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Preface

This second edition is a revised and updated version of the original book entitled 
Development of the Cerebellum from Molecular Aspects to Diseases published in 
2017. The overwhelmingly positive response to the first edition exceeded our expec-
tations and validated the significance as well as the broad reception of our work. In 
addition to recent advances in cerebellar neurodevelopmental science in health and 
disease, this encouraged us to provide an updated version, which includes new 
chapters and discusses the impact of COVID-19 on the cerebellum in related chap-
ters. We believe this work will benefit both basic and clinical scientists in the field.

All updated content and novel chapters were written and carefully reviewed by 
experts in the field of cerebellar development. Chapters related to the cerebellum 
and disease, including new additions such as “The Role of Non- coding RNAs in 
Cerebellar Development,” “A Comparative View of Cerebellar Morphology and 
Diversity in Fishes,” “The Role of nNOS/NO on Cerebellar Development in Health 
and Disease,” and “Rehabilitation in Cerebellar Ataxia,” extensively cover epidemi-
ology, clinical features, assessment, and management. Furthermore, the effects of 
COVID-19 on cerebellar pathobiology have been incorporated where relevant.

We greatly appreciate the continuous support and encouragement from peers in 
the basic and clinical scientific communities, which greatly motivated us to compile 
a second edition of our initial publication to provide a reference work featuring the 
most recent developments in cerebellar science.

Winnipeg, MB, Canada  Hassan Marzban  



vii

Contents

  The Development of the Cerebellum: From the Beginnings . . . . . . . . . . . .    1
Jan Voogd

  The Embryology and Anatomy of the Cerebellum  . . . . . . . . . . . . . . . . . . .   33
Maryam Rahimi-Balaei, Farshid Ghiyamihoor, Azam Asemi Rad, 
Niloufar Ashtari, Mehnosh Toback, Hugo Bergen,  
and Hassan Marzban

  Cellular and Genetic Programs Underlying Cerebellum Development . . .   45
Andrew K. Lawton, Ryan Willett, and Alexandra L. Joyner

  Early Purkinje Cell Development and the Origins  
of Cerebellar Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69
Filippo Casoni, Laura Croci, Ottavio Cremona, Richard Hawkes,  
and G. Giacomo Consalez

  Cerebellar Developmental Disorders and Cerebellar Nuclei . . . . . . . . . . .   91
Hong-Ting Prekop, Alessio Delogu, and Richard J. T. Wingate

  The Role of Non-coding RNAs in Cerebellar Development  . . . . . . . . . . . .  111
Maryam Rahimi-Balaei, Miguel Ramirez, Ishita Gupta,  
and Daniel Goldowitz

  Motor Circuit Abnormalities During Cerebellar Development . . . . . . . . .  129
Elizabeth P. Lackey, Alejandro G. Rey Hipolito, and Roy V. Sillitoe

  A Comparative View of Cerebellar Morphology  
and Diversity in Fishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Benjamin W. Lindsey

  The Role of nNOS/NO on Cerebellar Development  
in Health and Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Vasiliki Tellios, Matthew Joseph Elias Maksoud, and Wei-Yang Lu



viii

  Developmental Disorders of the Cerebellum and Neurotrophic Factors . .  193
Leila Pirmoradi and Shahla Shojaei

  Apoptosis, Autophagy, and Unfolded Protein  
Response and Cerebellar Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
Amir Barzegar Behrrooz, Marveh Rahmati, Zahra Talaie,  
Niloufar Ashtari, Javad Alizadeh, Mohammad Hashemi,  
S. Zahra Bathaie, Mohammad Amin Moosavi, and Saeid Ghavami

  The Ubiquitin–Proteasome System and Cerebellar  
Developmental Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
Jerry Vriend and Xiaodan Jiao

  Epigenetic Control and Cerebellar Neurodevelopmental Disorders . . . . .  273
Mojgan Rastegar

  Hormonal Regulation of Cerebellar Development and Its Disorders  . . . .  297
Noriyuki Koibuchi

  Infections of the Cerebellum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Kevin M. Coombs

  Interrelation Between the Immune and the Nervous Systems  
in the Context of Cerebellar Development  
and Developmental Disorders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
Nour Eissa, Laëtitia Kermarrec, Diane Tshikudi, Fatemeh Hesampour, 
and Jean-Eric Ghia

  Teratogenic Influences on Cerebellar Development  . . . . . . . . . . . . . . . . . .  363
Albert E. Chudley

  Primary Pediatric Brain Tumors of the Posterior Fossa: Part I . . . . . . . . .  389
Kathleen Felton, Amanda Hogg, Lisa Liang, Christopher Aiken,  
Thomas Klonish, Frank van Landeghem, Tamra E. Werbowetski-Ogilvie, 
and David D. Eisenstat

  Primary Pediatric Brain Tumors of the Posterior Fossa:  
Part II A Comprehensive Overview of Medulloblastoma . . . . . . . . . . . . . .  421
Lisa Liang, Stephanie Borlase, Christopher Aiken, Kathleen Felton, 
Amanda Hogg, Frank van Landeghem, T. Klonisch, David D. Eisenstat, 
and Tamra E. Werbowetski-Ogilvie

  Can Cerebellar Neurodevelopmental Disorders Affect Behavioral  
Disorders or Vice Versa?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  457
Razieh Mohammad Jafari, Amir Shadboorestan,  
Seyed Soheil Saeedi Saravi, and Ahmad Reza Dehpour

Contents



ix

  Neurodevelopmental Disorders of the Cerebellum:  
Autism Spectrum Disorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  477
Mehnosh Toback, Azam Asemi Rad, Izuchukwu Azuka Okafor, 
Mohammad Allahtavakoli, Kambiz Zangeneh, Tabrez J. Siddiqui,  
and Hassan Marzban

  Clinical Aspects of the Inherited Cerebellar Malformations  . . . . . . . . . . .  499
Asghar Marzban, Farshid Ghiyamihoor, Mohammad Vafaee-shahi,  
and Kamran Azarkhish

  Clinical Features, Assessment, and Management of Patients  
with Developmental and Other Cerebellar Disorders . . . . . . . . . . . . . . . . .  521
Michael S. Salman

  Rehabilitation in Cerebellar Ataxia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537
Jennifer L. Millar and Meredith P. Drake

  Epidemiology of Cerebellar Disorders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  555
Shahin Shooshtari, Brenda M. Stoesz, Paria Kian, Soroush Kian,  
and Rosa Iranpour

  Cerebellar Transplantation: A Potential Model to Study Repair  
and Development of Neurons and Circuits in the Cerebellum . . . . . . . . . .  605
Constantino Sotelo

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  635

Contents



1

The Development of the Cerebellum: 
From the Beginnings

Jan Voogd

Abstract Sotelo stated in his introduction for a consensus paper on cerebellar 
development (Leto et al. Cerebellum 15:789, 2015) that “The work done in the late 
nineteenth century until the late 1970s provided substantial and significant informa-
tion; however, it was only descriptive and barely addressed the mechanisms 
involved.” Observations and their description, the nomenclature that evolved from 
these studies and the ideas they fostered, indeed, formed the basis for our under-
standing of the mechanisms that underlie the complex development of the cerebel-
lum, to be reviewed in this volume. This chapter will highlight some of these early 
contributions to the origin of the cerebellum, its histogenesis, the migration of its 
neurons, the development of the longitudinal Purkinje cell zones, their target nuclei 
and their connections, and the folial pattern of the cerebellum.

Keywords Cerebellar nomenclature · Cerebellar histogenesis · Folial pattern · 
Purkinje cell zones · Cerebellar connections

 The Origin of the Cerebellum

The study of cerebellar embryology begins with His’ (1888, 1891) description of 
his Rautenlippe (rhombic lip) in a human embryo. In the fifth week, the “dorsal rim 
(of the rhombencephalic alar plate) curves laterally and forms a fold which sur-
rounds the entire rhombic cavity …” (Fig. 1) [1, 2]. His divided the rhombencepha-
lon and its rhombic lip into rostral and caudal portions. The rostral (upper) rhombic 
lip will give rise to the cerebellum, the caudal (lower) rhombic lip to several precer-
ebellar nuclei. The upper rhombic lip develops in two bilateral swellings connected 
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by a thin midline portion (Fig. 2). At the midline, the cerebellum increases in bulk 
by the development of the cerebellar commissures, and possibly by fusion of the 
intraventricular bulges. More recently, the term “upper rhombic lip” is restricted to 
the posterior rim or germinal trigone of the cerebellar plate, with its attachment of 
the epithelial roof of the fourth ventricle, that should be distinguished from the ven-
tricular zone, the neuroepithelium that covers its ventricular surface (Fig. 3).

The general opinion was that the cerebellum originates from the dorsal portion 
of the first rhombomere [3, 4]. Several papers used the quail-chick marker system to 
trace the origin of the cerebellum. Substitution of the mesencephalic vesicle in 
chickens with a quail transplant resulted in the replacement of Purkinje cells and 
ependyma in the rostral cerebellum by cells with the typical massed quail chromatin 
in their nucleoli. According to Martinez and Alvarado-Mallart (1989), these cells 
are present in a broad medial stripe, where labeled and non-labeled Purkinje cells 
occur together [5]. Labeling is also found of the granule cells. According to Hallonet 
et al. (1990), the labeled Purkinje cells are found in a V-shaped, rostral region reach-
ing caudally to lobule VIII (Fig. 4) [6]. These authors denied the labeling of granule 
cells and concluded that these cells originate exclusively from the metencephalon, 
confirming the general opinion on this matter. Martinez and Alvarado-Mallart sug-
gested that the rostral cerebellum might originate from the isthmic rhombomere, 
whereas its middle portion is a derivative of the first rhombomere. Its caudal por-
tion, including the auricle and part of the avian lateral cerebellar nucleus, is derived 
from the second rhombomere [7]. Sgaier et al. (2005) and Nieuwenhuys and Puelles 
(2016) pointed out that the cerebellar anlage rotates from an original rostrocaudal to 
a mediolateral position, due to the development of the pontine flexure (Fig. 2) [8, 9]. 
Purkinje cells produced by the ventricular zone maintain their mediolateral position 
in the adult cerebellum. Those produced by the most medial (presumably isthmic 
rhombomere-derived) ventricular zone become located in the future vermis, subse-
quently more lateral parts of the ventricular zone give rise to Purkinje cells of more 
lateral parts of the hemisphere [10]. Granule cells produced by the upper rhombic 
lip do not maintain their original mediolateral position in the adult, due to their lat-
eromedial tangential migration in the external granular layer (EGL).

Fig. 1 The rhombic lip of 
a human embryo at the 
level of the greatest width 
of the fourth ventricle 
(Reproduced from His 
(1888) [1]). Abbreviation: 
R.l. rhombic lip, Ts. 
solitary tract, X, XII vagal 
and hypoglossal nerves

J. Voogd
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Fig. 2 Cerebellum of a 
15-week human embryo 
(Reproduced from 
Nieuwenhuys et al. (2008) 
[123]). Red arrow indicates 
position of rostrocaudal 
axis of the cerebellar 
anlage after the rotation of 
the cerebellar anlage due to 
the pontine flexure

Fig. 3 Diagram of a 
sagittal section, showing 
the division of the germinal 
zone of the early cerebellar 
plate into the ventricular 
zone that will give rise to 
inhibitory neurons and the 
upper rhombic lip that 
produces the excitatory 
neurons of the cerebellum. 
(Redrawn from Golgowitz 
and Hamre (1998) [124])

 Histogenesis

The ventricular zone and the rhombic lip produce different types of neurons in suc-
cessive waves. According to the autoradiographic studies of Miale and Sidman 
(1961) and Pierce (1975) in mice, using the incorporation of radioactive thymidine 
at their last mitosis, the large (glutamatergic) neurons of the cerebellar nuclei are 
born early at E10 and E11 in the ventricular zone; medium and small (presumably 
inhibitory inter- and nucleo-olivary neurons) between E11 and E17 [11, 12]. 

The Development of the Cerebellum: From the Beginnings
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Fig. 4 Sagittal section 
through a chicken-chimera 
cerebellum. In the rostral 
region of the cerebellum, 
Purkinje cells (triangles) 
and ependyma (circles) are 
replaced by quail cells 
derived from the 
mesencephalon. (Modified 
from Martinez and 
Alvarado-Mallart 
(1989) [5])

Purkinje cells are born during the same period (E11-13). Golgi cells in mice are 
produced by the ventricular zone in the 12- to 15-day embryo. After E15, dividing 
cells are present in the white matter throughout the cerebellum [11]. These cells 
give rise to Bergmann glia, astrocytes, oligodendrocytes, and basket and stellate 
cells of the molecular layer [13, 14]. In the rat, unipolar brush cells are born in the 
ventricular zone after the cessation of the production of the Purkinje cells. Lugaro 
cells develop in the same period as the Golgi cells [15]. Cells of the EGL arise from 
the caudal border of the cerebellar anlage (the upper rhombic lip) after E13. The 
EGL produces granule cells till well after birth (for similar data on the rat see [16], 
for the monkey [17], and for the chick embryo [18]). The more recent conceptual 
revisions of the origin of the neurons from the ventricular zone and the rhombic lip 
include the origin of the large glutamatergic neurons of the cerebellar nuclei from 
the rhombic lip and their inhibitory neurons from the ventricular zone (reviewed by 
Wingate in Leto et al. 2015) and the observation of Englund et al. (2006) that uni-
polar brush cells are produced by the rhombic lip [19, 20]. Inhibitory neurons of the 
cerebellum, therefore, are produced by the ventricular zone, excitatory neurons by 
the rhombic lip. Glutamatergic nuclear neurons and cells of the EGL are produced 
sequentially by the rhombic lip.

In their migration to the meningeal surface of the cerebellum, Purkinje cells are 
supposed to use the processes of the neuroepithelial cells whose conical endfeet 
form the external limiting membrane (Fig. 5). A map of these processes that would 
predict the paths of migrating Purkinje cells is not available. In mice, migrating 
Purkinje cells at E15 avoid the cerebellar nuclei; at E17, they pass across them [21]. 
In the rat, all Purkinje cells migrate through the more superficially located transitory 
nuclear layer [22]. The clustering of the migrated Purkinje cells that will lead to the 
development of longitudinal Purkinje cell zones will be considered in another 
paragraph.

In his Golgi studies, Cajal (1890a, b, 1909–1911) and his followers (Athias 
1897; Lugaro 1894; Popoff 1897) distinguished different phases in the development 
of the Purkinje cells (Fig.  6a–d) [23–28]. In the first phase of the “disoriented 

J. Voogd
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Fig. 5 Neuroepithelial 
cells (Popoff’s 
spongioblasts) in a 
1–1/4 cm. cat embryo. 
Golgi method (Reproduced 
from Popoff (1897) [28]. 
Abbreviations: e 
ventricular zone, ext 
external limiting 
membrane)

dendrites,” multiple processes arise from all over the cell body. The axon, first 
devoid of collaterals, enters the white matter. In the next stage, oriented and regular 
dendrites arise as a flattened tree from the upper pole of the cell. The axon emits 
multiple collaterals. Finally, the processes of the cell body are resorbed, the den-
dritic tree acquires its definite shape, and many of the axonal collaterals are resorbed. 
Differentiation of the Purkinje cells is more advanced in the apices of the lobule. 
Purkinje cells of the rat mature early in lobules I, II, proximal V and VI, and IX and 
X and late in distal VI, VII and distal VIII [29, 30].

The development of the climbing fibers closely follows that of the Purkinje cell 
[23, 25, 28]. Cajal distinguished an early pericellular nest stage where the climbing 
fiber forms an intracellular plexus (Fig. 6e), followed by outgrowth over the emerg-
ing dendrites, the place of the supranuclear capuchon, the stage of the young climb-
ing fiber arborization, and finally, its adult form (Fig. 6h). The shift of the climbing 
fiber synaptic connections with the filopodia of the Purkinje cell soma, to their posi-
tion on stubby spines on the smooth proximal dendrites of the Purkinje cells and 
their replacement by the inhibitory synapses of the basket cell axons was docu-
mented in the electron microscopic studies of Larramendi (1969) and Morara et al. 
(2001) [31, 32]. Multiple innervations by climbing fibers of the Purkinje cell was 
noticed by Cajal and others (Fig.  6e, h). The elimination of redundant climbing 

The Development of the Cerebellum: From the Beginnings
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Fig. 6 Stages in the 
development of Purkinje 
cells (a–d) and climbing 
fibers (e–h). (Reproduced 
from Athias (1897) [26])

fibers was shown much later in physiological studies, reviewed by Hashimoto and 
Kano (2005) [33].

The external granular layer (EGL) of the cerebellar anlage gives rise to the gran-
ule cells, although, during its history of more than 150 years it was supposed to 
contribute to each cell type of the cerebellum. The first description of the EGL dates 
from Hess (1858), who illustrated it as the stratum granulosum periphericum in the 
cortex of a neonate dog (Fig. 7) [34]. Its cells are provided with radially oriented 
filiform processes. In due time, the layer disappears, leaving only a few cells near 
the pia mater. Obersteiner (1869) distinguished a superficial, tightly packed, and a 
deep layer with loosely arranged rounded cells in the EGL (Fig. 8) [35]. Like Hess, 
radial processes in the molecular layer were found to originate from these cells. 
Later authors often referred to the EGL as “Obersteiner’s layer.” Schaper (1894) in 

J. Voogd
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fish and Herrick (1891) in mice and guinea pig observed the origin of the EGL from 
the ventricular matrix next to the caudal attachment of the roof plate of the fourth 
ventricle and its rostral migration over the cerebellar surface [36, 37]. They observed 
mitoses in the superficial EGL and identified it as a secondary matrix. Miale and 
Sidman (1961) dated the origin of the EGL in the mouse at E13, when the genera-
tion of Purkinje cells has ceased and found that the proliferation in the EGL lasts till 
the third postnatal week [11]. Proliferation in the EGL is regulated by sonic hedge-
hog, secreted by the subjacent Purkinje cells [38].

In his 1890 paper, Cajal described different cell types in the EGL and the molec-
ular layer (Fig. 9) [23]. Horizontal bipolar neurons with horizontal axonal expan-
sions extending in the length of the cerebellar folia occur in the deep layer of the 
EGL. Bipolar neurons with radially oriented processes occur in the molecular layer 
(Fig. 9). Strange as it may seem to us now, Cajal did not recognize these neurons as 
stages in the migrating granule cells, at least, with his scientific rigor, he judged that 

Fig. 7 Cortex of neonate dog showing the stratum granulosum periphericum. Carmin staining 
(Reproduced from Hess (1858) [34]). Abbreviations: a granule cell with processes directed at 
the periphery, B Stratum granulosum centrale, b granule cell with filiform processes at both 
ends, C nerve (Purkinje) cells, D stratum moleculare, E stratum granulosum periphericum, F 
pia mater

The Development of the Cerebellum: From the Beginnings
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Fig. 8 Section through the 
cerebellar cortex of a 
neonate. Carmine staining 
1. Upper layer of the EGL 
(Basalschichte), 2. Second 
granular layer, 3. 
Molecular layer (radiär 
gestreifte Schichte), 4. 
Purkinje cell layer 
(tangentielle Schichte), 5. 
Permanent granular layer. 
(Reproduced from 
Obersteiner (1869) [35])

he had too little material to draw this conclusion. Later he identified the origin of the 
parallel fibers from the horizontal bipolar neurons, the emergence of a third, proto-
plasmic process and the translocation of the nucleus in this process through the 
molecular layer into the internal granular layer (Fig. 10). Here its rounded cell body 
bears multiple dendrites most of which are resorbed when it settles deep in the 
granular layer in regions were the mossy fiber rosettes have attained their adult form 
(Fig. 10) [25]. The parallel fibers are stacked from the bottom of the molecular layer 
upwards. A similar gradient as present for the differentiation of the Purkinje cells in 
different lobules of the cerebellum was found for the differentiation of the granule 
cells [22].

Granule cell precursors use Bergmann glial fibers for their migration [39]. These 
fibers, with their typical lateral processes and their attachment to the meningeal 
surface of the cerebellum, were described by Bergmann (1857) [40]. Bergmann glia 
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Fig. 9 Neurons in the developing EGL and the molecular layer (Reproduced and relabeled from 
Cajal (1890) [23]). Abbreviations: A cuticula, a vertical bipolar cell, b ascending process that ter-
minates in c in a bifurcation, B layer of epithelial cells, C zone of horizontal bipolar cells, d tran-
sitional cell that resembles a horizontal bipolar neuron, D molecular layer, E granule cell layer, e 
horizontal bipolar cells, g parallel fiber, j granule cell, m bifurcation of granule cell axon, n 
descending process of a vertical bipolar cell

has been described as originating from the Golgi epithelial cells by translocation of 
their cell bodies to the Purkinje cell layer [21], but have also been traced from cells 
proliferating in the cerebellar white matter [13]. The orientation of the parallel 
fibers clearly is established very early as processes of the horizontal bipolar cells in 
the EGL. Purkinje cell dendritic arbors derive their plane shape and their orientation 
perpendicular to the parallel fibers from the interaction with these fibers during their 
development [22, 41]. However, the orientation of the parallel fibers in the long axis 
of the folia can be uncoupled after perinatal administration of methylazoxymetha-
nol in rats [42].

 Development of the Cerebellar Nuclei

The first study of the development of the cerebellar nuclei in different classes of 
vertebrates is by Rüdeberg (1961) [3]. In the tradition of Bergqvist and Källén 
(1953), he traced the origin of the cerebellum from two, subsequent migration areas 
A and B, from the ventricular neuroepithelium of the dorsal column of the first 
rhombomere [43]. The dorsal part of the first migration area A gives rise to the 

The Development of the Cerebellum: From the Beginnings
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Fig. 10 Stages in the development of the granule cells (Reproduced from Cajal (1909/11) [25]). 
Abbreviations: A external granular layer: matrix, B external granular layer: layer of horizontal 
bipolar cells, b,c,d horizontal bipolar cells, C molecular layer, D granular layer, e,f bipolar cells 
with radial process, g,h vertical bipolar cells, j granule cell with multiple dendrites, k adult granule 
cell, r growth cone of parallel fiber

external granular layer, its middle portion A2 merges with part of the second migra-
tion area B into the cell group A2B, its dorsal part, A1 develops outside the cerebel-
lum, into the isthmic nucleus. The dorsal part of migration B gives rise to the 
Purkinje cell layer (Fig. 11). In birds, cell group A2B develops into the cerebellar 
nuclei; in mammals, it gives rise to the lateral (dentate) nucleus. The interposed and 
fastigial nucleus stems from ventral parts of migration B. The development of the 
cerebellar nuclei in cetacea follows the same pattern (Korneliusen and Jansen 1965) 
[44]. According to Korneliusen (1968), all nuclei in the rat develop from the deep 
layer of migration B.  The nomenclature used by Feirabend (1983) for the early 
development of the chicken cerebellum is different but his account of the origin of 
the cerebellar nuclei from the ventricular zone is very similar to that of Rüdeberg 
[45]. The two migration layers were also recognized by Altman and Bayer (1985a, 
b, c) in the rat [10, 16, 46]. The first migration layer, with exception of its ventral 
portion (Rüdeberg’s A1), gives rise to all cerebellar nuclei and was indicated as the 
nuclear transitory zone (NTZ). A second migration layer (Rüdeberg’s B) gives rise 
to the Purkinje cells. As a consequence, the future Purkinje cells migrate through the 
NTZ to reach their superficial position. The NTZ splits in a dorsomedial group of 
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Fig. 11 Transverse section of the cerebellar anlage from a 21 mm human embryo. (Reproduced 
from Rüdeberg (1961) [3])

longitudinally oriented cells and a superficially located lateral group with a trans-
verse orientation (Fig. 12). The latter migrates medially and gives rise to axons that 
cross in the cerebellar commissure forming the uncinate tract that takes origin from 
the fastigial nucleus. The superficial location and the origin of the uncinate tract 
from this nucleus and its migration to a more ventral position were experimentally 
verified by Bourrat and Sotelo (1986) (Fig. 12, inset; [47]). The longitudinally ori-
ented neurons will develop into the interposed and lateral (dentate) nuclei. With the 
demonstration by Machold and Fishell (2005) and Wang and Zoghbi (2005) that 
glutamatergic neurons of the nuclei are derived from the upper rhombic lip [48, 49], 
Rüdeberg’s migration A, or Altman’s nuclear transitory zone became a layer of tan-
gentially migrating neurons destined for the cerebellar nuclei.
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Fig. 12 Transverse section through the cerebellar anlage of a E17 rat embryo, showing the divi-
sion of the nuclear transitory zone in a group of medially migrating, future fastigial nuclear neu-
rons (fcf) that will give rise to the uncinate tract (hb), and a group of longitudinally oriented 
neurons (fci), the source of the interposed and lateral nuclei (Reproduced from Altman and Bayer 
(1985b) [16]). Inset: Injection of horse radish peroxidase (stippled area) labels fibers of uncinate 
tract in the cerebellar commissure and cells of contralateral fastigial nucleus in a E16 rat 
embryo [47]

 Development of Longitudinal Purkinje Cell Zones

Longitudinal Purkinje cell zones are among the first features of the cerebellum to 
develop as discrete multicellular clusters that will extend rostrocaudally as adult, 
monolayered zones. Purkinje cell zones were first identified by their projections to 
cerebellar and vestibular target nuclei and their afferent olivocerebellar fibers 
occupy (Voogd 1964, 1969), illustrated in Fig. 13A–C [50, 51]. It should be noticed 
that the B zone (green) and the C1, C3 and Y zones (red) are restricted to the ante-
rior lobe and the simplex lobule, and to lobule VIII and its hemisphere, the copula. 
Other zones extend over most of the rostrocaudal length of the cerebellar surface. 
Their development has been studied in serial, Nissl-stained sections in different spe-
cies and by using Purkinje cell-specific markers. Their development was first stud-
ied by Korneliusen (1967) in cetacea [52]. In Balaenoptera musculus (blue whale) 
and Balaenoptera physalis (fin whale) embryos, he distinguished four Purkinje cell 
clusters in the cortical anlage, each cluster being topographically related to one of 
the incipient cerebellar nuclei (Fig. 14). Clusters are clearly demarcated and differ 
in the degree of differentiation of their cells. Raphe-like, cell-poor differentiations 
within the medullary substance demarcate the borders between the cluster/nuclear 
complexes. Clusters extend all over the length of the still smooth cerebellar surface. 
Three subdivisions are present in the medial cluster overlying similar differentia-
tions within the medial nucleus. A narrow medial intermediate cluster is related to 
the small anterior interposed nucleus, the wide lateral intermediate cluster to the 
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Fig. 13 A. Diagram of the Purkinje cell zones in a flattened map of the cortex of the cerebellum 
of the rat. The cerebellar and vestibular target nuclei of the zones are indicated in B, the source of 
their climbing fiber afferents in a flattened map of the inferior olive in C. A map of the distribution 
of zebrin-positive (black) and -negative Purkinje cells is illustrated in D. Zebrin-positive zones are 
number 1–7. Note that the Purkinje cells of the B, C1, C3, and Y zones are zebrin-negative

large posterior interposed nucleus, and the lateral cluster is topographically related 
to the anlage of the lateral cerebellar nucleus. A very similar clustering in the incipi-
ent cortex was found in the rat (Korneliusen 1968) (Fig. 14) [53]. The same relations 
of the cerebellar nuclei were found as in whale embryos, but the lateral intermediate 
cluster, like its target nucleus, the posterior interposed, is smaller and of the same 
size as the medial intermediate zone and the anterior interposed nucleus. In the rat, 
a small, additional X zone was present between the lateral and lateral intermediate 
zone, related to the dorsolateral hump of the anterior interposed nucleus. The medial 
intermediate and the X clusters are partially covered by the adjoining clusters. Four 
Purkinje cell clusters were identified by Feirabend (1983) in chick embryos [45]. In 
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Fig. 14 Transverse section and a diagram of the flattened cerebellar cortex showing Purkinje cell 
clusters in a 17 cm cr Balaenoptera physalis embryo and a 30 mm cr rat embryo. (Modified from 
Korneliusen (1967, 1968) [52, 53])
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later stages, migrating strands of granule cells (“granule cell raphes,” Fig. 15) are 
located between and within the clusters, subdividing them in smaller units. The 
existence of such a second generation of clusters has not been confirmed, but the 
Purkinje cell raphes have also been identified in mammals and have been used to 
delineate Purkinje cell clusters and zones in histochemical studies [54–57]. 
Cerebellar zonation in early postnatal avian stages was documented by Braun et al. 
(1986) [58].

Purkinje cell clusters have been identified during the development of the primate 
cerebellum. The first illustrations in human fetuses can be found in Langelaan 
(1919) and Hochstetter (1929) [59, 60]. They were studied in macaque monkey 
fetuses by Kappel (1981) [61]. She distinguished two sets of clusters. Those des-
tined to develop in the adult A, C2 and D1 and D2 zones reach the early, still smooth 
surface of the cerebellum (Fig. 16). The clusters that will give rise to the future B, 
C1, and C3 zones reach the surface later. For some time, they are still partially cov-
ered by the neighboring clusters, a phenomenon also noticed for the same clusters 
in Korneliussen’s (1968) paper on the rat corticogenesis [62]. Korneliusen’s medial 
and lateral intermediate and his X zone clearly correspond to the monkey C1, C2, 
and C3 zones, respectively. In the monkey fetus, cell strands connect the C1 and C3 
clusters with the anterior interposed nucleus (Fig. 17). The same Purkinje cell clus-
ters also can be recognized in human fetuses, where the large size of the lateral D 
cluster should be noticed (Fig. 18). The differentiation of the human dentate nucleus 
in a dorsomedial portion with an early differentiating coils and a late developing 
ventrocaudal part was first described by Weidenreich (1899). The general conclu-
sion of these studies is that Purkinje cell clusters transform directly into the adult 
pattern of Purkinje cell zones. Nothing is known about the development of the 
detailed (somato) topical patterns in the Purkinje cell zones [63].

Fig. 15 Granule cell raphes in a 14-day chick embryo. A. Loyez stain of anterior lobe, the EGL, 
and the granule cell raphes are stained. B. Nissl stain. EGL, external granular layer; P, Purkinje cell 
clusters. Courtesy Dr. Hans Feirabend

The Development of the Cerebellum: From the Beginnings



16

Fig. 16 Photographs of the rostral aspect of reconstructions of the Purkinje cell layer of the cer-
ebellum of four fetuses of the rhesus monkey. Clusters are indicated with different shadings. Note 
the superficial location of Purkinje cells of the early arriving clusters D, C2, and A in the youngest 
fetus, and the gradual emergence at the surface of the later arriving clusters B, C1, and C3. Compare 
with sections of 55-, 65-, and 70-day-old fetuses in Fig. 16. Abbreviations: Fl flocculus, Prf pri-
mary fissure. (Reproduced from Kappel (1981) [61])

The role of cadherins, adhesion molecules that play an important role in cerebel-
lar development was reviewed by Redies et al. (2011) [64]. Different cadherins are 
expressed by Purkinje cell clusters early in chick embryos and provide an adhesive 
code for parasagittal cell domains in avian and mammalian embryos (Fig. 19) and 
characterize interconnected grisea, such as Purkinje cell clusters and the cerebellar 
nuclei [65, 66]. In mice, these cadherin domains resemble the Purkinje cell zones as 
they are known in rats.
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Fig. 17 Coronal section through the cerebellum of a 55-day-old rhesus monkey fetus. Note super-
ficial location of the Purkinje cells of the early arriving clusters A, C2, and D, which still partially 
cover the later arriving deep clusters B, C1, and C3. Abbreviations: cr restiform body, IntA anterior 
interposed nucleus, v4 fourth ventricle. (Reproduced from Kappel (1981) [61])

Fig. 18 Purkinje cell clusters A–D in a transverse section of a human 65 mm cr fetus. EGL exter-
nal granular layer

Wassef and Sotelo (1984) and Wassef et. al. (1985) traced the development of 
Purkinje cell clusters in rats, using markers that are expressed by all adult Purkinje 
cells [67, 68]. Not all Purkinje cell clusters express these markers during develop-
ment. Different patterns of labeling were observed for different markers. Whether 
this is caused by a different phenotype of the immature Purkinje cells or by a differ-
ence in time scale of the expression of the different markers is not clear. The number 
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Fig. 19 Zonal distribution 
of different cadherins in a 
section through the E11/12 
chicken cerebellum. Red, 
Cad6b, blue, Cad7, green 
R-cadherin. Scale bar 500 
micron. (Reproduced from 
Arndt et al (1998) [65])

of clusters identified was greater than in previous studies and, therefore, a compari-
son with them was not attempted.

Another set of Purkinje cell-specific antibodies was developed by Hawkes and 
Leclerc (1987: mapQ-113, zebrin I [69]) and Brochu et al. (1990, zebrin II [70]). 
The epitope of zebrin II was found to be aldolase C [71]. These antibodies stain a 
subpopulation of Purkinje cells. Multiple longitudinal strips of zebrin-negative 
Purkinje cells in the anterior lobe and the simplex lobule, in the posterior cerebel-
lum in the pyramis and the adjoining paramedian lobule, separate zebrin-positive 
strips (Fig. 13D). Expression of the zebrin antigen starts relatively late in P6 rat 
neonates. At P12, it is present in all Purkinje cells. Subsequently, immunoreactivity 
is selectively suppressed, resulting in the adult striped pattern [72]. A similar type of 
development has been found for another late-onset marker for longitudinal zones, 
heat-shock protein 25 [73]. In studies of the development of the zebrin pattern, 
bridging the gap between prenatal clusters and adult zebrin-negative and -positive 
strips proved to be difficult [74].

One of the problems is that zebrin-positive and -negative strips do not map one- to- 
one on the Purkinje cell zones defined by their corticonuclear and olivocerebellar 
identity. The zebrin immunoreactivity of these Purkinje cell zones was established by 
Voogd et al. (2003), Voogd and Ruigrok (2004) and Sugihara and Shinoda (2004) 
[75–77]. Their studies also revealed a number of additional, narrow zebrin-positive 
strips that were formally discarded as satellite bands. In the rat hemisphere, the B, C1, 
C3 and Y zones were found to be zebrin-negative, the intercalated C2, D1 and D2 
zones were zebrin-positive (compare Fig. 13A, D). In the vermis, the A zone consists 
of multiple zebrin-positive and -negative subzones. Earlier publications on differences 
in birth date between the Purkinje cells of different clusters (Feirabend et al. 1985) 
were succeeded by the viral-labeling studies of Hashimoto and Mikoshiba (2003) that 
showed that Purkinje cells in mice born at E11.5 form clusters that will develop into 
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Fig. 20 Distribution of Purkinje cells born on E10.5 and E12.5 superimposed on a map of the 
zebrin-positive (grey) and -negative strips of the cerebellum of the mouse. Early-born Purkinje 
cells constitute zebrin-positive bands, late-born Purkinje cells constitute zebrin-negative bands. 
(Reproduced from Namba et al. (2011) [80])

the zebrin-positive (C2, D1 and D2) zones, whereas Purkinje cells born at E12.5 
develop in the zebrin-negative (B, C1, C3, and Y) zones [78–80] (Fig. 20). Earlier, 
Kappel (1981) found these late-born Purkinje cell clusters to arrive later at the cere-
bellar surface than the early-born clusters [61]. Just as the number of zebrin-positive 
and negative stripes increased in recent studies, the number of Purkinje cell clusters 
identified in E17.5 mice embryos increased to 54 on each side [81]. These authors 
traced the development of these clusters into the adult zebrin pattern. More recent 
developments in this field were reviewed by Arancillo et al. in Leto et al. (2015) [19].

 Development of Connections

The development of the afferent climbing and mossy connections of the cerebellum 
has received more attention than the output systems of the cerebellar nuclei. A 
closed chapter in the study of the development of cerebellar connections is the study 
of their myelinization. Axonal systems acquire their myelin sheaths at different pre- 
and postnatal dates. Myelin-stained sections can provide information on their 
topography. The method was mostly used in human fetuses and neonates. Like 
modern MRI tractography. It does not provide information on the precise origin and 
termination of the tracts nor on the direction of impulse propagation. A good exam-
ple is the dorsal spinocerebellar tract that bore the eponym Flechsig’s tract after its 
discovery in the myelogenetic studies of this author (Flechsig 1876) [82]. The local-
ization of this tract in the restiform body was illustrated by Darkschewitsch and 
(Sigmund) Freud (1886) [83]. In a human fetus, it consists of a core of myelinated 
cuneocerebellar and dorsal spinocerebellar fibers, and an unmyelinated periphery of 
olivocerebellar fibers (Fig.  21). Details on the intracerebellar topography were 
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published by De Sanctis (1898) [84]. The state of the art at the end of the nineteenth 
century was reviewed by von Bechterew (1899) [85].

According to Tello (1940), who used the Cajal silver impregnation in mouse 
embryos, the first system to enter the cerebellum in an 8 mm mouse embryo is the 
ascending branch of the bifurcating vestibular nerve [86]. These fibers appear to be 
directed at the caudal pole of the cerebellar anlage, where some will cross the mid-
line (Fig. 22). At a later stage, another afferent system, Tello’s faisceau bulbo- or 
olivo-cérébelleuse, enters the rostral pole of the cerebellum. Its fibers form the cer-
ebellar commissure which, in a 13 mm mouse embryo, extends over the entire ros-
trocaudal dimension of the cerebellum (Fig. 23). Tello’s observations on the early 
arrival of primary vestibulocerebellar fibers were confirmed by Morris et al. (1988), 
using the parvalbumin immunoreactivity of these fibers in rat embryos [87]. First 
the fibers are located immediately under the pial surface. Later they are found in 
medially and caudally directed bundles that will reach the granular layer of the 
uvula-nodulus. These fibers may serve as pathfinding axons for non- immunoreactive 
fibers, possibly belonging to secondary vestibulocerebellar fibers from the vestibu-
lar nuclei. The development of differential projections of cristae and maculae in 
mice to the uvula-nodulus was studied by Maklad and Fritsch (2003) [88].

Of the other mossy fiber afferent systems, the development of the spinocerebellar 
projection has received most attention. The bilateral, regular collateralization of 
spinocerebellar fibers that form multiple parasagittally oriented terminal fields in 
the granular layer was first described in our lab for mammals (Voogd 1969 [51]) and 
birds (Vielvoye 1977 [89]). Lakke et al. (1986) traced spinocerebellar axons with 
WGA HRP in chicken embryos [90]. They enter the rostral cerebellum in Tello’s 
bulbocerebellar fascicle at the seventh incubation day. They course superficially, to 
enter the cerebellar commissure two days later. The bundle of spinocerebellar axons 
gives off collaterals which enter the Purkinje cell clusters, from where they extend 
into the molecular layer (Fig. 24). Spinocerebellar fibers disappear from the molec-
ular layer and terminal rosettes in the inner granular layer develop late before and 

Fig. 21 Diagram of the myelinization of the restiform body in a human fetus. The central, 
myelinated core consists of cuneocerebellar [1] and dorsal spinocerebellar tract fibers [2]. The 
unmyelinated periphery consists of olivocerebellar fibers. (From Darkschewitsch and Freud 
(1886) [83])
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Fig. 22 Sagittal section 
through an 8 mm mouse 
embryo; Cajal silver 
staining. Axons of the 
ascending branch of the 
vestibular nerve enter the 
cerebellar anlage 
(Reproduced from Tello 
(1940) [86]). 
Abbreviations: n.trig 
trigeminal nerve, n.vest 
vestibular nerve

Fig. 23 Sagittal section 
through a 13 mm mouse 
embryo; Cajal silver 
staining, showing the 
cerebellar commissure 
(Reproduced from Tello 
(1940) [86]). 
Abbreviations: comm 
cerebellar commissure, egl 
external granular layer, 
mes mesencephalon, plex. 
chor. choroid plexus, ventr.
matrix ventricular matrix

after hatching [91]. In mammals, a similar sequence is present in the development 
of the spinocerebellar pathway. Their early entrance in the rostral cerebellar anlage 
in E13 mouse embryos, their superficial location, and their decussation in the cere-
bellar commissure are observed at E15. No parasagittal arrangement is visible at 
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E19 [92]. According to Arsénio Nunes and Sotelo (1985), the columnar distribution 
of spinocerebellar fibers in the rat develops postnatally from a more diffuse stage 
that was not observed in birds [93]. A distinct topographical relationship of these 
columns to the zebrin pattern, that is, to the Purkinje cell zones, was described by Ji 
and Hawkes (1994) [94]. According to these authors, despite the early zonal distri-
bution of the mossy fibers being dependent on Purkinje cell clustering, granule cell- 
mossy fiber interactions if disturbed by chemical ablation of the EGL result in 
blurring of this pattern [95].

Little is known about the development of other mossy fiber systems. For the 
development of the pontocerebellar projection, Bechterew (1885) made an interest-
ing observation [96]. He found an early myelinating “spinal system” in the bra-
chium pontis of human neonates that can be traced from the caudal pontine nuclei 
and the nucleus reticularis tegmenti pontis into the flocculus and the anterior cere-
bellum. The “cerebral system” of the brachium pontis, which courses from the ros-
tral pontine nuclei to the posterior cerebellum, is still unmyelinated at the time 
(Fig. 25). This is in accordance with more recent observations that the main projec-
tion of the caudal pontine nuclei, which receive their afferents from motor cortical 
areas, is to the anterior lobe, whereas rostral pontine nuclei that are innervated by 
cortical association areas mainly project to the caudal cerebellum [76]. Tolbert and 
Panneton (1983) described transient extra-pontine cerebrocerebellar connections 
from the somatosensory cortex to the cerebellar cortex and nuclei in kittens using 
axonal transport of tritiated amino-acids, horseradish peroxidase, or fluorescent 

Fig. 24 Bundles of 
spinocerebellar fibers in an 
11-day incubation chick 
embryo are positionally 
related to the Purkinje cell 
clusters. Collaterals are 
seen to enter these clusters. 
(Reproduced from Lakke 
et al. (1986) [90])
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dyes [97]. These projections arise as collaterals from the pyramidal tract, passing 
through the superior cerebellar peduncle to terminate in the nuclei, and caudal to the 
pons, bilaterally through the restiform body to be distributed as mossy-like fibers to 
the granular layer of the anterior lobe, the lobulus simplex, and the paramedian 
lobule. The projections to nuclei and cortex are somatotopically organized [98, 99]. 
Nuclear projections are present at P6-8, cortical projections between P8 and 10. 
After the seventh postnatal week, no cerebrocerebellar projections were present 
anymore. Earlier, a similar transient pathway from the occipital region of the hemi-
sphere to the paraflocculus was observed in neonatal rabbits [100].

Since the studies of Voogd (1969) and Groenewegen and Voogd (1977), it is 
known that the topographical organization of the olivocerebellar projection closely 
matches the longitudinal zonal organization of the corticonuclear projection, their 
target nuclei and their localization in white matter compartments [51, 101]. 
Therefore, the question is not whether it is likely that Purkinje cell clustering deter-
mines this pattern, but rather how this is achieved. Olivocerebellar fibers enter the 
cerebellum early, in E8.5-9 chick embryos, presumably, in Tello’s olivocerebellar 
bundle; initial target selection occurs at E10. Affinity of Purkinje cell clusters for the 
olivocerebellar fibers from particular subdivisions of the inferior olive was shown 
by Chédotal and Sotelo (1992), Wassef et al., (1992a, b), and Paradies et al. (1996) 
(Fig. 26) [102–105]. The cell adhesion molecule BEN was found to be present in 

Fig. 25 Transverse myelin-stained section through the brainstem and cerebellum of a human neo-
nate (Reproduced from Bechterew (1885) [96]). Abbreviations: a central tegmental tract, b supe-
rior olive, fc cerebral system of the brachium pontis, flo flocculus, flp medial longitudinal fascicle, 
fm spinal system of the brachium pontis
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subdivisions of the inferior olive and Purkinje cell clusters. However, non-BEN-ir 
clusters also were found to receive BEN-ir olivocerebellar fibers [106, 107]. 
Irrespective of reversal of the cerebellar plate, olivocerebellar fibers recognize 
polarity cues in their target region that organize their anteroposterior topography 
[108]. Ephrins and their receptors are distributed in parasagittal domains in chicken 
embryos [57]. These domains were found to correspond to the olivocerebellar map-
ping domains [109].

Although the development of corticonuclear connections was implicit in some of 
the cited papers on the development of longitudinal Purkinje cell zones, the subject 
has received little attention. The uncinate tract, as the main efferent system of the 
fastigial nucleus, was considered in section “Development of the cerebellar nuclei”. 
The development of the brachium conjunctivum was studied in rat fetuses by Cholley 
et al. (1989) [110]. It emerges from the cerebellar nuclei at E15; at E16 it crosses the 

Fig. 26 Location of CGRP immunoreactive olivocerebellar fibers in the cerebellum of a E17 and 
an E20 rat embryo. CGRP immunoreactive brain stem nuclei and tracts are indicated. Cerebellar 
nuclei are hatched (Reproduced from Chédotal and Sotelo (1992) [102]). Abbreviations: 4V fourth 
ventricle, 7n facial nucleus, 7t genu facial nerve, Aq aquaduct, bp parabrachial nucleus, cer cere-
bellum, MnR median raphe, sp5 spinal tract trigeminal nerve
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midline in Wernekinck’s decussation [111]. The olivonuclear pathway was found in 
a more ventral position to decussate rostral to the main portion of the brachium.

 Development of the Folial Pattern

Studies of the development of the folial pattern contributed to our present nomen-
clature of the cerebellum. Kuithan (1895) coined the name sulcus primarius for the 
first fissure to appear medially in the cerebellum of a 5 cm sheep embryo [112]. 
Another, unnamed, fissure is present at this stage running along the caudal rim of 
the cerebellar anlage that we now know as the posterolateral fissure (Fig. 27). Next 
to appear is the fissure that borders the uvula rostrally (our secondary fissure) fol-
lowed by the prepyramidal fissure. The name “secondary fissure” was introduced by 
Smith (1902) for “one of the two fundamental clefts which cross the mesial plane 
(that) have been called the ‘fissura prima’ and the ‘fissura secunda’ in reference to 
their relative importance and precocity” [113]. Smith only studied adult specimens 
and must have derived his ideas about the precocity of these fissures from Kuithan’s 
studies. Kuithan’s observations were partially confirmed by Stroud (1895) in feline 
and human embryos [114]. However, before any fissures appeared in the future 
vermis, Stroud observed a parafloccular sulcus in the hemisphere that separates his 
“pileum” (our ansiform and paramedian lobulus) from his “paraflocculus.” Contrary 

Fig. 27 Sagittal section of a 5 cm sheep embryo, showing the division of the germinal zone of 
the early cerebellar plate by the primary fissure and an unnamed fissure along the caudal 
border of the cerebellum (arrow) (Reproduced from Kuithan (1895) [112]). Abbreviations: f 
fibrillar layer, g mantel layer, m’ external granular layer (embryonale Randschicht), sp sulcus 
primarius, tr trochlear nerve
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to his term paraflocculus, Stroud’s names for the primary fissure (the furcal sulcus) 
and the anso-paramedian lobules have not survived.

One of the longstanding controversies in the subdivision of the mammalian cer-
ebellum was whether a subdivision in lobules, separated by transverse fissures, or a 
sagittal division into vermis and hemispheres was to be preferred. The proponent of 
the division in vermis and hemispheres was Louis Bolk (1906) (Fig. 28A) [115]. 
Bolk’s (1905, 1906) studies of human embryos [115, 116], that confirmed Bradley’s 
(1903, 1904) earlier observations [117, 118], showed that the cerebellum is a com-
promise between transverse and longitudinal trends in the development of its folial 
pattern. In the anterior lobe with the simple lobule and in the pyramis with its hemi-
sphere fissures and lobules of the hemisphere develop as extensions from the ver-
mis. In the ansiform lobule, the paraflocculus and the flocculus fissures develop 
independently from the vermis (Fig. 28B). The independence of vermis and hemi-
sphere later was emphasized by the local absence of cortex, that is, of parallel fibers, 

Fig. 28 A. Diagram of Bolk’s (1906) Bauplan of the mammalian cerebellum [115]. Folial chains 
of vermis and hemisphere are aligned in anterior lobe and in the pyramis (C1) and the paramedian 
lobule, and behave like independent growth centers in the ansiform lobule-lobule C2, and the 
paraflocculus-flocculus and lobules A (nodule) and B (uvula) segments. B. Drawings of different 
stages in the development of the human cerebellum. Relabeled from Bolk (1906) [115]. C. Larsell’s 
(1952) transverse subdivision of the mammalian cerebellum [121]. Abbreviations: A lobule A 
(nodulus), B lobule B (uvula), C1 lobule C1 (pyramis), C2 lobule C2 (folium and tuber vermis), 
cop copula pyramidis, Crus.circ (PFL) crus circumcludens (paraflocculus), Fapm ansoparamedian 
fissure, fI primary fissure, Ficrur intercrural fissure, fII fissura secunda, FLO flocculus, fpc precul-
minate fissure, fpf parafloccular fissure, fpp prepyramidal fissure, fsp superior posterior fissure, 
L.ans ansiform lobule, L.ant anterior lobe, L.pm paramedian lobule, L.sim simplex lobule, PFLD/V 
dorsal/ventral paraflocculus, Spm paramedian sulcus, Uncus t. (floc) uncus terminalis (flocculus)
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in these regions [50]. Larsell (1936) stated his belief in the prevalence of a trans-
verse lobular subdivision as: “it is clear in the adult and in the fetus that the lateral 
parts, namely ansiformis, paraflocculus, and the lateral continuation of the pyramis 
are merely lateral extensions of the medial portions” [119]. Larsell identified the 
posterolateral fissure as the first fissure to develop. It separates the primary divisions 
of the cerebellum, the flocculo-nodular lobe, and the corpus cerebelli, from each 
other. Larsell subdivided the avian and mammalian cerebellum in ten homologous 
lobules, indicated with roman numerals [120, 121] (Fig. 28C). The development of 
the folial pattern in birds was also studied by Saetersdal (1959) [122]. He agreed 
with Larsell that the posterolateral fissure is the first to appear, but found Larsell’s 
preculminate, prepyramidal, and secondary fissures to appear next. Larsell’s precul-
minate fissure, therefore, represents the true primary fissure, and the lobules of the 
avian cerebellum should be renumbered.
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The Embryology and Anatomy 
of the Cerebellum

Maryam Rahimi-Balaei, Farshid Ghiyamihoor, Azam Asemi Rad, 
Niloufar Ashtari, Mehnosh Toback, Hugo Bergen, and Hassan Marzban

Abstract The cerebellum, an important structure in the central nervous system 
(CNS), controls and regulates motor and non-motor functions. It is located beneath 
the occipital lobe and dorsal to the brainstem. The cerebellum has a well-defined 
and highly organized structure which folds in lobes and lobules. The cortex of the 
cerebellum contains different glial cells and eight neuronal cell types and receives 
inputs from a variety of regions within the CNS and processes the information in a 
uniform manner. The cerebellar nuclei projects to a variety of different sites within 
the CNS to regulate motor and non-motor functions. Although much has been dis-
covered regarding the complex architecture of the cerebellum and circuitry, there 
are significant gaps in our understanding of the broader role of the cerebellum in 
brain function. This chapter will briefly review the cerebellar embryology and pro-
vide an overview of anatomy of the cerebellum.

Keywords Cerebellum · Embryology · Anatomy · Histology · Function

 Introduction

Recently, the cerebellum (Latin: “little brain”) has drawn the attention of more neu-
roscientists because not only does the cerebellum involve in motor functions (the 
regulation of posture, motor coordination, balance, and motor learning) but it also 
plays a role in non-motor functions such as emotion and cognition. In addition, the 
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cerebellum is considered as an outstanding model in the research of neurogenesis 
and circuit assembly because of its well-organized structure. The cerebellum is a 
complex organ which makes it difficult to understand its functions and disorders. 

First, this chapter briefly reviews the embryological development of this impor-
tant organ in the posterior cranial fossa. Then, the subdivision of the cerebellum will 
be elaborated in which the anatomical description subdivides it into lobes, lobules, 
folia, and zones. There are many different cerebellar subdivisions, as the cerebellum 
has a unique anatomical organization. On the superior aspect, the cerebellum con-
sists of the midline region referred to as the vermis, a narrow paravermal area imme-
diately adjacent to the vermis, and large hemispheres on either side. Well-defined 
fissures divide the cerebellum in a rostrocaudal direction into an anterior lobe, pos-
terior lobe, and flocculonodular lobe. The anterior and posterior lobes are divided 
further, into lobules and folia (in human), which greatly increases the surface area 
of the cerebellum (Fig. 1a, b). Next, the phylogenetic description subdivides the 
cerebellum into three functional divisions: the vestibulocerebellum, spinocerebel-
lum, and cerebrocerebellum. The cerebellum consists of a uniform layer of cortical 
gray matter overlying white matter that surrounds four pairs of cerebellar nuclei 
(CN). The cerebellar cortex consists of three layers from outer to inner: molecular 
layer, Purkinje cell layer, and granular layer, and CN will be explained in more 
detail. Finally, connection of the cerebellum to the brainstem via three peduncles 
(superior, middle, and inferior) and blood supply of the cerebellum will be explained.

 Embryology of the Cerebellum

During prenatal development of the nervous system, the central nervous system 
originates from the area of the ectoderm known as the neural plate. The neural plate 
thickens as a result of cell proliferation, and then begins to invaginate and thus 
forms the neural groove. The invagination of the neural groove continues until the 
lateral edges of the neural groove (neural fold) fuse to form the neural tube through 
a process referred to as neurulation. As the edges of the neural groove fuse to form 
the neural tube, which detaches from the ectoderm, a population of the neuroecto-
dermal cells dissociate from the neural fold named neural crest cells [1]. During the 
third week of embryogenesis, the rostral extent of the neural tube develops into the 
prosencephalon, mesencephalon, and rhombencephalon. The prosencephalon 

Fig. 1 (continued) (c) Schematic representation of the cerebellum showing the mossy fibers and 
climbing fibers convey information to the cerebellar cortex. The mossy fibers synapse on the gran-
ule cells and send collaterals to the cerebellar nuclei while the climbing fibers terminate on the 
dendrites of the Purkinje cells and may also send projections to the cerebellar nuclei. The granule 
cells project to the molecular layer and bifurcate to form the parallel fibers that contact the Purkinje 
cell dendrites as well as the basket cells and stellate cells. The Golgi cells receive input from mossy 
fibers and also project into the molecular layer of the cortex
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Fig. 1 (a) Location of the cerebellum in situ. (b) Hemisected view of the cerebellum showing the ver-
mis, the locations of the anterior and posterior lobes, and its anatomical relationship to the brainstem.  

(continued)
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undergoes further development to form the telencephalon and diencephalon. The 
mesencephalon does not undergo further division while the rhombencephalon is 
divided into the metencephalon and myelencephalon. Caudal to the rhombencepha-
lon, the neural tube develops into the spinal cord.

The cerebellum develops from the dorsal portions (i.e., the alar plate) of the met-
encephalon and the neural folds, the latter referred to as the rhombic lips. The alar 
plate of the rostral metencephalon undergoes bilateral expansion in the dorsolateral 
region to form the rhombomere 1 (r1). These rostral extensions of alar plate eventu-
ally join in the midline to form the vermis of the cerebellum. As the cerebellum 
begins to form, initially from the dorsal r1, it rotates 90° before fusing at the midline 
as the vermis. This rotation of dorsal r1 results in the conversion of rostrocaudal axis 
seen in the early neural tube, into the mediolateral axis seen in the mature cerebel-
lum (the wing-like bilateral cerebellar primordia) [2]. As the bilateral cerebellar 
primordia fuse, the midline vermis is derived from the rostromedial ends while the 
cerebellar hemispheres are derived from the more caudolateral components of the 
rhombencephalon [3].

The neurons that reside within the cerebellum are derived from two distinct ger-
minal zones: the ventricular zone and the rhombic lip. The ventricular zone is the 
neuroepithelium of the alar plate of the rhombencephalon that eventually forms the 
roof of the fourth ventricle. The neurons derived from the ventricular zone includes 
the Purkinje cells, candelabrum cells, Golgi cells, Lugaro cells, stellate cells, and 
basket cells. All of these neurons produce gamma-aminobutyric acid (GABA) neu-
rotransmitter and reside in the two outer layers of the cerebellar cortex, Lugaro cells 
locate between the molecular layer and the granular layer, and Golgi cells within the 
granular layer. The neurons derived from the rhombic lip produce glutamate neu-
rotransmitter, which includes the large excitatory neurons of the CN (projecting to 
the diencephalon and brainstem), unipolar brush cells and granule cells (the most 
numerous cells in the brain) [4, 5].

 Anatomy and Histology of the Human Cerebellum

 Gross Anatomy and Internal Structure of the Cerebellum

Cerebellum in the posterior cranial fossa, anteriorly separated from the pons and the 
medulla by the fourth ventricle, and superiorly separated from the occipital lobe by 
the Tentorium Cerebelli (Fig. 1a, b). Anatomically, cerebellum consists of two large 
bilateral hemispheres which are merged together by a median part called vermis. 
Morphologic and phylogenetic descriptions subdivide cerebellum differently.

Cerebellum consists of outer grey matter (cerebellar cortex) and inner grey mat-
ter (CN) which is embedded in white matter. The white matter consists of afferent 
and efferent fibers has branched to form a tree-like appearance, so-called the arbor 
vitae (tree of life). Afferent and efferent fibers pass through three cerebellar 
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peduncles that emerge in the hilum of the cerebellum. All the aforementioned struc-
tures have been elaborated under following titles [6–8].

 Subdivisions of the Cerebellum

The morphological description subdivides the cerebellum into lobes, lobules, folia, 
and zones. Fissures divide the cerebellum into three lobes in the rostrocaudal plane. 
The primary fissure, seen on the superior surface of the cerebellum, separates the 
anterior lobe from the posterior lobe, while the posterolateral fissure, seen on the 
inferior surface of the cerebellum, separates large posterior lobe from narrow and 
much smaller flocculonodular lobe. The flocculonodular lobe consists of bilateral 
extensions of cerebellar cortex called flocculi that are connected to the inferior por-
tion of the vermis called the nodulus. During development, once the anterior and 
posterior lobes form, smaller “lobules” begin to form. Several anatomical fissures 
divide the cerebellar lobes into 10 smaller lobules (lobule I to X) in which enumera-
tion is based on the Schmahmann classification. Lobular subdivisions of cerebellum 
are described in Table 1 [9, 10]. The lobules undergo further in folding and leads to 
the formation of “folia,” which are particularly prominent in human cerebellum. It 
seems that folia of human cerebellum are not uniform in size and shape [11]. The 
structure of the folia is consistent throughout the cerebellum, with a three-layered 
cortex overlying the white matter consisting of the axons projecting to and from the 
cortex. It is noteworthy that some folia have their own white matter (core of the 
folium). Cerebellar folium has crown (apex) and walls (lateral surfaces) separating 
from the neighbor folia by fissures (interfolial) called “fundi” [11]. Zones are dis-
tinct: (i) medial or vermal zone, (ii) intermediate or paravermal zones on either side 
of vermal zone, and (iii) hemispherical zones on either side lateral to the paraver-
mal zones.

As mentioned before, the phylogenetic description subdivides the cerebellum 
into three functional divisions: the vestibulocerebellum (archicerebellum), spino-
cerebellum (paleocerebellum), and pontocerebellum or cerebrocerebellum 

Table 1 Lobular subdivisions of cerebellum. Enumeration is per the Schmahmann classification

Lobes Subdivisions of vermis Lateral extensions in hemispheres

Anterior lobe I (Lingula) Frenulum
II–III (Central lobule) Ala
IV–V (Culmen) Quadrangular lobule

Posterior lobe VI (Declive) Lobule Simplex
VIIA (Folium) Superior semilunar lobule (Crus I)
VIIB (Tuber) Inferior semilunar lobule (Crus II)
VIII (Pyramid) Biventral lobule
IX (Uvula) Tonsil

Flocculonodular lobe X (Nodule) Flocculus
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(neocerebellum) [12–16]. This subdivision is based on connections to other brain 
sites and their respective roles in regulating movement and other non-motor 
functions.

Vestibulocerebellum is the oldest component of the cerebellum which includes 
the flocculonodular lobe. The cortex of this lobe receives input via mossy fibers 
from the vestibular ganglia on the ipsilateral side as well as input from the vestibular 
nuclei of the brainstem. The connections of the vestibulocerebellar cortex to the 
vestibular nuclei are reciprocal and the cortex of the vestibulocerebellum is the only 
component of the cerebellar cortex that sends projections directly to regions outside 
of the cerebellum. Briefly, the Purkinje cells of the cortex send inhibitory projec-
tions to the fastigial nucleus as well as the ipsilateral vestibular nuclei of the brain-
stem. The fastigial nucleus, which serves as the principal cerebellar nucleus of the 
vestibulocerebellum, sends excitatory bilateral projections to the vestibular nuclei 
through the inferior cerebellar peduncle. These projections play an important role in 
coordinating the vestibular ocular reflex to control eye movement. The vestibular 
nuclei also send descending fibers within the vestibulospinal tract which play a criti-
cal role in maintaining balance through activation of the antigravity muscles of the 
lower body. The fastigial nucleus also sends ascending projections via the superior 
cerebellar peduncle to the ventrolateral nucleus of the contralateral thalamus. This 
information is subsequently relayed to the corticospinal neurons of the anterior cor-
ticospinal tract (medial motor system) involved in maintaining posture and balance 
through activation of the axial musculature. Therefore, the vestibulocerebellum par-
ticipates in the control of eye movements and maintains posture and balance.

Spinocerebellum is the second functional component of the cerebellum which 
consists of the midline vermis and a narrow portion of cortex on either side of the 
vermis referred to as the paravermis. This component is referred to as the spinocer-
ebellum which is bulk of the input provided by ascending tracts in the spinal cord. 
The spinocerebellum receives some major inputs: (i) the dorsal spinocerebellar tract 
that transmits proprioceptive, cutaneous, and pressure information from the lower 
trunk and lower extremity (on the ipsilateral side); (ii) input from the cuneocerebel-
lar tract, which carries somatosensory information from the upper trunk and upper 
extremity; (iii) input from the ventral spinocerebellar tract that transmits informa-
tion regarding the activity of circuits within the spinal cord involved in regulating 
motor activity; and (iv) inputs from a number of brainstem nuclei including the 
reticular formation. The Purkinje cell axons of the paravermis project to the inter-
posed nuclei which in turn project to both cerebral cortex and the brainstem are 
involved in regulating the limb musculature and the activity of the spinal cord motor 
neurons projecting to the upper and lower limbs, respectively. The vermis project to 
fastigial nuclei are primarily involved in regulating axial musculature. Thus, the 
spinocerebellum participates in regulating both axial and limbs musculature to con-
trol balance, posture, and locomotion.

Pontocerebellum (cerebrocerebellum or neocerebellum) is the largest and phylo-
genetically newest component of the cerebellum which consists of the large hemi-
spheres immediately lateral to the spinocerebellum. The pontocerebellar cortex 
receives input principally from the contralateral cerebral cortex, particularly frontal 
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and parietal lobes, via the pontine nuclei forming cortico-ponto-cerebellar path-
ways. The axons of Purkinje cells in the pontocerebellar cortex project to the den-
tate nuclei. Some fibers of pontocerebellum project to the cerebral cortex (premotor 
and primary motor cortices) via ventrolateral thalamus, and the descending neurons 
from the cerebral cortex form a large component of the lateral motor system. Some 
other fibers project to the inferior olivary nucleus of the medulla, via the red nucleus 
which projects back to the pontocerebellum and dentate nucleus forming a feedback 
loop to the cerebellum. The neocerebellum is particularly well developed in higher 
mammals and play a critical role in coordinating the muscle activation required for 
performing fine motor skills of the distal extremities (particularly upper limb), plan-
ning of motor activity, and cognitive functions.

 Cerebellar Cortex

The cortex of the cerebellum is remarkable in its uniformity and segregates into 
three layers: the outer molecular layer, the Purkinje cell layer, and the inner granule 
cell layer [14, 15].

The Molecular Layer This layer contains of stellate cells and basket cells but is 
dominated by the dendrites and axons of other neurons. It receives input from neu-
rons of the inferior olivary nucleus of the medulla, and these fibers are referred to as 
climbing fibers. The climbing fibers make abundant excitatory synaptic connections 
with the proximal dendritic tree of Purkinje cells (Fig. 1c) [8]. The molecular layer 
also receives abundant excitatory input from the granule cells of the cerebellar cor-
tex. Granule cells send their axonal projections to the molecular layer cortex where 
the axons bifurcate and form parallel fibers that run parallel to the cortical surface 
and make synaptic connections with the dendritic tree of numerous Purkinje cells 
(Fig. 1c). The stellate cells of the molecular layer are inhibitory interneurons that 
produce GABA neurotransmitter and these cells are located primarily in the outer 
part of the molecular layer. These cells also receive input from parallel fibers and 
make synaptic contacts with the dendritic tree of Purkinje cells. Finally, the basket 
cells of the molecular layer are also GABAergic neurons and are located in the inner 
portion of the molecular layer. Basket cells receive excitatory input from the parallel 
fibers of the granule cells and make abundant inhibitory connections on the cell 
bodies of Purkinje cells in a basket-like manner.

The Purkinje Cell Layer This layer consists of the large cell bodies of the Purkinje 
cells and candelabrum cells [17]. Purkinje cells send an extensive dendritic tree into 
the molecular layer. The dendritic tree of a single Purkinje cell receives excitatory 
inputs from a single climbing fiber of the inferior olivary nucleus and numerous 
inputs from parallel fibers of the granule cells. The Purkinje cell is of particular 
importance because it represents the sole output of the cerebellar cortex. They are 
GABAergic and projects almost solely to the CN [18]. The exception to this rule is 
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the Purkinje cells of the vestibulocerebellum that also project to the vestibular nuclei 
of the brain stem. Interspersed between the Purkinje cells within this layer are can-
delabrum cells that are also GABA-ergic neurons that send their dendritic projec-
tions into the molecular layer. The functional significance of these cells is poorly 
understood.

The Granule Cell Layer This layer is the innermost layer of the cortex and consists 
of granule cells, Golgi cells, unipolar brush cells, and Lugaro cells. The granule 
cells, developed from upper rhombic lip, are the most abundant neurons (99% of 
cerebellar neurons) in the human nervous system and are packed tightly within the 
granule cell layer [4]. They receive excitatory input from mossy fibers, which are 
the principal input into the cerebellum (Fig. 1c). Mossy fibers originate from numer-
ous sites within the nervous system, including pontine nuclei, nuclei of the reticular 
formation, vestibular nuclei, and the fibers of the spinocerebellar tracts of the spinal 
cord. The granule cells, which produce glutamate neurotransmitter, extend their 
axons into the molecular layer where they bifurcate into the aforementioned parallel 
fibers and connect with the dendritic tree of up to hundreds of Purkinje cells. The 
activity of the granule cells plays a critical role in determining the activity of the 
Purkinje cells. Additionally, the parallel fibers of the granule cells also shape the 
activity of other cell types of the cerebellar cortex, including Golgi, stellate, and 
basket cells. The Golgi cells are relatively large cells that are more abundant in the 
superficial portion of the granule cell layer, nearer to the Purkinje cell layer. These 
are also GABA-ergic neurons that extend their dendrites into the molecular layer 
where they receive synaptic input from the parallel fibers of the granule cells. The 
Golgi cells also make synaptic connections to the granule cell dendrites, thereby 
providing a source of inhibition to the granule cells (Fig. 1c). Unipolar brush cells 
are neurons within the superficial part of the granule cell layer, and like granule cells 
are glutamatergic neurons. These cells are more abundant in the vestibulocerebel-
lum than other parts of the cerebellum, and are closely associated with mossy fibers 
project to granule cells and other unipolar brush cells. The final cell intrinsic to the 
cerebellar cortex is the Lugaro cell. These are GABA-ergic neurons found primarily 
in the superficial portion of the granule cell layer. Their dendrites may extend into 
the molecular layer while their axon is restricted to the granule cell layer where they 
make connections with Golgi cells.

The cerebellar cortex also receives projections from a variety of areas of the 
brain including the locus coeruleus (noradrenergic fibers), raphe nuclei (serotoner-
gic fibers), mesencephalic tegmentum (dopaminergic fibers), and the hypothalamus 
(histaminergic fibers) [16]. These inputs to the cerebellum terminate in all three 
layers of the cerebellar cortex as well as the CN. These projections to the cerebel-
lum are commonly referred to as neuromodulatory cerebellar afferents and are 
thought to decrease the activity of Purkinje cells. The precise distribution and devel-
opment of these afferents’ projection to the cerebellum is not well understood. 
Within the cerebellar cortex, the connections and links between the parallel fibers of 
granule cells and the dendrites of inhibitory cells such as Purkinje cells, and also 
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connections between the mossy fibers, Purkinje cells, and other neurons, makes a 
unique and uniform microcircuitry observed with great consistency in all parts of 
the cerebellar cortex.

 Cerebellar Nuclei (CN)

There are four pairs of CN embedded within the white matter of the cerebellum 
(fastigial, interposed (consists of emboliform and globose nuclei), and dentate 
nuclei) that receive input from the cerebellar cortex as well as the collaterals of all 
fibers projecting to the cerebellar cortex [16]. The first generated cerebellar neurons 
are neurons of the CN. These cells originate from the rhombic lip and migrate tan-
gentially to the nuclear transitory zone (NTZ). The CN constitute the sole output of 
the cerebellum (excepting some of the Purkinje cells of the vestibulocerebellum) 
and they receive the output of the cerebellar cortex from the inhibitory Purkinje 
cells. In addition to the inhibitory inputs from the Purkinje cells, the CN receive the 
collateral excitatory inputs from mossy fibers and climbing fibers projecting to the 
cortex. The majority of CN neurons are excitatory neurons that project to sites out-
side the cerebellum, including the thalamus, red nucleus, reticular formation, and 
vestibular nuclei. However, a small population of CN neurons are GABA-ergic and 
these neurons project to the inferior olivary nucleus.

The Fastigial Nucleus This nucleus is the smallest and most medial CN. The neu-
rons of this nucleus receive input from the Purkinje cells of the vestibulocerebellum. 
(i.e., flocculonodular lobe). In addition, it receives input from Purkinje cells of the 
vermis that receive input from the vestibular ganglion directly or indirectly via the 
vestibular nuclei. The neurons of the fastigial nucleus project to the vestibular and 
reticular nuclei in the brainstem. As mentioned previously, some of the Purkinje 
cells of the flocculonodular lobe also send direct (inhibitory) projections to vestibu-
lar nuclei of brainstem.

The Interposed Nucleus It is located lateral to the fastigial nuclei in the paraver-
mis, and composed of the globose nucleus (located medially) and the emboliform 
nucleus (located laterally), also referred to collectively as the interposed nuclei. 
These nuclei receive input from the Purkinje cells of the vermis and paravermal 
areas of the anterior lobe of the cerebellum, which in turn receive input from the 
cuneate nucleus (via the cuneocerebellar tract), the accessory cuneate nucleus, and 
Clarke’s nuclei (via the dorsal spinocerebellar tract). The interposed nuclei send 
projections primarily to the red nucleus of the midbrain and the ventrolateral nucleus 
of the thalamus. The latter nucleus relays this information to the primary motor, 
supplementary motor, and premotor cortices of the frontal lobe.

