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Teratogenic Influences on Cerebellar 
Development

Albert E. Chudley

Abstract The effects of environmental agents on cerebellar development are pro-
found, and this organ has not been given the attention that is deserving of it, based 
on its importance in motor, cognitive and behavioural functions. This chapter will 
review select agents associated with teratogenic effects on cerebellar structure and 
function. Mechanisms of teratogenesis and genetic influences will be addressed. 
The emerging role of effects of environmental agents and effects of epigenetic 
mechanisms and gene expression are discussed. Prenatal alcohol exposure and fetal 
alcohol spectrum disorder will be discussed in greater detail, as this disorder is the 
most common teratogenic disorder affecting humans. Indeed, many of the pheno-
typic effects of FASD are the result of cerebellar injury and dysfunction.
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 Introduction

Teratology can be defined as science dealing with the causes, mechanisms, and 
manifestation of developmental deviations of either structural or functional nature 
[1, 2]. A teratogen is any agent that compromises a healthy intrauterine environment 
and results in altering normal development during the period of embryonic or fetal 
development resulting in abnormal structure or function, restriction of growth, or 
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death of the embryo or fetus [3]. Known teratogenic agents include infectious agents 
(e.g. rubella virus, Zika virus, cytomegalovirus, toxoplasmosis, varicella, etc.); a 
chemical or drug (most anticonvulsant medication such as phenobarbital, diphenyl-
hydantoin, valproic acid; retinoic acid; warfarin; etc.); heavy metals and environ-
mental poisons (mercury, lead, manganese, and toluene/benzene derivatives); 
excessive radiation; maternal conditions (drug and alcohol abuse or addiction to 
illicit drugs, smoking, nutritional deficiencies, metabolic disorders in the mother 
such as phenylketonuria, diabetes, mental and emotional stress, etc.); invasive medi-
cal interventions (such as amniocentesis, chorionic villus sampling, etc.); changes 
in the environment (elevated core temperature for an extended period of time such 
as febrile illness, sauna or hot tub use, etc.) [4–6].

Teratogens in humans have certain characteristics that include evidence of an 
increase in the frequency of a known abnormal phenotypic effect, such as neurobe-
havioral changes or structural changes leading to birth defects; a dose-response 
relationship with a threshold effect; critical periods of significant risk; established 
mechanism of action; biological plausibility of teratogenicity; genetic and/or epi-
genetic predisposing risk factors. Identifying and confirming the etiological origins 
of birth defects can lead to better treatment and prevention, and in the case of infec-
tious diseases, the development of effective vaccines to reduce the risk in the popu-
lation [2].

The effects of teratogens are variable and dependent on timing of the exposure, 
the dose of the exposure, the frequency of exposure(s), maternal and fetal genetic 
factors and other mitigating or susceptibility factors that modify the effect. The 
exposure can lead to a variety of outcomes, from apparently normal and unaffected, 
to mild impairment, to severe impairments with multiple malformations or result in 
abortion and death.

As with all developing organs, the brain is often the target of teratogenic effects. 
The resulting impairments from a teratogenic exposure affecting brain development 
can lead to effects on brain structure (cellular defects, malformations or disruption) 
and/or brain function that can manifest as behavioural abnormalities, craniofacial 
dysmorphology, developmental delays, intellectual impairment and/or severe physi-
cal disability. It is rare for a teratogenic effect to be restricted to a single organ 
structure or specific region of the brain. However, for the purposes of this chapter, 
emphasis will be placed on the teratogenic effect on the cerebellum and the clinical 
consequences.

The cerebellum is relatively small but it has established functional connections 
to many other regions of the brain. Prenatal and postnatal injury due to a variety of 
toxins results in neurologic deficits, including ataxia, hypotonia, dysarthria and ocu-
lar motility problems. This can present with impairments in movement, motor coor-
dination, and sensory function, cognition and affect regulation or mood. Dysfunction 
of the cerebellum and its effects on connectivity to other brain regions has been 
correlated with a number of neurodevelopmental disorders that include autism, 
attention deficit hyperactivity disorder, dyslexia, as well as psychiatric diseases 
schizophrenia and bipolar diseases [7]. Many inherited disorders involving 
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abnormal development and function of the cerebellum including cerebellar hypo-
plasia have been described [8].

The nature of the injury or exposure would be dependent on the sub-regions of 
the cerebellum involved and determined by alterations in the corresponding cerebro- 
cerebellar circuitry [9]. Recent studies exploring the role of speech and language 
have demonstrated an important role of the cerebellum in communication in health 
and disease. Mariën et al. [10], in a consensus review of this topic, summarized their 
findings to date “cerebellar involvement in language extends far beyond the pure 
motor domain to a variety of high-level non-motor linguistic processes at both the 
expressive and receptive language level. In general the role of the cerebellum in 
language adds evidence to the view that timing and sequencing processing, senso-
rimotor adaptation and cognitive skill automatization act as the overall operational 
modes of the cognitive cerebellum”.

