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Abstract. Let Fq be a finite field of q elements with q = pr for some odd
prime integer p and a positive integer r. Let R = Fq[e], where e2 = e.
The purpose of this paper is to investigate EE,a,d(R) be the twisted
Edwards curves over R, with a, d ∈ R. In the end of the paper, we study
the complexity of this new addition law in EE,a,d(R) and highlight some
links of our results with elliptic curves cryptosystem.
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1 Introduction

The use of elliptic curves in cryptography is an important tool in several cryp-
tography going back independently to Koblitz [10] and Miller [11]. Elliptic curve
cryptography (ECC) is an approach to public-key cryptography based on the alge-
braic structure of elliptic curves over finite fields. It allows smaller keys to provide
equivalent security compared to other cryptosystem. It can also be used to encrypt
images of different sizes in embedded systems such as in (cf. [12–14]). In particular,
it is shown that Edwards curves and twisted Edwards curves can be very useful to
improve the efficiency of protocols (cf. [1–4]). Let us quote here some interesting
works that are related to the subject of our paper. In 2007, Edwards introduced a
new normal form for elliptic curves on a field K with characteristic an odd prime
p, containing a unified addition formula for adding and doubling points (cf. [1]).
Bernstein and Lange, presented fast explicit formulas for group operations on an
Edwards curve and they compared it to the different shapes of elliptic curves and
different coordinate systems for base group operations. The comparison indicated
that the Edwards curve is a good choice in cryptography (cf. [2]).

Thereafter, in 2008, Bernstein and his co-authors introduced the twisted
Edwards curves with equation:

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (1)

For Z �= 0 the homogeneous point (X : Y : Z) represents the affine point
(X/Z, Y/Z) of equation: aX2 + Y 2 = 1 + dX2Y 2, where a, d ∈ K are non zero
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and distinct. In addition, they introduced explicit formulas for addition and
doubling over a finite field K as follows:

(X1, Y1) + (X2, Y2) = (
X1Y2 + Y1X2

1 + dX1X2Y1Y2
,

Y1Y2 − aX1X2

1 − dX1X2Y1Y2
),

the group operations on Edwards curves were faster than those of most other
elliptic curve models known at the time. The mentioned authors gave quick
explicit formulas for twisted Edwards curves in projective and inverted coordi-
nates. Furthermore, they showed that twisted Edwards curves save more times
than many other curves (cf. [3]). In the same year, Bernstein and his co-authors
introduced the binary Edwards curves (cf. [5]). In 2019, Boudabra and Nitaj
studied the twisted Edwards curves on the finite field Fp where p ≥ 5 is a prime
number, and they extend their study to the ring Z/pr

Z and Z/prqs
Z. They also

proposed a new scheme and studied its efficiency and security (cf. [4]). In the
current work, we study twisted Edwards curves over the ring R = Fq[e], with
e2 = e and Fq the finite field of order q = pn, n a positive integer, and p an
odd prime integer. Furthermore, we give the relation between twisted Edwards
curves over a finite field Fq and twisted Edwards curves over the ring R. In
2022, Elhamam and his co-authors studied the binary Edwards curves on the
ring F2n [e], e2 = e (cf. [8]). This paper is structured as follows: In Sect. 2, we
collect some known arithmetic properties of the ring R which we need to use in
the remainder. In Sect. 3, we define the twisted Edwards curves EE,a,d(R) over
R and study the invertibility of ab(a− b) in R, which allows us to define the two
twisted Edwards curves EE,π0(a),π0(d)(Fq) and EE,π1(a),π1(d)(Fq), where π0 and
π1 are two surjective morphisms of rings defined by:

π0 : Fq[e] → Fq

x0 + x1e �→ x0
and

π1 : Fq[e] → Fq

x0 + x1e �→ x0 + x1.

Next, we present the elements of Ea,d(R) and give a bijection between the two
sets; EE,a,d(R) and EE,π0(a),π0(d)(Fq)×EE,π1(a),π1(d)(Fq). Section 4 is dedicated
to the study of the addition in twisted Edwards curves over the ring R. We define
the additive law P +̃Q in EE,a,d(R) by P +̃Q = π̃−1(π̃(P )+π̃(Q)), for all points P
and Q of EE,a,d(R), and we conclude that the map π̃ is an isomorphism between
the groups EE,a,d(R) and EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq). Thereafter, we
study the complexity of the sum law in the twisted Edwards curve EE,a,d(R).
We conclude by highlighting some links of our results with cryptography. For
more works in this direction we refer the reader to [7,9].

2 The Ring Fq[e], e
2 = e

Let Fq be a finite field with q = pr for some odd prime integer p and a positive
integer r. Consider the quotient ring R = Fq [X]

X2−X . Since X2 − X is the minimal
polynomial of e over Fq, the ring R is identified to the ring Fq[e], where e2 = e.
Therefore,

R = {x0 + x1e|(x0, x1) ∈ (Fq)2}.
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The arithmetic operations in R can be decomposed into operations in Fq and
they are computed as follows:

X + Y = (x0 + y0) + (x1 + y1)e,
X · Y = (x0y0) + (x0y1 + x1y0 + x1y1)e.

Then we have the following known proprieties [6] :

1. (R,+, ·) is a finite unitary commutative ring.
2. R is an Fq-vector space of dimension 2 with Fq-basis {1, e}.
3. X · Y = (x0y0) + ((x0 + x1)(y0 + y1) − x0y0)e.
4. X2 = x2

0 + ((x0 + x1)2 − x2
0)e.

5. X3 = x3
0 + ((x0 + x1)3 − x3

0)e.
6. Put X = x0 + x1e ∈ R. Then, X is invertible in R if and only if x0 �= 0 and

x0 + x1 �= 0. In this case we have, X−1 = x−1
0 + ((x0 + x1)−1 − x−1

0 )e.
7. R is a non local ring.
8. π0 and π1 are two surjective morphisms of rings.

In the remainder of this paper we assume that p �= 2.

3 Twisted Edwards Curves over the Ring R

Let X,Y , a and d be four elements of R such that X = x0 + x1e, Y = y0 + y1e,
a = a0 +a1e and d = d0 +d1e. We recall that a twisted Edwards curve is defined
over finite fields. By analogous, we extend it as follows:

Definition 1. A twisted Edwards curve is defined over R is defined by the equa-
tion:

aX2 + Y 2 = 1 + dX2Y 2

such that Δ = ad(a − d) is invertible in R. We denote it by EE,a,d(R);

EE,a,d(R) := {(X,Y ) ∈ R | aX2 + Y 2 = 1 + dX2Y 2}.

The following proposition allows to test the inversibility of Δ.

Proposition 1. Let Δ0 = a0d0(a0−d0) and Δ1 = (a0+a1)(d0+d1)((a0+a1)−
(d0 + d1)). Then,

Δ = Δ0 + (Δ1 − Δ0)and
{

Δ0 = π0(Δ)
Δ1 = π1(Δ).

Proof. We have:

Δ = ad(a − d)

= (a0 + a1e)(d0 + d1e)((a0 + a1e) − (d0 + d1e))

= [a0d0 + (a0d1 + a1d0 + a1d1)e][(a0 − d0) + (a1 − d1)e]

= a0d0(a0 − d0) + [a0d0(a1 − d1) + (a0d1 + a1d0 + a1d1)(a0 − d0) + (a0d1 + a1d0 + a1d1)(a1 − d1)]e

= a0d0(a0 − d0) + [(a0 + a1)(d0 + d1)((a0 + a1) − (d0 + d1)) − a0d0(a0 − d0)]e

= Δ0 + (Δ1 − Δ0)e.

Thus, Δ0 = π0(Δ) and Δ1 = π1(Δ). ��
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The following corollary is an immediate consequence of Proposition 1.

Corollary 1. Δ is invertible in R if and only if Δ0 �= 0 and Δ1 �= 0.

By Corollary 1, if Δ is invertible in R, then EE,π0(a),π0(d)(Fq) and
EE,π1(a),π1(d)(Fq) are two twisted Edwards curves over the finite field Fq. Note
that

EE,π0(a),π0(d)(Fq) = {(x, y) ∈ (Fq)2 | a0x
2 + y2 = 1 + d0x

2y2},

EE,π1(a),π1(d)(Fq) = {(x, y) ∈ (Fq)2 | (a0 + a1)x2 + y2 = 1 + (d0 + d1)x2y2}.

The following theorem characterizes the points of the twisted Edwards curves.

Theorem 1. Let X and Y be two elements of R. (X,Y ) ∈ EE,a,d(R) if and
only if (πi(X), πi(Y )) ∈ EE,πi(a),πi(d)(Fq), for i ∈ {0, 1}.

Proof. We have:

aX2 + Y 2 = (a0 + a1e)(x0 + x1e)2 + (y0 + y1e)2

= (a0 + a1e)(x2
0 + ((x0 + x1)2 − x2

0)e) + y2
0 + ((y0 + y1)2 − y2

0)e

= a0x
2
0 + y2

0 + [(a0 + a1)(x0 + x1)2 + (y0 + y1)2 − a0x
2
0 − y2

0 ]e, and

1 + dX2Y 2 = 1 + (d0 + d1e)(x0 + x1e)2(y0 + y1e)2

= 1 + (d0 + d1e)(x2
0 + ((x0 + x1)2 − x2

0)e)(y
2
0 + ((y0 + y1)2 − y2

0)e)

= 1 + d0x
2
0y

2
0 + [(d0 + d1)(x0 + x1)2(y0 + y1)2 − d0x

2
0y

2
0 ]e,

As {1, e} is an Fq-basis of the Fq-vector space R, then aX2+Y 2 = 1+dX2Y 2

if and only if⎧⎨
⎩

a0x
2
0 + y2

0 = 1 + d0x
2
0y

2
0

and
(a0 + a1)(x0 + x1)2 + (y0 + y1)2 = 1 + (d0 + d1)(x0 + x1)2(y0 + y1)2

.

Which gives the result. ��
Corollary 2. The mapping:

π̃i : EE,a,d(R) → EE,πi(a),πi(d)(Fq)
(X,Y ) �→ (πi(X), πi(Y ))

is well defined, i ∈ {0, 1}.
Proof. By Theorem 1, we have (πi(X), πi(Y )) ∈ EE,πi(a),πi(d)(Fq). If (X1, Y1) =
(X2, Y2), then X2 = X1 and Y2 = Y1. Therefore,

π̃i(X2, Y2) = (πi(X2), πi(Y2))
= (πi(X1), πi(Y1))
= π̃i(X1, Y1).

��
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Now we classify the elements of EE,a,d(R). In fact we have:

Proposition 2. The elements of EE,a,d(R) are of the form:

• (X,Y ) such that X is invertible,
• (xe, α + ye) such that α ∈ {−1, 1} and (x, α + y) ∈ EE,π1(a),π1(d)(Fq),
• (x − xe, y + (α − y)e) such that α ∈ {−1, 1} and (x, y) ∈ EE,π0(a),π0(d)(Fq).

Proof. Let P = (X,Y ) ∈ EE,a,d(R), where X = x0 + x1e and Y = y0 + y1e.
We distinguish two cases of X:
The First case: X is invertible.
The second case: X is not invertible. In this case we distinguish the next two
sub-cases:

i) If X = xe, where x ∈ Fq, we have: π0(xe, y0 + y1e) = (0, y0) ∈
EE,π0(a),π0(d)(Fq) then, (0, y0) = (0, 1) or (0, y0) = (0,−1), so (xe, Y ) =
(xe, α + ye) such that (x, α + y) ∈ EE,π1(a),π1(d)(Fq); α ∈ {−1, 1}.

ii) If X = x−xe, where x ∈ Fq, then we have: π1(x−xe, y0+y1e) = (0, y0+y1) ∈
EE,π1(a),π1(d)(Fq) then, (0, y0 + y1) = (0, 1) or (0, y0 + y1) = (0,−1), so
(x − xe, Y ) = (x − xe, y + (α − y)e) such that (x, y) ∈ EE,π0(a),π0(d)(Fq);
α ∈ {−1, 1}.

��
Corollary 3. The maps π̃0 and π̃1 are surjective.

Proof. Let (x, y) ∈ EE,π0(a),π0(d)(Fq) (resp. (x′, y′) ∈ EE,π1(a),π1(d)(Fq)), then
(x − xe, y + (1 − y)e) (resp. (x′e, 1 + (y′ − 1)e)) is an antecedent of (x, y) (resp.
(x′, y′)). ��
The following theorem establishes a 1 − 1 correspondence between EE,a,d(R)
and EE,π0(a),π0(d)(Fq)×EE,π1(a),π1(d)(Fq), and so it will be used to calculate the
cardinal of EE,a,d(R) in Corollary 4.

Theorem 2. The map π̃ defined by:

π̃ : EE,a,d(R) → EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq)
(X,Y ) �→ ((π0(X), π0(Y )), (π1(X), π1(Y )))

is a bijection.

Proof.

• As π̃0 and π̃1 are well defined, then π̃ is well defined.

• Let ((x0, y0), (x1, y1)) ∈ EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq), then

a0x
2
0 + y2

0 = 1 + d0x
2
0y

2
0 ,

(a0 + a1)x2
1 + y2

1 = 1 + (d0 + d1)x2
1y

2
1 ,
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Put X = x0 + (x1 − x0)e and Y = y0 + (y1 − y0)e. We have:

aX2 + Y 2 = a0x
2
0 + y2

0 + [(a0 + a1)x2
1 + y2

1 − a0x
2
0 − y2

0 ]e,

1 + dX2Y 2 = 1 + d0x
2
0y

2
0 + [(d0 + d1)x2

1y
2
1 − d0x

2
0y

2
0 ]e,

So (X,Y ) ∈ EE,a,d(R). Note that π̃((x0 + (x1 − x0)e, y0 + (y1 − y0)e)) =
((x0, y0), (x1, y1)). Hence π̃ is a surjective map.

• Let (X,Y ) and (X ′, Y ′) are elements of EE,a,d(R), where X = x0 + x1e,
Y = y0 + y1e, X ′ = x′

0 + x′
1e, Y ′ = y′

0 + y′
1e. If (x0, y0) = (x′

0, y
′
0) and

(x0 + x1, y0 + y1) = (x′
0 + x′

1, y
′
0 + y′

1), then
{

x′
0 = x0

y′
0 = y0

and
{

x′
1 = x1

y′
1 = y1.

Therefore, π̃ is an injective application.
We can easily show that the mapping π̃−1 defined by:

π̃−1((x0, y0), (x1, y1)) = (x0 + (x1 − x0)e, y0 + (y1 − y0)e)

is the converse of π̃.

��
Corollary 4. The cardinal of EE,a,d(R) equals to the cardinal of
EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq).

Example 1. In R = F5[e], let a = 1 + 3e and d = 2 + 3e. We have:

EE,a,d(R) = {(0, 1), (0, 4), (0, 1 + 3e), (0, 4 + 2e), (2, 2 + 3e), (2, 3 + 2e), (3, 2 + 3e), (3, 3 + 2e),

(2e, 1 + 4e), (2e, 4 + e), (3e, 1 + 4e), (3e, 4 + e), (1 + 4e, e), (1 + 4e, 4e),

(2 + e, 2 + 3e), (2 + e, 3 + 2e), (2 + 3e, 2 + 2e), (2 + 3e, 2 + 4e), (2 + 3e, 3 + 3e),

(2 + 3e, 3 + e), (3 + 4e, 2 + 3e), (3 + 4e, 3 + 2e), (1 + e, 0), (4 + e, e),

(4 + e, 4e), (1 + 2e, 0), (3 + 2e, 2 + 2e), (3 + 2e, 2 + 4e), (3 + 2e, 3 + 3e),

(3 + 2e, 3 + e), (4 + 3e, 0), (4 + 4e, 0)},

EE,π0(a),π0(d)(F5) = {(0, 1), (0, 4), (1, 0), (2, 2), (2, 3), (3, 2), (3, 3), (4, 0)},

EE,π1(a),π1(d)(F5) = {(0, 1), (0, 4), (2, 0), (3, 0)}.

4 Addition in Twisted Edwards Curve EE,a,d(R)

Let (x1, y1), (x2, y2) two points on the twisted Edwards curve EE,πi(a),πi(d)(Fq),
for i ∈ {0, 1}.

The sum of these points on EE,πi(a),πi(d)(Fq), for i ∈ {0, 1} is given by:

(x1, y1) + (x2, y2) = (
x1y2 + y1x2

1 + πi(d)x1x2y1y2
,

y1y2 − πi(a)x1x2

1 − πi(d)x1x2y1y2
). (2)

The neutral element of this law is (0, 1) and the inverse of an element (x1, y1)
is (−x1, y1). These formulas are complete if πi(a) is a square and πi(d) is a
non-square in the field Fq, for i ∈ {0, 1} (cf. [3]).
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Lemma 1. Let a = a0 + a1e be an element the R. Then, a is a square in R if
and only if a0 and a0 + a1 are squares in Fq.

Proof. Let us start by proving the direct implication. If a is a square in R, then
there exists b = b0+b1e ∈ R, with a = b2. Thus, a0+a1e = b20+((b0+b1)2−b20)e.
So a0 = b20 and a1 = (b0 + b1)2 − b20. Therefore, a0 = b20 and a0 + a1 = (b0 + b1)2,
i.e. a0 and a0 + a1 are squares in Fq.
For the converse let a = a0 + a1e be an element of R, with a0 and a0 + a1 are
squares in Fq. Then, there exists (b0, b1) ∈ (Fq)2, where a0 = b20 and a0+a1 = b21.
Therefore, a0 +a1e = b20 +(b21 − b20)e = (b0 +(b1 − b0)e)2, i.e. a0 +a1e is a square
in R. ��

The following example shows that if a is not a square in R, then the addition
on EE,a,d(R) is not always defined as in the following example. Consider p = 5,
a = 2 + 3e, d = 2 + 3e, then a and d are not squares and P = (2 + 4e, 1) and
Q = (4, 4 + 2e) are a point on EE,a,d(R). Nevertheless, P + Q not possible since
the inverse of 1 + dX1X2Y1Y2 = e does not exist.

Lemma 2. Let d0 + d1e, α ∈ {−1, 1}, and (X1, Y1), (X2, Y2) be two points of
the twisted Edwards curve EE,a,d(R), where X1 = x0 + x1e, Y1 = y0 + y1e,
X2 = x′

0 + x′
1e and Y1 = y′

0 + y′
1e, then α + dX1X2Y1Y2 is invertible in R if and

only if α+d0x0x
′
0y0y

′
0 �= 0 and α+(d0+d1)(x0+x1)(x′

0+x′
1)(y0+y1)(y′

0+y′
1) �= 0

in Fq.

Proof. We have:

α + dX1X2Y1Y2 = α + (d0 + d1e)(x0 + x1e)(x′
0 + x′

1e)(y0 + y1e)(y′
0 + y′

1e)

= α + d0x0x′
0y0y′

0 + [α + (d0 + d1)(x0 + x1)(x
′
0 + x′

1)(y0 + y1)(y
′
0 + y′

1)−
(α + d0x0x′

0y0y′
0)]e,

α + dX1X2Y1Y2 is invertible in R if and only if π0(α + dX1X2Y1Y2) �= 0 and
π1(α + dX1X2Y1Y2) �= 0 in Fq, i.e.: α + d0x0x

′
0y0y

′
0 �= 0 and α + (d0 + d1)(x0 +

x1)(x′
0 + x′

1)(y0 + y1)(y′
0 + y′

1) �= 0 in Fq. ��
Corollary 5. Let d0 +d1e be an element in R and (X1, Y1), (X2, Y2) two points
of the twisted Edwards curve EE,a,d(R). If π0(d) and π1(d) are not a square in
Fq, then α + dX1X2Y1Y2 is invertible in R, α ∈ {−1, 1}.
Corollary 6. Let a, d be two elements of R and (X1, Y1), (X2, Y2) two points
of the twisted Edwards curve EE,a,d(R). Assume that a is a squre and d is not
a square in R, then

(X1, Y1) + (X2, Y2) = (
X1Y2 + Y1X2

1 + dX1X2Y1Y2
,

Y1Y2 − aX1X2

1 − dX1X2Y1Y2
)

is well defined in EE,a,d(R).
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In order to reduce the computation cost in EE,a,d(R), we introduce a new
addition in EE,a,d(R) in Sect. 4, and we compare the computation cost of the
new law with the that law given in Corollary 6.

As π̃ is a bijection mapping between the two sets EE,a,d(R) and
EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq), we can define the sum on EE,a,d(R).

Definition 2. Let P = (X1, Y1) and Q = (X2, Y2) be two points of the twisted
Edwards curve EE,a,d(R), assume that a is a square and d is not a square in R,
we define the additive law P +̃Q in EE,a,d(R) by: P +̃Q = π̃−1(π̃(P ) + π̃(Q)).

Keep the assumptions of the above definition during this section. The follow-
ing corollaries can be easily proved:

Corollary 7. The set (EE,a,d(R), +̃) is a commutative group, which has (0, 1)
as its zero element and the inverse of (X1, Y1) is (−X1, Y1).

Corollary 8. The π̃ mapping is an isomorphism of groups.

By using formula (2), Theorem 2 and Proposition 2, we shall give the explicit
formula of sum of two points in the twisted Edwards curve EE,a,d(R) in the next
lemmas.

Lemma 3. Let P = (xe, α + ye) and Q = (x′e, β + y′e) be two elements of
EE,a,d(R) such that α ∈ {−1, 1} and β ∈ {−1, 1}. Then P +̃Q = (x3e, αβ +
(y3 − αβ)e), where

x3 =
x(β + y′) + (α + y)x′

1 + π1(d)xx′(α + y)(β + y′)
and y3 =

(α + y)(β + y′) − π1(a)xx′

1 − π1(d)xx′(α + y)(β + y′)
.

Proof. As
{

π̃0(xe, α + ye) = (0, α)
π̃0(x′e, β + y′e) = (0, β) and

{
π̃1(xe, α + ye) = (x, α + y)
π̃1(x′e, β + y′e) = (x′, α + y′) ,

according to the formula (2), we have:

π̃0(xe, α + ye) + π̃0(x
′
e, β + y

′
e) = (0, αβ) and π̃1(xe, α + ye) + π̃1(x

′
e, β + y

′
e) = (x3, y3),where

x3 =
x(β + y′) + (α + y)x′

1 + π1(d)xx′(α + y)(β + y′)
and y3 =

(α + y)(β + y′) − π1(a)x′

1 − π1(d)xx′(α + y)(β + y′)
.

Therefore,

P +̃Q = π̃−1((0, αβ), (x3, y3)) = (x3e, αβ + (y3 − αβ)e).

��
Lemma 4. Let P = (xe, α+ ye) and Q = (x′ −x′e, y′ +(β − y′)e) be two points
of the twisted Edwards curve EE,a,d(R) such that α ∈ {−1, 1} and β ∈ {−1, 1}.
Then P +̃Q = (αx′ + (βx − αx′)e, αy′ + (β(α + y) − αy′)e).
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Proof. As
⎧
⎪⎨

⎪⎩

π̃0(xe, α + ye) = (0, α)

π̃0(x
′ − x′e, y′ + (β − y′)e) = (x′, y′)

and
⎧
⎪⎨

⎪⎩

π̃1(xe, α + ye) = (x, α + y)

π̃1(x
′ − x′e, y′ + (β − y′)e) = (0, β)

,

According to the formula (2), we have:

π̃0(xe, α + ye) + π̃0(x
′
e, β + y

′
e) = (αx

′
, αy

′
) and π̃1(xe, α + ye) + π̃1(x

′
e, β + y

′
e) = (βx, β(α + y)).

Then

P +̃Q = π̃−1((αx′, αy′), (βx, β(α+ y))) = (αx′ + (βx − αx′)e, αy′ + (β(α+ y)− αy′)e).

��

Lemma 5. Let P = (x − xe, y + (α − y)e) and Q = (x′ − x′e, y′ + (β − y′)e)
be two points of the twisted Edwards curve EE,a,d(R) such that α ∈ {−1, 1} and
β ∈ {−1, 1}. Then P +̃Q = (x3 − x3e, y3 + (αβ − y3)e), where

x3 =
xy′ + yx′

1 + π0(d)xx′yy′ and y3 =
yy′ − π0(a)xx′

1 − π0(d)xx′yy′ .

Proof. As
⎧
⎪⎨

⎪⎩

π̃0(x − xe, y + (α − y)e) = (x, y)

π̃0(x
′ − x′e, y′ + (β − y′)e) = (x′, y′)

and
⎧
⎪⎨

⎪⎩

π̃1(x − xe, y + (α − y)e) = (0, α)

π̃1(x
′ − x′e, y′ + (β − y′)e) = (0, β)

,

According to formula (2), we have:

π̃0(x − xe, y + (α − y)e) + π̃0(x′ − x′e, y′ + (β − y′)e) = (x3, y3) and

π̃1(x − xe, y + (α − y)e) + π̃1(x′ − x′e, y′ + (β − y′)e) = (0, αβ),where

x3 =
xy′ + yx′

1 + π0(d)xx′yy′ and y3 =
yy′ − π0(a)xx′

1 − π0(d)xx′yy′ .

Therefore,

P +̃Q = π̃−1((x3, y3), (0, αβ)) = (x3 − x3e, y3 + (αβ − y3)e).

��
Lemma 6. Let P = (xe, α + ye) and Q = (x0 + x1e, y0 + y1e) be two points
of the twisted Edwards curve EE,a,d(R) such that α ∈ {−1, 1}. Then P +̃Q =
(αx0 + (x3 − αx0)e, αy0 + (y3 − αy0)e), where

x3 =
x(y0 + y1) + (α + y)(x0 + x1)

1 + π1(d)x(x0 + x1)(α + y)(y0 + y1)
and y3 =

(α + y)(y0 + y1)− π1(a)x(x0 + x1)

1− π1(d)x(x0 + x1)(α + y)(y0 + y1)
.

Proof. As
⎧
⎪⎨

⎪⎩

π̃0(xe, α + ye) = (0, α)

π̃0(x0 + x1e, y0 + y1e) = (x0, y0)
and

⎧
⎪⎨

⎪⎩

π̃1(xe, α + ye) = (x, α + y)

π̃1(x0 + x1e, y0 + y1e) = (x0 + x1, y0 + y1)
,

According to the formula (2), we have:

π̃0(xe, α + ye) + π̃0(x0 + x1e, y0 + y1e) = (αx0, αy0) and

π̃1(xe, α + ye) + π̃1(x0 + x1e, y0 + y1e) = (x3, y3), where
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x3 =
x(y0 + y1) + (α + y)(x0 + x1)

1 + π1(d)x(x0 + x1)(α + y)(y0 + y1)
and y3 =

(α + y)(y0 + y1)− π1(a)x(x0 + x1)

1− π1(d)x(x0 + x1)(α + y)(y0 + y1)
.

Therefore,

P +̃Q = π̃−1((αx0, αy0), (x3, y3)) = (αx0 + (x3 − αx0)e, αy0 + (y3 − αy0)e).

��
Lemma 7. Let P = (x − xe, y + (α − y)e) and Q = (x0 + x1e, y0 + y1e) be
two points of the twisted Edwards curve EE,a,d(R) such that α ∈ {−1, 1}. Then
P +̃Q = (x3 + (α(x0 + x1) − x3)e, y3 + (α(y0 + y1) − y3)e), where

x3 =
xy0 + x0y

1 + π0(d)xx0yy0
and y3 =

yy0 − π1(a)xx0

1 − π1(d)xx0yy0
.

Proof. As
⎧
⎪⎨

⎪⎩

π̃0(x − xe, y + (α − y)e) = (x, y)

π̃0(x0 + x1e, y0 + y1e) = (x0, y0)
and

⎧
⎪⎨

⎪⎩

π̃1(x − xe, y + (α − y)e) = (0, α)

π̃1(x0 + x1e, y0 + y1e) = (x0 + x1, y0 + y1)
,

According to the formula (2), we have:

π̃0(x − xe, y + (α − y)e) + π̃0(x0 + x1e, y0 + y1e) = (x3, y3) and

π̃1(xe, α + ye) + π̃1(x0 + x1e, y0 + y1e) = (α(x0 + x1), α(y0 + y1)), where

x3 =
xy0 + x0y

1 + π0(d)xx0yy0
and y3 =

yy0 − π1(a)xx0

1 − π1(d)xx0yy0
.

Therefore,

P +̃Q = π̃
−1

((x3, y3), (α(x0+x1), α(y0+y1))) = (x3+(α(x0+x1)−x3)e, αy0+(α(y0+y1)−y3)e).

��
Lemma 8. Let P = (x0+x1e, y0+y1e) and Q = (x′

0+x′
1e, y

′
0+y′

1e) be two points
of the twisted Edwards curve EE,a,d(R). Then P +̃Q = (x3 + (x′

3 − x3)e, y3 +
(y′

3 − y3)e), where

x3 =
x0y

′
0 + x′

0y0
1 + π0(d)x0y′

0x
′
0y0

, y3 =
y0y

′
0 − π0(a)x0x

′
0

1 − π0(d)x0y′
0x

′
0y0

,

x′
3 =

(x0 + x1)(y′
0 + y′

1) + (y0 + y1)(x′
0 + x′

1)
1 + π1(d)(x0 + x1)(y′

0 + y′
1)(y0 + y1)(x′

0 + x′
1)

and

y′
3 =

(y0 + y1)(y′
0 + y′

1) − π1(a)(x0 + x1)(x′
0 + x′

1)
1 − π1(d)(x0 + x1)(y′

0 + y′
1)(y0 + y1)(x′

0 + x′
1)

.

Proof. As
⎧
⎪⎨

⎪⎩

π̃0(x0 + x1e, y0 + y1e) = (x0, y0)

π̃0(x
′
0 + x′

1e, y′
0 + y′

1e) = (x′
0, y′

0)
and

⎧
⎪⎨

⎪⎩

π̃1(x0 + x1e, y0 + y1e) = (x0 + x1, y0 + y1)

π̃1(x
′
0 + x′

1e, y′
0 + y′

1e) = (x′
0 + x′

1, y′
0 + y′

1)
,

According to the formula (2), we have:

π̃0(x0 + x1e, y0 + y1e) + π̃0(x′
0 + x′

1e, y
′
0 + y′

1e) = (x3, y3) and
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π̃1(x0 + x1e, y0 + y1e) + π̃1(x′
0 + x′

1e, y
′
0 + y′

1e) = (x′
3, y

′
3), where

x3 =
x0y

′
0 + x′

0y0
1 + π0(d)x0y′

0x
′
0y0

, y3 =
y0y

′
0 − π0(a)x0x

′
0

1 − π0(d)x0y′
0x

′
0y0

,

x′
3 =

(x0 + x1)(y′
0 + y′

1) + (y0 + y1)(x′
0 + x′

1)
1 + π1(d)(x0 + x1)(y′

0 + y′
1)(y0 + y1)(x′

0 + x′
1)

and

y′
3 =

(y0 + y1)(y′
0 + y′

1) − π1(a)(x0 + x1)(x′
0 + x′

1)
1 − π1(d)(x0 + x1)(y′

0 + y′
1)(y0 + y1)(x′

0 + x′
1)

.

Therefore,

P +̃Q = π̃−1((x3, y3), (x′
3, y

′
3)) = (x3 + (x′

3 − x3)e, y3 + (y′
3 − y3)e),

which completes the proof. ��
Lemmas 3, 4, 5, 6, 7 and 8 can be regrouped in the next theorem which given

the additive law of the twisted Edwards curve EE,a,d(R).

Theorem 3. Let P = (X1, Y1) and Q = (X2, Y2) be in EE,a,d(R). Assume that
πi(a) is a square and πi(d) is not a square in Fq, where i ∈ {0, 1}. Under the law
+̃, (EE,a,d(R), +̃) is an Abelian group with zero element (0, 1). More precisely
for every α, β ∈ {−1, 1}, we have P +̃Q = (X3, Y3) is given by:

1) If π̃0(P ) = (0, α), then

X3 = απ0(X2) + (x3 − απ0(X2))e,
Y3 = απ0(Y2) + (y3 − απ0(Y2))e,

where
π̃1(P ) + π̃1(Q) = (x3, y3).

2) If π̃1(P ) = (0, α), then

X3 = x3 + (απ1(X2) − x3)e,
Y3 = y3 + (απ1(Y2) − y3)e,

where
π̃0(P ) + π̃0(Q) = (x3, y3).

3) If π̃0(P ) = (0, α) and π̃1(Q) = (0, β), then

X3 = απ0(X2) + (βπ1(X1) − απ0(X2))e,
Y3 = απ0(Y2) + (βπ1(Y1) − απ0(Y2))e.
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4) If π̃0(P ) �= (0, α) and π̃1(P ) �= (0, α), then

X3 = x3 + (x′
3 − x3)e,

Y3 = y3 + (y′
3 − y3)e,

where
π̃0(P ) + π̃0(Q) = (x3, y3),

π̃1(P ) + π̃1(Q) = (x′
3, y

′
3).

Proof. For the proof, we can easily show that the lemmas from 3 to 8 verify the
cases of the theorem.

�

Now we shall focus on the complexity of the sum law in the twisted Edwards
curve EE,a,d(R).

Let S be the cost of the sum and M the cost of the multiplication in the
field Fq. The computation cost of calculating P + Q the sum that is defined in
Corollary 6 and P +̃Q the sum that is defined in Definition 2 are given in the
following table (Table 1):

Table 1. The complexity of the additions in the twisted Edwards curve EE,a,d(R).

Addition + +̃

Cost Sum Mult Sum Mult

Lemma 3 21S 75M 13S 13M

Lemma 4 3S 7M 2S 4M

Lemma 5 7S 27M 5S 13M

Lemma 6 41S 146M 13S 13M

Lemma 7 12S 32M 6S 13M

Lemma 8 48S 284M 26S 26M

The following graphics illustrate the above results (Fig. 1).
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Fig. 1. The complexity of the additions in the twisted Edwards curve EE,a,d(R).

Concerning the complexity reduction of the sum law in the twisted Edwards
curve EE,a,d(R), one can remark that the direct calculation of the sum P +
Q is more expensive compared to the calculation of this sum P +̃Q using the
isomorphism π̃. Which explain the need of this study.

Links with Cryptography

Let us close this section with few applications in cryptography. We have:

• card(EE,a,d(R)) = card(EE,π0(a),π0(d)(Fq)) × card(EE,π1(a),π1(d)(Fq)).
• EE,a,d(R) and EE,π0(a),π0(d)(Fq) × EE,π1(a),π1(d)(Fq) have the same security

discrete logarithm problem.
• In cryptanalysis, break the discrete logarithm problem on EE,a,d(R) is equiv-

alent to break the discrete logarithm problem on EE,π0(a),π0(d)(Fq) and
EE,π1(a),π1(d)(Fq).
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