The Dentate Nucleus It is the largest and most lateral of the CN. It receives inhibi-
tory input from the Purkinje neurons of the large lateral hemispheres and excitatory 
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input from the collaterals of the climbing fibers and mossy fibers projecting to the 
lateral hemispheres that have their origin in the inferior olivary and basilar pontine 
nuclei, respectively. The neurons of the dentate nucleus project to the red nucleus 
and the ventrolateral nucleus of the thalamus, which relays the information to the 
motor cortices of the frontal lobe.

 Cerebellar Peduncles

The cerebellum connects to the midbrain, pons, and medulla via three peduncles: 
the superior, middle, and inferior cerebellar peduncles, respectively [16].

The Superior Cerebellar Peduncle It consists primarily of efferent fibers from the 
dentate and interposed nuclei projecting to the contralateral red nucleus and ventral 
lateral nucleus of the thalamus. The cerebellar efferents of the spinocerebellum that 
project to nuclei of the reticular formation also pass through this peduncle. The 
cerebellar afferent contained within this peduncle are primarily fibers of the ventral 
spinocerebellar tract that project as mossy fibers to the granular layer of the spino-
cerebellum and send collateral branches to the interposed nuclei.

The Middle Cerebellar Peduncle It is a massive bundle of afferent fibers connect-
ing nuclei in the basilar pons to the contralateral cerebellar cortex. These fibers 
project as the mossy fibers to the granular layer of the large lateral hemispheres and 
send collateral branches to the dentate nucleus.

The Inferior Cerebellar Peduncle It contains of fibers connecting the cerebellum 
to the medulla and consists of the restiform body and the juxtarestiform body. The 
juxtarestiform body primarily consists of the reciprocal connections of the cerebel-
lum and the vestibular nuclei. The afferent fibers within the juxtarestiform body 
form the mossy fibers projecting to the granular layer of the vestibulocerebellum. 
The efferent fibers of the juxtarestiform body include Purkinje cell axons of the 
vestibulocerebellum and the projections of the fastigial nucleus to vestibular and 
reticular nuclei of the brainstem. The restiform body contains fibers that project 
from the brainstem and spinal cord to widespread areas of the cerebellum. This 
includes fibers of the dorsal spinocerebellar tract and cuneocerebellar tract project-
ing to the spinocerebellar cortex as mossy fibers with collateral projections to the 
interposed nuclei. In addition, fibers originating from the inferior olivary nucleus 
projecting to the molecular layer of the cerebellar cortex known as climbing fibers 
(with collateral projections to the dentate nucleus) are also contained within the 
restiform body. The inferior olivary nucleus receives inputs from spinal, vestibular, 
cranial, and cortical descending signals. The neurons of the inferior olivary nucleus 
relay somatosensory and noxious stimuli. A single climbing fiber of the inferior 
olivary nucleus projects to a few Purkinje cells, while each Purkinje cell makes 
synaptic connections with only one climbing fiber.
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 Blood Supply of the Cerebellum

The cerebellum is supplied with arterial blood via three cerebellar arteries: the pos-
terior inferior cerebellar artery (PICA), the anterior inferior cerebellar artery 
(AICA), and the superior cerebellar artery (SCA) [15, 16]. These arteries are derived 
from the vertebral-basilar arterial system that supplies the posterior circulation of 
the brain.

Posterior Inferior Cerebellar Artery (PICA) The bilateral vertebral arteries pass 
through the foramen magnum and shortly after entering the cranium the PICA 
branches off the vertebral artery. The PICA supplies the cortex of the posterior por-
tion of the inferior cerebellum, and the inferior portion of the underlying white mat-
ter. It also supplies the fibers of the inferior cerebellar peduncle.

Anterior Inferior Cerebellar Artery (AICA) The vertebral arteries fuse in the mid-
line, near the junction of the pons and the medulla, to form the basilar artery and the 
AICA branches off the basilar artery immediately anterior to this junction. The 
AICA supplies the cortex of the anterior portion of the inferior cerebellum and the 
underlying white matter. Distal branches of the AICA may extend into the lateral 
portion of the dentate nucleus. The AICA also supplies the posterior part of the 
middle cerebellar peduncle while circumferential branches of the basilar artery sup-
ply the anterior portion of the middle cerebellar peduncle. The most lateral edge of 
the inferior surface of the cerebellum is generally the watershed area of the PICA 
and the AICA.

Superior Cerebellar Artery (SCA) The SCA branches off the basilar artery imme-
diately posterior to the bifurcation of the basilar artery into the paired posterior 
cerebral arteries. The SCA supplies the superior surface of the cerebellum and the 
bulk of the white matter of the cerebellum. It also supplies the CN except for the 
lateral portion of the dentate nucleus that may be supplied by the AICA. The SCA 
also supplies the superior cerebellar peduncle together with branches of the poste-
rior cerebral artery.
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Cellular and Genetic Programs Underlying 
Cerebellum Development

Andrew K. Lawton, Ryan Willett, and Alexandra L. Joyner

Abstract The cerebellum is a late developing structure compared to the rest of the 
central nervous system (CNS), and houses more cells than the entire rest of the brain 
in a complex set of folds. To accommodate production of the large number of cells, 
the cerebellum has two progenitor zones: a ventricular progenitor zone producing 
astrocytes and all inhibitory neurons, and a unique progenitor zone, the rhombic lip, 
dedicated to excitatory neuron production. In this chapter, we discuss how the inhib-
itory Purkinje cells, which integrate the incoming information and moderate the 
output neurons of the cerebellar nuclei, play a key role during development in ensur-
ing appropriate production of the other neurons/astrocytes of the cerebellar cortex. 
We describe key transcription factors that regulate development of the two progeni-
tor populations and the lineage relationships of the neurons and astrocytes produced 
by each. We conclude with a discussion of cerebellar foliation that compartmental-
izes these cell types into the final three-dimensional working structure.

Keywords Ventricular zone · Rhombic lip · Purkinje cells · Granule cells · 
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Foliation
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 Introduction

The cerebellum is the region of the brain that is the latest to complete neurogenesis; 
in humans, cerebellar development continues during the first year of life and in 
mouse for more than 2 weeks after birth [1–3]. It arises from the dorsal aspect of the 
most anterior hindbrain called rhombomere 1 (r1, Fig. 1a, b). Remarkably, the vol-
ume of the human cerebellum increases ~10x between 20 and 40 weeks of gesta-
tion, with the surface area increasing much more due to the formation of folia and 
lobules [4–6]. The mouse cerebellum undergoes maximum growth and foliation 
after birth (Fig. 1a–d). Given the late development of the cerebellum compared to 
other brain regions, the cerebellum is particularly sensitive to environmental and 
clinical factors that impact on growth (or cause injury) around birth [7]. A better 
understanding of the factors that regulate progenitor cell expansion, production of 
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Fig. 1 The cerebellum forms in the dorsal anterior hindbrain and has its major growth and folia-
tion after birth. (a–c) micro-MRI images illustrating mouse postnatal cerebellum development 
(outlined in yellow) (based on [88]), and (c) highlighting distinct foliation patterns in the medial 
vermis and lateral hemispheres [123]. (d) Hematoxylin and Eosin (H&E) midline section (dotted 
line in c) of adult cerebellum. 1–10, lobules; AZ anterior zone, CZ central zone (outlined in red), 
PZ posterior zone, NZ nodular zone (green)
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neurons and glia, and their compartmentalization during foliation should pave the 
way for developing therapeutic approaches to stimulate endogenous progenitors to 
replenish cells lost due to injury. Towards that end, several recent works profiling 
the transcriptome of cells from mouse and human cerebella in a variety of condi-
tions and ages provide a wealth of regulatory networks and their complex interac-
tions that initiate and develop the cerebellum [8–12].

The developing cerebellum is unique among the brain regions as it has two zones 
that house neural stem and progenitor cells (Fig. 2a). Whereas in the rest of the 
central nervous system the ventricular zone (VZ) gives rise to all the neurons and 
glia, the VZ of the cerebellum is dedicated to making only inhibitory neurons 
(Purkinje cells and interneurons) as well as astrocyte-like glia (astrocytes and 
Bergmann glia referred to as astroglia) [13]. Interestingly, most of the interneurons 
and astroglia are generated from intermediate progenitors that leave the VZ and 
proliferate after birth in the cerebellar cortex [14–17] (Fig.  2b, c). The second 
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Fig. 2 Two progenitor zones produce all the neurons and the astroglia of the cerebellum at particu-
lar time points. (a) Midline Eosin-stained sagittal section of E13.5 cerebellum with ventricular 
zone (turquoise) and rhombic lip (pink) indicated and the cells that arise from the zones color 
coded as in c and d. (b) Midline sagittal section of E18.5 cerebellum showing EGL (pink), Purkinje 
cells (green), and Nestin-expressing progenitors. (c) The ventricular zone lineage is shown. (d) 
The rhombic lip lineage is shown. (e) SHH (orange) is expressed by Purkinje cells and signals to 
all progenitors in the postnatal cerebellum, also indicated in c and d
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cerebellar progenitor zone is called the rhombic lip (RL), and generates the excit-
atory neurons of the cerebellum, primarily the granule cells and projection neurons 
of the cerebellar nuclei (CN) [18–20] (Fig. 2a, d). Like the astroglia and interneu-
rons, the granule cells are generated from a secondary progenitor pool made up of 
granule cell precursors (GCPs) that is housed in the external granule cell layer 
(EGL) that covers the surface of the cerebellum during development and generates 
granule cells that migrate inwards to form the internal granule cell layer (IGL) 
(Figs. 2a, b and 3). In humans, the EGL reaches a maximum volume after birth [2]. 
It is tempting to speculate that a dedicated transient amplifying progenitor pool 
evolved for the granule cells, because the granule cells comprise a majority of the 
neurons in the brain, and thus require massive expansion of progenitor numbers 
during development. Curiously, the source of most oligodendrocytes within the cer-
ebellum appears to be the VZ outside the cerebellum, likely, the midbrain and/or 
ventral r1 [21–23].

In this chapter, we use mouse as a model system to describe development and 
foliation of the cerebellum (Fig. 1) and the generation of the various neurons and 
astroglia of the cerebellum since precise knowledge of the VZ and RL lineages has 
been obtained with genetic fate mapping studies. Cumulative fate mapping with a 
site-specific recombinase such as Cre labels all cells that ever expressed Cre, and if 
the gene is specific to one progenitor pool, then all the cell types generated from the 
pool can be determined [24] (Fig. 4). The temporal sequence of cell type generation 
is determined by genetic inducible fate mapping (GIFM). This method only labels 
cells expressing Cre during a particular ~24  h period [25]. Furthermore, using 
GIFM, the initial marked population can be precisely determined, as well as the 
descendants of the population at any later developmental stage or in the adult. Using 
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Fig. 3 Schematic drawing showing granule cell development. (a) During development 
(E15.5-P14), the cerebellum is covered with granule cells organized in a layer called the external 
granule cell layer (EGL) which is divided into an outer layer (oEGL) of dividing progenitors 
(GCPs) and inner layer (iEGL) of postmitotic granule cells (GCs) that extend parallel fibers (axons 
shown as horizontal blue lines). GCs migrate down the fibers (black lines) of Bergman glia (grey 
cell body) past the Purkinje cells (PCs, green) to form the inner granule cell layer (IGL). Newly 
formed parallel fibers stack on top of older ones to form the molecular layer that also has interneu-
rons (not shown), but the cell bodies of GCs randomly mix in the IGL. PCs express SHH, which is 
required for GCP proliferation. (b) After P14 the EGL is exhausted with all GCs now present 
within the IGL. This leaves the molecular layer, and its numerous synaptic connections, at the 
surface of the cerebellum
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Fig. 4 Schematic illustrating genetic inducible fate mapping (GIFM). An Atoh1-CreER transgene 
is expressed only in granule cell precursors (pink, GCPs) in the outer external granule cell layer 
(oEGL). A reporter allele, R26LSL-Gfp, expresses GFP in cells that have active Cre. Tamoxifen is 
injected into Atoh1-CreER; R26LSL-Gfp mice at P1, and it binds CreER and allows it to move from 
the cytoplasm to the nucleus and induce recombination of loxP sites in the R26LSL-Gfp allele 
(LSL = loxP-stop of transcription sequence-loxP), which allows GFP expression. A small number 
of GCPs are initially labeled with GFP (brown) (a) and then expand in number (b) and then dif-
ferentiate (c). All cells in a clone differentiate at the same time, a clone is shown in c. Colors and 
labels are as described in Fig. 3

promoters specific to each stem/progenitor population, detailed knowledge of the 
cerebellar lineages has thus been uncovered.

In this chapter, we define the lineage relationships of each stem/progenitor pool, 
the temporal pattern of cell type generation, and some of the proteins that regulate 
progenitor cell number expansion and differentiation. We include a discussion of 
how the numbers of each neuron/astroglial type in the cortex might be scaled to 
attain the correct relative proportions of different cell types, and the possible contri-
butions of the progenitor pools for replenishment of cells after an injury at birth. 
This is especially relevant to premature births, since the cerebellum is particularly 
vulnerable to clinical and environmental factors around birth because much of its 
growth occurs in the third trimester and continues after birth. We end with a descrip-
tion of how the complex three-dimensional folded structure of the cerebellum 
develops in mouse, and discuss how particular efferent neural circuits are enriched 
in specific subsets of lobules and the possible implications of this spatial division of 
functions for evolution of new cerebellar functions.

 Early Patterning of the Neural Tube and Specification 
of the Cerebellar Territory

The cerebellar anlage is specified in the dorsal aspect of the anterior hindbrain 
called r1 around embryonic day 9 (E9) in mouse [26–29]. Chick transplantation 
studies around two decades ago demonstrated that the boundary between the mid-
brain and hindbrain (referred to as the isthmus) is an organizing center that initiates 
development of r1 and the midbrain (reviewed in [30–32]). Dorsally, an epithelial 
structure (isthmus) can be seen at E18.5 in mouse that links the cerebellum to the 
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tectum (Fig. 5). The key isthmic organizer gene is Fgf8 (fibroblast growth factor 8), 
as it is expressed in the isthmus (E8.5–12.5), is required to induce formation of the 
anlage of the midbrain and r1 [33], is sufficient to induce and pattern the midbrain 
and r1 [34, 35], and is necessary up until E12 for cerebellum development [33, 36]. 
The secreted factor WNT1 is also expressed near the isthmus and is required for 
development of the midbrain and cerebellum [37, 38]. The molecular interactions of 
FGF8 with the transcription factor OTX2, required in the midbrain, and GBX2, 
required in the hindbrain, have been reviewed extensively, and we refer you to a 
detailed review by Martinez [31]. The dorsal-ventral axis of r1 and the midbrain is 
determined primarily by the morphogen sonic hedgehog (SHH), expressed by the 
ventral midline, or floor plate [39–41]. The engrailed homeobox transcription fac-
tors (EN1/2) are key patterning genes regulated by both FGF8 and WNT signaling, 
with En1 being required for the initial formation (specification) of most of the mid-
brain and r1, and the two genes then are involved in regulating growth and foliation 
of the cerebellum [42, 43]. Double mutant experiments, including conditional 
removal of the genes in particular lineages, have revealed overlapping and unique 
roles of En1 and En2 after the cerebellar territory is established [44–46].
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Fig. 5 Stereotypical formation of fissures during mouse cerebellum development. Midsagittal 
H&E sections of the cerebellum at the indicated stages. The same fissures are indicated by colored 
arrowheads. The lobules are numbers at P21. Line indicates 200 μm for E18.5-P3 and 500 μm for P28
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 Ventricular Zone Lineage

Cumulative genetic fate mapping using a line of mice in which Cre was inserted by 
gene targeting into the Ptf1a gene (knock-in) (Ptf1aCre), demonstrated that only 
inhibitory and not excitatory neurons are generated from the VZ [13] (Fig.  2c). 
Traditional 3H thymidine or BrdU birth-dating experiments and GIFM using 
Ascl1CreER revealed that Purkinje cells and interneurons of the CN are the first neu-
rons to be born during E10–13 [1, 15] (Fig. 2d). Other interneurons are then born in 
an inside (IGL) to outside (outer molecular layer) spatial progression from an inter-
mediate Nestin-expressing stem/progenitor (NEP) that resides in the white matter of 
the lobules [14, 15, 17, 47, 48]. During the production of Purkinje cells, the GLI3 
repressor side of the SHH pathway may play a role in proper production of ventricu-
lar zone-derived cells [40, 49]. Astrocytes and oligodendrocytes are primarily born 
after birth. A chick-quail chimera analysis traced the main source of oligodendro-
cytes to the VZ of the midbrain [22]. An earlier study in mouse also using transplan-
tation provided evidence that the source for oligodendrocytes in the mouse 
cerebellum is also outside the structure, and showed that oligodendrocyte precur-
sors populate the cerebellum around E15.5 and then expand in number [23]. A 
recent fate mapping study argues mouse oligodendrocytes are derived from the 
hindbrain [21]. Curiously, a small population of Bergmann glia is born at around 
E13.5 [15], but most are born after birth during the major growth phase of the cer-
ebellar cortex [14, 15, 47, 50]. In addition, the interneurons that settle in the IGL 
and CN are the main interneurons derived directly from the VZ.

Interestingly, Purkinje cells have distinct settling patterns under the surface of 
the cerebellar cortex, depending on the day they are born, with successive waves of 
Purkinje cells forming different wide anterior-posterior oriented stripes [15, 51]. 
Purkinje cells initially settle into an aggregate of cells called the Purkinje plate at 
E14.5 before migrating outwards to settle into a multilayered Purkinje cell layer 
(PCL) by E18.5 under the cerebellar surface. As expansion of the cerebellum con-
tinues through the postnatal growth phase, Purkinje cells resolve into a monolayer 
by approximately postnatal day 5 (P5) [15, 52]. Purkinje cells in the lobules of the 
central zone (CZ in Fig.  1d) are the last to form a monolayer, correlating with 
delayed generation of granule cells in these lobules [53]. While Purkinje cells are 
born embryonically, a subset seems to maintain an immature status and can undergo 
cell division in response to ablation of many Purkinje cells to replace the lost cells 
[54]. However, this plasticity is only observed immediately after birth and is greatly 
diminished by P5.

Purkinje cells initially exhibit simple morphology of a leading apical neurite and 
trailing axon left behind as they migrate to the PCL from the Purkinje plate (fusi-
form) [55]. At around P0, they undergo a sequence of cell shape changes; first their 
apical neurite collapses and the cells take on a stellate morphology with numerous 
short perisomatic neurites (~P6), and then they evolve a distinct bipolar morphology 
with a highly elaborated dendritic configuration that is flattened in a ramified 
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espaliered fashion within the sagittal plane (P8 onwards, [56]). The Purkinje cells of 
the central zone are the last to differentiate.

A medial-lateral corticonuclear topographic projection map of Purkinje cell 
axons to the CN can be seen as early as E15.5 in mice [55], and electrophysiological 
recordings can be made early postnatally. While the vast majority of Purkinje cell 
axons project into the CN, Purkinje cells of the flocculus, paraflocculus, and the 
nodulus of the vermis (lobule 10) instead route into the vestibular nucleus of the 
hindbrain. The activity and arborization of Purkinje cells exhibit regional and devel-
opmental differences with nodular Purkinje cells showing simpler dendritic branch-
ing [57].

 Postnatal Cerebellar Cortex Progenitor Populations 
and Lineages

Ventricular zone-derived progenitors are present in the postnatal cerebellar cortex 
and proliferate and give rise to interneurons in the molecular layer for about a week 
after birth in mouse (Fig. 2b, c). These progenitors also give rise to astrocytes and 
additional Bergmann glia for over a week after birth [14–17]. Elegant genetic fate 
mapping studies combined with marker analysis were used to address the location 
and lineage relationships of stem/progenitors in the neonatal cerebellar cortex [14, 
50]. Using several CreER lines (GLI1CreER, TncCreER, Ptf1aCreER knockin alleles) to 
mark NEPs and proteins that mark interneurons (PAX2) or astrocytes (GFAP), it 
was found that Tnc- and Cd133-expressing multipotent progenitors give rise to both 
a unipotent Ptf1a-expressing progenitor that expands the interneuron population 
during the first week after birth and to a Tnc- and Cd15-expressing progenitor dedi-
cated to the astroglial lineage that likely gives rise to both astrocytes and Bergmann 
glia [14]. PAX2+ immature interneurons are generated in an inside-to outside man-
ner (Basket and then Stellate interneurons) in the molecular layer, and then mature 
during the first few weeks after birth. Another study addressed the location of the 
multipotent and unipotent progenitors using a GlastCreER allele [50]. Tamoxifen was 
administered to the surface of the cerebellum to label only astroglial cells in the 
Purkinje cell layer that had a radial process extending to the surface. Interestingly, 
they demonstrated that GlastCreER cells in the Purkinje cell layer generate new 
Bergmann glia and astrocytes in the IGL, whereas progenitors in the white matter 
generate astrocytes in the white matter and interneurons based on a clonal analysis. 
A more recent study showed that the white matter and Purkinje cell layer NEPs that 
produce astroglia express Hopx, whereas a separate Ascl1-expressing progenitor 
generates interneurons [47]. At P0 the Hopx-expressing progenitor generates some 
interneurons as well as astroglia, but by P5 is mostly dedicated to producing 
astroglia.

Nestin-expressing progenitors situated along the inner edge of the EGL have 
been proposed to produce GCPs [58], but it seems possible they normally give rise 
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to interneurons in the white matter. Interestingly, the plasticity of NEP fates is 
enhanced after injury, at least for Hopx-expressing NEPs in the Purkinje cell layer 
which respond to irradiation or genetic-induced loss of granule cell progenitors at 
P1. The cells undergo adaptive reprogramming by expanding in number, then 
expressing Ascl1 which seems to allow them to switch their fate from glial to neu-
ronal, and then they migrate to the EGL to repopulate the depleted pool [47, 59–61].

In vitro stem cell assays support the in vivo genetic fate mapping demonstration 
of multipotent stem/progenitor cells in the early postnatal cerebellar cortex. Stem 
cells isolated from the P3–7 cerebellum by FACS based on expression of CD133+ 
and the absence of lineage markers (PSA-NCAM, TAPA-1 and O4) or cells with a 
low level of TncYFP-CreER that also express Cd133 and Gli1 can form multipotent 
clonal neurospheres in culture that can differentiate into interneurons, astrocytes, 
granule cells, and oligodendrocytes [14, 62]. In another study, cells taken from the 
cerebellum of E14.5, P0 or adult mice and depleted of GCPs (ATOH1−) also formed 
multipotent neurospheres with a similar differentiation capacity to CD133+ stem 
cells in culture and after transplantation [63]. Thus, rare stem cells remain in the 
adult cerebellum that can form most neuron types and glia when presented with the 
appropriate environment. These results raise the possibility that rare quiescent stem 
cells in the early postnatal or adult could be mobilized to replace neurons or glia 
after an injury if the necessary inducing factors can be identified.

Purkinje cells play a key role in growth of the cerebellum, as they express the 
mitogen sonic hedgehog (SHH), [16, 64, 65] which signals to both GCPs and NEPs 
[14] (Fig. 2c–e). SHH signaling in GCPs is required for their proliferation and via-
bility after E16 [64, 66, 67]. Furthermore, deletion of Shh in Purkinje cells or abla-
tion of HH signaling in NEPs reduces expansion of the pool of TncCreER-labeled 
white matter stem/progenitor cells and production of interneurons and astroglia 
[14]. In addition, application of SHH to cerebellar slice cultures stimulates interneu-
ron production [68]. Purkinje cells can coordinate growth of all cell types produced 
in the cerebellar cortex except, possibly oligodendrocytes, via SHH secretion 
(reviewed in [69]). How SHH is delivered from Purkinje cells to the outer EGL and 
white matter progenitors, and whether there are other sources of HH ligands that 
regulate cerebellar neurogenesis remain open questions.

The bHLH transcription factor PTF1a is key to VZ cells, as when it is mutated 
all cerebellar inhibitory neurons are lost and astrocytes are depleted [13, 70, 71]. 
Some VZ-derived mutant cells are transformed into RL-derivative neurons and 
cell types normally generated from the VZ ventral to the cerebellum. Furthermore, 
PTF1a is sufficient to largely specify a generic inhibitory cell phenotype, as ecto-
pic expression of PTF1a in several excitatory neuron progenitors in the nervous 
system induces a network of inhibitory neuron gene expression and repression of 
excitatory neuron genes [13, 72]. The related bHLH protein-encoding gene Ascl1 
plays a more limited role in generation of cerebellar interneurons [15, 47]. 
Curiously, climbing fiber neurons also require Ptf1a for their survival, migration, 
and differentiation from the more posterior hindbrain, and in the absence of Ptf1a, 
some precursors take on a mossy fiber fate [73]. Genes that regulate Bergmann 
glia generation and function are absolutely critical for cerebellar growth, 
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foliation, and formation of a normal cortical architecture, likely because they play 
both structural and signaling roles [74].

 Rhombic Lip Lineage

The RL, formed by E9.5 at the posterior rim of the cerebellar anlage where the pial 
surface contacts the ventricular zone, is the source of all glutamatergic neural sub-
types of the cerebellum (Fig. 2a, c). Cells arising from the RL spread anteriorly 
across the surface of the cerebellar anlage and sequentially produce three cell popu-
lations: post mitotic CN, proliferating GCPs, and unipolar brush cells. Lineage trac-
ing and birth-dating studies have shown that the earliest population of cells emerging 
during E9.5–E12.5 accumulate in two clusters of cells bilaterally symmetrically 
displaced from the midline, known as the nuclear transitory zone [19, 20]. Immature 
excitatory CN cells migrating from the RL to the nuclear transitory zone are 
ATOH1+/PAX6+, and as they migrate into the nuclear transitory zone, the proteins 
are downregulated and CN progenitors sequentially express TBR2, TBR1, and ree-
lin [75]. Excitatory CN neurons play a critical role in the proper balancing of the 
cerebellar circuitry. Reduction in the number of excitatory CN cells by mutation of 
En1 and En2 or expression of diphtheria toxin results in loss of their synaptic part-
ners, the Purkinje cells. This in turn reduces the number of granule cells, interneu-
rons, and astroglia that are produced likely because less SHH is present in the 
cerebellum [76, 77].

Cells leaving the RL from E13.5 onwards become cerebellar GCPs [19]. These 
cells remain at the cerebellar surface for the duration of embryonic development 
and form a dense proliferative layer called the EGL.  As development advances, 
growth of the cerebellar anlage and concomitant EGL expansion subsume the 
nuclear transitory zone into an interior position where they are reorganized into 
three paired nuclei in mouse: (from medial to lateral) the fastigial, interpositus, and 
dentate nuclei. The three individual nuclei are clearly distinct by birth in mouse, and 
TBR1 or BRN2 expression generally mark the fastigial nuclei or the interpositus 
and dentate nuclei, respectively [75]. The dentate nucleus of the human CN is 
greatly expanded compared to mouse, likely related to the vast expansion of hemi-
sphere lobules. This expanded nucleus also has a unique transcriptome-based cell 
type compositional balance compared to the other nuclei which share more similari-
ties with mouse [78]. Additionally, two separate nuclei are found in human in the 
place of the mouse interpositus: the human globose and eboliform nuclei. The 
Purkinje cell axons converging on the CN become myelinated during postnatal glio-
genesis. In the mature cerebellum, the CN reside in the confluence of white matter 
just dorsal to the cerebellar peduncles.

Initiation of SHH expression in mouse Purkinje cells by E18.5 profoundly 
enhances GCP proliferation and commences the main period of granule cell neuro-
genesis that drives the major portion of cerebellar growth (Fig. 1a, b). At this time, 
the EGL takes on a bilayer structure; the outer EGL (oEGL) contains the actively 
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proliferating GCPs, and the inner EGL (iEGL) is populated by postmitotic and dif-
ferentiating GCPs (Fig.  3). The GCPs of the iEGL migrate medial-laterally for 
approximately a day before they descend along Bergmann glia fibers to create the 
IGL. As they descend, the incipient granule cells (GCs) leave a trailing apical neu-
rite in the molecular layer, which bifurcates into a parallel fiber that extends medial- 
laterally and synapses onto Purkinje cells.

The bHLH protein ATOH1 is required for generation of GCPs and for most CN 
projection neurons [20, 79]. One function of ATOH1 is to induce Gli2 expression, 
and thus to enhance SHH signaling in GCPs [80], and likely regulate many other 
genes required for granule cells proliferation (e.g., MycN and cyclin D1) and dif-
ferentiation [81]. There appears to be an antagonistic relationship between the RL 
protein, ATOH1 and the VZ transcription factor PTF1a, as mis-expression of either 
protein in the complementary progenitor zone leads to inhibition of the other gene 
[82]. Mossy fiber neurons also require Atoh1 for their development [20].

 Granule Cell Precursor Cell Behaviors

The role of granule cells in cerebellar development and function and the identifica-
tion of GCPs in the etiology of the tumor medulloblastoma [83] has attracted inter-
est in their proliferative behaviors. Of particular interest is how the expansion of the 
GCP population drives postnatal cerebellar growth and morphology (foliation). 
Analysis of GCP clones revealed that GCPs primarily undergo symmetrical divi-
sions to expand the number of the cells in a clone during postnatal development 
[84–86]. Shortly before the clones differentiate, the GCPs within a clone undergo an 
added burst of proliferation before they differentiate over a small temporal window. 
A single GCP at E17.5 produces an average of 250 granule cells, requiring at least 
eight cell divisions.

Clonal studies have also provided insight into how the complex form of the cer-
ebellum is shaped. During postnatal development, the cerebellum expands to a far 
greater extent along the anterior-posterior axis than in the medial-lateral axis, due in 
part to an orientation bias of GCP cell division in the anterior-posterior axis along 
with tangential migration within the EGL [85]. Conversely, as GCPs differentiate 
into nascent GCs and descend into the IGL, they favor a medial-lateral spread within 
the growing lobule. Parallel fibers are laid down in an inside to outside fashion with 
the earliest born granule cells innervating the deep molecular layer and the late-born 
GCs innervating the outmost extent of the molecular layer [53, 86] (Figs. 3 and 4). 
Curiously, the cell bodies of new GCs settle at random depths in the underlying 
IGL. Prior to migrating to the IGL, granule cells are motile and explore a variety of 
shapes as they move and exchange neighbors within the EGL [87]. The base of each 
fissure that separates the cerebellum into lobules acts as a boundary to the move-
ment of GCPs [85]. Thus, after fissure formation, GCPs are maintained in the 
nascent lobule. This intriguing finding suggests that lobules may not simply be 
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anatomical units, but could also have functional uniqueness and act as separate 
developmental units.

Regional differences appear in the cerebellum with respect to granule cell prolif-
eration and differentiation. Granule cell production in the anterior (lobules 1–5) and 
posterior (lobules 8–10) cerebellum predominates over the central region (lobules 
6/7) in the perinatal period but this delayed growth in the central zone is compen-
sated for by the perdurance of a thicker EGL in lobules 6/7 around P14, whereas the 
EGL is exhausted in all other cerebellar regions [53]. Thus a picture emerges that 
the central zone has a general developmental delay that continues for days after ces-
sation of development in the rest of the cerebellum. There are apparent medial- 
lateral differences in granule cells as well. Granule cells from the hemispheres are 
more susceptible to raised levels of SHH signaling as in models of SHH-driven 
medulloblastomas tumors preferentially form in the hemispheres and not the vermis 
[88]. A full picture of the regional dynamics of growth in the vermis and the hemi-
spheres will be illuminating.

 Development of Cerebellar Afferents

Climbing fibers from the inferior olive innervate the cerebellar anlage as a fascicu-
lated axon bundle beginning at E15.5–E16.5 in mice, and by late E16.5, the first 
synapses with Purkinje cells are observed [89–93]. By birth, these axons defascicu-
late and innervate the developing Purkinje cell multilayer, with each Purkinje cell 
receiving multiple climbing fiber inputs [94]. The supernumerary climbing fibers 
inputs are eliminated in an activity-dependent fashion between the second and third 
postnatal week so that each adult Purkinje cell is innervated by a single climbing 
fiber axon [95–97]. Mossy fibers arrive in the cerebellar anlage between E13.5 and 
E15.5 [98] and form transient contacts with Purkinje cells by birth. Within the first 
postnatal week, the mossy fibers establish cell-cell contacts with synaptic ultra-
structural features but in the second postnatal week, they withdraw to refine their 
synaptic connections with their proper GC and Golgi cell targets in the internal 
granule layer [99].

 Development of Cerebellar Foliation and Relationship 
to Afferent and Efferent Circuitry

During development, the cerebellum increases in size and undergoes dramatic pro-
gressive folding transforming the smooth outer surface into a highly foliated collec-
tion of lobules separated by fissures (Figs. 1 and 5) [100]. In the human cerebellum, 
there are additional shallower folia along the surface of the lobules, and they form 
at an early stage of the fetal foliation process. Foliation creates dramatically more 
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surface area in the cerebellum along the anterior-posterior axis, maximizing the 
number of cells and the synapses at the outer cortex and thus the quantity of func-
tional circuits that the cerebellum can host in the spatial constraints of the posterior 
skull. Foliation also correlates with spatial separation of distinct functional regions 
within the cerebellum. Afferents to the cerebellum from the spinal cord and brain 
target particular locations within the medial-lateral axis of the cerebellum. 
Furthermore, they project to particular lobules [101]. For example, the spinocere-
bellar circuit projects only to the anterior and posterior zones of the vermis. Within 
the lobules, some circuits target regions that correspond to the longitudinal cerebel-
lar zones (stripes) defined by different gene expression ([101, 102]. There is also a 
spatial relationship between Purkinje cells and the CN they project to, generally 
medial to lateral, but it seems likely there is also an anterior-posterior code. Thus, 
efferent functions have spatial domains.

The murine foliation pattern is highly consistent across individuals and has 
minor strain-specific variation [103]. The pattern of foliation varies depending on 
the medial-lateral position in the cerebellum (Fig. 1c), and fissures form in a specific 
temporal sequence (Fig. 5). In mouse, as in all mammals, the medial cerebellum, or 
vermis, has 10 primary lobules created by folds that are all aligned in the anterior- 
posterior axis [101, 102]. The lateral hemispheres have their own distinct pattern as 
do the most lateral paraflocculi and flocculi.

Foliation begins during the last embryonic days, around E16 to E17, and the last 
fissure begins to form by ~P5 (Fig. 5). The first indication of foliation at E16.5–17.5 
is a regional inward thickening of the EGL, which will correspond to the base of the 
newly forming fissure. Following this thickening of the EGL, the outer surface of 
the cerebellum indents (Figs. 5 and 6). This thickening and indentation creates an 
out-of-phase profile where the lowest point on the surface is also the thickest. At this 
time, local Bergmann glia direct their fibers to the center of the indention (Fig. 6b) 
[104]. The intervening regions between the fissure bases expand outward. By fol-
lowing the foliation process through to completion, it can be seen that the fissure 
bases hold their relative spatial positions, and thus are called anchoring centers, as 
the lobules expand to their final size [104, 105].

As discussed previously, the proliferation of GCPs in the EGL and the resulting 
growth of the cerebellum is dependent on SHH supplied by the underlying Purkinje 
cells [64, 66, 67]. Reducing the level of SHH signaling reduces the overall growth 
of the cerebellum and concomitantly reduces the degree of foliation. The EGL 
becomes thinner, and the first appearance of anchoring centers is delayed. 
Additionally, foliation is precociously halted. However, the fissures that do form 
correspond to the earliest fissures suggesting that while SHH provides the growth 
that is necessary for foliation to proceed, it does not control the pattern of foliation. 
When the level of SHH is increased beyond wild-type levels, the mouse cerebellum 
is larger and has an extra fissure [67]. Intriguingly, this extra fissure is placed in a 
conserved position similar to where the rat has an additional fissure. Consistent with 
the requirement for HH signaling in GCP proliferation, induction of mutations that 
activate HH signaling in the GCP-lineage results in the SHH subgroup of medullo-
blastoma [83, 88, 106, 107].
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Fig. 6 Model of cerebellum foliation based on differential expansion of layers. (a) As the outer 
layer, the EGL (pink) expands more rapidly than the inner mass of the cortex (grey), the EGL 
buckles creating anchoring centers (*). White dotted lines in top views indicate where sagittal sec-
tions are positioned. Fissure placement is proposed to be directed by the differential expansion of 
the layers and the shape (ovoid) of the initial cerebellar anlagen. (b) The Bergmann glial fibers 
(black) connect the outer surface (thick grey line) to the inner buckling Purkinje cell (green) layer 
that contains the cell bodies of the Bergmann glia (dark grey), and a fissure (F) forms above the 
anchoring centers as the cerebellum continues to expand. A-P anterior-posterior, M-L medial-lateral

The proliferation of GCPs is temporally and spatially regulated within the cere-
bellum. Maximum proliferation in the lobules of the central zone (6–7) is delayed 
and maintained longer relative to the other cerebellar zones. This difference is atten-
uated in the cerebellum of En1+/−;En2−/− mutants that have an abnormal foliation 
pattern such that proliferation in the anterior, posterior, and nodular zones are more 
similar to the central zone [53]. The lobules are effectively “closed” as granule cells 
do not disperse across fissure boundaries. This isolation allows any lobule-specific 
granule cell behavior to fine-tune the shape of the lobules [85].

Blocking the generation of Bergmann glial cells has revealed that there are at 
least two separable stages of anchoring center formation: an inward thickening of 
the EGL and formation of an indentation on the outer cerebellar surface. The cere-
bellum is covered by the pial surface as well as the endfeet of the Bergmann glial 
processes. In the absence of Bergmann glia, the EGL thickens but the outer edge of 
the cerebellum fails to subsequently bend inward. Consequently, fissures fail to 
appear at the cerebellar surface. Nevertheless, many granule cells are displaced 
deep into the cerebellum and form a fissure-like mass, possibly at the positions of 
the initial EGL thickening. As a result, the layers of the cerebellum are not well 
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defined, and the foliation pattern is severely disrupted when Bergmann glial devel-
opment is disrupted [74, 108, 109].

In addition to acting as a physical bridge between the outer surface of the cere-
bellum and the Purkinje cell layer, Bergmann glial fibers provide the scaffolding for 
the radial migration of newly born granule cells from the EGL to the inner granule 
layer (Fig.  3). Disrupting the development of, or orientation of Bergmann glial 
fibers, thus leads to aberrant GC migration and the ectopic accumulation of GCs in 
the molecular layer. In some cases, this disruption is severe and can distort foliation 
[110]. Thus, the Bergmann glia play a key role in cerebellar foliation and formation 
of a normal cytoarchitecture.

Alterations in the timing of anchoring center appearance change the resulting 
foliation pattern. In En2 null mutants, the appearance of the anchoring centers for 
the secondary and prepyramidal fissures surrounding lobule 8 are reversed in devel-
opmental time. This results in a lengthening of the prepyramidal fissure and a short-
ening of the secondary fissure and a corresponding foliation pattern change in the 
intervening lobule 8 [42, 45]. Interestingly, the initial changes in the EGL and 
Bergmann glia that signal the formation of an anchoring center appear normally 
even when the entire anchoring center either forms prematurely or is delayed [104].

The cerebral cortex is also a folded tissue in primates, and many models have 
been proposed to describe the formation of sulci and gyri during cerebral gyrifica-
tion. Many of these models are based on a system of differential, or constrained 
growth of a tissue bilayer. Differential growth rates between connected layers can 
lead to tissue buckling and subsequent surface folding. These models take into con-
sideration that the pattern of foliation can be shaped by adjusting the starting size of 
the tissue, the difference in the growth rates of the layers, and the mechanical prop-
erties of the layers [111–116]. Like the cerebral cortex, the cerebellar cortex can be 
considered as divided into multiple layers. One model of cerebellar folding used a 
trilayer model of differential growth [117]. In this model, the EGL and the IGL were 
considered separated by a “soft” Purkinje cell layer. This three-layer system when 
modeled to have a higher outer growth rate allowed for surface wrinkling even if the 
outer and inner layers had similar measures of stiffness.

At folding initiation, the cerebellum closely mimics a bilayer system with the 
rapidly expanding EGL covering the core. The onset of folding is correlated with a 
differential expansion of these layers. However, the tissue mechanics of the devel-
oping cerebellum, such as tissue stiffness, the tensile profile, and the out-of-phase 
layer thickness, do not align with requirements for models based in elastic buckling 
[87] (Fig. 6a). As the progenitors in the EGL are dynamic and continually moving 
within the EGL prior to their radial migration, this layer may have fluid-like proper-
ties [87]. A model incorporating this fluid behavior of the EGL and the tensile pro-
file of the developing cerebellum with the differential expansion between the EGL 
and the underlying tissue is able to capture the unique shapes seen at folding initia-
tion [87, 118]. Tissue tension and its potential roles within folding and gyrification 
has been revisited and recently reviewed [119].

How individual granule cell behaviors coalesce to create emergent tissue-level 
structures remains unclear. Disruptions to proper chromatin remodeling in granule 

Cellular and Genetic Programs Underlying Cerebellum Development



60

cell progenitors alters cell division angle of granule cells and drives aberrant cere-
bellar folding [120]. Yet, disrupting kinase activity in granule cells leads to improper 
folding without any underlying change in the cell division angle [121]. Fascinatingly, 
the improper folding seen with the change in cell division angle is not aligned in the 
anterior-posterior axis but is aligned in the medial-lateral axis [120]. This would 
suggest a change in the direction of the underlying differential expansion and result-
ing forces. It is still an open question of how cell division angle informs tissue fold-
ing especially in light of the motility of granule cell progenitors within the EGL.

It is exciting to speculate about the evolution and functionality of the compart-
mentalized lobule structure and the spatial segregation of afferent project fields to 
particular lobules and zones. The cerebellum is involved in diverse roles including 
cognition and social behaviors. The cerebellar hemispheres have undergone tremen-
dous expansion during evolution to humans, and they house the majority of long- 
range circuits that involve the neocortex. It is possible that as the neocortex expanded 
and became folded into gyri and sulci, there was similar spatial segregation of neu-
ronal circuits into particular neocortex folds. This would be one way for develop-
mental programs to be divided into subunits that could have separate regulatory 
rules. For example, different numbers of neurons could be generated in each sub-
unit, as well as different types of neurons and different proportions of inhibitory and 
excitatory neurons and astrocytes. A fold with a particular function in the neocortex 
could then connect with a specific fold in the cerebellum, completing the interacting 
circuit. Nevertheless, redundancy and duplication of function have been built into 
the cerebellum that minimizes the consequences of local damage in adults. Insight 
into the importance of the folding-based subdivisions of functionality will likely 
come from the variety of birth defects and other conditions that present with folding 
disruptions (reviewed in [122]). We propose that developmental regulatory mecha-
nisms are in place to buffer the developmental processes from small injuries that 
occur. A question for the future is the degree to which stem or progenitor cells in the 
developing or adult cerebellum can be coaxed to replace damaged neurons long 
after they are born and the progenitors no longer normally generate the cell type.
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Early Purkinje Cell Development 
and the Origins of Cerebellar Patterning

Filippo Casoni, Laura Croci, Ottavio Cremona, Richard Hawkes, 
and G. Giacomo Consalez

Abstract This chapter explores the mechanisms that regulate Purkinje cell (PC) 
neurogenesis, revealing the finely timed contribution of many regulatory genes in 
the control of PC progenitor specification, proliferation, subtype differentiation, 
migration, and survival from the cerebellar primordium to the end of prenatal 
embryogenesis, discussing some of the key molecules involved and the ways they 
combine to generate the complex adult cerebellar architecture.

Keywords Zebrin · Transverse zone · Stripe · Ventricular zone · Ebf2 · Reelin

 Purkinje Cells as Project Managers of Cerebellar 
Cytoarchitecture and Connectivity

The cerebellum contains a limited number of cellular phenotypes, arranged in a 
highly conserved circuitry and identified by their morphological features, their 
reciprocal relationships, and the expression of distinctive neurochemical markers. 
The mouse is the main model system in which cerebellar ontogenesis has been stud-
ied extensively. Although the mammalian cerebellum is superficially homogeneous, 
it actually consists of several hundred distinct compartments, which form a com-
plex, reproducible array of transverse zones and parasagittal stripes [reviewed 
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recently in 1–3]. Cerebellar architecture is built around multiple Purkinje cell (PC) 
subtypes [4–9] – most notably zebrin II/aldolase C [10, 11], which form the trans-
verse zone-and-parasagittal stripe scaffold upon which the adult cerebellum is built. 
For example, zone-and-stripe boundaries restrict the terminal fields of many cere-
bellar afferent projections [reviewed in 12], interneuron neurites [13], and soma 
[reviewed in 14] and glial gene expression profiles, for example, 5′-nucleotid-
ase [15].

In the mouse, the general timeline of events that leads to cerebellar maturation 
from its embryonic anlage has been fully clarified [16–21]. Here we discuss some 
of the major features of cerebellar development, focusing on the ontogenesis of 
PCs, the sole projection neurons of the cerebellar cortex.

PC development is only partially characterized, despite the remarkable progress 
made in recent years [reviewed in 22]. Achieving a better understanding of PC cell 
fate specification and ontogenesis in general is important for a number of reasons. 
First, PCs orchestrate the early stages of cerebellar development, namely those that 
precede the massive proliferation of granule cell precursors in the external granular 
layer. Only later in embryogenesis, and especially after birth, do granule cells take 
control of cerebellar histogenesis and foliation, as they outnumber all other cerebel-
lar cell types by several orders of magnitude.

Secondly, PCs actually control granule cell clonal expansion by releasing the 
extracellular morphogen/mitogen sonic hedgehog [23–26], with the result that the 
overall PC number heavily influences the final dimensions and organization of the 
cerebellum – and ultimately its function. The corollary is that defective PC migra-
tion impairs granule cell clonal expansion, and cerebellar foliation / PC migration 
failures result is a lissiform adult cerebellar cortex: for example, the naturally occur-
ring mouse mutant reeler [(Relnrl): reviewed in 27].

Thirdly, PCs guide the wiring of the cerebellum. Most afferent fiber systems 
invade the cerebellum at around embryonic day 13/14 (E13/14) in the mouse [28, 
29], and terminate with a spatial organization that parallels the pattern of PC stripes 
[30]. PCs instruct afferent fibers, including olivocerebellar axons, which eventually 
establish a one-to-one contact with their target, as well as mossy fibers, which con-
nect transiently with PCs and use PC-produced guidance cues prior to retracting and 
shaping their definitive synapses on granule cell dendrites [reviewed in 19, 31]. PC 
subtype organization is thought to play a key role in instructing circuit wiring into 
topographic maps: zone-and-stripe boundaries typically restrict the terminal fields 
of both cerebellar mossy fiber and climbing fiber afferent projections [reviewed in 
12], and interneuron neurites [13, reviewed in 14] and spontaneous and engineered 
mouse mutants with disrupted PC stripes have complementary alterations in the 
spatial arrangement of afferent terminals [32–34].
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 Cerebellar Anlagen and Germinal Zones

The cerebellum arises from a specialized region at the midbrain/hindbrain boundary 
[35–37]. In the mouse, at E8.5, the antagonistic interaction that takes place between 
homeobox genes Otx2 and Gbx2 defines the isthmic organizer region [38, 39], 
which controls the development of cerebellar structures via the secreted morpho-
gens FGF8 and WNT1 [19, 40, 41]. At this stage, the cerebellar primordium con-
sists of two distinct and symmetric bulges thought to grow and fuse on the midline, 
eventually giving rise to the vermis, flanked by the two hemispheres [18]. 
Importantly, however, homotopic and isochronic quail-chick grafting experiments 
have clearly shown that the caudal part of the early mesencephalic vesicle generates 
the rostral and medial part of the prospective cerebellum [35, 42–45]. Thus, the 
anterior part of the prospective cerebellar vermis, instead of resulting from fusion of 
lateral cerebellar plates (His, 1889), likely originates from the caudal alar portion of 
the mesencephalic vesicle [42].

Once a low-resolution map has been drawn, cerebellar histogenesis begins, start-
ing at E9. Around E9.5, two germinal neuroepithelia emerge in the cerebellar pri-
mordium, abutting the opening of the fourth ventricle: the rhombic lip (RL), located 
at the outer aspect of the cerebellar plate, adjacent to the roof plate (RP, dorsal), and 
the ventricular zone (VZ), lining the lumen of the fourth ventricle (ventral). These 
stem cell/progenitor compartments may be identified by the region-specific expres-
sion of two genes encoding basic helix-loop-helix transcription factors: pancreas 
transcription factor 1a (Ptf1a) in the VZ [46], and atonal homolog 1 (Atoh1) in the 
RL [47]. Cerebellar radial glial progenitors [48] fated to generate all GABAergic 
neurons of the cerebellum express Ptf1a, including PCs and all inhibitory interneu-
rons – cerebellar nuclear interneurons plus basket, stellate, Golgi, and Lugaro cells 
in the cerebellar cortex [46, 49, 50]. Homozygous mutations of PTF1A are associ-
ated with cerebellar agenesis in humans [51]. Conversely, all glutamatergic lin-
eages – the large projection neurons of the cerebellar nuclei, unipolar brush cells 
and granule cells – derive from Atoh1+ progenitors [52–57]: their development is 
exhaustively reviewed elsewhere [22].

Important genetic networks involved in the maintenance of the stem cell/pro-
genitor pool and in cell fate specification are active in the VZ and/or RL between 
E10 and E13. The stem cell marker SOX2 is expressed in both neurogenic territories 
(VZ and RL), and in the RP [58]. Its homolog SOX9 is largely co-expressed with 
SOX2 and may mediate termination of neurogenesis, thereby regulating a 
neurogenic- to-gliogenic fate switch in the mouse cerebellar primordium [58]. The 
target of Notch signaling, Hes5, is expressed in the VZ and RL, with a very sharp 
boundary and no expression in the RP. However, Hes1 expression levels are low to 
absent in the VZ and RL but present in the RP [59, 60]. Notch1 in the cerebellar 
primordium interferes with BMP2/4 signal transduction causing downregulation of 
the BMP target Msx2.

As shown by birthdating studies, cerebellar projection neurons, GABAergic 
(PCs in the cerebellar cortex and glutamatergic neurons in the cerebellar nuclei), are 
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born first, at the outset of cerebellar neurogenesis, while both inhibitory and excit-
atory interneurons are generated perinatally [18, 61, 62]. Dividing VZ precursors 
delaminate into the cerebellar presumptive white matter, while those of the RL 
migrate below the pial surface where they form the rhombic lip migratory stream, 
initially containing nucleofugal neuron progenitors and later the granule cell precur-
sors of the external granular layer. Postnatal neurogenesis continues in both regions 
through the third postnatal week, giving rise to GABAergic and glutamatergic inter-
neurons, respectively [18, 20, 63].

 Establishment of Neurogenic Microdomains 
for GABAergic Progenitors

A schematic representation of microdomains present in the cerebellar VZ is pro-
vided in Fig. 1. All cerebellar GABAergic neurons originate in the VZ from Ptf1a+ 
[46], Ascl1+ [64] progenitors according to a two-step sequence [20, 22]. First, pro-
jection neurons (nucleo-olivary neurons and PCs) are generated from stem cells that 
give rise to fate-committed precursor populations. The nucleo-olivary neurons are 
generated between E10.5 and E12.5 in the mouse. Next, starting around E11 and 
through E13.5, mitotic PC progenitors exit the cell cycle and layer on top of the VZ 
to populate the nascent PC plate. The GABAergic interneurons from a different 
lineage [e.g., 65] are first born around E11 and sequentially generate all inhibitory 
local circuit neurons of the mature cerebellum.

The VZ is subdivided into mitotic progenitor domains abutting the ventricular 
lumen and corresponding postmitotic domains in the cerebellar primordium (an 
additional microdomain defines the rhombic lip) [66]. A microdomain positive for 
PTF1A contains two genetically defined progenitor cell types: OLIG2+ PC progeni-
tors occupy a more caudal position and undergo their terminal mitosis between E11 
and E13; GSX1+ progenitors are located more rostrally and medially. At E12.5, 
corresponding to the peak of PC neurogenesis, the c2 territory can be subdivided 
into a more caudal microdomain positive for CORL2, a selective marker of postmi-
totic PC precursors, and into a rostral/medial microdomain containing PAX2+ inter-
neuron precursors. Other recently identified factors have been implicated in this fate 
choice and subsequent ones [63]. PC precursors, after leaving the cell cycle, start 
migrating and populate different regions of the cerebellar cortex according to their 
birthdate [18, 55]. Instead, actively proliferating interneuron progenitors, positive 
for GSX1, begin to delaminate from the VZ giving rise to PAX2+ interneuron pro-
genitors, and then migrate in successive waves to the nascent cerebellar nuclei or, 
with an inside-out progression, to the granular and molecular layers of the cerebel-
lar cortex, where they acquire their definitive identities under the influence of 
instructive environmental cues [67, reviewed in 68].
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Fig. 1 A simplified representation of gene expression and cellular domains present in the E12.5 
murine cerebellar primordium and giving rise to the mature cerebellar cortex. No reference is made 
here to cerebellar nuclei and their precursors. The drawing represents a sagittal section of the cer-
ebellar anlage. The cerebellar primordium is bordered by the isthmic organizer (IO) rostrally and 
by the roof plate (RP) caudally. The choroid plexus (ChP), a roof plate derivative, is also shown. 
RP and ChP are non-neurogenic territories. The ventricular zone (VZ) is a mitotic cellular domain 
abutting the lumen of the fourth ventricle and giving rise to all GABAergic neurons of the cerebel-
lar cortex. PTF1A is expressed by all GABAergic progenitors of the VZ, including PCs and corti-
cal interneurons. The PTF1A domain contains GSX1+ cells (mitotic interneuron progenitors) and 
OLIG2+ cells (mitotic PC progenitors). Both populations delaminate from the VZ (see text) giving 
rise to subventricular domains. The cortical transitory zone (CTZ) contains CORL2+ postmitotic 
PC precursors that subsequently migrate into the Purkinje cell plate (PCP), underneath the external 
granular layer (EGL). GSX1+ interneuron progenitors delaminate and give rise to PAX2+ interneu-
ron precursors fated to populate the prospective white matter (not shown) before homing into the 
cortex. Both PAX2+ and CORL2+ domains are also positive for LHX1 and LHX5. Finally, all 
glutamatergic neurons of the cerebellum originate from the rhombic lip (RL, positive for the pro-
neural gene Atoh1). Among them, granule cell precursors migrate tangentially beneath the pia 
mater and populate the prospective EGL

 The Regulation of PC Progenitor Specification 
and Commitment

At early stages (E11–12.5), a small number of GSX1+ interneuron precursors are 
found in the most rostral region of the VZ, while the majority of PC progenitors 
occupy more caudal regions of the VZ. Ablation of Olig2 has only a small effect 
[69] or no effect on PC number. However, a null mutation of both Olig2 and Olig1 
produces a reduction of committed PC precursors [49]. As development proceeds, 
PC progenitors progressively become interneuron precursors, which spread from 
rostral (close to the isthmic organizer) to caudal, at the boundary between RL and 
RP. This temporal identity transition of cerebellar GABAergic neuron progenitors 
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from PC progenitors to interneuron precursors is negatively regulated by OLIG2 
and positively by GSX1 [49]. However, this view is challenged by the results of 
short- and long-term lineage tracing studies performed by other authors [69], sug-
gesting that Olig2+ progenitors may not contribute importantly to the interneuron 
precursor lineage. Further analyses will be required to resolve this discrepancy: one 
possible scenario is that Gsx1+ progenitors affect the number of PC-committed 
Olig2+ precursors (or the maintenance of the PC-committed stem cell pool) through 
a paracrine, non-cell-autonomous mechanism. Recently, the role of the OLIG tran-
scription factor family in PC specification has been expanded by the recognition 
that OLIG3, expressed in the ventricular zone, restricts Pax2 expression, and thereby 
suppresses PC differentiation [70].

Importantly, the results of recent single-cell sequencing studies are casting new 
light on the transcriptional programs controlling cell fate specification of popula-
tions arising from the VZ and the RL, uncovering new markers, gene-expression 
cascades and neuronal subpopulations, and a number of previously unknown sub-
populations that may play uncharacterized roles in cerebellar neurogenesis [71].

The VZ subregion containing PC progenitors is also characterized by the strong 
expression of E-cadherin (encoded by Cdh1) and of the cell surface marker NEPH3, 
which is a direct downstream target gene of PTF1a [72]. When OLIG2+ PC progeni-
tors exit the cell cycle, they activate the expression of Corl2 [73], which encodes a 
transcriptional repressor [74], and that of Lhx1 and Lhx5 [75], encoding LIM 
homeobox domains. However, unlike CORL2, LHX1, and LHX5 label delaminat-
ing interneuron precursors as well as postmitotic PC precursors [49, 73]. Cells co- 
expressing LHX1/LHX5 [75] and CORL2 [73] are differentiating VZ-born 
precursors committed to a PC fate.

Other PTF1A targets are expressed in the VZ in addition to those described 
above [76]. The Drosophila atonal homologs neurogenin 1 (Neurog1) and neuro-
genin 2 (Neurog2) are proneural genes encoding basic helix-loop-helix transcrip-
tion factors. Neurog1+ progenitors give rise to inhibitory cortical interneurons and 
some PCs [77, 78], while Neurog2 is expressed mainly in the PC- and presumptive 
nucleo-olivary neuron lineages. NEUROG2 controls progenitor cell cycle progres-
sion, promotes cell cycle exit and differentiation, and spurs the cell-autonomous 
phase of PC precursor dendritogenesis. Nullisomy for Neurog2 causes a reduction 
in the overall PC number [79]. However, NEUROG1 and NEUROG2 are not 
required for the adoption of a PC fate [R. Hawkes, unpublished observation, and 
79]. Interestingly, cell cycle analysis conducted by cumulative S-phase labeling on 
Neurog2CreERT2 knock-in mice has revealed for the first time that at the peak of PC 
neurogenesis (E12.5), dividing VZ progenitors cycle in ∼14 h, and their basal-to- 
apical oscillating motion is compatible with interkinetic nuclear migration, similar 
to what has been shown in other territories of the neural tube, but never before in the 
cerebellar primordium [79].

Purkinje cell neurogenesis is also controlled by Zfp423, encoding the homony-
mous Zn finger transcription factor, and orthologous to human ZNF423, implicated 
in rare cases of Joubert syndrome. Zfp423 regulates the mode of cell division in a 
domain-specific fashion. A central domain of the protein is required for the 
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maintenance of the stem cell progenitor pool. Moreover, this factor controls DNA 
damage repair in the cerebellar VZ: a defective response to DNA damage causes a 
delay in cell cycle progression, contributing to the vermis hypoplasia and profound 
depletion of PCs observed in Zfp423 mutants [80].

 Ebf2 and PC Subtype Specification

Thus far we have treated PC development as though all PCs are the same. This is far 
from the case – indeed in the adult mouse, cerebellum multiple PC subtypes have 
been identified (e.g., zebrin II/aldolase C [10]; PLCβ3/4 [81]; HSP25 [82]: reviewed 
in [9]). The embryological origins of PC heterogeneity and pattern formation are 
only slowly coming into focus [83]. PC subtype phenotype is cerebellum-intrinsic 
and independent of neural activity (e.g., [84]) or afferent innervation [85, 86]. 
Cerebellar compartmentation appears to start at ~E10 in the VZ of the fourth ven-
tricle but likely not sooner [e.g., 87, 88–90]. The first stage likely occurs when PCs 
undergo terminal mitosis between E10-E13 [61] in the Ptf1a expressing progenitor 
domain of the VZ [46, 76]. Birthdating studies have identified two distinct PC popu-
lations: an early-born cohort (E10-E11.5) fated to become zebrin II+ and a late-born 
cohort (E11.5-E13) fated to become zebrin II− [91, 92]. However, individual PC 
stripes do not have a clonal origin [89]. There is also a direct correlation between PC 
birthdates and their adult stripe location, suggesting that both subtype specification 
and positional information (i.e., which zone or stripe the PC will occupy) may be 
acquired at this time [e.g., 91, 93–95].

Several regulatory genes are implicated in PC progenitor development. Among 
them, Early B-cell factor 2 (Ebf2) [96] belongs to a family of atypical basic helix- 
loop- helix transcription factors that do not possess a basic domain and instead fea-
ture a unique DNA-binding domain. This family includes three transcriptional 
activators (EBF1–3) and one repressor (EBF4) [reviewed in 97, 98]. Ebf2 is 
expressed in a subset of late-born PC progenitors fated to populate zebrin II− para-
sagittal stripes and in Ebf2 null mutants the cerebellum features a selective loss of 
zebrin II− PCs.

Upon cell cycle exit, late-born PC progenitors start expressing Ebf2 and migrate 
towards the PC plate. Posterior-born PCs migrate tangentially at first, and then fol-
low radial glial fibers, projecting their axons ventrally into the prospective white 
matter [99]. Conversely, anteriorly born PCs migrate radially into the PC plate, also 
following radial glial fibers, to populate anterior regions of the cerebellar cortex. 
Migration of this latter population is reelin (RELN)-dependent and selectively 
delayed in Ebf2 null PCs, which accumulate before birth as an ectopic layer just 
above the VZ in the anterior third of the cerebellar anlage. A significant fraction of 
these PCs, many of which express neurogranin [100], dies by apoptosis [101, 102]. 
Ebf2 is required to support survival of late-born PCs at birth, and accomplishes this 
by transactivating the insulin-like growth factor (Igf1) gene. In postnatal Ebf2 null 
cerebella, Igf1 expression is downregulated, with a resulting impairment of IGF-1 
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signal transduction [102]. Finally, some of the Ebf2 null PCs that survive lose their 
PC subtype specification features and transdifferentiate into zebrin II+ PCs – the 
only genetic manipulation thus far shown to subvert PC subtype specification [101]. 
In fact, Ebf2 acts to repress the zebrin II+ phenotype in late-born PCs [94]. Further 
studies, employing conditional mutants, are required to determine at which stage of 
postmitotic PC precursor development Ebf2 acts to specify PC subtype. The results 
of genetic fate mapping experiments [103] suggest that Ebf2 is expressed transiently 
in all PC progenitors, only to be restricted to late-born ones by the end of embryo-
genesis. The pathways that lead to further subtype specification, for example, the 
HSP25+/− distinction within the zebrin II+ family [82] have not yet been explored.

 The First Formation of PC Afferent Projections

The main afferents to the cerebellum are climbing fibers from the inferior olives and 
mossy fibers from multiple sources, and their patterns of development are elaborate 
[reviewed in 104]. The earliest afferent projections to the cerebellum are mossy 
fibers (MF). In the adult, MF afferents terminate in the granular layer as glutamater-
gic synapses on the dendrites of the granule cells. The terminal fields of the MF are 
highly topographically organized into stripes aligned with overlying PC stripes 
[reviewed in 1, 8]. The role of PCs in organizing the MF axons is complex. During 
embryogenesis, many MF afferents enter the cerebellum at a stage at which the 
granular layer is not yet present. Intriguingly, they synapse ectopically on the PC 
somata. During the same interval, the MF also send collateral branches to the cere-
bellar nuclei. Presumably, the ingrowing growth cones recognize PC and CN sub-
types, and thereby guide the formation of the adult striped topography, for example, 
ephrins and ephrin receptor tyrosine kinases, in particular ephrins A2 and A5 [105]. 
Subsequently, once postmitotic granule cells begin to migrate ventrally from the 
external granular layer through the PC layer to form the mature granular layer, 
beginning at an early postnatal stage [reviewed in 106], MF axons detach from the 
PC somata and synapse with the transiting granule cells. The earlier development is 
equally surprising. The very first MF afferents to enter the cerebellar anlage – begin-
ning at E9 – derive from transient axons of the trigeminal ganglia [107]. Surprisingly, 
the first targets of the trigeminal ganglia axons are not the PCs but the cerebellar 
nuclei! Collateral projections are only observed to the PC plate a day later. Whether 
this developmental target sequence – first CN, then PC, then granule cell – is unique 
to the trigeminal ganglion afferents or applies to other MF is unknown. Likewise, 
because the trigeminal ganglion axon projection is only transient, perhaps its role is 
to serve as a pioneer, to pilot subsequent early afferent topography.
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 Embryonic PC Cluster Formation

Newborn PCs migrate dorsally into the cerebellar anlage where they aggregate by 
~E17 into a reproducible array of clusters that already contains multiple distinct 
molecular PC phenotypes [9, reviewed in 92, e.g., Fig.  2 108, 109–111]. These 

Fig. 2 From clusters to stripes. Embryonic clusters condense by migration from the cerebellar 
plate between E14-E18 (mouse). At this stage, numerous expression markers reveal that the PC 
population is already heterogeneous (exactly how many distinct phenotypes are present is not 
known, in part because of the paucity of double-labeling studies). The embryonic PC clusters also 
serve as a staging area to amass, organize, and restrict cerebellar afferents and interneurons. 
Starting perinatally, signals via the RELN-DAB1 pathway trigger cluster dispersal into the adult 
cluster array by about P20. As for the embryonic clusters, the exact number of stripe phenotypes is 
not certain  – at least 10 may be identified based on expression data and mutant phenotypes. 
References to the lists of embryonic and adult cerebellar compartment markers may be found in [9]
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clusters are the targets by which cerebellar afferents and many interneurons become 
topographically ordered [reviewed in 8, 31]. The mechanism that converts the PC 
plate into the elaborate array of embryonic PC clusters – >50 are recorded [111, 
112] – is not well understood. As PCs migrate towards the cerebellar surface, the 
early-born (E10-E11.5: Ebf2−; future zebrin II+) PC lamina interdigitates with the 
more superficial late-born (E11.5-E13; Ebf2+; future zebrin II−) layer with the result 
that the stereotyped array of clusters emerges [113]. Whether this migration is the 
mechanism that specifies cluster architecture or whether the clusters are already 
specified in the cerebellar plate or are even preformed in the VZ, (e.g., some version 
of the protomap model proposed by Rakic for the neocortex) [reviewed in 114], is 
not known. The cellular processes that guide cluster formation are not understood 
but grafts of dissociated PCs also organize into discrete, ectopic zebrin II+/zebrin 
II− aggregates [115], pointing to cell-cell adhesion molecules as possible organiz-
ers: cadherins [reviewed in 116] and integrins [e.g., 117] are possible candidates. 
Also, during this same period, the cerebellar anlage undergoes a 90° rotation, which 
converts the embryonic rostrocaudal axis into the mediolateral axis of the cerebellar 
primordium [90]; so perhaps the adult stripe array ultimately derives from the 
anteroposterior patterning of dorsal rhombomere 1.

 From Clusters to Zones and Stripes

Boundaries running from medial to lateral divide the cerebellar cortex into trans-
verse zones. We focus here on the PC compartmentation but similar and aligned 
boundaries are also prominent in the granular layer [reviewed in 106]. By combin-
ing different sources of evidence – molecular, genetic and hodological – four highly 
conserved transverse boundaries, and hence five transverse zones, have been delin-
eated in the adult mouse vermis [e.g., 110, 118–120]: the anterior zone [AZ: ~ lob-
ules I–V {reviewed in 121}], central zone anterior (CZa: ~lobule VI) and posterior 
(CZp), the posterior zone [PZ: ~lobules VIII–dorsal IX: reviewed in 118], and the 
nodular zone (NZ: ~lobules ventral IX–X). Each transverse zone 1 into a reproduc-
ible array of parasagittal stripes (e.g., revealed by using zebrin II/aldolase C – [10, 
11]: for zebrin II+/− stripes, these are labelled P+ and P−: e.g., zebrin II – [119]; 
phospholipase (PL) Cß3/4 – [81]); the small heat shock protein HSP25 – [82]; or 
L7/pcp2-lacZ transgene expression – [reviewed in 9, 122].

PC stripes are discontinuous across transverse boundaries, so it seems plausible 
that the zones precede stripes in development, but whether transverse zones form 
prior to the PC clusters or at the same time is speculative. Transverse boundaries are 
certainly present in the embryonic cerebellum. The AZ/CZa boundary between lob-
ules V and VI can be identified both in neonates and adults by the expression 
domains of numerous molecules [reviewed in 110, e.g., calbindin – 122] and is a 
developmental phenotype restriction boundary for several cerebellar mutations. In 
some cases, the mutant phenotype is associated with defects in the AZ [e.g., 123], 
Lurcher Grid2Lc-J [124], and cerebellar deficient folia [125]; in others  – for 
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example, the BETA2/NeuroD1 null [126] – it is the posterior cerebellar zones that 
are the most affected. Finally, a granular layer lineage restriction boundary also lies 
in the anterior face of lobule VI, indicating that granule cells either side of the 
boundary derive from different lineages [127]. The CZa/CZp boundary [128] is a 
perinatal restriction boundary for FoxP2 [110], Gli [109], and HNK-1 expression 
[129]. The CZp/PZ that separates lobule VII from lobule VIII is revealed in the 
perinatal cerebellum by FoxP2 [110, 112], PLCβ4 [130], and HSP25 [131] expres-
sion is associated with a phenotypic abnormality in the lurcher (GridLc) mouse 
[124]. Finally, the most caudal transverse boundary in the adult mouse (PZ/NZ) lies 
near the base of the posterolateral fissure between lobules IX and X. A transverse 
boundary has also been located in the same area during development as a restriction 
boundary for the expression of En2 [109] and FoxP2 [110]. A granular layer trans-
verse boundary in embryonic stem cell chimeras is also located at around the PZ/NZ 
boundary [127].

Starting at around E18, the embryonic clusters transform into adult stripes trig-
gered by RELN signaling [reviewed in 132, 133]. Because PC dispersal and the 
associated development of cerebellar foliation occur almost entirely along the ros-
trocaudal axis, each cluster becomes stretched out into a long, narrow stripe. RELN 
is secreted by both the external granular layer and glutamatergic projection neurons 
of the cerebellar nuclei [132] and binds to two PC receptors – the apolipoprotein E 
receptor 2 (Apoer2) and the very low-density lipoprotein receptor [VLDLR: 134, 
135]. Both receptors are required for normal stripe formation, and if RELN is absent 
(e.g., the reeler mouse), PC cluster dispersal is blocked, and the adult mouse retains 
the embryonic cluster morphology and is ataxic [reviewed in 27]. RELN binding 
induces Apoer2/Vldlr receptor clustering [136], which triggers a protein kinase cas-
cade and tyrosine phosphorylation of the docking protein Disabled1 (DAB) [137–
141] by Fyn and Src [139, 142], leading eventually to a drop in mutual PC-PC 
adhesion, possibly via integrins. In parallel, DAB1 phosphorylation also activates 
Rac and Rho GTPases, which control actin filament assembly [143]. Together, cyto-
skeletal and cell adhesion changes are thought to permit the embryonic PC clusters 
to disperse into stripes. That being said, it is not clear whether cluster dispersal 
requires the active migration of PCs or is the passive consequence of lobule 
formation.

