node.

This is due to the fact that in HermitCore, system calls are pure function calls,
while HermiTux still uses a trap-based mechanism to provide binary compati-
bility [21]. Still in HermiTux that operation is significantly optimized compared
to Linux’ system calls, which explains why HermiTux is much faster than the
baseline for these OS-intensive benchmarks.

We traced the system calls made by these benchmarks using strace. Figure 5
displays a graph where the number of sched_yield systems calls performed by
an execution of the benchmarks on Linux is plotted in function of the number
of cores. As the number of system calls invoked other than sched_yield is neg-
ligible, we do not display them. Some benchmarks clearly stand out by perform-
ing a lot of sched_yield system calls. These benchmarks are fib.omp-tasks
and nqueens.omp-tasks where we observed a better performance on unikernels
than on vanilla Linux. Hence, we can infer that the execution time improvement
comes from the high number of sched_yield performed. In addition, we note
that for benchmarks where we observe similar performance between unikernels
and Linux, we also observe a much smaller number of sched_yield which also
seem coherent.
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The source of these high numbers of sched_yield system calls seems to
be the LLVM OpenMP runtime that use this system call for its task stealing
paradigm. fib and nqueens are not compute intensive: they do no generate not
enough tasks hence leading to many yield operations.

Since the discovery of the SPECTRE [10] and Meltdown [15] side-channels
in Intel processors, the cost of system calls have greatly increased on most CPU
models due to the introduction of the corresponding software mitigation, Kernel
Page Table Isolation (KPTI), involving an additional page table switch introduce
upon invocation and return from system calls. The nova node we used to run the
benchmarks is equipped with an Intel CPU requiring KPTI. More recent Intel
CPUs include a hardware-based mitigation that negates the need for KPTI,
significantly improving system call latency with Linux. To verify if the impact
of system calls on the time execution was due KPTI, a costly software fix that
we deem temporary in terms of processor generations, we ran the benchmarks
on a gros node that includes the hardware fix and does not require KPTI. Still,
experiments show that the performance profile is similar when the benchmarks
are executed on the new CPU. Hence, the fix of these vulnerabilities does not
show to have an impact on the behavior of the performance, and it is likely
that the fast system call feature of unikernel will be beneficial versus traditional
Linux system calls in the long term.

Performance Results: Rodinias Benchmarks. Figure 6 shows the execution
time for two Rodinias benchmarks: LavaMD and lud_omp. The execution times
of unikernels and Linux are very similar to compute intensive benchmarks of the
Bots benchmarks.

Fig. 7. Systems calls performed for lavaMD and Lud benchmarks
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Figure 7 shows that the number of sched_yield system calls performed by
the two benchmarks are low. This confirms the fact that unikernels take advan-
tage when Linux is slowed down by the many systems calls performed by a
program or a runtime. When a program is compute-intensive, unikernels does
not stand out by accelerating its execution.

6 Conclusion

In this paper we conduct a stability and performance evaluation of two unikernels
using OpenMP benchmarks. We highlight performance improvements (up to
77%) for applications making frequent system calls. We also demonstrate the
lack of maturity of unikernels, in the form of stability issues (deadlocks, crashes)
on our benchmarks. We conclude that, although unikernels do have benefits to
bring in the domain of HPC, they are still facing many limitations that will
undoubtedly hinder a wide adoption for the time being. Still, we believe that
addressing these issues is a matter of engineering. Most of these problems are in
the process of being solved, and the emergence of unikernel projects backed up
by major industrial actors (e.g. Unikraft) gives hope for a growing adoption in
the years to come.
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Abstract. This paper shows how to use a Linux-based operating system
as a real-time processing platform for low-latency and predictable packet
processing in cloudified radio-access network (cRAN) scenarios. This use-
case exhibits challenging end-to-end processing latencies, in the order of
milliseconds for the most time-critical layers of the stack. A significant
portion of the variability and instability in the observed end-to-end per-
formance in this domain is due to the power saving capabilities of mod-
ern CPUs, often in contrast with the low-latency and high-performance
requirements of this type of applications. We discuss how to properly
configure the system for this scenario, and evaluate the proposed config-
uration on a synthetic application designed to mimic the behavior and
computational requirements of typical software components implement-
ing baseband processing in production environments.

1 Introduction

Networking infrastructures are experiencing a huge paradigm shift, with an ever-
increasing need to support, among others, mobile scenarios with higher and
higher performance requirements, both in terms of networking bandwidth and
of predictable or ultra-low latency. This requires a great degree of flexibility and
adaptation in the management of physical resources, where a number of lessons
learnt from the domain of cloud computing are being applied in the context of
networking infrastructures. For example, this is witnessed by the recent rise of
network function virtualization (NFV) [3,4] (often coupled with software-defined
networking (SDN) [9]).

A NFV infrastructure hosts a number of Virtualized Network Functions
(VNFs) that need to process packets with low latency. In 5G mobile scenar-
ios, this latency has to be controlled even in the milliseconds-scale, to support
properly ultra-reliable low-latency communications (URLLC) [2,7], one of the
c© Springer Nature Switzerland AG 2022
H. Anzt et al. (Eds.): ISC High Performance 2022 Workshops, LNCS 13387, pp. 371–382, 2022.
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key characteristics of 5G architectures enabling mobile communications in mod-
ern and future use-cases in such areas as industrial manufacturing and factory
automation, robotics and automotive. For example, individual VNF components
hosted in an NFV infrastructure may sometimes have available a “budget” in
terms of processing latency [6] that can become as little as 1ms, which is the case
of baseband packet processing, the use-case we focus on in the present paper.

One of the advantages of applying cloud principles to NFV infrastructures,
is the ability to host a diverse set of workloads with heterogeneous requirements
within a shared physical infrastructure. This is a geo-distributed and multi-
site data center equipped with flexible storage solutions and general-purpose
servers, where different VNF components are often co-located on the same phys-
ical servers in the form of virtual machines or containers.