Developmental abnormalities of the cerebellum have been induced by several 
teratogenic agents, including such therapeutic agents as 13-cis retinoic acid 
(Accutane©) and misoprostol (Cytotec©) [11–13]. Many early studies, prior to the 
1970s, were limited in describing cerebellar abnormalities since techniques to visu-
alize this organ were crude or not yet available for wide clinical use. Evaluation of 
the brain in the 1960s and 1970s was restricted to investigations such as electroen-
cephalograms (EEG), pneumoencephalograms, ultrasound and the earlier genera-
tion computed tomography (CT) or autopsy findings. The list of disorders with 
identifiable cerebellar lesions is growing particularly with the advent and ubiquitous 
use of newer imaging techniques. With the advent of newer imaging modalities, 
brain imaging has been enhanced. Single-photon emission computed tomography 
(SPECT) can provide 3D information, and positron emission tomography (PET) 
can help assess functional abnormalities in the brain before anatomical changes 
occur in many diseases of the brain. Using magnetic resonance imaging (MRI), 
structural CNS defects and malformations are more readily and accurately defined 
or in the case of functional MRI analysis brain activation responses to a variety of 
external stimuli can be visualized. Magnetic resonance spectroscopy (MRS) can 
identify disturbances in the neurochemistry of the brain. Diffusion tensor imaging 
(DTI) assesses the integrity of the white matter and map normal and aberrant white 
matter tracts and brain circuitry. In this chapter, some examples of teratogenic 
agents with effects on the developing cerebellum will be presented.

 Intrauterine Infections

There are scores of infectious agents associated with intrauterine viral and parasitic 
infections. Most can cause a variety of developmental defects in exposed fetuses. 
Examples include the classical group of teratogenic pathogens, the so-called 
“TORCH” (Toxoplasma gondii, Others like Treponema pallidum, Rubella virus, 
Cytomegalovirus, Herpes simplex virus), and other agents including Parvovirus 
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B19, Varicella zoster virus and plasmodium falciparum to name a few. In this chap-
ter reviews of Rubella and the Zika virus are presented for illustration purposes, and 
readers are referred to recent reviews on intrauterine infections for further informa-
tion [14, 15].

 Congenital Rubella

As noted, several infectious agents have been implicated in causing birth defects 
and brain abnormalities [16]. The first report of a teratogenic agent in humans was 
made in 1941 by an Australian ophthalmologist Normal Gregg, who described chil-
dren with cataracts as a result of rubella in the children’s mothers during the preg-
nancy [17]. Congenital rubella is typically associated with other CNS abnormalities, 
microcephaly, growth retardation, congenital hepatitis, deafness, cataracts, retinop-
athy and cardiovascular defects. The mechanisms of teratogenesis have included 
inhibited cell growth, impaired blood flow, direct effects of the ongoing infection 
with cytopathic effects and immunopathological mechanisms [18, 19].

Townsend et al. [20] reported on a case of progressive panencephalitis in a child 
who was born with congenital rubella. Neuropathologic studies showed findings in 
the brain included diffuse destruction of white matter with perivascular inflamma-
tory cells and gliosis, moderate neuronal loss, numerous amorphous vascular depos-
its in the white matter and severe generalized cerebellar atrophy. Recently, Cluver 
et al. [21] reported on an infant with confirmed early prenatal rubella infection born 
with agenesis of the inferior cerebellar vermis. The authors suggest that the cerebel-
lar defect was likely the result of the spread of the virus through the vascular system 
causing vasculitis and endothelial necrosis [22]. There are only rare reports of cer-
ebellar defects in congenital rubella syndrome.

It is likely that most viral and other infectious agents causing intrauterine infec-
tions have similar mechanisms of teratogenesis [16, 23, 24]. Further investigations 
could clarify the role of viral infections‘over-stimulation of excitatory amino acid 
receptors, excess production of angiogenesis, pro-inflammatory cytokines neuro-
trophic factors and apoptotic-inducing factors [25].

 Congenital Zika Infection

Recently, the Aedes species mosquito-borne Zika virus has been confirmed to be 
causative of congenital microcephaly and other birth defects including arthro-
gryposis and sensorineural hearing loss [26–32]. The Zika virus belongs to a 
family of related arthropod-borne (arbovirus) that includes Dengue, Yellow 
Fever, West Nile and Japanese Encephalitis viruses and another virus from a dif-
ferent family, chikungunya virus [30]. The virus was first recognized in the Zika 
forest of Uganda from a Rhesus monkey with an acute febrile illness in 1947 [33] 
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with human infections first reported in Nigeria in 1954 [34]. Subsequent spread 
to the Yap Islands of Micronesia, the Pacific Islands and Polynesia showed that 
this was not a benign disease in humans [30]. From mid-2015 to 2016 over 
30,000 cases were reported in Brazil [29] and subsequently as far north as Florida 
[35]. Several cases have been imported to European countries and North America 
including Canada [36]. In a series of 23 infants from Brazil, de Fatima et al. [27] 
and Hazin et al. [37] identified common findings in the brain of these children 
through CT and MRI techniques. The abnormalities included brain calcifications 
in the junction between cortical and subcortical white matter, malformations of 
cortical development with simplified gyral patterns, pachygyria or polymicrogy-
ria in the frontal lobes, enlarged cisterna magna, abnormalities of corpus callo-
sum, ventriculomegaly, delayed myelinization and hypoplasia of the cerebellum 
and brainstem [37]. Garcez et  al’s [38] experimental studies on human brain 
culture confirm that the Zika virus abrogates neurogenesis during human brain 
development. Tang et  al. [39] showed that there is a downregulation of genes 
involved in cell-cycle pathways, dysregulation of cell proliferation and upregula-
tion of genes involved in apoptotic pathways resulting in cell death. Clearly until 
an effective vaccine is developed [40], better treatment and diagnostic capabili-
ties need to be developed and priority given to vector control. Outcomes of chil-
dren born with the congenital Zika virus infection show major CNS abnormalities 
and have features of severe delays in development and severe neurological dys-
function [27, 41].