However, the RELN pathway is not that straightforward. First, while expression 
mapping suggests that all PCs express both Apoer2 and Vldlr RELN receptors, 
mutations in individual receptors (Apoer2−/− and Vldlr−/− nulls; 
Apoer2+/−:Vldlr+/− double heterozygotes) result in specific partial reeler pheno-
types with some clusters dispersing normally while others remain ectopic [144]; 
divergent roles are also seen in the developing cerebral cortex [145]. Similar behav-
ior is seen in several naturally occurring mutants. For example, meander tail [mea2J: 
146], rostral cerebellar malformation [Unc5crcm: 123], and cerebellar deficient 
folia [Ctnna2cdf: 125] all display selective PC ectopias that are restricted to the 
zebrin II− phenotype (and because zebrin II− PCs are preferentially located in the 
AZ, it is the anterior vermis that is most severely affected). In a more complex 
model – the weaver (Kcnj6wv) mouse – PC cluster dispersal failure is restricted to 
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zebrin II+/HSP25+ stripes in the CZa/CZp [131]. The GIRK2 protein mutated in 
weaver [147] is expressed by all PCs so the molecular basis of the selective PC 
ectopias is unknown.

The relationship between the embryonic cluster topography and the zone and 
stripe pattern of the adult is not fully mapped. Because a few markers are expressed 
consistently in both clusters and stripes, for example PLCß4 [130]; an IP3R1 
promoter- nls-lacZ transgene [148]; FOXP2 [112], but others are only expressed in 
stripes at one stage or show very different expression patterns perinatally versus the 
adult, for example, HSP25 [e.g., HSP25 131], lysosomal acid phosphatase 2 [149]. 
There is limited evidence of the continuity of the cerebellar topographical map from 
perinate to adult. In theory, three relationships might occur: one embryonic cluster 
might form a single adult stripe; one cluster might split to yield more than one 
stripe; or several clusters might combine into a single stripe (Fig. 3). In fact, all three 
possibilities have been described. In several cases, the one cluster  =  one stripe 
model seems very likely [e.g., 92, 112, 148]. However, other examples are more 
complex. For example, the so-called P1− stripe in the AZ vermis clearly derives 
from three distinct embryonic clusters, which abut, as revealed by using PLCß4 
expression [130]. An alternative – and perhaps better – description is that the appar-
ently homogeneous P1− stripe in the adult (all zebrin II−/PLCß4+) actually com-
prises three distinct sub-stripes. The triplet structure is also seen in the afferent 
mossy fiber projections, where cuneocerebellar and spinocerebellar pathways 

Fig. 3 Three models for the transformation of embryonic PC clusters into adult stripes: one 
embryonic cluster forms one adult stripe; one cluster splits to yield several stripes; or several clus-
ters combine into a single stripe. All three models are found
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terminate in different sub-stripes [150, 151] and in the expression of an L7/pcp2- 
lacZ transgene [122]. A similar covert heterogeneity is seen in ostensibly homoge-
neous zebrin II+ stripes when co-labelled for HSP25 [82]. Last, single clusters may 
give rise to multiple stripes. For example, inducible fate mapping with a Pcp2- 
CreER- IRES-hAP transgene showed three cluster pairs contribute to nine adult 
stripes [31].

Finally, a striking feature of adult cerebellar topography is the high reproduc-
ibility between individuals and the concomitant low error rate (e.g., zebrin II+ PCs 
are very rarely seen in zebrin II− stripes). If stripes derive from clusters, and stripes 
have no errors, then either clusters have no errors (and migration from the VZ to the 
clusters is perfect) or errors that occur during cluster formation and dispersal are 
selectively eliminated. In this context, it is interesting that many PCs – perhaps as 
many as a third – undergo cell death by apoptosis during the perinatal and postnatal 
period [152, 153]. This suggests the hypothesis that perinatal apoptosis eliminates 
those PCs that wind up in the wrong embryonic cluster. PC ectopia is not lethal per 
se: for example, PCs located ectopically may survive indefinitely. Rather, the 
hypothesis evokes a community effect, such that being in the wrong cluster leads to 
apoptosis. In support of the idea that apoptosis refines topography, studies of natu-
rally occurring cell death in the cerebellum identified hot spots of PC apoptosis that 
correlate with stripe boundaries in the adult [154]. However, preliminary experi-
ments do not support the hypothesis. Deleting the Bcl-2/BH3-associated apoptotic 
protein BAX inhibits perinatal PC death (BAX is expressed in PCs perinatally 
[155]) and Bax−/− mice have a 30% excess of PCs over controls [e.g., 156]. 
Nevertheless, the frequency of targeting errors was unaffected (RH and Y. Wang: 
unpublished data). Therefore, the remarkable reproducibility of the cerebellar map 
does not seem to result from perinatal error correction.

 Conclusions

Early stages of PC development affect both susceptibility and outcome of several 
motor and cognitive disorders. Cerebellar development is protracted (from E7-P30) 
and complex (at least two germinal zones, multiple migration pathways, etc.) so it 
is unsurprising that it represents a large target for developmental disruption. 
Spinocerebellar ataxia type 1 provides an example of this: transgenic mice in which 
expression of the expanded ATXN1 transgene is delayed until after the cerebellum 
has matured display a reduced disease phenotype, suggesting that mutant ATXN1 
interacts with a pathway involved in PC development, likely by affecting RORa 
expression. Thus, compromising PC development appears to contribute to the sever-
ity of neurodegeneration [157]. Equally striking, recent evidence has linked PC 
development to the pathogenesis of autistic spectrum disorders [reviewed in 158]. 
In particular, selective deletion of the Tsc1 gene in the PC lineage from conditional 
knock-out mice has been found to cause a decrease in PC number, increased spine 
density, and autistic-like alterations of social behavior [159]. One of many insults 
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thought to trigger autism is maternal fever [160]. Possibly related to the putative 
role of the cerebellum in autism, we recently found that immune activation and 
fever in pregnant mice between E13-E15 resulted in adult progeny with signifi-
cantly wider zebrin II+/− stripes, greater numbers of PCs, poorer motor perfor-
mance, and impaired social interactions in adolescence [161].

Finally, what are the prospects that early intervention might afford therapeutic 
advantages? While fast progress has been made in recent years, plenty remains to be 
learnt in regard to the signals that instruct VZ progenitors to adopt PC versus 
GABAergic interneuron fate. To our knowledge, protocols aimed at producing PCs 
from ES/iPS cells in vitro are based on selection of early PC progenitors that express 
lineage-specific surface markers [162]. The identification of additional factors 
cooperating with PTF1a and OLIG2 in specifying the earliest PC progenitors should 
improve the efficiency of those protocols and make it possible to generate autolo-
gous PCs from iPS cells or via direct reprogramming. These short-range projection 
neurons produced in vitro may eventually constitute a source of cell replacement in 
patients affected by certain types of degenerative ataxias.
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Cerebellar Developmental Disorders 
and Cerebellar Nuclei

Hong-Ting Prekop, Alessio Delogu, and Richard J. T. Wingate

Abstract While significant progress has been made in the last 10 years in under-
standing the development of cerebellar nuclei, they remain a relatively less well- 
studied cell group in the brain. In this chapter, we review the anatomical organisation 
of the cerebellar nuclei and their connections to highlight outstanding developmen-
tal questions. We then describe recent progress in dissecting the lineages of cerebel-
lar neurons that may point to new understanding of their involvement in congenital 
clinical disorders.

Keywords Dentate nucleus · Interposed nucleus · Fastigial nucleus · Inferior olive 
· Purkinje cell · Rhombic lip · Ventricular zone · Ptf1a · Atoh1 · Pax2 · Nuclear 
transitory zone

 What Are Cerebellar Nuclei?

The cerebellar nuclei (CN) are the final output units for cerebellar processing. For 
the most part, the CN output is a high-frequency tonic excitation, which is directed 
towards the midbrain and thalamus. However, a distinct, long-range inhibitory axon 
tract allows the CN to influence the activity of the inferior olive (IO), which in turn 
drives Purkinje cell (PC) activity via climbing fibres. CN output is modulated by the 
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Fig. 1 The cerebellar nuclei are central to cerebellar circuitry. They lie at the centre of two cere-
bellar loops: the cerebello-thalamo-cerebro-cortical circuit (blue) which links the cerebellum back 
to the cerebral cortex and the olivo-cortico-nucleo-olivary loop (red)

patterned firing of inhibitory PCs. They thus form the final common pathway for the 
integrated activity of a series of nested re-entrant loops via the inferior olive but also 
via the thalamus, cortex and pons (Fig. 1).

Recent single-cell RNA sequencing studies have revealed a simple modular cell 
type structure underlying the organisation of neurons into nuclei and their long- 
range connectivity. In combination with a temporal pattern underlying their devel-
opmental origins, a clear logic underlying their patterning and evolution is beginning 
to emerge. However, major questions remain as to how nuclei achieve their spatial 
arrangement, integrate cell types of different origins, and make connections. For a 
population of such significance for a wide variety of brain functions, this is a major 
omission. Similarly, while some nuclear disorders in humans have been described, 
the lack of anatomical and molecular description has hampered a systematic analy-
sis of clinical disorders.

 Cellular Anatomy and Diversity

The earliest descriptions of CN neurons distinguished cells with long axons from 
those with short axons [1] and identified large and small soma size [2]. The most 
detailed morphological studies of the rat and primate dentate (lateral) cerebellar 
nucleus were carried out by Victoria Chan-Palay in the 1970s. Using Golgi, Nissl 
and Weigert preparations combined with electron microscopy, she mapped out the 
complex, non-uniform cellular organisation of the nucleus [3–5] and demonstrated 
the presence of five neuronal types.

Immunohistological and molecular techniques showed large projection neurons 
to be glutamatergic while GABAergic [6–8] projection neurons with very small 
soma project to the inferior olive (Fig. 2). Glycinergic neurons were found to project 
to the brainstem [9] or to the granule cell layer of the cerebellar cortex [3, 10–12]. 
Unlike the other CN cell types, these latter nucleocortical neurons are not 
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Fig. 2 The cellular composition of the cerebellar nuclei. Nuclei receive inputs from the Purkinje 
cells in the cerebellar cortex (green), as well as collaterals from the mossy fibres (light blue) and 
climbing fibres (pink) as they travel to the cortex. Within the nuclei, there are two types of projec-
tion neuron: large glutamatergic cells (blue), which are efferent cells in the cerebello-thalamo- 
cerebro-cortical circuits, and the nucleo-olivary neurons (red), which project to the inferior olive, 
forming the olivo-cerebellar loop. Interneurons (orange) participate in as yet uncharacterised local 
circuits
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spontaneously active, but instead are mostly silent. They most likely target Golgi 
interneurons, which express glycine receptors, unlike most cells of the granule cell 
layer [13].

Local interneurons have long been proposed to be inhibitory. Chan-Palay [4] 
noted small GABAergic neurons with fusiform or multipolar somas, limited den-
dritic trees and short axons. Similarly, candidate population of small soma glyciner-
gic neurons which colocalise with GABA [14] in the interposed and lateral nuclei 
appear to target adjacent, presumptive glutamatergic projection neurons [15, 16],

Despite the fact that cells differ along both rostral-caudal and lateral-medial 
axes, such as a higher density of nucleo-olivary neurons in the ventral, lateral and 
interposed CN [17], models of cerebellar function have assumed a homogeneous 
allocation of each CN cell type to parallel the long-assumed homogeneity of cere-
bellar cortex [18, 19].

Recent single cell RNA sequencing experiments have largely confirmed and con-
solidated this spectrum of studies. Most importantly, they have identified that five 
basic cell classes are repeated across every CN and across chick, mouse and human 
[20]: Glutamatergic projection neurons (Types A and B), Sox14 expressing 
GABAergic nucleo-olivary neurons [21], local GABA+glycinergic interneurons 
(Type 1) and nucleocortical GABA+glycinergic interneurons (Type 2).

An important and exceptional class is a large soma, glycinergic, ipsilaterally 
projecting population in the medial nuclei [16] that appear to share much of the 
transcriptomic identity to a Class-B glutamatergic projecting neuron [20]. 
Intriguingly, in the medial nucleus, these inhibitory ipsilaterally projecting neurons 
sit side by side with glutamatergic, contralaterally projecting neurons that target the 
same regions of ventral brainstem and the ipsilateral ventromedial medullary reticu-
lar formation. This paired medial nucleus output, which might share a common 
developmental origin despite different neurotransmitter type, might regulate posture 
and balance through a system of cross-midline control, similar system to that of the 
vestibular control of horizontal eye movements [15].

A second significant variation in the homogeneity of cell class distribution is 
found in the human dentate nucleus, a hugely expanded lateral ribbon of cells that 
was presumed to be an expanded lateral nucleus. The dentate contains purely 
Class-B glutamatergic neurons and, uniquely, lacks a Class-A glutamatergic projec-
tion [20]. Since the dentate nucleus has a large input via the thalamus to the prefron-
tal cortex, this result suggests a selection for the Class A projection neuronal type 
contributes to the specialisation of this pathway in humans and great apes (which 
also display a dentate nucleus).

Five distinct types of CN neuron underlie the diversity of functional output of the 
cerebellum. Projection neuron activity is modulated by Purkinje cell inhibition 
while local interneurons play an as yet unknown role in shaping output. Important 
variations in exceptional cell types may underlie the regulation of posture and the 
cognitive cerebellum in humans.
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 Outputs of the Cerebellar Nuclei

The CN translate cerebellar output to the cerebral cortex via the thalamus, brain-
stem and spinal cord through two main long-range projection systems: glutamater-
gic projection neurons send signals to the red nucleus, thalamus, or brainstem, while 
the GABAergic nucleo-olivary neurons connect the cerebellum to the inferior olive 
[7]. Meanwhile, other forms of efferent connections have also been found linking 
the CN to the vestibular nuclei and the cerebellar cortex [10, 15]. Glutamatergic 
projection neurons form a vital link in the assorted cerebello-thalamo-cerebro- 
cortical circuits which link the cerebellum back to different parts of the cerebral 
cortex [22]. Extensive labelling studies in the mouse using anterograde viral tracer 
show that while the medial nucleus is more distinct in its connections there is an 
extensive overlap in the projection patterns of the excitatory output of all three 
major cerebellar nuclei [20].

Inhibitory neurons derived from a Sox14 pool of precursors [21] send predomi-
nantly contralateral projection to the inferior olive [21, 23, 24] and are key compo-
nents of the olivo-cortico-nucleo-olivary (OCNO) circuit. This is a closed feedback 
loop between the inferior olive, cerebellar cortex and CN, made up at a fine scale of 
individual closed loops, or cerebellar modules, of local connections via the CN [25].

Efferents show widespread and overlapping projections with the exception of the 
nucleo-olivary GABAergic axons that descend to hindbrain. The origins of the 
diversity and the mechanisms underlying the targeting of axons are largely unex-
plored. These questions are core to an understanding of how the cerebellum influ-
ences other parts of the brain.

 Inputs to Cerebellar Nuclei

The inputs to the CN comprise a complex matrix that modulate cerebellar output by 
influencing the spontaneous baseline firing rate of CN neurons [26, 27]. The most 
significant of these inputs are PCs from cortical layers directly above the corre-
sponding part of the CN: the medial receiving input from the vermis, interposed 
from paravermis and the lateral receiving the bulk of its input from the hemispheric 
PCs [28]. Sugihara et al. mapped PC projections to the various CN and found cor-
respondence between aldolase C expression in subsets of PCs and the terminations 
in specific subdivisions of CN, demonstrating some conservation of topographic 
organisation [29].

While both PCs and CN neurons are spontaneously active [30, 31], evidence of 
synaptic plasticity at the CN neurons shows that the CN are involved in modulating 
cerebellar cortical output and not merely relaying information from the PC popula-
tion [32–34]. When PC and CN neurons are monitored simultaneously, they do not 
give the expected reciprocal firing rates that would result from PC inhibition [35–
38]. Instead, CN neurons are extremely sensitive to the synchronous activity of PC 
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inputs [39] suggesting that the development of a mapping of PC populations into the 
CN is a critical factor in cerebellar function.

In addition to afferents from the PCs, the CN also receive branches from mossy 
fibres (MFs) and climbing fibres (CFs). These send signals directly to the CN, 
bypassing cerebellar cortical processing [28]. In the overlying cerebellar cortex, 
MFs and CFs are topographically mapped onto GCs and PCs and their collateral 
projections to CN follow approximately the same topography. MFs from the pon-
tine nuclei, nucleus reticularis tegmenti pontis, and lateral reticular nucleus send 
their cortical terminations such that they divide the cerebellar cortex into zones to 
process information from particular parts of the body or sensory modes [24, 40, 41]. 
In contrast, the MF collaterals to the CN are bilateral and show a looser zonal organ-
isation [28, 42]. Likewise, anterograde tracing from the inferior olive has revealed a 
strict topographic alignment of CFs to the zebrin II positive PC parasagittal zones in 
the contralateral cerebellar cortex [19]. The collaterals of these same CFs target the 
contralateral CN and terminate in specific areas of the CN [29, 43, 44].

Relatively little is known of how inputs to the CN are organised at a cellular level 
and the intrinsic networks that are built up by interneurons and local collaterals. A 
natural entry point to these questions is trying to understand the degree of conver-
gence of a relatively orderly PC layer on to the three-dimensional assembly of CN 
neurons. In terms of numbers, there are around 20 PC to every CN neuron [45, 46] 
with inputs targeting both glutamatergic [47, 48] and GABAergic projection neu-
rons [8]. However, since the PC axonal target field is wide and conical [49], it is 
estimated that each PC can encompass tens of CN neurons complicating a simple 
explanation of convergence. Similarly, the proximity of axons’ terminations to the 
soma of CN neurons is likely to be of considerable significance in determining syn-
aptic strength [16]. Chan-Palay noted that around 14% of larger neurons in the lat-
eral CN were not innervated directly on their somata by PCs, setting apart a subset 
of projections neurons [50], which may comprise the glycinergic, nucleocortical 
neurons [11].

How the PC axon numbers are developmentally matched to CN targets and the 
mechanisms that regulate mapping are unknown. Similarly, how the topography of 
collateral projections from different afferent populations is coordinated within the 
nucleus is an important question that remains to be addressed. For example, it has 
been suggested that collaterals of inputs to the cerebellar cortex form a template for 
topographic refinement of outputs of Purkinje cells to the CN.

 Development of Cerebellar Nuclei

The origins of the cerebellum, which sits at the boundary of the midbrain and hind-
brain, were an intensely investigated problem at the end of the last century. The 
advent of molecular techniques revised the concept that the cerebellum received 
contributions from both midbrain and hindbrain and identified the cerebellar anlage 
within the dorsal part of rhombomere (r)1 of the hindbrain [51–53]. Within the 
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anlage, two distinct progenitor zones, which are defined by the mutually exclusive 
expression of basic helix-loop-helix (bHLH) transcription factors Ptf1a and Atoh1, 
produce all the cell types of the cerebellum [54]. Ptf1a is expressed in the dorsal 
ventricular zone of r1 and characterises progenitors of GABAergic cells [55]. The 
boundary between the ventricular zone and the dorsal roof plate is known as the 
rhombic lip [56] and expresses Atoh1 [57]. This highly proliferative zone of Atoh1 
expression gives rise to glutamatergic cerebellar neurons [58, 59].

Birth-dating has shown that some neurons within the CN are among the first- 
born cell types of the cerebellum [60]. Experiments using either BrdU or a replica-
tion defective adenovirus [61] have shown that PCs are born around the same time 
as the CN. The time window for the production of glutamatergic and the GABAergic 
projection neurons in mice lies between E10.75–E12.5 [21, 62] and appears to be 
regulated by a common temporal signal [63]. However, the allocation of GABAergic 
versus glutamatergic fate is strictly a property of progenitor position within either a 
Ptf1a- and Atoh1-positive pool [55, 58, 59, 63, 64].

 Origin of Glutamatergic Neurons

One key motif of CN development is the assembly of neurons within an embryonic 
nuclear transitory zone (NTZ), which appears as almost a “staging post” in the for-
mation of distinct CN (Fig. 3). The derivation of glutamatergic CN neurons initially 
appeared to be via a radial migration from the ventricular zone [65]. A detailed 
analysis of postmitotic precursors of CN neurons identified the expression of the 
transcription factors Lhx2/9, Meis1, Meis2, and Irx3, as well as genes that are not 
frequently used as markers in development: Gja9, Mbd2, Htr3a, and Girk4 [66]. 
Subsequent analysis showed that Meis2 co-expresses with Lhx2/9 in glutamatergic 

Fig. 3 The developmental timeline of the cerebellum, depicted in sagittal view. GABAergic neu-
rons are derived from the ventricular zone (VZ) while glutamatergic neurons arise at the rhombic 
lip (RL). The cerebellar nucleus projection neurons are the first born from both progenitor zones, 
preceding first Purkinje cells (VZ-derived) and then granule cells (RL-derived). Cerebellar nucleus 
interneurons are believed to be born alongside other cerebellar cortical interneurons, which are 
generated from E13 from the VZ and later a stem cell population within the future white matter
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projection neurons of the lateral CN derived from the rhombic lip [59], while Irx3 
may instead represent a separate population of neurons, likely the GABAergic 
nucleo-olivary neurons [67].

Glutamatergic projection neurons represent the first cohort in a sequence of neu-
rogenesis from the rhombic lip that ends with the generation of granule cells [51, 
58, 59]. A separate domain of Atoh1 expression at the midbrain-hindbrain boundary 
gives rise to earlier born extracerebellar neurons [68]. At the rhombic lip, lateral and 
then medial CN are produced in discrete temporal waves [69, 70]. CN neurons 
actively migrate from the rhombic lip in a subpial layer guided by diffusible netrin 
and slit proteins [71, 72] and sequentially express Pax6, Tbr2, Tbr1 and Lmx1a [67, 
73]. As the postmitotic neurons enter the NTZ, Tbr1 and Tbr2 are upregulated and 
Pax6 is downregulated [73]. In the absence of Pax6, rhombic lip-derived CN neu-
rons are absent from the cerebellum [67]. The differential retention of transcription 
factors defines different CN populations in mouse. Tbr1 expression is retained until 
E14.5 for lateral and interposed CN, and into adulthood for the medial CN. In con-
trast, the lateral and interposed CN projection neurons express Brn2 at early postna-
tal stages.

 Origin of GABAergic Projection Neurons

Our recent studies of mouse development showed that GABAergic nucleo-olivary 
neurons of the lateral and interposed nuclei are derived from the Sox14 lineage in 
the cerebellum [21] . It is assumed that they are born in the ventricular zone like the 
other GABAergic cell types of the cerebellum, although direct evidence for this is 
lacking. Like the glutamatergic populations of the CN, GABAergic neurons arise in 
a discrete, early temporal window of cell production (E10.5–E11.5 in mouse) [21] 
followed by other GABAergic interneurons [74]. In contrast to these later born cell 
types, both PCs and GABAergic CN neurons express Neurog2. Irx3 immunoposi-
tive cells are evident in the ventricular zone from E10.25 to E12.5, the NTZ at E13.5 
and by E15.5 the cells have migrated into an intermediate zone outside the NTZ [66, 
67]. Irx3 expression persists in the sey/sey (“small eye” pax6 null) cerebellum con-
firming that the specification of GABAergic and glutamatergic neurons is indepen-
dent of each other.

 Other GABAergic Neurons

Ventricular zone progenitors require the expression of Ptf1a for GABAergic speci-
fication, rather than defaulting to a granule cell fate [55, 64]. Within the Ptf1a ven-
tricular zone, combinatorial gene expression demarcates discrete germ zones that 
are thought to give rise to the different types of interneurons [66, 74–80]. Thus, for 
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example, Neurog1 and Neurog2 expression defines subsets of the Ptf1a+ VZ 
population.

However, this topographic explanation of diversity is complicated by evidence 
that proliferation continues within a single population of Pax2+ precursors from the 
ventricular zone [81] that persists in the prospective white matter well into postnatal 
development in mouse. Heterotopic and heterochronic grafting experiments have 
found that Pax2 progenitors generate all the remaining inhibitory interneurons [81, 
82], including Neurog1 (Ngn1)-positive interneurons of the CN, which are born at 
E17.5  in mouse [83]. Mutation of PC progenitor transcription factors Olig2 and 
Gsx1 disrupt the production of Pax2 lineages suggesting that the latter is derived 
from the former in development [84]. The origin and development of the various 
types of glycinergic neurons in the CN have yet to be characterised.

 Nucleogenesis and Cell Migration

The different developmental origins of different types of CN neurons requires that 
cells recognise each other and assemble nuclei distant to their origins. A clear wait-
ing period at the NTZ when GABAergic projection neurons remain segregated from 
glutamatergic neurons indicates that this assembly is an active and temporally regu-
lated process [21]. However, how nucleogenesis — the migration, organisation and 
synaptogenesis of CN neurons – is organised is unknown. Clearly, either intrinsic 
programming or cues in the surrounding environment or a combination of both will 
be key factors in this developmental process.

For rhombic lip derivatives, unipolar neuroblasts move within a subpial stream 
towards the NTZ guided by both diffusible netrin and slit [71, 72] (NTZ); however, 
the cues that determine the position of the NTZ itself are unclear. One possible 
determinant is the underlying axon scaffold of the fasciculus uncinatus, to which 
first-born CN cells then contribute [69, 71]. Changing the fate of CN neuroblasts 
blurs the boundaries between distinct populations in the NTZ but does not compress 
or expand the map of presumptive CN. Thus, when either Lhx9 (lateral CN in 
mouse) is overexpressed in chick [69] or Tbr1 knocked down in mouse [73], CN 
neuron number remains similar but boundaries are less discrete. From the NTZ, 
cells are then incorporated into the white matter through what might constitute an 
active radial migration or a passive translocation as a consequence of the overall 
pattern of cerebellar morphogenesis [62, 65].

Evidence in favour of radial migration being a component of nucleogenesis 
comes from the analysis of the Reeler mouse. Pax6/Reelin-positive neuroblasts 
migrate from the rhombic lip and at least some go on to become Tbr2-positive CN 
neurons. The Reeler mouse has disrupted CN architecture; however, the initial tan-
gential migration of rhombic lip derivatives to the NTZ is normal [73].
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 Evolution and the Diversification of Cerebellar Nuclei

While some aspects of the cerebellar circuit are among the most evolutionarily con-
served across vertebrates, cerebellar nuclei are relatively variable in composition 
[85]. There is some debate over whether an organism is considered to have cerebel-
loid structure if they lack CN, since it is these cells that form the dominant output 
[86]. For example, teleost fish have no white matter or CN. Instead, their PCs proj-
ect to eurydendroid cells, which then project to other parts of the brain. However, 
eurydendroid cells also receive inputs from granule cells via parallel fibres and are 
found within the granule cell layer and so are not homologous to CN projection 
neurons in terms of inputs [87, 88].

The replacement of CN by eurydendroid cells appears to be a ray-finned fish 
adaptation as there is evidence for a single CN in the shark [89]. CN are absent in 
Lampreys, where the cerebellum is both structurally [90] and transcriptomically 
[91] absent . Across fish species, the medial and dorsal octavolateral nuclei receive 
inputs from lateral line systems and are involved in spatial calculations that are 
analogous to those carried out in the cerebellum. It seems conceivable, though yet 
to be proved, that these may be considered as ontological homologues of CN [92].

Like sharks, anamniote amphibians have a single CN [90]; however, the number 
and diversity of CN dramatically increases in amniotes. The diversity of subnuclear 
compartments makes definitive designation of cerebellar nuclei somewhat unreli-
able. It is broadly accepted that there are two major CN in birds [20, 93] and three 
major sets of CN in rodents: the medial, interposed, and lateral [20, 94, 95]. In cats, 
rabbits and primates, there are four major CN: the medial or fastigial nucleus; the 
anterior and posterior interposed; and the lateral or dentate nucleus. Each of these 
nuclei can be functionally further subdivided such that complexity of CN organisa-
tion is a marked feature of mammalian brains [16]. This systematic variation in 
organisation suggests that comparative studies may offer an important insight into 
how a common repertoire of CN neuronal types is adapted to build a diversity of CN 
structures.

 Cerebellar Nuclei and Disease

The relatively recent discoveries of the developmental lineages of CN neurons high-
light previously unexplored relationships in cerebellar disorders and disease. 
Glutamatergic projection neurons are formed from Atoh1 progenitors that not only 
generate granule cells but also neurons in the pons, vestibular and auditory systems 
of the hindbrain [59, 96]. GABAergic neurons share a progenitor transcriptional 
profile with auditory nuclei and, perhaps most prominently, the inferior olive [55].

This is particularly significant in that developmental disorders where cerebellar 
nucleus exclusively malformed have not been reported. Congenital dysplasia of the 
dentate and olivary nuclei (DOD), though rarely recorded [97], can sometimes be 
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detected as a minor pathology of more extensive developmental defects (Table 1). 
Though pathogenesis may differ across different forms of DOD, it is interesting to 
note that many of the below conditions have pathologies of the inferior olive too. 
While the correlation in pathologies could be linked by lineage, the possibility of 
retrograde degeneration of the cerebellar nucleus as a result of inferior olive dyspla-
sia cannot be discounted. Similarly, the possibility that the modularity of the 
cerebellar- inferior olive closed loop extends to a single cell level [98] means that 
heavily interconnected microzones might suffer a conductive degeneration when 
any element of the system is disrupted.

While DOD might represent a failure of Ptf1a lineage development, pontocere-
bellar dysplasia might conversely reflect a dysgenesis of Atoh1 lineage neurons, 
affecting both precerebellar and granule cell populations in addition to portions of 
the dentate CN. In both cases, the spectrum of associated phenotypes raises the pos-
sibility of a developmental origin within the specification or maturation of specific 
populations of derivatives.

 Future Perspectives on Cerebellar Nucleus Development

In recent years, significant progress has been made in regard to understanding both 
the types and the development of the CN neurons. Despite this, some key questions 
about the specification and lineage of CN neuronal types remain unanswered. A 
defining feature of development is that cells transit through the NTZ, yet nothing is 
known of the factors that regulate nucleogenesis. Physiologically, models of cere-
bellar function increasingly recognise how plasticity and modulation within the CN 
by mossy fibre and climbing fibre collaterals place these cells at the heart of cerebel-
lar networks [45, 118].

Similarly, there are relatively few reports that highlight differences in cell types 
across the different CN. For example, Bagnall et al. [15] identified projections that 
are restricted to the fastigial CN, while molecular and cellular analyses point to 
underlying temporal cues that may explain how different nuclei are formed [69, 73].

Finally, how the variable distribution of the five basic CN cell types across a 
diversity of cerebellar nuclei is specified, and how they develop a network of intra-
nuclear connectivity are key developmental questions. Given that different densities 
of the same CN cell types are found across the already diversely shaped CN, and 
that the various CN have been found to be involved with wide ranges of motor con-
trol, from eye blinks to posture, it may be that it is patterns of connectivity and 
plasticity that are key to generating an assortment of functions. The answers to these 
questions will be of huge significance for functional models of the cerebellar net-
work. They may also point towards new landmarks for the identification of disease 
processes in the cerebellum. This somewhat neglected population of brain cells is 
poised at a threshold of new understanding that offers the promise of new perspec-
tives on both how the cerebellum works and its clinical vulnerabilities.
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The Role of Non-coding RNAs 
in Cerebellar Development

Maryam Rahimi-Balaei, Miguel Ramirez, Ishita Gupta, and Daniel Goldowitz

Abstract Since the sequencing of the human and various mammalian genomes, it 
is clear that there are far too few protein-coding genes to specify and coordinate the 
complex series of developmental events that results in a mature brain. Non-coding 
RNAs (ncRNAs) are seen as a fount of transcriptional richness that can regulate 
gene expression in time and space. Together, protein-coding RNAs and ncRNAs can 
reproducibly replicate a formed and functioning brain. In this chapter, we focus on 
the roles of three dominant species of ncRNAs – enhancers, long non-coding RNAs, 
and microRNAs – in driving the development and function in the mouse cerebellum.

Keywords Non-coding RNAs · Enhancer RNA · MicroRNA · Long non-coding 
RNA · Cerebellum · Gene regulation · Development · Mouse

 Introduction

Our laboratory’s enduring interest is in the genetic architecture of brain develop-
ment with the cerebellum as the proxy for the overall brain. We have approached 
this from the analysis of single gene mutations in mice [1] to whole transcriptomes 
using microarray technology (http://www.cbgrits.org/) [2]. However, we are acutely 
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aware that much of gene regulation, particularly in development, occurs via the 
~98% of the genome much of which is populated by DNA that specifies non-coding 
(nc) RNAs [3]. To approach this relatively unexplored area in brain development, 
we were invited to join the RIKEN FANTOM5 project (http://fantom.gsc.riken.
jp/5/) where we submitted replicate mouse cerebellar samples (as we had done for 
cbGRiTS [2]) over embryonic ages, every 24 h from embryonic day 11 (E11) to E18 
and every 72 hours from postnatal 0 to postnatal day 9 [4].

The FANTOM5 consortium used HeliScopeCAGE technology which combines 
the Cap Analysis of Gene Expression (CAGE) protocol and next-generation Helicos 
sequencing to produce direct, high-precision measurement of transcription based on 
5′ end sequence of mRNA [5]. Using their deepCAGE technology, we were able to 
see a full genome read-out of transcription start sites, not only for protein-coding 
regions, but the far more abundant non-coding regions of the genome as well [6].

The FANTOM5 dataset is a rich source for defining ncRNAs. Several high- 
profile publications have provided atlases of enhancer(e)RNAs [7, 8], micro(mi)
RNAs [9] and long non-coding(lnc)RNAs [10]. The emerging picture of these 
ncRNAs is that they are developmentally relevant, particular to the brain. Now with 
deepCAGE data, we have an unparalleled look at the role of non-coding elements 
and mammalian cerebellar development.

Given the data that has come from FANTOM5, we have a unique opportunity to 
explore the role of ncRNAs in cerebellar development. The cerebellum (or “little 
brain”) is an excellent placeholder for the brain at large – with a limited number of 
cell types, defined epochs of development for each of the cell types, and unusually 
large numbers of granule cells (it has been estimated that granule cells compose 
about 50% of the neurons of the developed mammalian brain; a great resource for 
biochemical and molecular studies). Previously, we had taken a gene-at-a-time 
approach and made nice headway with specific genes such as Atoh1 [11] and Pax6 
[12]; but with the advent of major advances in high-throughput microarray and flu-
idic technologies, bioinformatics and functional genomics, a collaborative group of 
a few labs can do large-scale analyses to reveal the function of ncRNAs. From a 
human health point of view, it is clear that statistically significant signals from 
Genome Wide Association Studies (GWAS) identify disease loci that largely point 
to non-coding parts of the genome [13] and of particular relevance are developmen-
tal neurological conditions (e.g., autism and schizophrenia) [14]. FANTOM5 work 
has found that disease-associated SNPs are more common in regulatory regions 
than in exons [7] and an “enrichment of conserved lncRNAs” are highlighted in 
GWAS traits [10]. Other recent work has implicated lncRNA [15] and miRNA [16] 
in autism spectrum disorder.

In this chapter, we explore a substantial part of the 98% of DNA, much of which 
provides the template for ncRNAs. We focus on the three major types of ncRNAs 
where there is mounting evidence for their importance in brain development and 
disease. We hope that this chapter will encourage further studies on ncRNAs (and 
their cognate DNA sequences) which will be important to understanding gene regu-
lation in cerebellar development and providing candidate targets to treat 
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neurodevelopmental abnormalities. This will set the stage for mechanistic 
approaches to study how ncRNAs control the development of neural tissues.

 Enhancer RNAs

The transcription of ncRNAs, termed enhancer RNAs (eRNAs), has typically been 
found to occur at enhancer elements. Enhancers are non-coding regulatory sequences 
located distal to promoters that serve as binding sites for transcription factors (TFs) 
and result in the activation of target gene expression. Enhancers function as regula-
tors of tissue-specific and cell type-specific gene expression during brain develop-
ment [17]. These sequences serve as docking sites for neural-specific lineage-defining 
TFs which regulate cell identity and differentiation [18–20]. eRNA transcription is 
highly correlated with markers of enhancer activity such as enhancer- associated 
post-translational histone modifications (H3K27ac and H3K4me1), open chromatin 
conformation, TF binding and the recruitment of transcriptional cofactors [7, 8, 
21–23]. The expression eRNA is also positively correlated with the level of tran-
scription at proximal promoters and putative target genes. In the context of brain 
development, eRNA transcription is highly tissue-specific and can serve as a marker 
of cell state [8]. Transcribed enhancer (TE) elements are enriched for cell type- and 
temporal-specific transcription factor binding sites of key regulators of cell differ-
entiation and specification [7]. The importance of these eRNAs in human health and 
development is highlighted by the enrichment of disease-specific variants within 
these sequences from a broad range of diseases including psychiatric and neurologi-
cal disorders [24]. Collectively, this evidence supports the view that eRNA tran-
scription is a robust signal of enhancer activation and plays a role in the regulation 
of gene expression in the brain.

During cerebellar development, enhancer sequences exhibit temporally specific 
activity and regulate the expression of genes critical for various stages of neuronal 
development [25–27]. Previous examinations of enhancer activity genome-wide 
have identified temporally specific open chromatin regions between postnatal and 
adult cerebella and verified that many of these regions function as neuronal enhanc-
ers using H3K27ac chromatin immunoprecipitation followed by sequencing (ChIP- 
seq), reporter gene assays and CRISPR-mediated activation [25]. Additionally, the 
open chromatin landscape has been assessed during embryonic and postnatal cere-
bellum development using single-nuclear ATAC-seq (snATAC-seq) which provided 
a comprehensive atlas of predicted regulatory sequences at cell-type resolution [26]. 
Recently, our lab has provided a novel view of active enhancers during embryonic 
and early postnatal development using ChIP-seq of enhancer-associated histone 
marks H3K27ac and H3K4me1 [27]. Our study identified developmental enhancers 
with activity temporally specific to embryonic or postnatal development. These 
enhancers were predicted to regulate target genes by correlating H3K27ac ChIP-seq 
signal with gene expression. Clustering of gene targets revealed spatially restricted 
expression patterns, indicating cell type-specific expression regulation. Functional 
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analysis of these target genes indicated that enhancers regulate processes spanning 
several developmental epochs such as specification, differentiation and maturation. 
The results of these analyses were utilized to discover TFs with novel functions in 
the context of cerebellar development. For example, Bhlhe22 is a target gene pre-
dicted to be downstream enhancers with temporally specific activity during postna-
tal development. Using immunofluorescent staining, we identified Bhlhe22 
expression in postnatal differentiating granule cells migrating from the external 
granular layer (EGL) to the internal granular layer (IGL). Knockdown of Bhlhe22 
expression in primary granule cell cultures revealed that Bhlhe22 regulates postna-
tal granule cell migration. As this dataset is a valuable resource to the cerebellar 
research community, the results of our analysis is easily accessible online in the 
Developmental Cerebellar Enhancer Atlas (https://goldowitzlab.shinyapps.io/devel
oping_mouse_cerebellum_enhancer_atlas/), where our dataset can be queried, 
curated and exported by the cerebellar research community.

In the context of the transcribed enhancers (eRNAs) in the developing cerebel-
lum, they have been quantified using cap analysis of gene expression followed by 
sequencing (CAGE-seq) as part of the FANTOM5 project. CAGE-seq, which 
detects newly transcribed or nascent RNA, is typically used for quantifying eRNAs 
genome-wide, as they are expressed at low abundance (relative to genes) and are 
relatively unstable and have a high turnover rate. The FANTOM5′s large-scale effort 
found that neural tissues and neurons have a high abundance of cell-specific 
enhancer transcription [7]. Indeed, studies in neurons are prominent among those 
contributing to our understanding of enhancers and eRNA [22, 28–31]. Our lab took 
part in this effort, submitting mouse cerebellar samples from 12 stages throughout 
embryonic and early postnatal cerebellar development.

We have conducted an analysis of this cerebellar CAGE-seq eRNA dataset, with 
the goal of identifying transcribed enhancers active during cerebellar development 
and characterizing the molecular mechanisms they regulate during embryonic and 
early postnatal stages. In combination with enhancer-associated histone modifica-
tions H3K4me1 and H3K27ac, we identified 1665 robust cerebellar transcribed 
enhancers and their respective eRNAs. Many of these cerebellar transcribed enhanc-
ers overlapped with cerebellar enhancers identified in previous studies as well as 
with enhancer sequences validated using transgenic reporter assays from the VISTA 
enhancer database. Temporal analysis of eRNA transcription, as a proxy for 
enhancer activity, revealed clusters of enhancers that peak in activity during either 
embryonic or postnatal stages, highlighting an importance for temporally specific 
events. A comparison with tissues from the FANTOM5 database suggested that 
robust cerebellar TE transcription is specific to the cerebellum. This indicates that 
eRNA transcription may be critical for fine-tuning expression for developing cells 
in the cerebellum. Putative gene targets were determined by correlating TE tran-
scription with expression of cis-located genes. Functional analysis of putative target 
genes identified that TEs were enriched for neurogenesis, neuronal differentiation, 
neurite growth and synapse development. In comparison to non-transcribed enhanc-
ers (H3K4me1+ and H3K27ac+), TEs were more highly enriched for biological 
processes specific to cells in the developing brain; while non-transcribed enhancers 
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regulate genes more highly enriched for nonspecific constitutive processes. The 
expression of eRNAs were validated for a transcribed enhancer predicted to regulate 
Nfib, a gene critical for the postnatal differentiation of granule cells. Fluorescent in 
situ hybridization of eRNAs transcribed from putative Nfib enhancers identified 
colocalization with Nfib transcripts and expression within differentiating granule 
cells. Overall, our investigations identified cerebellar TEs with temporally and 
tissue- specific transcription and the results of our analysis suggest that TEs regulate 
processes critical for neurogenesis and differentiation the development of the 
cerebellum.

Given that previous studies have identified a tight association of eRNA transcrip-
tion with putative target genes, future studies should focus on validating the expres-
sion of these eRNAs and their regulatory potential. eRNAs can be detected using 
FISH as a way of validating, sequencing data and identifying the cells in which they 
are transcribed, as demonstrated in the postnatal cerebellum [27]. To explore 
whether eRNAs are critical for the regulation of putative target gene expression, 
several studies have found success utilizing RNA interference, antisense oligonu-
cleotides and genome editing to perturb eRNA function and measure ensuing phe-
notypes [32–35]. One important consideration is that eRNAs have been found to 
regulate genes in trans, emphasizing the need for RNA sequencing to identify 
downstream targets. Cerebellar-specific eRNAs, as identified in our recent analysis 
and by Yao et al., would be prime candidates for validation as their specificity sug-
gests a regulatory role important for cerebellum development [31]. As transcribed 
enhancers and changes in eRNA expression have been associated with neurological 
and psychiatric disorders [24], characterising cerebellar eRNAs may provide insight 
on the genetic origins of cerebellar phenotypes in these disorders. Finally, given 
recent evidence that enhancer activity and open chromatin conformation is cell 
type-specific during cerebellar development [26, 27], single-cell sequencing of 
eRNAs could reveal a similar pattern for transcribed enhancers. The recent develop-
ment of C1 CAGE has made this possible, which detects eRNA transcription start 
sites in single cells [36].

Many studies have identified the importance of transcribed enhancers in the con-
text of cell specification and differentiation (myogenesis [37, 38], osteoclast devel-
opment [39], T-cell and B-cell differentiation [40, 41], cardiac development [42] 
and embryonic stem cell differentiation [8]), thus identifying cell-specific eRNAs 
may provide further insight to the regulatory mechanisms driving the development 
of the various cell lineages in the cerebellum.

 Long Non-coding RNAs

In recent years, sensitive RNA-based sequencing technologies have emerged to give 
rise to unbiased genome-wide transcriptomics, like ENCODE [43] and FANTOM5 
[44, 45]. Such datasets offer an opportunity to study the ncRNAs involved in the 
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regulation of gene expression, like in the development of the central nervous sys-
tem (CNS).

Among the many categories of regulatory ncRNAs, the class of lncRNAs remains 
largely heterogeneous and uncharacterised in their function. They are defined as 
long (>200 nucleotides) RNAs with no protein-coding potential. They are 5′ capped, 
poly-adenylated, undergo splicing and are derived from genomic regions that can be 
antisense, intronic, intergenic, or overlapping protein-coding loci. The proportion of 
non-protein-coding DNA seems to increase with developmental complexity [46]. 
LncRNAs have diverse interactions with DNA, RNA, and proteins which aligns 
with potential function in organizing and regulating cellular processes [47]. This 
has led to the idea that gene regulation by lncRNAs might have been important in 
giving rise to the diversity of cell differentiation programmes underlying develop-
ment in multicellular organisms [48, 49]. As expression of mammalian lncRNAs 
shows greater tissue specificity than that of coding genes [50], it seems likely that 
they might contribute to tissue-specific regulation. As part of FANTOM5, studies by 
the RIKEN group have created a massive atlas of lncRNAs in humans [10] and 
again showed strong support for tissue-specific roles [6].

Expression of lncRNAs in the mammalian brain is impressive – it has been esti-
mated that most of the lncRNAs are expressed in the mouse brain [47] and about 
40% in the human brain [51, 52]. LncRNAs have been shown to be vital for neuro-
nal differentiation, neuronal cell maintenance and neurogenesis [53]. Investigating 
the function of lncRNAs in brain development is thus an exciting direction.

Molecular patterning and regulatory pathways in CNS development have an 
important temporal component that dictates the sequence of events required for cor-
rect development. This stresses the importance of understanding the genetic under-
pinnings of critical time windows. To this end, transcriptomic expression data across 
a time course can help us capture gene regulatory elements like lncRNAs with 
developmentally crucial dynamics. The Goldowitz group participated in the interna-
tional FANTOM5 consortium led by RIKEN to create a transcriptomic expression 
dataset for the cerebellum; whole cerebellar tissue was collected from 12 develop-
mental timepoints (three biological replicates per timepoint) – embryonic days (E) 
11.5 to E18.5 and postnatal (P) days 0, 3, 6 and 9 – and processed for cap analysis 
of gene expression (CAGE) sequencing [44, 54]. With CAGE, every RNA molecule 
that is 5′ capped is captured and sequenced at a single-nucleotide resolution towards 
its 5′ end. Once mapped back to the genome, this gives us not only the transcrip-
tional expression levels, but also transcriptional start sites, or promoters, due to the 
5′ sequence information [54].

To test the hypothesis that there is cerebellum-specific lncRNA involved in its 
development, we utilised the FANTOM5 time-course transcriptome to construct a 
catalogue of lncRNAs that are highly and specifically expressed in the cerebellum.

Out of a total of over 150,000 unique transcripts identified by the RIKEN 
FANTOM5 consortium across all tissue and cell samples, the subset that is robustly 
expressed in the cerebellar time-course samples consists of 16,138 unique transcript 
entries. To distinguish a subset of these transcripts that are identified as lncRNAs, 
we used the GENCODE atlas of annotated mouse lncRNAs (version M16) 
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consisting of 13,154 unique transcripts (removing splice variants). GENCODE 
assigns the biotype “lncRNA” based on a combination of factors – genomic location 
such as intergenic, intronic, or antisense together with the absence of an open read-
ing frame (ORF), experimental data and/or literature showing no protein-coding 
power [55–57]. Overlapping this list of GENCODE annotations with the list of 
16,138 expressed transcripts in the cerebellum time course, we identified 180 tran-
scripts to be lncRNAs expressed in the developing cerebellum. Z-score is a widely 
used metric for tissue specificity [31, 58]. To capture cerebellum tissue-specific 
transcripts, Z-scores were generated per transcript based on the average expression 
of the transcript across all 399 mouse samples submitted to the FANTOM5 consor-
tium, spanning 271 tissue types and 128 primary cell types, including the 12 cere-
bellar timepoints as independent samples [44, 59]. A transcript with a Z-score of 
3 in E11.5 cerebellum, for example, would mean it is expressed in E11.5 cerebellum 
at a level that is three standard deviations above its most expected expression value 
across tissue types. Of the 180 lncRNA transcripts, only the ones having a 
Z-score ≥3 in at least one of the 12 cerebellar timepoints were retained; their high 
expression values at those timepoints being cerebellum-enriched with a p-value 
<0.003. A caveat of FANTOM5 is that the tissue types apart from the cerebellum are 
mostly non-neuronal, so we are unable to compare the cerebellum to other parts of 
the brain.

This analysis resulted in a list of 66 hits that can be ranked based on the average 
or age-specific expression levels, or alternatively the average or age-specific 
Z-scores (index of tissue-specificity). For our interests, this list was ranked in 
decreasing order of average expression level across the cerebellar time course 
(Table 1).

Based on a defined criteria, like expression levels and/or tissue-specificity in 
distinct time windows of expression, candidate lncRNA(s) can then be validated 
with spatial characterisation to give a cellular and molecular context to a putative 
function in cerebellar development.

 The Universe of MicroRNAs

 miRNAs in Cerebellar Development

The miRNAs are single-stranded ncRNAs with the length of 18 to 25 nucleotides 
[60, 61]. miRNAs, like other members of various classes of ncRNAs, are responsi-
ble for controlling a wide range of cellular functions such as apoptosis, cell prolif-
eration, differentiation, metabolism, stem cell renewal and stress response [62, 63]. 
During miRNA biogenesis, primary (pri-) miRNAs are transcribed by RNA poly-
merase II from intergenic, intronic and exonic regions within the genome to produce 
a hairpin structure termed as pri-miRNA. Subsequently, during maturation of miR-
NAs, the RNase III enzyme Drosha and its double-stranded RNA-binding partner 
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protein DGCR8 (aka Pasha, in drosophila) are required to cleave pri-miRNA to 
precursor (pre-) miRNA, which are translocated by Exportin-5 (XPO5) into the 
cytoplasm. Finally, another RNase III enzyme called Dicer dices pre-miRNA to 
mature miRNA [61]. A complex of the RNA-induced silencing complex (RISC) and 
mature miRNA bind to the target mRNA, mostly at the 3′-untranslated regions (3′ 
UTR). miRNAs post-transcriptionally control gene expression and repress protein 
production by destabilizing the mRNA (mRNA deadenylation/decay) or transla-
tional silencing/repression of target mRNAs by interaction with partially mis-
matched sequences in their 3′ UTR [61]. Also, it has been found that one miRNA 

Table 1 Highly expressed lncRNAs enriched during cerebellar development

Robustly expressed lncRNAs in the FANTOM5 cerebellar time course were filtered with the crite-
ria of Z-score ≥3 in at least 1 out of 12 cerebellar timepoints and considered enriched for that 
corresponding timepoint. This analysis yielded 66 hits that were ranked according to their average 
expression levels across the 12 cerebellar timepoints, shown here in this table
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may control hundreds of targets, and one gene (e.g., developmentally relevant 
genes) may be regulated by several miRNAs [64].

Advances in the study of miRNAs have been immeasurably helped by the use of 
traditional and newer and more advanced molecular methods [see [65] and Table 2]. 
To appreciate miRNA activity at the single cell level, which is critical in the analysis 
of a cellularly complex tissue such as the brain, one needs to use modern anatomical 
methods. One promising approach that has been recently employed is miRNAscope 
in situ hybridization [66, 67]. An image of the developing cerebellum is shown in 
Fig. 1 using this method. In the nervous system of developing mouse and human, 
the spatiotemporal expression pattern of miRNAs has been demonstrated [9, 68]. 
An assessment of miRNA expression between different brain regions (prefrontal 
cortex, hippocampus, and cerebellum) indicates an increase in differentially 
expressed miRNAs between brain regions over developmental time [69]. From the 
perspective of this chapter, we are interested in studies that have focused on finding 
miRNAs enriched in cerebellar development in comparison to other brain subre-
gions [70, 71].

To understand the function of miRNAs, the critical role played by them in devel-
opment is demonstrated by the Dicer-knockout mice, which exhibits an early embry-
onic lethality at E7.5 [20]. Giraldez et al. evaluated the role of miRNAs in brain 
formation by producing maternal-zygotic dicer mutants and blocked all miRNAs in 
zebrafish which resulted in defects in brain morphogenesis, somitogenesis, and 
heart development [72]. During brain development, the subdivision of the vertebrate 
CNS appears under the control of miRNAs. The organizing activity and progenitor 
state of the midbrain–hindbrain boundary (MHB) are co-regulated by a single 
miRNA, miR-9, during late embryonic development and targets several components 
of Fgf signaling pathway [73]. In contrast, miR-10 is as a caudalizing factor, and it 

Table 2 Experimental techniques to detect miRNAs

Method Comments References

Northern blotting Traditional technology, used for detecting mature 
and precursor miRNAs

[106, 107]

Real-time qPCR Gold standard technique, highly sensitive [108–110]
Microarray Rapid but cost very high, hard to detect too short 

or low miRNAs
[111, 112]

miRNA sequencing Genome-wide profiling and analysis of known, as 
well as novel, miRNA variants

[113, 114]

Nanoparticles (gold, silver, 
magnetic, and quantum dots)

Pros: Powerful versatility of cellular transfection, 
excellent photostability and low immunogenicity
Cons: Inherent cytotoxicity and self-aggregation 
inside living cells

[115–118]

Nucleic acid amplification 
techniques

Detect low content of miRNAs [119]

miRNAscope in situ 
hybridization (ISH) assay

Highly sensitive, spatial assessment of miRNAs 
on tissue sections

[66, 67]

miRNA luciferase reporter 
assay

Gold standard of the in vitro assays to validate 
miRNAs and their specific target

[120–122]
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Fig. 1 miRNAscope ISH assay. Using miRNAscope™ HD (RED) Assay a probe to U6miRNA 
(SR-RNU6-S1, Cat# 727871, Advanced Cell Diagnostics) was used on P0 (postnatal day 0) mouse 
cerebellum (C57BL6/J). As expected, the U6miRNA is abundantly expressed in almost all nuclei

is expressed in hindbrain and spinal cord while it is absent in rostral regions [74]. 
miR-10 has been shown to downregulate key midbrain markers as Otx2 and to 
upregulate hindbrain markers caudal to mid-hindbrain boundary (MHB) as Gbx2 in 
human in neural progenitor cells (NPCs) [75]. The expression pattern of miR-9 and 
miR-10 at the isthmic organizing center (located at the MHB) reminds one of the 
expression patterns of Otx2 and Gbx2. These two transcription factors meet to posi-
tion MHB and direct the development of the midbrain and anterior hindbrain [76, 
77]; suggesting as noted above that miR-9 and miR-10 are similarly involved.

The requirement of miRNA machinery in early cerebellar development in the 
mouse has been explored using the conditional ablation of DICER targeted to the 
cerebellar anlage through the use of Wnt1-Cre. This conditional deletion of DICER 
at the midbrain-hindbrain boundary around E12.5 results in the elimination of sev-
eral miRNAs in the midbrain and rostral hindbrain and dramatic malformation of 
the tectum and cerebellum [78]. The most dramatically reduced miRNAs were 
miR-9, miR-124, and miR-280 in the midbrain and rostral hindbrain.

The expression profiling of miRNAs in isolated cerebellar cells has provided a 
view as to changes in miRNA populations over development. Pieczora et al. profiled 
miRNAs expressed in isolated rat Purkinje cells using laser microdissection at post-
natal development and found differentially expressed miRNAs which show up- and 
down-regulation at postnatal day (P) 9 to P30 [79]. This may be indicative of the 
developmental events which largely occur during the first three postnatal weeks of 
life, when Purkinje cells develop dendrites and establish synaptic connections [80]. 
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In ongoing research from our lab, miRNA expression has been profiled at early 
postnatal days in isolated cerebellar granule cells. During these times, granule cells 
engage in massive cell proliferation, migration and differentiation/maturation. Our 
primary findings indicate a dramatic increase in differentially expressed miRNAs 
(up- and downregulated) between early and later postnatal timepoints which align 
with a dynamic role for miRNAs during development.

The importance of miRNAs in the development of three principal cerebellar 
cells, Purkinje cells, granule cells and astroglia, have been demonstrated. For 
Purkinje cells, work by Schaefer et al. using a dicer conditional null driven by a 
Purkinje cell-specific Pcp2-cre resulted in Purkinje cell loss and development of 
ataxia [81]. For granule cells, Ferretti et al. identified a role for miRNAs in Sonic 
Hedgehog (SHH) signalling in cultured granule cell precursors [82]. To turn on 
SHH signaling, SHH binds to its receptor Patched 1 (PTCH1) which results in 
PTCH1-mediated inhibition of SMO (Smoothened; a G-coupled transmembrane 
receptor) to be lifted, allowing for constitutive SMO activity and associated down-
stream signaling (including Gli; Zinc Finger family protein, glioma-associated 
oncogene) [83]. Ferretti et  al. demonstrated that miR-125b, miR-324-5p and 
miR-326 antagonize this major mitogenic stimulus to granule cells, Sonic Hedgehog, 
by targeting Smo and Gli to promote cerebellar granule cell differentiation [82]. 
Furthermore, a study by Ma et al. in granule cell precursors has shown that miR-9, 
under N-myc control, is implicated in granule cell proliferation [84]. Finally for 
astroglia, Tao et al. and Kuang et al. targeted Dicer deletion in astrocytes using two 
different conditional Gfap-cre lines of mice [85, 86]. They found an early and severe 
defect in Bergmann glia that is followed quickly by major deficits in cerebellar 
morphogenesis [85] or at later postnatal times widespread granule cell loss with a 
degeneration of Purkinje cell dendrites [86].

 miRNAs Expression in Cerebellar-Related Disorders

The deregulation of miRNA expression has been reported in a wide range of 
cerebellar- related disorders, such as medulloblastoma, a variety of ataxic syn-
dromes, autism spectrum disorder, and Rett syndrome [87–91].

The most extensively studied aspect of miRNAs in cerebellum is the association 
of miRNA expression and medulloblastoma, the most common malignant child-
hood brain tumours that arise from cerebellum and hindbrain [88–90]. Expression 
profiling of miRNA in human reveals that miRNAs are differentially expressed in 
medulloblastoma compared to healthy tissue, indicating a potential involvement of 
miRNAs in the etiology of disease. In addition, miRNA profiling has identified 
distinct miRNA signatures associated with each molecular subtype of medulloblas-
toma, alongside unique mRNA markers that would predict clinical outcome [90, 
92]. Hence, miRNA profiling is used for molecular classification of medulloblas-
toma to inform risk stratification and therapeutic intervention [93–98].
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Spinocerebellar ataxia type 3 (SCA3) is caused by a polyglutamine expansion in 
the deubiquitinating enzyme Ataxin-3, and this gene targets miRNAs mir-9, 
mir- 181a, and mir-494. In SCA3, these miRNAs are dysregulated. To validate a 
miRNA approach to therapeutic intervention targeting the 3′UTR of human ATXN3, 
an artificial miRNA was injected into the region of the cerebellar nuclei. This treat-
ment reduced ATXN3 expression, which did not alter the levels of E4B, a well- 
known Ataxin-3 interacting protein, nor did it lead to gross changes in the 
morphology of cerebellar nuclei neurons [99, 100]. In SCA7, which is caused by a 
CAG repeat expansion in the ATXN7 gene-coding region, the altered expression of 
circulating miRNAs, hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-
miR- 30b-5p, were explored. From a gene ontological approach, the target genes of 
these miRNAs are enriched in the biological categories of Fas-mediated cell-death, 
heparan sulphate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor acti-
vating protein receptor pathways; all involved in neurological function [101]. In 
Fragile X-Associated Tremor/Ataxia Syndrome, caused by an expanded CGG 
repeat in the FMR1 gene, there is a decrease in miRNA in brain due to a preferential 
binding and sequestration of DGCR8 to the CGG repeat. This appears to be patho-
genic as when DGCR8 is overexpressed in mouse cortical cells or neuronal cells 
lines with the expanded repeat the phenotypes of dendritic pathology and cell death 
are reversed [102].

A role of miRNAs in autism spectrum disorder has been suggested in several 
studies. In the investigation of post-mortem cerebellar cortex of ASD patients, aber-
rant expression of nine miRNAs targeting two well-known ASD genes, neurexin 
(NRX1) and Shank3 mRNA, was identified [75]. Furthermore, lymphoblastoid cell 
lines derived from ASD patients were studied to identify the differentially expressed 
miRNAs and many of differentiated expressed miRNAs were found with neurologi-
cally relevant target genes [103, 104].

In Rett syndrome, the story of miRNAs is different and MeCP2 (methyl CpG 
binding domain protein-2, a silencing factor at methylated DNA sequences) which 
interacts with chromosomal miRNAs in brain and all MeCp2-interacting miRNA 
target genes are inhibited which result in modulation of gene expression [105]. In 
this study, it has been revealed that the inhibition of these target genes caused the 
dysregulation of neurological pathways such as: ligand gated ion channels and 
GABA A receptor activation was inhibited, and carbohydrate metabolism and 
L1CAM interaction pathways were induced.
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Motor Circuit Abnormalities During 
Cerebellar Development
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Abstract The cerebellum controls ongoing motor function and motor learning. 
Therefore, damage to its circuits causes a number of movement disorders such as 
ataxia, dystonia, and tremor. Cerebellar connectivity in both normal and abnormal 
states has been intensely studied. As a result, its anatomy, circuitry, and neuronal 
firing properties are among the best understood in the brain. This knowledge has 
directly facilitated efforts to uncover the mechanisms that cause motor dysfunction. 
Here, we discuss several mouse models of cerebellar disease. We focus on how 
cerebellar development depends on genes and neural activity to assemble circuits 
for proper behavior.
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 Introduction

The cerebellum is best known for its crucial role in controlling smooth, purpose-
ful movements. Cerebellar circuits receive motor planning information from the 
cerebral cortex about the goals and commands of movement in addition to feed-
back information from the brain stem and spinal cord about the sensory conse-
quences of movement execution. This activity within the cerebellum can be 
modified through multiple cellular and molecular mechanisms of synaptic plastic-
ity. The resultant output of cerebellar activity influences descending motor sys-
tems of the cerebral cortex, brain stem, and spinal cord to allow for calibration of 
motor programs that can be initiated and executed without immediate sensory 
feedback. There are currently two general models for how the cerebellum controls 
motor behavior during both ongoing movement (motor coordination) and repeti-
tions of the same movement (motor learning). One model is that cerebellar com-
putations evaluate the accuracy of actions by comparing predicted outcomes of 
intended movements to the outcomes of actual movements and then reduce error 
by providing signals for adaptive corrections [1]. The other model is that the cer-
ebellum participates in the timing of movement rather than error correction [2]. It 
is also possible that the cerebellum performs both functions. Moreover, an emerg-
ing line of investigation suggests a role for the cerebellum in reward processing. 
In all cases, it is not surprising that physical, pharmacological, and genetic insults 
to the cerebellar circuit result in movement disorders, and descriptions of motor 
symptoms after cerebellar damage date back to Flourens [3], Babinski [4–6], 
Holmes [7], and other pioneers in the field [8]. Cerebellar insults typically disrupt 
the coordination and accuracy of movement, conditions cumulatively referred to 
as “ataxia” (Greek, loss of order). Numerous distinct motor symptoms can arise 
from cerebellar damage, including the inability to judge distance or scale during 
target-oriented movements (“dysmetria,” Greek, abnormal measure), oscillatory 
shaking of muscles during movement (tremor), diminished reflexive resistance to 
passive limb displacements (“hypotonia,” Greek, low tone), and impaired produc-
tion of speech (“dysarthria,” Greek, abnormal articulation). Symptoms arise from 
the loss or disruption of normal cerebellar functions, and the ultimate motor 
behavioral consequences may also be due to movement control or compensation 
in a pathological state. Here, we discuss the mechanisms for different manifesta-
tions of cerebellar disease from the perspective of insights gained from mouse 
models as they are currently one of the most common tools used in the study of 
cerebellar disorders. In order to understand the behavioral consequences of the 
diseased cerebellar circuit, we will consider cerebellar structure and development 
in the context of the functional motor system in vivo.
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 Structure of the Cerebellum

The cerebellum is interconnected with the rest of the brain by three pairs of large 
fiber tracts on its ventral surface, the cerebellar peduncles, that are located dorsal to 
the pons and medulla (see chapter “The Embryology and Anatomy of the 
Cerebellum”). Though it is a predominantly continuous structure, there are three 
gross anatomical divisions of the cerebellum: a “wormlike” region along the mid-
line called the vermis (Latin, worm), lateral regions that are relatively enlarged in 
humans called the hemispheres, and an intermediate region called the paravermis. 
The cerebellum comprises a three-layered cortex surrounding an inner core of white 
matter and three pairs of cerebellar nuclei. The sheet of cortex folds as cells prolifer-
ate during cerebellar development into folia and fissures along the anteroposterior 
axis, which form a series of lobules that are evolutionarily conserved and reproduc-
ible in mammals and birds [9]. Based on the work of Olof Larsell, Roman numerals 
are used to identify lobules in the vermis (I–X), whereas the hemispheres comprise 
CrusI, CrusII, lobulus simplex (LS), paramedian lobule (Pml), copula pyramidis 
(Cop), the flocculus (Fl), and the paraflocculus (Pfl). Though lobule form is distinct 
across the anatomical divisions of the cerebellum, they contain the same repeated 
circuit and all the major cerebellar cell types [10–12] (Fig. 1), with the Purkinje cell 
at the center of each circuit. Purkinje cell somata form a monolayer, the Purkinje 
cell layer, across the cerebellar cortex and extend elaborate dendritic arbors into the 

Fig. 1 Architecture of the cerebellar circuit. (a) Mouse brain shown from a lateral view with the 
cerebellum highlighted in color. (b) The basic cerebellar circuit comprises Purkinje cells, granule 
cells, stellate and basket cell interneurons, and the cerebellar nuclei. Afferent information is deliv-
ered to the cerebellum as climbing fibers or mossy fibers. Note that the Purkinje cell is the sole 
output of cerebellar cortex, and the cerebellar nuclei deliver efferent information of the circuit. The 
+ and – signs indicate whether each synapse is excitatory or inhibitory, respectively. For simplicity, 
we have not shown Golgi cells, unipolar brush cells, Lugaro cells, or candelabrum cells. (Modified 
with permission from Ref. [92])
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outermost of the three layers, the molecular layer. Climbing fibers, one of the two 
major afferent pathways to the cerebellum, originate in the inferior olivary nucleus 
of the medulla and form excitatory synapses on the smooth shafts of Purkinje cell 
dendrites in the molecular layer. Mossy fibers, the second major afferent pathway to 
the cerebellum, terminate on granule cells within the third and innermost layer of 
cerebellar cortex, the granule cell layer, and originate from over two-dozen brain-
stem and spinal cord nuclei [13]. These nuclei include the basilar pontine nuclei 
relaying input from cerebral cortex, dorsal nucleus of Clarke, vestibular nuclei, 
cuneate nuclei, and lateral reticular nuclei. Mossy fibers communicate with Purkinje 
cells indirectly through granule cell axons, known as parallel fibers, which ascend 
the granule cell and Purkinje cell layers and bifurcate to form excitatory synapses 
on the spines of Purkinje cell dendrites in the molecular layer. Numerous interneu-
rons are present that influence the activity of local circuits, such as stellate and 
basket cells in the molecular layer and Golgi and unipolar brush cells in the granule 
cell layer. Neuromodulatory afferents also terminate in all three layers of the cere-
bellar cortex and within the cerebellar nuclei to extrinsically influence local activity 
[14, 15]. Purkinje cell axons are the sole output of cerebellar cortex and integrate all 
cerebellar inputs before projecting to the core of the cerebellum to form inhibitory 
synapses on their target cerebellar nuclei neurons. The cerebellar nuclei are the 
main cerebellar efferent pathway to the rest of the brain and spinal cord; however, a 
subset of Purkinje cells projects directly to vestibular nuclei [16]. Despite this rela-
tively simple and repeated cytoarchitecture (Fig. 1), a more complex circuit map is 
revealed by molecular, anatomical, and physiological approaches and by symptoms 
of disease. Subsets of Purkinje cells are divided into a series of reproducible para-
sagittal stripes, “zones,” (Fig.  2) that run along the anteroposterior axis and are 
defined by gene expression patterns [12]. The classical and most thoroughly studied 
molecular marker of zones is known as zebrinII, which is an antigen on the meta-
bolic enzyme aldolase C [17]. The topographic map of zebrinII expression in mice 
has been detailed extensively [18–20]. However, zebrinII is conserved, and its 

Fig. 2 ZebrinII zones (stripes) in the mouse cerebellum. (a, b) Wholemount immunohistochemi-
cal staining of the mouse cerebellum with zebrinII reveals the intricate patterning of the cerebellar 
cortex into parasagittal zones. Roman numerals identify the lobules of the vermis. Pfl parafloccu-
lus, Fl flocculus, LS lobulus simplex, Pml paramedian lobule, Cop copula pyramidis. Scale 
bar = 2 mm. (Modified with permission from Ref. [92])
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general pattern of expression is identical across different taxa [21–27]. ZebrinII-
expressing Purkinje cells alternate with zones that do not express the antigen. 
Together, the two subsets form a striking array of zebrinII- positive and -negative 
zones that are symmetrically distributed across the midline. More than 40 molecular 
markers of zones have been identified [28], including excitatory amino acid trans-
porter 4 (EAAT4), phospholipase C beta 3 (PLCβ3), and gamma-aminobutyric acid 
type B receptor subunit 2 (GABAβR2), which are expressed in zebrinII-positive 
zones, and phospholipase C beta 4 (PLCβ4), metabotropic glutamate receptor 1 
splice variant 1b (mGlurR1b), and neuroplastin, which are expressed in the comple-
mentary zebrinII-negative zones. Bands of zones do not run uninterrupted from 
anterior lobules to posterior lobules, and a unique pattern of zones is observed in 
four domains of the vermis: anterior = lobules I–V, central = lobules VI–VII, poste-
rior  =  lobules VIII and dorsal IX, and nodular  =  lobules ventral IX and X [29] 
(Fig.  2). These domains are also innervated by functionally distinct mossy fiber 
afferents; for example, the spinocerebellar tract projects to the anterior and posterior 
domains, the pontocerebellar tract projects to the central and posterior domains, and 
the vestibulocerebellar tract projects to the nodular domain [12, 30]. These domains 
are not equivalent to the traditional functional compartments known as the spinocer-
ebellum (regulation of muscles, tendons, and joints), cerebrocerebellum (planning 
and initiation of movement), and vestibulocerebellum (body equilibrium and oculo-
motor function). However, there is clearly some overlap in the functional attributes 
of each. These divisions are also reflected by the phenotypes of cerebellar disease in 
naturally occurring mutant mice, which often display differential structural defects 
along the anteroposterior axis [29]. Furthermore, the axon termination patterns of 
mossy and climbing fiber afferents within each of these domains exhibit parasagittal 
zones that have a reproducible anatomical relationship with the zones of their target 
Purkinje cells [31, 32] or the narrower functional microzones [33]. Climbing fibers 
originating from a specific subnucleus of the inferior olive typically terminate in 
one or two of these longitudinal zones [34, 35], and mossy fibers from specific 
sources branch to terminate in multiple longitudinal zones [36–39]. Zones are also 
distinct in their topographically defined Purkinje cell output to specific subnuclei of 
their three target cerebellar nuclei: fastigial (medial), interposed (intermediate; = 
globose and emboliform in primates), and dentate (lateral), each of which has a 
unique efferent pathway to the rest of the brain and spinal cord [30, 40, 41], includ-
ing projections back to the inferior olive to form a patterned cortico-nucleo-olivary 
tripartite loop [42, 43]. Together, units of topographically organized cerebellar 
afferents, their target Purkinje cell zones, and Purkinje cell efferent projections to 
the cerebellar nuclei comprise cerebellar “modules,” the basic functional circuit of 
the cerebellum [44]. Retrograde transsynaptic tracing shows that individual muscle 
groups are linked to specific Purkinje cell zones [45]. Functional mapping of the 
cerebellar circuit using imaging and electrophysiology also exhibits topography 
consistent with the zonal plan [46–49]. Within each zone, receptive fields mapped 
by recording responses to tactile stimuli reveal a “fractured somatotopy” of spino-
cerebellar mossy fibers with multiple sensory representations of body parts in 
mosaic patches [46, 50, 51]. Due to the relatively uniform cytoarchitecture of the 
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cerebellum, it has been thought that these topographical differences in function 
arise due to differences in afferent and efferent connectivity; however, recent evi-
dence suggests that this is also due to other regional variations such as Purkinje cell 
morphology, Purkinje cell packing density, granule cell packing density, neuronal 
soma size, the position of mossy fiber and climbing fiber synapses within their tar-
get layers, distribution of interneurons, intrinsic Purkinje cell firing properties, and 
synaptic plasticity [52]. Distinct computational processes within and between zones 
can potentially arise from variations in the cytoarchitecture and physiology of local 
circuits in these functional compartments. This exquisite organization of connec-
tions and the precise circuitry they form require carefully executed developmental 
programs for proper function and behavior [53]. During this complex coordination, 
there are many opportunities for insults to cause disorders with devastating conse-
quences for motor and even non-motor behavior.