However, due to the strict timing requirements of the scenarios mentioned
above, it is of paramount importance to be able to guarantee that the end-to-
end performance of hosted applications is not impaired by: a) the virtualization
layer, often used to achieve the needed flexibility in management of the physical
resources throughout the NFV infrastructure; b) the temporal interferences due
to the co-location of multiple VNF components onto the same servers.

The second problem is well-known and often referred to as the “noisy neigh-
bour” problem. It is generally tackled in both general cloud and NFV infras-
tructures by recurring to a number of custom configurations of the virtualized
or containerized environment for hosting guests, typically by [10]: disabling over-
provisioning in the virtual to physical CPU allocation, and applying a static map-
ping among them (core pinning); similarly, disabling memory over-commitment
and dynamic allocation (ballooning); deploying data-intensive components with
greater risks of interference in different NUMA nodes, so to minimize the inter-
ferences among their data paths in the hierarchical memory subsystem, i.e., pre-
venting contention at the L2-cache access and memory-controller levels; disabling
hyperthreading. However, some of these configurations (such as, for example,
disabling hyperthreading) are not recommended in cloud environments because
they end up decreasing the CPU throughput and the possibility to run multiple
applications on the cloud nodes.

This paper provides an experimental evaluation of the impact of various hard-
ware and OS tuning features mentioned above. We focus on an industrial use-case
scenario tied to low-latency packet processing for 5G/URLLC, namely baseband
packet processing. The results show that with careful tuning of the hardware and
software configuration it is possible to remove most of the sources of interference
and tail-latency (making it possible to host such an application with the required
level of time-predictability) without compromising the CPU throughput and the
performance of other applications running in the cloud. While previous works [5]
disabled features like hyperthreading to achieve more predictable response times,
this work shows how hyperthreading can be left enabled without compromising
the real-time performance of the baseband software.
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Fig. 1. Model of the baseband application as a DAG.

2 Scheduling the BaseBand Application

In RAN packet processing, multiple frequencies of the available spectrum are
used to handle communications, where the time is divided into Transmission
Time Intervals (TTIs) all having the same duration. In each TTI, data is received
by the various radio cells, and new data is prepared to be transmitted to them.

The baseband software considered as a test-case for this work is designed to
serve n cells and is a multi-threaded application, described by the directed acyclic
graph (DAG) shown in Fig. 1. This is composed of: an I/O thread, responsible
for communications with the remote radio units (“Input” and “Output” nodes
in the figure); n uplink threads processing data received from one of the cells;
a scheduler thread, coordinating the use of the spectrum and time slots within
each TTI; n downlink threads preparing data to be sent to one of the cells. In
practice, there is an uplink thread and a downlink thread per cell.

For the sake of simplicity, assume that the I/O thread periodically activates
all the uplink threads at the beginning of each TTI. After executing for some
time, each uplink thread sends an activation to the scheduler thread and then
blocks until the beginning of the next TTI (next activation from the I/O thread).
After receiving an activation from all the n uplink threads, the scheduler thread
wakes up, executes for some time, and then activates all the downlink threads. If
the end of the TTI arrives before all the uplink threads sent an activation to the
scheduler thread, a timeout fires and the scheduler thread is activated anyway.
Each downlink thread, after being activated by the scheduler thread, executes
for some time and then terminates; all the n downlink threads should terminate
before the end of the period.

Hence, we measure an end-to-end response time from the activation of the
first uplink thread to the termination of the last downlink thread. This end-
to-end response time should be smaller than an end-to-end relative deadline
D which is equal to the TTI duration. If such a deadline is seldom missed,
then higher-layer protocols can recover by re-transmits, but if this occurs too
frequently, then the transmissions degrade in quality or even fail. Looking at
Fig. 1, we can see that if Cul, Csched, and Cdl are the WCETs (worst case exe-
cution times) of the uplink, scheduler and downlink threads, then the maximum
end-to-end response time, equal to the longest path from I/O to the downlink
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termination (maximum makespan of the DAG), is Cul+Csched+Cdl. So, the par-
allel task will respect the deadline D if Cul + Csched + Cdl ≤ D. This response
time can be obtained by scheduling all the threads as soon as they are acti-
vated, and using n CPU cores (a core sequentially executes an uplink thread,
the scheduler thread and a downlink thread, the other n − 1 cores execute an
uplink thread and a downlink thread). Hence, the end-to-end response time can
be minimized by having only one active real-time thread per core, avoiding tem-
poral scheduling; in this case, a SCHED FIFO scheduling policy is considered to be
the best option to run this application: if each thread is assigned the maximum
real-time priority, then it is scheduled as soon as it activates, as required. More
advanced scheduling policies such as SCHED DEADLINE [1,8] could be useful when
the CPU scheduler has to schedule multiple real-time threads on the same CPU
core, or when it is necessary to limit the fraction of CPU time consumed by a
real-time application. Pinning real-time threads to specific CPU cores can be
useful to avoid migrations and reduce the scheduling overheads, or to cope with
the unpredictabilities caused by hyperthreading, as shown in Sect. 3.

When there are no uplink/scheduler timeouts, the scheduler executes only
after all the uplink threads are finished, and the downlink threads execute only
after the scheduler thread is finished; so, if the total end-to-end time is smaller
than 1 TTI, then this property is respected using n cores only. If an uplink thread
takes more than 1 TTI (scheduler timeout) or the total end-to-end response time
is larger than 1 TTI (uplink threads are activated while downlink threads are
still active), then 2n cores could potentially be needed.

For certain scenarios, a typical pattern of execution times could look like
the following: the execution times of the uplink threads are generally shorter
than 500µs (except for a few rare outliers), the execution times of the scheduler
thread are generally smaller than 100µs, and the execution times of the downlink
threads are generally smaller than 300µs. However, there are a few sources of
non-determinism causing fluctuations in these numbers, i.e., radio link quality,
channel coding, cell load, and others. Assuming Cul = 500µs, Csched = 100µs,
and Cdl = 300µs, we have Cul +Csched +Cdl = 900µs, so a TTI of 1 ms can be
supported using n CPU cores.

