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Abstract. Systems based on the Internet of Things impact more and more indus-
trial areas such as smart manufacturing, smart health monitoring and home
automation. Ensuring their correct construction, their well functioning and their
reliability is an important issue for some of these systems which can be critical
in case of dysfunction. The main requirements on physical architectures and con-
trol software are common in most of IoT-based systems. Therefore, we propose
on the basis of their common architectural properties and behaviour, a generic
formal model of IoT-based systems together with the rigorous analysis of their
consistency properties; specific properties may be gradually added and checked.
The proposed generic formal model is implemented as a parametrised model and
experimented using the Event-B framework. This parametrised model is extensi-
ble; it can be profitably adapted to more general hybrid or cyber-physical systems.
Moreover, our generic model is independent of the target formal modelling tools,
it can be implemented in various other formal analysis environments.

Keywords: IoT Applications · Generic formal model · Invariant properties ·
Event-B

1 Introduction

Internet of Things systems impact industrial areas such as smart manufacturing, smart
vehicles, smart logistics and transportation, smart farming, etc. These applications share
a well-established architectural structuring, reference models and some functional and
non-functional properties [2,6,8]. However, well-established engineering methods and
techniques are still needed [19] to ensure that the applications are reliable, secure,
scalable, well-integrated, and extensible. In this context, we are motivated by propos-
ing methods and tools for mastering the modelling, the analysis and the development
of such IoT-based applications. The challenge is that these applications can become
rapidly complex because of their heterogeneous and evolving environment.

In order to ensure the consistency and the well-functioning of an IoT-based applica-
tion, the latter should integrate as a parameter, the complete description of the physical
context that it controls. Therefore, a global model can be built and analysed with respect
to intrinsic consistency and to the required specific properties. We propose such a global
formal modelling and the related analysis.
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The contributions of this paper are manifold: we propose i) a generic formal descrip-
tion of the physical architecture of an IoT-based system; ii) a formal description of the
control application parametrised by its physical environment; iii) the modelling and
analysis of the invariant architectural properties of such IoT-based systems and the
description of some specific properties. They are described to be customizable for other
application cases. We design using Event-B, a formal parametrised model, to support
the full modelling and analysis approach. Moreover, we build a tool that generates sys-
tematically for a given IoT-based application, the specific Event-B parts that are used to
instantiate the parametrised Event-B model.

The organisation of the article is as follows. In Sect. 2, we introduce the background
concepts. Section 3 is devoted to the generic formal model of IoT-based applications. In
Sect. 4, we deal with the invariant consistency properties, formalised with operational
semantic rules. In Sect. 5, we show how we have implemented our proposed generic for-
mal model and analysis technique using Event-B. We compare our work to the related
ones in Sect. 6. Finally, Sect. 7 presents some perspectives and future work.

2 Basic Concepts and Architecture of IoT Systems

Based on state-of-the-art references [2,8,14,20] of IoT technologies, challenges, com-
parisons, and reference models, we consider the following main elements of IoT.

A thing1 is a physical object equipped with: i) sensors that collect and gather data
from the environment; ii) actuators that allow the control of the thing or allow the thing
to act on its environment.

An IoT-based application is a software made of services, built on top of the physical
infrastructure made of one or several things. An example of the architecture of a control
application is depicted in Fig. 1 where we can distinguish: i) a physical part made of
the controlled devices equipped with sensors and actuators; ii) a software part made of
the (sub-)controllers which interact with the physical part through an event dispatcher.
This abstraction covers the four-layers architecture widely admitted [2] now for service-
oriented architecture (SOA) IoT systems.

A control application sends orders (including signals) to actuators, according to
information collected by sensors. A control application often uses rules stated by a
human expert or systematically computed from a specific database, to issue control
orders. Therefore, the main components to deal with for an IoT-based system are: a
physical part made of sensors, actuators, things, and network infrastructure; a soft-
ware part made of a control application and potentially specific control or monitoring
services. Additionally, the components interact through low level or application level
communication protocols such as WiFi, bluetooth, ZigBee and MQTT [4].

3 Formal Model of IoT-Based Systems

We propose in the following an abstract formal model of IoT-based systems. We use set
theory and relation notations to structure the model components. Sets are written with

1 we keep the vocabulary of IoT domain.
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Fig. 1. An abstract architectural view of an IoT-based system

capital letters, the standard set operators (∈,⊆, · · · ) are used. A relation r defined over
the sets S and P is written: r : S↔ P or more conventionally r ⊆ S×P; a function f over
S and Q is written: f : S → Q; the relational operators ran and dom denote respectively
the range and the domain of a relation or a function.

An IoT-based application is composed at least of: a set of connected IoT devices
(D), sensors (S ) and actuators (A), that make the physical part; a set of controllers (C ),
sometimes together with a dedicated server (or dispatcher) which collects the data from
sensors and distributes them to the controllers. Sensors and actuators are bound to the
devices. A controller is linked to the sensors from which it reads inputs, and to the
actuators it manages. Sensors and actuators may be connected to several interconnected
controllers.

3.1 Elementary Components of the Model

Sensors. A sensor s provides a value in a given range; a value will correspond to a
state of the device that it senses. Each category (cs) of sensors may have various value
ranges (Rcs). A sensor interacts with its environment through communication protocols.
Let CommProto be such a set of protocols; a sensor s of the set of sensors S (s ∈ S )
is defined by a 4-tuple (categs,rangesc,values,commps) with a category categs ∈Cs, a
range rangesc ⊆ Rcs, a current value in its range values ∈ rsc and a set of communication
protocols commps. We use the following relations to get each element of the 4-tuple:

categs : S →CS ranges : S ↔ Rcs

values : S → Rcs commps : S ↔CommProto

Actuators. An actuator a of the set of actuators A (a∈A) receives an input in a specific
range of order values (OrderA), and delivers accordingly an output signal (from a set
SignalA) towards its environment. We use the triple (inputOrda,ouputSigna,commpa)
to describe an actuator and the following relations to determine its elements:

inputOrda : A ↔ OrderA ouputSigna : A ↔ SignalA commpa : A ↔CommProto



78 C. Attiogbé and J. Rocheteau

They give the set of inputs, outputs and protocols of an actuator. We define later the
links between an actuator and a device or a controller.

Devices. A device (d ∈ D) is modelled by its state sd in such a way that a range of
measured values Vv of some sensors s (linked d), corresponds to sd (that is, Vv �→ sd).
In the same way, the output signals of an actuator can, upon the reception of an order,
set the device d in a state sd . Therefore, a device d is characterised by its set of states
(STATED), corresponding to its behaviour which is, moving from state to state accord-
ing to the received stimulation signals. Accordingly, d is modelled with a transition
system 〈STATED, SignalA, S0, δ〉 which abstracts its behaviour; with SignalA the set
of received signals, δ : STATED×SignalA → STATED a transition function, and S0 an
initial state of the device. We use a function curStated : D → STATED to denote the
current state.

Services. The tasks performed in controller applications consist in applying a set of
control rules (R) to analyse data (DS) collected from the sensors (S ) and to compute, the
orders (Order) to be sent to the actuators. The services implement these control rules.
A controller c is then equipped with a function ComputeOrderR : DS → Order. When
the controller collects values from sensors bound to it, it computes the appropriate order
using the rules R, and outputs this order to the actuator bound to it.

3.2 Abstractions for IoT-Based Systems

We describe an abstract model of an IoT-based system according to the two main
components presented in Sect. 2: we build the abstract model Mphys of the physical
part and the abstract model Msoft of the control software part. We consider the previ-
ous sets S , A and D . The physical architecture is modelled with a n-tuple Mphys =
(S, A, D, binding(d,s), binding(a,d)) where S ⊆ S is a subset of sensors; A ⊆ A is a
subset of actuators; D⊆D is a set of sensed or controlled devices; binding(d,s) ⊆D×S
is a relation that describes the binding between the sensed devices and their sensors,
and binding(a,d) ⊆ A×D is a relation that describes the binding between the actuators
and the controlled devices. The control dependency between devices is defined later.

A control software (or application) part of an IoT system is modelled with the tuple
Msoft = (CR,Serv,servDepend(c,s)) where CR ⊆ C is a set of controllers which use a set
of the control rules R for their control tasks; Serv is a set of services used or provided by
the controllers; servDepend(c,s) ⊆CR×Serv is the dependencies between the controllers
and the used services.

To model the link between the control application and the sensors and actuators, the
physical (Mphys) and software (Msoft) models are linked with the following relations:

– inD ⊆ S×CR which models the links between the sensors and the controller; it
supports data input from the sensors;

– outO ⊆CR ×A which models the links between the controller and the actuators; it
supports order output to actuators.

At this stage the control application (Msoft) can communicate with the physical part
via its abstract model (Mphys). Typically the application receives data from the sensors
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(via inD) and issues orders sent to the actuators (via outO). The orders are computed
from the application services using defined rules.

But, in order to state the architectural invariants and to analyse the IoT system prop-
erly, we need to address one of the identified defects leading to inconsistencies, which is
the lack of explicit declaration of dependencies between sensors and related controlled
devices. When the control of a given device depends on some sensors, this dependency
should be made explicit. The devices should have been equipped by an actuator which
share the same controller with the involved sensors. Therefore, it is necessary to make
explicit in the model, the control dependency relation between involved sensors and
controlled devices; this is done with a relation CtrlDepend(s,d) ⊆ S×D.

This relation describes which sensors are used to control which devices, so that
we can reason later on the consistency of the functioning of the global system. Both
the relations CtrlDepend(s,d) and binding(d,s) are necessary since the impacted devices
described by CtrlDepend(s,d) can be different from the sensed ones described by
binding(d,s). Consequently, given a control part Msoft =̂ (CR, Serv, servDepend(c,s))
with a physical architecture Mphys =̂ (S, A, D, binding(d,s), binding(a,d)), and their
interconnection with the relations inD, outO and CtrlDepend(s,d), the model of the
complete control system Sys integrating them is described by the 5-tuple:

Sys= (Mphys, Msoft, inD, outO, CtrlDepend(s,d))

For the systematic construction and analysis of the model, we structure it with
parameters made of all, or some parts, of the global system; hence the genericity; differ-
ent parameters lead to specific systems: Sys[Mphys, Msoft, inD, outO, CtrlDepend(s,d)].
This enables us to build separately the different parts, and also to modify them easily as
well as their interconnections; we can freeze a physical architecture and check different
versions of the control part or as done in the following, freeze the software and check
some configurations of the physical parts. Then, the global model is a parametrised
structure with the parameters Mphys, inD, outO and CtrlDepend(s,d), and a frozen soft-
ware part:

Sys(Msoft)[Mphys, inD, outO, CtrlDepend(s,d)]

3.3 Behavioural Description of a Control Application

A control application continuously reacts to the data collected by sensors and changes
the state of its environment by sending orders to the involved actuators. We use
operational semantic rules to describe this general behaviour. First, we assume that
the application is consistent so that it can react properly to the sensed data. In
Sect. 4.1 we show how the consistency properties are defined and then how they can
be checked in Sect. 4.2. Given Sys(Msoft)[Mphys, inD, outO, CtrlDepend(s,d)], a con-
sistent application with Mphys = (S, A, D, binding(d,s), binding(a,d)) and Msoft =
(CR, Serv, servDepend(c,s)), when a controller ci (with a function computeOrderci)
of CR, receives a value val from a sensor si of S bound to a device ds of D, considering
that the control of a device dc depends on the sensor si, and that there is an actuator as
bound to dc, then an order ordi, computed by the controller ci linked to as, is sent to the
actuator as.
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Control Abstraction and Genericity. A sensor covers a set of ranges that will be
matched to a set of states of the device. We consider this matching, as a (explicitely
provided) function σ from a set of values to a set of states. Consequently, given a sensor
si with its range of values rsc, a device dc characterised by 〈STATED,Signal,S0,δ〉, in
order to control dc, we need a function σsd : rsc → STATED (considered as a parameter
of a controler) that links si and dc. This is provided through the services on which the
controller depends. Therefore, a controller ci is parametrised by si, dc and σsd (denoted
by ci[si,dc,σsd ]) in such a way that given a value v from si, σsd(v) provides the corre-
sponding state s of the device dc. Before changing the state of dc according to values
sensed by si and the predefined behaviour δ of dc, the controller should compute, pro-
vided that σsd is already defined through its services, the appropriate order to be sent to
the device. Hence, the following generic semantic rule (compOrd) to compute orders.
Note that, when curState(dc) = s, nothing should be changed.

si =̂ (cs,rsc,vs,commps)
dc =̂ 〈STATED,Signal,S0,δ〉

σsd : rsc → STATED vs ∈ rsc
σsd(vs) = s curState(dc) 
= s

thisOrder ∈ Signal (curState(dc), thisOrder,s) ∈ δ
ComputeOrderci[si,dc,σsd ](vs) = thisOrder

(compOrd)

We formally define the general behaviour of the IoT application by the following
operational semantic rule where the operators ⇓ and ⇑ denote respectively the reception
of a value from a given sensor by a controller and the sending of an order by a controller
to an actuator. Thus ci ⇓ (si,val) expresses that the controller ci receives the value val
sent by the sensor si; similarly ci ⇑ (as,ordi) expresses that the controller ci sends the
order ordi to the actuator as. The rule (RoS - react on sense) captures the traditional
sense-decision-control paradigm of control systems.

Msoft =̂ (CR, Serv, servDepend(c,s))
Mphys =̂ (S,A,D,binding(d,s),binding(a,d))

Sys(Msoft)[Mphys, inD, outO, CtrlDepend(s,d)]
si ∈ S as ∈ A ds ∈ D dc ∈ D ci[si,dc,σsd ] ∈CR

binding(d,s)(ds) = {si} (as,dc) ∈ binding(a,d)
(si,ci) ∈ inD (ci,as) ∈ outO (si,dc) ∈CtrlDepend(s,d)

ci ⇓ (si,val) val ∈ ranges(si)
ordi = ComputeOrderci[si,dc,σsd ](val)

ci ⇑ (ai,ordi)
(RoS)

A consequence of the RoS rule is the Integrity of orders: any order sent to an actua-
tor results from one of the services (they provide σsd) of the control application. Since
the computation of orders is due to the controller whose services implement (via σsd)
the control application rules (previously denoted R), the orders sent to the actuators are
the right ones. However, the integrity checking should be propagated until the applica-
tion implementation level.

The RoS rule expresses one step of the cyclic behaviour of the control application;
the repetition of the step is captured by the continuous enabling of the rule. We have
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also generalized the RoS rule by considering an extension of computeOrderci , with a
function ComputeGlobalOrderSys that computes an order, according to the global state
of the system. A design flaw may happen at the system level; we formalise this situation
with a semantic rule (dFlaw rule) which expresses that when there is no transition from
the current state of the controlled device dc to a state corresponding to the value sent by
a related sensor (i.e. (curState(dc),∗,s) /∈ δ), the controller is not able to send an order
to the actuator, since the order is undefined. In the case of inconsistent values we have
to implement (based on the dFlaw rule) a rule that raises inconsistency of sensors.

Further Generalisation. The rule compOrd considers the computation of an order
related to the state of one device; this rule may be extended to the states of several
devices, and also the computation of several orders to be emitted to change the state
of the system; it will involve an evolution with a sequence of orders. This requires the
extension of the emission operator to the emission of the sequence of orders.

From now on, we have captured the correct behaviour and the possible design flaw
of an IoT-based control application.

4 Consistency Properties and Analysis of the Formal Model

The generic formal model built in the Sect. 3 is enhanced with consistency properties.

4.1 Invariant Consistency Properties

We focus on the architectural consistency and then, on the consistency of the function-
ing of IoT-based applications. Let us consider in the following, an application defined
with

Mphys =̂ (S,A,D,binding(d,s),binding(a,d)) Msoft =̂ (CR, Serv, servDepend(c,s))
Sys(Msoft)[Mphys, inD, outO, CtrlDepend(s,d)]

We describe a list of properties required for an IoT architecture to be consistent so
that a model satisfying these properties will be consistent.

Well-Structuring of Physical Components (wsHW). An IoT architecture involves
devices, sensors and actuators; it is described with two binding relations. To be con-
trolled, the architecture requires the following property which expresses partial con-
nectivity (with a disjunction) in order to be less restrictive, instead of full connectivity:
binding(d,s) 
= ∅ ∨ binding(a,d) 
= ∅

Well-Structuring of Controllers (wsCtrl). An IoT control application requires a connec-
tion with at least one sensor and one actuator: ∀ci ∈ CR.(inD(ci) 
= ∅ ∧ outO(ci)

= ∅)

Weak Consistency of Components Involved in Interactions (wkCst). For consistency
purpose, sensors or actuators involved in the interactions should be those described in
the physical support: dom(inD) ⊆ S ∧ ran(outO) ⊆ A

However, this consistency is weak, because it does not constrain the linking of the
involved sensors and actuators. For more accuracy, we define the following stronger
property.
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Consistency of Control Dependencies (CstBind). The consistency of the device con-
trols requires that: the actuators to whom a controller sends its orders (via outO),
are those actuators bound (via binding(a,d)) to the devices which are controlled (via
CtrlDepend(s,d)) by the sensors bound (via inD) to the controller. Thus and interaction
consistency property is required; it is expressed by the equality of the composition of
the involved relations: inD;outO= ctrDepend;binding−1

ad

The Consistency of control dependencies property ensures that: if a sensor si impacts
the control of a given device dc (via CtrlDepend(s,d)), and the sensor si is connected to
a controller ci (via inD) then the actuator ak bound (via binding(a,d)) to the device dc is
also linked (via outO) to the controller ci.

si ∈ S ci ∈CR ak ∈ A dc ∈ D
(si,ci) ∈ inD (ak,dc) ∈ binding(a,d)

(si,dc) ∈CtrlDepend(s,d)
(ci,ak) ∈ outO

(CstDep)

Well-Structured Connection of Actuators and Sensors (wsS2A). The controllers which
are connected to sensors should also be connected to some actuators, otherwise the
collected inputs are not used for the control: ran(inD) ⊆ dom(outO)

This property can be relaxed if one considers applications without actuators, or with
a pool of interacting controllers.

Consistency for Communication Protocols (wsProt). The consistency of protocols
requires that the pairs of sensor-controller and controller-actuator use compatible com-
munication protocols: each sensor interacts with the bound controller using an appro-
priate communication protocol; each controller interacts with the bound actuators using
an appropriate communication protocol. Consider the set of communication protocols
(CommProto) used by the components of the architecture and ci ∈ CR, si ∈ S, as ∈ A,
(si,ci) ∈ inD, (ci,as) ∈ outO such that commps(si) ⊆ CommProto ∧ commpc(ci) ⊆
CommProto ∧ commpa(as) ⊆ CommProto. The protocol consistency requires:

(commps(si) ∩ commpc(ci) 
= ∅) ∧ (commpc(ci) ∩ commpa(ai) 
= ∅)

4.2 Consistency Analysis of IoT-Based Control Applications

Given the previous consistency properties, we state the following two definitions for
the consistency analysis of IoT-based control applications. If a given model satisfies the
properties then it is consistent.

Definition 1. (Architectural correctness) A given physical architecture Mphys is said
consistent if it preserves the property wsHW.

The physical architecture can be given without any controller, while the other prop-
erties involve the relations with the controller and a specific connection of the architec-
tures.
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Definition 2. (Behavioural correctness) An application Sys(Msoft), parametrised with
Mphys, inD, outO and CtrlDepend(s,d) is consistent if: Mphys is consistent, and if the
properties wsCtrl, wsS2A, wsProt, wkCst, CstBind, CstDep hold.

A formal model of an application, which has these properties established, will be
consistent by construction. This is the main idea implemented in the following section.

5 Checking the Consistency Properties Using Event-B

The abstract and generic model and properties defined in Sects. 3 and 4 should be imple-
mented and analysed in a given formalism with its related tools, for any specific IoT-
based application. We propose, using the Event-B formalism, a parametrised Event-B
model as a generic base to model and analyse IoT-based applications. This parametrised
approach is more interesting and more general than the straight translation or implemen-
tation of the abstract formal model in Event-B or in any other formal language; indeed,
only a few part of the abstract model is specific to a given application, the remaining
major part (is common to all applications and should) stay unchanged.

Overview of Event-B Modelling. Event-B [1,10] is a modelling and development
method where components are modelled as abstract machines which are composed and
refined into concrete machines called refinements. An abstract machine comprises a
state space invariant and guarded events; it describes a mathematical model of a system
behaviour as a discrete transition with the guarded events. Proof obligations are defined
to establish model consistency via invariant preservation. Specific properties (included
in the invariant) of a system are also proved in the same way.

5.1 A Parametrised Model for Consistency Checking of IoT Applications

We capture the common requirements and properties of IoT-based applications within
an abstract and generic model; the analysis of the consistency properties does not
depend on a specific application; it may be done through a generic parametrised model.
We implement the generic model2 in Event-B following the structure of a parametrised
model interconnecting in a systematic way, a physical part and a control software part.

This justifies the structuring of our Event-B model where some contexts and
machines are to be adapted to specific applications but other machines/contexts are
defined once for all. The parametrised model, as a composition of Event-B compo-
nents (see Fig. 2), is not only designed and used to implement our proposed method of
modelling and analysis, it aims at being an easily reusable base. For this purpose, we
adopted a layered structuring of the Event-B components in order to have a systematic
approach for building, generating or extending the generic model. For extensibility, we
consider categories of IOT-based systems; for instance, a home control category where
the main components of systems are always the same: lights, windows, doors, garage,

2 The complete Event-B development can be found at https://gitlab.univ-nantes.fr/attiogbe-c/
iot_with_eventb.

https://gitlab.univ-nantes.fr/attiogbe-c/iot_with_eventb
https://gitlab.univ-nantes.fr/attiogbe-c/iot_with_eventb
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Fig. 2. The architecture of our generic Event-B modelling and analysis framework

heating, etc. Therefore the modelling components are not varying and can be gathered
as reusable components in our formal modelling.

The generic architecture is depicted in Fig. 2. A first basic layer comprises fixed
predefined Event-B contexts (whose names end with 0) which gather all elementary
types and relations required in any application within a given category. Another layer
comprises Event-B contexts and machines (whose names end with 1) which are the
specific instantiations of the predefined contexts. Considering the category of home
automation applications, at the hardware level, the context HWCtx0 contains the basic
sets (LIGHTSENSOR, MOTIONSENSOR, LIGHTACTUATOR, etc.); at the software
level the context SWCtx0 contains all the basic sets (SERVICE, CONTROLLER) for
the applications of this category.

The context HW_ArchiCtx0 implements Mphys; it contains the generic structuring of
a physical architecture (the formal bindings between the devices); that is, the relations
binding(d,s) and binding(a,d) (see Sect. 3.2); similarly SW_ArchiCtx0 implements Msoft;
it contains the generic structuring of the software part (with servDepend).

The context HW_ArchiCtx1 contains a specific instantiation for the physical archi-
tecture; it comprises the declarations of the objects (the sensors of each type, the needed
controllers, etc.) and their assembly in a given application. Similarly, SW_ArchiCtx1
contains a specific instantiation of the software part; it comprises the controllers and the
services on which they depend. Thus, only these two contexts will be modified to con-
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sider new instances of physical or software part. The generic interconnection between
the two parts (with the relations inD, outO, CtrlDepend, see Sect. 3.2) is implemented
with the Event-B context HWSW_Archi0. In the same way, the context HWSW_Archi1
models a specific instantiation; it is the only context to be modified in order to build an
interconnection for a specific control application; it gathers Msoft and the four parame-
ters Mphys, inD, outO, CtrlDepend.

The analysis machine (IoTArchiCheck0, detailed in Fig. 3) is defined once for all;
it contains the invariant properties (wsHW, wkCst, CstBind, CstDep, wsS2A defined in
Sect. 4.1) to be checked for any given IoT-based application.

Each specific application is given as a parameter (HWSW_Archi1) of
IoTArchiCheck0; that justifies the structuring with the Event-B SEES clause: a way to
implement the genericity. Note that the effective implementation of an example system,
is orthogonal to the preliminary step of consistency checking. If the IoTArchiCheck0
machine parametrised with HWSW_Archi1 is proved correct, then all the architectural
and consistency properties are satisfied and consequently the related model is consis-
tent.

Fig. 3. The generic analysis Event-B machine

The aim is now, given a model describing an IoT-based application, to prove at
least all the properties of interest listed above. We use Rodin to discharge these proofs.
But, the users can add other specific properties as needed. To facilitate the use of our
method, it is supported by a tool-assisted process (where the contexts HW_ArchiCtx1,
SW_ArchiCtx1, HWSW_Archi1 are generated) that is presented below.

5.2 Putting into Practice and Assessment

To ease the modelling and the analysis of IoT-based applications using our approach,
we design a process to support it and to facilitate its reuse. We define τila, a tiny IoT
domain specific language that helps to describe any application, by defining the used
objects, their relations and their behaviours. Then we build a tool τila2B3, that uses as

3 https://gitlab.univ-nantes.fr/attiogbe-c/iot_with_eventb.

https://gitlab.univ-nantes.fr/attiogbe-c/iot_with_eventb
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input the description in the τila DSL and generates the Event-B models as the spe-
cific parameters (HW_ArchiCtx1, SW_ArchiCtx1, HWSW_Archi1) to be plugged in our
parametrised model, (see Fig. 2); the resulting Event-B model can then be submitted
to Rodin for analysis. We demonstrate our generic model and the process with several
examples. As for the analysis process, if the machine IoTArchiCheck0 is proved correct
using Rodin then the model used as parameter is consistent.

6 Related Work

Existing related often take into account a specific concern (QoS, security, time perfor-
manxe, protocols, etc.), and as such they can be considered as complementary. But, in
our knowledge there is no widely shared abstract model that can help the interoperabil-
ity between the existing proposals and results. We target this objective by proposing,
compared to some of the existing works, an open and extensible abstract model. In
[20] the authors compare state-based and rule-based models of smart home apps for
analysis scalability purpose. Their models are not generic and they focus on detecting
misleading coordinations of components. A comprehensive survey in [9], emphasizes
security aspects, proposes a hybrid security analysis system, but also shows that few
attention are paid to abstract models and verification aspects. In [5] the authors intro-
duce SysML4IoT to define a model compliant with the IOT-A reference model, and
they translate the SysML model into NuSMV programs for the analysis concern. Their
focus was on the verification of quality of service (QoS) properties. The authors of [14]
focus on a multiview modelling together with workflows for implementing cloud-based
Industrial IoT systems. For the modelling they combine several views through vari-
ous models, and integrate them using the Automation Markup Language; they chose
Uppaal for verification aspects and combine the Uppaal Timed Automata models with
action patterns of timing behaviour to verify the timing performance to guarantee tim-
ing properties. The concerns of [7,16] are related to IoT services for health-care. In
[15] the authors propose a development methodology and an associated framework to
ease the development of IoT applications, but formal analysis was not their concern. In
[3,11] verification of communication protocols such as MQTT are dealt with; Timed
process-algebra [3] and Probabilistic timed automata and statistical model checking
[11] are used for this purpose. In [13] the authors focus on the verification of the cor-
rect composition of IoT objects described as labelled transitions equipped with input
and output interfaces. The objects composition results in a synchronous composition
of the objects LTS leading to a composite service; then the notion of (concurrent pro-
cesses) compatibility is used to ensure that the composite service has a correct interac-
tion of its component services. Well-composed objects are then deployed on the basis
of their mutual dependency. We share the formal modelling and verification objectives
with [13], but our approach is more focused on building correct control-oriented IoT-
applications; while their composition is restricted to binary parallel composition of
object behaviours, we propose a more flexible global interaction based on the sense-
decision-control paradigm which ensures flexible n-ary composition. We do not deal
with deployment aspects, we rather provide means to generate the model, to analyse
and simulate the targeted applications.
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7 Conclusion

We have designed an abstract formal model of IoT-based applications learning from the
common properties of IoT-based systems. An IoT-based application is then structured in
a generic way by distinguishing different parts related to the physical part, the software
part and the interconnection relations between both parts. These different parts serve
as parameters in order to favour extension and reusability of the abstract formal model.
We make explicit in the model, the architectural and consistency properties that have
been formalised as the invariants of many IoT-based applications. These properties are
systematically checked during the construction of an application. We then proposed a
parametrised Event-B model as an implementation of our generic abstract model. The
Event-B implementation is used for experiments that confirm the effectiveness of the
proposed approach. To facilitate the modelling of IoT-based application and the reuse of
our analysis approach, we design a tiny IoT application description language (τila) and
a tool that generates for a given application expressed in τila, the Event-B components
to be used to instantiate the parametrised model; thus the process is fully automatised.

Perspectives. Considering that IoT-based applications are a subset of cyber-physical
systems, mostly characterised by their heterogeneous features, the proposed method
here may be generalised to heterogeneous systems. For this purpose, we plan to connect
our framework with existing DSLs which enable one to describe IoT systems; their
descriptions will thus benefit from the formal modelling and the rigorous analysis of the
designed systems prior to implementation. We already identified such DSLs for further
investigation: openIoT [12], SDL-IoT [18], ide4dsl [17], UML4IoT [21], SysML4IoT
[5,14], OpenHAB4.

In order to ensure the robustness of the physical part, both its abstract model and its
physical implementation may coexist during the live of the IoT system; both interacting
with the sensors and actuators environment, in order to anticipate defects and also secu-
rity issues. The abstract model, extended for these needs, will then behave as the digital
twin of the real system and will enable one to check and to monitor it. Such interaction
between models of different abstraction levels is planned for future work.
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