 Development of the Cerebellar Circuit

Due to the cerebellum’s well-understood circuitry and potential roles in develop-
mental and adult-onset diseases, it is an important model for understanding normal 
and abnormal brain circuit map formation [53]. Positional cues must be present to 
set up the patterns of specific lobules in the anteroposterior axis and zones in the 
mediolateral axis. Studies resolving how genes establish the coordinates of this 
functional framework have increased our understanding of the impact of complex 
neurological diseases [12]. The embryonic cerebellum is initially smooth without 
external morphological landmarks, but fissures that distinguish five cardinal lobes 
in the vermis begin to form by late embryonic development, at around embryonic 
day 17 (E17) in mice. Purkinje cells are derived from the ventricular zone of dorsal 
rhombomere 1 from E10 to E13 and migrate along radial glia into symmetrical 
clusters by ~E14. The granule cells are derived between ~E12 and E17 from a ger-
minal zone called the rhombic lip, which produces a specialized transient progeni-
tor layer on the surface of the cerebellum called the external granule cell layer by 
E16.5 [53]. Granule cells are the most numerous cell type in the adult brain. They 
undergo extensive proliferation and are the main driving force for cerebellar growth 
and lobule patterning. During postnatal development, the five cardinal lobes expand 
substantially and fold as they subdivide into the conserved stereotyped lobules, and 
this process (lobulation) is close to complete by postnatal day 14 (P14) in mice, 
although growth and patterning continue until around P21. Genetic cues allowing 
for the precision and reproducibility of lobulation between animals are not fully 
understood but may involve the “anchoring” of Purkinje cells to the future base of 
lobules by their projections to the cerebellar nuclei and the proliferation of granule 
cell precursors mechanically forcing lobule outgrowth [54] under the control of 
Purkinje cell-derived sonic hedgehog (Shh) signals [55, 56] and the function of 
Engrailed homeobox genes (En1/2) [57, 58]. The molecular heterogeneity of 
Purkinje cells may provide a scaffold that guides the patterns of neural circuit for-
mation in the developing cerebellum, which is consistent with evidence that Purkinje 
cell subsets differentially express intrinsic molecular markers as early as E14 
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[59–61], including cell adhesion and guidance molecules [62, 63]. Purkinje cells are 
critical not only for shaping morphogenesis but also for guiding topographic map 
formation. Purkinje cells of similar birthdates may determine the adult patterns of 
Purkinje cell gene expression and restrict the boundaries of zones as the map forms. 
This is accomplished during embryogenesis when Purkinje cell subsets migrate and 
cluster into similar coordinate positions [64]. Afferents arrive in the cerebellum 
spanning mid-embryonic and postnatal development [65] in positions that later cor-
respond to specific lobules, and Purkinje cell cues are thought to provide the scaf-
fold that guides afferents into longitudinal zones following the initial patterning of 
Purkinje cell clusters [53]. Retrograde tracing in fixed embryonic rat tissue shows 
mossy fibers from the vestibular ganglion arriving in the cerebellum by E13, and 
those from the vestibular nuclei and spinal cord arriving at E15 [65]. Climbing 
fibers arrive at ~E17, followed by mossy fibers from the lateral reticular nucleus and 
pontine nuclei at P0 [65]. In mice, spinocerebellar and vestibular mossy fibers arrive 
at E13/14 [66], climbing fibers arrive at E14/15 [67], and the remaining mossy 
fibers arrive during late embryonic and postnatal development [53]. Climbing fiber 
afferents exhibit rudimentary parasagittal stripes by E15/16 in mice [67], soon after 
Purkinje cell clusters initially express transient parasagittal molecular markers such 
as En1/2 [60]. Climbing fiber termination patterns and Purkinje cell zones corre-
spond topographically by E17 [68]. Though mossy fibers synapse on granule cells 
in the adult cerebellum, they form transient contacts with Purkinje cells during 
embryonic and early postnatal development that may be critical for the segregation 
of spinocerebellar afferents into parasagittal zones [31, 69–72]. Unlike climbing 
fibers, mossy fibers do not exhibit clear-cut zones until after birth [73]. Purkinje 
cells are innervated by five to six climbing fibers by P3, and during early postnatal 
development one of these connections is selectively strengthened while the other 
synapses are eliminated; by P17 each Purkinje cell is innervated by a single climb-
ing fiber, and each climbing fiber may contact up to ten Purkinje cells [74]. 
Cerebellar postnatal development also involves changes in the firing properties of 
both Purkinje cell simple spikes, which are intrinsically generated and modulated 
by mossy fiber to granule cell inputs via granule cell parallel fiber projections, and 
Purkinje cell complex spikes, which are generated by climbing fiber afferents [75] 
(Fig. 3). Both frequency and regularity of Purkinje cell spikes are dynamic as climb-
ing and parallel fiber synapses mature and intrinsic Purkinje cell gene expression 
changes during development [75]. The development of Purkinje cell electrophysiol-
ogy, morphology, and associated sensorimotor behaviors additionally relies upon 
the unique zonal patterning of the cerebellum as it was discovered that Purkinje 
cells of the posterior cerebellum (ZebrinII-positive lobule X) reach their adult stage 
prior to those of the anterior cerebellum (ZebrinII-negative lobule III), correspond-
ing to a decrease in anterior-dependent eyeblink conditioning but faster nodular- 
dependent compensatory eye movement adaptation [76]. Neural activity, mediated 
by spontaneous activity and sensory experience, likely also intersects with genetic 
programs to properly assemble the cerebellum and its circuits [77]. In fact, the zonal 
arrangements of both inhibitory projections from basket cells onto Purkinje cells 
and excitatory mossy fibers onto granule cells require Purkinje cell neurotransmis-
sion [78, 79]. Similarly, the proper maturation of the anatomical and electrophysi-
ological properties of Purkinje cells relies upon the neurogenesis of excitatory 
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Fig. 3 Purkinje cells fire simple spikes and complex spikes. (a) Purkinje cell labeled using the 
classic Golgi-Cox staining method, demonstrating the elaborate morphology and dendritic 
branching of the Purkinje cell. (b) Extracellular single-unit recording from a Purkinje cell of an 
adult mouse in vivo. Purkinje cells fire two types of action potentials: high- frequency simple 
spikes that are driven by intrinsic activity and modulated by mossy fiber-granule cell inputs and 
low-frequency complex spikes that are triggered by climbing fiber input (asterisks). (c) Higher 
power image of the Purkinje cell recording shown in panel (b) with individual spike waveforms 
visible. (Modified with permission from Ref. [92])

granule cells [80]. Genetic mouse models demonstrate that if genes regulating orga-
nization of the circuit are disrupted, there are severe impacts on map formation and 
motor function although external morphological defects typically associated with 
cerebellar disease may be subtle. For example, the Engrailed homeobox transcrip-
tion factor family is critical for establishing the organization of the cerebellar cir-
cuit, and En1/2 mutants exhibit altered formation of lobules and parasagittal 
Purkinje cell gene expression [58, 81–84]. Furthermore, adult patterns of mossy 
fiber afferents in distinct lobules and parasagittal zones are sensitive to En1/2 
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deletions [71]. In addition, components of the endocannabinoid signaling system 
such as cannabinoid receptor 1 (CB1) have been recently demonstrated to be 
expressed in a developmentally dynamic, region and cell type-specific pattern in 
E17.5-P12 mouse cerebella, and that conditional knockout of CB1 in mice leads to 
selective anatomic alterations of the anterior cerebellar vermis with corresponding 
motor impairments [85]. Spontaneous mutant mouse models of ataxia identified by 
their motor phenotypes also demonstrate an active role for Purkinje cells in setting 
up the topography of cerebellar afferents and the importance of the cerebellar circuit 
map for motor control. Mossy fiber termination patterns are altered in the staggerer 
mutant mouse with intrinsically affected Purkinje cells [69]. The dreher mutation 
causes cell fate changes of cerebellar progenitors, and anteroposterior and parasag-
ittal patterns are distorted but present, despite external morphological phenotypes 
[86]. The cerebellar-deficient folia (cdf) mutation causes a selective failure of a 
zebrinII-positive Purkinje cell cluster to disperse, and adult mutants have abnormal 
parasagittal zone widths in the anterior vermis [87]. Scrambler mutant mice are able 
to attain and maintain Purkinje cell zones and topographical circuits despite the 
abnormal placement of 95% of Purkinje cells due to severe ectopia [88]. The reeler 
mutation causes the cerebellum to contain a “single lobule” composed of a hypo-
granular cortex and a central mass of Purkinje cell clusters mixed with the cerebel-
lar nuclei, but the spinocerebellar and vestibulocerebellar afferents of reeler mice 
are able to maintain targeting to specific regions despite the lack of external mor-
phological landmarks [89, 90]. These mouse models of motor dysfunction, which 
have cerebellar abnormalities due to structural and circuit defects, have therefore 
been invaluable for furthering our understanding of how circuit maps are generated. 
Moreover, the use of spontaneous and engineered (knockout and conditional) mice 
has helped shed light on the mechanisms of complex diseases that involve the 
cerebellum.

 The Role of Cerebellar Development in Ataxia, a Classical 
Cerebellar Movement Disorder

As the genes and specific mutations causing human disorders continue to be identi-
fied, genetic mouse models of individual diseases have shed light on how the cere-
bellum is affected at the levels of pathology, physiology, and circuit patterning to 
cause symptoms with which patients present in the clinic. Ataxia is the most com-
mon symptom of cerebellar disease and a common phenotype of the aforemen-
tioned mutant mice. Upon neurological examination, patients with ataxia usually 
exhibit incoordination of the limbs, impaired balance, gait disturbance, and dimin-
ished fine motor control [91]. Cerebellar ataxia is the most common form of ataxia, 
and there are currently over 60 identified forms of inherited cerebellar ataxia [92, 
93]. Although ataxia and other cerebellar motor deficits are typically discussed in 
relation to specific genetic mutations, defects in cerebellar circuitry can also be 
sporadic or acquired as a result of stroke, tumors, multiple sclerosis, alcoholism, 
peripheral neuropathy, metabolic disorders, and vitamin deficiencies [94]. The 
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following genetic cerebellar manipulations demonstrate the diversity of paths that 
can lead to ataxia and related motor deficits. We focus on Purkinje cells due to their 
crucial role during cerebellar development and their central function in the adult 
circuit.

 SCA1 (Spinocerebellar Ataxia Type 1)

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited form of ataxia. Like 
other cerebellar ataxias, SCA1 causes progressive loss of motor coordination, 
impaired balance, and gait disturbance. Other symptoms typically include dysar-
thria, dysmetria, difficulty swallowing, muscle atrophy, kyphosis, nystagmus, spas-
ticity, and cognitive impairments [95]. SCA1 belongs to a family of neurodegenerative 
conditions that are caused by abnormal CAG repeat expansions that encode poly-
glutamine tracts. The mutated gene responsible for SCA1 was cloned and identified 
as the transcriptional regulator ATAXIN-1 [96]. The polyglutamine ataxin-1 protein 
product is widely expressed in the brain, and its polyglutamine expansion further 
stabilizes ataxin-1, facilitating its toxic accumulation in the nucleus of affected neu-
rons [97, 98]. Among these neurons, the Purkinje cells of the cerebellum are a pri-
mary target [99] as polyglutamine ataxin-1 remains uniquely soluble in Purkinje 
cells, allowing it to enter the nucleus and disrupt the function of multiple protein 
complexes [100]. In humans, the onset of motor deficits most often occurs in the 
third or fourth decade of life followed by death 10–15 years later; however, the age 
of onset and survival time depend on the number of repeats in the expanded poly-
glutamine sequence and can occur as late as the sixth decade of life or as early as 
the first decade [101]. Neuroimaging of late-stage SCA1 patients reveals gross atro-
phy of the cerebellum primarily due to the degeneration of Purkinje cells [95, 99, 
102]. SCA1 patients also typically exhibit atrophy of the dentate cerebellar nuclei, 
pons, inferior olive, and other brain stem nuclei as the disease progresses [99]. Thus, 
degeneration eventually impacts both the cerebellar afferent and the efferent path-
ways. Postmortem examination of cerebellar tissue from SCA1 patients shows mor-
phological abnormalities of the remaining Purkinje cells in addition to Purkinje cell 
loss [102, 103]. The generation of mutant SCA1 transgenic mice has been critical in 
furthering our understanding of SCA1 progression [104–106]. For instance, electro-
physiological properties of Purkinje cells such as intrinsic firing and the strength of 
glutamatergic synapses are abnormal preceding both onset of ataxia and Purkinje 
cell structural alterations in SCA1 mutant mice [107, 108]. These functional changes 
correspond with abnormalities in the structural development of Purkinje cell inputs. 
Due to the hyperproliferation of cerebellar stem cells and their preferential differen-
tiation into GABAergic inhibitory interneurons during the first three postnatal 
weeks, the number of inhibitory basket cell synapses is markedly increased [109] 
while climbing fiber innervation is decreased by 5 weeks of age when symptoms 
first manifest [110]. This early shift in inhibitory/excitatory balance on the Purkinje 
cell may underlie their vulnerability to SCA1 pathogenesis and abnormal function 
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during adulthood [109]. Furthermore, specific genes involved in glutamate and cal-
cium signaling are downregulated in Purkinje cells of SCA1 mutants before the 
morphological changes or behavioral deficits are obvious [111, 112]. Impaired per-
formance on motor tasks in SCA1 mutant mice appears subsequently but before 
Purkinje cell morphological changes [107], suggesting changes in gene expression 
and altered circuit activity initiate SCA1 symptoms rather than the degeneration of 
Purkinje cells. Motor performance continues to decline as the dendritic morphology 
of Purkinje cells begins to deteriorate; dendritic arborization is reduced, the number 
of dendritic spines decreases, and the molecular layer shrinks as cells regress [104, 
107]. Structural abnormalities become more evident as the proximal Purkinje cell 
dendrites atrophy and when the Purkinje cell somata begin to exhibit heterotopic 
positioning in the molecular layer [104, 106, 107]. It is not until the later stages of 
disease progression that Purkinje cell loss is detected [104, 106, 107]. The ages at 
which these events occur in SCA1 mutant mice differ between models containing 
shorter or longer knocked-in CAG repeats, consistent with what is observed in 
human patients [101]. The longer repeats cause an earlier onset of the disease and 
more severe symptoms. Despite the earlier onset, analysis of disease progression in 
juvenile and young adult mutant mice reveals that abnormalities in circuit activity 
and motor performance precede Purkinje cell degeneration. Progressive impairment 
of motor function in SCA1 thus reflects not only the degeneration of cells in the 
cerebellum and associated brain stem nuclei but also the earlier and sustained dys-
function of key neuronal populations that are integrated within the circuit. 
Interestingly, recent work suggests a region-specific vulnerability to SCA1 pathol-
ogy within the cerebellum in which only specific regions are altered while others are 
left functionally and morphologically intact [113]. In the ATXN1[82Q] mouse 
model of SCA1, which expresses human polyQ-expanded ATXN1 specifically in 
Purkinje cells, the structure and function of the flocculonodular lobes and crus1 
were unperturbed while those of other cerebellar lobules were impaired [113]. This 
region-specific vulnerability to degeneration may be mediated by local changes in 
sphingolipid metabolism as it was demonstrated that these patterned areas of 
Purkinje cell neurodegeneration in ATXN1[82Q]/+ mice correspond to regional dif-
ferences in sphingolipid metabolism and that partial restoration of these changes via 
genetic mutation leads to a neuroprotective effect on Purkinje cells [114]. Toward 
developing treatments for SCA1, several groups are currently focusing on reducing 
the overaccumulation of polyglutamine ataxin-1 through a decrease in S776 phos-
phorylation, which reduces the stability of ataxin-1 [115, 116]. The authors found 
that a reduction in the levels of mutant ataxin-1 through decreased S776 phosphory-
lation improves motor coordination, neuromuscular respiratory dysfunction, and 
the life span of SCA1 mutant mice, but that this treatment demonstrates only an 
attenuated rescue in mice with disrupted S776 phosphorylation in both the mutant 
ataxin-1 allele and wild-type allele [117]. This suggests a brain region-specific dis-
ease mechanism for SCA1 and implies a neuroprotective effect for wild-type 
ataxin-1 [117]. How exactly these different alleles of ataxin-1 contribute to SCA1 
disease pathogenesis and normal function, particularly in the cerebellum where the 
effects are most evident, remains to be fully resolved.
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 SCA6 (Spinocerebellar Ataxia Type 6)

Spinocerebellar ataxia type 6 (SCA6), like SCA1, is a dominantly inherited form of 
ataxia and a triplet repeat disease. In SCA6, a CAG repeat expansion occurs within 
the gene CACNA1A, which encodes the pore-forming subunit of voltage-dependent 
P/Q-type calcium channels [118, 119]. The mutated polyglutamine P/Q-type cal-
cium channels are widely expressed in the brain but become toxic primarily to 
Purkinje cells [120], where they are highly expressed in the plasma membrane 
[121]. Age of onset and survival time depend on the number of repeats in the 
expanded polyglutamine sequence, but SCA6 onset most commonly occurs in the 
fifth or sixth decade of life followed by death 20–30 years later [101]. SCA6 patients 
experience slowly progressive ataxia of the limbs and gait in addition to dysarthria 
and nystagmus [118, 122], and neuroimaging reveals cerebellar atrophy [122]. 
Neurodegeneration in SCA6 occurs mostly in Purkinje cells, but death of neurons in 
the dentate cerebellar nuclei and inferior olive is also observed [119, 123, 124]. 
Postmortem examination of cerebellar tissue from SCA6 patients shows morpho-
logical abnormalities of the remaining Purkinje cells in addition to the loss of 
Purkinje cells [120]. In transgenic mouse models of SCA6, the onset of ataxia 
occurs before morphological changes or loss of Purkinje cells [125]. 
Electrophysiological examination reveals that Purkinje cells exhibit reduced firing 
rates and rhythmicity at ages coinciding with the onset of ataxia [126] and at later 
disease stages [127]. Though the polyglutamine mutation occurs in an ion channel 
that regulates the firing patterns of Purkinje cells in adult mice [128], SCA6 symp-
toms do not result from changes in channel current but rather age-dependent gain- 
of- function effects of aggregated mutant protein on cellular function [127, 129, 
130]. Although SCA6 symptoms manifest in midlife, P/Q channels are expressed 
soon after birth [131] and are involved in synapse elimination of climbing fiber 
innervation onto Purkinje cells during development [74, 132, 133]. Interestingly, 
Purkinje cells of SCA6 mutant mice exhibit transiently increased firing rates and 
rhythmicity as well as abnormal climbing fiber innervation during early postnatal 
development without causing behavioral abnormalities [134]. These alterations dis-
appear once the mice reach weanling age when the circuit has largely developed 
[53], and cellular and synaptic functions of Purkinje cells return to normal [134]. 
These transient electrophysiological phenotypes during development are different 
from those observed in adult SCA6 mice, and they do not appear to impact motor 
coordination nor represent a mild initial stage of the ultimate phenotype that would 
progressively worsen. However, compensatory adaptations prior to disease onset 
have been observed in the Purkinje cells of SCA1 mutant mice [108]. Such homeo-
static alterations to the cerebellar circuit in response to transient electrophysiologi-
cal dysfunction have not yet been detected in developing SCA6 mice but may not 
become pathological until later in life, if they are present [134]. In addition to SCA1 
and SCA6, a prolonged period of Purkinje cell dysfunction prior to neuronal loss 
has also emerged as a common feature in other models of ataxia. Purkinje cells in a 
genetic mouse model of spinocerebellar ataxia type 3 (SCA3) exhibit abnormal 
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intrinsic activity and motor symptoms prior to neurodegeneration [135]. In a novel 
mouse model of ataxia-telangiectasia characterized by progressively severe ataxia 
and atrophy of the cerebellar molecular layer, Purkinje cells display significant 
alterations in firing properties and morphology preceding cerebellar atrophy and the 
onset of behavioral deficits [136]. Similarly, cerebellar developmental deficits (loss 
of GABAergic connectivity, disrupted climbing fiber development, increased paral-
lel fiber-Purkinje cell connectivity) and motor deficits in a mouse model of spino-
cerebellar ataxia 23 (SCA23) occur before Purkinje cell loss [137]. Purkinje 
cell-specific deletion of Ataxia-Telangiectasia and Rad3-related (ATR) protein, the 
key gene mutated in ataxia-telangiectasia, results in striking locomotor dysfunction 
and abnormal intrinsic firing activity despite retaining normal structure and mor-
phology of the cerebellum [138]. These early manifestations of ataxias could be 
effective targets for therapy as the circuits may retain enough functional and struc-
tural integrity to be rescued before the cells die or symptoms worsen [107, 126, 135].

 Car8wdl (The Waddles Spontaneous Mutant Mouse)

The carbonic anhydrase 8 gene (Car8) is abundantly expressed in Purkinje cells 
[139, 140]. Lower levels of expression can be seen in the cerebellar nuclei and 
brainstem due to the termination of Purkinje cell axons in these regions. The CAR8 
protein is involved in calcium modulation pathways [141] and is expressed begin-
ning in embryonic development continuing into adulthood [142, 143]. A spontane-
ous mutant mouse, waddles (Car8wdl), contains a deletion within the Car8 gene and 
exhibits progressive ataxia that is evident by 2 weeks of age in addition to appen-
dicular dystonia and tremor [139]. In humans, mutations in the homologous gene 
(CA8) also cause ataxia [144]. Unlike in the SCAs, Purkinje cells do not exhibit 
overt degeneration, and the cerebellum does not show gross anatomical defects 
[139, 140]. However, Car8wdl mice have microcircuit abnormalities including denser 
climbing fiber innervation that extends to distal Purkinje cell dendrites and reduced 
parallel fiber synapse formation on Purkinje cell dendritic spines [145]. The muta-
tion also impairs the topography of cerebellar circuit formation during develop-
ment; the segregation of Purkinje cell subsets into distinct parasagittal zones is 
developmentally delayed in Car8wdl mice, and the topography of spinocerebellar 
afferents is abnormal in early postnatal and adult mice [140] (Fig. 4). Furthermore, 
electrophysiological examination of mutant mice reveals that the developing 
Purkinje cells exhibit abnormal firing frequency and patterns [140, 145], but 
Purkinje cells still do not degenerate and die even as ataxia worsens [140]. The 
ataxia observed in Car8wdl mice thus may result from both miswiring of the cerebel-
lum’s functional map and aberrant electrophysiological output of adult Purkinje 
cells. In fact, one study found that targeting 13 Hz deep brain stimulation in the 
interposed cerebellar nucleus of Car8wdl mice results in short-term and long-term 
motor improvements, and that this treatment requires Purkinje cell neurotransmis-
sion to be effective [146]. Interestingly, the CAR8 protein is a binding partner for 
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Fig. 4 The termination pattern of spinocerebellar mossy fibers is altered in Car8wdl mice. (a) 
Schematic of the postnatal day 5 (P5) mouse cerebellum from a lateral view with the cerebellum 
highlighted in blue and the primary target domains of spinocerebellar mossy fiber projections 
highlighted in magenta. Roman numerals identify the lobules of the vermis. Note that the anterior-
most lobules are also innervated by the spinocerebellar tract and are not visible as they are hidden 
from view by the colliculi. Cb cerebellum, BS brain stem, Ctx cerebral cortex, IC inferior collicu-
lus, SC superior colliculus. (b) Fluorescent mapping of spinocerebellar mossy fiber terminal fields 
in lobule III of a Car8wdl mouse and a control mouse at P5 after injection of WGA-Alexa 555 into 
the lower thoracic-upper lumbar spinal cord and transport of the tracer up the spinocerebellar tract. 
Mossy fiber topography is altered in Car8wdl mice because the sensory pathways are incorrectly 
targeted and weakly innervate the cerebellum during early postnatal development. Scale 
bar = 250 μm. (Panel (b) was modified with permission from Ref. [140])
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inositol triphosphate receptor type 1 (IP3R1) [139, 141], an intracellular calcium 
release channel that is mutated in SCA15. As IP3R1 is also one of the genes down-
regulated in SCA1 mice preceding onset of ataxia or morphological changes [111, 
112], impaired calcium homeostasis in Purkinje cells may mediate a central mecha-
nism of pathogenesis common to many types of ataxia that manifest with or without 
neurodegeneration.

 L7Cre;Vgatflox/flox (Conditional Genetic Silencing of Purkinje 
Cell Neurotransmission)

Effective cerebellar control of motor behavior depends on the ability of Purkinje 
cells to integrate incoming sensorimotor inputs and communicate appropriately 
with their target neurons in the cerebellar nuclei. In the L7Cre;Vgatflox/flox mouse, 
inhibitory synaptic transmission of Purkinje cells is constitutively blocked using 
conditional genetics [79]. Under control of the cell type-specific promoter L7 (also 
called Pcp2 or Purkinje cell-specific protein 2), Cre recombinase excises the floxed 
vesicular GABA transporter gene (Vgat) that encodes the transporter for loading 
neurotransmitter into synaptic vesicles [79]. This eliminates the ability of Purkinje 
cells, the sole output of cerebellar cortex, to communicate with the cerebellar nuclei, 
the predominant final output of the cerebellum and its link to the rest of the motor 
system. Purkinje cell output to the vestibular nuclei is also silenced by this approach. 
L7Cre;Vgatflox/flox mice exhibit motor incoordination, gait disturbance, and impaired 
balance. Though the absence of Purkinje cell output does not affect the gross mor-
phology of the cerebellum, segregation of Purkinje cells into zones is disrupted and 
the zonal topography of spinocerebellar afferents develops abnormally [79]. 
Although the basic circuit map is intact, the normally sharp boundaries of zones are 
compromised [79]. Purkinje cells of L7Cre;Vgatflox/flox mice exhibit abnormal electro-
physiological activity, but their output is not signaled downstream in this model 
[79]. However, loss of Purkinje cell signaling causes the cerebellar nuclei to fire 
abnormally, impacting the ultimate output of the cerebellum. The abnormalities in 
Purkinje cell activity may be partially attributed to the anatomical rearrangement of 
its inputs, which typically rely on Purkinje cell neurotransmission for proper pat-
terning [78]. For example, the patterning of both excitatory mossy fibers onto gran-
ule cells [79] and inhibitory projections from basket cells onto Purkinje cells are 
both altered in L7Cre;Vgatflox/flox mice [78]. Taken together with other models of cer-
ebellar dysfunction, it is clear that ataxia and other motor deficits can arise due to 
insults in wiring, firing, or survival of Purkinje cells in a wide range of diseases with 
diverse causes.
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 Cerebellar Development and Non-motor Disorders

Over the past 30 years, evidence from functional neuroimaging studies has mounted 
indicating that the cerebellum is active during non-motor behaviors such as percep-
tion, cognition, and emotion [147–149]. This idea is supported by evidence of 
extensive afferents and efferents interconnecting the cerebellum with prefrontal and 
parietal cortex [40, 150, 151]. Lesioning studies also suggest that cerebellar damage 
can lead to a variety of non-motor behavioral deficits [149, 152, 153]. However, the 
extent of the cerebellum’s role in cognitive function remains unclear and is a topic 
of lively debate [154–157]. The adult cerebellum appears to be particularly relevant 
to those non-motor tasks requiring complex spatial and temporal judgments, such as 
prediction and perceptual sensory discrimination, or in which skilled responses are 
developed through repeated practice [151, 158]. It could be that the computational 
capacities of the cerebellum to discriminate patterns and use these patterns to learn 
to make context-dependent predictions with respect to motor behavior would be 
also useful to non-motor areas of the brain [159]. Signals from the cerebellar cortex 
to both motor and non-motor areas of the cerebral cortex synapse in the interposed 
and dentate cerebellar nuclei and are then relayed through the thalamus [53]. In 
return, mossy fibers originating in the basal pontine nuclei relay information from 
cerebral cortex to the cerebellar cortex, with non-motor information likely going to 
the hemispheres [53]. Together, these cerebro-cerebellar connections form closed 
loops in which regions of cerebellar cortex projecting to a given area of cerebral 
cortex in turn receive input originating in those same areas of cerebral cortex [40]. 
Each of these regions is involved in specific functions, forming a topographical map 
across the cerebellar cortex, cerebellar nuclei, thalamus, and cerebral cortex [30, 40, 
41]. Functional neuroimaging links different cognitive and motor behaviors to 
activity in specific cerebro-cerebellar closed loops [160], and focal cerebellar dam-
age can cause different motor or non-motor deficits in a location-dependent manner 
[149, 153]. This anatomical and functional segregation of cerebro-cerebellar con-
nections might respect the modular architecture of the cerebellum [44]. Anatomical 
and functional abnormalities in the cerebellar circuit have been implicated in sev-
eral non-motor neurodevelopmental disorders [161] and may play a particularly 
important role during sensitive periods of development [162]. Clinical studies have 
also noted increased cognitive deficits in children who suffer cerebellar damage 
during posterior fossa tumor resection [163]. How the cerebellum interacts with 
cerebral cortex during development remains poorly understood. Some non-motor 
diseases linked to cerebellar development include autism spectrum disorder [162, 
164, 165] and dyslexia [166, 167]. The cerebellum could also be involved in schizo-
phrenia [168, 169]. The study of cerebellar non-motor diseases has required both 
human patients and genetic mouse models. For example, the most consistently 
affected structure in postmortem examination of tissue from autistic individuals is 
the cerebellum, including hypoplasia and reduced numbers of Purkinje cells with-
out signs of neurodegeneration [164, 170, 171]. The EN2 gene is necessary for 
establishing the structure and circuit organization of the cerebellum during 
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development [53], and EN2 mutations are linked to autism susceptibility in humans 
[172–174]. Loss-of-function mutations and transgenic misexpression of En2 in 
mice cause autism-like behaviors [175, 176]. These mice show some morphological 
abnormalities in the cerebellum that are broadly similar to those reported in humans 
with autism as well as abnormal foliation and afferent topography [58, 82–84]. In 
addition to cerebellar defects being implicated in non-motor diseases, cerebellar 
“motor” diseases can also feature non-motor symptoms. For example, human and 
mouse studies show that SCA1 [177, 178] and CA8 mutations [144] cause cognitive 
deficits in addition to ataxia. It could be that the Purkinje cell and its associated 
microcircuits underlie both motor and non-motor problems. This would suggest that 
the basic operational properties of a Purkinje cell could be tuned to different behav-
iors [179]. Future experimental work will reveal whether this is the case, and indeed 
evidence is mounting for how Purkinje cells might functionally interact with the 
hippocampus and prefrontal cortex during non-motor behavior [180].
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A Comparative View of Cerebellar 
Morphology and Diversity in Fishes

Benjamin W. Lindsey

Abstract Fish represent the most diverse vertebrate class. Through evolutionary 
time and habitat adaptations, bony and cartilaginous fishes have taken up nearly 
every aquatic environment of the globe imaginable. These factors have uniquely 
shaped brain growth, morphology, and even the appearance of functional specializa-
tions. The mature cerebellum of different fish lineages is largely reflective of these 
pressures, providing an unprecedented opportunity to study how this structure has 
become specialized and has diverged in morphology compared with other verte-
brate groups. At a functional level, accumulating evidence points toward a multifac-
eted role of the fish cerebellum, involved in diverse processes such as movement, 
cognition and emotion, and sensory-motor learning. While early cerebellar develop-
ment appears to be largely conserved across vertebrates, including fish, numerous 
features set these species apart, making them fascinating models to better under-
stand neurodevelopment and environmental pressures. The goal of this chapter is to 
provide an overview of the distinctive features that characterize the cerebellar archi-
tecture of major fish lineages.
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 Introduction

Fish represent the most diverse vertebrate class [39], having adapted to nearly every 
aquatic habitat possible and representing the most phylogenetically ancient verte-
brate lineages. This makes extant fish species tremendously attractive to study the 
evolution of brain development and specialization. In many cases, lifestyle special-
izations are reflected by changes in the morphology of brain structures over ontog-
eny that are coupled with the environment and functional needs [40]. This is equally 
true of the fish cerebellum that has maintained a basic organizational plan similar to 
that of their land relatives [34], but this has also been modified by environmental 
factors as a consequence of major fish radiations. Representing basal vertebrates [7, 
67], Chondrichthyes (sharks and rays) and Osteichthyes (bony fish), which addi-
tionally include Sarcopterygians (lobe-finned fish) and Actinopterygians (ray-finned 
fish), serve as extremely valuable models to study the evolution of cerebellar devel-
opment (see Fig. 1). Comparative neuroanatomical investigations of the cerebellum 
between different major fish lineages as well as tetrapods can provide a rich under-
standing of the evolution of the cerebellar structure–function relationship.

The cerebellum of fishes displays by far the most structural variation compared 
to any other vertebrate class [44]. With this in mind, the overarching goal of this 
chapter is to highlight how such diversity in structure has arisen and how the cere-
bellar architecture of fishes has over time deviated or been to some extent remod-
eled, from the fundamental vertebrate cerebellar organizational plan. This review is 
by no way meant to be exhaustive but rather to provide an overview, as several 
excellent in-depth reviews investigating cerebellar development and diversity in 
fishes have been previously published [34, 57, 66, 67, 72, 74, 93]. Across major 
groups of fishes, most of our current-day knowledge arises from in-depth studies of 

Fig. 1 Cladogram showing the relationship between major groups of fishes
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the teleost cerebellum—considered to represent the foundational cytoarchitectural 
form of the fish cerebellum [67]. This neuroanatomical blueprint provides us with a 
morphological reference map as we consider deviations from this plan as a result of 
divergent radiations or habitat and behavioral specializations.

In an attempt to put into perspective the extensive literature on the fish cerebel-
lum that has spanned over a century, this chapter is organized into three sections. 
First, I describe the common cerebellar developmental plan observed from studies 
in teleosts and how the morphology of the mature cerebellum compares to that of 
other vertebrates. Second, I will provide direct examples of how the cerebellum has 
diversified across major fish lineages and the role of the environment in shaping the 
mature cerebellum. Finally, this chapter comes to a close by briefly discussing the 
lifelong neurogenesis present in the cerebellum of many fish species, opening the 
door to exciting opportunities to explore the function of these cells using a combina-
tion of traditional and modern-day experimental approaches. It is my hope that by 
the end of this chapter readers gain a more robust comparative understanding of the 
cerebellar architecture of fish from development to adult.

 Development of the Fish Cerebellum and Its 
Structural Organization

Similar to other vertebrates, fish share a highly conserved cerebellar developmental 
plan. Pioneering comparative work by R.  Nieuwenhuys [67] has shown that the 
origins of the vertebrate cerebellum are commonly derived from the rostral rhomb-
encephalon where two bilaterally symmetrical anlages (i.e., also known as embry-
onic domains or territories) are dorsally situated. As embryonic development 
proceeds, these domains fuse in the midline plane. Meanwhile, the rhomboid fossa 
widens and the angle between the cerebellar territories and two sides increases 
eventually leading to the fused halves of the cerebellar primordium producing a 
transverse-oriented plate-like structure [67]. In rodent models, a similar process has 
been described whereby the rostrocaudal axis of the cerebellar anlage undergoes a 
90° rotation to then become the mediolateral axis [76]. The formation of this plate 
and subsequent growth are driven by early waves of neurogenesis that give rise to 
the different types of cerebellar neurons that will populate the mature structure. A 
tightly regulated sequence of progenitor activity arising from two distinct germinal 
zones, the ventricular zone and upper rhombic lip, are responsible for producing 
final neuronal subtypes (reviewed in Carletti and Rossi [13], Kaslin and Brand 
[34]). Comparative work across model vertebrates has revealed, however, slight 
deviations in the expansion of the cerebellum and the migration pattern of early 
progenitors [12].

Molecular and genetic characterization of cerebellar development in vertebrates 
shows that the initial phase of midbrain and cerebellar development commonly 
depends on the isthmic organizer situated at the midbrain–hindbrain boundary. 
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While the finer nuances of this process are beyond the scope of this chapter, excel-
lent reviews have shown that a complex cascade of molecularly driven temporospa-
tial events controls early cerebellar specification, including key pathways such as 
Fibroblast Growth Factor and Wnt, along with a host of transcriptional factors; 
importantly otx and gbx [34, 54, 86, 88, 91]. These in turn lead to the establishment 
of distinct cerebellar territories and provide cues to specify the later cytoarchitecture 
of the mature cerebellum. To date, this process in fishes has been best described in 
the zebrafish (Danio rerio) model, owing to the high amenability of transparent 
embryos and rapid development to larval stages ([33, 37, 91]; reviewed in [34]).

Of all jawed vertebrates, fish, along with birds and mammals, maintain the larg-
est adult cerebelli and display the most pronounced structural diversity [68]. With 
the exception of Cyclostomes (also known as Agnathans; hagfish and lamprey), the 
cerebellum is characterized by a major lobe, the centrally located corpus cerebelli, 
and two bilateral lobes, known as the auricles (flocculus in tetrapods; also known as 
the vestibulocerebellum; [2]). The auricle is considered a specialized domain of the 
corpus primarily receiving vestibular input [34]. In fish, it is commonly known as 
the eminentia granularis [37]. This cerebellar architecture holds true across most 
fish lineages, but in many instances can be further complemented by the addition of 
cerebelloid structures that enhance species function, behavior, and specialization.

Our early understanding of the cerebellum of fishes has arisen primarily from 
detailed descriptions of teleost fishes [67]. Teleostei is one of four superorders of the 
subclass Actinopterygii that also include the superorders Palaeoniscoidei, the 
Chondrostei, and the Holostei. Collectively, these superorders comprise more than 
30,000 fish species, although most modern-day bony fish belong to Teleostei. Thus, 
in many cases, deviations in the cerebellar plan across fishes are contrasted with the 
basic teleost morphology and structural design. As mentioned above, the teleost 
cerebellum shares numerous traits with other vertebrate classes, but at the gross 
anatomical level, obvious differences are found. Specifically, these include an 
absence of cerebellar nuclei and well-defined foliations, as seen in the neocerebel-
lum of mammals [28], and the development of a rostral protrusion termed the val-
vula cerebelli [57], not found in a number of other vertebrates.

The cerebellum of teleost fish and the large majority of fish species is defined by 
three major structures: the valvula cerebelli, the corpus cerebelli, and the vestibulo-
lateral lobe ([21, 58, 90]; see Fig. 2). The valvula cerebelli is the rostral-most struc-
ture of the cerebellum, a structure absent in Cyclostomes, Chondrichthii (sharks and 
rays), and Crossopterygii (ceolacanth; [45]). The valvula projects rostrally as a 
pouch-like structure [67] into the midbrain ventricle below the superficially located 
optic tectum. Across species, the valvula cerebelli is variable both in size and shape 
and in some species can also include a lateral domain [21]. Extreme examples of 
this variation are illustrated by the extraordinary expansion of the valvula cerebelli 
in Mormyridae where it has hypertrophied to become a superficial structure that 
covers the entire surface area of the brain (further described in section “Morphological 
Diversity of the Fish Cerebellum”; [22, 78, 80, 82]). Studies show that the valvula 
cerebelli receives much of its primary input from the tertiary lateral line system, the 
tractus mesencephalon-cerebellaris posterior [67]. In Mormyrid fish, this tertiary 
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Fig. 2 Schematic representation of differences in cerebellar morphology in reference to the basic 
teleost cerebellar architectural plan (center). (a) Mormyrids display an extreme enlargement of the 
valvula cerebelli that projects over top of the optic tectum. (b) Teleosts specialized to a medium 
depth in the water column show an enlarged cerebellum and optic tectum. (c) Sharks demonstrate 
an increased degree of foliation of the corpus cerebelli, with this structure projecting over the optic 
tectum. A valvula cerebelli is absent. (d) Lamprey (jawless vertebrate) lacks a true cerebellum. In 
(a–d), precerebellar and cerebelloid structures are not shown; gray indicates a simplified view of 
the medulla oblongata and spinal cord. TeO optic tectum, Va valvula cerebelli, CCe corpus cere-
belli, Au auricles (eminentia granularis in teleosts), LCa caudal lobe of the cerebellum

input is defined by electrosensory projections arising from the lateral toral nucleus 
of the midbrain [60]. However, evidence for direct lateral line input from the ante-
rior lateral nerve has also been reported [89].

The central portion of the cerebellum consists of the corpus cerebelli, the only 
portion of the cerebellum visible at the external brain surface of most teleosts [57]. 
It is considered a tubular structure projecting either rostrally or caudally in different 
teleost species and is connected to the rhombencephalon by a short stalk, the pedun-
cle [74]. This structure is functionally distinct from the caudal lobe, or vestibulolat-
eral lobe, as its afferent input is not related to the acousticolateral system. In the 
zebrafish, a species that has been studied in considerable detail with regard to cer-
ebellar development [34, 36, 37], the cerebellar corpus includes only a single folia 
and reveals the stereotypical anterior extension, the valvula cerebelli [34].

The caudal-most structure of the cerebellum is known as the vestibulolateral lobe 
[57, 74], considered homologous to the tetrapod vestibulocerebellum. The vestibu-
lolateral lobe of fishes is composed of the eminentia granularis and caudal lobe. For 
many years, there has been debate as to whether the eminentia granularis in teleosts 
is equivalent to the auricles of tetrapods [27] or whether the auricles and the granu-
lar eminences are truly different structures [75]. Most recently, the former 
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hypothesis has been supported that this structure is homologous to the auricle of 
other vertebrates [90]. The vestibulolateral lobe is currently understood to have a 
strong connection with the central lateral line sensory region.

Histologically, the teleostean cerebellar cortex demonstrates much less orga-
nized lamination compared to the more rigid trilaminar cortex of tetropods [57]. 
The mammalian cerebellum is characterized by three layers that form the cerebellar 
cortex, including the outer molecular layer with few resident neuronal somas, a 
monolayer of conspicuous Purkinje cells, and a deep granular layer consisting of a 
large proportion of small granule cells (reviewed in [18]). This well-defined laminar 
organization has generally been shown to carry over to nonmammalian vertebrates 
with the exception of fish and Cyclostomes [44]. These characteristic zones of the 
cerebellar cortex and their respective cell types are considerably more variable 
across fish species [57, 74]. To this end, Purkinje cells can be found in the molecular 
layer, while granule cells can be observed lateral to the Purkinje cell layer. Notably, 
in teleosts, basket cells are absent [93]; therefore, inhibitory feedback loops are only 
created by Golgi and stellate cells. In addition, eurydendroid cells appear to further 
replace deep cerebellar nuclei of other vertebrates [26, 31]. In terms of branching, 
the dendritic tree of Purkinje cells in fishes is more complex than in amphibians and 
reptiles, but never as extensive as demonstrated in mammals [74]. In teleosts, the 
proximal, smooth part of the dendritic tree, which contains the receptive surface for 
climbing fibers, does not penetrate the molecular layer as seen in mammals. This 
has been best shown in mormyrid teleosts but is thought to be common across tele-
ost species.

A final trait that sets teleosts apart from many of their land-dwelling relatives is 
the presence of additional precerebellar and cerebelloid structures. Precerebellar 
nuclei are neuronal nuclei that extend most of their projections to the cerebellum 
and therefore are intimately associated with the cerebellum. These structures appear 
to be unique to fishes. Examination of precerebellar structures in zebrafish shows 
the existence of two precerebellar nuclei, the nucleus valvula lateralis, and the 
nucleus paracommissuralis (reviewed in [34]). Specifically, the nucleus valvula 
lateralis is found in the tegmentum of the midbrain beneath the cerebellar corpus, 
with its main efferent target being granule cells in the corpus cerebelli and valvulae 
cerebelli. Conversely, the nucleus paracommissuralis is located in the midbrain and 
receives input from telencephalon while sending major output to the cerebellum and 
torus longitudinalis [11, 84].

Unlike precerebellar structures, cerebelloid structures are defined by having a 
similar architecture and organization as the cerebellum (i.e., cerebellar-like) but are 
spatially separate [55]. To date, a number of cerebelloid structures have been identi-
fied in aquatic vertebrates, largely fishes, including structures such as the medial 
(i.e., MON; processes lateral line input) and dorsal (i.e., DON; processes input from 
electroreceptors) octavolateral nucleus, and electrosensory lobes in advanced bony 
fishes possessing an electrosensory system [4]. However, across all mammals, with 
the exception of monotremes, the dorsal cochlear nucleus is also considered a cer-
ebelloid structure [4]. Similar to the classic role of the cerebellum in processing 
sensory–motor input [10], the cerebelloid structures of fishes also process sensory 
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signals, receive input from the periphery to the deep layers, and parallel fiber input 
to the molecular layer. Two cerebelloid structures are observed in fishes, including 
the cerebellar crest and torus longitudinalis. The cerebellar crest is a layer of parallel 
fibers that cover the lateral line primary sensory brain stem region, originating from 
a bilateral mass of granule cells caudal to the cerebellar lobe termed the granular 
eminence [44, 67]. Likewise, the torus longitudinalis is a paired ridge of granule 
cells located along the medial boundary of the tectum that projects parallel fibers to 
the surface of the midbrain tectum in the marginal layer [55, 57]. The torus receives 
input from the valvula cerebelli and is present exclusively in actinopterygian fishes. 
Both the cerebellar crest cells and torus longitudinalis are defined by unidirectional 
parallel fibers [57].

Zebrafish provide an excellent example of how in some fish species, the defini-
tion of cerebelloid structures can be extended to include a collection of associated 
structures forming a functional unit or system [34]. In this species, two cerebelloid 
systems are present. First, in the hindbrain, the medial octavolateral nucleus, along 
with the eminentia granularis, and the cerebellar crest (crista cerebellaris) are con-
sidered to form a cerebelloid system. Here, Purkinje-like cells in the medial octavol-
ateral nucleus extend their apical dendrites to the molecular layer of the cerebellar 
crest. The cerebellar crest is a molecular fiber layer continuous with the most caudal 
aspect of the corpus cerebelli. Second, the torus longitudinalis coupled with the 
midbrain optic tectum forms a second cerebelloid system in zebrafish. Interestingly, 
in this context, the fiber-rich superficial marginal layer in the optic tectum has been 
suggested to act as the molecular layer—with the marginal layer receiving parallel 
fibers from the torus longitudinalis. It is currently hypothesized that the circuit 
formed between the torus longitudinalis and optic tectum aids in regulating and 
predicting visuomotor response given that granule cells in the torus longitudinalis 
respond to visual stimuli as well as to stimuli that evoke eye movements [24, 73]. A 
more detailed discussion of cerebelloid structures and their proposed function in 
anamniotes and mammals can be found in work by Bell [4], Bell et  al. [5], and 
Devor [16].

 Morphological Diversity of the Fish Cerebellum

Across jawed vertebrates, marked variation in the developed cerebellum exists as a 
consequence of evolutionary lineages and habitat adaptations. A best example of 
this is seen by the spectrum of cerebellar size and foliation across amniotes (rep-
tiles, birds, mammals) and anamniotes (fish, amphibians). Only birds and mammals 
demonstrate the extensive foliation seen at the gross anatomical level, which drasti-
cally enlarges the cerebellum of these animals. Rather, fish display considerably 
developed cerebellums, albeit non-foliated, whereas this structure is much smaller 
in amphibians and reptiles [57]. However, an incredible feat unique to fish is the 
impressive level of cerebellar diversity that has been shaped by both evolution and 
environment. Comparative studies relating fish brain growth with neuroecological 
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specializations illustrate the impressive “evolutionary plasticity” of brain structures 
and their ability to become optimized in accordance with the behavioral require-
ments of the species. In other instances, evolutionary time leading to lineage diver-
gence is likely the mechanism at play that drives cerebellar remodeling. By 
surveying the morphological variation of the cerebellum across representative fish 
models and lineages (see Fig. 2), new clues regarding how these structural adapta-
tions have come about and their functional role can be explored.

The first true cerebellum of jawed vertebrates is thought to have arisen in carti-
laginous fishes [93]. Interestingly, the developmental form of the cerebellum of 
sharks and rays mirrors that of adult Cyclostomes—characterized by a simple plate- 
like structure. Notably, only recently has it been confirmed that Agnathans do not 
possess a traditional cerebellum, but instead cerebelloid structures, including the 
DON and the MON [93]. As cerebellar development progresses in cartilaginous 
fishes, a more elaborate cerebellum can be observed. Bilaterally, a rostrolaterally 
directed lengthening and outpocketing of the caudolateral parts of the cerebellar 
territory give rise to the paired auricles. At the same time, a dorsally directed evagi-
nation of the rostromedial parts of the cerebellar plate forms the corpus cerebelli 
[67]. The dorsally situated, unpaired, corpus cerebelli ventrally encloses the large 
ventricular cavity. Meanwhile, the dorsal aspect extends rostrally over the roof of 
the midbrain and caudally over the lower lip, a band of nervous tissue laterally con-
tinuous with the upper leaf of the auricles [67].

In many species of cartilaginous fishes, considerable variation exists in the size 
and degree of foliation (i.e., wall infolding) of the corpus cerebelli (reviewed in 
[92]). The presence of varying degrees of cerebellar foliation in chondrichthyans is 
a feature rarely seen in most populations of teleosts. Early comparative studies of 
sharks and rays of different sizes have revealed that transverse grooves of different 
depths can be conspicuously detected on the surface of the corpus as a result of 
foliation [85]. Smaller species display a very shallow groove, while in larger bodied 
species deeper grooves and additional sulci subdivide the corpus into multiple lobes. 
Across vertebrate taxa, increased foliation is thought to accommodate an increase in 
cerebellar surface area [79]. This in turn allows for an increase in Purkinje cell num-
bers, thereby enhancing cerebellar processing capacity and facilitating the complex-
ity of cerebellar-dependent functions and behaviors [32, 81, 87]. Histologically, the 
chondrichthyan cerebellum demonstrates walls with four distinct cell layers: the 
fiber zone, the granular layer, the layer of Purkinje cells, and finally the molecular 
layer [67]. Chondrichthyes further feature two cerebelloid structures, including the 
DON and the MON that join bilateral auricles at the hindbrain [66].

The most primitive bony fishes, namely the Sarcopterygians, further provide an 
excellent example of how cerebellar diversity closely aligns with major fish radia-
tions. Sarcopterygians are only represented by the sole surviving Crossopterygian, 
the coelacanth (Latimeria), and six extant species of lungfishes worldwide. Studies 
of Latimeria show that its cerebellum can be seen as a well-developed, dome-shaped 
structure [93], defined by a dorsal evagination of the corpus cerebelli and very large 
auricles [61, 62]. The impressive size of the auricles is proposed to have developed 
in conjunction with the highly differentiated lateral line system in this species. The 
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lateral line system is a sensory system present along the body wall of most fish spe-
cies composed of thousands of neuromast cells that function to sense hydrodynamic 
input regarding relative movements between the body and the surrounding aquatic 
environment [9, 64]. Within the corpus, distinct molecular, Purkinje, and granular 
cell layers are well organized, a feature uncommon across most modern-day tele-
osts. Purkinje cells, however, show less laminar organization in the lateral auricles.

Compared to most other groups of fish, the cerebellum of lungfishes is relatively 
small and has been considered to be more closely related to that of amphibians [93]. 
The African lungfish (Protopterus) is defined by larger paired auricles that overhang 
the lateral sides of the midbrain, but only a modest sized corpus cerebelli. By con-
trast, the Australian lungfish (Neoceratodus) features smaller auricles but a larger 
corpus cerebelli, compared to its African relative [29]. However, in both species of 
dipnoan, a reasonable degree of lamination can be observed representing the three 
characteristic cerebellar layers: the molecular, the Purkinje, and the granular [67]. 
Both the coelacanth and lungfish lack an anterior protruding valvula cerebelli, char-
acteristic of teleosts.

Sampling across fish species provides valuable insight regarding the intersection 
between brain growth, habitat specialization, and structural diversity. Within the 
wild, studies have shown that the species environment can impose selection pres-
sure on specific regions of the brain, and some excellent examples come from struc-
tural modifications of the cerebellum. Some of the best-studied species demonstrating 
this evolutionary adaptation come from populations of African cichlids [94]. 
However, in some extreme cases, unprecedented enlargements of the cerebellum 
have also been observed in distinct groups of fishes as they take on new sensory 
processing modalities. Most notably, this attribute belongs to electric fishes, such as 
gymnotiformes and mormyrids, where the cerebellum has largely outgrown the rest 
of the brain. The role of the environment in shaping structure-specific brain mor-
phology and the behavior processes of fishes has received considerable attention 
over the years. For example, in both bony and cartilaginous fishes, relative enlarge-
ment of the cerebellum has been associated with locomotor behaviors, habitat com-
plexity, swimming speed and agility for prey capture, proprioception, and the 
acquisition of sensory input [30, 92]. Conversely, the presence of a small cerebel-
lum appears to be a predictor of lower activity levels and a close association with the 
substrate in fishes [71].

The independent radiations of African cichlids by far provide one of the most 
accessible, natural experimental datasets as to how habitat stratification impinges 
upon brain morphology. In all three East African Great Lakes, feeding strategy and 
microhabitat utilization have been shown to correlate strongly with individual brain 
structures [30]. Focusing on cerebellar size, it was reported that this structure was 
considerably enlarged in populations living at medium depths in the water column. 
This demonstrated that cerebellar morphology was more influenced by microhabitat 
use rather than feeding type, at least in this population [40]. By contrast, studies of 
the Antarctic icefish (Notothenoidae; [17]), a perciform relative of cichlids, revealed 
that the eminentia granularis and crista cerebellaris functionally involved in sensing 
olfaction and acoustic-lateralis input demonstrated most variability in morphology 

A Comparative View of Cerebellar Morphology and Diversity in Fishes



164

across the 32 species examined. These two studies highlight that these related yet 
isolated populations can display disparate morphological adaptations to their unique 
environment in order to presumably increase fitness.

This section would not be complete without mention of the extreme cerebellar 
adaptation in electric-sensing fishes, including Mormyriformes, Gymnotiformes, 
Siluriformes, and Xenomystinae [93]. These groups are defined by and are unique 
among ray-finned fishes as having evolved electroreception. Best studied is the 
gigantocerebellum of the mormyrid. From an evolutionary standpoint, passive elec-
trosensing using ampullary electroreceptors arose first in osteoglossomorph fishes, 
permitting the detection of external bioelectric fields [14]. Mormyroids became the 
first species to evolve electric organs and tuberous electroreceptors, allowing for 
functional electrolocation and communication [80]. Impressively, the cerebellum of 
mormyrids accounts for nearly 1% to the total body weight of these fishes [59], 
largely due to the outgrowth of the anterior valvula cerebelli, completely covering 
the dorsal aspect of the brain [57].

While one might expect extreme differences in the cerebellar neuroanatomical 
blueprint of mormyrid fishes, with the exception of its conspicuously larger valvula 
cerebelli compared with other teleosts, it generally follows the same morphological 
organization [57]. A clear valvula, corpus, and caudal lobe can be observed, but 
unlike other teleosts, additional subdivisions are present. As reviewed by Meek 
[57], the valvula includes the valvula strictiori sensu, but also the lobus transitorius 
and lobe C1. Of particular note, the corpus cerebelli is distinguished by three addi-
tional lobes: C2 and C3 directed rostrally, and C4 directed caudally. Finally, the cau-
dal lobe is differentiated into both the anterior part (connecting to the mechanosensory 
lateral line lobe) and the posterior part (connecting to the electrosensory lateral line 
lobe) [6]. Extrinsic connections of mormyrid cerebellum are in line with that of 
other teleostean cerebella, showing well-defined eurydendroid or giant cells that 
project to premotor regions [56, 69, 70], along with a highly differentiated precer-
ebellar nucleus lateralis valvulae.

 Neurogenesis and Lifelong Cerebellar Development in Fishes

The majority of this chapter has focused on the variation in the adult cerebellar form 
that accompanies major groups of cartilaginous and bony fishes. In the last 20 years, 
however, studies of teleost fishes, in particular, have illustrated that cerebellar 
growth can persist into later life stages as species age. To date, this has not been 
observed in sharks and rays, although few studies have been performed in these 
groups. This capacity is made possible as a result of the process of adult neurogen-
esis, whereby resident neural stem cells in domains of the postnatal brain known as 
“stem cell niches” continue to generate newborn neurons [95]. Nevertheless, even 
in mainstream teleost fish models like the zebrafish, it would appear that the degree 
of brain-wide structural growth and neural stem cell activity shows a sharp decline 
in older fish [19, 51], suggesting that continuous growth may not be indefinite. 
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Comparing the relationship between neural stem cell activity and brain growth with 
aging in the cerebellum of relatively short-lived (e.g., zebrafish ~3 years) and long- 
lived species such as the sturgeon (~50–80  years) would provide exciting new 
insight in this field.

Adult neurogenesis is considerably more limited across the mature neuro-axis of 
the brain in amniotes, but of the small sampling of bony fishes thus far appears to be 
a highly conserved, widespread trait [23, 46, 97]. In representative teleosts, such as 
the zebrafish, greater than 16 major domains show constitutively active neural stem 
cell proliferation that functions to generate de novo neurons [1, 25, 47]. However, 
upwards of 100 neurogenic sites can be detected [95, 98]. This is in stark contrast to 
the two main adult neural stem cell niches found in mammals, limited to the subven-
tricular zone of the forebrain and subgranular zone of the hippocampus [63]. In 
teleosts, although a large number of these stem cell niches border the brain ventri-
cles, exceptions to this rule exist, such as in the cerebellum where throughout life 
neuro-epithelial-like stem and progenitor cells proliferate at the upper rhombic lip 
[34]. Importantly, this high neurogenic capacity displayed by zebrafish is mirrored 
by an equally impressive neuro-regenerative capacity, including the cerebellum [3, 
35, 38, 41, 43, 50–52]. Conclusive evidence for ongoing adult cerebellar neurogen-
esis has been demonstrated not only in the zebrafish, but the goldfish (Carassius 
auratus; [15]), cichlids (Astatotilapia burtoni; [53]), killifish (Nothobranhius 
furzeri; [83]), medaka (Oryzias latipes; [42]), and electric brown ghost knifefish 
(Apteronotus leptorhynchus; [96]). In mammals, evidence for spontaneous adult 
neurogenesis in the cerebellum of rabbits has been documented, though this appears 
to be exclusive to lagamorphs [20].

An outstanding question that remains in the field of teleost adult neurogenesis is 
why neurogenesis persists beyond embryonic or early developmental stages. In 
many fish species, structure-specific neurogenesis can be linked to the mode of 
growth. Most, but not all, teleost fishes are governed by indeterminate growth [65]; 
thus, the body, including the central nervous system, continues to add more cells as 
the species enlarges. This has been demonstrated in species of goldfish for many 
years. In the brown ghost knifefish, governed by indeterminate growth and consid-
ered a model of negligible senescence, 75% of all mitotically active cells in the 
mature brain are located in the cerebellum [96]. In this species, proliferative activity 
is seen in narrow stripes at the midline of the corpus cerebelli and valvula cerebelli, 
their neuroanatomical boundaries, and in the eminentia granularis. Similarly, in the 
zebrafish, the cerebellum proportionally grows more than other major brain struc-
tures over the juvenile stage (30–90 days post-fertilization), while the body of the 
cerebellum housing granule cells demonstrates remarkable growth throughout 
life [34].

Interestingly, recent studies in the zebrafish have illustrated that this species is 
characterized by determinate rather than indeterminate growth [8]. This is more 
reflective of growth limitations seen in amniotes. Nevertheless, this raises the ques-
tion of why constitutive proliferation is necessary in structures such as the cerebel-
lum throughout life. In-depth studies by Kaslin and colleagues [34, 36, 37] have 
shown that proliferative activity of stem and progenitor populations of the 
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cerebellum decline following juvenile development (up to 3 months), but in adult-
hood those derived from the upper rhombic lip continue to produce granule cells. To 
this end, following the juvenile stage, no Purkinje or eurydendroid cells are newly 
generated. This diminished degree of post-embryonic neurogenesis in the cerebel-
lum aligns with a near plateau in zebrafish growth as compared to its close relative, 
the Giant Danio [8]. It also raises the possibility that these newly generated cells 
merely aid in maintaining homeostasis by replacing those that undergo cell death. It 
remains to be seen in models of determinate or indeterminate growth whether these 
adult stem and progenitor populations of the cerebellum are capable of characteris-
tic responses to environmental input, such as sensory or motor stimuli, that have 
been shown in other stem cell niches of the adult zebrafish brain [48, 49].

 Closing Remarks

The primary goal of this chapter has been to provide a general survey of the diver-
sity of the fish cerebellum and how this structure contrasts many of the features seen 
in other vertebrate classes. While embryonic development of the fish cerebellum 
appears highly conserved with its land relatives, the appearance of new cerebellar 
structures, such as the valvula cerebelli, in addition to precerebellar and cerebelloid 
structures, highlights important phylogenetic differences across jawed vertebrates. 
Even across the small sampling of fishes discussed in this chapter, the manner by 
which the interplay between evolutionary time, lineage divergence, and habitat spe-
cialization orchestrate the morphology of the mature fish cerebellum is evident. 
What is more, in the adult cerebellum of teleosts, the existence of ongoing cell 
proliferation and neurogenesis raises exciting questions regarding cerebellar func-
tion, plasticity, and lifelong structural maintenance.

Moving forward, taking advantage of newer, more tractable laboratory models to 
study cerebellar ontogeny will unlock yet another level of understanding regarding 
this structure from a developmental and genetic perspective. For example, the tiny 
transparent Danionella translucida, no more than ~15 mm in adult size, has emerged 
as an exciting new model in the neurosciences [77]. With many of the same features 
as the zebrafish, but offering a smaller adult size, the opportunity to perform live in 
vivo imaging of cerebellar growth from fertilization to maturity has arrived. 
Blending traditional neuroanatomical methods along with new cutting-edge models 
and molecular tools to study cerebellar development, diversity, and plasticity across 
fish models offers an exciting future to advance the field of cerebellar 
neurodevelopment.
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The Role of nNOS/NO on Cerebellar 
Development in Health and Disease

Vasiliki Tellios, Matthew Joseph Elias Maksoud, and Wei-Yang Lu

Abstract Nitric oxide (NO) is a gaseous molecule that is differentially produced in 
a variety of mammalian cells with a diverse range of functions. In the cerebellum, 
neuronal nitric oxide synthase (nNOS) is the predominant enzyme responsible for 
NO production and boasts the highest expression in this region, more so than in any 
other region of the brain. This chapter will review the molecular role of nNOS- 
derived NO in the cerebellum and its contribution to cerebellar development and 
function, with emphasis on evidence in rodent models. Specifically, attention will 
be paid to the role of NO in Purkinje neuron development and Bergmann glia func-
tion. The connection between cerebellar ataxia and nNOS/NO signaling will also be 
explored, along with the current literature surrounding NO as a therapeutic for neu-
rological symptoms.

Keywords Nitric Oxide · Cerebellar Ataxia. · Calcium Homeostasis. · Dendrite 
Morphology. · Excitotoxicity.

 Introduction

The cerebellum derives its name from the Latin meaning “little brain” and is often 
described as a distinct subsection of the brain. Treating this region of the brain as 
other to the cerebral cortex is understandable, as the cerebellum presents with 
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distinct and organized folia that bear little resemblance to the gyri and sulci of the 
cerebral cortex. Foundational lesion studies from the 1900s determined the over-
whelmingly critical role the cerebellum has in motor coordination and fine-tuning 
motor movements [1]. After the discovery of the intricate interplay between the 
cerebellum and the cerebrum, the cerebellum has more recently become a target for 
functions involving spatial recognition and memory [2, 3], as well as emotion and 
cognitive function [4].

Nitric oxide (NO) is an important and unorthodox neurotransmitter with a wide 
array of physiological effects on the cerebellum. Once named the “Molecule of the 
Year” in 1992 for its role as a physiological and pathological cellular signaling mol-
ecule, it is undisputed that NO has a critical role to play in maintaining cerebellar 
homeostasis and Purkinje neuron (PN) function in a variety of ways by regulating 
synaptic plasticity and glutamate uptake [5–7]. More recently, the link between NO 
and cerebellar health and disease in rodent models has been made more apparent, as 
some studies noted the link between mutant mice exhibiting a cerebellar ataxic phe-
notype and decreases in neuronal nitric oxide synthase (NOS) activity [8, 9]. This is 
important to consider, as it has been reported that nNOS expression is significantly 
decreased in the cerebella of aged rats, corresponding to a decrease in learning and 
memory test performance [10]. Specifically, studies characterizing a neuronal NOS 
knockout (nNOS−/−) mouse model revealed motor impairments and structural 
changes consistent with some spinocerebellar ataxias (SCAs) seen in humans [7, 
11, 12]. This chapter will cover a brief overview of murine cerebellar development; 
the different isoforms of NOS (with emphasis on nNOS); the synthesis and signal-
ing cascades of NO; the homeostatic functions of NO in the cerebellum during 
development; and the implications of NO signaling on cerebellar health and disease.

 Murine Cerebellar Development: A Brief Overview

Like most structures of the central nervous system (CNS), the murine cerebellum is 
derived from the anterior portion of the neural tube, specifically the rhombencepha-
lon, typically around embryonic day 11.5 (E11.5) [13]. By E18.5, the first evidence 
of cerebellar lobules along with PN, granule cells (GCs), and Bergmann glia (BG) 
expression are apparent [14]. From then, the cerebellum develops into a bilateral 
structure comprised of two cerebellar hemispheres connected by the vermis, or the 
midline of the cerebellum.

All GABAergic neurons in the cerebellum—PNs, basket cells (BCs), stellate 
cells (SCs), Golgi cells, and Lugaro cells—in addition to BG, originate from pro-
genitor cells within the ventricular zone at approximately E10.5–E15.5 [13, 15]. By 
this time point, PNs, along with other cerebellar GABAergic neurons, migrate 
toward the pial surface in a radial manner to eventually form the PN monolayer by 
approximately postnatal day 5 (PD5) [13]. Additionally, the developing cerebellum 
also contains a second germinal center that originates from the rhombic lip, termed 
the external granule layer (EGL) [16]. The EGL is located closest to the pial surface 
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and persists within the cerebellum up until PD14. The rhombic lip gives rise to all 
glutamatergic neurons of the cerebellum, specifically GCs [13, 17].

 Purkinje Neuron Development and Synaptic Innervation

PNs begin their development by establishing axonal connections to cerebellar nuclei 
and vestibular nuclei during embryogenesis, while an immature form of PN den-
dritic arborization begins between PD1 and PD3 [18]. At this stage, dendrites appear 
to be disorganized, extending from all directions, both toward and in parallel to the 
pial surface. This phase of PN dendritic growth is characterized by abundant climb-
ing fiber (CF) innervation (originating from the inferior olivary nucleus) in a peri-
cellular nest formation, where CF boutons are primarily localized on the PN axon 
hillock [19]. In this early phase of PN dendritic development, CFs constitute the 
predominant synaptic innervation to the PN and innervate in a many-to-one fashion 
[20], while the majority of GCs are located in the EGL in an immature state and 
with small parallel fiber (PF) extensions [21].

By PD4–PD7, the disorganization of PN dendrites observed in the first 3 postna-
tal days disappears, and PNs begin to orient their dendritic branches toward the pial 
surface [22]. In the phase between PD7 and PD28, PN growth constitutes rapid 
dendritic elongation and synaptogenesis [18, 22]. Importantly, this phase marks the 
development of the planar orientation of PN dendrites [23]. The rapid PN dendritic 
elongation also marks a phase for rapid GC migration and maturation into the gran-
ular layer (GL) [18]. Likewise, as PN dendrites elongate and form dendritic spines, 
the once sole glutamatergic innervation provided by CFs is displaced by PFs to form 
an abundance of PF–PN synapses [24], while redundant CF terminals are elimi-
nated, leaving behind one CF innervating one PN [25].

 Bergmann Glia Development

BG, as mentioned previously, are derived from progenitor cells located in the ven-
tricular zone [13]. Undifferentiated BG, simply referred to as radial glia, intimately 
develop alongside immature PNs and GCs. At approximately E15, radial glia extend 
long laminar processes toward the pial surface [13]. Then, radial glia somata migrate 
from the ventricular zone toward the PN layer around the same time frame as early 
PN monolayer formation occurs, between PD0 and PD7 [26]. In the later phase of 
PN dendritic development, between PD7 and PD28, unspecialized radial glia dif-
ferentiate into BG and can be identified by characteristics such as multiple lamellar 
processes that extend from the soma to the pial surface while also having a close 
association with PN dendrites [27]. It is during this time of extensive PN dendritic 
arborization that BG act as a guide to assist in directing PN dendrites toward the 
surface. As PN dendrites become more elaborate and synapse-dense, BG processes 
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Fig. 1 Early and late stages of PN development. Left side: From PD4–7, PNs begin to develop 
small dendritic branches, and CF innervation dominates the PN, as opposed to PF innervation. The 
EGL at this point in development is prominent, and BG aid in GC maturation by providing a scaf-
fold to allow for GCs to migrate from the EGL to the GL. Right side: In the late stage of PN devel-
opment (PD7 and onward), the PN quickly develops an elaborate dendritic arbor. By PD14, the 
EGL is nearly, if not totally, abolished. Elimination of CF syn apses occurs, which allows for more 
PF innervation within the distal PN dendrites. BG processes are more elaborate and closely 
ensheath glutamatergic synapses upon PNs

will transform their lamellar processes from smooth and linear to fine and elaborate 
processes that closely ensheath glutamatergic PN synapses [27, 28].