 Congenital Anticonvulsant Syndrome

It is estimated that well over a million women of childbearing age in the United 
States have epilepsy, the vast majority of which are on drug therapy for management 
of this common disorder [42]. This is a concern since almost all antiepileptic drugs 
have potential risks for fetal anomalies and later developmental delay. This was first 
confirmed a reality in the early 1970s and 1980s with reports of children born to 
epileptic mothers on drugs that included phenobarbital, phenytoin and carbamaze-
pine presenting with recurrent patterns of birth defects that included major malfor-
mations, such as microcephaly, growth retardation, minor craniofacial and digital/
limb anomalies [43–50] (Fig. 1). Holmes et al. [50] showed that the risk of malfor-
mations was higher in women taking one anticonvulsant over women delivering 
babies who were on no anticonvulsants (odds ratio 2.8) and the risk when women 
were taking two or more anticonvulsants was even higher (odds ratio 4.2). Women 
with epilepsy who were not on medication during the pregnancy showed no increase 
in major congenital anomalies than the controls. Morrow et al. [51] studied pregnant 
women with a diagnosis of epilepsy in UK centres using a prospective, observa-
tional, registration and follow-up approach. They found 4.2% of women delivered 
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Fig. 1 Infant with typical facial features and distal digital hypoplasia with fetal hydantoin syn-
drome from Buehler et al. NEJM 1998, needs permission (with permission)

infants with major congenital malformations with a history of taking anticonvulsant 
medication. For polytherapy use, the rate was 6.0%, for monotherapy it was 3.7%, 
and for women with epilepsy taking no medication the rate was 3.5%. Valproic acid 
demonstrated the highest rate of major congenital malformations at 6.2%. This is 
compared with the expected “background” rate of major congenital malformations 
as between 1 and 2% in the general population at birth [52, 53]. It has been sug-
gested that some of the difference may be due to genetic factors that increase the 
frequency of anomalies in some children. This seems to be borne out by studies that 
show differences in activity of the detoxifying enzyme epoxide hydrolase, with defi-
ciency of the enzyme in infants presenting with clinical features of hydantoin 
embryopathy [54, 55]. It has been hypothesized that anticonvulsants increase the 
production of free radicals resulting in vulnerability to malformations as a potential 
etiological factor [56].

There are several anticonvulsants in common use today. The list of anticonvul-
sants is long, and the most commonly used drugs include valproic acid, phenobar-
bital, phenytoin, carbamazepine, gabapentin, lamotrigine, levetriracetam, 
topiramate, vigabratin and benzodiazepines. A detailed review of the effects of val-
proic acid on human development including the cerebellum is presented below.
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 Valproic Acid

Valproic acid (VPA) is a widely used and effective anticonvulsant medication that is 
also used in the treatment of mood disorders, schizophrenia and migraine head-
aches. Animal and human studies show that VPA is associated with a predictably 
higher rate of major congenital malformations that is dose-dependent [57]. The risk 
is 2–3 times that of the expected rates of malformations in the population, and is 
associated with a higher risk than other anticonvulsants.

The risk of adverse outcomes following the use of VPA includes major congeni-
tal malformation including spina bifida, atrial septal defects of the heart, craniosyn-
ostosis, cleft palate, hypospadias and polydactyly [53]. In 1984, DiLiberti et al. [58] 
described a consistent constellation of dysmorphic features that they called fetal 
valproate syndrome which has been confirmed subsequently in many reports [59, 
60]. Although periconceptional use of folic acid is recommended for all women, 
those using anticonvulsants may benefit by using a higher dose of this vitamin, 
although evidence suggests that folic acid may not be protective in preventing spina 
bida from occurring after exposure to VPA. This then begs the question what is the 
mechanism of the malformations in VPA and other anticonvulsants [44, 61]? VPA 
is also associated with neurodevelopmental and cognitive impairments [62] and is a 
known risk for autism spectrum disorders [63–65]. Christiansen et  al. [64] con-
firmed in their prospective study that maternal use of VPA was associated with a 
significantly increased risk of autism spectrum disorder even after adjusting for 
maternal epilepsy. It is of interest and perhaps not coincidental that one of the effects 
of prenatal exposure to VPA is an increased risk for autism as well as cerebellar 
anomalies. A subgroup of children with autism and a subgroup of children exposed 
to VPA both demonstrate structural cerebellar anomalies. The most common model 
used in environmentally induced ASD models in rodents is the one induced by 
VPA [66].