If, instead, execution times distributions with longer tails are assumed, then
2n CPU cores might be needed.

3 CPU Configuration

The goal of this work is to run a virtual baseband application on a large server
based on multiple Intel x86 CPUs with a large number of cores. These modern
CPUs are designed to maximize the average performance/throughput and reduce
power consumption by using various mechanisms. The three most important
ones are Dynamic Voltage and Frequency Scaling (DVFS), CPU idle states,
and hyperthreading. In particular, DVFS and idle states allow reducing power
consumption when the server is not fully loaded, while hyperthreading allows
doubling the number of logical CPU cores seen by applications.
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The hyperthreading technology allows the OS kernel to see a single CPU core
(referred to as hardware core in the following) as two siblings (also referred to
as logical cores or hardware threads). This means that if a CPU is composed of
n hardware cores the OS can use 2n siblings to schedule the application tasks.
Technically, this result is achieved by duplicating the hardware resources that
store the state of each core (such as the CPU registers). Other hardware resources
such as the ALU, the caches, and similar, instead, are not duplicated and are
shared by the siblings executing on the same physical core. The two siblings
executing on the same physical core risk competing for the execution resources
that are not duplicated; hence, running an application on a sibling can slow
down the execution of applications on the other one. This makes the execution
unpredictable, and this is why hyperthreading is often disabled when real-time
performance and determinism are important.

When a CPU is idle (it has no tasks to execute), some hardware components
can be turned off to save some energy. Modern CPUs allow to achieve this result
by entering different idle states; for example, Intel CPUs can be in different “C-
states” (named, C0, C1, etc.). Increasing the state number, a C-state is said to
be “deeper”, stops more hardware components, and allows saving more energy.
Returning from an idle state to C0 takes some time, which increases with the
state number (deeper C-states have longer exit and entry latencies). This is why
modern operating system kernels such as Linux allow disabling some (or all)
of the idle states. When all the idle states are disabled and a CPU is idle, it
executes a busy loop in the idle task.

In Intel CPUs, C-states are per physical core (so, a hardware thread can-
not enter an idle state if the other sibling of the physical core is executing
machine instructions), however, Linux allows disabling C-states for individual
logical cores. When a sibling is idle and can enter an idle state, it is stopped
(so, a single sibling remains active on the physical core) but the C-state of the
physical core does not change until its other sibling also needs to enter an idle
state.

Finally, the DVFS mechanism allows lowering the working frequency of CPU
cores (and consequently the voltage at which the CPU is driven) to save some
energy. Obviously, the frequency of a core should be reduced when the core is
not fully loaded. Generally, the OS is responsible for selecting the most appro-
priate working frequency for the various CPU cores, based on an estimation of
the system workload or on some constraints imposed by the applications run-
ning in the system. The various frequency/voltage configurations supported by a
CPU are often known as Operating Performance Points (OPP) or Power States
(P-states); even if in modern Intel CPUs the P-state concept is more advanced
than a simple frequency/voltage configuration, the Linux kernel internally maps
P-states to CPU frequencies, making it possible to give the CPU hints regard-
ing the frequencies at which its cores should work. Obviously, when the DVFS
mechanism is active the CPU speed becomes less predictable: even if the fre-
quency scaling algorithm is configured to always select the maximum possible
speed when a real-time task is active, the time needed to switch frequency can
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Fig. 2. CDF of the end-to-end response time with deterministic execution times and
various CPU configurations.

negatively affect the real-time performance. This is why DVFS is generally dis-
abled (and the CPU is driven at an almost constant frequency—even disabling
mechanisms such as the “turbo mode”) when real-time performances need to be
guaranteed.

As mentioned, the general guidelines for executing real-time applications on
modern CPUs recommend to disable frequency scaling, idle states and hyper-
threading. Some preliminary results (see below) confirm that with this configu-
ration (named “Real-Time CPU” configuration in the following) the CPU can
support deterministic execution of the baseband real-time application. However,
in a cloud environment it would be useful to keep hyperthreading enabled, to
give more CPU time to non-real-time applications running in background.

To experiment with various possible hardware and software configurations
using a deterministic and reproducible real-time workload, we implemented a
synthetic application that, from a task scheduling perspective, behaves similarly
to a softwarized baseband software (same number of threads and synchroniza-
tion among them), but allows users to control the execution times of the various
threads. Basically, the synthetic application reproduces the thread synchroniza-
tion used by the real baseband software, but the various threads consume CPU
time by executing busy loops instead of decoding/encoding the radio signal (the
loop counters are calibrated so that each thread executes for the desired amount
of time). All the tests have been performed on a server equipped with a dual
Intel(R) Xeon(R) CPU E5-2640 v4 running at 2.40 GHz (having 10 physical
cores per CPU; with hyperthreading enabled there are 40 siblings).

First of all, we tested various CPU configurations with the synthetic appli-
cation configured for 2 cells (2 uplink threads and 2 downlink threads) and
deterministic execution times Cul = 500µs, Csched = 100µs, and Cdl = 300µs.
Figure 2 reports the Cumulative Distribution Function (CDF) of the end-to-end
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response times measured with different CPU configurations ranging from the
“Default CPU” configuration (DVFS, turbo mode, idle states and hyperthread-
ing are enabled) to the “Real-Time CPU” configuration (DVFS, turbo mode,
idle states and hyperthreading are all disabled).