In addition to guiding PN dendritic development, BG processes are critical in 
assisting GC migration and maturation from the EGL to the GL during the second 
postnatal week [29, 30]. During this time, BG processes transverse the entirety of 
the molecular layer (ML), but also a portion of the GL, to ensure appropriate GC 
migration between the two layers [31]. As GCs migrate through the ML to the GL, 
they form tight interactions with BG lamellar processes that work to guide GCs to 
the eventual granule cell layer (GCL) and leave behind developed PFs within the 
ML [31, 32]. Both the early phase and the late phase of PN and BG development are 
highlighted in Fig. 1.

 Nitric Oxide Synthase Isoforms: Synthesis 
and Physiological Functions

Nitric oxide (NO) is a gaseous molecule differentially produced in a variety of 
mammalian cells with a diverse range of functions. There are three enzymes that 
catalyze the production of NO: neuronal nitric oxide synthase (nNOS), endothelial 
nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS). All three 
NOS isoforms are classified as oxidoreductases and function as homodimers 
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physiologically [33]. NO is produced by all NOSs enzymatically by utilizing l-argi-
nine and metabolic oxygen as substrates and producing l-citrulline and molecular 
water as a by-product [33]. All three isoforms of NOS rely on NADPH as a cofactor 
and reducing agent, and early studies assessing the localization and function of 
NOS isoforms relied on NADPH-diaphorase activity [34].

Both nNOS and eNOS are classified as constitutively expressed NOS isoforms. 
Also, both isoforms produce NO in a calcium-dependent manner [33]. Briefly, intra-
cellular increases of calcium facilitate the binding of calmodulin, which allows for 
the reductase ability needed to convert l-arginine to NO. Therefore, increases in 
intracellular calcium levels and/or increases in calmodulin-bound eNOS and nNOS 
will increase NO production, accordingly [34, 35]. Neuronal NOS—also referred to 
as brain NOS or NOS1—was the first physiological NOS isoform to be discovered, 
fittingly within brain tissue. After this discovery, it is now known that nNOS is also 
localized in the periphery, specifically within skeletal and cardiac muscle, as well as 
nitrergic nerves that innervate smooth muscle [36]. Furthermore, nNOS is the pre-
dominant NOS isoform in the CNS, localized in both neurons and astrocytes of the 
cerebrum and cerebellum.

 NO/nNOS in the Cerebellum

Neuronal NOS is of particular importance in the cerebellum, as this isoform is 
highly expressed within this region compared to any other region in the CNS [37, 
38]. In particular, nNOS is localized to GCs, inhibitory interneurons, and BG, but 
notably not expressed in PNs [39, 40]. Cerebellar NO has been implicated in many 
homeostatic functions, including synaptogenesis and plasticity, neurotransmitter 
release, signal transduction, and cell death regulation [41, 42]. Unlike what is 
observed in the cerebral cortex, NO acts as an anterograde messenger, often pro-
duced in the presynaptic terminals of PFs. Within the cerebellum, nNOS activity 
and subsequent NO production are mainly triggered by PF stimulation, as nNOS- 
derived NO is produced in a calcium-dependent manner [43]. After PF stimulation, 
NO production in the PF is halted by retrograde endocannabinoid signaling through 
a pathway mediated by cannabinoid-1 receptors on the PF terminal [43, 44].

Another common method of nNOS-derived NO production originates within BG 
that actively takes up glutamate released from the PF. Glutamate uptake via the 
sodium-dependent glutamate aspartate transporter (GLAST) on BG triggers a 
reverse activity of sodium/calcium exchangers, subsequently transporting calcium 
ions into the BG cytosol [6, 45, 46]. The increased calcium influx in BG, in response 
to glutamate uptake, triggers the production of NO via the calcium-dependent activ-
ity of nNOS.

The nNOS-derived NO can signal endogenously within GCs and BG to play an 
important role in both migration and maturation during cerebellar development [12, 
42]. NO can also function by diffusing into neighboring PNs to influence cerebellar 
motor learning and memory by modulating synaptic plasticity in the form of 
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long- term depression (LTD) or long-term potentiation (LTP) [5, 41, 47]. Importantly, 
nNOS-derived NO within the cerebellum has been previously shown to be critical 
in promoting PN survival and neuritogenesis during embryonic development in an 
in vitro environment [42].

 Nitric Oxide Signaling Pathways in the Cerebellum

As a highly diffusible molecule, NO production within the cerebellum can produce 
a localized response with differential effects on a variety of neighboring cells. To 
carry out a myriad of functions within different cell types, NO is known to act 
through two common signaling mechanisms: the classical NO–cyclic guanosine 
monophosphate (cGMP)–protein kinase-G (PKG) signaling cascade or protein 
modification via S-nitrosylation of cysteine residues.

 Protein Kinase-G Signaling Cascade

Intercellular NO is commonly known to activate soluble guanylyl cyclase (sGC), a 
cytosolic enzyme (with observed function on the plasma membrane as well) that is 
documented to be the only endogenous receptor that uses NO as a ligand. To active 
sGC, NO binds to a heme group embedded into the enzyme, which results in the 
hydrolysis of guanosine-5′-triphosphate (GTP) into cGMP [47]. Cyclic GMP acts 
as a secondary messenger that effectively amplifies the original NO response. 
Considering the highly diffusible and consequently transient nature of NO, sGC is 
able to translate the instability of NO into a stable message in the form of 
cGMP. Additionally, sGC activation results in a 200-fold amplification of the origi-
nal NO signal, thus preventing the potential cytotoxic effects of NO overproduction 
[48]. A common downstream effector of cGMP is PKG, a serine/threonine kinase 
that can phosphorylate a wide variety of proteins within cells [49]. Although PNs 
themselves do not produce NO, they have been reported to express all of the com-
ponents associated with the sGC-cGMP-PKG pathway, exclusively activated by NO 
[49]. Within PNs, critical proteins that are phosphorylated specifically by PKG 
include α-amino-3-hydroxy-5-methyl-4-isoxazoleproionic acid receptors 
(AMPARs) and inositol-3-phosphate receptors (IP3Rs), critical for the production 
of LTD within PNs [40, 50, 51]. The classical NO-cGMP-PKG pathway is illus-
trated in Fig. 2.

l-Arginine is catabolized by NOSs, including nNOS, through an oxidoreductase 
reaction to produce NO and l-citrulline as a by-product. As PNs do not express 
NOS isoforms, NO diffuses from presynaptic terminals like the PF to bind to sGC, 
initiating the conversion of GTP to cGMP. Cyclic GMP binds and activates PKG, a 
protein kinase that is able to phosphorylate serine/threonine residues of proteins 
such as AMPARs, IP3Rs, and cytoskeletal proteins.
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Fig. 2 Activation of PKG via NO signaling cascade

 Regulation via S-Nitrosylation

Due to its robust amplification of NO signaling, the sGC-cGMP-PKG cascade is the 
classical signaling pathway that results in the indirect cellular effects of NO. However, 
NO can also directly confer reversible post-translation modifications upon cysteine 
residues of various proteins in the form of S-nitrosylation [52]. The transient nature 
of NO signaling requires the process of S-nitrosylation to be relatively quick, and 
unlike the classical PKG pathway, S-nitrosylation requires higher concentrations of 
NO within the intracellular environment [53]. In order for S-nitrosylation of pro-
teins to occur, the cell itself must be in an optimal redox state, specifically within an 
oxidative environment [53]. Under an oxidative state, cysteine–thiol bonds within 
proteins transform into thiol radicals that easily react with NO [54]. Within the cer-
ebellum, S-nitrosylation is known to affect stargazin, a regulatory protein known to 
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affect membrane expression levels of AMPARs, cytoskeletal structures like post-
synaptic density-95 (PSD-95), and store-operated calcium sensors such as stromal 
interaction molecule 1 (STIM1) [55–57].

 NO and Synaptic Plasticity in the Cerebellum

Synaptic plasticity within the cerebellum is defined as cellular changes that underly 
the storage of motor memories and the development of important functions, includ-
ing error-driven motor control and learning, as well as movements associated with 
the vestibulo-ocular reflex [58, 59]. In general, there exist a variety of ways in which 
synaptic plasticity may occur, including receptor sensitization, LTP, LTD, and alter-
ations in synapse morphology [60]. The following sections will discuss ways in 
which PNs display and are affected by synaptic plasticity, with a particular focus on 
the relationship between NO and PN LTD, as well as associated changes in neuron 
morphology.

 PF–PN Synapse, LTD, and NO

PF–PN synaptic function is crucial in governing the development of fine motor 
skills as well as coordinated movement, both spatially and temporally [61]. PF–PN 
synaptic transmission is initiated by the release of glutamate from PF terminals and 
the binding of glutamate to its receptors located on the PN dendritic spine. In gen-
eral, glutamate activates ionotropic glutamate receptors, namely AMPARs (PF–PN 
synapses do not express N-methyl-d-aspartate receptors (NMDARs)) to elicit a 
large and transient depolarization, termed the fast excitatory post-synaptic current 
(fEPSC) [62, 63]. Also, glutamate activates metabotropic glutamate receptors 
(mGluRs), specifically mGluR1 expressed on PN dendritic spines, to cause a slow 
and sustained influx of cations (both sodium and calcium) into the PN, termed the 
slow EPSC (sEPSC) [62]. The PF–PN synapse is the site for synaptic plasticity in 
the form of LTP/LTD [64]. The LTD profile functions to weaken PF–PN signaling 
by modulation of cations entering the PN, specifically calcium, which originates 
from internal stores from the endoplasmic reticulum (ER) or from the extracellular 
environment [65]. Unlike in the cerebral cortex, LTD of PF–PN synaptic transmis-
sion underlies motor memories, whereas LTP of these synapses is often associated 
with the extinction of learning some motor skills [5].

Notably, NO plays a large role in facilitating LTD at PF–PN synapses [5, 65]. 
Experimentally, NO blockade via NOS inhibitors within cerebellar slices abolishes 
the LTD profile at the PF–PN synapse completely [66, 67]. However, how NO facil-
itates cerebellar LTD has remained a controversial topic within the scientific litera-
ture. The currently favored model describes NO, specifically produced by PF 
stimulation, diffusing into PN terminals to activate the classical NO-cGMP-PKG 
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pathway, leading to the hyperphosphorylation of AMPARs on PNs [68]. Therefore, 
NO production results in decreased AMPAR activity, either through AMPAR desen-
sitization or AMPAR internalization, potentially through either a protein kinase C 
(PKC)- or a PKG-dependent mechanism [67, 69–71].

Experiments focused on characterizing the profile of sEPSC-related proteins in 
the cerebellum of nNOS−/− mice revealed a significant downregulation in total 
mGluR1 protein levels, along with increases in STIM1 protein expression, down-
stream to the mGluR1 signaling cascade [7]. Following mGluR1 activation, STIM1 
proteins oligomerize gate calcium influx through TRPC3 channels [72, 73]. 
Therefore, changes in expression levels and oligomerization patterns of STIM1 are 
indicative of calcium dysregulation [74]. Results from the study conducted by 
Tellios et  al. displayed increased STIM1 clustering in nNOS−/− PNs, alluding to 
aberrant calcium entry through a mechanism of store-operated calcium entry. 
Indeed, a recent study noted the interaction between STIM1 and NO via 
S-nitrosylation results in the prevention of STIM1 oligomerization and further 
reduction of SOCE [57]. The absence of NO/S-nitrosylation of STIM1 may result in 
elevated calcium entry through STIM1-gated TRPC3 channels in nNOS−/− PNs, 
despite decreases in mGluR1 protein expression. Notably, the study conducted by 
Tellios et al. further discovered significantly elevated levels of a calcium-dependent 
protease—caplain-1—within nNOS−/− cerebella, further supporting the role of 
nNOS/NO signaling in cerebellar calcium homeostasis [7].

 Synapse Morphology

Accompanying functional synaptic plasticity, structural forms of synaptic plasticity 
exist in the cerebellum, in which overactivation and under-activation of synaptic 
terminals can result in changes to synaptic bouton ultrastructure. In general, changes 
to dendritic spine morphology are often a result of protein synthesis or degradation 
when building new spines or eliminating unnecessary spines, respectively. The con-
struction of new spines requires increased presynaptic input and activity, and it is 
agreed upon that intracellular calcium levels play a key role in synapse reorganiza-
tion [75]. In response to elevated levels of calcium in the postsynaptic terminal, a 
local change to dendritic spines can occur via calcium-dependent signaling proteins 
that can alter the dendritic cytoskeleton [76]. Local, fast changes to dendritic spines 
in response to a stimulus such as glutamate can result in an increase in immature 
synaptic spines, such as thin or “learning” spines, as opposed to canonical, mature, 
mushroom-type spines, also known as “memory spines” [77]. Creation of additional 
thin spines as a result of intracellular calcium levels is often mediated by phos-
phorylation events through calcium/calmodulin-dependent protein kinases 
(CaMKs), which are able to alter dendritic structures via modification of cytoskel-
etal proteins [78]. In the cerebellum, the activity-dependent production of NO is 
essential for the induction of PF–PN synaptic LTD [66, 79, 80], which contributes 
to spine morphology [81]. While normal neurite growth relies on optimal levels of 
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calcium influx during development, chronically increased calcium suppresses neu-
rite elongation and growth cone movement, as discovered in culture [82]. Therefore, 
a lack of NO signaling can affect intracellular calcium transients within PNs and 
contribute to dendritic deficits during the early phase of PN dendritic development, 
as seen in nNOS−/− PNs [7].

In older nNOS−/− cerebella, it was noted that PN dendritic spines appeared to 
have less mushroom-type dendritic spines and more thin-type spines in relation to 
wild-type cerebella [7]. Elevated intracellular calcium levels with PNs can result in 
altered dendrite and spine morphology via calcium-dependent activation of calpain. 
Notably, further analysis revealed a significant decrease in levels of β-III-spectrin (a 
substrate of calpain) in the cerebella of adult nNOS−/− mice, along with increased 
calpain-1 expression when compared to cerebella from age-matched wild type 
(WT) mice [7]. Given that β-III-spectrin is necessary for the formation of mushroom- 
like dendritic spines [83], the reduction of β-III-spectrin in the cerebellum of mice 
lacking nNOS expression may explain the alterations in dendritic structures and 
synapses in PNs of nNOS−/− mice.

 NO, Bergmann Glia, and Cerebellar Development

BG serve as important mediators of both GC differentiation and migration from the 
EGL to the GL, in addition to PN dendritic and synaptic growth from the PN layer 
to the pial surface [21, 32, 84, 85]. During early postnatal development (PD0–
PD10), BG morphology transitions from distinct smooth lamellar processes that 
radiate toward the pial surface to rough radial processes that contain outgrowths that 
work to ensheath PN synaptic connections with PFs and stellate cells [28, 86]. 
Recent analyses revealed abnormally thick lamellar processes in nNOS−/− cerebella 
during PD3 and PD7 in comparison to WT [12]. An early study that explored BG 
morphology in the weaver cerebellar mutant mouse reported similarly thick BG 
lamellar processes, which this group denoted to be the reason behind PN and GC 
degeneration [87].

As BG lamellar processes mature, radial outgrowths wrap around PN dendritic 
spines and protect synapses from glutamate-induced excitotoxic damage [28, 86]. 
Less colocalization between BG processes and PN dendrites in nNOS−/− cerebella 
might be a driver for the overall decrease in PN mushroom-type spines and overall 
spine number when compared to WT cerebella [7, 12]. Considering that nNOS is 
expressed in supporting cells such as BG and GCs, and not PNs [88–90], it is pos-
sible that the structural and functional deficits of PNs in the nNOS−/− mice are at 
least partially the result of aberrant BG growth.
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 NO and GLAST Regulation

Radial astrocytes, such as BG, abundantly express GLAST as opposed to glutamate 
transporter-1 (GLT-1) in astrocytes in the cerebral cortex [91]. In particular, GLAST 
is an important cerebellar glutamate transporter that has a sixfold greater expression 
level relative to GLT-1, making it the predominant glutamate transporter in the cer-
ebellum [92, 93]. GLAST functions as a co-transporter, in which one glutamate 
molecule is transported into the BG along with three sodium ions and one hydrogen 
ion, while one potassium ion is transported to the extracellular space [94]. A signifi-
cant component dictating GLAST functionality is the frequency and magnitude of 
calcium transients that occur within the BG in the presence of glutamate. It is well 
known that PF activity can evoke increases in intracellular calcium within BGs 
[95–97], and this is postulated to occur by a few mechanisms. First, BG are known 
to express calcium-permeable AMPARs (AMPARs that lack expression of the 
GluR2 subunit); therefore, activation of these AMPARs via glutamate induces local-
ized, transient calcium influxes [98, 99]. Calcium transients within BG during glu-
tamate uptake are critical, as studies that have abolished calcium transients mediated 
by AMPARs have reported BG process retraction as well as decreases in GLAST 
transcription [45, 100, 101]. A recent study has determined that increases in NO 
concentrations are proportional to increases in GLAST functionality, measured as 
relative D-aspartate uptake, in cultured BG [6]. Similarly, glutamate uptake activity 
within cultured BG has been shown to increase BG expression of nNOS, suggesting 
an intricate interplay between glutamate concentrations, nNOS expression, and 
GLAST activity [90]. More recently, a study by Tellios et al. showed that cultured 
BGs isolated from nNOS−/− cerebella exhibit decreased trafficking of GLAST to the 
plasma membrane compared to WT BG, resulting in less GLAST activity, measured 
by live cell imaging of intracellular calcium and sodium [12].

NO may also indirectly affect GLAST function by modulation of the calcium 
transients within BG during glutamate uptake. Specifically, GLAST activity is 
closely coupled to the sodium/calcium exchanger, resulting in an overall increase in 
intracellular calcium. Interestingly, multiple studies have demonstrated the ability 
of NO to cause a reversal activity of the sodium-calcium exchanger, resulting in 
increased calcium influx into the BG [102–104].

 Cerebellar Disorders and Implications

Cerebellar dysfunctions have increasingly begun to be included in a variety of neu-
rological disorders, including autism, Alzheimer’s disease, and Parkinson’s disease 
[105–107]. The following section will describe canonical clinical cerebellar disor-
ders and their association with PN function, PF–PN synaptic transmission, cerebel-
lar calcium dynamics, and NO signaling.
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 Spinocerebellar Ataxia

Spinocerebellar ataxias (SCA) are a group of rare hereditary ataxias that lead to 
degenerative changes within the cerebellum and in some cases, the spinal cord 
[108]. Over 40 SCAs have been identified thus far, each with their characteristic 
genetic mutation, with a global prevalence rate of 0.3–3 per 100,000 per capita [108, 
109]. Symptoms of the disease along with the perceived severity can vary depend-
ing on the type of SCA as well as the age of onset and mainly include uncoordinated 
gait, impaired hand, and eye movements, as well as poor speech formation and 
cognitive deficits [109–111]. At the physiological level, the cerebellum often shows 
increased atrophy as well as degeneration and loss of PNs [112, 113]. In human 
SCAs, mutations in ATXN, SPTBN2, CACNA1A, ITPR1, and TRPC3—genes encod-
ing ataxin-1, β-III-spectrin, CaV2.1, IP3 receptor, and TRPC3—are affected in 
SCA1, 5, 6, 15, and 41, respectively, and are crucial in maintaining PN viability and 
functionality [62, 114–118]. Specifically, these gene mutations are similar in that 
they alter calcium ion dynamics within the PN, consequently resulting in PN degen-
eration and loss [119–121]. Results discovered in the nNOS−/− mouse model also 
harbor similar features to those discovered in human SCAs, including decreased 
protein expression of β-III-spectrin and impairments to the mGluR1 pathway [7]. It 
is understood that calpain activity can induce the degradation of neuronal cytoskel-
etal proteins, including α- and β-spectrins, as well as IP3 receptors, which are impli-
cated in the progression of multiple SCAs [122–128]. Therefore, the knowledge that 
a lack of nNOS-derived NO signaling may mimic a similar phenotype to that of 
human SCAs could provide foundational knowledge in better understanding the 
progression of SCA progression as well as other movement disorders associated 
with the cerebellum.

 Episodic Ataxia

Episodic ataxias (EAs) are similar to SCAs in that they are both neurological condi-
tions originating in the cerebellum that affect movement coordination [129]. EAs 
are also relatively rare disorders, affecting less than 1 in 100,000 individuals [129]. 
Unlike SCAs, which present with chronic symptoms, EAs are characterized by tran-
sient, periodic bouts of ataxia, along with secondary symptoms including seizures 
and slurred speech [130]. Like SCAs, there are multiple types of EAs, presenting 
with various genetic mutations, in particular SLC1A3—a gene encoding for GLAST 
in humans and leading to the progression of EA6 [131, 132]. The progression of 
both SCA and EA is affected by changes to BG and GLAST expression and func-
tionality. Although SCA1 is caused by a mutation in the ATXN1 gene, reports have 
shown that the loss of the protein ataxin-1 can negatively affect the morphology of 
BG, while analyses of humans with SCA1 revealed overall less BG compared to 
healthy controls, which suggests that stimulating BG activity and proliferation 
might be beneficial for treating this form of SCA [117, 133]. Although the severity 
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of the PN deficit is currently unclear in clinical cases of EA6, characterization of the 
GLAST−/− mouse model showed a large detriment to PN synaptic transmission and 
development [30]. Understanding the relationship between NO and GLAST func-
tionality may bring to light novel ways to increase BG activity and GLAST expres-
sion to ameliorate motor deficits seen in various ataxias.

 NO as a Therapeutic: Good or Bad?

NO is a hotly disputed molecule in terms of its role in physiological and pathologi-
cal contexts. In general, chronically elevated NO concentrations have proven detri-
mental in a variety of neurological pathologies, such as stroke, multiple sclerosis, 
and glaucoma [134–137]. In pathologies such as stroke, NO levels increase as a 
result of excitotoxicity and subsequently result in decreased neuron survival. 
Specifically, NO as a free radical can oxidize and form reactive oxygen and nitrogen 
species in high concentrations that are detrimental to cell metabolism and eventu-
ally induce apoptosis [138]. In excitotoxic environments within the cerebral cortex, 
NMDARs are coupled with the production of NO via nNOS, in that overactivation 
of NMDARs on neurons results in a chronic influx of calcium, consequently caus-
ing the overactivation of nNOS and the overproduction of NO [139, 140]. 
Additionally, stressed or dying cells can release cytokines such as TNF-α, which 
can trigger the expression and activation of iNOS within neurons and supporting 
cells [141]. NO production via iNOS activity occurs as a burst effect, releasing 
higher levels of NO in a shorter period of time, and has often been deemed the cul-
prit of pathologically elevated NO levels [142].

Despite the detrimental effect NO may have at pathologically high concentra-
tions, physiological levels of NO are crucial in maintaining normal neuronal struc-
ture and function. Importantly, a lack of NO can produce effects that are equally as 
harmful to neuronal homeostasis as an excess of NO, as demonstrated by recent 
articles characterizing cerebellar development in nNOS knockout (nNOS−/−) mice 
[7, 12], as well as in neuropathologies such as Huntington’s disease and to some 
degree schizophrenia and depression [143, 144]. In the cerebellum specifically, PNs 
have the added benefit of not expressing NMDARs on PF–PN synapses, which may 
alleviate the detrimental effects of excess NO production in these cells. However, 
maintaining physiologically appropriate levels of NO via exogenous application 
may be difficult, as NO is a highly diffusible and transient molecule. Although there 
have been recent advances in optimizing the slow release of NO for neurological 
targets, using NO as a widescale therapeutic may be tricky [145]. As mentioned 
previously, multiple animal models of SCA have identified a decrease in cerebellar 
NOS activity, highlighting a common deficit associated with this pathology [8, 9]. 
In order to avoid the unpredictability of exogenous NO supplementation, clinical 
therapeutics often target downstream effectors of NO, such as cGMP or PKG, in 
order to elicit similar effects. Gaining a better understanding of what interacts with 
NO in the cerebellum is the first step in conceptualizing therapeutics to combat 
motor deficits.
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Developmental Disorders 
of the Cerebellum and Neurotrophic 
Factors

Leila Pirmoradi and Shahla Shojaei

Abstract The cerebellum plays a central role in motor control and cognition fea-
tures such as attention. Thus, a disturbance in cerebellar development results in 
neurological disorders such as attention deficit hyperactivity disorder (ADHD), 
congenital ataxia, and autism. The role of neurotrophic factors on the growth, pro-
liferation, differentiation, and arborization of neurons and thus neurodevelopmental 
disorders has been established and investigated for decades. Numerous studies have 
shown changes in the level of a neurotrophic factor in the serum or tissue and altera-
tions in their receptors and components of their signaling pathways in these neuro-
developmental diseases. This chapter provides a brief overview of neurotrophic 
factors and their role in cerebellar development. We also focus on the functions of 
the neurotrophin system in developmental disorders and diseases of the cerebellum.

Keywords Attention deficit hyperactivity disorder · Autism · Developmental 
dyslexia · Joubert syndrome · Ataxia · Rett syndrome · Joubert syndrome · 
Dandy–Walker malformation · Brain-derived neurotrophic factor · Nerve growth 
factor · Neurotrophins · Transforming growth factor-beta · Neurotrophic cytokines

 Introduction

The cerebellum coordinates motor function and preserves equilibrium [63, 158]. It 
is also an essential region of the brain for behavior and cognition in all aspects, 
including language, memory, sleep, attention, and spatial and social-emotional 
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processing [3, 45, 141, 158] [reviewed in [110, 157]. Early damage to the cerebel-
lum results in more drastic and long-lasting effects on movement and cognition 
[168]. Early abnormalities in cerebellar function and regulation result in develop-
mental disorders such as autism, ADHD, developmental dyslexia, and Joubert syn-
drome [79, 106, 168]. Many studies have investigated the molecular mechanism of 
cerebellar development, and the role of neurotrophic factors is well known [85, 
188]. In the cerebellum, neurotrophic factors have a crucial effect on the generation, 
differentiation, and proliferation of different neuronal cells such as granule cells, 
Purkinje cells, and glia [85, 188]. Dysregulation of their pathways was associated 
with developmental disorders in the cerebellum [39, 146, 148, 149].

 Neurotrophic Factors

Neurons and glial cells are dependent on growth factors for their normal function, 
differentiation, and survival [44]. The neurotrophin family of peptides was the first 
discovered family of growth factors that affect the central nervous system (CNS) 
[103]. Neurotrophic factors modulate the formation of the CNS by affecting the 
development and differentiation of neuronal cells in utero [103]. These proteins are 
also expressed throughout life and have central roles in regulating the function and 
survival of neurons and glial cells [96, 97]. Receptors for these factors have also 
been discovered in many tissues. They mediate a wide range of actions, including 
the morphogenesis of kidneys and differentiation of vessels and immune cells [48, 
152, 159]. Neurotrophic factors have been classified into three groups: neurotroph-
ins (NTs), the transforming growth factor-beta (TGF-β) superfamily, and neuro-
trophic cytokines (Fig. 1) [82].

 Neurotrophins

Neurotrophins (NT) are the best-studied neurotrophic factors, and their concentra-
tion changes play a central and pivotal physiological role in neuron removal during 
nervous system development. In the adult, NTs protect specific populations of neu-
rons in the CNS. They play a critical role in learning, memory, and regeneration 
processes by facilitating synaptic transmission and plasticity. The NT family was 
first introduced by discovering nerve growth factor (NGF). Brain-derived neuro-
trophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin 4/5 (NT-4/5), also 
called neurotrophin-4 (NT-4) or neurotrophin-5 (NT-5), are other members of this 
group in mammals (Fig. 1) [82]. All NTs are synthesized in the form of precursor 
proteins and activated upon cleavage by metalloproteinases. They have two types of 
receptors: tropomyosin receptor kinase (Trk) from the tyrosine kinase family, which 
binds with high affinity, and p75 neurotrophin receptors (p75NTR) from the tumor 
necrosis factor (TNF) receptor superfamily, which has a low affinity for NTs. Each 
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Fig. 1 Classification of neurotrophic factors. Neurotrophic factors are classified into three main 
groups: (1) neurotrophins, (2) transforming growth factor-beta (TGF-β) superfamily, and (3) neu-
rotrophic cytokines. Each of these groups is divided into their subgroups. Nerve growth factor 
(NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin 4/5 
(NT-4/5), glial-derived neurotrophic factor (GDNF), bone morphogenic proteins (BMP), and cili-
ary neurotrophic factor (CNTF)

NT preferentially binds to its respective Trk receptor, resulting in Trk dimerization 
and subsequent tyrosine autophosphorylation, activating intracellular signaling 
pathways. NGF binds to TrkA, while BDNF and NT4 bind to TrkB, and NT-3 binds 
to TrkC. Although pro-NTs cannot activate Trk receptors, they activate p75NTR to 
promote cell apoptosis via Rac1/c-Jun N-terminal kinases (JNK) pathways (Fig. 2) 
[82, 132]. Additionally, p75NTR can form a heterodimer with Trk receptors, lower-
ing their affinity and promoting survival through the nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB) pathway. Disruption of the p75NTR 
signaling pathway has been observed in several autoimmune diseases [82].

Neurotrophins could exert a diverse effect following interaction with their cog-
nate Trk receptors. They can increase neurotransmitter release through activation of 
the phospholipase Cγ (PLCγ) pathway and enhance synaptic delivery by activation 
of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase C (PKC). 
BDNF stimulates dendritic growth and spine maturation via interaction with 
TrkB.  The actin cytoskeleton that has an essential role in CNS function can be 
modulated by Trk signaling through activation of small Rho GTPases. Trk signaling 
also improves mRNA translation globally by inducing the phosphoinositide 3-kinase 
(PI3K)–AKT pathway and transcription of activity-regulated genes such as FOS 
and ARC [132]. BDNF helps myelination of the CNS in physiologic conditions and 
even improves myelin injury [reviewed in [50]]. The role of BDNF/TrkB signaling 
in the learning of fear and also other signaling pathways, including proBDNF/
p75NTR, NGF/TrkA, and NT-3/TrkC in the amygdala, has been proposed (reviewed 
in [116]).
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Fig. 2 Pro-neurotrophins (pro-NTs) activate p75NTR to promote cell apoptosis via Rac1/c-Jun 
N-terminal kinase (JNK) pathways. Upon processing to their cognate mature NTs, they interact to 
their specific Trks. NGF binds to TrkA, BDNF and NT4 bind to TrkB, and NT-3 binds to TrkC. NTS 
can also interact with p75NTR with lower affinity and promote survival through the nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. TRK signaling exerts a diverse 
effect on the nervous system

Some of the climbing fibers are eliminated during development in the cerebel-
lum, and only one of them is strengthened, and this pattern is crucial for the forma-
tion of a practical neural circuit [66]. BDNF released from Purkinje cells helps this 
synapse deletion in climbing fibers via TrkB retrogradely [30]. BDNF-TrkB, as a 
crucial signaling pathway, is damaged in peroxisome biogenesis disorders leading 
to an abnormality during cerebellum development [2].

 Transforming Growth Factor-Beta Superfamily

The TGF-β superfamily is a growing group with ubiquitous expression throughout 
the body and numerous roles in the growth and development of many organs. 
Members of this superfamily play various functions such as controlling the cell 
cycle, effects on differentiation, early development regulation, extracellular matrix 
formation, hematogenesis modulation, and immune reactions. The TGF-β super-
family comprises approximately 30 proteins in mammals that are divided into three 
families: TGF-β family, glial cell-derived neurotrophic factor (GDNF) family, and 
bone morphogenic protein (BMP) family that each is subdivided into its members 
(Fig. 1) [64, 82]. TGF-β has three isoforms (1, 2, and 3) that have both protective 
and damaging effects on neurons based on the context of growth factors, cell type, 
and the developmental period ([180], Subramaniam, Strelau et  al. 2008, [144]). 
GDNF was the first protein isolated in the GDNF family, and it has the most impact 
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on the cerebellar neurons. GDNF protects dopaminergic, noradrenergic, and motor 
neurons in the midbrain and spinal cord and affects peripheral neuron morphogen-
esis [21]. GDNF assists with Purkinje cell function and survival in the cerebellum 
[20, 178]. Purkinje cells are the target of the molecular layer interneurons, which 
express GDNF during development via GDNF receptors GFRα1 and RET. Molecular 
layer interneurons are necessary for cerebellar-dependent motor learning [160]. On 
the cerebellar granule neurons, GDNF has a protective effect against TGF-β cyto-
toxicity [170].

The insulin-like growth factor (IGF) as a mitogenic protein consists of IGF-I, 
IGF-II, and six binding proteins (IGFBP-I–IGFBP-6). Insulin-like growth factor- 
binding protein-2 (IGFBP-2) is a polypeptide that acts as a neurotrophic factor, 
expressed in the cerebellum and other brain parts. IGFBP-2 has a role in brain 
development and neuronal plasticity, leading to cognitive functions like spatial 
learning and memory [reviewed in [87]].

 Neurotrophic Cytokines

Neurotrophic cytokines are a group of neurotrophic factors divided into the ciliary 
neurotrophic factor (CNTF) family and others (Fig. 1). CNTF was the initial protein 
discovered in this family, and it is a pluripotent neurotrophic factor. In the nervous 
system, CNTF affects the survival and differentiation of sensory, sympathetic, and 
motor neurons, thereby influencing the development and maintenance of the ner-
vous system [134] (Fig. 3).

 Neurotrophic Factors and Cerebellar Development

NTs are present in the human cerebellum from perinatal age to adulthood, and their 
role in cerebellar connectivity has been confirmed [139]. BDNF and NGF are highly 
expressed in the cerebellum and cerebrum, and they have trophic effects in these 
areas. During development and in adulthood, growth factors including BDNF and 
NGF help neuronal plasticity in an activity-dependent manner and improve learning 
and memory [156]. NGF receptor expression in Purkinje cells shows the importance 
of NGF in cerebellar development [33, 89]. Increased granule cell precursor prolif-
eration and migration are characteristic features of postnatal cerebellar cortex devel-
opment [83]. Purkinje cells are the target of other NTs like NT-3, but Tojo et al. 
showed that the deletion of this NT had no significant effect on the histological 
characteristics of these cells [177]. Other studies discussed the survival effect of 
NT-3, NT-4, and BDNF [85]. Purkinje cells deprived of NTs die via a different form 
of apoptotic death, which occurs in adjacent granule cells, and this occurs because 
of excessive autophagy that is usually inhibited by NTs. P75NTR is necessary for 
Purkinje cell survival in the presence of trophic factors. P75NTR, in the absence of 
neurotrophins, induces Purkinje cell autophagy, which likely is the mechanism 
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Fig. 3 Correlation of the level of neurotrophins with psychiatric disorders. The level of 
neurotrophins in the blood and neural tissues has been proposed to determine vulnerability to 
psychiatric disorders

involved in neurodegenerative diseases [52]. CNTF has a similar effect on Purkinje 
cell survival [85]. There was some controversy about the survival effect of BDNF in 
these cells and, more specifically, the impact of this factor on their dendritic devel-
opment [85]. Kapfhammer and colleagues reported no significant effect of BDNF in 
the survival and dendritic development of Purkinje cells in the cerebellum. Neural 
proliferation during the developmental period and neural plasticity after brain injury 
both change the levels of the NFG in the cerebellum.

During cerebellar development, p75NTR is also expressed in the proliferating 
granule cell precursors (GCPs). Lack of p75NTR can lead to the GCP cell cycle 
speed-up, the GCP proliferation delay, and excess glutamatergic input to Purkinje 
cells that is resulted in abnormal behaviors [195].

Studies on the role of NTs in neuronal survival and phenotypic differentiation at 
embryonic day 16 (E16) of the rat cerebellum showed that NGF failed to increase 
the number of Purkinje cells and GABAergic interneurons in cultures [93]. Instead, 
Kapfhammer et al. showed the survival-promoting effect of BDNF in these types of 
cerebellar cells [85]. Environmental enrichment (EE) partially affects the cerebel-
lum via the upregulation of neurotrophins NGF and BDNF. Angelucci et al. showed 
that rats exposed to EE from weaning to 5 months of age showed a remarkable 
increase in BDNF and NGF concentrations in the cerebellum compared with rats 
nurtured under standard conditions. This result shows the influence of EE on the 
cerebellum via NTs [7]. EE improves motor function after cerebellar damage in 
rats, attributed to regeneration processes caused by NTs [59]. The assessment of rats 
exposed to a microgravity environment in space for 3 months revealed no alteration 
in NGF expression in the cerebellum, while NGF expression in the hippocampus 
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and cortex in the experimental group was less than in rats in the ground control 
group [151]. Conversely, in neonatal rats exposed to hypergravity, there was a sig-
nificant decrease of NGF expression in the neonates’ cerebellum during birth on a 
postnatal day. However, the basic mechanisms by which NT acts in this condition 
are not yet known [148, 149].

Biochemical pathways such as Notch, Wnt/β-catenin, TGF-β/BMP, Shh/Patched, 
and Hippo have critical roles in embryonic development. Among them, the TGF-β/
BMP pathway is the most important in cerebellar development. Mutation and dys-
regulation of this pathway are accompanied by medulloblastoma, a CNS tumor 
originating from the cerebellum [9, 145].

 Cerebellum and Neurodevelopmental Disorders

The role of the cerebellum is more than just motor activity. Because of the wide-
spread connections between the cerebellum and other brain areas, the cerebellum 
has been considered a part of the brain that has a central role in emotion, cognition, 
behavior, and social interactions [16, 45]. Thus, any damage to the cerebellum early 
in development could profoundly impact movement, cognition, and learning. 
Autism, ADHD, and developmental dyslexia are well-known developmental disor-
ders of the cerebellum [168].

 Attention Deficit Hyperactivity Disorder

Dysfunction of the cerebellum is a characteristic of some developmental disorders 
such as ADHD [168]. Studies implicate frontostriatal and frontocerebellar catechol-
aminergic circuit disorders in ADH pathophysiology. Because antidepressants and 
psychostimulants used to treat patients with ADHD increase BDNF levels, it pro-
posed that this neurotrophic factor plays an important role in the pathogenesis of 
ADHD [56]. Many studies on the pathogenesis of ADHD have focused on and con-
firmed the genetic association of the BDNF gene [92] or its polymorphisms [11, 19, 
29, 90] with ADHD. A recent large-scale DNA sequencing study supported this 
association [72]. The BDNF Val66Met polymorphism has been studied the most, 
but its association with ADHD is questionable. Park et al. showed a significant inter-
action between the neurotic symptoms of ADHA and the BDNF Met allele in a 
Korean population [133]. However, a meta-analysis conducted on four European 
people refuted the involvement of BDNF Val66Met polymorphism with the patho-
genesis of ADHD [150]. Recently, another study was performed to address this 
controversy [196].

Other investigators focused on the levels of neurotrophic factors in the blood, 
especially BDNF, and its role in the pathogenesis of ADHD. The plasma level of 
BDNF in 41 drug-naive child ADHD patients was higher than that in 107 healthy 
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controls [164]. A later study by the same group confirmed these findings [165], 
while Scassellati et  al. showed no difference in the serum BDNF level between 
healthy and affected groups using the same samples [155]. A study enrolling 
Caucasian adult ADHD patients showed that these patients had decreased serum NT 
levels compared with the control group [35].

The role of NGF and its receptor (NGFR) has been shown in patients with ADHD 
[12]. NGF exerts a trophic and functional role in the basal forebrain cholinergic 
neurons, which are involved in attention [56, 154, 171]. Serum NGF levels were 
higher in drug-naive ADHD patients at childhood [67]. Bilgic and colleagues 
showed that serum NGF and BDNF levels in Turkish children were not significantly 
associated with ADHD, while serum GDNF and NT-3 were higher in the patient 
group, although it is suggested that the NT-3 level was not associated with the sever-
ity of ADHD [21]. Higher plasma GDNF in this disorder is related to being impul-
sive; a lack of attention and hyperactivity has been recognized. In addition, FGFR 
has a role in ADHD etiology that acts probably via activation of FGFR1b and 
FGFR2b [reviewed in [56].

 Autism Spectrum Disorders

Autism spectrum disorders (ASDs) are neurodevelopmental disorders that impair 
communication and social ability [reviewed in [182]]. Both genetic [84, 86, 173, 
187] [reviewed in [32, 37] and environmental [27, 47] [reviewed in [51]] factors are 
involved in etiology of ASD, and cerebellar involvement in ASD has been recog-
nized [reviewed in [62, 70, 179]] (see chapter “Neurodevelopmental Disorders of 
the Cerebellum: Autism Spectrum Disorder”). In addition, it is suggested that sex 
responds differently to environmental factors, including immune response to infec-
tion. It has been shown that the BDNF expression level was lower in the cerebellum 
of postnatal male rats, and the IL-6 expression level was higher in the female after 
E. coli infection [129].

In some animal models of ASD, including Borna disease virus infection and rats 
treated with valproic acid, a gradual loss of Purkinje cells diminishes cerebellum 
size. It induces other aspects of cognitive deficits [163]. Measurement of neuro-
trophin mRNA levels such as NGF, BDNF, and NT-3 and their respective TRK 
receptors in newborn rats infected with the Borna disease virus showed no altera-
tions in the cerebellum. However, there were increased apoptotic cells in the cere-
bellar granular layer and loss of Purkinje cells [198]. A study on blood-spot from 
newborns who were later diagnosed with ASD showed decreased NT-3 and NT4/5 
levels compared with healthy subjects [124].

Similarly, in a postmortem study, the cerebellar NT-3 level was higher in ASD 
patients than normal controls [148, 149]. Another neurodevelopmental rodent model 
that mimics prenatal immune activation as an environmental risk factor for ASD and 
schizophrenia is the maternal lipopolysaccharide (LPS) exposure rat model [192]. 
LPS-treated pups on P21 show increased levels of cerebellar NT-3 [163].
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Vitamin D is another factor that adjusts the production of neurotransmitters and 
growth factors, including NT-3, NGF, and GDNF. Vitamin D receptor exists in the 
CNS, and its deficiency has been reported in ASD (reviewed in [107]).

Levels of neurotrophins are increased in the blood of children with ASD [104]. 
The elevated levels of serum NGF and other neurotrophins can be associated with 
the development of ASD and mental retardation later in childhood [14]. A variant 
type of BDNF has been found in autistic families in addition to increased blood 
levels of this neurotrophin in ASD children. Thus, BDNF has been proposed as a 
therapeutic target for the treatment of ASD due to its critical involvement in the 
development of ASD (reviewed in [69]) [13, 54, 88]. Conversely, another review 
proposed a decreased blood level of BDNF as a marker for ASD prediction and 
prognosis (reviewed in [40]). Sadakata and colleagues reported that transgenic 
knock-out mice with missing Ca2+-dependent activator protein for secretion 2 
(CAPS2), a protein involved in NT release, were susceptible to autistic features 
[146, 147]. Nickl-Jockschat et al. discussed that altered neurotrophin levels are a 
pathological mechanism. As mentioned earlier, pro-NT has more affinity to activate 
p75NTR and subsequently more apoptotic cell death. Therefore, the changes in the 
ratio of pro-NT to NT can result in some pathological aspects [125].

Immunological stimuli that cause BDNF release from microglia are crucial for 
cell survival and neuronal differentiation. Intracellular Ca2+ signaling is vital for 
microglial functions in neurodevelopmental disorders such as ASDs [reviewed in 
[120]]. Neurotrophins such as NGF and BDNF play a role in dendritic morphology 
[61]. Dendritic shape abnormalities and more enormous dendritic spines have been 
detected in ASD patients. The cerebellum and inferior olive size variations have 
been reported in postmortem examinations of the brains of ASD patients. These 
anomalies in dendritic branching happened in other neurodevelopmental disorders 
linked to ASD, such as Fragile X and Rett syndrome (RTT) [34]. RTT is a genetic 
disorder considered to be an ASD previously [18] (see chapter “Epigenetics and 
Cerebellar Neurodevelopmental Disorders”). For years, there was a debate on RTT 
classification as an autistic developmental disorder. In 2013, the American Society 
of Psychiatry changed the classification of RTT and removed it from the ASDs 
because of its unique molecular basis [1].

RTT affects girls, and mutations in the X-linked gene encoding methyl–CpG- 
binding protein 2 (MeCP2) are responsible for over 80% of affected girls [26, 136]. 
MeCP2 alters the expression of many genes in the cerebellum [17]. While serum 
BDNF levels in RTT girls and a normal group are similar, BDNF protein levels are 
reduced in RTT brains [18]. Reduced or unaltered NGF in the cerebellum and other 
brain regions has been reported [156]. Calamandrei and colleagues displayed that 
serum NGF levels decreased with age [24].

Insulin-like growth factor-1 (IGF-1) is another factor that is changed in ASD, 
and its role is the alteration of IL-6 expression and microglial function (reviewed 
in [143]).
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 Ataxia

Cerebellar ataxias are neurological disorders that can affect the vermis, paravermis, 
and hemisphere of the cerebellum during development [111] (see chapter “Motor 
Circuit Abnormalities During Cerebellar Development”). Machado–Joseph disease 
(MJD) or spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia that is caused 
by repeated CAG in the ATXN3 gene [91]. Neuronal loss in the cerebellar nuclei 
and Purkinje cell layer has been reported in MJD [91]. Since p75NTR has a vital 
role in the induction of neuronal apoptosis, these findings encouraged researchers to 
investigate the role of p75NTR in the naked-ataxia mutant mouse, but p75NTR 
expression showed a normal pattern in this type of ataxia [140]. Although extrinsic 
BDNF can protect Purkinje neurons and delay motor deficits onset in spinocerebel-
lar ataxia type 1 (SCA1) model mice [117], it did not change gene expression in 
Purkinje cells [162].

Because NGF and its receptor TkrA exist in human cerebellar neurons and are 
involved in the development and stability of the cerebellar connections, NGF ther-
apy may improve symptoms in patients with SCA3 [174]. Jones and colleagues 
reported that mesenchymal stem cells enhance the survival of Purkinje cells by 
expression of BDNF, NT-3, or GDNF [81]. Detection of neurotrophin mRNA 
expression in the ataxic stargazer (stg) mutant mouse showed that NT-3 or NGF 
mRNA expression in the cerebellum was normal. In contrast, BDNF mRNA in the 
cerebellar granule cell layer was reduced [138]. In SCA6, decreased BDNF mRNA 
expression and altered BDNF protein levels in Purkinje cell dendrites have been 
shown [172]. Administration of TGF-β1 inhibits TNF-α release and prevents 
microglial activation leading to neuroprotection in rats with induced cerebellar 
ataxia [25]. In addition, it has been reported that cerebellar ataxia is likely resulted 
from Vitamin B deficiency and gut microbiota have an important role in vitamin B 
synthesis [reviewed in [105]].

 Ethanol Neurotoxicity

Ethanol toxicity is when cerebellar cells are vulnerable to ethanol’s neurotoxic 
effects during development (see chapter “Teratogenic Influences on Cerebellar 
Development”). In addition to the damage to different parts of the brain, including 
ventricular enlargement, cortical white matter shrinkage, and hippocampal abnor-
malities, the brains of alcoholics have shown a significant cell loss [71, 183] and 
white matter degeneration in the cerebellum [183]. Duc and colleagues reported that 
prenatal granular neurons exposed to ethanol in vitro are more sensitive to hypoxic/
hypoglycemic conditions. These results show the vulnerability of the cerebellum to 
ethanol, especially in the developmental period [94]. Studies have shown that etha-
nol inhibits cell survival mediated by neurotrophic factors, affecting granule cell 
migration and altering Purkinje cell function (Reviewed in [65]). The least amount 
of embryonic alcohol exposure decreases BDNF- and NCAM (neuronal cell 
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adhesion molecule)-positive cells in all brain areas, but synaptophysin expression 
that indicates synaptic connections does not change in the cerebellum and preoptic 
area [108].

BDNF, NT-4, and TrkB are highly expressed in the cerebellum. There is evi-
dence that developmental outcomes of ethanol exposure are mediated by the altera-
tion of neurotrophins [74] in an area- and time-specific manner (reviewed in [41]). 
Furthermore, BDNF variations were associated with a greater volume of cerebellum 
and gray matter in alcohol-dependent families [77]. Prenatal ethanol exposure 
caused a decrease in BDNF expression in the embryonic rat brain [166]. Ethanol 
reduces BDNF and NT-3 secretion in the neonatal rat cerebellar granule cells. 
Reduced neurotrophin levels increase after treatment by vitamin E [75]. Ethanol 
influences neurotrophin receptor expression, including TrkA, TrkB, TrkC, and 
p75NTR. After ethanol treatment in the early postnatal rat cerebellum, a reduction 
of these receptors was reported [123].

Ethanol prevents BDNF activity in the cerebellum, leading to damage to Purkinje 
cells, which may occur via impairment in the regulation of BDNF, TrkB receptor, or 
related signaling pathways [58]. BDNF is also necessary to develop and migrate 
cerebellar granule cells in the postmitotic period [22]. In vitro experiments on cer-
ebellar granule cells showed that ethanol inhibits the BDNF-stimulated phosphory-
lation of extracellular signal-regulated protein kinase (pERK) activation in neurons 
[127]. BDNF stimulates AP-1 in cerebellar granule neuron culture, and PI3K/Akt 
and JNK pathways interfere with this effect. Ethanol suppresses the PI3K/Akt and 
JNK pathways and AP-1 activity linked to BDNF [98]. This change in BDNF signal 
transduction reflects developmental abnormalities from ethanol consumption [127]. 
Reduction in BDNF is associated with sensitivity to neural cell degeneration [38]. It 
has been shown that the levels of BDNF, TrkB receptor mRNA expression [100], 
TrkC receptor [101, 102], and NGF in the cerebellum decrease on postnatal day 4 
or 5 [73].

NGF plays a critical role in developing different brain parts, such as the cerebel-
lum. Studies have shown that ethanol exposure in neonatal rats reduces current NGF 
receptor levels in Purkinje cells, like other neurotrophic factors [43]. Purkinje cells 
showed the most harmful effects of ethanol during early neonatal development of 
the cerebellum [101, 102]. This effect influences neurotrophin signaling [73]. It 
upregulates pro-apoptotic molecules [74, 122], which cause Purkinje cell loss via 
apoptosis [101, 102]. Cerebellar granule cell development is impaired after prenatal 
ethanol exposure. Src family kinases (SFKs) are signaling molecules that trigger 
axon growth. Ethanol inhibits SFK and disrupts cerebellar granule neuron out-
growth. However, the effect of ethanol on BDNF-dependent axon growth and the 
ERK1/2 pathway in cerebellar granule cells is controversial [28]. Studies in a mice 
model with fetal alcohol spectrum disorder (FASD) showed that the anterior lobe of 
the vermis is widely affected, and lobules I–V, which are responsible for sensorimo-
tor functions and crus II and lobule VIIB that control cognitive functions, are dam-
aged [reviewed in [119]]. Higher TrkA receptors and p75NTR deliver more stability 
against degeneration in the posterior part of the cerebellum [153]. Long-term but 
transient exposure to ethanol (6 and 9 months) is accompanied by different NGF 
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levels in the brain. No change in NGF levels of the cerebellum was reported in this 
survey [60]. Induced damage by ethanol toxicity in the developing cerebellum was 
attenuated by estradiol. It has been shown that estradiol protects Purkinje cells 
exposed to ethanol and increases BDNF mRNA after ethanol exposure [49].

Another affected neurotrophic factor in developmental ethanol neurotoxicity is 
GDNF. An explant culture model of this neurotoxicity in the rat cerebellum showed 
that ethanol exposure caused decreased GDNF release but did not change its mRNA 
expression [114]. These researchers also observed a preventive effect of exogenous 
GDNF against apoptotic cell death signaling caused by ethanol treatment in a cel-
lular model [115]. Then, Chen and colleagues showed that GDNF, netrin-1, and L1, 
an adhesion molecule in neural cells, have converging effects on activating the SFK- 
cas- ERK1/2 pathway to promote axonal outgrowth. Ethanol disrupts this pathway 
and inhibits axonal arborization in cerebellar granule cells [28].

 Medulloblastoma

Medulloblastoma is the most common pediatric brain tumor in the cerebellum of 
infants and children [145, 185] (see chapters “Primary pediatric brain tumors of the 
posterior fossa: Part I” and “Primary pediatric brain tumors of the posterior fossa: 
Part II A comprehensive overview of medulloblastoma”). Marchetti et al. suggested 
a critical role for NTs and their receptors in the invasive feature of human medul-
loblastoma [109]. Although, as previously mentioned, Trks are essential factors for 
neuronal survival, NGF/TrkA signal transduction is accompanied by suppression of 
medulloblastoma cell proliferation [8] and induction of cell death [31, 55, 128]. 
Interaction of the cytoplasmic adaptor protein CCM2 with the TrkA receptor is 
necessary for this pathway. The mediator of TrkA-CCM2 death signaling in medul-
loblastoma cells is STK25, a germinal center kinase class III (GCKIII) kinase 
(STK24, STK25). Reduction of STK25 prevents medulloblastoma cell death 
induced by NGF-TrkA [36]. Another study involving a cellular model of medullo-
blastoma reported induction of cell death after activation of TrkA by NGF through 
macropinocytosis [99]. Valderrama et  al.’s findings confirmed that induction of 
TrkA expression resulted in either medulloblastoma cell differentiation or apoptosis 
[181]. Whole-genome microarray analysis revealed that TGFβ is a potent factor 
influencing tumor cells’ progression and metastasis in medulloblastoma [9]. Gate 
and colleagues showed that obstruction of TGFβ signaling almost eliminates T reg-
ulatory cells and improves CD8(+)/killer cell function to eradicate tumor cells [57].

Thomaz showed that the TrkA and TrkC activation lead to cell death, while TrkB 
activation leads to medulloblastoma growth. Then, the factor that inhibits TrkB can 
act as an antitumor [reviewed in [176]]. ANA-12, as a selective TrkB inhibitor, 
demolishes human UW228 and D283 medulloblastoma cells proliferation by 
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decreasing extracellular-regulated kinase (ERK) activity, accelerating apoptosis and 
increasing signal transducer and activator of transcription 3 (STAT3) expres-
sion [175].

 Schizophrenia

Schizophrenia, which is classified as a late-onset neurodevelopmental disorder [34], 
is a hereditary (80%) chronic mental disease [80] with cognitive abnormalities 
[126]. Brain imaging studies have suggested the involvement of cortico-cerebellar 
connections in cognition [42]. Researchers have suggested that schizophrenia may 
be related to cerebellar anomalies [46], including a size and density decrease of 
Purkinje cells and remodeling of synaptic protein expression in the cerebellum 
[137]. There is growing evidence of a role for neurotrophin in the pathophysiology 
of schizophrenia [5, 167]. Some studies showed the difference in plasma BDNF and 
NGF levels between schizophrenic patients and normal people. The levels of NGF 
in schizophrenia have been reported to be lower than in normal people [95, 113, 
191]. Additionally, there were no differences in BDNF or NGF levels in peripheral 
blood mononuclear cells (PBMCs) of patients and controls in the Martinez study 
[112]. However, Paz et al. reported increased BDNF levels in the cerebellar cortex 
of schizophrenic patients [135], while Yang and colleagues displayed that the levels 
of proBDNF and BDNF pro-peptide in the cerebellum of patients with schizo-
phrenic were lower than the control group. In their study, mature BDNF and BDNF 
pro-peptide production in the brain and liver were abnormal, suggesting that the 
brain–liver axis has a role in psychiatric disorders pathophysiology [193].

In newly diagnosed psychosis patients, serum NGF levels decrease, and this may 
be a promising biomarker in the diagnosis or screening for patients with schizophre-
nia [130, 189, 190, 194]. A synaptic plasticity defect observed in schizophrenia may 
be associated with NGF and its receptor (NGFR). A positive association between 
schizophrenia and the NGF rs6330 and the NGFR rs11466155 and rs2072446 SNPs 
was reported [194]. Alterations of neurotrophins in an animal model of schizophre-
nia have been confirmed. In animals injected subchronically with ketamine (Ket), 
which is an excellent model to study schizophrenia, Becker et al. reported that NGF, 
NT-3, and BDNF mRNA levels and their tyrosine kinase receptors changed in sev-
eral brain regions and the cerebellum [15]. A decrease in NGF levels in drug abusers 
was also reported. The role of neurotrophin in schizophrenia suggests that reduced 
levels of neurotrophins may increase the risk of psychosis in drug users [6].

BDNF and NGF induce a neuropeptide precursor called VGF nerve growth fac-
tor inducible (VGF). VGF is involved in cerebellum granule cell development. In 
mice that VGF was overexpressed, some schizophrenia-like behaviors and motor 
disabilities were observed [121].
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Table 1 The role of neurotrophic factors on the cerebellar neurodevelopmental disorders

CND Study model NF/R Effect References

ADHD Human 
case-control

BDNF Plasma protein 
level increased in 
child patients

Shim et al. [164] and 
Shim et al. [165]

BDNF Serum protein 
level unchanged in 
child patients

Scassellati et al. [155]

BDNF Serum protein 
decreased in adult 
Caucasians

Corominas-Roso et al. 
[35]

NGF, BDNF No significant 
changes in the 
Turkish population

[21])

GDNF, NT-3 Serum proteins 
level were higher 
in the Turkish 
population

NGF Serum protein 
level increased in 
child patients

Guney et al. [67]

ASDs Rat-infected 
Borna disease 
virus

NGF, BDNF 
and NT-3, 
and their 
respective 
Trk receptors

Unchanged in the 
cerebellum

Zocher et al. [198]

Human 
case-control

NT-3, NT4/5 Decreased in the 
spot-blood of 
newborns

Nelson et al. [124]

Postmortem 
human 
case-control

NT-3 Increased in 
cerebellar samples

[148, 149])

Mouse model 
of Rett 
syndrome

NGF Decreased or 
unchanged on the 
cerebellum

Schaevitz et al. [156]

Human 
case-control 
Rett syndrome

NGF Decreased with 
age

Calamandrei et al. [24]

Congenital ataxia Mouse model BDNF Decreased mRNA 
level in the granule 
cell layer

Qiao et al. [138]

NGF Unchanged
Ethanol 
neurotoxicity

Rat cerebellar 
vermis

TrkA, TrkB, 
TrkC

Decreased Moore et al. [122]

Neonatal rat 
cerebellar 
granule cells

BDNF, NT-3 Decreased 
secretion

Heaton et al. [75]

(continued)
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Table 1 (continued)

CND Study model NF/R Effect References

Neonatal rat 
cerebellum

BDNF, NGF, 
TrkA, TrkB, 
TrkC, and 
p75NTR

Decreased 
expression

Dohrman et al. [43], 
Heaton et al. [73], 
Light et al. [100], Light 
et al. [101, 102] and 
Moore et al. [123]

Granule cells BDNF Inhibit its 
activation effect on 
the ERK pathway

Ohrtman et al. [127]

The 
cerebellum of 
short-term 
ethanol 
exposed mouse

NGF, TrkA Increased mRNA 
and protein level

Wang et al. [186]

BDNF
TrkB, 
p75NTR

Unchanged

Explant culture 
of rat 
cerebellum

GDNF Decreased release 
despite unchanged 
mRNA expression

McAlhany et al. (1999)

Cerebellar 
granule cells

GDNF Ethanol inhibited 
its activation effect 
on the SFK-Cas- 
ERK1/2 pathway 
to promote axonal 
outgrowth

[28])

Medulloblastoma MB cells NGF, TrkA Suppressed their 
proliferation

[8])

NGF, TrkA Induced apoptosis Chou et al. [31] and Li 
et al. [99]

MB patients TrkA Ohta et al. [128]
Whole- 
genome 
microarray on 
MB tumors

TGF-ß Influence 
progression and 
metastases

[9])

MB transgenic 
mouse

TGF-ß Obstruction of 
TGF-ß leads to 
restriction of MB

Gate et al. [57]

Schizophrenia Human 
case-control

NGF Plasma protein 
level decreased

Lee and Kim [95] and 
Xiong et al. [190]

NGF, BDNF, 
TrkA,

Unchanged in 
PBMCs

Martinez- 
Cengotitabengoa et al. 
[112]

TrkB Differential 
expression of its 
different isoforms 
in PBMCs

Martinez- 
Cengotitabengoa et al. 
[112]

(continued)
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Neuregulin-3 (Nrg3) is another growth factor that is considered a risk factor for 
schizophrenia. Its mRNA and protein are expressed in embryonic and postnatal 
periods. Apart from different brain parts, it is found in Purkinje cells and granule 
gneurons of the cerebellum [142].

 Williams Syndrome

Williams syndrome (WS) is a rare neurodevelopmental disorder that affects 
2–5/100,000 people [4], and a 1.6 Mb deletion on chromosome 7 (7q11.23) causes 
it [14]. This syndrome is characterized by an enlarged cerebellum, mild-to- moderate 
mental retardation with a deficit in visuospatial processing, and an oversensitivity to 
sound [14]. NGF levels in the serum of WS patients are higher than in normal peo-
ple, and they remain continuously higher during childhood. This is in contrast to 
normal people, who have a higher serum NGF only in early childhood [23].

 Other Cerebellar Neurodevelopmental Disorders

There are some other disorders of the cerebellum, such as Joubert syndrome [76, 
106, 131, 197], Dandy–Walker malformation [10, 53, 68, 118], pontocerebellar 
hypoplasia [118, 184], cerebellar vermis hypoplasia [118], and developmental dys-
lexia [168, 169] that occur during development. To our knowledge, there is no data 
available about any association of neurotrophic factors with these conditions, which 
suggests new areas of research.

Nucleosome remodeling and deacetylase (NuRD) have an essential role in cere-
bellar plasticity and neural development. Variations in NuRD’s subunits are consid-
ered crucial risk factors for neurodevelopmental and psychiatric disorders [reviewed 
in [78]]. Epigenetic mechanisms such as methylation, histone modification, and 
miRNA also impact normal and abnormal development of the cerebellum [reviewed 

Table 1 (continued)

CND Study model NF/R Effect References

BDNF Unchanged in the 
cerebellar cortex

Paz et al. [135]

ADHD attention deficit hyperactivity disorder, ASDs autism spectrum disorders, BDNF 
brain- derived neurotrophic factor Cas Crk-associated substrate, CND cerebellar 
neurodevelopmental disorder, ERK extracellular receptor kinases, GDNF glial-derived 
neurotrophic factor, MB medulloblastoma, NGF nerve growth factor, NT-3 neurotrophin 3, 
NT-4/5 neurotrophin 4/5, NF/R neurotrophic factor/receptor, PBMCs peripheral blood 
mononuclear cells, p75NTR P75 neurotrophin receptor, SFK Src family kinases, TGF-β tumor 
growth factor-β, Trk tropomyosin receptor kinase.
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in [161]]. The role of neurotrophic factors on cerebellar neurodevelopmental disor-
ders is summarized in Table 1.
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Abstract Development is an evolutionary process that is tightly regulated in mam-
malian species. Several different cascades are involved in various stages of develop-
ment. Among these mechanisms, apoptosis, autophagy, and unfolded protein 
response play critical roles in regulating development by affecting cell fate. All of 
these pathways are involved in the regulation of cell numbers via determining the 
life and death cycles of the cells. In this chapter, we first explain the brief mecha-
nisms that are involved in the regulation of apoptosis, autophagy, and unfolded pro-
tein response, and later, we briefly describe how these mechanisms play roles in 
general development. We next address the critical role of these pathways in cerebel-
lar development regulation and how they will aid in our knowledge of the processes 
behind neurodevelopmental disorders. Additionally, we summarize the present find-
ings on neurological symptoms and disorders related to severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection and their linkage to autophagy 
pathways in the cerebellum.
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CERKL Ceramide kinase like
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Cyt c Cytochrome c
DED Death effector domain
DIABLO direct IAP binding protein with low pI
DISC Death-inducing signaling complex
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ERAD ER-associated protein degradation
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IRE1 Inositol-requiring enzyme 1
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mTOR Mammalian target of rapamycin
NOND Naturally occurring neuronal death
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PCD Programmed cell death
PD Parkinson’s disease
PDI Protein disulfide isomerase
PE Phosphatidylethanolamine
PERK Double-stranded RNA (PKR)-activated protein kinase-like eukaryotic 

initiation factor 2α kinase
PI3K Phosphatidylinositol 3-kinase
PMDs Protein misfolding disorders
PMT Permeability membrane transition
PrDs Prion-related diseases
ROS Reactive oxygen species
Smac Second mitochondria-derived activator of caspase
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TGFs Transforming growth factors
TRADD TNF receptor-associated death domain
ULK Unc-51-like kinase
VZ Ventricular zone
XBP1 X-box binding protein-1
XBP1s Spliced-XBP1
XBP1U Unspliced-XBP1

 Introduction

One of the most critical issues in the developmental process during the early mam-
malian embryonic period is understanding how the undistinguishable cells in the 
early embryo later develop to different fates and how other mechanisms that are 
involved in cell fate regulate this process. Besides existing models, many recently 
revealed molecular, cellular, and developmental factors have significant functions in 
determining cell position, cell polarity, and transcriptional networks in cell fate 
parameters throughout preimplantation. It is well known that the structuring process 
known as compaction provides the initiating signal for cells to start differentiation 
and arranges the initiation of the developmental cascade. Here, we provide an over-
view of the three mechanisms that are involved in determining cell fate, including 
apoptosis, autophagy, and unfolded protein response (UPR), and later we explain 
how these mechanisms are involved in the regulation of cerebellar development. 
These mechanisms are the major determining steps that are involved in proper cell 
fate specification in the early mammalian embryo, and they play essential roles in 
development.

 Introduction to Programmed Cell Death (Apoptosis)

The term apoptosis was first introduced by Kerr, Wylie, and Currie in 1972 to define 
a distinct mode of cell death under physiological conditions in hepatocytes [86, 
106]. Apoptosis is a genetically conserved pathway in all metazoans, such as in 
nematodes, insects, and mammals [36, 80, 137]. During the early process of this 
type of cell suicide, cellular content is condensed, and cell shrinkage is observed. 
Typical morphological features of apoptosis include chromatin condensation (pyk-
nosis), inter-nucleosomal DNA fragmentation, membrane blebbing and budding, 
and finally, formation of small membrane-bound vesicles, called apoptotic bodies 
[44, 106, 135] (Fig. 1). In contrast to necrotic death, membrane integrity is retained 
during apoptosis, and phosphatidylserine, a plasma membrane phospholipid, local-
izes from the inner side to the outer layer, acting as an “eat me” signal; the cell is 
then rapidly detected and engulfed by macrophages [36, 44, 79, 80] (Fig. 1).
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Fig. 1 Cellular morphology changes during apoptosis. Apoptosis is an ATP-dependent mecha-
nism that includes chromatin condensation (pyknosis), inter-nucleosomal DNA fragmentation, 
membrane blebbing and budding, and finally the formation of small membrane-bound vesicles, 
called apoptotic bodies

 Caspases Are Central Initiators and Executioners of Apoptosis

Our understanding of the molecular components of apoptosis emanated from 
genetic studies of programmed cell death (PCD) in the nematode Caenorhabditis 
elegans. Two genes, ced-3 and ced-4 (cell death abnormal), are essential to deter-
mine which cells undergo PCD during C. elegans development. The protein encoded 
by the C. elegans ced-3 gene is similar to the amino acid sequence of mammalian 
interleukin-1β (IL-1β)-converting enzyme (ICE), a member of the family of cyste-
inyl aspartate proteases (caspases) [35]. In the living cells, caspases exist as inactive 
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zymogenes (procaspases) that contain the N-terminal pro-domain followed by a 
large and a small subunit. Upon activation of procaspases, the pro-domain is fre-
quently removed, and proteolytic processing occurs between the other domains so 
that the small and two large subunits are associated in a heterodimer (Fig. 2) [54, 65, 
129]. To date, several different caspases have been identified in mammals, and their 
nomenclature is based on the order of their publication. For example, ICE is the first 
mammalian caspase and is named caspase-1. Proapoptotic caspases are divided into 
the initiator procaspase group (i.e., procaspase-2, -8, -9, and -10) and into the effec-
tor (executive) procaspase group (i.e., procaspases-3, -6, and -7) [54, 129]. Following 
activation, the executive caspases degrade most vital proteins in the cells, disrupting 
the cytoskeleton, intracellular transport, and nuclear envelope and signal transduc-
tion that ultimately cause the morphological and biochemical changes of apoptosis. 
For example, the nuclear scaffold proteins (lamins), the cytoskeleton protein (alpha 
fodrin), the plasma membrane blebbing mediator (gelsolin; acts as a nucleus for 
actin depolymerizing enzyme), and poly (ADP-ribose) polymerase (PARP) are tar-
geted proteins that are cleaved during apoptosis [25]. In addition, caspase-activated 
DNase (CAD) that mediates DNA ladder hallmarks of apoptosis is activated by 
caspase-3 and -7 cleaving the CAD inhibitor. Whereas activation of initiator cas-
pases is mediated through binding of their pro-domains to adaptor molecules via 
death effector domains (DED) or caspase recruitment domains (CARD), activation 
of executive caspases occurs through proteolysis at internal Asp residues into large 
subunits followed by assembly of active heterotetramers [36, 129] (Fig. 2).

Large subunitProdomai mall subunitn S

Fig. 2 Structure and activation of caspases. Inactive form of caspases (procaspases) includes three 
subunits. The mechanism of caspase activation is initiated by the autoproteolysis of Asp residues 
into large subunits, followed by the assembly of active heterotetramers. Following proteolysis 
cleavage, procaspases can be in close proximity to each other and therefore are assumed to activate 
each other
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 Molecular Pathways of Apoptosis

The apoptosis cascade is initiated by three major signaling pathways, including the 
cell death receptor pathway, mitochondrial pathway, and endoplasmic reticulum 
(ER) stress-induced pathway. In all pathways, caspase-3 is the leading executive 
caspase that is activated by any of the initiator caspases (caspase-8, -9, or -10) [30, 
36, 44, 54, 80, 106, 129].

 Cell Death Receptor Pathway

The extrinsic pathway is mediated by the activation of death receptors, which are 
transmembrane receptors that transmit apoptotic signals from the cell surface to the 
intracellular signaling pathways via receptor–ligand interactions [67, 101, 129]. 
Death receptors involve Fas (CD95) and TNF receptor (TNFR1) as well as TNF- 
related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 (TRAIL recep-
tor 1 and 2, TRAIL-R1 and -R2) [66]. Their corresponding ligands are called TNF, 
Fas ligand (FasL), and Apo2L/TRAIL, respectively. The sequences of events that 
define the death receptor pathway of apoptosis are best characterized using the 
FasL/FasR and TNF/TNFR models [25, 36, 80] (Fig. 3). In this scenario, the first 
step is trimerization and clustering of receptors by related ligands. Upon ligand 
binding, cytoplasmic adaptor proteins are recruited via intracellular receptor death 
domain (DD), such as Fas-associated death domain (FADD) and TNF receptor- 
associated death domain (TRADD). At this point, FADD or TRADD is associated 
with procaspase-8 via dimerization of the death-effector domain (DED), thereby 
forming the death-inducing signaling complex (DISC) [36, 44, 80, 129]. An increase 
in the local concentration of procaspase-8 at the DISC results in their autocatalytic 
activation (Fig.  3). Activated caspase-8 finally cleaves and activates the effector 
caspase-3, leading to the execution phase of apoptosis (Fig. 3).