Not infrequent and severe consequences of long-term postnatal use of phenytoin 
and VPA include cerebellar atrophy [67–70]. Although the mechanism of both pre-
natal and acquired postnatal effects on the cerebellum may be different, genetic 
studies suggest that the risk of cerebellar complications may be determined by vari-
ations in enzyme activities that metabolize drugs. Buehler et al. [54] showed this to 
be a fact. They studied infants with the fetal hydantoin syndrome and confirmed 
reduced activity of epoxide hydrolase in those exposed affected compared to both 
those exposed and unaffected and normal controls. CYP2C9 mutation (*2 or *3) 
reduces phenytoin metabolism by 25–50% and can increase the risk of phenytoin- 
related side effects. CYP2C9 polymorphism has been associated with a reduction in 
cerebellar white matter volume in epileptic users of phenytoin [69]. Animal studies 
confirmed that prenatal exposure to VPA is associated with loss of volume in the 
vermis and hemispheres. Ingram et al. [64] identified reduced Purkinje cells in the 
vermis with greater loss in the posterior lobe with parallel in some human autistic 
populations.

As newer and safer drugs become available for the treatment of epilepsy and 
other seizure disorders in women of childbearing age, the use of drugs such as VPA 
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will likely continue to be reduced. It is important that women on these drugs need 
to be advised of the risks in pregnancy and screening measures and ongoing surveil-
lance to assess fetal well-being be instituted.

 Prenatal Alcohol Effects and Fetal Alcohol Spectrum Disorder

Whether prenatal alcohol exposure (PAE) can harm the human embryo and fetus 
has been a contentious issue over the past century. Following seminal studies by 
Lemoine et al. [71] in France in 1968 and Jones et al. [72, 73] in the United States 
in 1973 the irrefutable evidence of the harmful effects of alcohol in pregnancy 
becomes clear, and PAE is considered the most common teratogenic agent in 
humans. Based on extensive research in animals and humans, PAE has been demon-
strated to cause a variety of structural and/or functional deficits in the developing 
fetus, even after a single binge episode or equivalent use in experimental situations 
[74–76].

In humans, the first reports were on infants and young children born to mothers 
who were known alcoholics. These children typically presented with intrauterine 
growth retardation, microcephaly, characteristic facial dysmorphic features of short 
palpebral fissure lengths of the eyes, abnormal and short midface with a smooth 
poorly formed philtrum and a thin vermilion border of the upper lip, risk to various 
birth defects including cleft palate, cardiac malformations, limb anomalies and an 
increase in minor anomalies, with cognitive impairment and behavioural problems 
(Fig. 2). This presentation was called fetal alcohol syndrome (FAS) [73, 74, 77, 78]. 
Subsequently, less visible signs of the prenatal effects of alcohol were identified in 
which affected children showed few or little of the facial and growth features but 
presented with cognitive and behavioural difficulties. The use of other terminolo-
gies such as fetal alcohol effects (FAE), partial fetal alcohol syndrome (pFAS), and 
alcohol-related neurodevelopmental disorder (ARND) was applied [79–85]. The 
term fetal alcohol spectrum disorder has often been used to include the whole 
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Fig. 2 The typical facial features of fetal alcohol syndrome in two infants
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spectrum of effects of PAE. Cook et al. [84] recently updated the fetal alcohol spec-
trum disorder (FASD) diagnostic guidelines in Canada and the terminology has 
been changed to include two diagnostic categories: FASD with sentinel facial fea-
tures (FAS) and FASD without sentinel facial features (previously called partial 
FAS and ARND).

The diagnosis of FASD requires multidisciplinary team assessments to identify 
behavioural, cognitive, neurological and dysmorphic features congruent with FASD 
[82]. This means that referrals for suspected cases are sent to the multidisciplinary 
team for a thorough evaluation by other specialists that includes specialist physi-
cians (developmental paediatricians, geneticists) psychologists, speech and lan-
guage therapists, occupational therapists, education specialists and social work case 
workers. Details of the referral process, evaluations and steps in the diagnosis and 
management recommendations are described in detail elsewhere [82, 84].

Evaluation of the brain is an important component of diagnosis. This includes an 
in-depth assessment of brain function using standardized testing of 1. cognition, 2. 
memory, 3. language, 4. academic achievement, and 5. executive function (includ-
ing impulse control and hyperactivity, adaptive behaviour, social behaviour, social 
skills or social communication, attention, affect regulation) 6. motor skills, and neu-
rological assessment of brain size, neuroanatomy and neurophysiology (including 
neurologic examination and in some cases imaging)) [84].

There are many other conditions that can mimic FASD with an extensive differ-
ential diagnosis [86], and many co-morbid conditions are often co-occurring in 
FASD individuals, some conditions at rates greater than 100 times the general popu-
lation based on US data [87]. These children need to be identified as early as pos-
sible if therapy and interventions are to make a difference in their long-term 
prognosis, and so screening programs need to be introduced to afford early detec-
tion [88]. Many affected children and adults who are not identified or diagnosed 
until later in life can experience what has been referred to as secondary disabilities 
[89]. They can be lost in society and can experience apprehension by social service 
agents and foster care, school failure with early dropout, addiction problems, mental 
health difficulties, limited employment opportunities, homelessness and involve-
ment with crime and the justice system with frequent incarceration [89, 90].

The prevalence of fetal alcohol spectrum disorder (FASD) is estimated to be 
between 2.4% and 4.8% in a school-age population in the United States [91] and 
similar high rates of prevalence in a school-age population in Italy [92]. The highest 
rates at 18–26% were estimated in an at-risk rural and lower socioeconomic com-
munity in South Africa [93]. Because of the high prevalence in most populations 
studied and the high costs to society of the condition, prevention of drinking in 
pregnancy should be a high priority of governments, social and health care profes-
sionals, and the alcohol industry [87, 94–99].

It is relevant that several of the brain domain impairments observed in PAE and 
FASD individuals exhibit these difficulties, in part, because of teratogenic effects of 
alcohol on the cerebellum and their respective connections to other regions of the 
brain. For example, the functions of motor and balance, eye tracking and visual- 
spatial perception, cognitive abilities, learning, language, emotional responses and 
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attention pathways are connected to the cerebellum. Many children with FASD have 
impairments in these functions. Many research reports and clinical descriptions in 
the literature to support the above association of cerebellar dysfunction and FASD 
are presented in the following pages.

 Mechanisms for Alcohol Teratogenesis

Ethanol is toxic to the developing embryo and fetus. Alcohol readily crosses the 
placenta and the blood-brain barrier. Alcohol can affect normal placental function 
and cause altered blood flow, ischemia and hypoxia to the fetus. There is also an 
interaction between the direct toxic effects and indirect or maternally mediated 
effects of alcohol [100]. The mechanisms are complex, and involve variables in the 
timing, frequency and dose of exposure. Alcohol is known to act on or modulate 
many different target molecules with multiple mechanisms, activated at different 
stages of embryonic and fetal development or at different dose thresholds of expo-
sure, and stages of development, resulting in diverse phenotypes [101–103]. The 
earlier the exposure of teratogenic factors during organogenesis, the greater the 
harm that is likely to occur [74, 103–105].

 Molecular Pathways and Genetic Factors

PAE and FASD is perhaps best considered to be a prototypical multifactorial terato-
genic disorder whereby both genetic predisposing factors and environmental expo-
sures combine to have a variable phenotype (Fig. 3). It is evident that alcohol alone 
can be directly toxic to the embryo and fetus, but other factors also can either con-
tribute to risk (as aggravating factors) or have protective effects to some degree (a 
mitigating factor). PAE is both dose-dependent (acute vs chronic exposure; fre-
quency of exposure) and sensitive to critical periods of developmental stage. Factors 
shown to be protective include good nutrition prenatally and after birth [106], con-
sistent and nurturing child care, early diagnosis with earlier interventions, and 
favourable genetic factors (particularly those involved in alcohol metabolism). 
According to May and Gossage [107] maternal risk is multidimensional, including 
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Fig. 3 Variable fetal 
outcomes from excessive 
ethanol exposure
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factors related to quantity, frequency and timing of alcohol exposure; maternal age; 
number of pregnancies; number of times the mother has given birth; the mother’s 
body size; nutrition; socioeconomic status; metabolism; religion; spirituality; 
depression; other drug use; and social relationships. Some risk factors in the child 
include poor nutrition, exposure to neglect, physical or emotional or sexual abuse, 
repeated changes in caregivers and place of residence, “unfavourable” genetics and 
a diagnosis later in childhood [89]. It is well established that the genetic background 
of the mother and fetus influences the risk of ethanol-induced malformations [108]. 
The more efficient alcohol dehydrogenase (ADH) allele, ADH 1B*3, affords protec-
tion for FASD outcomes [109] while the maternal and fetal ADH1B*2 allele reduced 
the risk for FAS in a South African population (in comparison with ADH1B*1) 
[108]. For more recent reviews relevant to the importance of polymorphisms in the 
alcohol metabolizing pathway, the reader is referred to other reviews [110, 111] 
(Figs. 4 and 5).

A recent population-based prospective children’s health and development study 
from Britain confirmed a genetic risk to some children genetically predisposed to 
the effects of alcohol exposure in pregnancy [112]. The authors found four ADH 
genetic variants in alcohol metabolizing genes in 4167 children were strongly 
related to lower IQ at age 8, as was a risk allele score based on these 4 variants. All 
the mothers of these children took moderate amounts of alcohol during the preg-
nancy. The authors suggest that, even amongst women drinking moderate amounts 
of alcohol, subtle changes in exposure to alcohol due to an ability to metabolize the 
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Fig. 4 A schematic representation of risk factors contributing to FASD
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Fig. 5 Oxidative pathways of alcohol metabolism. The enzymes alcohol dehydrogenase (ADH), 
cytochrome P450 2E1 (CYP2E1) and catalase all contribute to oxidative metabolism of alcohol. 
ADH, present in the fluid of the cell (i.e. cytosol), converts alcohol (i.e. ethanol) to acetaldehyde. 
This reaction involves an intermediate carrier of electrons, nicotinamide adenine dinucleotide 
(NAD+), which is reduced by two electrons to form NADH. Catalase, located in cell bodies called 
peroxisomes, requires hydrogen peroxide (H2O2) to oxidize alcohol. CYP2E1, present predomi-
nantly in the cell’s microsomes, assumes an important role in metabolizing ethanol to acetaldehyde 
at elevated ethanol concentrations. Acetaldehyde is metabolized mainly by aldehyde dehydroge-
nase 2 (ALDH2) in the mitochondria to form acetate and NADH. (From Chudley AE. Genetic 
factors in Fetal Alcohol Spectrum Disorder. In Fetal Alcohol Syndrome Disorder. Management 
and Policy Perspectives of FASD. E Riley, S. Clarren, J. Weinberg, E. Jonsson, New York, Wiley/
Blackwell, 109–126, 2011. Needs permission)

substrate may be important, and offers some support to the hypothesis that even 
small amounts of alcohol in utero have an effect on future cognitive outcomes.

Alterations in a number of molecular pathways have been suggested as candi-
dates responsible for the range of FASD phenotypes [101, 113, 114]. These include 
(1) alterations in the regulation of gene expression (e.g. reduced retinoic acid signal-
ling [115, 116]; homeobox gene expression, altered DNA methylation [117]; (2) 
interference with mitogenic and growth factor responses involved in neural stem 
cell proliferation, migration and differentiation [118]; (3) disturbances in molecules 
that mediate cell–cell interactions (L1, NCAM, loss of trophic support, e.g. [119, 
120]; (4) activation of molecular signalling controlling cell survival or death (growth 
factors deprivation, oxidative stress, apoptotic signalling and caspase-3 activation, 
suppression of NMDA glutamate and GABAA receptors, withdrawal-induced glu-
tamatergic excitotoxicity) [121, 122]; (5) derangements in glial proliferation, dif-
ferentiation and functioning [123].

Lombard et al. [124] utilized a computational candidate gene selection method 
that identified genes that may play a role in alcohol teratogenesis. Using a modifica-
tion of the methodology called Convergent Functional Genomics which combines 

A. E. Chudley



375

data from human and animal studies, this group identified a short list of high- 
probability candidate genes, with the inclusion of additional lines of evidence in the 
presence of limited expression studies in an animal model and the absence of FAS 
linkage studies. From a list of 87 genes, the group prioritized key biological path-
ways significantly over-represented among the top-ranked candidate genes. These 
pathways include the TGF-β signalling pathway, MAPK signalling pathway and the 
Hedgehog signalling pathway.

The genes in the TGF-β signalling pathway may play pivotal roles during 
embryogenesis and development and have a potential role in the distinct character-
istics associated with FAS, i.e. CNS dysfunction, craniofacial abnormalities and 
growth retardation. CNS dysfunction is the most severe and permanent consequence 
of in utero alcohol exposure and the only feature present in all diagnostic categories 
in FASD. These observations make the TGF-β signalling pathway an important con-
sideration, as it is essential in fetal and CNS development. Alcohol inhibits such 
TGF-β regulated processes as cortical cell proliferation and neuronal migration, 
disrupts axonal (the major extension of a nerve cell) growth and upregulates cell 
adhesion molecule expression [125]. TGF-β signalling pathway interacts with alco-
hol, and/or its metabolic breakdown products, and that alcohol may have a detri-
mental effect on the efficiency of this developmentally essential pathway.

The MAPK pathway transmits many signals, leading to growth, differentiation, 
inflammation and apoptosis responses [126]. This pathway is very complex and 
includes many protein components. MAPK-pathway components are involved in 
the regulation of meiosis, mitosis, and post-mitotic functions, and in cell differentia-
tion. The MAPK signalling pathway can be activated by a variety of stimuli as well 
as external stress factors, such as alcohol [127]. Using a mouse model of FAS, 
experimental manipulation of second-messenger pathways (that also impact on the 
MAPK pathway) completely reversed the action of ethanol on neuronal migration 
in vitro as well as in vivo [128].

The hedgehog signalling pathway was also identified to contain several genes 
within the candidate list. This signalling pathway is a highly conserved and key 
regulator of embryonic development. Knock-out mouse models lacking compo-
nents of this pathway have been observed to develop malformations in the CNS, 
musculoskeletal system, gastrointestinal tract and lungs [129]. FAS animal models 
have a similar craniofacial phenotype to mouse models treated with antibodies that 
block Hedgehog signalling components, specifically the sonic hedgehog (Shh) mol-
ecule [130–132]. Alcohol resulted in a significant decrease in Shh levels in the 
developing embryo, as well as a decrease in the level of other transcripts involved in 
Shh signalling. Addition of Shh after alcohol exposure led to fewer apoptotic (dead 
or dying) cranial neural crest cells, and a decrease in craniofacial anomalies [131]. 
Altered function of genes in the Hedgehog signalling pathway may thus contribute 
to the brain malformations and dysfunction in FASD.
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 Epigenetics

Epigenetic mechanism as a cause of the diverse effect of PAE and FASD is emerg-
ing as a potentially important mediator of the FASD phenotype [133–136]. 
Epigenetics refers to modifications of DNA and its packaging that alter the acces-
sibility of DNA to potentially regulate gene expression and cellular function with-
out changes to the underlying genomic sequences.[135, 137]. There are several 
mechanisms in which gene expression can be controlled and the most studied epi-
genetic modification in human populations is DNA methylation. DNA methylation 
generally represses gene expression, but this relationship is less well defined for 
CpGs located within gene bodies and intergenic regions [138]. Furthermore, DNA 
methylation is closely associated with several key developmental processes, includ-
ing genomic imprinting, tissue specification and differentiation [139]. Prenatal alco-
hol exposure has been shown in animal studies to alter methylation which is 
predicted to alter gene expression and thus alter developmental processes [134, 
140, 141].

There have been few human studies to test the role of changes in methylation and 
relationship to FASD. Several studies have demonstrated the effect of PAE on the 
H19 imprinted gene in both mice and humans [142, 143]. Altered expression of the 
H19 gene could interfere with normal growth mediated through the Igf2 gene. A 
smaller human study characterized the DNA methylation profile in buccal epithelial 
cells (BECs) from a small cohort of human FASD samples, identifying alterations 
in the epigenome of children with FASD, particularly within the protocadherin gene 
clusters which are involved in producing proteins involved in cell adhesion [144]. A 
genome-wide DNA methylation study in mouse embryos exposed to ethanol also 
identified significant changes within several imprinted genes including both H19 
and SLC22A18 [145]. The SLC22A18 gene is located in an imprinted region and 
plays a role in tumour suppression with other genes in the region mediating growth. 
A recent comparatively large study compared a cohort of FASD, and alcohol- 
exposed children with controls through genome-wide DNA methylation patterns of 
BECs were analysed (Portales). Results from the study by Portales-Casamar et al. 
[146] further confirmed these findings, as five down-methylated probes in H19 and 
six in SLC22A18 were altered in the FASD cohort. With validation, these findings 
provide initial insight into the molecular mechanisms underlying the effects of PAE 
on children and present a potential role for DNA methylation in the aetiology of 
FASD. It may also be possible to define a biomarker for alcohol exposure that may 
aid in the earlier diagnosis referral and treatment of this common disorder.

 FASD and the Cerebellum

The earliest autopsy studies described in humans diagnosed with FAS and PAE 
identified errors in cell migration, agenesis or thinning of the corpus callosum, and 
anomalies in the cerebellum and brain stem [73, 147–149]. Subsequent imaging 
studies with newer technology and resolution were consistent with autopsy findings 
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[150]. These showed overall volume reductions in the cranial, cerebral and cerebel-
lar vaults in FASD [151–156]. Furthermore, other studies have suggested that this 
decrease is not uniform but rather that the parietal lobe [153–155, 157], portions of 
the frontal lobe [154] and specific areas of the cerebellum [156, 158, 159] appear to 
be especially sensitive to alcohol insult (Fig. 6).

Studies of effects on brain volume using imaging techniques have reported dis-
proportionate size reductions in the cerebellum [153, 156, 160–162]. Cardenas et al. 
[162] studied PAE individuals using a cerebellar parcellation tool kit with 
T1-weighted MRI to assess cerebellar size. They concluded (1) PAE-related micro-
cephaly is strongly related to cerebellar hemispheric volumes, and (2) smaller cer-
ebellar measures in FASD are not fully explained by microcephaly, and suggest an 
additional direct effect of prenatal alcohol exposure on the cerebellum.

Experimental studies on animals confirmed that PAE targets certain areas of the 
brain, and particularly the cerebellum and the craniofacial structures [74, 163, 164]. 
Nathaniel et al. [165, 166] showed that the cerebellum and the area and circumfer-
ence of the vermal cerebellum were significantly reduced in ethanol-exposed pups 
compared with the pair-fed controls. Studies in rats showed that synaptic density of 
the molecular layer of the cerebellar lobule VI was decreased in 28-day-old animals 
which were exposed prenatally to ethanol [167].

Studies in the mouse cerebellum showed that microglia promote the death and 
subsequent engulfment of Purkinje cells that express activated caspase-3 when they 
are undergoing synaptogenesis [168]. Similar results were observed in a developing 
nematode C. elegans, where cells in the advanced caspase (CED-3)-dependent stage 
of degeneration could recover [169]. Sawant et al. [170] assessed fetal cerebellar 
Purkinje cell counts in an early-maturing region (lobules I-X) and a late-maturing 

Fig. 6 An MRI 
demonstrating a small 
cerebellum and vermis 
hypoplasia (arrow) in a 
child with FAS. (From fig. 
1 in Autti-Rämö I, Autti T, 
Korkman M, Kettunen S, 
Salonen O, Valanne 
L. MRI findings in children 
with school problems who 
had been exposed 
prenatally to alcohol. Dev 
Med Child Neurol. 2002 
Feb;44(2):98–106.) Needs 
permission)
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region (lobules VIc-VII) from mid-sagittal sections of the cerebellar vermis in 
sheep. Third trimester-equivalent ethanol exposure caused a significant reduction in 
the fetal cerebellar Purkinje cell volume density and Purkinje cell number only in 
the early-maturing region, and as expected, the first trimester-equivalent ethanol 
exposure resulted in significant reductions in both the early and late-maturing 
regions. The authors concluded prenatal ethanol exposure in the first trimester inter-
feres with the genesis of Purkinje cells in an unselective manner, whereas exposure 
during the third trimester selectively kills post-mitotic Purkinje cells in specific ver-
mal regions during a vulnerable period of differentiation and synaptogenesis.

Chronic prenatal alcohol exposure on the immature central nervous system 
(CNS) profoundly inhibits insulin and insulin-like growth factor (IGF) signalling 
[171, 172]. They conclude that insulin-stimulated central nervous system neuronal 
survival mechanisms are significantly impaired by chronic gestational exposure to 
ethanol, and that the abnormalities in insulin signalling mechanisms persist in the 
early postnatal period, which is critical for brain development. The same research 
group [173] observed ethanol dose-dependent reductions in cerebellar aspartyl 
(asparaginyl)-β-hydroxylase (AAH) immunoreactivity, and significant impairments 
in insulin- and IGF-I-stimulated directional motility in granule neurons isolated 
from ethanol-exposed rat pup cerebella. In addition to reduced motility, the authors 
observed that chronic in vivo ethanol exposure mainly reduced the percentages of 
migrant adherent cells, consistent with previous reports indicating that ethanol 
impairs neuronal cell adhesion mechanisms and neuronal migration [102, 120]. 
Tong et al. [174] showed that abnormalities in cerebellar function following chronic 
prenatal ethanol exposure were associated with inhibition of insulin/IGF, canonical 
Wnt, and Notch pathways. Thomas et al. [175] showed that neonatal ethanol expo-
sure induces cerebellar Purkinje and granule cell loss if exposure occurs before 
postnatal day (PD) 7, and that cerebellar damage may underlie ethanol-induced 
motor deficits. Exposure during PD 4/5 produced significantly more severe motor 
deficits and significantly more severe reductions in cerebellar and brainstem weights 
than did exposure later in life.

Another mechanism of disrupted development of the cerebellum involves synap-
tic defects. A recent study showed that reduced N-acetylaspartate NAA levels in 
children with PAE using MRS suggest impairment in the early developmental for-
mation of dendritic arborizations and synaptic connections [176]. The study showed 
additional finding of lower choline points to disrupted choline metabolism of mem-
brane phospholipids with potentially reduced content of dendrites and synapses. 
The alcohol-related alterations in glutamate plus glutamine that were identified sug-
gested a disruption of the glutamate–glutamine cycling involved in glutamatergic 
excitatory neurotransmission.

Fan et  al. [177] have confirmed abnormalities in eyeblink conditioning and 
FASD using the MRI and DTI analysis. Using DTI (which is used to assess the 
integrity of the white matter) they demonstrated a lower response (as measured by 
fractional anisotropy) bilaterally in the superior cerebellar peduncles and higher 
diffusivity in the left middle peduncle in the alcohol-exposed children compared to 
controls, and the findings correlated with poorer EBC performance. This may reflect 
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poorer myelination in these large bundles of myelinated nerve fibres that connect 
the cerebellum to the brain stem. The authors conclude that FASD deficits in EBC 
are likely attributed to poorer myelinization in key regions of the cerebellar 
peduncles.

 Clinical Consequences to Cerebellar Dysfunction in PAE and FASD

Many of the behavioural deficits seen in individuals with FASD, including spatial 
recognition, motor learning, and fine motor control, are mediated, in part, by the 
cerebellum [150]. There has been a longstanding recognition and association with 
cognitive function and cerebellar function [178–181]. Behavioural changes were 
clinically prominent in patients with lesions involving the posterior lobe of the cer-
ebellum and the vermis, and in some cases they were the most noticeable aspects of 
the presentation [178]. As noted previously, there is a frequent occurrence of cere-
bellar defects in autism [182], and also in ADHD children [183]. Berquin et  al. 
[183] showed vermal volume was significantly less in the boys with ADHD. This 
reduction involved mainly the posterior inferior lobe (lobules VIII to X) but not the 
posterior superior lobe (lobules VI to VII). A cerebello-thalamo-prefrontal circuit 
dysfunction may subserve the motor control, inhibition and executive function defi-
cits encountered in ADHD. It is of interest that FASD children frequently present 
with attention difficulties, and there may be an over-representation of autism in PAE 
and/or FASD children and adults [184].

In a study of children with heavy prenatal alcohol exposure experience, signifi-
cant deficits in isometric force production were identified that may impede their 
ability to perform basic motor skills and activities in everyday tasks [185]. In addi-
tion, another study’s results indicated children with FAS experience deficits in 
response programming and movement time production [186].

 Summary

This chapter summarizes select teratogenic agents to illustrate the importance in the 
recognition of aetiology, mechanisms of teratogenesis, pathogenesis and clinic 
impact these agents have on the developing human and particularly cerebellar struc-
tural and functional consequences. Where appropriate and relevant, the emerging 
role and effects of genetic and epigenetic mechanisms are discussed. Emphasis has 
been given to common conditions, and hence the greater attention to PAE and 
FASD. Because of the nature of teratogens, there is an opportunity to prevent the 
occurrence of phenotypic consequences of these exposures through various preven-
tion strategies.
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