Looking at the figure, there are some interesting results to be noticed. First
of all, it can be seen that the “Real-Time CPU” configuration works as expected,
and the response times are always very close to the theoretical value of 900µs
(the CDF plots the probability to measure an end-to-end response time smaller
than the value r on the x-axis, hence an almost vertical line indicates almost
deterministic response times). Another interesting fact to be noticed is that
the “Fixed Frequency no idle states” configuration also exhibits deterministic
response times, but they are larger than the theoretical value (around 1350µs
instead of 900µs). All the other plots show a much larger execution-time varia-
tion, and the result changes from run to run, while the “Real-Time CPU” and
“Fixed Frequency no idle states” configurations generate reproducible results.

Another interesting thing to be noticed in the figure is the “No idle states”
curve, which looks strange since it shows that disabling the CPU idle states
increase the response times and make them less deterministic. This strange
behaviour can be explained by noticing that this configuration disables all the
idle states (C-states deeper than C0) for all the CPUs seen by the Linux kernel
(which, in this case, are logical cores). In this configuration, all the idle siblings
will execute a busy loop in the idle task. Hence, if the real-time application is
executing on the first sibling of a physical core and the second sibling of such
physical core is idle, then the real-time application will experience the interfer-
ence of the idle loop running on the second sibling!

This also explains the increased response times incurred when using the
“Fixed frequency no idle state” configuration. To address this issue, idle states
should be disabled only on the logical cores executing real-time applications (in
this way, when the other sibling is idle, it is stopped and does not interfere with
the execution of the real-time application). To do this, the real-time application
has to be pinned to a limited number of siblings (so that it is possible to know
in advance on which siblings the real-time application will execute and to dis-
able idle states only on them). This configuration will be referred to as “Fixed
frequency no idle states on RT cores” in the following.

Of course, the “Fixed frequency no idle states on RT cores” configuration
can improve the real-time performance when some cores are idle, but does not
offer significant advantages when all the logical cores are heavily loaded. To
get good real-time performance in this situation (without resorting to disabling
hyperthreading completely) it would be necessary to make sure that while a
real-time thread is executing on a sibling nothing is scheduled on the second
sibling of its physical core. This result can be achieved by using a functionality
that has been recently introduced in the Linux kernel, named Core Scheduling1.

1 https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.
html.

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
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Fig. 3. CDF of the end-to-end response time with deterministic execution times.

With Core Scheduling it is possible to assign “cookies” to threads, and the
kernel CPU scheduler will make sure that only tasks with the same cookie exe-
cutes simultaneously on the same physical core (so, if a thread with cookie C is
executing on the first sibling of a physical core, then only threads with cookie C
can execute on the second sibling—if no other thread with cookie C is ready for
execution, the second sibling is left idle).

Although Core Scheduling has been originally developed to address security
issues (mitigating hardware bugs such as L1TF2), it can be used to increase the
predictability of real-time applications. By assigning unique cookies to the real-
time threads (and leaving non-real-time threads with no cookies), it is possible
to make sure that real-time threads do not share their physical cores with any
application (and hence do not suffer of any interference due to hyperthreading).
This configuration will be named “Core Scheduling” in the following.

4 Experimental Results

An extensive set of experiments has been performed on the server described in
Sect. 3 to evaluate the previously discussed configurations and the effectiveness
of the core scheduling mechanism.

Figure 3 reports the CDFs of the end-to-end response times for the most
stable CPU configurations when the threads execution times are assumed to
be deterministic (and equal to the worst-case values). For the sake of simplic-
ity, from now on “FF” represents the “Fixed Frequency” CPU configuration,
“FF-NoIdle” represents the “Fixed frequency, no idle states” configuration, and
2 https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html.

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
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Table 1. Summary of the naming used for various CPU configurations.

Name Description

Default DVFS, turbo mode, idle states and hyperthreading
enabled

FF Fixed Frequency (DVFS and turbo mode disabled)

FF-NoIdle Fixed Frequency, no idle states (DVFS, turbo mode
and idle states disabled)

FF-NoIdleRT Fixed Frequency, no idle states on RT cores (DVFS
and turbo mode disabled, idle states disabled only on
the cores where the real-time threads execute)

Core Core scheduling (as above, but core scheduling is used
to ensure that when a real-time thread executes on a
physical core, no other thread can execute on the
other sibling of the physical core)

RT Real-Time CPU configuration (DVFS, turbo mode,
idle states and hyperthreading disabled)

“FF-NoIdleRT” represents the “Fixed frequency, no idle states on RT cores” con-
figuration (Table 1 summarizes these symbols). In this experiment, the baseband
software is the only application running in the server, which is otherwise idle,
hence most of the response times are lower respect to Fig. 2. As already noticed
in Sect. 3, the Real-Time CPU configuration is very effective in providing deter-
ministic response times near to the theoretical value of 900µs. “FF-NoIdle”
also results in deterministic response times, but introduces an additional delay
due to the interference of the idle loop with the siblings where the real-time
threads are executing. Notice that the “RT” and “FF-NoIdle” curves are iden-
tical to the ones of Fig. 2, confirming the determinism of these configurations.
“FF-NoIdleRT” reduces the response times of “FF-NoIdle” by pinning the real-
time threads on siblings 0 and 2, and disabling the CPU idle states only on these
two siblings (as previously described).

The experiment has also been repeated using randomly-distributed execu-
tion times for the real-time threads, instead of considering their worst-case
values (see Fig. 4). To account for some outliers executing for more than the
expected WCETs, the probability distributions of the execution times3 have
some tails larger than Cul, Csched and Cdl (hence, the average execution times
are smaller than in the previous experiments while the maximum execution times
are larger—although very infrequent).

When the system is loaded with some background non-real-time applica-
tions, things look more interesting and both “FF” and “FF-NoIdleRT” result
in response times comparable with the “FF-NoIdle” configuration (so, not good
for real-time). This is where core scheduling can help. To investigate this setup,
we executed some more experiments pinning the real-time threads to siblings 0

3 In this case, gaussian distributions have been used for the sake of simplicity.
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Fig. 4. CDF of the end-to-end response time with gaussian execution times and no
additional load.

Table 2. CPU throughput for non-real-time applications running in background.

ffmpeg4 ffmpeg2 Prime4 Prime2

FixFreq 1496 (100%) 897 (100%) 84794 (100%) 69091 (99.9%)

No idle states 1001 (61.9%) 853 (95%) 70390 (83%) 69102 (100%)

No idle on RT cores 1253 (83.7%) 886 (98.7%) 78168 (92.2%) 69084 (99.9%)

Core scheduling 1195 (80%) 837 (93.3%) 76117 (89.7%) 67780 (98%)

Real-Time CPU 917 (61.3%) 789 (88%) 61882 (72.9%) 58417 (84.5%)

and 2 and running a CPU-intensive application on siblings 20 and 22 (the two
hardware threads sharing physical cores with siblings 0 and 2). We selected two
different CPU-intensive applications to run in background: a synthetic bench-
mark using n threads to compute prime numbers and a more realistic application
transcoding some audio and video in background (using ffmpeg). The results are
reported in Fig. 5 and show that the “RT” and the “Core” configuration result
in very similar response times (which are basically identical to the ones shown
in Fig. 4). All the other configurations result in large response times due to the
interference of the non-real-time application caused by hyperthreading.

To evaluate the “cost” of this isolation Table 2 reports the total number of
frames transcoded by the ffmpeg instance or the total number of prime num-
bers found by the synthetic application. Two different setups have been tested:
non-real-time application scheduled on siblings 0, 2, 20 and 22 (indicated as
“Prime2” and “ffmpeg2”) or scheduled on siblings 4, 6, 20 and 22 (indicated
as “Prime4” and “ffmpeg4”). Notice how core scheduling allows to find a good
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Fig. 5. CDF of the end-to-end response time with gaussian execution times and non-
real-time load in background.

trade-off between real-time and non-real-time performance, increasing the CPU
throughput respect to the Real-Time configuration without compromising real-
time performance.

5 Conclusions

This paper evaluated the performance of a cloud node when serving a cRAN
application characterized by strict temporal constraints. While the current app-
roach to cloudify this kind of baseband applications relies on disabling hyper-
threading and reducing the CPU time left to other applications running in the
cloud, this paper showed how it is possible to find a reasonable trade-off between
real-time performance and cloud throughput without disabling hyperthreading,
by properly using advanced kernel features such as Core Scheduling.

As a future work, we will investigate scalability issues and power consump-
tion. In this regard, some preliminary results seem to indicate that core schedul-
ing allows to find a good trade-off between real-time performance and power con-
sumption. We also plan to take advantage of more advanced scheduling policies,
such as SCHED DEADLINE, to reduce the number of CPU cores used by real-time
threads and to host multiple real-time applications on the same node.
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Abstract. High performance applications usually need to give many
hints to the OS kernel regarding their needs. For example, CPU affin-
ity is commonly used to pin processes to cores and avoid the cost of
CPU migration, isolate performance critical tasks, bring related tasks
together, and so on. However, when running inside a Virtual Machine,
the (guest) OS kernel can only assign virtual resources, e.g., pinning a
guest process to a virtual CPU thread (vCPU); the vCPU thread, how-
ever, is still freely scheduled by the host hypervisor, which is unaware
of the guest application requests. This semantic gap is usually overcome
by statically allocating virtual resources to their hardware counterparts,
which is costly and inflexible, or via paravirtualization, i.e., by modifying
the guest kernel to pass the hints to the host, which is cumbersome and
difficult to extend. We propose to use host-injected eBPF programs as a
way for the host to obtain this kind of information from the guest in an
extensible way, without modifying the guest (Linux) kernel, and with-
out statically allocating resources. We apply this idea to the example
of CPU affinity and run some experiments to show its effect on several
microbenchmarks. Finally, we discuss the implications for confidential
computing.

Keywords: eBPF · Paravirtualization · Virtualization · CPU Pinning

1 Introduction

Performance-critical applications often cannot rely on the resource scheduling
decisions of general purpose kernels. Kernels have evolved to meet the special
requirements of these applications by either accepting resource-usage hints (e.g.,
via the madvice() system call), providing means to let the applications override
the kernel’s scheduling decisions (e.g., in CPU pinning [4,6] or IRQ affinity [5]) or
implementing ways to completely bypass some of the kernel’s abstractions [10].
The unifying idea of these advanced kernel APIs is that applications may benefit
from direct access to hardware resources, with as little kernel intervention as
possible. However, inside a Virtual Machine, the guest kernel itself has no direct
access to the host hardware, and the traditional implementation of these APIs
may not achieve the intended effect.

The issue is particularly clear for CPU pinning. Applications pin their threads
to specific CPU cores for a number of performance-related reasons: avoid the
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cost of CPU migration, isolate performance critical tasks, bring related tasks
together, or place them closer to critical hardware resources. When running in a
virtual machine, however, the guest kernel is only able to pin application threads
to virtual CPUs, which are usually implemented as software threads scheduled
by the VM hypervisor. The hypervisor is still free to migrate the CPU threads
among available hardware cores or to time-share several threads on a single core.
Moreover, virtual resources that look “close” to the guest (e.g. hyperthreads of
the same virtual core) may still be scheduled on “far” hardware resources (e.g.,
on two separate cores). This behaviour effectively negates most or all the perfor-
mance gains that the guest applications where trying to achieve. The problem is
that the relevant information is split between two distinct subsystems: the appli-
cation needs are only known by the guest kernel, while the hardware resource
state is only known to the hypervisor. The traditional way to address this prob-
lem is to partly remove the distinction by virtual and hardware resources, e.g.,
by statically pinning each virtual CPU thread to an isolated hardware CPU
thread. This solution, while effective, may be unnecessarily costly, if the appli-
cation workload is subject to changes. A different, more dynamic approach is
suggested by Lee and Eom [7]: here, suitable hypercalls are inserted in the guest
kernel to pass the scheduling decisions down to the hypervisor, which will then
apply them on the host system. This is an example of paravirtualization [2],
where the guest system is made aware of running inside a virtual machine.

The typical way to achieve paravirtualization, as also exemplified here, is
to modify the guest kernel in an ad hoc way to solve the particular problem
of interest. This is unsatisfying for several reasons: modifying the kernel is a
complex undertaking; new modifications must be devised whenever new needs
arise; the choices of guest software may be subject to limitations (e.g., particular
kernel versions where the modification is available).

In recent years, eBPF [9] has emerged as a generic solution to extract informa-
tion, or customize the behaviour of unmodified Linux kernels, and work to sup-
port it in Windows is also underway [3]. Using the eBPF framework, userspace
applications can inject programs in the running kernel and attach them to spe-
cific tracepoints. The programs, run by the kernel whenever the tracepoint is
reached, have controlled access to kernel data structures and can pass informa-
tions to interested userspace programs. In this paper we propose to reuse eBPF
technology for paravirtualization purposes, i.e., by having the virtual machine
monitor inject eBPF programs in the guest kernel, in order to extract any infor-
mation that may be relevant for the efficient, dynamic allocation of hardware
resources based on guest application requests.

2 eBPF

eBPF is a flexible and efficient technology, available in the Linux kernel, that
is composed of an instruction set, storage objects, and helper functions. Its
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instructions are executed by a Linux kernel BPF runtime, which includes an
interpreter and a JIT1 compiler for efficiency.

This technology enables dynamic tracing: the ability to insert tracing points
into live software, and costs zero overhead when not in use, as software runs
unmodified.

An eBPF program is “attached” to a designated code path in the kernel.
When the code path is traversed, any attached eBPF programs are executed.
Code paths can be of various kind, allowing programs to be attached to trace-
points, kprobes, and perf events. Since eBPF programs can access kernel data
structures, developers can write and test new debugging code without having to
recompile the kernel.

One really important aspect of eBPF is that it is verifiable: There are inherent
security and stability risks with allowing user-space code to run inside the kernel.
For this reason, there are some limitations to the instruction set, like loops. The
verifier has an important role and is asked to detect the eBPF program type,
to restrict which kernel functions can be called from eBPF programs and which
data structures can be accessed.

3 Extensible Paravirtualization

Fig. 1. Generic extensible paravirtualiza-
tion mechanism architecture

This work aims to create a generic
mechanism that allows to have a cer-
tain degree of paravirtualization in
a system that uses hardware-assisted
virtualization. This must be done
transparently, meaning that the guest
operating system should not be mod-
ified.

The approach that has been fol-
lowed is the following: A remote client
injects a payload into the virtual
device on the host side, and the guest
daemon, through the device driver
regulating the access to the device,
obtains such message and consumes it
accordingly to its content. Note that
the payload content might be what-
ever, from a simple command to a
more complex payload, for instance,
an eBPF program containing a kprobe
ready to be loaded into the guest kernel. Any information obtained by this eBPF
program might be used inside or outside the guest system and possibly being
propagated up to host hypervisor or even to the client that initiated the com-
munication.
1 Just in Time.
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The proposed architecture, shown in Fig. 1, is simple and linear. This choice
was made to favor integration with existing technologies such as QEMU and
the Linux kernel. Note that no specifications on the communication channel are
given, meaning that can be either simplex or duplex. In the general case, it
is assumed that this communication is duplex. Although a QEMU guest agent
exists, it has not been used in this work and has been re-implemented for sim-
plicity and to better fit this project’s needs.

To summarize a system that allows communication between host and guest
has been created. This communication happens through messages structured as
header and payload, whose meaning is associated with their message type.

4 Virtual to Physical CPUs Affinity

CPU affinity, also known as CPU pinning, is a technique that allows to set the
affinity of a process or thread with a set of CPUs. By doing so the process or
thread will only run on the designated CPU(s), ignoring the others. The main
advantage of pinning a process or a thread to one single CPU is that it cannot
move to other CPUs, never losing the content of its cache as it happens when
a process or thread is moved to another CPU. There are several reasons why a
program might want to control this aspect of the system:

– Considering a pair of coupled processes or threads like in a typical producer-
consumer system: If the communication protocol is non-blocking, there are
some performance benefits when two processes or threads are running on
different CPUs. Note that, in the default way in which Linux handles it, no
guarantees are given about the two sharing the same CPU, while the other
CPUs are idle. Even though this is a rare event but may happen, on the other
hand with CPU affinity is possible to ensure that two processes or threads
are never scheduled on the same CPU.

– In NUMA2 machines accessing resources like RAM or I/O has different costs
from different CPUs. Forcing a process or thread on the CPU that has “local”
access to the most used memory zones can have beneficial effects on perfor-
mance. This last case is not covered in this work.

On Linux, the CPU affinity of a process can be altered with the taskset
program, while the sched setaffinity system call can be used to modify the CPU
affinity of a process or thread.

Note that the usage of CPU affinity to boost performance depends heavily on
the program structure. Different benefits can be achieved depending on whether
the program is CPU bound or if it makes extensive use of cache.

In this work, the environment is composed of a host system and one or more
virtual machine(s) that are called guest(s). Inside the guest, an operating system
will manage the underlying virtualized hardware and provide system calls to the
guest userspace applications. The latter system can be started with one or more

2 Non-Uniform Memory Architecture.
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CPUs that are virtual, or vCPUs for short, and in reality are host userspace
threads which in this case are created by QEMU. Setting the CPU affinity inside
the guest operating system, that binds a guest userspace thread to a guest CPU,
means nothing because the latter is just a representation of a physical CPU. In
other words it is binding the guest thread to the host thread that represent the
guest virtual CPU.

It would be useful in some applications to be able to apply CPU affinity also
outside the guest system, resulting in a real CPU pinning.

Fig. 2. Dashed arrows represent affinity.
No pinning is performed on vCPU by the
host system.

Fig. 3. Dashed arrow represent affin-
ity. Pinning is performed correctly on
pCPU 0.

4.1 Implementation

The general idea is to have an eBPF program that will track calls to the
sched setaffinity system calls and notify the guest agent. This agent will then
send to the QEMU virtual device the requested affinity masks through the device
driver. Once the affinity masks arrive in the QEMU virtual device, they can be
used to call sched setaffinity on the host side. Affinity mask remapping can be
enabled from the host side depending on whether Hyper-threading is supported,
sending a specific message which has been defined for this purpose.

The aforementioned eBPF program, which contains a Kprobe to be installed
on sched setaffinity(), is loaded into the kernel. Then, whenever the probed func-
tion is called, the eBPF program will fire and the affinity mask, which is provided
as an argument, is written in an eBPF map.

In addition if the device is enabled for affinity mask remapping, a remapping
is then performed, otherwise, the unmodified affinity mask is applied on the
QEMU threads that represent the virtual CPUs that the guest uses to run its
code.

To summarize: the eBPF program, which uses the “kprobe/sched setaffinity”
hook, writes the affinity masks inside an eBPF map every time that syscall is
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invoked. The guest agent constantly checks this map for changes, if any, and
uses the ioctl system call to notify the guest driver when new affinity masks
are available so that it can start the transfer. In the host system, these masks
can be used to invoke sched setaffinity, according to some host-defined allocation
policy. In this work for simplicity, no particular policy has been enforced and the
host’s vCPU(s) process(es), inside the affinity mask, are pinned to their relative
pCPU(s).

Hyper Threading. Hyper-threading has different CPU ordering depending on
whether the system is a native one or if it is started from QEMU. To fully support
HT a remapping function is needed. Every time an affinity mask is received and
has to be applied to the host system, it will be remapped if the flag is set.

4.2 Tests

The testing phase aims at understanding the performance difference between
virtual machines that exploit hardware-assisted virtualization with and without
the extensible paravirtualization mechanism.

The application used as a benchmark is a simplified version of the system
presented in the article “Cache-aware design of general-purpose Single-Producer-
Single-Consumer” queues [8]. Lamport queues have been picked. In the system,
there are two threads, one producer and one consumer, that are pinned to dif-
ferent CPUs, so that they can run in parallel.

Performance in the system has been evaluated and the Mpps3 metric has
been chosen. The host system is subjected to different types of loads, from fully
unloaded CPUs to multiple processes running on each CPU. To simulate the
workload in the host system the Linux command yes is used.

Producer-consumer systems like SPSCQ benefit from parallelization and
interaction in a non-blocking way. The Linux scheduler does nothing to pre-
vent two threads from being scheduled one after the other on the same CPU.
The latter is not a frequent scenario because the scheduler will try to balance
the workload among the available CPUs; However, in a system under load, there
is the possibility that the two threads: producer and consumer, are scheduled
one after the other on the same processor, introducing a serialization condition,
which drastically degrades the performance of the entire system.

By introducing this mechanism that allows applying CPU affinity requests on
the host system as well, there is the guarantee that the producer and consumer
threads will never be serialized on the same CPU, avoiding this kind of slowdown.

Two types of tests have been carried out to evaluate the benefits of this
extension:

– Virtual CPU pinning. In this testing scenario, the performance differ-
ence between a hardware-assisted virtualization system with and without
the extensible paravirtualization extension is evaluated. The SPSCQ system

3 Mega packets per second.
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throughput is shown when these two parameters vary: the host system load
and the fraction of test time in which the two threads, producer and con-
sumer, are serialized. For this test an Intel Core i5-6600 CPU @ 3.30GHz has
been used, which does not implement Hyper-threading.

– Virtual Hyper-thread pinning. During this test, the performance differ-
ences are evaluated between using standard sched setaffinity() behaviour and
Hyper-thread pinning extensions, in guest machines. Moreover, differences in
throughput between running an SPSCQ application directly on the host sys-
tem and running SPSCQ within a guest system are also evaluated. For this
test, an Intel Core i7-6700K CPU @ 4.00GHz has been used, which imple-
ments Hyper-threading.

5 Results

Results are obtained through repeated experiments and plotted with their 90%
confidence intervals.

5.1 Virtual CPU Pinning

In this test, the throughput in a standard guest system is compared with one
that uses the extension made for this purpose. This comparison is performed
by varying two elements: the load on the host system and the fraction of time
during which the two threads, producer and consumer, are scheduled on the
same CPU. Note that the host load refers to how many yes processes are being
executed in the background on the host system.

Inside the guest machine, two threads are created: one producer P and one
consumer C. Those threads will request to be pinned to different CPUs: P on
vCPU0 and C on vCPU 1. In the ‘no load’ scenario, without vCPU pinning
what happens in the host system is that the QEMU threads associated with
their vCPUs are freely scheduled on all available CPUs. The host system, being
idle, will result in those threads running on any host CPU with a low probability
of being moved to another CPU, because no other process or thread is likely to
preempt them. Instead, pinning vCPU 0 to pCPU 0 and vCPU 1 to pCPU 1
will guarantee that the QEMU threads responsible for vCPU 0 and 1 will not
be moved to any other host physical CPU. And as is possible to see in Fig. 4.
The advantage is negligible as shown in the ‘no load’ section of the graph.

As the load starts to intensify in the host system, ‘low load’ in Fig. 4, different
behaviour is shown. The host system is forced to execute 8x yes processes in
addition to the P and C threads. So, for this reason, without vCPU pinning
performance is reduced with regard to the ‘no load’ case. With vCPU pinning
instead, the performance remains similar as P and C, which are scheduled on
vCPU 0 and vCPU 1, can only be assigned on pCPU 0 and pCPU 1, while the
yes processes will share the other physical CPUs.

Another scenario worthy of mention is what can be called the serialization
one. This situation is represented, on the plot, by the serialization variable, whose
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Fig. 4. Throughput on a standard sys-
tem and vCPU pinning. No load and low
load conditions.

Fig. 5. Throughput on standard system
and vCPU pinning. High load conditions
with serialization scenarios.

range starts from no serialization (0%) and goes up to high serialization (20%).
The use of vCPU pinning guarantees that P and C will never be scheduled on
the same physical CPU as long as they are pinned on two different vCPUs that
are assigned to two different pCPUs.

This behaviour can be seen in Fig. 5 in which the host system is under high
load conditions (32× yes processes running on the host). Overall, serialization
significantly degrades performance in standard systems, while the others that
use vCPU pinning, are not affected by this problem.

5.2 Virtual Hyper-thread Pinning

This test is a comparison of the throughput obtained by a standard guest sys-
tem with one that uses the Hyper-thread pinning technique, which is a further
extension of the vCPU pinning mechanism. For this test, an Intel Core i7-6700K
was used; It implements Hyper-threading and has 8 logical processors. For this
reason, host load indicators are now multiplied by 8.

The SPSCQ test program creates two threads, P and C, and performs high-
speed operations on a lockless queue while varying the load in the host system.
Then all performances with Hyper-thread pinning and the standard behaviour
are compared. Finally, the performance penalty is analyzed, which is introduced
by running the SPSCQ program within a virtual machine, with and without
Hyper-thread pinning, with regard to executing it directly on the host machine.
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Fig. 6. Throughput on a standard sys-
tem and Hyper-thread pinning. No load
and low load conditions.

Fig. 7. Throughput on a standard sys-
tem and vCPU pinning. High load con-
ditions.

Fig. 8. Throughput on host system and
guest system with Hyper-thread pinning

In Figs. 6 and 7 is plotted the
comparison between standard sys-
tem throughput and on a system
using Hyper-thread pinning tech-
nique. Results are interesting: using
HT pinning throughput is about 3.4
times higher than what is achieved
in a traditional guest system. There
is a small drop, in terms of through-
put gain, when the load on the host
system is very high i.e. 64× yes pro-
cesses. Note that unlike many pro-
grams, SPSC benefit a lot from this
technology, because running on the
same core, processes can easily share
resources such as caches.

In Fig. 8 a comparison between
native and virtualized performance is
shown. What is clear, is that SPSCQ
performance on a standard guest
system, that does not use Hyper-
threading correctly is much lower

than what you get by running SPSCQ directly on the host. This shows that
the theoretical ‘near-native’ speed is not achieved by the guest system. On the
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other hand, using Hyper-thread pinning, the guest system can pin P and C
threads on the same host physical core, thus obtaining near-native performance
as hardware-assisted virtualization claims, but cannot be guaranteed in this spe-
cial case, without modifications.

6 Confidential Computing

Confidential Computing techniques allow Virtual Machines (or processes) to run
on untrusted hypervisors (or kernels). The VM can run in an “enclave” where
most memory is hardware encrypted, with a decryption key that is available only
while the guest software controls the CPU. Since the hypervisor has no access
to the decryption key, the guest can protect its confidential data even if all of
the software running outside the VM is compromised.

Confidential computing creates difficulties for paravirtualization solutions,
which have always assumed that the host had free access to all of the guest
memory. For example, consider hyperupcalls as proposed in [1]. The motivation
for hyperupcalls is similar to our own: improve performance by granting the
host access to some guest kernel state. Hyperupcalls achieve this aim by having
the guest download programs in the host. The host runs these programs when
needed, to correctly interpret the data structures living in the guest memory.
In a confidential computing setting this is not easily done, since these programs
would run in a context that has no access to the decryption key. In our proposed
solution, instead, the programs are injected in the opposite direction and are run
in the guest, where they have access to the decrypted guest memory.

We think that our solution, with respect to the alternatives, is also more com-
patible with the spirit of confidential computing. In systems, where confidential
computing is used, security is a major concern. For this reason, using an ad-hoc
modified version of the kernel, to introduce the paravirtualization hypercalls,
can be considered a possible weak link in the root-of-trust. On the other hand,
using our proposed method, the guest can formally verify the injected code, and
according to some policies, decide whether to load that code or not.

7 Conclusions and Future Work

In conclusion, in this work we realized an extensible paravirtualization mecha-
nism that makes use of eBPF programs. It allows programmers to add specific
capabilities to host-guest systems. Overcoming the limitation introduced by run-
ning the guest system in a virtualized environment and realizing CPU affinity.
This showed substantial performance gains, especially when Hyper-threading
is available and a program that can benefit from is used. Future work should
consider implementing a whitelist of eBPF’s hook inside the guest user agent
to enforce security policies and other potential applications of this extensible
mechanism.



eBPF-based Extensible Paravirtualization 393

References

1. Amit, N., Wei, M.: The design and implementation of Hyperupcalls. In: 2018
USENIX Annual Technical Conference (USENIX ATC 2018), pp. 97–112. USENIX
Association, Boston, MA (2018)

2. Barham, P., et al.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst.
Rev. 37(5), 164–177 (2003)

3. eBPF for Windows (2022). https://github.com/microsoft/ebpf-for-windows
4. Ghatrehsamani, D., Denninnart, C., Bacik, J., Amini Salehi, M.: The art of CPU-

pinning: evaluating and improving the performance of virtualization and container-
ization platforms. In: 49th International Conference on Parallel Processing - ICPP.
ICPP 2020. Association for Computing Machinery, Edmonton, AB, Canada (2020).
https://doi.org/10.1145/3404397.3404442

5. Gutiérrez, C.S.V., Juan, L.U.S., Ugarte, I.Z., Vilches, V.M.: Real-time Linux com-
munications: an evaluation of the Linux communication stack for real-time robotic
applications. arXiv preprint arXiv:1808.10821 (2018)

6. Krzywda, J., Ali-Eldin, A., Carlson, T.E., Östberg, P.-O., Elmroth, E.: Powerper-
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