The cells that need DISC-mediated signals to complete the cascade are classi-
fied as type I cells, while cells that require the contribution of a mitochondrial 
pathway to achieve the apoptotic process are classified as type II cells [131]. In 
type II cells, the receptor-mediated signaling is not strong enough to activate cas-
pase for the execution of apoptosis, so the signal needs to be amplified via 
mitochondria- dependent apoptotic pathways [36, 52, 54, 80, 129, 153]. The link 
between the cell death receptor pathway and the mitochondria is provided by Bcl-2 
family member Bid. Bid is cleaved by caspase-8 and in its truncated form (tBID) 
translocates into the mitochondria where it acts together with the pro-apoptotic 
B-cell lymphoma protein 2 (Bcl-2) family members Bax and Bak to induce the 
release of cytochrome c (cyt c) and finally turn on the mitochondrial apoptosis 
pathway [36, 80, 106, 129].
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Fig. 3 Intrinsic and extrinsic apoptosis pathway. Extrinsic pathway (1) is commenced via death 
receptors, which later activate initiator caspases (like caspase-8) with subsequent Bid protein trun-
cation (link to mitochondria) or directly activates caspase-3, and -7 (executor caspases) and 
induces nuclear fragmentation. Intrinsic pathway is initiated via mitochondria following activation 
of caspase-9 and caspase-3/-7 activation

 Mitochondrial Pathway

The mitochondrial pathway, also called the intrinsic pathway, is initiated from 
inside the cell. Various stimuli such as growth factor withdrawal, DNA damage, 
hypoxia, and oxidative stress can induce apoptosis through this cascade [19, 44, 54, 
129, 153]. Cellular stresses cause an increase in the permeability of the outer mito-
chondrial membrane and opening of the mitochondrial permeability transition 
(MPT) pore, which is controlled by members of the Bcl-2 family proteins [36, 80, 
129]. Bcl-2 family proteins are defined by the presence of conserved Bcl-2 homol-
ogy domains (BH1 to BH4). Up to 30 Bcl-2 family genes have been identified in 
mammals, which have either pro-apoptotic or anti-apoptotic functions. Some of the 
anti-apoptotic members, including Bcl-2, Bcl-XL, Bcl-w, BAG, and Mcl-1, possess 
all domains, from BH1 to BH4 [57, 102, 111]. The pro-apoptotic family proteins 
can be divided into two subgroups: the group that includes proteins with BH1 to 
BH3 domains (e.g., Bak, Bax, and Bok) and the group that involves proteins with 
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BH3 domain (e.g., Bad, Bid, Bik, BNIP3, Bim, Bmf, Blk, Hrk, Noxa, Puma, and 
Spike) [127, 153]. BH3-only proteins are thought to interfere with the fine-tuned 
balance of homo- or hetero-oligomerization between pro-apoptotic multi-domains 
(e.g., Bax/Bak) and anti-apoptotic members (e.g., Bcl-2/Bcl-XL) [102, 111] (Fig. 3). 
In general, oligomers of Bak, Bax, and Bok can form channels by themselves to 
induce permeability membrane transition (PMT) [9]. Bad can also heterodimerize 
with some members of anti-apoptotic Bcl-2 family proteins and thereby neutralize 
their inhibitory effects on mitochondrial pro-apoptotic Bcl-2 members [9, 102]. 
Puma and Noxa are also involved in p53-mediated apoptosis [26, 129]. Bcl-2 family 
proteins control release of the mitochondrial proteins cytochrome c (cyt c), the sec-
ond mitochondria-derived activator of caspase (Smac)/direct IAP binding protein 
with low pI (DIABLO), and Omi/high-temperature requirement protein A2 (HtrA2) 
into the cytoplasm [9, 11, 129]. Cytoplasmic cyt c binds to monomeric apoptotic 
protease activating factor 1 (Apaf-1), which then, in the presence of dATP, initiates 
oligomerization to form a complex wheel-like structure with sevenfold symmetry 
called an apoptosome [2, 11, 36, 129] (Fig. 3). This type of procaspase-9 clustering 
leads to caspase-9 activation, which subsequently activates downstream executive 
caspases such as caspase-3, -7, and -6 and ultimately leads to apoptosis. Smac/
DIABLO and the serine protease HtrA2/Omi promote apoptosis by inhibiting inhib-
itors of apoptosis proteins (IAPs) activity [11, 55, 107]. This family of anti- apoptotic 
proteins includes NAIP, c-IAP1, c-IAP2, XIAP, and survivin, the prototype of which 
was originally described in baculovirus. They can bind directly to caspases and 
inhibit their activity and are negatively regulated by proteins from the mitochondrial 
intermembrane [36, 80, 129, 143] (Fig.  3). Almost all of the morphological and 
biochemical features of apoptosis are mediated through the activity of caspases 
[7, 25].

 Apoptosis in Development

Apoptosis literally means “falling off” (as leaves drop from trees) in Greek, and this 
analogy suggests that cell death is necessary for the life cycle of organisms [46, 60, 
87, 106]. An example of the impact of PCD on development is seen in lymphocytes. 
Most lymphocytes die via apoptosis due to negative selection or genetic rearrange-
ment, thereby verifying the constant cellular pool of functional immune cells and 
lymphocyte numbers [128]. Moreover, apoptosis is critical for the development of 
reproductive organs [115]. Apoptotic processes are widely involved in the regula-
tion of proliferation, differentiation, development, and tissue homeostasis [42]. 
Additionally, it has been shown that inhibition of caspase-8 decreased neurological 
impairments and edema, enhanced cell proliferation, and neurofilament levels in the 
damaged cerebrum [134]. Furthermore, the study’s findings indicated that the death 
receptor pathway may be a critical target for long-term therapy of cerebral isch-
emia–reperfusion, since it not only activates downstream cleaved caspase-3 but also 
activates the mitochondrial route through Bid [162].
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 Autophagy and Its Role During Development

 Autophagy

Autophagy is a tightly regulated catabolic process used by eukaryotes for recycling 
and degrading organelles, proteins, and other cytoplasmic components in a 
lysosomal- dependent manner. Autophagy occurs in three typical forms, including 
microautophagy, macroautophagy, and chaperone-mediated autophagy (CMA) 
(Fig.  4) [20, 89, 113, 125]. Microautophagy and CMA are directly mediated by 
lysosomes to immediately degrade small cytosolic portions or chaperone-associated 
molecules, respectively [14]. Macroautophagy (hereafter called autophagy) is 
responsible for the turnover of long-lived macromolecules and damaged organelles 
that are sequestered into the autophagosome, a double-membrane-bound vesicle 
originating from a precursor structure called the phagophore [41, 53, 89, 104, 117] 
(Fig.  5). Autophagosomes are then fused with lysosomes, and this forms the 
autophagolysosome (Fig. 5). In the final stage, the cargo is degraded by hydrolases 
in the autolysosome, and the products are transported back to the cytosol by lyso-
somal permeases [5, 157].

The molecular components of this pathway were first discovered in the yeast 
Saccharomyces cerevisiae and included autophagy-related proteins (ATGs) [121]. 
Most autophagy stimuli converge at the phosphatidylinositol 3-kinase 

Fig. 4 The machinery of autophagy. Macroautophagy (a), chaperone-Mediated autophagy (b), 
and microautophagy (c) are three types of autophagy 
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Fig. 5 Schematic representation of autophagy pathway. Autophagy is a process for the degrada-
tion and recycling of cellular compartments in lysosomes, including phagophore, autophagosome, 
and autolysosome

(PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway that is the best- 
characterized modulator of autophagy in most cells [17, 61, 89] (Fig. 6). This sig-
naling pathway plays a vital role in multiple cellular functions such as proliferation, 
adhesion, migration, survival, and invasion [6, 73, 85, 154]. The PI3K-Akt-mTOR 
pathway integrates signals from growth factors, energy, and nutrients to adjust pro-
liferation and cell growth through various cellular mechanisms [39, 56, 105, 154]. 
The serine–threonine protein kinase Akt, also called protein kinase B, is upstream 
of mTOR and the downstream effector of PI3K. Inactivation of mTOR complex 1 
by starvation conditions activates Unc-51-like kinase (ULK), which initiates the 
autophagy process; however, under normal nutrient conditions, mTOR complex 1 
phosphorylates ULK1/2 and Atg13 to inhibit the initiation of the autophagy path-
way [130, 142, 154]. Therefore, the core machinery for the initiation stage during 
autophagy induction is the ULK1/2 complex, consisting of ULK, Atg13, and 
FIP200. Upon autophagy initiation, a complex nucleation arises when the PI3K 
complex binds to its core units, such as Beclin 1 (the human orthologue of murine 
Atg6) [40, 103, 104]. This complex resides on the isolated membrane and facilitates 
the recruitment of other ATGs to the unit (Fig.  5). During autophagosome 
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Fig. 6 Schematic representation of ER stress and unfolded protein response. ER stress activates 
UPR proteins (e.g., PERK, ATF6, and IRE1) in the endoplasmic reticulum. Briefly, activated 
PERK promotes ATF4 activation via phosphorylation of eIF2α. Activation of the IRE1 arm of UPR 
induces XBP mRNA splicing in the cytoplasm, subsequently leading to the activation of UPR 
target genes. The ATF6 arm is initiated via cleavage of ATF6 in the Golgi, which is later targeted 
to the nucleus and induces the expression of UPR-responsive genes

elongation and maturation, two ubiquitin-like conjugation systems are involved: the 
microtubule-associated protein light chain 3 (LC3) system and the Atg12 system. 
LC3 is first cleaved by ATG4 to form LC3I. Phosphatidylethanolamine (PE) is then 
conjugated to LC3I by Atg7 and Atg3, and it creates LC3-II that can stably insert 
into the autophagosomal membrane [51, 53, 58, 92, 117].

 Role of Autophagy in Development

There is emerging evidence that autophagy plays a critical role in differentiation and 
development [1]. The autophagy pathway can induce rapid cellular changes (e.g., 
protein and organelle turnover) that are necessary for proper differentiation and/or 
development. Most autophagy-defective organisms show severe problems in dif-
ferentiation [18]. Additionally, autophagy is essential for survival during neonatal 
starvation and cell differentiation during lymphopoiesis, erythropoiesis, osteogen-
esis, and adipogenesis [1, 18, 116]. The Atg7-deficient mice showed severe anemia 
because there was a lack of sufficient erythropoiesis. It has been suggested that 
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erythroid differentiation depends on autophagy for mitochondria removal [119]. 
Adipocytes mainly harbor lipid droplets that have been identified as a substrate for 
autophagy [34]. In addition to the differentiating functions, autophagy is also cru-
cial for the survival and viability of terminally differentiated cells such as neurons. 
Autophagy knockout mice showed uneven numbers of neural stem/progenitor cells, 
resulting in delayed development. The phenotype of Ambra1 and ULK1 mutant 
mice confirmed the importance of autophagy and plausible mechanisms during the 
development of the nervous system [43]. Ambra1 is a vertebrate-specific protein 
highly expressed in the nervous system and positively regulates autophagy by pro-
moting Beclin-1 binding to Vps34 [43]. ULK1 is an ATG protein involved in 
autophagy initiation, and its deficiency leads to defects in terminal neuronal differ-
entiation and causes abnormal axonal formation in the cerebellar granule neurons 
[145]. Moreover, autophagy is crucial for vertebrate development at some time 
points during embryogenesis. In the embryonic period, the placenta provides energy 
for the mammalian embryo, but after birth, the trans-placental nutrient supply is 
disconnected, and embryos face starvation until the supply can be restored through 
milk nutrients. In this condition, autophagy is induced approximately 3 days ± 12 h 
after birth [94]. Confirming these reports, Atg5 null mice are normal at birth, but die 
within one day after birth, highlighting the importance of autophagy for embryo 
development [94].

During cerebellum development, the coordinated formation of various neuronal 
cell types inside the cerebellar primordium is crucial. All GABAergic and glutama-
tergic neurons are generated from the ventricular zone and rhombic lip of the cere-
bellum, respectively. Purkinje cells (PCs) and cerebellar nuclei (CN) neurons are 
some of the first neurons to develop between embryonic days (E) 9 and 13. Prior to 
embryonic day 14.5, postmitotic and differentiated PCs and CN neurons move to 
the cerebellar primordium’s PC plate (PCP) and nuclear transitional zone (NTZ). 
Uncertainty exists about the cellular and molecular processes enabling early cere-
bellar neurogenesis, migration/differentiation, and formation of connections. 
Macroautophagy is critical for controlling cellular phenotypes, such as epithelial- 
to- mesenchymal and endothelial-to-mesenchymal transitions. TGF-1 is also 
involved in modifying cellular phenotype through a variety of processes, including 
autophagy. It is a critical component of pre- and postnatal development. The study’s 
findings indicated that the canonical TGF-β signaling pathway was activated 
throughout the temporal frame associated with the creation of the PCP and NTZ.

Additionally, the findings reveal that an active TGF-β signaling pathway may 
upregulate the expression of N-cadherin and β-catenin sequentially and temporally, 
with maximal expression at E11/E12 and subsequent elevation of Cdh8 and NCAM 
expression at E12 and E13. Interestingly, the findings demonstrated that enhanced 
TGF-β signaling occurs simultaneously with autophagic flux inhibition at E11/E12. 
However, basal autophagy occurs throughout the E9 to E10 embryonic phases. This 
study established a critical role for the TGF signaling pathway and its regulatory 
effects on Cadherin expression and autophagic flux during cerebellar development, 
all of which may contribute to the proliferation, migration/differentiation, and posi-
tioning of CN neurons and PCs within their domains [28].
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 Endoplasmic Reticulum Stress and Unfolded 
Protein Response

The presence of two glucose-regulated proteins (GRPs), GRP78 and GRP94, with 
molecular weights of 78 and 94 kDa, respectively, were discovered in the endoplas-
mic reticulum (ER) of mammalian cells in 1987. They can form stable associations 
with a variety of proteins retained in the ER because of underglycosylation or other 
conformational changes [97]. These proteins are induced by some stress conditions, 
including glucose starvation, treatment with cellular glycosylation inhibitors, cal-
cium ionophores, or amino-acid analogs [97]. The significant difference between 
these proteins and heat shock proteins (HSPs) is that GRPs are not induced by 
increasing temperature [97]. GRP78 was shown to have some activity like immuno-
globulin heavy chain binding protein (BiP) [4, 120]. It can also permanently bind to 
various malfolded/misfolded proteins that accumulate within the ER, and/or tran-
siently in nascent, wild-type secretory and transmembrane proteins. For the first 
time in 1988 while studying simian cells, it was reported that only malfolded pro-
teins (for example, influenza virus hemagglutinin (HA)) had their transport from the 
ER blocked, which can induce GRPs 78 and 94 synthesis regardless of their abnor-
mal glycosylation state [93]. It has also been shown that the highly conserved GRP 
element, which is vital for the basal level and induced GRP78 expression, is a 10-bp 
region that contains a CCAAT motif in DNA. However, this element alone is not 
sufficient for promoter activity, but a 40-bp region (−129 to −90) that contains this 
motif is essential for mediating basal levels and stress inducibility of the GRP78 
promoter. It has also shown that the transcription factor CTF/NF-I can transactivate 
the GRP78 promoter through interaction with this CCAAT motif [156].

Less than 25 years ago, an FK506/rapamycin-binding protein was found to be 
encoded by a mammalian FKBP-13 gene, which localizes in the ER lumen. A 
homolog of mammalian FKBP-13 in the ER lumen, the FKB2 gene is encoded by 
S. cerevisiae. FKB2 mRNA levels increase in response to the accumulation of 
unfolded proteins in the ER, which can be caused by blocking the N-glycosylation 
and/or treating the cells with tunicamycin. However, blocking other steps in secre-
tion does not affect FKB2 mRNA levels. It was then shown that a 21-bp UPR ele-
ment located in the 5′ noncoding region of FKB2 is responsible for this increase in 
the FKB2 mRNA level. The similarities in the regulation of FKB2 and other ER 
chaperone genes (yeast KAR2, mammalian GRP78 or BIP, and GRP94) suggest that 
FKBP-13 may play a role in protein trafficking in the ER [124]. In addition to 
tunicamycin, other inducers of GRPs include dithiothreitol (DTT) as a sulfhydryl 
reducing agent, amino acid analogs, severe glucose depletion, and oxygen, which 
increase the protein flux, decrease Ca2+ levels, and disrupt lipid homeostasis to 
induce UPR in the cells [98, 138, 149, 151].

Thus, UPR is a regulatory mechanism by which cells control levels of misfolded 
proteins in the ER. The UPR is currently characterized in all cell types, including 
normal neurons, emphasizing its importance in neurodegenerative diseases. It has 
been shown that UPR signaling modulates neurodegeneration depending on the dis-
ease context [29, 70].
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In metazoans, UPR consists of three parallel arms, which are characterized by 
their stress sensor proteins: (1) inositol-requiring transmembrane kinase/endoribo-
nuclease 1 (IRE1), (2) activating transcription factor 6 (ATF6), and (3) double- 
stranded RNA (PKR)-activated protein kinase-like eukaryotic initiation factor 2α 
kinase (PERK). Each of these UPR sensors binds to the BiP as the ER luminal 
chaperone (Fig. 6) [139, 149].

The IRE1 pathway is considered to function as a major and the most conserved 
arm of the UPR from yeast to humans [139, 149]. IRE1α and IRE1β have been 
known as two homologs of mammalian IRE1. While IRE1α is expressed in all cells 
and tissues and is a primary mediator of UPR signaling, IRE1β is expressed only in 
the intestinal epithelium [149]. Activated IRE1α, which shows endoribonuclease 
activity, cleaves a 26-base fragment from the mRNA encoding the X-box binding 
protein-1 (XBP1) [100, 164]. The Xbp1 mRNA before and after splicing is trans-
lated into unspliced-XBP1 (XBP1U) and spliced-XBP1 (XBP1S), respectively. 
XBP1S as a potent transcription factor targets a wide variety of genes encoding 
proteins involved in ER membrane biogenesis, ER protein folding, ER-associated 
protein degradation (ERAD), and protein secretion [164]. Unspliced-XBP1 mRNA 
is constitutively translated into XBP1U [3, 118].

The role of ATF6, as a basic leucine zipper (bZIP) protein that belongs to the 
type 2 transmembrane glycoprotein family, has been introduced as another arm of 
the mammalian UPR. It has an essential role as a putative ER stress response ele-
ment (ERSE)-binding protein, introduced in 1998 by Yoshida et  al. [163]. They 
showed that ATF6 was constitutively expressed in HeLa cells as a 90-kDa protein, 
but it was phosphorylated (p90ATF6) and converted to a 50-kDa protein (p50ATF6) 
by a posttranslational mechanism, which is a response to stress [163]. ATF6 is regu-
lated by intramembrane proteolysis; ER stress induces the proteolysis of membrane- 
bound p90ATF6 and releases the soluble part, p50ATF6, allowing it to enter the 
nucleus. In the nucleus, p50ATF6 contains a bZIP domain and activates transcrip-
tion of ER chaperone genes such as GRP78 through ERSE in collaboration with a 
general transcription factor [68, 161]. It has been demonstrated that the XBP1, as a 
target of ATF6, is a mammalian substrate of such an unconventional mRNA splicing 
system and showed that only the spliced form of XBP1 (XBP1s) can effectively 
activate the UPR [164].

ATF6α and ATF6β are two distant homologs of ATF6 but both are ubiquitously 
expressed in all tissues [144]. They are cleaved during the ER stress response 
(ERSR); the resulting N-terminal fragments (N-ATF6α and N-ATF6β) enter the 
nucleus and bind to specific regulatory elements of the DNA, which results in the 
activation of transcription of ERSR genes related to ATF6, such as GRP78 [144]. It 
has been suggested that the relative levels of ATF6α and ATF6 may regulate the 
strength and duration of ATF6-dependent ERSR gene induction and cell viability. In 
addition, ATF6α is a strong but labile transcription factor, while ATF6β is a weak 
and stable transcription factor. A gel shift assay showed that they compete with each 
other in binding to the GRP78 ERSE [144].

Harding et  al. first introduced PERK in the mouse ER in 1999 [63]. PERK 
belongs to a family of protein kinases that, in response to different cellular stresses, 
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regulates translation by phosphorylation of the α subunit of eukaryotic initiation 
factor-2 (eIF-2α). Sood et al. then separated the rat homolog of PERK, which is 
pancreatic eIF-2α kinase (PEK) from the rat pancreas [140]. Protein synthesis and 
folding of the newly synthesized proteins into the correct three-dimensional struc-
ture are coupled in cellular compartments of the exocytosis pathway by a process 
that modulates the response to a stress signal from the ER [63]. The phosphorylation 
of eIF-2α on serine residue 51 by PERK leads to the activation of the process to 
reduce rates of protein translation initiation during ER stress.

In some stress conditions such as amino acid starvation, protein synthesis is neg-
atively regulated because of eIF2α phosphorylation and its activation. In this signal-
ing pathway, the mammalian eIF2 kinases PERK and GCN2 repress translation of 
most mRNAs but selectively increase translation of activating transcription factor 4 
(ATF4), resulting in the induction of the downstream gene C/EBP homologous pro-
tein (CHOP) [62, 64, 109]. ATF4 is also activated by ER stress and other stimuli 
such as viral infection. However, there is no interaction between XBP1U and ATF4, 
which allows the cell to avoid undesired ATF4 degradation that XBP1U induces in 
response to non-ER stress [118]. Activation of ATF4 and CHOP negatively regu-
lates mTOR via Redd1 expression in response to oxidative and ER stress [82].

To get a better understanding of the potential role of ER stress-associated pro-
teins in cerebellar diseases, researchers evaluated the expression of ER stress sen-
sors and their downstream targets in the postnatal rat developing cerebellar cortex. 
For the first time, the stress sensors PKR-like endoplasmic reticulum kinase (PERK) 
and inositol-requiring enzyme 1 (IRE1) were activated in properly growing granule 
cell (IGL) precursors. In the interior granular layer, a second proliferating pPERK 
population was also observed. In general, when profiles from early and late postna-
tal ages were compared, the density of UPR protein-positive cells decreased dra-
matically [122].

 UPR and General Development

Eukaryotic protein homeostasis, which is called proteostasis, refers to controlling 
all aspects of cells, including health, organismal development, and aging, as well as 
their protection against diseases, which often influences protein synthesis (tran-
scription/translation), degradation, conformation (folding/misfolding), protein 
interactions (quaternary structure, aggregation/disaggregation, and other protein–
protein interactions), and trafficking (location of individual proteins). Thus, proteo-
stasis affects specific cellular functions and enables differentiated cells to change 
their physiology in a surrounding media. Deficiency in proteostasis results in some 
diseases like neurodegenerative, metabolic, and cardiovascular disorders and can-
cer. Some of these disorders are already developed at birth, but most occur upon 
aging [15].
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As mentioned above, both development and aging are influenced by proteostasis. 
All protein processes, such as protein folding, aggregation, degradation, and modi-
fication, are the processes that affect protein function. Quality control systems in the 
cell control the balance between the processes, as mentioned earlier, to achieve a 
high-quality protein suitable for the growth and survival of the cell [12, 77, 132]. In 
addition to the metabolic enzymes, molecular chaperones, chemical chaperones, 
and other small molecules affect proteostasis. Several vital processes, including 
heat shock response (HSR) [71, 83, 150, 152] and UPR [15, 77], also regulate and 
control the proteostasis. For example, it has been shown that in cerebral pathologi-
cal events such as ischemia, epilepsy, and trauma, some specific genes and proteins 
are activated, while some others may be inhibited in neuronal cells. Synthesis of a 
set of proteins, termed stress or HSPs, increases during ischemia as well as heat 
shock treatment (hyperthermia), while the synthesis of most other proteins decreases 
[71]. Based on the time and region, there is also a significant difference between the 
kinetics of various HSPs [71, 72]. Northern blot analysis has indicated that there is 
differential induction of various classes of HSP mRNAs by ischemia. Within 4 h 
post-ischemia, the HSP70 family mRNAs were induced and then rapidly decreased, 
while HSP27 and HSP47 mRNAs were maximally increased at 24 and 48 h post- 
ischemia, respectively. In addition, in situ hybridization showed that mRNAs of 
inducible HSP70s were localized in the core region of the infarct 2 h post-ischemia, 
and at a relatively late period (4–8 h), they moved to the penumbra region [72]. 
Because cerebral blood flow has been severely decreased in the ischemic center and 
the collateral circulation continuously provides some blood flow, ischemic cell 
damage may progress from the ischemic center to the peripheral regions [71].

A growing body of evidence indicated the key role of UPR in normal neuronal 
function, and its distortion leads to neurodegenerative diseases such as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic 
lateral sclerosis (ALS), and prion-related diseases (PrDs) [70]. Although clinical 
manifestations of these diseases are different, all involve the accumulation of mis-
folded proteins and are now classified as protein misfolding disorders (PMDs) 
[70, 141].

In addition to their role in the nervous system and ischemia [59, 70, 74, 148], the 
role of UPR and proteostasis have also been demonstrated in general development 
[148], development of B- and T-cells [16, 50], and lens proteins [45, 159].

The role of UPR activation during normal lens development and differentiation 
in the mouse has been studied. The lens of the eye, which is composed of epithelial 
and fiber cells, is a transparent structure that is responsible for focusing light onto 
the retina. Epithelial cells are found on the anterior surface, and after differentiation, 
fiber cells are formed at the lens equator. It has been shown that the expression of 
BiP and protein disulfide isomerase (PDI) was greatly increased in the newly form-
ing fiber cells from embryonic lenses. These fiber cells also expressed the UPR- 
associated molecules XBP1, ATF6, p-PERK, and ATF4 during embryogenesis. In 
addition, XBP1s, cleaved ATF6, and p-eIF2α have been detected in embryonic 
mouse lenses, suggesting that UPR pathways are active in this tissue [45]. In the 
lens epithelium of patients with cataracts (high myopia-related or age-related 
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cataracts), the mRNA and soluble protein expression in both αA- and αB-crystallin 
were decreased. In addition, the protein levels of ATF6, p-eIF2α, and p-IRE1α and 
the gene expression levels of spliced XBP1, GRP78, ATF6, and ATF4 were greatly 
increased relative to the normal control. These results suggest the significant loss of 
soluble α-crystallin and the activation of the UPR in the lens epithelium of patients 
with high myopia-related cataracts, which may be associated with this type of cata-
ractogenesis [159]. In the developing eyes, expression of ceramide kinase like 
(CERKL) at both mRNA and protein levels was minimal, but it reached a peak at 
retinal maturity at 2 months of age in the mouse. The retina showed the highest level 
of CERKL expression, which reached its maximum in the adult retina [110].

 Apoptosis and Cerebellum Development

In the cerebellum, ventricular zone (VZ) and rhombic lip (RL) are the sources of all 
cerebellar cell types. The VZ and the external granule layer (EGL) are able to pro-
liferate and migrate to the granule layer (GL) and sub-ventricular zone. PCs and 
granule cells migrate from the VZ and EGL, respectively. Adult neurons are assumed 
to escape from apoptosis during proliferation or during early pre-mitotic migration. 
Thus, analysis of apoptosis in all parts of the cerebellum may help to identify differ-
ent cell functions in development [8, 22].

 Apoptosis of Stellate and Basket Cells

Progenitor cells such as stellate and basket cells are produced from the ventricular 
zone (VZ). They reside in white matter in the first postnatal week, and in the days 
immediately following the first postnatal week, they proliferate more and migrate to 
the molecular layer. Their movement is completed in the third postnatal week. 
Apoptosis occurs during progenitor cell proliferation/migration as shown in the 
GAD67/GFP mice [108].

 Apoptosis of Purkinje Cells

PCs migrate from the VZ and are placed between the molecular layer and GL cells, 
forming a single-cellular layer [22]. They are key cells in the cerebellum that are 
targeted in many neurological mutations in mouse models to study PC death. Two 
periods of apoptosis occur in these cells: the first is the embryonic period and the 
second is the postnatal term. Regulation of PC apoptosis occurs through the connec-
tion to climbing fibers. First, one climbing fiber interacts with several PCs during 
the first postnatal week in rats. Then, the climbing fibers fix their final connection. 
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The PCs, which cannot react to climbing fiber, undergo apoptosis and are deleted. 
However, the apoptotic PCs can interact with climbing fibers, and this causes them 
to retract. Thus, the connection between PCs and climbing fibers occurs on a one- 
to- one basis [22]. There are also many genes that interfere with the regulation of PC 
death. Two mouse models, Toppler and Woozy, are mutants in which PCD is 
observed in PCs by apoptotic pathways and sometimes with activation of autopha-
gic mechanisms. This cell death may be different from formal PCD. Many of PCs 
will die during normal ageing, using mechanisms similar to apoptosis [108].

The purpose of the study was to provide experimental evidence about nervous 
system damage by measuring PC number as well as their apoptosis in rat cerebellum 
after fatal and nonfatal electric current injury utilizing histological and immunohis-
tochemical analysis. Cerebellar PCs are one of the biggest neurons in the nervous 
system, with many branching extensions, which makes any abnormal alterations 
readily visible. Additionally, because of their low resistance, PCs are one of the most 
impacted sections of the central nervous system (CNS) by electrical currency. The 
study’s findings indicated that apoptosis and PC loss were involved in the pathogen-
esis of the immediate and long-term effects of the electrical injury on PCs, which 
will aid forensic pathologists in determining the cause of death, residual damage, 
and disability following electric shock [84]. Numerous studies have shown that UPR 
has a role in frontotemporal dementia (C9-FTD). UPR indicators are closely related 
to granulovacuolar degeneration (GVD) in human neuropathology. The surveys 
indicate that UPR indicators are enhanced in C9-FTD and are related to dipeptide 
pathology and GVD. Increased expression of UPR markers and casein kinase 1 delta 
(CK1δ) in cerebellar and hippocampal granule cells may be a specific hallmark of 
C9-FT [48]. Intriguingly, it was shown that activating the UPR modifies glutamate 
neurotransmission, particularly in the cerebellum of a mouse model of autism. The 
results demonstrate that the R451C autism-linked mutation in neuroligin 3 induces 
UPR in vivo, which seems to result in changes in synaptic function in the cerebellum 
of a mouse model harboring the R451C autism-linked mutation [146].

In humans, it has been shown that cerebellar PC death occurs in essential tremor, 
ataxia, and a variety of other neurodegenerative diseases. Shaker mutant rats have an 
X-linked recessive mutation that results in hereditary degeneration of cerebellar PCs 
that are “at risk.” This deficiency may emerge postnatally in the shaker mutant rat’s 
confined anterior (ADC) and posterior (PDC) vermal degeneration compartments 
between 7 and 14 weeks of age as a natural phenotype. The ultrastructural analysis 
reveals that “at risk” PCs perish as a consequence of autophagic activation- induced 
apoptosis. Furthermore, our observations imply that both apoptosis and autophagy 
must be suppressed concurrently to prevent the death of “at risk” PCs [37, 38].

 Apoptosis of Granule Cells

Granule cells migrate from the EGL to the GL of the cerebellum. The apoptotic 
cells in GL have been verified, and it was shown that they are postmitotic neural 
cells that could not produce a proper synaptic connection with PCs in the molecular 
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layer [22]. During the first week of postnatal life, there is an established cell loss 
within the granule cell layer. Many granule neurons in both mitotic and postmitotic 
regions of the EGL undergo DNA fragmentation [155]. The granule cell precursors 
(GCPs) are generated from the rhombic lip, which is the source of external germinal 
zone (EGZ or EGL). GCPs, giving rise to granule cells, first extensively proliferate, 
and some of them start differentiating into mature granule cells [31]. The first 
in  vitro apoptosis model for the CNS was recently identified. It was shown that 
cerebellar granule cells undergo apoptosis when deprived of depolarizing extracel-
lular potassium levels [27]. Additionally, the in vivo correlation between apoptosis 
in cerebellar granule cells has been recently reported by Wood et al. [155], which 
shows DNA fragmentation in the granular layer of the newborn rat’s cerebellum. 
Cerebellar granule neurons are a perfect model system to study neuronal apoptosis 
because they live and survive for weeks when they are maintained in depolarizing 
potassium concentrations. However, they undergo apoptosis when cultured in low 
physiological potassium conditions. It has also been demonstrated that apoptosis of 
differentiated cerebellar granule neurons induced by potassium deprivation might 
be a neuronal death model after differentiation. They showed that during cerebellar 
development, target-related cell death in granule cells occurs [47]. To comply with 
the existing hypothesis that during development, transforming growth factors (TGF- 
β) might play a role in the regulation of apoptosis in cerebellar neurons, these cyto-
kines must be produced in a time- and location-dependent manner. It has been 
reported that TGF-β1, -β2, and -β3 accelerate neuronal apoptosis when maintained 
in a low physiological potassium medium, as assessed using quantitative DNA frag-
mentation, viability, and nuclear morphology. These data demonstrate that TGF-β 
might limit the expansion of neuronal precursor populations through boosting their 
apoptosis [31].

Additionally, there is evidence of a p53-independent apoptotic pathway for the 
loss of cerebellar granule cells during development. This was demonstrated by the 
fact that neuronal precursors of apoptosis in the cerebellum of transgenic mice that 
lack functional p53 are similar to those in wild-type mice (14). It has been previ-
ously suggested that the elimination of postmigratory granule neurons during cere-
bellar development could be prevented by blocking their programmed death, further 
confirming the remarkable role of apoptosis in cerebellar development [158].

Apoptotic cells are identified as immature granule cells and/or their GCPs. 
Analysis of apoptotic pathways has indicated that caspase-3 and -9 are expressed in 
cerebellar germinal zones and activation of caspase-3 is essential for progenitor cell 
death, which is inhibited by a pan-caspase inhibitor. Thus, neural progenitors can 
activate a caspase-dependent apoptotic pathway. However, another experiment 
showed that caspase inhibitors could not prevent granule cells from death. The 
experiments showed that caspase-3 is not activated during apoptosis of GCPs/pre- 
migratory granule cells. Therefore, early neuronal death of GCPs/pre-migratory 
granule cells may be caspase-3-independent. The naturally occurring neuronal 
death (NOND) of GCPs/pre-migratory granule cells is possibly related to the estab-
lishment of the correct ratio between granule cells and PCs. The vast cell death in 
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EGL neurons is related to folia formation during the fissuration of the cerebellar 
cortex. The process of apoptosis does not occur synchronously in the cerebellum, 
and thus the number of apoptotic cells in the lobes is different. The second wave of 
apoptosis in granule cells occurs in postmitotic neurons. The evidence has shown 
the specific cleavage of several caspases, and PARP-1, the most biologically rele-
vant substrate of caspase-3, occurs. The caspase/PARP-1 cleavage selectively 
occurs within the granule layer (GL). Therefore, this PCD is different from early 
NOND and is caspase-dependent [108].

 Apoptosis of Cerebellar Nuclei Neurons

After treating neonatal rats with ethanol, cerebellar nuclei neurons undergo apopto-
sis. The axotomy is initiated in cerebellar nuclei 3 h after lesion formation, and 
neurodegeneration begins within 48  h. Apoptotic cell morphology has been 
observed, but during the normal development of cerebellar nuclear neurons, apop-
tosis does not occur [108].

 Autophagy and Cerebellum Development

As discussed above, autophagy is a self-degradation lysosomal system initially 
described in single-cell organisms as an adaptation mechanism not only to nutrient 
supply fluctuations but also to recycle various cellular organelles [113, 160].

The nervous system complex ontogenesis is especially sensitive to the dysregula-
tion of autophagy. This is shown by the axonal growth, neural tube defects, and 
impairment of migration following either inactivation or downregulation of autoph-
agic genes [1, 13, 103]. Autophagy plays an essential role in the late stages of 
embryonic and postnatal development [32]. Defects in autophagy lead to impair-
ment in the number of neural progenitors, thus causing incorrect differentiation and 
development [1]. For example, an autophagy malfunction causes inappropriate neu-
rotransmitter processing and secretion [1]. Many neurodegenerative disorders such 
as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), 
and amyotrophic lateral sclerosis (ALS) are caused by defective autophagy mecha-
nisms [90, 91]. The other consequences of defects in autophagy genes such as Atg5 
and Atg7 mutant mice include perinatal lethality in suckling kids and neurodegen-
eration symptoms [90, 91]. In addition, ablation of Atg7 causes dystrophy of PC 
axon terminals in the cerebellar nuclei [32, 112].

Another study on the ULK1 gene in mammals, which is an orthologue of the 
yeast Atg1, showed its essential role in autophagy machinery. ULK1 is a protein 
kinase that plays a significant role in early autophagosome formation. When autoph-
agy is induced, ULK1 kinase separates the Ambra1/Beclin 1 complex from the 
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dynein complex to initiate the autophagy process. Ambra1 is expressed in the CNS 
during embryogenesis, specifically in the neural plate. In mice with the Ambra1 
mutant, the autophagy machinery is deficient, and apoptosis was observed. This 
result showed the relationship between autophagy, apoptosis, and cell proliferation. 
Therefore, Ambra1 is an essential protein for controlling cell proliferation during 
the development of the CNS [32]. These data indicate that autophagy is involved as 
a part of PCD in parallel with apoptosis in the cerebellum. The autophagic cell death 
act as an alternative PCD when apoptosis is inhibited in the rat cerebellar granule 
cell [114]. Both reactive oxygen species (ROS) and autophagy promote apoptosis in 
this model [114]. Degeneration of PCs is a common feature of inherited ataxias in 
humans and mice. Association of the autophagy pathway with mitochondria, which 
is also known as “mitophagy,” is reported in PC degeneration (pcd) in mice. This 
highlights a link between mitochondrial dysfunction, autophagy, and PC degenera-
tion in the cerebellum [21]. In conclusion, autophagy is an essential process for the 
survival and development of cerebellar cells [112].

 COVID-19, Cerebellum, and Autophagy

Neurological problems associated with the recently identified severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) are becoming more prevalent [165]. 
Since the pandemic outbreak of the coronavirus disease 2019 (COVID-19), which 
was triggered by the SARS-CoV-2 infection, a variety of neurological manifesta-
tions have been reported, ranging from headache, dizziness, and seizures to enceph-
alopathy, meningitis/encephalitis, and stroke. It was shown that acute necrotizing 
encephalopathy with a predominance of cerebellar involvement and cognitive 
impairment might be one of COVID-19’s neurological symptoms [24]. While the 
cytokine storm seems to be the primary cause of mortality, the mechanism by which 
SARS-CoV-2 generates enormous amounts of cytokines remains unknown. Two 
separate investigations on the SARS-CoV-2 protein ORF3a revealed that, although 
this protein induces autophagosomes, their maturation is ultimately hindered, result-
ing in autophagy failure and increased inflammation, a trait that seems to be specific 
to SARS-CoV-2 [96]. Indeed, a significant correlation between the uncontrolled 
inflammation induced by SARS-CoV-2 and autophagy abnormalities has been 
established [49], suggesting that heightened cytokine storm may be the consequence 
of autophagy’s inability to regulate homeostasis. However, it is unknown if autoph-
agy plays a role in SARS-CoV-2 protein degradation and whether SARS-CoV-2 
evades detection and breakdown by blocking A-L fusion during the latter stages of 
infection associated with cytokine storm. Notably, the inhibition of the A-L fusion 
seems to be specific to SARS-CoV-2 since a comparable ORF3a protein from 
SARS-CoV did not inhibit it [96] (Fig. 7).
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Fig. 7 The molecular mechanisms behind SARS-CoV-2-induced autophagy dysregulation. By 
attaching to the host protein mitofusin (Mfn) 1 and 2, the SARS-CoV-2-derived open-reading 
frame (ORF) protein 3a (ORF3a) may block mitochondrial fusion. ORF3a may also impede the 
fusion of the autophagosome and the lysosome (A-L) by binding to the host protein Vamp6 
(VPS39) and the HOPS complex. ORF8 and nucleocapsid protein (NCP) are two additional 
SARS-CoV-2-derived proteins that may bind to La ribonucleoprotein 1, translational regulator 
(LARP1), and FKBP prolyl isomerase 7 (FKBP7), respectively, and inhibit mammalian target of 
rapamycin complex 1 (mTORC1), activating autophagy. By attaching to the Unc-51-like autoph-
agy activating kinase (ULK1) and autophagy-related 13 protein (ATG13) complex, the papain-like 
protease may block autophagy. Autophagy malfunction caused by SARS-CoV-2 may trigger a 
large cytokine storm, resulting in the death of susceptible cells such as neurons and microglia 
[96, 136]

 Involvement of UPR in Cerebellum Development

As discussed above, ER stress and UPR participate in many physiological pro-
cesses, such as differentiation and development in different organs, and are also 
involved in the pathogenesis of various neurological disorders [69, 126]. The devel-
oping brain is susceptible to different kinds of environmental stresses (e.g., infec-
tious pathogens, pollutants, alcohol, drugs, and malnutrition), which often cause ER 
stress [126]. One of the earliest pieces of evidence on the involvement of UPR 
pathways in brain cells showed that inhibition of global protein synthesis occurs 
during brain neuron ischemia [76]. In this condition, the UPR can degrade mis-
folded/unfolded proteins by activating the ER-associated degradation to ensure a 
balance of protein folding capacity that is crucial for cerebellar Purkinje cell 
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survival [75, 99, 166]. Additionally, recent reports suggest that, compared with 
immature brain neurons, mature neurons are more susceptible to the ER stress and 
apoptosis induced by tunicamycin. This indicates that the UPR is developmentally 
involved during neurogenesis [147]. The UPR is generally responsible for the hier-
archy and lineage relationships developed in the CNS cells in various animal mod-
els [59, 95]. ER stress induction by tunicamycin and thapsigargin induces neuronal 
differentiation, while the glial differentiation of mouse embryonic stem cells is 
inhibited via PERK and IRE-1 branches of the UPR [23]. Laguesse and coworkers 
proposed a model suggesting that dynamic regulation of the UPR pathways is criti-
cal to switch from direct to indirect neurogenesis [95]. During cerebral cortex devel-
opment, the UPR promotes neurogenesis. In the rat cerebellum, the development of 
white matter tracts depends on a dramatic increase in membrane protein and lipid 
production in oligodendrocytes to facilitate myelin production [123]. A substantial 
peak in ER stress signals IRE1 and ATF6, but not PERK.  In addition, the UPR 
mediators GRP78, GRP94, calreticulin, CHOP, and PDI have been observed in the 
developing rat cerebellum [123]. Furthermore, Bip/GRP78 has a critical function in 
the development of the cerebellum as well as other neuronal functions. GRP78 
knock-in mice show defective layer formation in their cerebral cortex and cerebel-
lum [78]. A few specific ER chaperones can also play a direct role during the prolif-
eration and early development of the cerebellum to ensure homeostasis for increased 
activity of protein secretion [33]. For example, the ER-resident protein ORP150/
HSP12A is involved in cerebellum development. Transgenic expression of this pro-
tein in neurons reduces PCs’ apoptotic death and their vulnerability to hypoxic and 
excitotoxic stress, which subsequently leads to maintaining the survival of these 
cells during cerebellar development [88]. Defects in BAP (SIL1), another regulator 
of UPR, can also cause damage in PCs [166, 167] and cerebral ataxia disease [10, 
133]. The Marinesco–Sjögren syndrome characterized by cerebellar ataxia is asso-
ciated with mutation in the SIL1 gene [10, 133]. These reports suggest that dynamic 
regulation of the UPR is needed for balance between proliferation and differentia-
tion in the cerebellum and other tissues [95].

CLCC1, a transmembrane protein in ER, was shown to play an essential role in 
the maintenance of ER homeostasis in the young cerebellum. Mutation in this gene 
results in a few pyknotic granule cells in the 3-month-old cerebellum. Bip upregula-
tion and ubiquitin-positive inclusions were observed in these neurons [81].

 Conclusion

The role of apoptosis has been investigated in different aspects of development, 
including cerebellar development. Many vital roles of apoptosis have been identi-
fied in the regulation of cerebellar development. Recently, autophagy and the UPR, 
which are major cellular responses to intra- and extracellular stress, have also played 
essential roles in regulating cerebellar development. All of the mechanisms 
described in this chapter are tightly interconnected and affect each other. Therefore, 
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future research should consider regulating different organ development, including 
cerebellar development, focusing on the regulatory effects of apoptosis, autophagy, 
and UPR on this process. As apoptosis, autophagy, and the UPR are regulated based 
on mitochondria, lysosomes, and ER functions, respectively, the future of cerebellar 
development research will probably change to organelle-based investigations and 
their role in development. Therefore, developing models that aim to use mis- 
functional organelles, including mitochondria, lysosomes, and the ER, will be a 
significant asset to increase knowledge in the field of neurodevelopment. Early cer-
ebellar development could be potentially regulated via TGF superfamily and its 
interaction via the autophagy pathway. This could have potential application for 
targeting diseases with the early development origin like “Autism,” and our future 
investigation will shed light on this important topic in cerebellar development.

Some neurological disorders might be initiated via SARs-CoV-2 infection and 
the interaction of the viral protein with autophagy machinery. It has been proven 
that some of the viral proteins could be detected in patients a few months after 
recovery [61] and inhibit autophagy machinery. Therefore, it is very important that 
future investigations address the potential impact of SARS-CoV-2 infection in the 
early development of the cerebellum via placental transport of viral protein to the 
fetus and its effect on autophagy. This could be one of the big challenges in devel-
opmental biology to address it as post COVID syndrome long-term effects.
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The Ubiquitin–Proteasome System 
and Cerebellar Developmental Disease

Jerry Vriend and Xiaodan Jiao

Abstract A variety of developmental diseases of the cerebellum are associated 
with the dysregulation of proteins regulated by the ubiquitin–proteasome system 
(UPS). Dysfunction of the UPS is observed in several types of spinocerebellar atax-
ias associated with polyglutamine accumulation. Spinocerebellar ataxia type 3 is 
caused by a genetic defect in the Atxn3 gene, which codes for a deubiquitinase 
enzyme. Defects in the expression of a variety of ubiquitin ligases are associated 
with Freidrich’s ataxia, Ataxia-Telangiectasia, and cerebellar hemangioblastoma. 
Mutations in a number of genes for ubiquitin ligases are risk factors for autism. 
Subtypes of medulloblastoma are associated with specific defects in proteasome 
subunits and with deficiencies in components of the APC/C ubiquitin ligase com-
plex regulating the cell cycle. Targeting various components of the UPS system may 
contribute to a future therapeutic approach that restores protein homeostasis in vari-
ous cerebellar diseases.

Keywords Ubiquitin proteasome system · Spinocerebellar ataxia · Machado- 
Joseph disease · Medulloblastoma · APC/c complex
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ATM Ataxia telangiectasia mutated
ATXN1 Ataxin 1
ATXN3 Ataxin 3
CAG Cytosine–adenine–guanine repeat
CHFR Checkpoint with forkhead and ring finger domains
DRPLA Dentatorubropallidoluysian atrophy
DUB Deubiquitinase
E2 Ubiquitin-conjugating enzyme
E3 Ubiquitin ligase
EI Ubiquitin-activating enzyme
FRDA Freidrich’s ataxia
FXN Frataxin
HIF-1 Hypoxia-inducible factor 1
ITPR Inositol triphosphate receptor isoform
MB Medulloblastoma
MJD Machado–Joseph disease
RNF Ring finger protein
SCA Spinocerebellar ataxia
UBR Ubiquitin Protein Ligase E3 Component N-Recognin 4
UPS Ubiquitin–proteasome system
USP Ubiquitin-specific protease
VEGF Vascular endothelial growth factor
VHL Von Hippel–Lindau protein

 Introduction

In this chapter, we will discuss cerebellar diseases from the perspective of the ubiq-
uitin–proteasome system. In some of these diseases, the ubiquitin–proteasome sys-
tem (UPS) plays a key role in the disease, while in others the role of the 
ubiquitin–proteasome system, if any, is not clear. In at least three types of spinocer-
ebellar ataxias, the protein product of the gene associated with the disease is an E3 
ubiquitin ligase. We also discuss the role of the ubiquitin–proteasome system in 
cerebellar hemangioblastoma, in autism, and in medulloblastomas in terms of defi-
ciencies of the ubiquitin–proteasome system.

 The Ubiquitin–Proteasome System

The stability of most cellular proteins is controlled by the rate of their degradation 
through the proteasome, a catalytic chamber. Prior to degradation, the proteins are 
tagged with the ubiquitin molecule via a series of enzymes, a ubiquitin-activating 
enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase (E3) [1]. 
An additional enzyme, a deubiquitinase (Dub), functions to remove ubiquitin [2–4]. 
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This provides a way of recycling ubiquitin. Deubiquitinases can also, together with 
specific ubiquitin ligases, serve as on/off switch mechanisms for rapidly controlling 
proteins that are required for a short, or defined, period of time. The subunits and 
assembly of the proteasome have recently been described in detail [5]. Herein we 
discuss the role of the ubiquitin–proteasome system in various developmental dis-
eases of the cerebellum.

 Ataxia and Spinocerebellar Ataxia

Ataxia is a neurological condition in which a lack of coordination of muscle groups 
leads to abnormal gait. Such neurological conditions are often associated with the 
degeneration of parts of the cerebellum and the degeneration of neuronal pathways 
between the cerebellum and spinal cord; hence, they are called spinocerebellar atax-
ias (SCAs). As genes for various SCAs were identified, they were sequentially num-
bered. Currently there are over 40 subtypes of SCAs identified. SCA type 41, for 
example, is associated with a mutation in the TRPC3 gene [6]. A mouse model for 
this disease, the moonwalker mouse, has a mutation of this gene [7]. A number of 
SCAs are associated with defects in the ubiquitin–proteasome system. Tarlac and 
Storey [8] have noted that proteasome components and ubiquitin are often found 
co-localized with abnormal aggregates of proteins in neurons of SCA patients, par-
ticularly those with polyglutamine diseases.

 Spinocerebellar Ataxia Type 1 (SCA1)

SCA1 is a polyglutamine disease [9]. It is associated with a CAG (cytosine–ade-
nine–guanine) repeat in the Ataxin 1 gene (ATXN1) [10]. Loss of ATXN1 function 
is reported to contribute to the pathogenesis of SCA1 [11]. One protein to which the 
ataxin 1 protein binds is ubiquilin 4 (aka ataxin-1 ubiquitin-like interacting protein, 
A1UP) [12]. This protein also interacts with subunits of the proteasome, contribut-
ing to the mechanism by which misfolded proteins are degraded in this structure 
[13]. The E3 ubiquitin ligase CHIP can ubiquitinate wild-type ataxin 1, as well as 
its expanded polyQ form, and can protect against the toxicity of the expanded ataxin 
1 protein [14]. Enhancing CHIP activity has been proposed as a therapy for polyQ 
diseases [15].

In a mouse model of SCA1 gene expression in the cerebellum of the ATXN1, 
polyQ mice were compared with wild type and ATXN1 knockout mice [11]. These 
investigators analyzed the genes altered in the strains of mice by Kegg analysis. Two 
sets of genes were expressed in opposite directions in ATXN1 knockout and ATN1 
knockin mice, genes that could provide information concerning the mechanism of 
SCA1 pathogenesis. The two sets of genes, according to the Kegg analysis, were a 
group including three genes of the TCA cycle and a second group of five genes 
associated with the ubiquitin-mediated proteolysis (see their Supplemental Table 2). 
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The five ubiquitin ligase genes in this table were ANAPC2, UBE2o, UBE3B, 
WWP2, and MID1 (aka Trim18). It should be noted that WWP2 is also known as 
atrophin interacting protein 2 (AIP2) (see below). Mutation of TRIM18 may result 
in a variety of genetic defects, including the Dandy–Walker malformation [16] and 
in some patients, agenesis of the cerebellar vermis [17].

 Spinocerebellar Ataxia Type 2 (SCA2)

SCA2 is another polyglutamine disease. It is caused by a mutation in the ATXN2 
gene [18, 19]. Mutation of this gene can also result in a Parkinson-like syndrome, as 
well as in amyotrophic lateral sclerosis [20]. Although the ubiquitin and ubiquitin- 
like conjugation database (UUCO) classifies the ATXN2 protein as an E3 ligase of 
the Ring family, most publications on SCA2 have not noted this.

 Spinocerebellar Ataxia Type 3 (SCA3)/Machado–Joseph Disease 
and Ataxin 3

Machado–Joseph disease (MJD), although rare, is one of the most common spino-
cerebellar diseases. It was named after two individuals who first described it [21] . 
MJD is also referred to as spinocerebellar ataxia type 3 (SCA3); however, early 
investigators distinguished the two [22]. It is a progressive neurodegenerative dis-
ease leading to paralysis and death [23]. In addition to ataxia, the symptoms of this 
disease included memory deficits, dysarthria, alterations in saccadic eye move-
ments, and dysphagia [24]. There is no current cure for this disease. SCA3/MJD, an 
autosomal dominant disease, is associated with a genetic abnormality (CAG trinu-
cleotide repeats) of the ATXN3 (Ataxin 3) gene [25–28], a gene located on chromo-
some 14 (at 14q32.12). The Atxn3 gene codes for the protein ataxin-3. In SCA3/MJD, 
ataxin-3 accumulates in neurons as the disease progresses [29]. SCA3/MJD is one 
of the polyglutamine (polyQ; caused by expanded cytosine–adenine–guanine 
(CAG) repeats) neurodegenerative diseases associated with protein aggregates in 
neurons [30, 31]. The components of the ataxin-3 protein, including the polyQ 
region, have been described and illustrated by Matos et al. [28].

Ataxin-3 has been identified as a deubiquitinase enzyme [28]. It has several ubiq-
uitin interacting regions, which account for its binding to polyubiquitinated protein 
chains [28]. Riess et  al. [27] have illustrated a model of the normal function of 
ataxin-3. In this model, ataxin-3 facilitates the transport of ubiquitinated proteins to 
the proteasome for degradation. In SCA3/MJD, ubiquitinated proteins accumulate 
and proteasome activity is inhibited [32]. There is some data suggesting that in end- 
stage SCA3/MJD there is a defect preventing the assembly of the two major com-
ponents of the proteasome, the proteolytic component and the regulatory component 
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[33]. The presence of ubiquitin in neuronal inclusions in polyQ diseases has been 
taken as evidence for the role of the ubiquitin–proteasome system in the pathogen-
esis of these disorders [32].

Ataxin-3 functions as a polyubiquitin editing enzyme rather than simply as an 
enzyme that completely deubiquitinates its substrate [28, 34, 35]. According to 
Windborn et al., it binds to both Lys [48] and Lys [63] ubiquitin linkages but pref-
erentially cleaves Lys [63] linkages [35].

In SCA3/MJD, the soluble polyglutamine proteins are toxic [28] and probably 
interfere with the normal function of ataxin-3 as a deubiquitinase. Ataxin-3 has been 
shown to interact with several ubiquitin ligases including CHIP and Parkin [28, 36]. 
It regulates the activity of these ligases by removing ubiquitin from them. It has 
been suggested that the activity of ataxin-3 is itself enhanced by ubiquitination [37, 
38]. Its cellular role has been related to protein quality control [38]. Chai et al. [39] 
showed that the proteasome suppresses polyglutamine aggregation in neurons of 
SCA3/MJD patients and suggested that the ubiquitin–proteasome pathway has a 
key role in polyglutamine diseases including SCA3/MJD. However, data on the 
precise role of the proteasome, or its subunits, in SCA3/MJD is lacking. Rat and 
mouse models of SCA3/MJD have been developed [40, 41]. These models will 
contribute to determining the role of ataxin-3 and its polyglutamine form in the 
development and treatment of SCA3/MJD.

 Spinocerebellar Ataxia 5 (SCA5)

Mutations in the SPTBN2 gene reportedly cause SCA5 [42]. This gene codes for 
one of the spectrin proteins, B-III-spectrin. Spectrin is an F-actin crosslinking pro-
tein composed of two chains, alpha and beta, making up a helix. It has a mechanical 
role in maintaining the shape of the cell but is also involved in cell signaling [43]. 
The alpha chain is reported to have E2 ubiquitin conjugase activity as well as E3 
ubiquitin ligase activity [44–46]. The role of the alpha chain E2/E3 activity in the 
development of SCA5 has not been studied.

 Spinocerebellar Ataxia 6 (SCA6)

SCA6 is a rare cerebellar ataxia with additional oculomotor symptoms. Both SCA6, 
which is progressive, and an episodic non-progressive ataxia, subtype 2 (see below) 
are associated with a mutation in the calcium channel subunit gene, CACNA1A. SCA6 
is another polyglutamine disease caused by CAG repeats in the gene [47]. 
CACNA1A, also known as SCA6, is associated with the E3 ubiquitin ligase BCL6 
[48]. This association is not well characterized.
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 Spinocerebellar Ataxia 7 (SCA7)

SCA7 is another disease caused by CAG nucleotide repeats. It is caused by a muta-
tion in a gene on Chromosome 3, Atxn7. It is a progressive disease that results in 
ataxia and blindness. The ataxin-7 protein is part of a protein complex, the SAGA 
complex, that acts as a DUB, which regulates the transcription of a number of genes 
[49, 50]. The DUB protein that contributes to this complex is USP22 [51]. The 
polyglutamine expansion of the ataxin-7 protein apparently interferes with the func-
tion of the USP22 as a gene silencer [51, 52].

 Spinocerebellar Ataxia 8 (SCA8)

SCA8 is associated with a trinucleotide repeat expansion in the two overlapping 
genes ATXN8 and ATXN8OS [53]. The latter codes for an antisense RNA for the 
ubiquitin ligase KLHL1 [54]. Both genes are highly expressed in the cerebellum 
and other brain tissues.

 Spinocerebellar Ataxia 15 (SCA15)

SCA15 is a cerebellar ataxia in which atrophy of parts of the vermis is reported [55]. 
Mutations of the IPTR1 gene are associated with this disorder. Mutations of this 
gene are associated with abnormal regulation of calcium release by calmodulin and 
UBR4 (aka p600), a ubiquitin E3 ligase [56]. Mutations of UBR4 are associated 
with at least one subtype of episodic ataxias (see below).

 Spinocerebellar Ataxia 17 (SCA17)

Sca17 is caused by a mutation in the gene (TBP) for the Tata-box binding protein. 
In a model of Sermwittayawong and Tan [57], the SAGA complex interacts with 
TBP to regulate transcription. These investigators, however, did not discuss the deu-
biquitinase activity of the SAGA complex in their model. If deubiquitinase activity 
is generally associated with the SAGA complex, as suggested by others [58, 59], it 
may also be important in regulating TBP in the cerebellum.
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 Spinocerebellar Ataxia Type 19 (SCA19) and Type 22 (SCA22)

SCA19 and SCA22 have been associated with mutations in the gene for a potassium 
channel component, KCND3 [60]. This protein has been classified as an E3 ubiqui-
tin ligase of the BTB family in a supplemental table of a recent publication [61].

 CHIP and Gordon Homes Syndrome

It has been shown that mutations in the Stub1 gene, which codes for the ubiquitin 
ligase CHIP, are associated with a number of autosomal recessive cerebellar ataxias 
[62, 63]. In Gordon Holmes syndrome (ataxia associated with hypogonadism), 
mutations in the Stub1 gene and loss of CHIP have been identified as the probable 
cause of this disorder [64]. Ronnebaum et al. [65] concluded that CHIP is required 
for the maintenance of normal cerebellar function.

 Dentatorubropallidoluysian Atrophy

Dentatorubropallidoluysian atrophy (DRPLA) is another autosomal dominant neu-
rodegenerative disease associated with cerebellar ataxia [66, 67]. It is also referred 
to Naito–Oyanagi disease [68]. Like SCA3/MJD, it is a genetic abnormality with 
trinucleotide repeats and polyglutamine proteins [69–71]. In DRPLA, there is an 
abnormality of the atrophin-1 gene (Atn1), expansion of a CAG repeat [72]. The 
abnormal form of the atrophin-1 protein accumulates in the brains of DRPLA 
patients [72].

Several atrophin-interacting proteins including AIP1, AIP2, AIP3, AIP4, and 
AIP5 have been identified [73]. Three of them are E3 ubiquitin ligases. AIP2 is also 
known as WWP2 (WW domain-containing protein ligase 2). AIP4 has been identi-
fied as a ubiquitin ligase homologous to the mouse E3 ligase Itch [74]. Among the 
substrates of this E3 ligase are the proteins Notch [75] and JunB [76]. AIP5 is also 
known as WWP1 (WW domain-containing protein ligase 1). AIP1 and AIP3 have 
not been described as E3 ligases. They are membrane-bound proteins with guanyl-
ate kinase-like regions [73].

 Friedrich’s Ataxia and Ubiquitin-Competing Molecules

Friedrich’s ataxia (FRDA) is a hereditary protein disease. It is inherited as an auto-
somal recessive disease that initially presents itself in symptoms of gait disturbance 
and lack of coordination. FRDA is a disease that progressively impairs the muscular 
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system. Other systems involved may include vision, hearing, speech, carbohydrate 
metabolism, and cardiac disorders. The pathology of FRDA has been reviewed by 
Koeppen AH 2011 [77]. FRDA results from failed transcription of the frataxin 
(FXN) gene [78, 79]. Gene silencing may contribute to this failure in transcription 
[77]. A deficiency in the FXN protein leads to the degenerative conditions charac-
teristic of FRDA [80]. FXN has been located in the mitochondrial matrix. It is 
thought to play a significant role in maintaining adequate levels of iron in mitochon-
dria [81].

Currently, there is no effective treatment for FRDA. However, the FRDA pheno-
type, in an in vitro mouse model, was partially reversed, using viral vectors encod-
ing for the FXN gene [82]. This model provided an incentive to use this approach in 
humans. In humans, efforts have been made to reactivate the FXN gene using nico-
tinamide [83]. Underlying this research effort is the view that epigenetic regulation 
of the FXN gene is possible.

Another approach to increasing FXN is to manipulate its degradation. FXN is a 
protein that is degraded by the ubiquitin–proteasome system [84]. Theoretically, 
proteasome inhibitors could be used to increase tissue concentrations of 
FXN. However, this approach is limited to those inhibitors that cross the blood–
brain barrier. Another limitation is that proteasome inhibitors are not specific 
enough. Rufini and colleagues have identified and tested a series of lead compounds 
capable of interfering with FXN ubiquitination and degradation [84]. Recently, they 
found that small molecules that bind to FXN compete with ubiquitin for binding to 
FXN (at a specific site on the molecule, lysine 147) and lead to the accumulation of 
FXN [85]. They named these molecules ubiquitin-competing molecules. Their 
results provided a rationale for a therapeutic use of ubiquitin-competing molecules 
in FRDA disease.

 Episodic Ataxia and Ubiquitin Ligases

There are currently eight separate clinically recognized episodic ataxias (EA) [86]. 
In one form of EA, subtype 8, the UBR4 (Ubiquitin Protein Ligase E3 Component 
N-Recognin 4) gene on chromosome 1 was reported as the likely source of genetic 
variations causing this ataxia [56]. UBR4 (aka p600) is a ubiquitin E3 ligase [87, 
88] that interacts with calmodulin, a calcium-binding protein. UBR4 also binds to 
ITPR1 (inositol trisphosphate receptor isoform 1), which regulates calcium release 
from the endoplasmic reticulum [56]. Conroy et al. [56] suggested the hypothesis 
that interference with the normal binding of calmodulin and/or ITPR1 to UBR4 
resulted in a dysfunctional calcium sensing system leading to ataxia.

One of the most common types of EA (subtype 1) is reportedly caused by varia-
tions in the gene KCNA1, which codes for a potassium channel protein [89]. KCNA1 
has been recently identified as having E3 ubiquitin ligase activity [61] (see 
Supplemental Table 4 in this reference). AS noted above, EA subtype 2 is caused by 
a mutation in the calcium channel subunit gene, CACNA1A.
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 Ataxia Telangiectasia (AT) and the ATM Protein

Ataxia telangiectasia (AT), also known as Louis–Bar’s syndrome [90], is an autoso-
mal recessive disorder that results in various clinical symptoms including progres-
sive ataxia. AT patients have a defect in a gene associated with the repair response 
to double-strand DNA breaks resulting from oxidative stress [91]. The ATM (ataxia 
telangiectasia mutated) protein, a serine–threonine protein kinase, phosphorylates 
several enzymes necessary for activation of the DNA damage checkpoint and repair 
response after double-strand DNA breaks [92].

Other proteins involved in ATM activation include the ubiquitin ligases RNF8 
(Ring Finger 8) and CHFR (Checkpoint with forkhead and ring finger domains) 
[93]. Via phosphorylation, ATM can activate or inactivate many different proteins. 
Its effect on the ubiquitin–proteasome system during activation of the response to 
double-strand DNA breaks has been described by Shiloh and Ziv [93] as having 
several phases: 1. recruitment of ATM to the site of double-strand breaks (partially 
mediated by the E3 ubiquitin ligase SKP2); 2. a kinase cascade stimulating the 
phosphorylation of many proteins including other kinases; 3. recruitment of protea-
somes to the site of DNA damage [94]; 4. modulation of ubiquitin ligases and DUBs 
(deubiquitinases) by phosphorylation; and 5. phosphorylation of substrates of E3 
ligases preparing them for ubiquitination. Thus, E3 ligases control the stability of 
proteins such as p53 and NFκB. Among the E3 ligases listed by Shiloh and Ziv as 
influenced by ATM include Cop1 (aka RFWD2), MDM2, MDMX, and SIAH1. The 
deubiquitinase USP10 is also phosphorylated by ATM. Thus, it can be safely con-
cluded that the ubiquitin–proteasome system plays an important role in the ATM 
response. Eventually, this information may be used to design therapeutic molecules 
that can be used in the management of AT.

 Cerebellar Hemangioblastoma and the Von Hippel–
Lindau Protein

Hemangioblastomas of the cerebellum are frequently associated with von Hippel–
Lindau (VHL) disease [95, 96]. In this disease, there is a deficiency in the gene for 
the VHL tumor suppressor protein and overexpression of VEGF (vascular endothe-
lial growth factor) [96]. Hemangioblastomas probably originate from hemangio-
blast progenitor cells [97].

The molecular mechanisms by which loss of the VHL gene or VHL protein leads 
to susceptibility to hemangioblastoma have been described [98]. The VHL protein 
has been shown to be a ubiquitin ligase [99]. One of its substrates is the transcription 
factor HIF-1α [100], a transcription factor for a number of proteins including VEGF 
[101]. Under normal conditions (normoxia), HIF-1α is ubiquitinated by VHL and 
degraded by the proteasome [102].
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 Autism-Associated Genes

The development of the cerebellum has been shown to differ in autistic patients 
compared to controls [103]. MRI studies showed hypoplasia of the cerebellum in 
autistic patients [104]. Postmortem studies showed significantly decreased numbers 
of Purkinje neurons in the cerebellum of patients with autism spectrum disorders 
(ASDs) [103]. Among the genes associated with ASD is the gene for the ubiquitin 
ligase UBE3A [105]. It was reported as upregulated in cells from individuals with 
autism [106]. The UBE3A gene is better known as the gene which, when deficient, 
causes Angelman syndrome [107]. It is a maternally expressed gene. The protein 
encoded by this gene is the E6-AP protein [108]. It is named for its association with 
the papillomavirus protein E6.

Recently, Louros and Osterweil [105] have noted that mutations in a number of 
genes of the ubiquitin–proteasome system have been identified as risk factors for 
ASD. In addition to UBE3A, ten other ubiquitin ligases were documented as risk 
factors for ASD (UBE3B, UBE3C, PARK2, FBXO40, RFWD2, Cullin 3, Cullin 7, 
HECW2, HERC2, and HUWE) in this review. The genes coding three deubiquitin-
ases (USP9Y, USP45, and USP7) and the gene for the proteasome subunit PSMD10 
were also listed as risk factors. The authors point out that these data provide strong 
evidence for the dysregulation of protein degradation in ASD. The number of ubiq-
uitin–proteasome proteins listed as risk factors may reflect the heterogeneity of 
ASD diseases.

 Medulloblastoma and Ubiquitin–Proteasome Components

Medulloblastoma, described as a malignancy of the cerebellum, actually describes 
a group of heterogeneous tumors, differing in histology, genetic expression, clinical 
outcome, and response to treatment. A consensus classification, however, was 
reported in 2012 [109]. In this classification, four major subtypes of medulloblas-
toma were recognized: the WNT group, the SHH group, and two additional groups 
simply referred to as Groups 3 and 4. In 2015, we suggested the possibility of clas-
sification of MBs according to their expression of ubiquitin ligases [110]. In support 
of this view are supplemental data of Thompson et al. [111] showing differential 
expression of at least 50 ubiquitin ligases among the various subtypes of MB. Since 
the Thompson data were reported before 2012, these investigators recognized five 
subgroups of MB rather than the four subgroups of the consensus classification. In 
a recent review [112], we identified these E3 ligases and indicated whether they 
were significantly upregulated or downregulated in the various subgroups of the 
Thompson supplementary dataset. We also noted the differential expression of 12 
deubiquitinases among the various subtypes of MB in the Thompson dataset. Since 
the publication of our review, we noted that expression of the gene UBE3A, also an 
E3 ligase, was also differential expressed among some of the Thompson MB 
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subgroups. We have noted above that the UBE3A gene is associated with Angelman 
syndrome and autism as well. Thus, in addition, this ubiquitin E3 ligase could be 
useful as a marker gene for a subtype of MB, the Thompson Group E MB (equiva-
lent to MB consensus subtype 3). We noted above that the UBE3A gene codes for a 
protein, E6-AP. On further examination of the Thompson dataset, we note that sev-
eral ubiquitin-conjugating enzymes are differently expressed among the various 
MB subtypes. In Table 1, we list the ubiquitin conjugases that were significantly 
upregulated or downregulated in the Thompson dataset compared to the other MB 
groups. Thus, E2 conjugases, E3 ligases, and deubiquitinases could all be useful as 
marker genes for the various subtypes of MB.

Another remarkable feature of the Thompson dataset [111] is that it shows dif-
ferential expression of genes for proteasome subunits among the different subtypes 
of MB.  The Wnt subgroup showed significant depression of expression of the 
PSMB1 gene; the SHH subgroup of MBs showed significant depression of expres-
sion of seven separate genes for proteasome subunits; the Thompson dataset also 
showed that their Group A MBs had significantly increased expression of genes for 
13 separate proteasome subunits, including the genes for two catalytic subunits. The 
genes for eight subunits of the proteasome, including two catalytic subunits, were 
significantly decreased in their Group C tumors. The final group of Thompson MBs, 
Group E, also showed significant variations in several proteasome subunits. This 
was illustrated in the review of Vriend and Marzban [112] and reproduced as Fig. 1 
(by permission). These results showed that genes for proteasome subunits are “sig-
nature” genes for subtypes of MBs and raise the possibility of targeting proteasome 
subunits therapeutically.

One ubiquitin ligase complex suggested in a therapeutic context for MB is casein 
kinase 1 delta, a substrate of the APC/C (anaphase promoting complex/cyclosome) 
complex [113]. The APC/C ubiquitin ligase is an important regulator of mitosis. 
Among the factors that regulate its activity is the human cytomegalovirus [114]. 
Many medulloblastomas are reportedly infected with this virus [115, 116]. Although 
a causative relationship between cytomegalovirus and MBs has not been defini-
tively established, Baryawno et al. [116] have suggested an important role of this 
virus in the development of MB. This virus may be more significant in subgroups of 
MBs in which the activity of the APC/C ubiquitin ligase complex is impaired than 

Table 1 Ubiquitin-conjugating enzymes in MD groups of Thompson et al. [111]

Gene Location Group A Group B Group C Group D Group E

UBE2B 5q31.1 UP DOWN DOWN
UBE2C 20q13.12 DOWN UP
UBE2D2 5q31.2 DOWN UP
UBE2E1 3p24.2 DOWN
UBE2N 12q22 UP DOWN
UBE2V1 20q13.3 DOWN DOWN UP UP
UBE3A 15q11.2 UP DOWN
UBE2K 4p14 UP DOWN
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in MBs in which this complex is fully functional. Further investigation on the inter-
action of viruses and ubiquitin ligases may provide information leading to new 
therapeutic approaches for several cerebellar diseases.

 Prospective Expectations

Various developmental diseases of the cerebellum are associated with abnormal 
protein regulation [8]. It is becoming clear that a dysfunctional UPS has a key role 
in many of these disorders. As subsequent research identifies the specific compo-
nents of the UPS that are dysfunctional, opportunities arise to target these constitu-
ents therapeutically. Inhibitors of ubiquitin ligases and ubiquitin conjugases, as well 
as inhibitors of deubiquitinases, may all be therapeutically significant in the treat-
ment of some of these diseases. In cases in which disease is associated with protea-
some dysfunction, proteasome inhibitors or proteasome-stimulating proteins may 
be clinically practical.
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Epigenetic Control and Cerebellar 
Neurodevelopmental Disorders

Mojgan Rastegar

Abstract Epigenetic mechanisms regulate cellular identity and organ morphology 
via instructing the gene expression program of specific cell types. Such mechanisms 
are not directly controlled by genomic DNA sequences and can be largely influ-
enced by environmental factors. Epigenetic mechanisms include modification of 
DNA and DNA-bound proteins (histones), action of large and short regulatory RNA 
molecules, crosstalk between DNA and histone marks, nucleosome positioning, 
chromatin remodeling, enhancer–promoter interactions, as well as the  three- 
dimensional chromatin structure that is in part controlled by global regulators and 
insulator proteins. Research on epigenetic mechanisms is an emerging hot topic 
today that may very well be due to the potential reversibility of epigenetic marks. 
Such characteristics of epigenetic modifications have brought them to the forefront 
of cutting-edge research for therapeutic strategies. One challenge would be the very 
large number of genes that will be targeted by most epigenetic drugs that are capa-
ble of global modulation of epigenetic marks. Thus, purposeful management of 
selectively targeting disease-associated genes in balance with the global effects of 
epigenetic drugs should be considered.

Like all parts of our body, the development of the central nervous system and the 
brain is regulated through epigenetic mechanisms. Therefore, it is not surprising 
that deregulation of epigenetic modifications may lead to human disease and neuro-
developmental disorders. In this book chapter, I will focus on the main epigenetic 
mechanisms that control brain and cerebellum development. I will then discuss 
some of the common neurodevelopmental disorders that have proven epigenetic 
components, aiming to provide some insight into the future research on epigenetics 
and cerebellar neurodevelopmental disorders.
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 Introduction

The genetic material of eukaryotic cells exists as double-stranded DNA molecules 
packed around an octamer group of DNA-bound proteins (histones), making up the 
core structure of the “nucleosomes” known as the fundamental units of the “chro-
matin” structure. The term chromatin was first described by Flemming and 
Zelltheilung in 1882, as they referred to chromatin as “densely stained nuclear 
DNA” [1]. At the time, the basic structural organization of DNA molecules was 
unknown, and it was not until seven decades later and in 1953, when Watson and 
Crick discovered the double helix DNA structure [2]. “Epigenetics” is yet another 
term that was described by Conrad Waddington in 1942, also prior to the discovery 
of DNA structure. Waddington referred to “epigenetics” as the “casual interactions 
between genes and their products which bring the phenotype into being” [3]. Since 
then, our knowledge on epigenetic regulatory mechanisms and the associated epi-
genetic molecular modifications has grown substantially with an impressive 
>129,000 research and review articles in this area of research thus far.

In this book chapter, I will describe three major epigenetic mechanisms that 
include DNA methylation, histone post-translational modifications (PTMs), and 
regulatory RNA molecules. I will discuss the main epigenetic players in establish-
ing the “epigenetic code” that include “writers,” “readers,” and “eraser” of DNA 
methylation and histone PTMs, while discussing the crosstalk of these two types of 
epigenetic modifications. I will then briefly overview other types of epigenetic 
mechanisms such as unidirectional chromatin remodeling and bivalent histone 
marks at the developmentally important Hox genes. Lastly, I will discuss some 
examples of neurological brain disorders with an epigenetic or epigenetic–genetic 
basis to provide some views on the future directions of this line of research.

 Epigenetics

In 1942, Conrad Waddington used the word “epigenetics” in an attempt to explain 
how during development the “genotype” of an organism directs its individual cel-
lular morphologies throughout life and dictates its “phenotype” [3]. The term “epi-
genetics” is primarily rooted from the Greek word “epi,” meaning “above” or “on” 
the “genetics.” In general, epigenetic control begins as early as the life begins, 
instructing the cellular fate commitment from the very first cellular cleavage, and 
continues throughout embryonic development and after birth during infancy, 

M. Rastegar



275

childhood, and adulthood, through life [4]. By regulating the gene expression pro-
gram of individual cells, epigenetic information determines and dictates the readout 
of the genetic material so that despite sharing the same genomic DNA in all somatic 
cells, distinct morphologies, identities, and functions of different cell types of our 
body are established [5]. Deregulation of epigenetic mechanisms is involved in both 
common and rare human diseases [6–8]. It is of significant importance that such 
mechanisms are greatly impacted by environmental factors, one example being the 
negative influence of maternal in utero exposure to alcohol during embryonic devel-
opment that causes neurological disorders and malnutrition or stress after birth with 
a negative impact on the body and the brain. Accordingly, environmental factors can 
manipulate and reorganize the composition of epigenetic marks on DNA molecules. 
This may lead to a different outcome in cellular gene expression program causing 
neurological consequences, i.e., fetal alcohol spectrum disorders (FASD) in the case 
of maternal alcohol exposure. While we cannot deny a possible contribution of 
genetic susceptibility for FASD, without maternal exposure of a developing embryo 
to alcohol, there will not be any FASD development in a child. Collectively, this will 
highlight involvement of environmental factors in human disease and neurological 
disorders.

 DNA Methylation

Perhaps the very first evidence of epigenetic modifications goes back to 1963 when 
DNA and RNA methylation was primarily noticed [9]. However, the discovery of 
eukaryotic DNA methylation happened 14 years later and through the research of 
Razin and Cedar in 1977 [10]. Today, there are over 94,000 published original 
research and review articles on DNA methylation, capturing the impact of these 
discoveries over the last five decades. As research progresses, new technologies are 
developed for genome-wide DNA methylation studies, and new terms are intro-
duced in this field that refer to different types of global studies. These terms include 
“methylome” that captures all different types of genomic DNA modifications, 
“methylomics” that refers to studies aiming to characterize the crosstalk of “histone 
code” and DNA methylation, and lastly “gethylome/gethylomics” that connects 
“methylome/methylomics” to “genome/genomics” [11–13]. Research by indepen-
dent groups have highlighted the biological importance of DNA methylation during 
embryonic development, X-chromosome inactivation, genomic imprinting, regula-
tion of gene expression, alternative splicing, and stem cell differentiation, among 
other regulatory mechanisms [14]. As expected, deregulation of these epigenetic 
mechanisms and/or mutation in the components of epigenetic machinery are associ-
ated with human disease, cancer, and neurological disorders.

Chemically, DNA methylation is characterized by the covalent binding of a 
methyl group (CH3) to the 5th carbon of a cytosine nucleotide that is usually in the 
order of “CpG” dinucleotides and is called 5-methylcytosine (5-mC) (Fig. 1). The 
5-mC modification is referred to as the 5th base of genomic DNA and is commonly 
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Fig. 1 The basic structure of a nucleosome, different types of DNA methylation, and diverse 
forms of histone post-translational modifications (PTMs) are shown. The histone octamer of 2X 
H2A-H2B, two molecules of histone H3, and two molecules of histone H4 are shown with the 
double-stranded DNA molecules and histone H1 that connects the adjacent nucleosomes. Different 
types of histone PTMs are shown, along with DNA methylation at the CpG dinucleotides. At the 
top, formation of different types of DNA methylation through the action of DNMT and TET pro-
teins are also shown. (This figure is adapted and modified from Rastegar and Barber (2010) [65], 
and taken from the previous edition of this book chapter (Rastegar 2017) with the editor’s permis-
sion [116])

associated with gene inactivation. Recent studies have further discovered the impor-
tance of yet a new form of “non-CpG” methylation in the context of “CpH” meth-
ylation, where H can be either A, C, or T [11, 15]. The CpH methylation is relatively 
abundant in the brain and in neurons, but still much below the rate that CpG meth-
ylation occurs; for example, in adult mice brain neurons, the ratio of CpG methyla-
tion is about ~75%, while CpH methylation is ~25% [16].

In 2009, independent research groups reported a new type of DNA methylation 
known as 5-hydroxymethyl cytosine (5-hmC) [17, 18], which is now referred to as 
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the 6th base of the genome [19, 20]. The newly identified 5-hmC is highly enriched 
in embryonic stem cells and Purkinje cells of the cerebellum [17, 18]. Unlike 5-mC, 
this new form of DNA methylation (5-hmC) is considered to be a hallmark of active 
genes due to its association with active promoters and presence at the enhancers and 
genomic sequences of actively transcribed genes downstream of the transcription 
initiation site(s) [21]. Continued research in this field has led to the discovery of yet 
other new forms of DNA methylation produced by further oxidization of 5-hmC to 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Fig. 1), with some advance-
ment in research about their functional role [22, 23].

 DNA Methyl Writers

Members of the DNA methyltransferase (DNMT) family are responsible for the 
deposition of the methyl CH3 modification on cytosine nucleotides to form a 5-mC 
DNA methylation mark. In mammals, maintenance of 5-mC DNA methylation dur-
ing replication is the result of DNMT1 enzymatic activity, while DNMT3A and 
DNMT3B carry out de novo DNA methylation [24]. DNMT3A and DNMT3B 
establish the primary framework of CpG DNA methylation [25, 26], without favor-
ing the hemi-methylated versus unmethylated DNA. The third member of this group 
is called DNMT3-like protein (DNMT3L) and is considered to be an enzymatically 
inactive member [26]. In mice, transgenic Dnmt1-deficiency causes widespread 
genomic DNA demethylation that leads to embryonic lethality rapidly after gastru-
lation and during early embryonic development [27]. Similar to DNMT1, both 
DNMT3A and DNMT3B are essential for proper embryonic development and sur-
vival beyond birth. Accordingly, Dnmt3B-deficiency in mice leads to embryonic 
lethality, while Dnmt3A knockout mice complete the embryonic development pro-
gram. However, Dnmt3A-deficient mice die shortly after birth, further highlighting 
the biological importance of DNA methylation [28]. In contrast to these two mem-
bers of the DNMT3 group, mice with Dnmt3L-deficiency survive until adulthood; 
despite the fact that male knockout mice are infertile as their sperms do not 
mature [29].

In humans, DNMT1 mutation is associated with neurodegenerative disorders that 
are autosomal dominant, namely the “Hereditary Sensory and Autonomic 
Neuropathy with Dementia and Hearing-loss Type 1E (HSN1E)” and “Autosomal 
Dominant Cerebellar Ataxia-deafness and Narcolepsy (ADCA-DN)” [30, 31]. 
DNMT3A mutation is associated with overgrowth disorders [32], and DNMT3B 
mutations are connected to ICF (immunodeficiency, centromere instability, facial 
abnormalities) syndrome, which is a rare autosomal disease [33].
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 DNA Methyl Readers and MeCP2

Once 5-mC DNA methylation is established, this epigenetic modification will be 
recognized, bound, and interpreted by the family members of the methyl-binding 
proteins (MBPs). MBP family members consist of MBP1, MBP2, MBP3, MBP4, 
Methyl CpG Binding Protein 2 (MeCP2), and Kaiso family proteins. Perhaps the 
most-studied MBP member is MeCP2, which is also the prototype member of this 
group, discovered by Dr. Adrian Bird and his team in 1992 [34].

By binding to 5-mC, MeCP2 represses its downstream target genes via multiple 
mechanisms [35, 36]. The 5-mC commonly marks inactive genes, which are criti-
cally important for transcriptional silencing, imprinting, X-chromosome inactiva-
tion, genomic stability, embryonic development, and proper function of the brain [5, 
37]. In vivo studies in the mouse brain show that MeCP2 specifically binds to 5-mC 
at the genes that carry DNA methylation [38]. In vitro DNA-protein binding assays 
show that MeCP2 preferentially binds to methylated DNA and has a low affinity for 
unmodified DNA. The high-affinity binding of MeCP2 to 5-mC requires MeCP2 
N-terminal regions and its methyl-binding domain (MBD) [39]. MeCP2 DNA bind-
ing activities are essential for the proper chromatin structure formation in neurons, 
where the protein is exceptionally abundant [35]. It is suggested that in neurons, 
MeCP2 may act more as a global governor of chromatin architecture rather than 
being a site-specific gene regulator [38]. However, in the absence of MeCP2, a few 
critical target genes (such as Bdnf) are always and specifically altered in a cell type- 
and brainregion-specific manner [40–42], highlighting the role of MeCP2 as a 
target- specific transcriptional regulator.

Adding a new layer of complexity to the MeCP2 function is the discovery that 
MeCP2 is capable of binding to 5-hmC in the brain. As stated earlier, 5-hmC is an 
abundant DNA modification in the brain and is suggested to mark active genes [43]. 
This is in direct contrast to 5-mC, which usually marks repressed and inactive genes 
[5]. MeCP2 binding to both 5-mC and 5-hmC is important for its proper function 
and is mainly mediated through its MBD. Within MBD mutations, MeCP2 R133C 
mutation only loses binding to 5-hmC and not 5-mC; however, MeCP2 D121G 
mutation only inhibits its 5-mC binding without affecting MeCP2 binding to 5-hmC 
[43]. In addition, as a transcriptional repressor, MeCP2 is also reported to act as an 
activator of transcription [44]. Accordingly, it is suggested that MeCP2 acts as a 
repressor when bound to 5-mC, and as an activator when bound to 5-hmC [43].

MeCP2 DNA binding activities might be more complex than originally thought 
due to the presence of two MeCP2 variants (isoforms) that may not be fully redun-
dant in their DNA binding activities and functional properties. The X-linked Mecp2/
MECP2 gene produces two functional protein isoforms, called MeCP2E1 (also 
named MeCP2B or MeCP2α) and MeCP2E2 (also named MeCP2A or MeCP2β) 
with unique N-terminal sequences. These isoforms are generated through alterna-
tive splicing of the second exon [45]. In the brain, distinct transcript expression 
patterns are detected for individual isoforms [46], with MECP2E1 displaying 10× 
higher expression levels [47]. The difference at the N-terminal sequences of MeCP2 
isoforms is rather short, with 21 amino acids exclusive to MeCP2E1 encoded by 
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exon one, and 9 amino acids only present in MeCP2E2 encoded by exon two. The 
regulation and functional properties of the two MeCP2 isoforms have been the sub-
ject of my laboratory for over a decade. By generating isoform-specific antibodies, 
my team reported that MeCP2E1 is the major protein isoform in the murine brain, 
with significantly higher expression in primary cortical neurons than in astrocytes 
[48]. We reported that MeCP2E1 protein is uniformly expressed in different brain 
regions, while MeCP2E2 displayed a brain region-specific expression pattern. One 
brain region that showed the highest expression level of MeCP2E2 (almost similar 
to MeCP2E1 levels) was the cerebellum, highlighting the functional importance of 
both MeCP2 isoforms in this part of the brain [49]. We further reported that during 
differentiation of embryonic brain-derived neural stem cells, Mecp2/MeCP2 expres-
sion is controlled by DNA methylation, with a reciprocal expression pattern [50, 
51]. Importantly, a significant correlation exists between the transcript and protein 
expression of the two MeCP2 isoforms with that of DNA methylation at its regula-
tory DNA sequences (regions one to six: R1-R6) in the adult murine brain [49]. I 
will further discuss the importance of MeCP2 and its two isoforms in the human 
disease and neurodevelopmental brain disorders in the last section of this book 
chapter.

 DNA Methyl Erasers

Originally, DNA methylation was considered a stable and repressive type of epigen-
etic modification. However, it is now clear that through the action of Tet Eleven 
Translocation (TET) proteins (TET1, TET2, and TET3), active DNA demethylation 
occurs. During this process, TET family members oxidize the methyl group of the 
5-mC modification by an oxygen substrate, and this reaction leads to the generation 
of 5-hmC DNA modification. Such modification (5-hmC) is highly abundant in the 
brain, in neurons, and in pluripotent embryonic stem cells. Interestingly, the same 
TET proteins are capable of further oxidizing the 5-hmC mark into 5caC and 5fC 
(Fig. 1). Mice deficient for either of Tet genes (Tet1-/-, Tet2-/-, Tet3-/-) have normal 
preimplantation development. While Tet3-deficiency leads to neonatal lethality 
after birth [52], Tet2-deficient mice develop spontaneous myeloid leukemia [53, 
54], with Tet1-deficient mice only showing a small body size. Nevertheless, despite 
being a mild phenotype, the small body size of Tet1-deficient mice is noticeable 
from the postimplantation stage and during embryonic development [55].

Regarding the role of 5-hmC, research studies suggest that it promotes transcrip-
tional activation due to high abundance in the intragenic regions of the enhancers 
and transcriptionally active genes in embryonic stem cells [21, 56]. During early 
development, passive DNA demethylation occurs through consequent cellular divi-
sions in the absence of DNA methyl transferases (Fig. 2). This is associated with 
global DNA demethylation of 5-mC at the paternal genes, right after fertilization 
and in the early preimplantation embryos due to active and passive 5-mC DNA 
demethylation. Passive 5-mC demethylation coincides with the absence of DNMT1 
transcription and expression, as well as dilution of the oocyte-originated DNMT1 
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Fig. 2 Global change in different types of DNA methylation in the paternal and maternal genes 
during the preimplantation period of development in mouse embryos. The global change in the 
levels of different types of DNA methylation (5-mC, 5-hmC, 5fC, and 5caC) is shown. The rele-
vant expression patterns of DNA methyl transferases (DNMT) 3A, DNMT3B, DNMT1, DNMT1o 
(oocyte-driven DNMT1), UHRF1 (DNMT1 recruiting partner), TET1/2/3, and TDG are shown. 
Right after the implantation stage, DNA methylation levels are elevated at the inner cell mass 
(ICM) and trophectoderm (TE). (The figure is modified and adapted from Wu and Zhang (2014) 
[57] and taken from the previous edition of this book chapter (Rastegar 2017) with the editor’s 
permission [116])

(DNMT1o). The level of DNMT1 during this time is diluted in every cell cycle and 
reduced as the cells divide. Passive DNA demethylation is due to DNMT1 absence, 
even though its protein partner UHRF1 (ubiquitin-like containing PHD and RING 
finger domains 1) is still available. UHRF1 is the protein partner of DNMT1 that 
binds to specific DNA sequences, actively recruiting DNMT1 for the subsequent 
enzymatic activity of DNAM1. On the other hand and in parallel, there is an active 
5-mC DNA demethylation at the paternal genes due to the activity of TET proteins 
in oxidizing 5-mC to 5-hmC, 5fC, and 5caC. TET activities during this embryonic 
developmental time are mainly the result of TET3 activity, as TET1 and TET2 are 
not expressed until a later developmental time-point and at the morula stage of 
development. After the formation of 5fC and 5caC, a destabilization of the 
N-glycosidic bond may happen that promotes thymine DNA glycosylase (TDG) 
activity via specific chain of events that lead to base excision repair (BER) and 
removal of the modified nucleotide, but such a cascade of molecular events is not 
active after fertilization and until implantation stage due to the TDG absence in the 
developing embryos. The maternal genes also undergo DNA demethylation follow-
ing the paternal 5-mC demethylation, and except for the imprinted genes that 
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maintain their DNA methylation patterns, the rest of the genome within the devel-
oping embryonic cells lacks DNA methylation until implantation. At this stage of 
development, 5-mC DNA methylation is restored globally at the inner cell mass 
(ICM) and trophectoderm (the outer embryonic layer at the blastocyst stage). This 
happens with parallel increase at the levels of 5-hmC, 5fC, and 5caC due to the 
activity of TET proteins in the embryonic cells and tissues (Fig.  2). For further 
review of the molecular mechanisms of DNA demethylation during embryonic 
development, please refer to the following reviews and the references in there 
[5, 57].

 Histone Modifications

Perhaps the most diverse form of epigenetic regulation is orchestrated through his-
tone post-translational modifications. Histones are highly alkaline DNA-bound pro-
teins that make up the octamer core of the nucleosomes (two dimers of [H2A-H2B] 
+ two molecules of histone H3 + two molecules of histone H4) enwrapped by two 
rounds of double-stranded DNA, and an additional linker histone H1 that all together 
constitute the basic structure of the chromatin (Fig. 1). The naked DNA without the 
basic histone molecules is about 1.8 m in a human somatic cell with 46 chromo-
somes, but the addition of histone molecules would bring it to about 90 μm in the 
form of chromatin structure within the cellular nuclei [58]. The very first histone 
PTMs that were reported in 1964 consisted of the acetylation and methylation of 
histone molecules [59]. Today, we know of many other forms of histone PTMs 
beyond histone acetylation and histone methylation that include histone phosphory-
lation, isomerization, ubiquitination, and ADP-ribosylation (Fig. 1). Such histone 
modifications are usually at the terminal domain of histone molecules, except for a 
few histone PTMs that may also occur within the core part of the histone molecules 
(i.e., phosphorylation of histone H3 tyrosine 41). Considering a large number of 
amino acids within each of the core histone tails and the existence of different forms 
of histone modifications, one can appreciate the complexity and versatility of the 
information that can be transferred via this type of epigenetic marks. To add another 
layer of complexity, one should also note that the addition of mono-, di-, or tri- 
histone modifications, which may not necessarily mark the same chromatin com-
partments, and within the di-modifications, there are also potentially symmetric or 
asymmetric histone PTMs that once again may be a signature of different chromatin 
compartments. Together, with crosstalk of histone PTMs and DNA modifications 
(5-mC, 5-hmC, 5fC, 5caC, and CpH methylation), the potential physical masking of 
one histone PTM by another PTM, regulatory role of three-dimensional chromatin 
structure, chromatin remodeling, and nucleosome positioning; the magnitude and 
complexity of such orchestrated molecular mechanisms in every single cell of the 
body can be appreciated.

Like what was discussed for DNA methylation in the previous sections, there are 
“writers,” “readers,” and “erasers” of histone PTMs as well. Depending on the type 
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of histone PTMs, the proteins that are within each group of the “writers,” “readers,” 
and “erasers" are different. For examples, histone acetylation of lysine amino acids 
is catalyzed through the activity of K-acetyltransferases (KATs) as “writers”.” The 
KAT writers use the cofactor “acetyl-CoA” to transfer the “acetyl” group to the 
lysine amino acids, thereby catalyzing the formation of histone acetylation. The 
“reader” molecules such as PCAF and P300 would then bind and interpret histone 
PTMs, which may subsequently recruit other transcription factors or regulatory 
molecules to communicate the intended epigenetic signal in transcriptional activa-
tion. Histone acetyl “eraser” molecules are grouped as members of the histone 
deacetylase (HDAC) family that belong to HDAC class I to IV. For detailed infor-
mation about members of this family of erasers, please refer to other resources and 
their references [11, 60, 61]. HDAC inhibitors such as trichostatin A are commonly 
used in the treatment of human cancer by globally inducing histone hyperacety-
lation. Similar to what I discussed for histone acetylation, there are all three types 
of epigenetic molecules (writers, readers, and erasers) for other types of histone 
PTMs that are discussed in detail elsewhere [11, 24, 62].

 Other Epigenetic Regulatory Mechanisms

Besides DNA methylation, histone modifications, and their crosstalk, there are 
other modes of epigenetic control in place to ensure the proper gene expression 
program during embryonic development, after birth, and in adult organisms. These 
include the action of small noncoding RNAs (microRNAs, Piwi-interacting RNAs) 
in transcriptional silencing and translational regulation, long noncoding RNAs in 
transcriptional control, methylation of RNA molecules, nucleosome density at spe-
cific genomic loci (promoter regions, transcription start sites, and/or exon–intron 
boundaries), long-range enhancer–promoter interactions, the functional role of 
insulators [i.e., CCCTC-binding factor (CTCF) activity], and chromatin remodel-
ing, among others. Such epigenetic mechanisms may have profound and critically 
important key roles during development [5, 63]. Misregulation of these molecular 
events may lead to impaired cellular function, cancer, and human disease. Perhaps 
the best-studied examples of developmentally important genes that are controlled 
by such an orchestrated cascade of epigenetic mechanisms take place at the Hox 
gene clusters. The highly conserved Hox/HOX gene clusters encode for HOX tran-
scription factors that determine the anterior–posterior and dorsal–ventral patterning 
of the developing embryos (Fig. 3a). Transcriptional expression of the Hox/HOX 
genes is controlled by a combination of DNA methylation marks, histone PTMs, a 
suggested unidirectional chromatin remodeling (shown experimentally for Hoxd4) 
[64] (Fig.  3b), enhancer–promoter integrations, nucleosome positioning, and the 
activity of regulatory RNA molecules. For a detailed review of the Hox/HOX gene 
control by epigenetic mechanisms, refer to other resources and their references 
[65–67].
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Fig. 3 Schematic illustration of the Hox/HOX clusters and unidirectional chromatin remodeling at 
the Hoxd4 gene locus. (a) The larvae and adult Drosophila Melanogaster are shown on the top. 
The color-coded fly is in harmony with the Hox/HOX gene members of the 13 paralogue groups 
shown below the fly images. Members of each paralog group (i.e., Dfd, HOXA4, HOXB4, HOXC4, 
and HOXD4) are more similar to each other in comparison to the members from the same HOX 
cluster (i.e., HOXA1 to HOXA13). Underneath the fetus, a proposed unidirectional chromatin 
opening at the 3′ to 5′ unidirectional HOX gene activation (collinearity is a specificity of HOX 
genes) is shown. (b) A cascade of epigenetic events at the Hoxd4 locus, via sequential histone 
modifications at the 3′ Hoxd4 enhancer that reaches the Hoxd4 promoter located more at 5′ to its 
enhancer is shown. Note that the recruitment of the CBP (histone acetyl transferase) and the tran-
scription factor PAX6 and the initiation of H3K9ac, H3K4me, followed by H4K4K11K15ac from 
the 3′ end of the gene (enhancer) to the promoter. This is then followed by the recruitment of the 
transcriptional machinery (RNA polymerase II) through the transcription factors YY1-Mel18 and 
recruitment of PBX1-HOXD4 to the Hoxd4 cis-regulatory elements at the promoter [64, 71, 72]. 
(a and b are modified and updated from Barber and Rastegar (2010) [65] and taken from the previ-
ous edition of this book chapter (Rastegar 2017) with the editor’s permission [116])

 Epigenetics in Development and Bivalent Marks

Epigenetics plays a profound regulatory role during embryonic development with 
global changes in DNA methylation, histone modifications, and chromatin structure 
(discussed already in detail and summarized in Fig. 1). Intense efforts from inde-
pendent research groups have been devoted to understanding the biology of global 
DNA demethylation at both maternal and paternal genes, which happens because of 
both active and inactive modes of DNA demethylation. As discussed in a previous 
section on DNA methylation, shortly after zygote formation by fertilization of an 
egg and sperm (during embryonic preimplantation), paternal genes undergo global 
DNA demethylation (reduced 5-mC). Such global effect is via passive DNA demeth-
ylation through cellular division associated with the absence of active DNMT1 
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transcription and translation of new molecules, along with dilution of oocyte- 
originated DNMT1o during each mitosis cycle. Maternal genes will also undergo 
similar DNA demethylation (reduced 5-mC), with a short delay following paternal 
genes. Active DNA demethylation accompanies this process through the catalytic 
role of TET1/2/3 proteins, leading to an induction of other forms of DNA methyla-
tion (5-hmC/5fC/5caC) only in the paternal genes. However, maternal genes do not 
undergo the global active DNA demethylation by TET proteins. Right around 
implantation, the global DNA methylation will be established through the activity 
of DNMT proteins in both inner cell mass (the cellular mass that in the primordial 
embryo will give rise to the embryonic body of the fetus) and trophectoderm (cells 
of the outer layer of the blastocyst that will generate the extra- embryonic tissues) 
(Fig. 2). There are global histone modification changes that in collaboration with 
different DNA methylation types and other epigenetic mechanisms tightly control 
the proper process of embryonic development. Deregulation of these mechanisms 
due to genetic mutations or influenced by environmental factors may lead to mild- 
to- severe consequences in the developing embryos.

To understand early developmental mechanisms orchestrated by genetics and 
epigenetics, researchers have intensely used self-renewing and differentiating plu-
ripotent embryonic stem cells. Through genome-wide chromatin immunoprecipita-
tion (ChIP) studies, scientists have shown that depending on low CpG or high CpG 
contents of the promoter regions, developmentally important genes (such as Hox/
HOX genes), pluripotency genes, and housekeeping genes are differentially marked 
by histone PTMs (Fig. 4). It has been shown that Hox genes and some developmen-
tally important genes are at a poised state of transcription, carrying “bivalent marks” 
within the “bivalent domain” of the genome. In 2006, Bernstein et al. first intro-
duced the concept of bivalent domains and bivalent chromatin structure, referring to 
chromatin regions that carry histone H3 (lysine) K4 methylation and histone H3 
(lysine) K27 methylation, simultaneously [68]. The “bivalent marks” are accord-
ingly referred to the existence of these active (H3K4 methylation) and inactive 
(H3K27 methylation) marks at the N-terminal region of the same histone H3 mol-
ecule at the regulatory regions of developmentally important genes [65]. As stated 
earlier, HOX proteins and their cofactors control the proper patterning of the embry-
onic central nervous system along the anterior–posterior embryonic axes with key 
roles in stem cell differentiation [4, 64, 65, 69–72]. As development/embryonic 
stem cell differentiation proceeds, bivalent marks at the poised genes are resolved to 
further gain DNA methylation in combination with keeping the H3K27 methylation 
and become silenced, or lose the inactive histone mark, keeping histone H3K4 
methylation and relaxed chromatin structure for genes that would become transcrip-
tionally active. In pluripotent embryonic stem cells, the active or silenced state of 
gene transcription is further regulated by the pluripotency transcription factors: 
OCT4, NANOG, and members of Polycomb (PcG) transcriptional silencing pro-
teins. The pluripotency genes further control their own expression through a regula-
tory feedback loop during embryonic stem cell self-renewal. For a detailed review 
of the bivalent marks, please refer to the following reviews/book chapters and the 
references in there [5, 24, 73]. Depending on the process of differentiation toward 
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Fig. 4 Presence of bivalent marks in the embryonic stem cells and their change of status in dif-
ferentiated cells. Bivalent marks (active: H3K4me3, and inactive: H3K27me3) exist on the 
N-terminal tail of the same molecule of histone H3 in the pluripotent embryonic stem cells at the 
high CpG content promoters of the developmentally important genes (i.e., Hox genes) and early 
differentiation genes. The thickness of the black line for NANOG and OCT4 correspond to the 
enrichment of these transcription factors and/or pluripotency factors at the regulatory/promoter 
gene regions. During embryonic stem cell differentiation, genes that carry bivalent marks either 
lose the active H3K4me3, keeping the H3K27me3, and may gain DNA methylation marks and 
become inactive/silenced. On the other hand, genes that should be turned on would become active 
by losing H3K27me3 histone PTM, but would keep H3K4m3 and become active. Note that the 
overall level of DNA methylation is lower in embryonic stem cells but increases during differentia-
tion. Housekeeping genes remain active in embryonic stem cells as well as in differentiated cells. 
(The figure is modified and updated from Delcuve et al. (2009) [116] and taken from the previous 
edition of this book chapter (Rastegar 2017) with the editor’s permission [116])

different cell fate commitments, epigenetic marks and transcription factor binding 
at the cis-regulatory elements would change to ensure the proper gene expression 
program of individual cells. Once the central nervous system and the brain develop-
ment process are completed, bivalent marks barely exist at the Hox/HOX genes; for 
example, the only remaining Hox gene with a bivalent modification is Hoxa1 
(Fig. 5).
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Fig. 5 Bivalent marks at the Hox clusters during the development of the brain cells. In pluripotent 
embryonic stem cells, bivalent marks exist at all paralogue members of the Hox genes along all 
four clusters, except for the Hoxd8. Later during the differentiation of the brain cells in neural 
progenitor cells that are generated from the multipotent neural stem cells, most Hox genes lose 
their bivalent marks, being either active or inactive. In the adult brain, none of the Hox genes carry 
bivalent marks, except for the Hoxa1 gene. Stars indicate bivalent marks (the gene locus carries 
both H3K4me3 and H3K27me3), red circles indicate inactive genes (carrying H3K27me3), and 
green circles show active genes (carrying H3K4me3). (The figure is modified and updated from 
Barber and Rastegar (2010) [65] and taken from the previous edition of this book chapter (Rastegar 
2017) with the editor’s permission [116])

 Epigenetics and Cerebellum

Epigenetic mechanisms control the proper development of all brain regions includ-
ing the cerebellum. The word “cerebellum” is rooted from a Latin word that means 
“little brain.” In general, the mammalian cerebellum is a distinct structure that is 
situated underneath the brain in the posterior cranial fossa. Anatomically, cerebel-
lum has a distinguishable structure of neurons within its granular layer, the molecu-
lar layer, and a layer of the Purkinje cells. The proper function of the cerebellum is 
critical and essential for motor coordination of the body. Cerebellum also plays 
important roles in cognitive function including attention and language, while con-
trolling emotional responses such as reactions to pleasure and fear. The process of 
murine and human cerebellum development is controlled by a combination of epi-
genetic mechanisms and particular gene regulatory networks [74]. Among different 
modes of epigenetic mechanisms, DNA methylation has attracted much attention in 
cerebellum development and function [75]. Within different cell types of the cere-
bellum, 5-hmC is markedly enriched at the euchromatic genomic regions, and 5-mC 
is found at the heterochromatin compartments with MeCP2 being the main reader 
of both 5-hmC and 5-mC in the brain [43]. In the adult mouse brain, reports from 
my own lab indicated that both MeCP2E1 and MeCP2E2 are expressed in neurons, 
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astrocytes, and oligodendrocytes. However, expression of the minor MeCP2 iso-
form (MeCP2E2) reaches its highest level in the cerebellum with almost compara-
ble levels to the major MeCP2E1 isoform [49]. Of note, a Daoy medulloblastoma 
cell line originating from the cerebellum has been useful in studying MECP2/MeCP2 
regulation and function [76–78]. Daoy cells represent the sonic hedgehog (SHH) 
medulloblastoma subgroups [79, 80].

 Epigenetics and Neurodevelopmental Cerebellar Disorders

Deregulation of epigenetic mechanisms in the brain and cerebellum are associated 
with neurodevelopmental and cerebellar disorders. Research by independent groups 
has established the involvement of epigenetic mechanisms in FASD, autism spec-
trum disorders (ASD), fragile X syndrome, and Rett Syndrome (RTT). Of the dif-
ferent types of epigenetic mechanisms that I have discussed here, altered DNA 
methylation and more specifically cerebellar change in 5-hmC levels are linked to 
fragile X syndrome. Both ASD and FASD as cerebellar neurological disorders are 
discussed in detail in other chapters of this book (see chapters “Teratogenic 
Influences on Cerebellar Development” and “Neurodevelopmental Disorders of the 
Cerebellum: Autism Spectrum Disorder”).

In general, cerebral dysfunction is an established trademark of FASD, and it 
appears that the second- and third-trimester-equivalent ethanol exposure in mice 
highly influences Purkinje cells of the developing cerebellar vermis relative to inter-
neurons. Besides the reduced number of GABAergic/glycinergic neurons due to 
ethanol exposure, decreased lobule volumes in the cerebellar vermis of developing 
mice are evident subsequent to in utero ethanol exposure in the developing mouse 
embryos. The reduced volume of most cerebral lobules is also found as an outcome 
of a significant decrease in the number of cells, dendritic arborizations, and/or axo-
nal projections [81]. DNA methylation is reported to play a profound role in FASD 
pathobiology, detected in FASD patients, and during stem cell modeling of this 
disease by others and us [50, 82–85]. The associated genetics and epigenetics of 
FASD are discussed in detail elsewhere [86] and impaired cerebral function 
in FASD.

Studies in human postmortem brain indicate that increased MeCP2 recruitment 
at the glutamic acid decarboxylase 67 (GAD1) and Reelin (RELN) gene promoters 
happens via enrichment of 5-hmC DNA methylation and a mirror decrease of 5-mC 
in the cerebellum of ASD patients [87]. Such epigenetic change and altered MeCP2 
binding were not detected at the GAD1 and RELN gene bodies of ASD patients in 
the same examined cerebellum samples. While the protein product of the GAD1 
gene is involved in gamma-aminobutyric acid (GABA) synthesis, REELIN is domi-
nantly expressed in glutamatergic neurons [88]. In postmortem brain tissues of ASD 
patients, GABA neurotransmitters are at reduced levels in the cerebellum [89, 90]. 
Research by independent groups has suggested the role of DNA methylation in 
ASD and the potential application of DNA methyl inhibitors for ASD [51, 91, 92].

Epigenetic Control and Cerebellar Neurodevelopmental Disorders



288

In one study of human suicides cases compared to control individuals, reduced 
connexins (CX), CX30 and CX43 levels, were found to be associated with increased 
histone H3K9 methylation in the prefrontal cortex, but such observation was not 
consistent and was not detected in the cerebellum. The authors concluded that 
extensive cerebral astrocyte dysfunction is associated with major depressive disor-
ders [93]. Other studies further introduced DNA methylation as an emerging marker 
for cerebellar epigenetic age [94]. Such research highlights the importance of DNA 
methyl-related proteins, which once again brings MeCP2 to the forefront of research 
in this field and further links MeCP2 as the major DNA methyl-binding protein in 
the brain to age-related cerebellar disorders. Ataxia-telangiectasia is a genetically 
inherited neurodegenerative disorder that is caused by ATM loss-of-function muta-
tions. This gene encodes for a protein kinase that has key roles in DNA damage 
response for DNA double-strand breaks. One of our today’s challenges in under-
standing ataxia-telangiectasia is based on our limited knowledge on the functional 
role of Purkinje cells in this regard, and specifically on their vulnerability to ATM- 
deficiency. However, research studies have shown significantly reduced levels of 
5-hmC in the cerebellar Purkinje cells of Atm-/- mouse cerebellum and human 
ataxia-telangiectasia cerebellum tissues directly related to compromised TET1 
enzymatic activity. It is further suggested that the loss of 5-hmC is critically impor-
tant in mediating the susceptibility of Purkinje cells to ATM-deficiency [95].

Within neurodevelopmental and cerebral disorders with an epigenetic link, per-
haps one of the most-studied diseases would be Rett Syndrome. RTT is a severe 
neurological disorder that in more than 95% of cases is caused by de novo mutations 
in the X-linked MECP2 gene [96]. In addition to RTT, MECP2 mutations are also 
associated with a broad spectrum of neurological disorders, including X-linked 
mental retardation, Angelman’s syndrome, severe neonatal encephalopathy, and 
ASD [36, 97–101]. Aberrant MeCP2 expression in the brain also leads to compro-
mised brain function and ASD [102]. Currently, RTT has no effective treatment; but 
reactivation of the Mecp2 gene after the onset of the phenotypes in RTT mouse 
models partially rescues physiological and anatomical abnormalities [103, 104]. 
MeCP2 function is dose-dependent, and its loss-of-function or gain-of-function 
mutations cause overlapping neurological phenotypes and autistic features. In trans-
genic mice, deficiency in the major MeCP2 isoform (E1-deficiency) is sufficient to 
mimic RTT-associated phenotypes [105]. To date, there have been many attempts to 
find therapeutic strategies for RTT by independent research groups. Perhaps one of 
the first reports in this regard was the development and validation of regulated gene 
therapy vectors for both MECP2E1 and MECP2E2. These gene therapy vectors 
were tested for proper gene delivery into primary neurons, as well as self-renewing 
adult and embryonic neural stem cells, their differentiated progenies into neurons 
and astrocytes, and ex vivo delivery into the brain microenvironment of an RTT 
mouse model [106]. These studies have established that despite MeCP2 functional 
role in the epigenetic silencing of gene therapy vectors in stem cells [107], an effi-
cient and long-term delivery of MeCP2 by this approach is possible in brain-derived 
neural stem cells and their differentiated progenies into neurons and astrocytes 
[106]. This was one of the first studies to support the rescue role of MeCP2E1 in 

M. Rastegar



289

correcting the impaired morphology of Mecp2-deficient neurons [106]. Subsequent 
studies from independent groups indicated that both MeCP2E1 and MeCP2E2 can 
rescue RTT-associated phenotypes in mice but with different efficiencies [108]. 
While MeCP2 is the main DNA-binding protein in the brain, studies by my team 
have also shown that its own expression in the developing and adult murine brain is 
influenced by DNA methylation, involving both 5-mC and 5-hmC [49–51, 85, 109]. 
MeCP2 is an interesting protein that links genetic mutations and epigenetic regula-
tion to cell signaling molecules. Indeed, MECP2 loss-of-function mutations lead to 
impaired mTOR pathway in postmortem human cerebellum [110]. As the Mecp2/
MECP2 gene is X-linked, it is not surprising that its expression level is sex- 
dependent [109, 111] and that MeCP2-associated disorders are differently detected 
in males and females. In this regard, RTT is primarily a female disorder, whereas 
MECP2 duplication syndrome (MDS) is detected in males [36, 112, 113]. Proper 
regulation of MECP2/MeCP2 isoforms is important in the brain, and RTT patients 
exhibit deregulation of MECP2E1-E2 homeostasis regulation [114, 115]. Currently, 
intense research from us and other scientists is focused on the regulation of MeCP2 
isoforms and the redundant and nonredundant functional role of the two MeCP2 
isoforms in RTT and other neurodevelopmental cerebral disorders.

 Conclusions

Epigenetics controls and dictates the identity of individual cells during each cellular 
division. Throughout development, cellular programming of the developing fetus is 
orchestrated through epigenetic modifications that are mainly embedded within the 
chromatin structure and are vulnerable to environmental factors, such as in utero 
alcohol exposure. Most epigenetic mechanisms are reversible and can be targeted 
by chemical compounds and drugs, which are attractable routes for therapy strate-
gies. The brain is a very complex organ of the body with billions of functional nerve 
cells as well as other supportive cell types. The process of cerebellum development 
is tightly controlled during development, and deregulation of the involved regula-
tory mechanisms causes human disease. In this regard, the involvement of epigen-
etic mechanisms and mainly DNA methylation is becoming the center of focus for 
today’s research.
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Hormonal Regulation of Cerebellar 
Development and Its Disorders

Noriyuki Koibuchi

Abstract Cerebellar development and plasticity is involved in various epigenetic 
processes that activate specific genes at different time points. Such epigenetic influ-
ences include hormonal signals from endocrine cells. Various hormone receptors 
are expressed in the cerebellum, and cerebellar function is greatly influenced by 
hormonal status. The aim of this chapter is to introduce several key features of hor-
mones and their receptors involved in the regulation of cerebellar development and 
plasticity. Furthermore, cerebellar developmental disorders caused by aberrant hor-
monal status are also discussed. This chapter also covers the effect of endocrine- 
disrupting chemicals that may alter hormone functions in the cerebellum.

Keywords Steroid hormone · Thyroid hormone · Nuclear receptor · Critical 
period · Endocrine-disrupting chemicals

 Hormone and Cerebellar Development: A General Overview

To understand the functional organization of the central nervous system (CNS), 
including the cerebellum, it is important to consider the process by which neurons 
differentiate to establish their role and interact with specific target cells to form 
functional pathways. The development of the brain involves epigenetic processes 
that activate specific genes during different time frames. As shown in Fig. 1, epigen-
etic influences that regulate brain development may originate from the neuronal cell 
itself or from outside of the CNS. The former includes spatial and temporal patterns 
of intrinsic gene expression tightly regulated by their molecular programs. The lat-
ter includes sensory inputs, mediated by the peripheral nervous system and 
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Fig. 1 Schematic diagram showing genetic and epigenetic influences and its modulation by envi-
ronmental factors involved in cerebellar development and plasticity

hormonal influence from endocrine cells. These are also crucial stimuli for brain 
development. Environmental influences, such as stressors, endocrine-disrupting 
chemicals (EDCs), and undernutrition, may affect such processes.

The cerebellar cortex forms well-organized structures involving a highly specific 
and uniform arrangement of cells and microcircuitry [1]. The cerebellum is one of 
the few sites in the CNS where the pattern of intrinsic connections is known in con-
siderable detail. These features make the cerebellum an ideal system to study the 
mechanisms of neural development and plasticity. Based on such advantages, many 
excellent works have been done at various levels ranging from basic science to clini-
cal disorders. In contrast, although a number of hormone receptors are expressed in 
the cerebellum and cerebellar function is greatly influenced by hormonal status, a 
relatively smaller number of studies have evaluated the role of hormonal signaling 
on the development and plasticity of the cerebellum.

Among circulating hormones, a group of small lipophilic hormones such as ste-
roids (corticosteroids, progesterone, androgens, and estrogens) and thyroid hor-
mone (TH) may particularly play an important role in mediating environmental 
influences. Because of their chemical nature, these are able to cross the blood–brain 
barrier (BBB) more easily than peptide hormones, although the existence of specific 
transporters has been proposed [2]. Receptors for such lipophilic hormones are 
mainly located in the cell nucleus (nuclear receptor, NR) and represent the largest 
family of ligand-regulated transcription factors [3]. As shown in Fig. 2, the molecu-
lar structure of the NR superfamily is homologous. It consists of a highly variable 

N. Koibuchi



299

N-terminal domain, which contains a transactivation domain (activation function-1, 
AF-1), DNA binding domain (DBD), and ligand binding domain (LBD). The DBD 
is the most homologous among these domains. The LBD, which also shares certain 
homology among NRs, is also responsible for the dimerization of NRs and ligand- 
dependent transactivation (activation function-2, AF-2). To activate or repress the 
transcription of the target gene, NRs bind to a specific nucleotide sequence called 
the hormone response element (HRE) located in the promoter region of target genes 
(Fig. 3). Then, NRs recruit a variety of coregulators in a ligand-dependent manner, 
such as coactivator and corepressor complexes, which modulate chromatin struc-
tures [4]. With a specific pattern of expression, the NRs are widely distributed in the 
CNS, as well as in other organs [5]. In the cerebellum, NRs are expressed in a spe-
cific temporal and spatial pattern [6]. However, the role of these NRs on cerebellar 
development and function is not fully understood.

Among the lipophilic hormones, the involvement of TH (triiodothyronine [T3] 
and thyroxine [T4]) on cerebellar development has been well studied. Deficiency of 
TH during postnatal development results in abnormal cerebellar morphogenesis in 
rodents [7–9] and humans [10]. Conversely, although the importance of gonadal 
steroids such as estrogen, progesterone, and testosterone on the development and 
functional maintenance of the CNS has been well documented, the cerebellum is 

RAR

1 462

16%

1

GRα

ERα

TRα

777

1 595

1 410

52%

47%

DNA
binding

30%

17%

Ligand binding, 
Dimerization, 
Transactivation
(AF2)

Transactivation (AF-1)

46%

Fig. 2 Protein sequence homology among representative nuclear hormone receptors. ERα estro-
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considered to be relatively insensitive to gonadal steroids. However, recent studies 
have clarified that gonadal steroids play an important role in cerebellar development 
and may be involved in various health and disease states [11]. In addition to the sup-
ply from circulation, these gonadal steroids are produced locally within the Purkinje 
cells [12]. Corticosteroids, particularly glucocorticoids, are crucial for the matura-
tion of various organ systems, including the brain [13]. Furthermore, since recent 
studies have shown the critical role of the cerebellum on social, cognitive, and emo-
tional behaviors [14], other studies on the role of glucocorticoids on cerebellar 
development are currently underway. Additionally, it should be noted that these 
thyroid/steroid hormone-mediated pathways can be disrupted by prescription drugs 
and environmental chemicals [15].

This chapter will provide useful information regarding the hormonal regulation 
of cerebellar development and plasticity. Furthermore, cerebellar developmental 
disorders caused by aberrant hormonal status are also discussed.

 Cerebellar Disorders Induced by Aberrant TH Systems

The importance of T3 and T4 in brain development has been well documented [7–9]. 
Deficiency of THs during fetal and early postnatal periods results in severe mental 
retardation. In humans, this is known as cretinism [10]. In the 1980s when newborn 
screening was introduced in many countries, the initial prevalence of cretinism was 
1/3000–1/4000 births worldwide; however, recent studies have shown that the prev-
alence has increased to 1/1,400–1/2,800. This increase may be attributed to the 
change in diagnostic strategy from serum T4 measurement to thyrotropin (TSH) 
measurement, allowing the identification of milder cases. If the diagnosis of cretin-
ism is delayed, the risk of mental retardation and neurologic sequelae, such as poor 

N. Koibuchi



301

motor coordination, ataxia, spastic diplegia, muscular hypotonia, strabismus, learn-
ing disability, and diminished attention span, is likely to increase.

T4 enters the brain through the BBB more easily than T3, an active form of TH 
[16]. After crossing the BBB, T4 is taken up by astrocytes and deiodinated to pro-
duce T3 by type 2 iodothyronine deiodinase [17]. T3 is then transferred to neurons or 
oligodendrocytes, possibly via monocarboxylate transporter 8 (MCT8) [18]. The 
effects of THs are mainly exerted through the nuclear TH receptor (TR). At least 
three TR isoforms are expressed in the CNS (TRα1, TRβ1, and TRβ2) [19].

Perinatal hypothyroidism dramatically affects cerebellar morphogenesis and 
function. In an animal model of perinatal hypothyroidism, the growth, dendritic 
arborization, and dendritic spines of Purkinje cells are all markedly decreased. 
Synaptogenesis between Purkinje cells and parallel fibers is dramatically repressed. 
The disappearance of the external granule cell layer is postponed as a result of the 
delayed proliferation and migration of the granule cells into the internal granule cell 
layer (Fig. 4) [7–9]. TRs are expressed in most subsets of cells in the developing 
cerebellum in both rodents and humans [20, 21]. TRα1 is abundant in granule cells, 
whereas TRβ1 is mainly expressed in Purkinje cells. In perinatal hypothyroidism, 
the expression of many cerebellar genes is altered [8]. Representative TH-responsive 
genes in the cerebellum include neurotrophins such as nerve growth factor, BDNF, 
NT3, and NT-4/5, receptors such as the inositol triphosphate 3 receptors, and reti-
noic acid receptor-related orphan receptor α, hairless, and myelin basic protein 
genes. The THs regulate the expression of many of these genes only during a limited 
period of development. Various animal models harboring TR mutation have been 
used to study the role of TR in cerebellar development [22]. Interestingly, TRα 
knock-out mice, TRβ knock-out mice, and TRα/TRβ double knock-out mice do not 
display obvious cerebellar defects, suggesting that most of the consequences of 
congenital hypothyroidism in the brain are caused by the detrimental activity of 
unliganded TR. In fact, in animal models expressing dominant-negative TR, which 
cannot bind to TH, cerebellar phenotypes, such as disrupted motor coordination, are 
evident [23–26], suggesting that unliganded TR may cause aberrant phenotypes. In 
human cases of resistance to TH (RTH) caused by mutation of TR genes, the clini-
cal phenotype is highly variable [27, 28]. This probably depends on the severity of 
the mutation. However, abnormal motor coordination, which is always evident in 
animal models, is not common in human cases. Their representative neurological 
symptoms are emotional disturbances and hyperkinetic behavior [27]. Although the 
involvement of the cerebellum on such behavioral alterations is also known as cer-
ebellar cognitive affective syndrome [29], further study is required to clarify such 
phenotypic differences among species.

In addition to cretinism and RTH, recent studies have shown another congenital 
disease induced by an aberrant TH system. Another human disorder related to the 
TH system is Allan–Herndon–Dudley syndrome, which is an X chromosome-linked 
disease. The symptoms are hypotonia, dysarthria, athetoid, or other distal limb 
movements, muscle hypoplasia, and severe mental retardation [30]. Linkage studies 
have identified the gene locus in Xq 13.2. This region encodes for MCT8, which 
transports T3 into the neurons [31]. Animal studies have shown the disruption of 
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Fig. 4 Effect of congenital hypothyroidism in rat model. Rdw congenital hypothyroid rat, which 
harbors mutated thyroglobulin gene, shows delayed cerebellar development (b, d, f) compared to 
control animal (a, c, e). Note the decrease in dendrite arborization of Purkinje cell (d),and delayed 
disappearance of the external granule cell layer (EGF)(f)

cerebellar development by knocking down MCT8  in the Purkinje cells [32]. 
Although MCT8 is responsible for the TH transport into neurons, the phenotype of 
Allan–Herndon–Dudley syndrome is much more severe than that in a patient with 
cretinism or RTH. Thus, further study is necessary to clarify whether this syndrome 
is induced only by disrupted TH transport or by other additional factors.
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 Cerebellar Disorders and Gonadal Steroids

Although the importance of gonadal steroids, such as estrogen, progesterone, and 
testosterone, in the development and functional maintenance of the brain has been 
well documented, the cerebellum has been previously considered relatively insensi-
tive to gonadal steroids. However, recent studies have clarified that gonadal steroids 
play an important role in cerebellar development and may be involved in various 
health and disease states [11]. Aside from the supply from circulation, these gonadal 
steroids are also produced locally within the Purkinje cells [12].

Testosterone and estradiol (E2) are the two major gonadal steroids synthesized in 
the testes and the ovaries, respectively. During brain development, gonadal steroids 
regulate the formation of structures of many brain regions. In the late embryonic 
period, the testes in males start producing testosterone. Because of their lipophilic 
nature, steroids can pass across the BBB by simple diffusion [33]. Testosterone is 
then converted to E2 by an aromatase. In contrast, ovaries in females differentiate 
much later during development and do not secrete E2 during this period. Thus, dur-
ing the perinatal critical period, there are significantly higher levels of E2 in males 
than in females. These are thought to act on male brain development [34]. E2 regu-
lates apoptosis to produce sexually dimorphic cell numbers, dendritic spine forma-
tion, neuronal migration, and synaptic organization in the hypothalamic regions, 
most of which are key regions for regulating male and female sexual functions in 
the adult brain. Because of the lack of estrogen exposure during the perinatal period, 
the female brain is thought to develop without the involvement of E2. However, 
studies of the aromatase gene using knock-out mice have suggested that E2 pro-
duced by the ovaries during a prepubertal period plays a role in the differentiation 
of the female-typical brain [35].

In addition to estrogen, androgens, particularly testosterone, directly acting on 
the androgen receptor (AR), are also thought to play a role in brain masculinization. 
This is based on studies of human patients with complete androgen insensitivity 
syndrome and on patients with mutations in the aromatase gene, as well as on stud-
ies of rodents with the testicular feminization mutation, which produces a nonfunc-
tional AR [36].

Gonadal steroids also play an important role in the development of the cerebel-
lum. Two nuclear estrogen receptors (ERα and ERβ) were detected in an immature 
cerebellar granule cell line derived from late embryonic mouse cerebellum [37]. 
Quantitative reverse transcription-polymerase chain reaction (RT-PCR) studies 
have shown that both receptors are expressed in the cerebellum from birth to adult-
hood, but levels of ERβ mRNA are significantly higher than those of ERα in neona-
tal rats [38]. Nevertheless, ERα levels are higher than those in adults during the 
neonatal period [38]. ERα is predominantly expressed in the Purkinje cells [39]. In 
contrast, the level of ERβ protein decreased transiently at P5 and P7 in rodents and 
then increased dramatically at P10 followed by a subsequent decrease in adult levels 
[40]. ERβ immunoreactivity was detected in various neurons, including Golgi, 
Purkinje, and basket cells, and the expression in each cell type occurs on different 
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postnatal days. Additionally, differentiating external granular layer cells and glial 
cells also show ERβ immunoreactivity. Differential expression profiles of ERα and 
ERβ suggest that E2 exerts its actions in a cell type-specific manner via binding to 
the two ERs, which play distinctive roles in cerebellar development. Additionally, 
there may be a possibility that estrogen acts rapidly through a membrane-associated 
receptor in the developing cerebellum [41].

As discussed above, during the late embryonic period, E2 converted from testos-
terone may be a major gonadal steroid that may have some effect on the developing 
cerebellum. Previous studies showing the expression of aromatase in mid-gestation 
in monkeys [42] and early postnatal age in rats [43] support this hypothesis. Then, 
at the later stage, the estrogen level in the cerebellum increases relative to that in the 
plasma [44] with the expression of enzymes responsible for estrogen [43] and pro-
gesterone [45] synthesis, indicating that gonadal steroids are locally produced as 
“neurosteroids.” The most evident action of gonadal steroid is that estrogen and 
progesterone promote dendritogenesis and increases dendritic spine density [44, 
46]. Taken together, gonadal steroids produced in the testes or ovaries may play an 
important role during early cerebellar development. Then, de novo synthesized 
neurosteroids may play a major role at a later stage of development. Additionally, 
possible sex chromosome effects have been proposed [47]. The diagram showing 
the influence of gonadal steroids on cerebellar development is shown in Fig. 5.

Whether there are any sex differences in cerebellar architecture remains contro-
versial. Some magnetic resonance imaging (MRI) studies have reported that the 
cerebellar size in men, both adults [48] and children [49], is larger than that in 
women; other MRI studies failed to detect such differences [50]. Biochemically, the 
levels of aromatase and several enzymes related to estrogen synthesis are higher in 
postnatal male rats than in females [43], whereas calbindin levels are higher in 
female mice [47]. While these are only a few examples related to sex differences in 
the cerebellum, sexual dimorphism is not evident in gene expression patterns in the 
cerebellum.

In spite of the fact that no clear sex differences in cerebellar morphology and 
gene expression were observed, there is a clear sex difference in cerebellar pathol-
ogy in several developmental diseases in humans and related animal models. For 
example, the prevalence of autism is four times higher in men [51], and autistic 
patients commonly show increased cerebellar volumes during childhood and 
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Fig. 5 Possible differential roles in gonadal steroids and neurosteroids during cerebellar 
development

N. Koibuchi



305

hypoplasia in adults [52, 53]. In post-mortem tissue in autistic patients, Purkinje and 
granule cells were reported to be lower in number [54, 55]. Another clinical exam-
ple is attention-deficit hyperactivity disorder (ADHD), which affects two to four 
times more males than females [56]. Untreated children show a decreased volume 
of the posterior inferior vermis [57]. In our animal model, when polychlorinated 
biphenyl (PCB), an environmental chemical pollutant and developmental neuro-
toxicant, is administered postnatally to dams, pups present ADHD phenotype [58]. 
Hyperactivity was more evident in males. Additionally, motor coordination was 
more severely disturbed in male rats (Fig. 6) [58]. More recently, the change in the 
volume of several cerebellar regions in transgender individuals has been reported, 
although the mechanisms underlying such cerebellar structural differences are 
unknown [59, 60]. To clarify the molecular mechanisms of sexual differences in 
cerebellar pathology, further study is necessary.
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Fig. 6 Sexual difference in the effect of perinatal exposure to hydroxylated polychlorinated biphe-
nyl (OH-PCB106). PCB was orally administered to the dam every other day from postpartum day 
3 to 13 [58]. (a, b) Effects of PCB on locomotor activity in the open field in male (a) and female 
(b) rat. (c, d) Effect of PCB on motor coordination on rotarodin male (c) and female (d) rat. Note 
that behavioral alteration was more evident in male. P< 0.05 vs control (no PCB)

Hormonal Regulation of Cerebellar Development and Its Disorders



306

 Cerebellar Disorders Induced by Corticosteroids

Glucocorticoids and mineralocorticoids are major adrenal steroid hormones (corti-
costeroids) synthesized in the adrenal cortex. Mineralocorticoids regulate sodium 
and potassium levels, whereas glucocorticoids are involved in stress response and 
carbohydrate metabolism. Glucocorticoid levels are controlled through the hypo-
thalamic–pituitary–adrenal (HPA) axis, whereas mineralocorticoid levels are regu-
lated by the renin–angiotensin–aldosterone system. The effect of corticosteroids in 
the brain is mainly exerted through binding to intracellular receptors, the glucocor-
ticoid receptor (GR) and mineralocorticoid receptor (MR) [61]. Although GR binds 
preferentially to glucocorticoids, MR can bind to both glucocorticoids and miner-
alocorticoids with similar affinity. The specificity of MR is determined by the colo-
calized expression of 11 β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which 
inactivates cortisol [61]. Additionally, rapid effects that respond within minutes are 
regulated by nongenomic action [62].

In most mammalian species, the glucocorticoid concentration increases dramati-
cally during the perinatal period, and such increases are associated with the matura-
tion of several organs, including the lungs and brain [63]. In the developing CNS, 
corticosteroids regulate neurogenesis, neuronal morphology, and function in 
response to chronic stress. During fetal rat brain development, GRs are expressed 
widely, including cerebellum, with high levels of 11β-HSD2 and much lesser levels 
of MR [64], indicating that the developing cerebellum is protected from excess 
glucocorticoids. In the early postnatal rat cerebellum, however, the MR expression 
in Purkinje cells becomes evident, followed by the GR expression within this cell 
type and MR expression in migrating granule cells, the internal granule layer, and 
the deep cerebellar nuclei [65]. Conversely, 11β-HSD was specifically expressed in 
the external granule cell layer [66], indicating that MR and GR may mediate post-
natal glucocorticoid action in the cerebellum. Prenatal glucocorticoids influence the 
development of Purkinje neurons [67]. Furthermore, the glucocorticoid-binding 
capacity of the neonatal rat cerebellum (P8-P15) is highest among brain regions, 
such as the cerebral cortex, hippocampus, and olfactory bulb [68]. These results 
indicate that glucocorticoids play an important role in the developing cerebellum to 
induce multiple changes in response to various environmental stimulations.

As discussed above, studies of rodents have shown that the cerebellum has higher 
glucocorticoid binding capacity on P8-P15 [68], which is equivalent to the human 
perinatal period. Such a high sensitivity to glucocorticoid stimulation may make the 
cerebellum susceptible to develop alterations if glucocorticoid homeostasis is dis-
rupted by perinatal stress or glucocorticoid administration. In rats, cortisone treat-
ment during prenatal [69] and postnatal [70] development resulted in a decreased 
number of cerebellar granule cells. Such a decrease may be caused by an increased 
sensitivity to oxidative stress by perinatal glucocorticoid treatment, inducing cell 
death [71]. In humans, premature newborns suffering from respiratory distress 
caused by lung immaturity or mothers at a risk of premature delivery before 34 
weeks of gestation are sometimes administered glucocorticoid therapy. Newborns 
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who receive such treatment sometimes show neuromotor/cognitive disorders [72], 
including abnormal cerebellar development [73]. Thus, careful use of glucocorti-
coid therapy (i.e., dose and timing) is required for fetuses and newborns.

Stressful experiences in the prenatal or early postnatal period may increase the 
risk of neurological and psychiatric disorders, such as ADHD, autism, schizophre-
nia, and depression [74]. The cerebellum is one of the major brain regions to be 
directly affected by stressful experiences, and the involvement of the glucocorticoid 
system has been proposed as the culprit for such abnormalities [75]. Maternal depri-
vation (MD) during the early postnatal period in rats causes retardation in the devel-
opment of cerebellar-dependent motor coordination and behavioral abnormalities 
similar to those in schizophrenia [76]. In MD rats, a transient increase has been 
reported in several neurotrophic factors, such as brain-derived neurotrophic factor, 
TrkB, and oligodendrocyte-myelin glycoprotein [77]. These results support the pos-
sibility that abnormally increased levels of glucocorticoids caused by neonatal 
stress during development are associated with structural abnormalities in the cere-
bellum, leading to psychosomatic abnormalities in adulthood. However, in spite of 
the high glucocorticoid binding capacity in the developing cerebellum, the role of 
glucocorticoid during cerebellar development has not yet been fully clarified. 
Further investigations, including studies with human subjects, are necessary.

 Environmental Chemicals That May Disrupt Cerebellar 
Development Through Disruption of Hormone Actions

As discussed above, various hormones are involved in cerebellar development, and 
disruption of a such hormonal environment may affect such development. A large 
number of synthetic or natural chemicals may disrupt the hormonal environment. 
These are referred to as EDCs. The exact definition of an EDC by the World Health 
Organization (WHO) is as follows: “An endocrine disrupting chemical is an exog-
enous substance or mixture that alters function(s) of the endocrine system and con-
sequently causes adverse health effects in an intact organism, or its progeny or (sub) 
populations” [78]. As many hormones have distinct effects, specifically in critical 
periods during development, fetal or early neonatal exposure to such chemicals may 
induce adverse effects in various organs, including the CNS [79]. Recent advances 
in EDC research have provided many important data regarding the neurotoxicity of 
such EDCs [80]. Table 1 shows representative EDCs that are categorized as pharma-
ceuticals, herbicides, fungicides, insecticides, industrial chemicals and byproducts, 
and organic and inorganic metals [79, 80]. Importantly, although there are approxi-
mately 1000 EDCs, more than 100,000 chemicals exist in the environment. The 
main reason why such chemicals are not currently defined as EDCs may be that 
research on EDCs cannot keep up with the increase in newly generated chemicals. 
Further studies are indeed necessary to identify EDC activity that may cause adverse 
effect and for the creation of new EDC screening method.
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Table 1 Environmental chemicals showing hormonal or anti-hormonal activities

Classification Chemicals

Pharmaceuticals hormones or anti-hormones, Amiodarone, DES, Fenamate, Phenobarbital, 
Phenytoin

Herbicides 2,4,-D, 2,4,5,-T, Alachlor, Amitrole, atrazine, Linuron, Metribuzin, 
Nitrofen, Trifluralin

Fungicides Benomyl, Ethylene thiourea, Fenarimol, Hexachlorobenzene, Mancozeb, 
Maneb, Metiram–complex, Tri-butyl-tin, Vinclozolin, Zineb

Insecticides Aldicarb, beta-HCH, Carbaryl, Chlordane, Chlordecone, DBCP, DDT, 
Dicofol, Dieldrin, DDT and metabolites, Endosulfan, 
Heptachlor/H-epoxide, Lindane(gamma-HCH), Malathion, Methomyl, 
Methoxychlor, Oxychlordane, Parathion, Synthetic pyrethroids, 
Transnonachlor, Toxaphene

Industrial 
chemicals and 
biproducts

Bisphenol-A, Polycarbonates, Butylhydroxyanisole(BHA), Chloro-& 
Bromo-diphenyl, Dioxins, Furans, Nonylphenol, Octylphenol, PBDEs, 
PCBs, Pentachlorophenol, Penta-to Nonylphenols, Perchlorate, PFOA, 
PFOS, p-tert-Pentylphenol, Phthalates, Styrene

Metals Cadmium, Gadolinium, Lead, Manganese, Methyl-mercury, Organic-tins 
(e.g., TBT)

It should be noted that, because concentrations of hormones in plasma are low 
(nM–pM level), exposure to EDCs, even at low doses, may disrupt hormone action. 
Furthermore, we do not have the systems to effectively catalyze and excrete most 
EDCs, because humans have been exposed to EDCs quite recently during the evo-
lutionary process. Thus, EDCs may concentrate in our food chain and accumulate 
in our body.

So far, 12 chemicals have been identified as being developmental neurotoxic to 
humans [81]. These are metals and inorganic compounds (arsenic, arsenic com-
pounds, lead, methylmercury, fluoride, and manganese), organic solvents (toluene, 
tetrachloroethylene), pesticides (chlorpyrifos and DDT/DDE), and industrial chem-
icals (PCBs and brominated diphenyl ethers [PBDEs]). In cellular or animal study 
levels, more chemicals may have potential neurotoxic effects [81]. Such chemicals 
may, at least in part, mediate their action through the endocrine system. In fact, in 
our previous studies, we have shown that PCBs and PBDEs may disrupt cerebellar 
development through TH system alterations [15, 82]. Both PCBs and PBDEs inhibit 
TR-mediated transcription and disrupt TH-induced Purkinje cell development 
(Fig. 7). Our current study has shown the possibility that several EDCs may affect 
cerebellar development [15]. Thus, continuous attention should be paid to detect the 
effect of EDC on cerebellar development. These agents may disrupt cerebellar 
development even at a low-dose exposure.
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 Conclusion

Although many hormone receptors are expressed in the developing cerebellum, 
only a limited amount of data is available in this regard. This may be a result of the 
challenges related to the research of hormone actions that are mainly mediated by 
nuclear receptors. Unlike membrane-associated receptors, these act as transcrip-
tional factors to activate or repress the transcription of target genes. Thus, the 
response is rather slow, and various signal transduction cascades may be involved to 
express their action as a specific phenotype. However, hormonal signaling plays an 
important role in mediating environmental influences on the developing brain. Thus, 
hormonal disruptions may cause cerebellar disorders leading to various psychoso-
matic diseases. It is my hope that this chapter will help increase the understanding 
of the role of hormones in the developing cerebellum.
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Infections of the Cerebellum

Kevin M. Coombs

Abstract Infectious diseases still account for a significant amount of morbidity 
and mortality, particularly in developing countries. Although the Lancet’s latest 
Global Burden of Disease report indicates life expectancy has increased dramati-
cally during the past decade, partly because of similar dramatic declines in infec-
tious disease-related deaths, estimates are that nearly ten million people die yearly 
from communicable diseases or from complications arising from prior infection 
(e.g., liver cirrhosis or liver cancer after hepatitis B and hepatitis C virus infection). 
Infectious agents include organisms from multiple taxonomic groups and are cate-
gorized as bacteria, fungi, viruses (and others). Bacteria and fungi belong to sepa-
rate taxonomic Kingdoms. Viruses are unique and are generally considered to fall 
outside normal life taxonomy; however, they are, as a group, responsible for more 
suffering than any other group of infectious agents. Infectious diseases affect every 
organ system in the body. This chapter will focus on those agents that affect the 
human central nervous system (CNS), with more focus on the cerebellum.
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 General Virology

 General Nature of Viruses

Viruses are among the smallest of currently known living organisms. Indeed, there 
is debate as to whether they should be thought of as alive. Although the idea of a 
“virus” (Latin for poison to reflect that most can pass through filters known to block 
bacteria) is only about 100 years old, diseases such as poliomyelitis and rabies (dis-
cussed more fully below) have been known for millennia. Although we have been 
aware of viral agents for a relatively short period of time, viruses are probably as old 
as life itself and appear to have coevolved with most other life forms.

 Virus Morphology

Most viruses are very simple in structure. Most consist of both protein and nucleic 
acid. Some exceptions are viroids, plant pathogens that consist solely of RNA, and 
prions, agents that may consist only of a misfolded host protein. Some viruses also 
contain lipid envelopes derived from the host cell in which the virus grew. Viruses 
exist in two general forms. The form inside an infected cell that is actively replicat-
ing may be considered “alive.” The mature form of the virus that is passed from one 
susceptible host to another and that is usually referred to as “virus” is known as the 
virion, which is analogous to a seed or spore. The virion, like a seed, is a stable 
structure whose primary function is to protect the viral genetic material until it 
reaches the interior of a suitable host. All viruses are obligate intracellular parasites 
because they are incapable of growing by themselves.

There is enormous variability in virion size and structure. For example, the 
smallest currently known animal viruses are the Parvoviridae (e.g., human parvovi-
rus B19 which is <20 nm in size), and the largest currently known animal viruses 
are the Poxviridae (e.g., vaccinia virus and the smallpox agent Variola major which 
are approximately 200  nm  ×  300  nm in size). Ebolaviruses, members of the 
Filoviridae family, are filamentous with lengths up to 14,000 nm and diameters of 
only 80  nm [32]. Several viruses, colloquially known as “giant viruses” (e.g., 
Mimiviruses and Pandoraviruses) can reach up to 1.5 μm in size [59].

There also is considerable variability in virion complexity. Viruses such as 
Parvoviridae consist of a small nucleic acid surrounded by 60 copies of a single 
protein. Other viruses, such as the Papillomaviridae and the Adenoviridae, may be 
more complex and larger, consisting of a larger piece of nucleic acid and more than 
60 copies of multiple proteins. Other viruses, including the Coronaviridae (which 
includes the SARS-CoV-2 virus responsible for the COVID-19 pandemic), 
Togaviridae, Rhabdoviridae, Paramyxoviridae, Herpesviridae, and the human 
immunodeficiency virus (HIV), which belongs to the family Retroviridae, contain a 
single genome segment and different numbers of various proteins encased in a lipid 
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membrane. A few viruses, such as the influenza viruses, members of the 
Orthomyxoviridae family, and the Reoviridae, contain different amounts of various 
proteins and multiple segments of nucleic acid. Finally, some viruses, such as those 
in the Nanoviridae family, have segmented genomes encased in individual capsids. 
In order for the Nanoviridae to successfully replicate, a cell must be infected with 
multiple particles that collectively provide all the genome segments [88].

With the possible exception of prions, the agents responsible for spongiform 
encephalopathies, all currently known viruses contain as their genetic material 
either DNA or RNA. Most viruses use this genetic information for both replication 
and for transcription. Replication is the process by which the genetic material is 
copied into full-length exact genomic replicas that will be packaged into progeny 
virions (discussed more fully in sections “Herpesviruses” and “Myxoviruses”). 
Transcription is the generation of messenger RNA (mRNA), whether from DNA or 
RNA, for production of viral proteins. Thus, a convenient way to classify viruses, 
that directly impacts how (and where) the virus replicates and how it causes pathol-
ogy, is by genomic nucleic acid type (Fig. 1). For example, most DNA viruses will 
replicate in the host cell’s nucleus because this is where enzymes needed for DNA 
replication and synthesis are located. The Poxviridae are exceptions because they 

Fig. 1 Diagrammatic representations of selected virions. Viruses are divided according to whether 
their genomic material is DNA (top) or RNA (bottom) and whether the capsid is nonenveloped 
(left) or surrounded by an envelope (right). Where applicable, each group is further subdivided 
depending upon whether the nucleic acid is single-stranded (ss) or double-stranded (ds). All 
viruses are shown at approximately the same scale to indicate relative sizes; bar at bottom repre-
sents 100 nm (= 0.1 μm). Virus family names (ending in the suffix -viridae and italicized) are 
indicated, with those known to be involved in cerebellar infection bolded and in larger font
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encode all their own necessary DNA enzymes. By contrast, most RNA viruses do 
not require DNA enzymes, so they usually replicate in the cell’s cytoplasm. The 
Retroviridae are exceptions because they must replicate through a DNA intermedi-
ate so their replication involves the host cell’s nucleus. In addition, some other RNA 
viruses, such as the influenza viruses (Orthomyxoviridae), perform some of their 
replication steps in the cell nucleus because they need to “steal” nascent cellular 
mRNA caps to prime their own transcription.

The viral nucleic acid may also be either double-stranded (ds), like cellular DNA 
genomes, or may be single-stranded (ss). If single-stranded, the genome also may 
be of either positive (+) polarity or of negative (−) polarity. By convention, mes-
senger RNA (mRNA) is considered to be (+) polarity. Therefore, the template DNA 
or RNA strand that is transcribed to produce mRNA is usually (−) polarity. The 
important implications of these differences and how they impact taxonomic classi-
fication and replication are described more fully below in sections “Herpesviruses” 
and “Myxoviruses”.

The viral genome may also range in size. The term genome refers to all the 
nucleic acid of a virus, and the term gene usually refers to that part that encodes a 
specific protein. The smallest viruses (e.g., Parvoviridae) have genomes of about 
5000 nucleotides (= 5 kilobases, or 5 kb) and contain two genes. The largest human 
viruses (e.g., Poxviridae and Herpesviridae) can have genomes of 200 kilobase 
pairs or larger and can encode more than 200 proteins. Most viruses have genomes 
with sizes that are intermediate. For most viruses, all genes are found on a contigu-
ous single linear strand of nucleic acid. Some viruses have circular genomes rather 
than linear genomes and a few viruses (e.g., Reoviridae and the influenza viruses) 
have segmented genomes.

Viruses encode proteins that are considered either structural or non-structural. 
Structural proteins are those found within a virion particle and are usually identified 
in highly purified viral preparations. There are usually a characteristic, fixed number 
of structural proteins within any given virion. For example, poliovirus contains a 
single copy of a VPg protein and 60 copies each of four other proteins named VP1, 
VP2, VP3, and VP4. However, non-structural proteins are encoded by the virus and 
present in infected cells but are not incorporated into the virion.

Some viruses, such as human immunodeficiency virus-1 (HIV-1) (e.g., [44, 80]), 
herpesviruses [60], filoviruses [90], and influenza viruses [85] also incorporate 
functional host-derived proteins into the virion. These host proteins may play 
important roles in the virus lifecycle [4, 27, 93].

Collectively, the viral protein and nucleic acid constitute a complex known as the 
viral capsid. Viral capsids are usually of one of two forms. In one form, the viral 
capsid protein is wrapped along the nucleic acid to create a helical arrangement, the 
length of which is usually determined by the length of nucleic acid. Examples of 
this type include tobacco mosaic virus (Fig. 1), and most currently known (−) sense 
animal RNA viruses, such as the Orthomyxoviridae, Paramyxoviridae, and 
Rhabdoviridae. Many (−) ssRNA virions have their helical capsids wrapped within 
a lipid envelope, resulting in an overall spherical virion shape. The second method 
to surround the nucleic acid with a protein coat is to build a three-dimensional cage, 

K. M. Coombs



319

which usually takes the shape of an icosahedron, a 20-sided semi-spherical struc-
ture. There are rigid “rules” for building an icosahedron and examples of this 
arrangement include poliovirus and JC virus (Fig.  1). Some viruses (e.g., 
Retroviridae, which have conical capsids and Poxviridae, which have ovoid cap-
sids) are exceptions (Fig. 1).

As indicated earlier, some viral capsids are surrounded by a host-derived lipid 
membrane (envelope). Therefore, the presence or absence of such an envelope is 
another way to classify viruses (Fig.  1). When an envelope is present, the inner 
nucleoprotein structure is called a nucleocapsid. Some viruses, such as the 
Orthomyxoviridae (e.g., influenza virus), the Paramyxoviridae (e.g., measles virus), 
the Coronaviridae (e.g., SARS-CoV-2), and the Rhabdoviridae (e.g., rabies virus) 
contain nucleocapsids that are helical and that are surrounded by a membrane. 
Icosahedral nucleocapsids also may be surrounded by an envelope, as in Flaviviridae 
(e.g., Dengue virus), Togaviridae (e.g., chikungunya virus), and Herpesviridae 
(e.g., herpes simplex viruses). For most enveloped viruses, the lipid membranes are 
acquired as the nucleocapsid buds through a cellular membrane. Many such viruses 
pick up this envelope as they pass through the cell’s plasma membrane whereas oth-
ers pick up their membranes while passing through other internal cellular 
membranes.

 Virus Classification

There are currently >3500 known virus species organized into >50 families [53]. 
This list will increase as new viruses are discovered. Several classification strategies 
have been developed to organize viruses. In addition to organizing viruses accord-
ing to their overall structure (helical vs icosahedral, or otherwise), genetic material 
(DNA vs RNA; single-stranded vs double-stranded) and presence or absence of an 
envelope, another key distinguishing feature is how the genetic material is con-
verted into mRNA. This classification scheme was proposed by Dr. David Baltimore 
[7] and is therefore known as the “Baltimore scheme” (Fig. 2). Class I viruses con-
tain a dsDNA genome and mRNA is transcribed from the (−) sense DNA strand. 
Examples of such viruses are Herpesviridae and Polyomaviridae. Class II viruses 
have ssDNA genomes, which are usually (−) sense so their genomes can be tran-
scribed directly into mRNA.  Class III viruses (e.g., Reoviridae) have dsRNA 
genomes; mRNA is transcribed from the (−) sense strand. Class IV viruses have (+) 
ssRNA (e.g., equine encephalitis viruses in the Alphatogaviridae family, SARS- 
CoV- 2 in the Coronaviridae family, and Zika virus in the Flaviviridae family). The 
viral genome serves directly as mRNA. Class IV viruses (e.g., Rhabdoviridae and 
Paramyxoviridae) possess (−) ssRNA that is transcribed into mRNA by a viral- 
encoded RNA-dependent RNA polymerase that must enter the cell as part of the 
infecting virus. Class VI viruses (e.g., the retrovirus HIV) contain (+) ssRNA 
genomes that initially need to be converted into dsDNA by a viral-encoded reverse 
transcriptase. Class VII viruses (e.g., Hepadnaviridae) have a partial dsDNA 
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Fig. 2 The Baltimore transcription scheme classifies viruses based on their genomic nucleic acid 
content and on the strategies used to produce messenger RNA (mRNA). Virus genomes can be 
composed of RNA or DNA that is either single-stranded (ss) or double-stranded (ds). For RNA 
viruses, the polarity of the ssRNA can be either positive (+) or negative (−). By definition, mRNA 
is positive-stranded. Note that Class IV viruses have (+) RNA that can serve directly as mRNA as 
soon as the viral genome enters the cell. Class VI and VII viruses can undergo reverse transcription 
(RT) whereby RNA is converted into DNA. In the case of Class VI retroviruses, this happens via a 
DNA/RNA hybrid to generate the dsDNA intermediate (depicted as two arrows). In the case of 
Class VII hepadnaviruses (hepatitis B virus), the partial dsDNA must first be repaired to a com-
plete dsDNA genome prior to mRNA synthesis (depicted as broken arrow). (Compiled and modi-
fied from http://viralzone.expasy.org/all_by_species/254.html)

genome that first is repaired into a complete dsDNA genome, transcribes various 
mRNAs, and is replicated through an RNA intermediate by a viral-encoded reverse 
transcriptase.

The type of viral nucleic acid, as distinguished by Baltimore classification, also 
has implications for how the viral genomes are replicated. Class I viruses use their 
dsDNA genomes as a template to synthesize more dsDNA during genome replica-
tion. The Class VII Hepadnaviridae are an exception because replication involves a 
reverse transcriptase-generated RNA intermediate that is longer than the DNA 
genome. Class II viruses use dsDNA replicative intermediates to copy their genomes. 
For Class III viruses, the mRNA that was used for protein synthesis is then copied 
by viral enzymes into a (−) sense RNA that remains associated with the mRNA 
template to regenerate progeny dsRNA. Class IV viruses with (+) ssRNA genomes 
produce a full-length (−) ssRNA intermediate that is used as a template for more 
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genomic (+) ssRNA. Class V viruses use the same strategy for genomic replication 
as class IV viruses, except they start with a (−) ssRNA genome and use a (+) ssRNA 
strand as an intermediate. For the class VI Retroviridae, (+) ssRNA genomes are 
copied by a unique mechanism. The (+) ssRNA is copied into (−) ssDNA, which 
then serves as a template to copy a (+) ssDNA strand. This dsDNA molecule is 
transcribed into mRNA, one of which (a non-spliced form) serves as the prog-
eny genome.

 Virus Replication

The ways in which a virus can enter a cell and subvert the cell to create progeny 
virus copies is a complex process that is investigated using numerous approaches 
including traditional virology and systems biology. Advances in gene sequencing 
and bioinformatics, combined with such approaches as mass spectrometry-based 
proteomics, RNA micro-arrays, and next-generation sequencing have led to a better 
understanding of virus-host interactions during the process of virus replication.

Virus replication can occur only in a live cell because, as indicated earlier, viruses 
are obligate intracellular parasites. Despite some differences in some details of virus 
replication, as suggested by the diversity within the Baltimore scheme (see above), 
most viruses share several common features. There is a general flow of events that 
occur during viral replication for most viruses (Figs. 3 and 4). (1) To start an infec-
tion, the virus must attach to and enter a host cell. This interaction is specific and 
involves both viral proteins and a host cell surface component. The virus’ host range 
(described below) determines in large part whether a virus can attach to any given 
host cell. Some viruses, such as HIV and hepatitis B virus, interact with highly spe-
cific host cell components, whether carbohydrates, proteins, or glycolipids, whereas 
others, such as mosquito-vectored arboviruses like Yellow Fever virus and Zika 
virus, both members of the Flaviviridae, can interact with more ubiquitous compo-
nents found on both vertebrate and invertebrate cells. (2) Once a virus has entered 
the cell, it must fall apart (uncoat) to allow the incoming viral genetic information 
to be acted upon by host enzymes. Uncoating may occur at the plasma membrane 
during entry (e.g., paramyxoviruses), inside the endosome (e.g., adenoviruses and 
orthomyxoviruses), in the cytoplasm, or at the nuclear membrane (e.g., herpesvi-
ruses). For many viruses, the genome is completely uncoated to allow unrestricted 
access to the nucleic acid (e.g., picornaviruses). For many others (e.g., (−) ssRNA 
viruses like the Paramyxoviridae measles virus) and the dsRNA Reoviridae, the 
viral genome is only partially uncoated, with remaining viral proteins serving enzy-
matic functions.

The greatest variability in viral life cycles occurs during intermediate replication 
stages. Events that take place during this time are: (3) transcription (the process 
whereby the nucleic acid, whether RNA or DNA, is copied to produce complemen-
tary positive sense mRNA). For viruses in Class IV (e.g., Alphatogaviridae [depicted 
in Fig. 3], Flaviviridae, and Picornaviridae), the genome itself serves as mRNA so 
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Fig. 3 Schematic representation of a typical viral replicative cycle for an enveloped RNA virus 
that acquires its membrane as it matures through the plasma membrane. Various steps are: 1, 
Attachment; 2, penetration into the cell, uncoating and release of genomic material; 3, translation 
of mRNA and production of viral proteins; 4, replication of genomic material to produce an inter-
mediate of opposite polarity (dashed wavy line); 5, replication of the intermediate to produce more 
genomes with same polarity as incoming RNA; 6, association of viral proteins with 7, replicated 
progeny genome; 8, maturation of envelope proteins through Golgi and insertion into plasma 
membrane; 9, assembly of progeny structural proteins and genomes into nucleocapsids which 
associate with regions of membrane containing viral envelope proteins; and 10, maturation and 
virion release. If the incoming viral RNA is of (−) polarity, then the viral (−) genome is used to 
make mRNA (Step 4) before viral protein translation (Step 3b). Note that the locations of the vari-
ous steps will vary depending on the virus type (e.g., DNA viruses usually carry out transcription 
and replication within the nucleus; see Fig. 4). Envelope acquisition for enveloped viruses can 
occur at intracellular membranes, or at the plasma membrane, as shown, upon release. Wavy lines 
represent viral nucleic acid, red arrows represent viral RNA processing, green arrows represent 
protein translation, green triangles and ovals represent viral structural proteins that assemble into 
complexes, small open squares represent viral non-structural proteins that are present within the 
cell and assist in viral replication and assembly but are not found within mature virions

this initial transcription is not necessary; (4) translation (“reading” of the mRNA 
nucleotide sequence by cellular ribosomes to produce viral proteins); and (5) repli-
cation (the copying of parental genomic material that serves as the template to pro-
duce an identical copy). For many viruses, this involves a few steps. As depicted in 
Fig. 3, the incoming genome is first copied into (−) sense template, which is then 
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Fig. 4 Schematic representation of a typical viral replicative cycle for a non-enveloped DNA virus 
that performs many of its transcriptional and replicative steps within the cell’s nucleus. Various 
steps are: 1, Attachment; 2, penetration into the cell and migration of viral capsid to the nucleus; 3, 
injection of viral DNA into the nucleus; 4, transcription of early mRNA which leaves the nucleus 
to be 5, translated into early viral proteins which 6, return to the nucleus where they promote 7, 
transcription of late mRNA and 8, replication of the viral DNA genome; 9, translation of late viral 
proteins which return to the nucleus to 10, associate with replicated progeny genome; and 11, final 
maturation and virion release. Wavy lines represent viral nucleic acid, red arrows represent viral 
DNA and RNA processing, green arrows represent protein translation, green triangles represent 
viral structural proteins that assemble into complexes, small open circles and squares represent 
viral non-structural proteins that are present within the cell and assist in viral replication and 
assembly but are not found within mature virions

used (6) to make multiple (+) sense genomes. The progeny genomes aggregate with 
newly made viral capsid proteins (7) whereas viral envelope proteins (if the virus is 
enveloped) are shuttled through the cellular endoplasmic reticulum and Golgi appa-
ratus (8) on their way to the plasma membrane. (9) After progeny nucleocapsids are 
produced, they migrate to the plasma membrane where they bind to the envelope 
proteins and (10) bud out of the cell. Budding may or may not damage the cell, and 
in some cases the cell will recover from the viral infection. Budding may occur at 
either the apical (top) surface (e.g., orthomyxoviruses and paramyxoviruses) or at 
the basal (bottom) surface (e.g., rhabdoviruses and some retroviruses) or may not be 
restricted to a specific cell surface.
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 Cell Tropism

Viruses parasitize every type of living organism, from bacteria to plants and animals 
and in some cases, even other viruses [57]. A small number of viruses can infect 
organisms in multiple different Kingdoms. For example, members of the 
Rhabdoviridae Family are capable of infecting plants and animals, although any 
given virus usually is limited to one Kingdom or the other. Most currently known 
viruses infect a small range of host types. This is known as cell tropism. For exam-
ple, a virus that infects a particular bacterial species usually cannot infect all bacte-
ria and normally also cannot infect any animals or plants. Similarly, a typical plant 
virus can infect some, but not all, plant species but cannot infect animals or bacteria. 
Likewise, most animal viruses are limited to infecting only certain animal species.

There also is considerable variability in cell tropism within the above Kingdoms. 
Some viruses (e.g., HIV) are very limited in their cell tropism, capable of infecting 
only a limited type of human-derived cell (e.g., CD4+ cells). However, a few viruses 
(e.g., arthropod-borne Flaviviridae) can infect vertebrate animals of diverse orders 
(horses and humans), of different classes (birds and humans), and of different Phyla 
(animals and the insects that vector the virus from one animal host to another).

The basis for cell tropism depends upon whether a particular virus can enter and 
replicate in a cell. In many cases, this is determined by whether the virus can recog-
nize and enter the host cell (see above). Thus, viruses like the Flaviviridae that can 
infect a wide range of cells usually recognize a ubiquitous cell surface receptor, 
whereas viruses like HIV that are restricted to a small number of cells recognize a 
highly specific cell molecule. Cell tropism may also depend upon the intracellular 
milieu. If key host molecules that are required for virus replication are not present, 
the infection may be abortive.

In addition to cell tropism, which limits the type of host organism (e.g., animal, 
bacterium, or plant) a virus can infect, many viruses can only infect particular tis-
sues within a susceptible organism. This is known as tissue tropism. For example, 
herpesviruses generally can replicate in many tissue types (brain, liver, skin, etc.), 
whereas hepatitis viruses can replicate efficiently only in liver tissue. As is the case 
for cell tropism, cellular parameters (cell surface molecules and presence or absence 
of key intracellular enzymes) determine the basis for tissue tropism. Subsequent 
sections of this chapter will focus on viruses with a tropism for the brain and 
cerebellum.

 Virus Infections of the Brain and Cerebellum

A variety of infectious agents attack the human CNS. One of the best known viruses, 
and that has a case fatality rate of 100% if untreated, is rabies virus, a member of the 
Rhabdoviridae family. Once the virus reaches the CNS after being injected by the 
bite of an infected animal, or, in rare cases after organ transplantation from infected 
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donors [63], rabies primarily replicates in dorsal root ganglia, motor neurons, and 
sensory neurons in the spinal cord [26]. Viral antigens have been detected within the 
cerebellum shortly after infection [63] but it remains unclear whether the cerebel-
lum plays a major role in disease propagation or pathogenesis.

 Enteroviruses

Another of the best known viruses that has long been associated with neurologic 
manifestations is polio virus. Poliomyelitis has been recognized as a disease for 
millennia. This virus is a member of the Picornaviridae family, Enterovirus sub-
family. Enteroviruses are transmitted by the fecal-oral route. If ingested, the virus 
initially replicates in intestinal tissues. In some cases, the virus travels to the 
CNS. Severe manifestations are relatively rare, occurring in less than 2% of infec-
tions, with most infections being asymptomatic or mild. When serious, CNS 
involvement and paralysis can occur. There have been reports of cerebellar ataxia 
associated with poliovirus infection [20]. Cerebral ataxia affects muscle coordina-
tion and leads to gait and posture irregularities, lack of fine motor coordination, 
cognitive and mood problems, increased fatigue, speech difficulties, and visual 
abnormalities.

Other members of this virus family also are responsible for cerebellar infections 
and clinical manifestations. Enterovirus 71 is estimated to have caused millions of 
infections during the past decade [65] and, after Listeria (see below), may be the 
second most common agent responsible for serious brainstem encephalitis (rhomb-
encephalitis). Complications range from self-limiting aseptic meningitis to acute 
flaccid paralysis that mimics poliomyelitis and overwhelming brainstem encephali-
tis. Coxsackie virus has also been associated with cerebellar FDG-PET hyperactiv-
ity [72].

 Arboviruses

A large number of different arboviruses (arthropod-borne viruses) are associated 
with neurological infections that include the cerebellum (reviewed in [81]). 
Arthropod-borne agents fall into several taxonomic groups and among viruses, 
arboviruses exist within at least 5 families [46]. The principle families are 
Alphatogaviruses (various equine encephalitis viruses including Eastern, Western, 
and Venezuelan, and chikungunya virus) and Flaviviruses (e.g., dengue, Japanese 
encephalitis, West Nile, and Zika), which contain ss(+)RNA genomes. Other ss(+)
RNA arboviruses that infect humans belong to the Bunyaviridae (e.g., Rift valley 
fever virus and Congo-Crimean hemorrhagic fever virus). In addition, members of 
the dsRNA Reoviridae (e.g., Colorado tick fever virus) and large dsDNA Asfarviridae 
(e.g., African swine fever virus) are arboviruses.
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 Alphatogaviridae

Rubella virus, the agent responsible for German measles, has been associated with 
cerebellar abnormalities [58]. A large outbreak of Venezuelan equine encephalitis 
virus (VEEV) in Columbia and Venezuela in 1995 resulted in >300 hospitalizations 
and more than half the patients had neurologic complication including cerebellitis 
[68]. Chikungunya virus has also been associated with cerebellar ataxia [49].

 Flaviviridae

Although dengue virus is rarely associated with CNS involvement, infection with 
dengue has led to cerebellar manifestations. In one report, a Sri Lankan male pre-
sented with thrombocytopenia but subsequently developed ataxia and magnetic 
resonance imaging (MRI)-confirmed cerebellitis; serology suggested a dengue 
virus and Epstein-Barr virus co-infection [50]. In addition, outbreaks of dengue 
fever in Sri Lanka involving tens of thousands of cases presented with acute cerebel-
lar syndrome [104, 105]. Magnetic resonance imaging of eight encephalitic cases in 
India showed cerebellar involvement in all eight [41]. West Nile virus infection is 
also associated with neurological abnormalities in multiple cerebral compartments 
including the cerebellum [23]. Deer tick virus caused an extensive necrotizing 
meningoencephalitis that involved numerous brain regions including the cerebel-
lum in a fatal encephalitis case [98]. The newly re-emerging Zika virus has been 
strongly associated with microcephaly and these brain malformations also include 
the cerebellum [24, 67, 78, 94, 101].

 Coronaviruses

The world is currently experiencing one of its worst pandemics during the past 
100 years. A novel coronavirus, named SARS-CoV-2 arose in Wuhan, China in late 
2019 and has spread worldwide, causing coronavirus infectious disease 2019 
(COVID-19).

The coronaviruses are a group of ssRNA viruses possessing unusually large 
genomes, of approximately 30 kb, and encoding an unusually large number of non- 
structural genes [34] along with their four structural proteins. The four structural 
proteins are spike (S), which are large membrane proteins protruding extensively 
from the virion surface and appearing like solar “corona,” hence the virus name, 
nucleocapsid (N), envelope (E), and membrane (M) [82]. The Coronaviridae family 
currently contains about 50 members, many of which infect livestock. There are at 
least seven human coronaviruses (hCoV). Several, such as strains 229E, OC-43, 
HKU1, and NL63 cause only mild cold-like symptoms in most infected individuals. 
A more pathogenic strain, named SARS (severe acute respiratory syndrome) 
appeared in 2003 and is estimated to have infected about 8000 individuals, leading 
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to 770 deaths (case fatality rate = 9.6%). Another pathogenic coronavirus, MERS- 
CoV (Middle East respiratory syndrome coronavirus) appeared in 2012, is esti-
mated to have infected ~2500 individuals, leading to 860 deaths (case fatality 
rate = 34%). The latest pathogenic hCoV, SARS-CoV-2, has, to date, infected more 
than 250M individuals and led to more than 5.3M deaths [43].

The hCoV are generally considered respiratory viruses and predominantly spread 
that way. However, SARS-CoV-2 also affects a large number of organ systems and 
is associated with a large number of long-term sequelae [42, 103]. This is unusual 
for a “typical” ssRNA virus. Indeed, as indicated earlier, the hCoV are unusual in a 
number of ways. They encode an unusually large number of non-structural proteins, 
and while the functions of many are not yet fully known, it is likely that one or more 
are immunomodulatory, which could explain not only some of the long-term 
sequelae, but also explain why antibody responses to some SARS-CoV-2 proteins 
seem to wane relatively quickly [61, 62, 106].

Some of the viral-induced sequelae involve severe neurological and CNS mani-
festations [89]. These include anosmia, ataxia, confusion, dizziness, epilepsy, head-
ache, hypogeusia, nausea, neuralgia, seizure, and vomiting [89]. Several case reports 
have found association between SARS-CoV-2 infection and cerebellar abnormali-
ties [2, 18, 31]. For example, Guedj and colleagues examined two clinical cases and 
analyzed whole-brain 18F-FDG PET; they reported an association between SARS- 
CoV- 2 infection and hypometabolism in several brain regions, including the cere-
bellum [39] in one of the patients. Al-Dalamah et al. reported that a patient with 
relatively mild SARS-CoV-2 infection died from acute cerebellar hemorrhage [2] 
and Kirshenbaum and colleagues found cerebellar hemorrhages in four of six 
SARS-CoV-2-infected patients [54]. Ciolac and colleagues recently examined a 
young male patient and detected evidence of acute necrotizing encephalopathy by 
MRI in numerous brain regions including the cerebellum [18]. The patient recov-
ered but presented several behavioral and cognitive perturbations.

 Herpesviruses

Several different viruses belong to this family. The best known may be Herpes 
Simplex Virus type 1, which is associated with oral cold sores. These viruses are 
notable for their capacity to go latent after an acute infection and to then “hide” 
within the host, being reactivated months to years later. The family is subdivided 
into three major groups: alphaherpesviruses, which primarily infect a wide range of 
cells, can establish latency in neurons and have relatively rapid replication kinetics; 
betaherpesviruses, which replicate more slowly and primarily establish latency in 
leukocytes; and gammaherpesviruses, which have variable infection kinetics and 
usually have replication restricted to lymphoid cells and establish latency in cells of 
the immune system, although other cell types can be infected. Epstein-Barr virus, a 
gammaherpesvirus, which is associated with infectious mononucleosis, Burkett’s 
lymphoma, and nasopharyngeal carcinoma, causes acute postinfectious cerebellar 
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ataxia (APCA) [1, 16, 83]. The alphaherpesvirus Varicella-zoster virus, which 
causes Chickenpox/Zoster, infects the cerebellum and has been associated with cer-
ebellar ataxia, segmental brainstem myelitis, polyneuritis, and vasculopathy [11, 
36, 70, 77, 79, 86].

 Myxoviruses

There are several myxoviruses, belonging to multiple virus families that infect the 
cerebellum. Myxoviruses are so named because they are primarily respiratory. Two 
major families are the Orthomyxoviridae (e.g., influenza virus) and Paramyxoviridae 
(e.g., measles virus). Influenza viruses of the H1N1 and H3N2 subtypes, the sub-
types responsible for the past few pandemics, have also been associated with 
encephalitis involving the brainstem and cerebellum [25].

Several paramyxoviruses have also been found to infect or affect the cerebellum. 
These include measles virus, mumps virus, and respiratory syncytial virus. 
Respiratory syncytial virus was associated with cerebellar hemispheric cortical 
edema that involved ataxia and hypotonia [97].

 Prions

The agents that cause spongiform encephalopathies belong to a unique group and 
there is debate as to whether they should be considered viruses. However, they cer-
tainly are not bacteria or fungi, and so will be discussed here. There are several such 
agents, responsible for a variety of diseases, including Kuru, iatrogenic Creutzfeldt- 
Jacob disease, and bovine spongiform encephalopathy-induced variant Creutzfeldt- 
Jacob disease. Abnormal prion protein deposition has been observed in 
Creutzfeldt-Jacob disease patients [33], other patients presented with cerebral corti-
cal hyperintensity [47], and a recent quantitative proteomic screen identified sub-
stantial dysregulation of s-nitrosylated proteins within the cerebellum of 
prion-induced Creutzfeldt-Jacob disease patients [13].

 Other Viral Agents

In addition to the virus agents mentioned above, a few other viruses have been 
shown to infect and/or affect the cerebellum. Many cause APCA. These include 
rotavirus (family Reoviridae) [52, 56, 99], JC virus (family Polyomaviridae) [22, 
35, 96], parvovirus B19 [37, 38, 87, 100], and possibly adenovirus [74, 95]. Mild 
cerebellar signs were also seen in an Ebola virus-infected patient [15].
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 Bacterial and Fungal Infections of the Cerebellum

In addition to viruses, there are other infectious agents that affect the cerebellum.

 Bacteria

Several bacteria infect the cerebellum. Listeria monocytogenes may be the most 
common infectious cause of serious brainstem encephalitis (rhombencephalitis), 
including cerebellar involvement [12, 17, 76, 84]. These infections and cerebellar 
involvement have potential devastating life-threatening consequences; thus, Pruitt 
indicates that suspected cases should be treated empirically with ampicillin pending 
culture confirmation [77].

Mycoplasma pneumoniae has also been implicated in cerebellar ataxia [10, 40, 
73]. A large-scale analysis of more than 790 patients identified large numbers of 
neuropsychiatric manifestations after infection by Salmonella typhi, the etiologic 
cause of Typhoid fever, including 8 cases of cerebellitis [3]. S. typhi infection also 
leads to T1-weighted MRI hypointense cerebellar regions [71]. Infection and result-
ing cerebellar complications continue to occur, although antibiotic treatment of a 
few cases led to complete recovery [45].

Borrelia burgdorferi, the causative agent of Lyme disease, has also been associ-
ated with cerebellar ataxia, and with abnormal MRI lesions [5] and PET images 
[48] (reviewed in [30]). The bacterium Tropheryma whipplei, which causes 
Whipple’s disease, has also been found to cause abnormal cerebellar MRI and 
ataxia [19, 64, 66].

In addition to the capacity of live infectious agents to cause cerebellar ataxia, it 
has been recognized that vaccinations against various agents also may cause ataxia. 
The best known examples are vaccination with DPT (diphtheria-pertussis-tetanus 
vaccine) [8, 51, 55, 69]. A recent report also identified cerebellar ataxia after vac-
cination with meningococcal group C agents [21].

 Fungi

Several fungal species, including Aspergillus [14, 28, 29], Histoplasmosis [91, 102], 
Candida [92], Exserohilum rostratum [9], and Phialemonium [6], have also been 
associated with cerebellar infection [75, 77].

In conclusion, the cerebellum is susceptible to infection by a large number of 
bacterial, fungal, and viral agents, and these infections can have devastating 
consequences.
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Abstract In recent years, the interplay between the development and function of 
the central nervous system and the immune system in the homeostatic and patho-
logical state has become evident. Thus, understanding the crosstalk between the 
immune system and cerebellar development and functions has noticeable implica-
tions for managing neurodevelopmental, neurodegenerative, and neuroinflamma-
tory disorders. In this chapter, we highlight the current progress of knowledge in the 
field of neuroimmunology and psychoneuroimmunology. Specifically, we discuss 
the contribution of the various immune responses in cerebellar development and its 
associated pathologies and highlight the current understanding of mechanisms 
involved in these processes. Immune pathways that play a crucial role in cerebellar 
development and functions are likely to become therapeutic targets for several neu-
rodevelopmental, neurodegenerative, and neuroinflammatory disorders, thus sup-
pression or activation of these selected immune pathways may propose new 
therapeutic approaches.
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Abbreviations

(RAG)-1 Recombination activating gene
AICA Anterior inferior cerebellar artery
ALRs AIM2-like receptors
ALS Amyotrophic lateral sclerosis
ANS Autonomic nervous system
APCs Antigen-presenting cells
BBB Blood-brain barrier
CCL C-C motif chemokine ligand
CNS Central nervous system
Cop-1  Copolymer 1
COVID-19 Corona virus disease 2019
CSF Cerebrospinal fluid
DAMPs Damage-associated molecular patterns
DC Dendritic cells
EAE Experimental autoimmune encephalomyelitis
EGL  External granule cell layer
FOXP3  Forkhead box P3
GAD Glutamic acid decarboxylase antibodies
GIT Gastrointestinal tract
HE  Hashimoto’s encephalopathy
HSP Heat-shock proteins
IBS  Irritable bowel syndrome
IFN Interferon
Ig Immunoglobulin
IGL  Internal granule cell layer
IL Interleukin
LGP2 Laboratory of genetics and physiology 2
MDA5 Melanoma differentiation-associated gene 5
MHC Major histocompatibility
MIP Macrophage inflammatory protein
MSA Multiple system atrophy
NLRs Nod-like receptors
OPCA Olivopontocerebellar
P2X7R Purinergic receptor P2X7
PACA Primary autoimmune cerebellar ataxia
PAMPs Pathogen-associated molecular patterns
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PICA Posterior inferior cerebellar artery
PRRs  Pattern recognition receptors
Rig1 Retinoic acid-inducible gene-1
RLRs RIG-like receptors
Rora  Retinoic-acid-related orphan receptor alpha
ROS Reactive oxygen species
SCA Superior cerebellar artery
SCID  Severe combined immunodeficiency
SND  Striatonigral
SOCS3 Suppressor of cytokine signaling 3
TGF Tumor growth factor
Th T helper
TLRs Toll-like receptors
TNF Tumor necrosis factor
Treg Regulatory T cells
URL Upper rhombic lip

 Introduction

Over the past few decades, the established dogma in which the central nervous sys-
tem (CNS) is an immune-privileged tissue has undergone a significant paradigm 
shift as innovations in the field of neuroimmunology and psychoneuroimmunology 
revealed an interplay between the immune system and CNS homeostatic processes, 
functions, and pathological states [1–3]. Thus, the immune system contributes to the 
sculpting of brain circuitry, regulation of neuronal communication, and coordina-
tion of neurodevelopmental and aging processes. Moreover, increasing evidence 
suggests that the immune system plays a crucial role in neurodegenerative diseases, 
neuropsychiatric disorders, the peripheral nervous system, and neuro-oncological 
conditions [4]. Therefore, investigating neuroimmune interactions could accelerate 
breakthroughs in the field of neuroimmunology by providing novel insights into 
nervous system development, homeostasis maintenance, and neurological disease 
progression. In addition, to open potential new therapeutic avenues for neuroim-
mune pathological disorders such as multiple sclerosis, Alzheimer’s, Parkinson’s, 
chronic depression, schizophrenia, autism, and ataxia to name just a few.

The cerebellum, a small structure of the CNS well-conserved across evolution, is 
estimated to represent 5–6% of neonates and 11% of human adults’ brain weight. 
Despite its small size, the cerebellum contains approximately 80% of all neurons 
and plays a crucial role in sensorimotor control and regulation of emotional and 
higher cognitive functions [5, 6]. Growing evidence associates the cerebellum with 
satiation center, visuospatial, verbal, memory, and executive functions in addition to 
suggest its importance in achieving and improving newly learned skills [7, 8]. 
Hence, functional clinical studies revealed the importance of the cerebellum in 
development and learning processes during early developing age which ranges from 
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the first trimester of pregnancy to 2 years postnatal, in childhood, adolescence, and 
adulthood [6, 7, 9].

In recent years, although limited, several studies have proposed a role for 
immune-mediated mechanisms in the etiology of several pathological cerebellar 
disorders such as multiple sclerosis, neuropsychiatric systemic lupus erythemato-
sus, paraneoplastic cerebellar degeneration, nonparaneoplastic immune-mediated 
cerebellar ataxia, primary autoimmune cerebellar ataxia (PACA), and acute 
cerebellitis.

The CNS and more specifically the cerebellum and the immune system can inter-
act through immune mediators including reactive oxidative stress (ROS), neuro-
trophic factors, cytokines, neurotransmitters, and neuropeptides as well as peripheral 
immune cell infiltration [10]. Although bidirectional communication between the 
immune response and the CNS and their impact on the cerebellar is yet to be fully 
understood, direct bidirectional projections between the cerebellum and hypothala-
mus have been demonstrated [11–13] [14]. Moreover, evidence has shown that the 
hypothalamus participates in the regulation of the CNS’s immediate response to 
inflammatory stimuli, implying a possible indirect role for the cerebellum in the 
regulation of immune cell functions through the cerebellohypothalamic projections 
[15]. In this chapter, we will review possible direct or indirect interrelations between 
the immune system and cerebellum and how the immune system can affect the 
development of the cerebellum to maintain a homeostatic state or regulate patho-
logical conditions such as cerebellum developmental disorders.

 Anatomy of the Cerebellum and Interconnection with Other 
Central Centers Implicated in Neuroimmune Regulation

The anatomical features of the cerebellum described in Chapter “The Embryology 
and Anatomy of the Cerebellum” are relevant to understanding how immune and 
inflammatory responses are generated and how these immune responses could 
affect cerebellar development. The hypothalamus also exerts specific neuromodula-
tion on the cerebellum, which could impact the immune response. This modulation 
occurs because the cerebellar cortex receives two well-identified types of afferent 
fibers: mossy fibers and climbing fibers. There is a third type of afferent, the neuro-
modulatory fiber that consists of characteristically beaded fibers, which contain 
amines or neuropeptides [16, 17]. For example, histamine-containing fibers origi-
nate from the tuberomammillary nucleus of the hypothalamus and broadly spread 
into the cerebellum [17]. Moreover, beaded fibers containing angiotensin II result 
from the paraventricular and supraoptic nuclei of the hypothalamus [18] and impact 
comprehensively upon the cerebellum.

The relationship between circulating hormones (thyroid hormones, sex hor-
mones) and cerebellar development is well studied (see Chapter “Hormonal 
Regulation of Cerebellar Development and Its Disorders”). These hormones have 
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immunomodulatory effects and can shape different immune responses. Thyroid 
hormone and its receptor, which is a ligand-regulated transcription factor binding to 
a specific DNA sequence called thyroid-hormone-responsive element, have a par-
ticularly vital role in brain development [19]. The receptor recruits coactivators and 
corepressors in a ligand-dependent manner to regulate the transcription of target 
genes. It may also interact with other nuclear receptors such as retinoic acid-related 
orphan receptor alpha (Rora), whose expression is regulated by thyroid hormone 
during the first two postnatal weeks. In perinatal hypothyroidism, Purkinje cell den-
drites have significantly reduced growth and branching with a reduction of synapses 
between granule cells and Purkinje neurons, which is associated with delayed 
migration of granule cells precursors to the granule cell layer and deficient synaptic 
connectivity within the cerebellar cortex [20]. Experimentally, thyroid-deficient rats 
show a delay in the disappearance of somatic spines, the synaptic site for climbing 
fibers, along with underdevelopment of cerebellar glomeruli [21]. These effects 
could be attributed to hyperthyroidism, which reduces the pro-inflammatory proper-
ties of monocytes and macrophages and promotes phagocytosis, and there may also 
be elevated levels of reactive oxygen species (ROS) during hypothyroidism [22]. A 
better understanding of the links between such hormones and immune responses 
could provide new insights toward clarifying the potential effects of several immune 
responses on development of the cerebellum.

Cerebellar immunomodulation exists, and it may be regulated by the hypothala-
mus, but anatomically, there is no direct connection between the cerebellum and the 
immune system. The cerebellum communicates with the immune system through 
the direct reciprocal projections between the cerebellum and the hypothalamus and 
this pathway may serve as an important mediator in immune system modulation. 
Moreover, many neuropeptides can be released from the CNS and can impact the 
immune system, which in turn affects the cerebellum, especially in the developmen-
tal stages. Thus, various immune responses can shape the development and func-
tional activities of the cerebellum (Fig. 1). However, there are few direct or indirect 
data that demonstrate these mechanisms.

 The Immune System in the Cerebellum

Alterations in immune responses during prenatal or early postnatal development 
contribute to cerebellar development and disorders. The immune system is designed 
to reflect surrounding changes and to predict future changes as a defensive mecha-
nism. Communication between the CNS/cerebellum and the immune system is bidi-
rectional, and both systems shape the other’s responses through different mechanisms 
and mediators. As shown in Fig.  2a, the innate and adaptive immune responses, 
which lead to the production of cytokines, can alter cerebellar development and 
function. Moreover, pattern recognition receptors and innate and adaptive immune 
responses play a key role in the regulation of the immune system.
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Fig. 1 An illustration of how immune cells contribute to normal cerebellar development. These 
cells maintain neuronal function and development homeostasis by secreting anti-inflammatory 
cytokines and regulating the activation status of microglia and astrocytes in local tissues. Microglial 
cells at rest survey the cerebellum parenchyma and promote a healthy environment for cerebellar 
development. B cells secrete natural antibodies and promote axon myelination to maintain tissue 
homeostasis. Resting astrocytes also play a role in maintaining synaptic formation and activity by 
releasing interleukin (IL)-27 to reduce inflammation and exert neuroprotective effects. Tumor 
growth factor (TGF), T helper (Th), Immunoglobulin (Ig). (Created with BioRender.com)

Fig. 2 (continued) resulting in abnormal cerebral development. Microglia and complement pro-
teins are critical to synaptic pruning and scaling, whereas brain-reactive autoantibodies can affect 
the development or function of neurons, including Purkinje cells. (b) An illustration of how 
immune cells interact with cerebellar cells such as astrocytes and microglia during neurodegenera-
tion. There is a cerebello- hypothalamic interaction in normal conditions via the balance of gamma-
aminobutyric acid (GABA) and glutamate, which is impaired in pathological conditions such as 
stress and infection. This imbalance would result in increased cerebellar cell death and the produc-
tion of pathogen- associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs), both of which can activate neurons via their pattern recognition receptors (PRRs). 
These activated cells send damage signals to glial cells and astrocytes, causing the blood-brain 
barrier to be breached, resulting in the activation of innate and adaptive immune responses, the 
production of pro- inflammatory cytokines, and neuro-inflammation. On the other hand, anti-
inflammatory cytokines result in the deactivation of glial cells and astrocytes, thereby maintaining 
homeostasis. (c) Role of the bidirectional microbiota-gut-brain axis in neuroinflammation and 
developmental disorders. This axis primarily acts through microbiota metabolites, which can be 
absorbed and transported by the blood before crossing the blood-brain barrier to modulate cerebral 
functions. Dysbiosis of the gut microbiota can lead to cerebral developmental disorders such as 
autism by modulating the host’s immune response in a way that releases pro-inflammatory cyto-
kines. Interleukin (IL), interferon (INF), tumor growth factor (TGF), tumor necrosis factor (TNF). 
(Created with BioRender.com)
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Fig. 2 (a) An overview of immune dysregulation in cerebellar developmental disorders. As illus-
trated, several innate and adaptive immune cells and their immune factors, such as cytokines and 
complement, are involved in cerebellum development and function. In the presence of altered 
T-cell subpopulations, autoantibodies and inflammatory cytokines may be produced. Microglia 
and astrocytes are subsequently activated, impairing neuron survival, proliferation, and death, 

(continued)
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 Pattern Recognition Receptors

The innate immune cells are equipped with germline-encoded pattern recognition 
receptors called pattern recognition receptors (PRRs) that directly and specifically 
recognize conserved molecular structures named pathogen-associated molecular 
patterns (PAMPs) expressed by microbes [23]. Moreover, PRRs play a critical role 
in sterile inflammatory responses that arise from endogenous stimuli resulting from 
the release of molecules named damage-associated molecular patterns (DAMPs) 
following tissue damages. Thus, PRRs are among the first responders to cerebellar 
disorders [24], and activation of these receptors on microglia, neurons, and astro-
cytes initiates an innate immune response [25] (Fig. 2b). Microglia, the brain’s pri-
mary resident immune cells, are fundamental components of host innate immunity 
in the cerebellum. Distress signals released from neighboring cells can bind to 
PRRs and activate microglia [26]. Activated microglia enter a pro-inflammatory 
state and release inflammatory mediators that help in the clearance of antigens and 
restore tissue homeostasis. However, chronic or continuous activation of these 
receptors can lead to inflammatory responses that can impact the cerebellum‘s 
development and contribute to the pathogenesis of cerebellar developmental disor-
ders [27]. Toll-like receptors (TLRs) are a class of PRRs encompassing several 
members including TLR1-TLR10  in humans and TLR1-TLR9 and TLR11- 
TLR13 in mice [28]. Over the last decade, in addition to reporting the expression of 
all TLRs members in major CNS cells type, new data indicate that upon activation, 
these PRRs can exert a beneficial or detrimental role depending on the strength and 
timing of the stimuli, CNS microenvironment, and TLR members activated [29]. In 
addition to a well-established role in host defense immunity, TLR may also play a 
central role in regulating sterile inflammation, cell migration and differentiation, 
tissue development, and CNS repair process following trauma [29, 30]. Hence, dur-
ing transient focal cerebral ischemia, for instance, TLR4 expression on cerebral 
endothelial vasculature increases and has been associated with a control in neutro-
phil recruitment. Moreover, together with TLR2, it has been implicated with exac-
erbated neuroinflammation and neuronal death [31, 32] (Fig. 2a, b). Many DAMPs 
such as heat-shock proteins (HSP60 and HSP70), degradation products of the ECM 
(hyaluronic acid, fibronectin), and nucleic acids such as mRNA and miRNAs are 
released passively from necrotic cells after cerebellum injury [33–35]. Mitochondrial 
DNA and proteins are also considered to be DAMPs, particularly mitochondrial 
DNA and N-formyl peptides [36].

Most cells in the CNS express TLRs, but microglia express the full repertoire of 
TLRs, which enhances their ability to monitor the CNS and act as the first line of 
defense [37]. In the cerebellum, microglial activation can be partially explained by 
aberrant expression of TLRs in regions of the brain involved in striatonigral (SND) 
or olivopontocerebellar atrophy (OPCA) [38]. TLRs’ inappropriate expression and 
altered signaling could promote neurodegenerative disorders (Fig. 2b) through the 
amplification of pro-inflammatory cytokines release which could result in mito-
chondrial dysfunction and excessive ROS production [38]. Astrocytes, neurons, and 
oligodendrocytes also express TLRs in both physiological and pathological 
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cerebellum states [39]. Astrocytes express TLR3 under resting and activated condi-
tions [40] and may elevate TLR2 and TLR4 upon activation [41]. Changes in TLR 
expression demonstrate their critical role in mediating complex and interconnected 
processes that are implicated in the development of the cerebellum and its develop-
mental disorders.

NLRs are primarily dedicated to sensing and detecting pathogens, but they have 
been shown to contribute to the inflammatory responses caused by cerebellar disor-
ders [42]. NLRs are known for their ability to form inflammasomes. Inflammasomes 
are large multiprotein complexes that activate caspase-1, which is essential for mat-
uration of pro-IL-1β and pro-IL-18 [43], and for programmed cell death [44]. Within 
the CNS, three different NLR inflammasomes have been described: NLRP1 [45], 
NLRP2 [46], and NLRP3 [47]. NLRP1 has been defined as mediating the innate 
immune response after brain disorders [48]. Inflammasomes are present in astro-
cytes [49] and microglia [50], and neuronal inflammasomes seem to contribute to 
cerebellum disorders [51]. IL-1β and IL-18 have a crucial role in mediating neuro-
inflammation and neurodegeneration in the CNS [52]. Experimentally, IL-1β is acti-
vated specifically in the cerebellum by the systemic administration of kainate and it 
is involved in kainate-induced ataxia in mice. Moreover, IL-18 in the cerebellum is 
implicated in the recovery phase of kainate-induced ataxia by counteracting the 
function of IL-1β in the cerebellum [52]. IL-1β also participates in neurological 
processes and appears to have a role in autism as a mediator of this cerebellar devel-
opmental disorder [53]. Homeostatic levels of IL-1β and its antagonist IL-1ra are 
necessary for proper brain development and function.

Many PRRs expressed in the cerebellum can identify pathogenic microbes and 
are mediated through RLR and ALR [54]. RLRs are cytoplasmic PRRs that detect 
RNA viruses associated with the production of type I interferons (IFNs) [55]. Two 
ALRs have been described: IFI16 and AIM2 [56]. In neurons, AIM2 forms an 
inflammasome that activates pyroptosis, a novel but potentially important mode of 
cell death [57]. Moreover, scavenger receptors (Type A and B receptors) are PRRs 
that are implicated in the metabolism of cholesterol and lipids and are expressed on 
microglia, endothelia, and astrocytes [58]. Programmed cell death plays a signifi-
cant role in cerebellum development and developmental disorders by affecting the 
neurons and glia during nervous system development, plasticity, and aging. Thus, 
defects in this mechanism can impact cerebellum development, which could result 
in developmental disorders. To summarize, PRRs are among the first responders in 
the cerebellum, and their activation will trigger an innate immune response.

 Innate Immune Responses in the Cerebellum

Immune responses in the CNS/cerebellum have passed from being defined as an 
immune privilege system to a special immune-controlled site mediated by resident 
immune cells, microglia, and astrocytes which comprised most brain immune cells. 
Classical immune cells such as myeloid, monocyte/macrophages, natural killer 
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(NK), B, and T cells have also been identified in CNS at a steady state [59]. Although 
scarce, resident classical immune cells are shown to have a major influence on brain 
function. Hence, T cells for example have been implicated in adult brain neurogen-
esis and cognitive function including spatial learning, memory, emotional behavior, 
and response to stress. Whereas B cells are highly expressed in neonate’s brain and 
participate in the maintenance of tissue homeostasis by secreting natural IgM anti-
bodies and promoting the proliferation of oligodendrocytes which are known to 
participate in axons myelinization [59]. Interestingly, several reports suggested a 
potential pathogenic role for blood-derived immune cells such as neutrophils, lym-
phocytes, and myeloid cells in neurodegenerative and neuroinflammatory disorders 
such as Alzheimer’s diseases, multiple sclerosis, and ischemic stroke following the 
disruption of the blood-brain barrier [60]. Moreover, microglia, dendritic cells 
(DCs), and astrocytes are also implicated in significant crosstalk between CNS- 
infiltrating T cells, neutrophil complement, and other components of the 
immune system.

DCs play a critical role within the innate system as antigen-presenting cells 
(APC) that induce adaptive immunity (Fig. 2a). However, there is no evidence that 
DCs with these abilities exist within the healthy cerebellum or CNS parenchyma. 
Additionally, some cells express DC surface markers (CD11b, CD11c) in the men-
ingeal CNS covering and in the choroid plexus where CSF synthesis takes place 
[61]. The nonexistence of parenchymal DCs and the fact that no other parenchymal 
CNS cells correspond to the functional definition of DCs (e.g., APCs) establish the 
cellular basis of cerebellum immune privilege. Cerebellum immune tissue is privi-
leged because of its robust intrathecal inflammatory reactions that can damage deli-
cate post-mitotic cells such as neurons and oligodendrocytes. The absence of 
adaptive immune responses might confer a physiological advantage to the cerebel-
lum. Because antigen entrance into the cerebellum suggests that there is a passage 
from a peripheral site of entry to the draining lymph nodes or spleen, it would likely 
be unnecessary for the cerebellum to generate a de novo adaptive immune response. 
However, further studies are required to support this hypothesis.

The main function of the blood-brain barrier (BBB) is to provide an accurate 
calibrated chemical and ionic environment to optimize neuronal function and to 
prevent inflammation by excluding plasma proteins and peripherally derived innate 
and adaptive immune responses [62, 63]. The parenchymal cerebellum environment 
has anti-inflammatory proprieties because of high local levels of inflammation- 
suppressive cytokines (TGF-β, IL-10) (Fig. 2b) and it is supplied with gangliosides, 
which can be detrimental and lethal to T cells [64, 65]. Moreover, the absence of 
CNS innate immune cells activating adaptive immunity within the lymphoid organs 
suggests that resident innate immune cells need to interact directly with the dam-
aged tissue [25].

Microglia are the resident macrophages of CNS. They play critical roles during 
pathophysiological conditions and display different topographical morphologies 
across the CNS and during phases of their lifespan [66] (Figs. 1 and 2). Microglia 
are implicated in several functions including the growth of neurites, synaptic prun-
ing, spinogenesis, and apoptosis [67, 68] in areas such as the visual cortex, 
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hippocampus, and retinogeniculate system, during brain development [69]. 
However, there are few studies dedicated to the role of microglia during postnatal 
development. In the cerebellum, microglia are dispersed in both gray and white 
matter across diverse species, and there is a distinct arrangement of microglial pro-
cesses according to their location in the cerebellar cortex [70]. Recent findings 
showed a continuous process of microglial maturation and a non-uniform distribu-
tion in the cerebellar cortex, demonstrating that microglia are an essential cellular 
component of the cerebellum [71]. This has been confirmed in vitro, where microg-
lia have been shown to promote apoptosis of Purkinje neurons [72]. However, there 
is no information about the presence of this mechanism in vivo. Microglia also regu-
late synapse formation and plasticity by phagocytosis of unwanted synapses opso-
nized with complement components [73]. Impaired phagocytosis leads to an 
increase in the buildup of cellular debris and has detrimental effects on surrounding 
neurons, which are suspected to play a role in several neurodegenerative and neuro-
developmental disorders [74].

Neutrophils are a key component of innate immunity and are also considered to 
be a first line of defense against bacteria, as demonstrated by life-threatening condi-
tions that result from neutrophil deficiency [75]. Neutrophils respond to PAMPs and 
DAMPs through TLRs and NLRs to increase CD15, CD11b, and adhesion mole-
cules expression, which are responsible for neutrophil recruitment [76] (Fig. 2a, b). 
Activated neutrophils release inflammatory mediators, angiogenic factors, lytic 
enzymes, and antimicrobial peptides [76], and play a critical role in Th1 or Th17 
recruitment through the production of CXCL9, CXCL10, or CCL20 [77, 78]. 
Neutrophil-lymphocyte interactions release survival factors that increase the lifes-
pan of the short-lived neutrophils [25].

Chemokines and their receptors (CCL2/MCP-1, CCL5/RANTES, CXCL12/
CXCR4) have an important impact on the development and maintenance of the 
cerebellum [79], and they are expressed in several parts of the brain including the 
cerebellum [80]. Moreover, chemokines may influence the crosstalk between neu-
ron and glial cell types and can function as a third communication system in the 
brain [81]. The cerebellum is a CNS structure whose development continues to 
occur in the postnatal period, leaving it susceptible to malformation events. The 
external granule cell layer (EGL or external germinal zone (EGZ)) is formed during 
cerebellar development when cerebellar granule cell progenitors produced in the 
upper rhombic lip (URL) migrate over the cerebellar primordium to form a second-
ary proliferative zone, the EGL. Formation of the internal granule cell layer (IGL) 
occurs during early postnatal development when granule cell precursors in the outer 
zone of the EGL proliferate, migrate to the inner zone of the EGL, exit from the cell 
cycle, differentiate, and radially migrate via the Purkinje cell layer to their final 
destination [82]. CXCL12, a strong chemoattractant for granule cell precursors in 
the URL and EGL, also plays a critical role during neurogenesis through the promo-
tion of axonal growth and is expressed in embryonic and postnatal meninges that 
cover the cerebellum [83]. It is also known as a potent chemoattractant for URL 
cells, inhibiting CXCR4-expressing premature granule cell migration to the EGL 
[84]. Therefore, the irregular EGL formation could partially be attributed to defects 
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in cell migration from URL to EGL.  Focusing on a chemokine-receptor axis, 
CXCL12/CXCR4 could provide new therapeutic potential for cerebellum develop-
mental disorders.

Astrocytes have various functions in the CNS, which support the differentiation 
and homeostasis of neurons and influence synaptic activity. They are also respon-
sible for the formation of the BBB [85] (Fig. 2a, b). The BBB constitutes an elabo-
rate structure formed by specialized capillary endothelial cells, which, together with 
pericytes and perivascular glial cells, control exchanges between the CNS and the 
periphery. Intricate interactions between various cellular components in the BBB 
are crucial in establishing its function and maintaining the delicate homeostasis of 
the brain microenvironment [86]. The existence of numerous astrocytic end- feet 
near the BBB demonstrates their role in the regulation of BBB permeability, which 
is increased by humoral mediators that can be secreted by astrocytes as well as other 
glial cells, including endothelin-1, glutamate, IL-1β, IL-6, tumor necrosis factor 
(TNF), macrophage inflammatory protein (MIP)-2, and nitric oxide [87]. Astrocytes 
subsequently regulate neuronal differentiation and homeostasis, and evidence has 
shown that astrocytes interact with the immune system because they express a vari-
ety of PRRs, and both recognize danger signals and respond accordingly [88]. 
Following PRR activation, astrocytes produce cytokines, chemokines, and neuro-
trophins that target neighboring glial cells and neurons [88]. Therefore, the percep-
tion of immune privilege in the CNS can be minimized because astrocytes can 
reduce inflammation via releasing IL-27, and they also have constructive neuropro-
tective effects on the healthy brain [89]. Astrocyte activation leads to activation of 
damage control mechanisms such as induction of a neuroprotective effect and polar-
ization toward the Th2 profile. Conversely, IFN-γ produced by Th1 cells can sup-
press astrocytes that aggravate neuroinflammation [90]. Thus, astrocytes may 
constrain and defer neuroinflammation, but elevated levels of IFN-γ might promote 
astrocytes to become potent APCs and even promote inflammation [91].

The complement system includes nearly 40 soluble and membrane-bound pro-
teins that play a critical role in host defense against pathogens and initiation of 
inflammation [92, 93]. The liver is the main source of complement production, but 
it can be produced by many types of resident cells in the CNS [94]. Complement 
receptor expression (C3a and C5a) has been shown on glial cells and neurons [95] 
(Fig. 2a). The complement system contributes to modulating CNS development and 
inflammation [96]. Complement components C1q and C3 are expressed on neurons 
throughout the CNS where they opsonize synapses to highlight them for phagocy-
tosis by microglia [97]. Their expression peaks during crucial stages of neurodevel-
opment such as synapse formation and activity-dependent refinement [98]. MHC1 
expression is also spread across the brain including cerebellar neurons and neuronal 
synaptic membranes, and MHC1 is thought to be fundamental for synapse forma-
tion, and plasticity; potentially any defect in MHC1 could, thus, lead to cerebellar 
developmental disorders such as autism [99]. Systemic complement depletion 
diminishes perihematomal brain edema and TNF-α release following experimental 
intra-cerebral hemorrhage [100]. The core mechanism involving complement com-
ponents in immune cells recruited into the brain and cerebellum parenchyma 
through the BBB remains unclear. Some therapeutic approaches using large 

N. Eissa et al.



349

recombinant molecules may work only when the BBB is compromised, while small 
molecule drugs, such as known receptor antagonists and low molecular weight hep-
arin, could be potential therapeutics for treating patients with chronic disorders who 
have a non-compromised BBB. Blocking or preventing complement activation is a 
successful approach to decrease leukocyte recruitment and endothelial activation 
during CNS inflammation [88]. Therefore, specificity and balance challenges of 
various coincident cascades need to be highlighted; approaches that both promote 
beneficial effects and prevent detrimental activities are attractive goals for better 
understanding of human neurological disorders.

 Adaptive Immune T and B Cells in Cerebellum

Adaptive immunity is orchestrated by T-helper (Th) cell subsets, through the secre-
tion of lineage-specific cytokines. T cells enter the CNS and cerebellum paren-
chyma in several autoimmune, infectious, and degenerative neurological diseases. 
Therefore, T cells can be directly responsible for neuronal damage in many neuro-
logical diseases via different mechanisms of neuronal damage that are mediated 
through different T cell subsets (Fig. 2a). For example, lesions of the vestibulocer-
ebellum decrease the secretion of hematopoietic cytokines in the bone marrow and 
thymus tissue culture and decrease peripheral blood leukocyte concentration, neu-
trophil myeloperoxidase activity, and antibody response [101]. Conversely, the sup-
pressive influence of vestibulocerebellar lesions on immune function demonstrates 
that induced lymphocyte proliferation is significantly enhanced on days 8, 16, and 
32 following the effective kainic acid lesions in the bilateral cerebellar fastigial 
nuclei in rats [102]. Subsequently, cerebellar fastigial nuclei contribute to the modu-
lation of lymphocyte function but not to the hypothalamic-pituitary-adrenal 
axis [102].

Although T cells within the CNS and cerebellum have been reported to be patho-
genic cells, recent findings have demonstrated important functions for T cells in the 
healthy CNS [103]. Immunization of rats with copolymer (Cop-1), which mimics 
the myelin basic protein in the CNS and polarizes lymphocyte activation toward the 
Th2 profile, protects the injured optic nerve from secondary degeneration [104]. 
Moreover, regulatory T cells (Treg cells) reduce microglial activation after inflam-
mation develops, and astrocytes promote Treg cell transcription factor expression 
[105]. Therefore, T cells are key players and might have a beneficial role in the 
development of CNS adaptive immunity (Figs. 1 and 2).

The balance between Treg and inflammatory T cells (IFN-γ-producing Th1 and 
IL-17-producing Th17) is critical in neuroinflammatory diseases and contributes to 
the pathogenesis [106, 107]. Children with cerebellar developmental disorders such 
as autism displayed impaired immune profiles and function, which is characterized 
by a systemic deficit of Foxp3+-(Treg) cells and increased expression of some tran-
scription factors (RORγt+, T-bet+, GATA-3+) [108]. This suggests the importance of 
transcription factor signaling, which results in an immunological imbalance in cer-
ebellar developmental disorders. The balance between Treg cells and other T cell 

Interrelation Between the Immune and the Nervous Systems in the Context…



350

subsets (Th1, Th2, Th17) seems to be important for cerebellum homeostasis, neuro-
genesis, and neuroinflammation (Fig. 2a). The immune system plays a crucial role 
in the recovery process of cerebellum development and disorders [109]. Researchers 
working on new therapeutic strategies have a cutting-edge understanding of the 
pathogenesis of many diseases and disorders, but there is no specific central therapy 
targeting Treg cells or suppressing Th1 or Th17 cells. It is currently unknown 
whether Treg cells can be selectively targeted. By better understanding the regula-
tion of harmful effects compared with beneficial homeostasis promoting T cell 
responses at the immune and central nervous systems, it is believed that novel 
potential therapeutic strategies will be identified, which could also avoid side effects 
of currently available immunosuppressive treatments.

Humoral immune responses controlled by B lymphocytes have been implicated 
in CNS and cerebellar diseases and disorders [109] (Fig.  2a). Recently, it was 
reported that the association of maternal autoimmune disorders with cerebellar 
developmental disorders in offspring may be regulated by the passive transfer to the 
fetus of maternal immunoglobulin G (IgG) antibodies that show reactivity to self- 
proteins in the mother or child [110]. Thus, pregnant women who have immune 
disorders or autoimmune reactions, even at a clinically undetectable level, may be 
linked with the production of maternal antibodies that can enter the fetal brain and 
potentially perturb fetal brain development. Collectively, immune responses are 
critical in cerebellum development, and balance of these responses is required to 
avoid cerebellar developmental diseases/disorders.

Purkinje cells, a class of GABAergic neurons located in the cerebellum, have the 
potential to shape adaptive immunity. Immunoglobulin plays a role in many neuro- 
disorders. Antibodies to cytoplasmic components of Purkinje cells have frequently 
been labeled in serum and CSF [111]. However, the roles of such antibodies in the 
pathogenesis of neuronal injury are undefined. Intact neurons are thought to be 
essentially impermeable to IgG, and antibodies to cytoplasmic or nuclear neuronal 
antigens cannot enter neurons and bind to their intracellular targeted antigens [112]. 
The cerebellar Purkinje cell is a possible exception. Experimentally, Purkinje cells 
showed high endocytic activity for a wide range of substances that originate from 
the ventricular CSF [113], and they can also incorporate IgG and S100 [111]. 
Therefore, the aptitude of Purkinje cells and related neurons to engulf antibodies is 
vital because of the possible role of autoantibodies in disease pathogenesis, and 
because cerebellar injuries and Purkinje cell damage have been demonstrated in 
animals and human patients receiving IgG-conjugated immunotoxins [111].

 Cerebellum and Immune Response Interactions 
in Cerebellar Diseases

Cerebellum and particularly Purkinje cells seem to be a common immunological 
target in some neurological disorders (Fig. 2a). This may be because the cerebellum 
is one of the largest, oldest, and most conserved structures in the nervous system 
and/or because Purkinje cells have good and various antigenic targets.
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The immune system mediates the pathophysiology of cerebellar diseases via dif-
ferent immune responses. Evidence suggests that the cerebellum is a CNS target of 
autoimmunity, as shown by the high prevalence of paraneoplastic cerebellar degen-
eration (PCD) within paraneoplastic neurological syndromes [114]. Immune- 
mediated cerebellar ataxia, according to the associated autoantibodies, includes 
gluten ataxia, paraneoplastic cerebellar degeneration, anti-glutamic acid decarbox-
ylase antibodies (GAD) antibody associated with cerebellar ataxia, and Hashimoto’s 
encephalopathy (HE) [115]. Many of these autoantibodies distinguish cerebellar- 
specific antigens traced in the Purkinje cell soma to dendrites resulting in a Medusa- 
head immunohistochemical staining pattern [116]. There is a large amount of 
evidence to suggest that the cerebellum can be a primary target for organ-specific 
autoimmune disease, and thus, the proposed term of primary autoimmune cerebellar 
ataxia (PACA) suggests that there is no known trigger factor for the development of 
immune-mediated damage to the cerebellum, but that it is more likely attributed to 
a hormonal imbalance, which impairs various immune responses such as in hypo-
thyroidism, type 1 diabetes mellitus, and vitiligo. Therefore, humoral mechanisms, 
cell-mediated immunity, inflammation, and vascular injuries could contribute to the 
cerebellar discrepancies in immune-mediated cerebellar ataxia.

Some of the pathological damage to CNS is a result of immune-mediated mecha-
nisms and not secondary to vitamin or nutrient deficiencies (Fig. 2c). Examination 
of patients with gluten ataxia revealed patchy loss of Purkinje cells in the cerebellar 
cortex [117]. Moreover, gluten ataxia is characterized by a diffuse infiltrate of T 
lymphocytes with a smaller number of B lymphocytes and macrophages in the cer-
ebellar white matter and the posterior column of the spinal cord as well as loss of 
Purkinje cells [117]. Similar findings have been defined in patients with established 
celiac disease who then developed cerebellar ataxia [118]. Experimentally, antibody 
cross-reactivity between antigenic epitopes on Purkinje cells and gluten peptides 
has been reported [119]. Serum from patients with gluten ataxia and patients with 
celiac disease but with no neurological symptoms display cross-reactivity with epi-
topes on Purkinje cells using both human and rat cerebellum. The reactivity can be 
abolished after absorption of the anti-gliadin antibodies using crude gliadin. A study 
investigated the epitope responsible for cross-reaction between gliadin peptides and 
cerebellar peptides, by assessing the reactivity to specific peptides from gliadin and 
cerebellum in serum from 50 autism patients and 50 healthy controls. Autism 
patients showed a significant increase in the antibodies against gliadin and the cer-
ebellar peptides [120]. Therefore, this study suggests that a subgroup of patients 
with autism produce antibodies against Purkinje cells and gliadin peptides, which 
may be responsible for some of the neurological symptoms of autism. An antibody- 
mediated pathogenesis is also supported experimentally, revealing that intra- 
ventricular injection of serum from patients with gluten ataxia can induce ataxia in 
mice [121]. Overall, the brain-gut axis, the enteric nervous system, and the immune 
system contribute to the immune-pathobiology of neurodevelopmental disorders 
through production of specific antibodies against cerebellum peptides to induce 
immune responses, which have detrimental effects on cerebellar tissues.
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Communication between the gut and the brain (Fig. 2c), which is regarded as the 
gut-brain axis, is a well-known bidirectional neuro-humoral communication sys-
tem. Previous research that focused on the gut-brain axis mostly referred to its con-
tribution to functional gastrointestinal syndromes, such as irritable bowel syndrome 
(IBS) [122]. It was recently reported that gut microbiota can modulate brain devel-
opment and produce behavioral phenotypes via the gut-brain axis [123]. Thus, the 
potential effects of the microbiota-gut-brain axis in neurodevelopmental disorders 
are receiving much attention. The bidirectional communication in the microbiota- 
gut- brain axis acts mainly through both neuroendocrine and neuroimmune mecha-
nisms. