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Abstract. A transient behaviour of multi-channel queuing system is
investigated in this paper. For analyses the analytical method of Kol-
mogorov equations system solution based on using so-called translation
matrix is used. The cases when arrival and service rates are constant and
piecewise-constant functions are considered. The analytical expressions
for non-stationary probabilities of states, an average number of packets
in the system, an average number of occupied channels, and an average
queuing delay in transient mode are presented. The transient time and
throughput of queuing system in transient mode have been analyzed.
The numerical simulation of the multi-channel queuing system is car-
ried out by using the example of M /M /2/3 system. The dependencies of
probabilities of states, throughput and an average number of packets in
the system for different initial conditions in transient mode are obtained.
The case of periodic change of arrival rates corresponding to the periodic
transmitting the control signals within the payload has been considered.

Keywords: Multi-channel queuing system - Piecewise-constant
functions - Performance metrics - Transient behavior

1 Introduction

Nowadays queuing systems are used in various spheres. They are used in service
sector, everyday life, economics, commerce, different organizations and enter-
prises. This mathematical approach is widely used in telecommunication systems
and networks also [1,2]. Today there are a lot of various types of queuing systems.
One of the important class of queuing systems is multi-channel queuing system
with a finite buffer which is known as M/M/n/m systems. The systems with
several servicing devices are used for describing distributed computer networks
with several servers or multi-channel switching systems [1,2]. Various types of
multi-channel queuing systems have been considered in many domestic and for-
eign scientific works [1-6]. And in the most of them M/M/n/m systems are
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investigated in stationary mode. In paper [3] multi-server Feedback Markovian
queuing model with encouraged arrivals, customer impatience, and retention of
impatient customers have been performed. The authors presented expressions
for steady-state probabilities and performance metrics calculating which had
been derived using classical queuing theory approach. The M/M/N/N queue
where two types of users compete for the N resources has been considered in
paper [4]. The authors have presented the two-dimensional queue model for
this case and calculated steady-state probabilities of the system. In paper [5]
the authors have analyzed a multi-server queue with customers’ impatience and
Bernoulli feedback under a variant of multiple vacations. They have investigated
the mathematical model of the system and have developed the differential equa-
tions for the probability generating functions of the steady-state probabilities. A
multi-server queuing system with reverse balking and impatient customers has
been considered in [6]. The steady-state probabilities of system size are obtained
using iterative method.

The most accurate analysis of multi-channel queuing system functioning can
be obtained if the system is to be examined not only in stationary mode but
in transient one too. The stationary mode occurs some time later after begin-
ning system functioning and continue for ¢ — oo. In contrast to the stationary
mode the transient mode occurs right after beginning of the system functioning
before the system will be in the steady state [7,8]. The system goes in the tran-
sient mode in result of rebooting or jumps of arrival and service rates caused
by change in the information routes. There are only several works where two-
channel queuing systems transient behavior has been described. In [9] authors
have studied M/M/2/N queuing system with two-heterogeneous servers and
retention of reneging customers and obtained its transient solution by employ-
ing matrix method. Transient analysis of two-heterogeneous servers queue with
impatient behavior has been carried out in [10]. Additionally the steady-state
probabilities of the system size are studied. The paper [11] presents an expression
for finding the transient probabilities of system states with an infinite number
of servers.

In all listed above works the transient behaviour of queuing systems is consid-
ered for the case of constant arrival and serviced rates. Nevertheless, the problem
of studying the behavior of a queuing system in the case of arrival or service rates
are piecewise-constant functions is very important in a number of telecommuni-
cation applications. For example, arrival rate is changed abruptly when control
signals with a payload are transmitted to the tethered UAV through determi-
nate time intervals [12]. In [13] time-varying rate multi-channel queueing systems
M;/G/L/L and M;/M/L/L describing telecommunication system intended for
transmission of realtime communication services like voice calls and video on
demand are investigating. The dependencies of loss probability for the case of
change in the arrival rate according to a sinusoidal law are obtained. The other
performance metrics are not studied.
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The authors of this paper proposed the analytical approach of M/M/1/n
and MAP/M/1/n queuing systems transient behavior investigation for cases of
constant and piecewise-constant arrival and service rates on based of method of
translation matrix [7,8,13]. In this paper we continue to developed our approach
considering multi-channel queuing system M |M|n|m with jumps in the arrival
and service rates and investigating dependencies of system states transient prob-
abilities in different initial conditions.

The paper is organized as follows. In Sect. 2 the statement of the problem is
given. Section 3 presents the analytical approach of multi-channel queuing system
investigation for cases of constant and piecewise-constant arrival or service rates
in transient mode. Numerical simulation results are presented in Sect.4. The
paper is concluded in Sect. 5.

2 Statement of the Problem

Let us consider the system for transmitting information from a ground control
station to a tethered UAV. The payload and control signals are transmitted
over n wireless Wi-Fi channels with the same bandwidth. If all channels are
busy, the information is stored in a buffer of the size m. So the considered
telecommunication system can be described by a M /M /n/m queuing system.
The state graph of the M /M /n/m system is presented in the Fig. 1. The first
state Sy corresponds to the state when the system is empty. The second state Sp
corresponds to the state when the first channel is busy but the buffer is empty.
The third state S5 corresponds to the state when two channels are busy but the
buffer is empty. The n state S,, corresponds to the state when n channels are
busy but the buffer is empty. The state By corresponds to the state when all n
channels are busy and one packet is in the buffer. The m state B,, corresponds to
the state when all n channels are busy, m packets are in the buffer and the next
arriving packet is lost. Here we consider the case when A(¢) or u(t) (the arrival
or service rates correspondingly) are the piecewise-constant functions (Fig. 2).
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Fig. 1. The state graph of the M /M /n/m system.
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Fig. 2. The arrival and service rates time dependence graphs.

The Kolmogorov differential equations system for the multi-channel queuing
system within the interval with constant parameters A and p has the form

dPy(t

j( ) —APy(t) + pPi(t)
dP-t(t)

2 = APa(t) = A+ i) P(t) + (i + DpPia (1), 1<i<n—1
dlzt(t) = AP, 1(t) = A+ np)Pi(t) + nuPia(t), n<i<n+m-1
AP,y (t

(1)

Here P;(t) is the probability that the system is in 4 state at the time ¢t. Py(t)
is the probability that the system is empty, Py, is the probability of loss.

The main aim of this paper is investigation of the multi-channel queuing sys-
tem transient behavior for cases of constant and piecewise-constant information
flow parameters. It is the problem to obtain the analytic expressions for main
transient performance metrics of this system such as transient time, throughput,
an average number of packets in the system, an average queuing delay, and prob-
ability of packet loss. The novel aspects of queueing systems transient behavior
study considered in this paper is investigation probabilities of states and main
performance metrics for different initial conditions.

3 Transient Behavior of Multi-channel Queuing System
with Constant and Piecewise-Constant Rates

To analyze of the multi-channel queuing system M /M /n/m functioning in tran-
sient mode, the new approach based on the translation matrix method analogous
to [7,8,14] is applied. According to this method the solutions of the system (1)

are found as
n+m

Pi(t) =Y mi; P;(0), (2)
=0
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where m,;; are elements of the translation matrix [7], which can be found using
following expression (i = 0..n 4+ m):

n+m

mij = Z &ijAjexpit, (3)

=0

where A; are the integration constants determined by initial conditions, v; are
the roots of the characteristic equation of the system (1), and &;; are coefficients
expressing probabilities P;(t) as functions of Py(t) (i = 1,n +m).

Thus the probabilities of the states and the performance metrics of the multi-
channel queueing system for time-constant parameters A and p can be calculated
by the expression (2). To determine analogous parameters of the system in case
of piecewise-constant rates it is proposed to use the method of translation matrix
[7,8].

Now, the translation matrix describing the behavior of the system with
piecewise-constant parameters on the K-th interval (Fig.2) can be write in the
form [7,8]

1
Mg (t) = Mg(t —tx—1) [] Mi(At) (4)
i=K—1
The matrix (4) relates the probabilities of states on the K-th interval to the
probabilities of states in the initial time ¢q:

1
U(t) = (MKt—tK1 H M, (A ) Ulto). (5)

Here U(t) = (P)T (i = 0,n+m) is the 1 x (n +m + 1)-vector of the system
states, T' is the transpose operator.

The performance metrics of M /M /n/m system can be found by using (2)
and (4). According to the [7] the so-called transient instantaneous throughput
is calculated as

A(t) = [1 = Poym()]A(1), (6)
Here P, 1, (t) is the instantaneous probability of loss:
n+m n+m
Pross(t) = Z P;(0) Z Entm,jAjexp(v;t) (7)
J=0 7=0

An average number of packets in the system E(m(t)) and an average number
of busy channels E(n(t)) can be determine using following formulae:

n+m

E(m(t)) = Y iP(t) (®)

=1

n

E(n(t)) =Y iPi(t) 9)

=1
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Therefore an average number of packets in the buffer can be calculated using

expression:
n+m n

E(N(t) = > iPi(t) = Y iPi(t) (10)

i=1 i=1
Given (2) and (3), the final expressions for an average number of packets in
the system and an average number of busy channels can be written as follows

n+m n+m n+m
E(m(t) =Y iy P;(0) ) &;Ajexp™’ (11)
i=1 j=0 j=0
n n+m n+m
E(n(t) = iy Pi(0) ) &;Ajeap’ (12)
i=1 j=0 j=0

According to the [1] an average waiting time in a buffer (queuing delay) can
be given as:
W (t) = E(N(t))/A(t) (13)

The other important characteristic of transient mode is transient time 7.
The detail theory of the transient time determination is presented in [7,8]. Here
we use that method to the considered problem and obtain:

Ter = (3 5)T (14)
where 7 is the time constant:

I 1 I
T =max{7,i=0,n+m} =max{—,i=0,n+m} (15)

\ Yi |
4 Numerical Results

In this section, we consider the M/M/2/3 system describing a wireless access
point functioning installed on a tethered UAV and connected with a ground
control station through two Wi-Fi channels. The size of wireless access point
buffer is three packets.

At first, let us consider the case when the parameters of the information flow
are constant (A = 200 pps, ¢ = 300 pps) and investigate the transient behavior
of the system under different initial conditions. In Fig. 3, Fig.4 and Fig.5 we
presented the dependencies of transient states probabilities for following initial
conditions:

L. [Py(0), P1(0), P5(0), P5(0), P4(0), P5(0)]" = (1,0,0,0,0,0)".
2. [Py(0), P1(0), P,(0), P3(0), P4(0), P5(0)]T = (0,1,0,0,0,0)7.
3. [Py(0), P1(0), P»(0), P3(0), P4(0), Ps(0)]T = (0,0,0,0,1,0)T.
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The first case corresponds to a free state of both channels (Fig. 3), the second
case corresponds to a working state only of the first channel (Fig.4) and the third
case corresponds to the state when both channels suddenly became unavailable
but two packets remained in the buffer (Fig.5). Figure3 — Fig.5 show that
transient probabilities are differ for three cases, and the steady-state probabilities
of the system states do not depend on the initial conditions: 7y = 0.501, 7 =
0.334, mo = 0.112, w3 = 0.037, w4 = 0.012, w5 = 0.004. These values coincide with
the values calculated by the well-known formula for steady-state probabilities
applied to the M/M/2/3 system [1]:

P o0 0<i<n-—1
it (16)

T, —

pi,ﬂ'o, n<i<n-+m
nlnt—n
STVl
Here g = Z E m# is the empty state of the system and
e £

=
p = A/ is the system load factor.
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Fig. 3. Dependencies of the state probabilities on time for the first initial conditions.

It can be conclusion from Fig.3 — Fig. 5 that there are differences between
the speeds of establishing the transient mode for different initial conditions, but
the transient time is the same 73, = 0.02s. However, when calculating specific
cases by using the classical theory, their own peculiarities may arise. Indeed, as
it has been shown in [7] from a physical point of view the transient mode can be
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Fig. 4. Dependencies of the state probabilities on time for the second initial conditions.

P(t)

Fig. 5. Dependencies of the state probabilities on time for the third initial conditions.

considered as finite if | P;(t) — 7; |< €, where ¢ is some infinitesimal value, P;(t)
is the transient probability of the j-th state at the time ¢, 7; is the stationary
probability of the j- th state. Let determined the first state probability P;(t) at
the time ¢ = 0.01 s supposed that € is constant for all cases. For the first case
(Fig.3) P1(0.01) = 0.335 therefore | Pi(t) — m1 |= 0.001; for the second case
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Fig. 6. Dependencies of throughput on time taking into account different initial con-
ditions.

(Fig.4) P1(0.01) = 0.34 therefore | Py (t) —m1 |= 0.006; for the third case (Fig. 5)
P;(0.01) = 0.325 therefore | Py(t) — w1 |= 0.009. If suppose that ¢ = 0.001 we
can prove that the transient mode is finished for the first initial conditions and
has not been finished yet for the second and third initial conditions. In general
case the choice of ¢ value is determined by the practical requirements.

As it can be seen from Fig.6 the throughput of the system in transient
mode depends on the initial conditions and in stationary mode A = 199 pps.
Here A1 (t), Aa(t), As(t) are values of throughput corresponding to the first, the
second and the third cases of the initial conditions considered above and for
the parameters of an information flow: A = 200 pps, ¢ = 300 pps. The Fig.6
shows that a sudden unavailability of both channels leads to the most signifi-
cant decrease of the system throughput. In the point of time ¢ = 0.0018s the
system throughput has a minimum value A3(0.018) = 176.8 pps. It corresponds
throughput decreasing of 11.6% in comparison of initial moment of time and
11.2% in comparison of stationary mode.

The dependencies of an average number of packets in the system on time for
different initial conditions described below are presented in Fig. 7. The value of
steady-state probabilities is equal to 0.74 and coincides with the value obtained
using existing approaches [1,9]:

n+m

i=1
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Fig. 7. An number of packets in the system size in transient mode.

Next, consider the case of piecewise-constant information flow for periodic
jumps of arrival rate A and find the transient probabilities of states (Fig.8,
Fig.9). In practical point of view, it corresponds of periodic transmitting control
signals parallel of payload transmitting. In the first case jumps of A occur when
the network is working normally (A < p) (Fig.8). The arrival rate is changed
periodically from Ao = 200 pps to A; = 250 pps, the service rate is constant pg =
11 = 300 pps. In the second case jumps of A occur when the network is overloaded
(A > p) (Fig.9). Arrival rate is changed periodically from Ao = 400pps to
A1 = 450 pps, the service rate is constant pg = p; = 300 pps. Comparing the
probabilities of states in Fig.8 and Fig.9 it can be conclude that the changing
of state probabilities in the second case (Fig.9) has smoother character. The
maximum value of loss probability is 0.001 (p;oss1 = 0.001) in the first case and
it is in 55 times more in the second case (pjoss2 = 0.055).

Dependencies of the average waiting time for a packet in the buffer on time
(queuing delay) for cases of periodic piecewise-constant arrival rate are presented
in Fig. 10. Here W1(t) is the average queuing delay for the case of A < p (A is
changed periodically from A\g = 200 pps to Ay = 250 pps, po = w1 = 300 pps),
and Wh(t) is the average queuing delay for the second case of A > u (Ao =
400 pps, A1 = 450 pps, 1o = p1 = 300 pps). Analysing the obtained results it can
be conclude that the difference between maximum and minimum values of the
average queuing delay mod Wipmase(t) — Wimin(t) = 800 s in the first case,
and mod Wapar(t) — Wopmn(t) = 950 us in the second case.
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Fig. 10. An average waiting time for a packet in the buffer on time.

5 Conclusion

The transient behavior of the multi-channel queuing system M /M /n/m for cases
of constant and piecewise-constant rates has been studied for the first time. The
analysis has been carried out by the accurate analytical method based on the
so-called translation matrix. The method made it possible to study the change
in the probabilities of the multi-channel queuing system states, throughput and
an average number of packets in the system in transient mode depending on
the initial conditions. The numerical simulation of M/M/2/3 system confirmed
the analytical results. The correctness of the proposed approach also confirmed
by the coincidence of the obtained steady-state probabilities and performance
metrics with the results have been obtained by well-known methods [1,9]. The
case of periodic jumps of an arrival rate is investigated numerically for different
ratios of arrival and service rates. The proposed approach can be used for perfor-
mance metrics calculation of multi-channel wireless telecommunication system
designed to transmit payload and control signals from a ground station to a

tethered UAV.
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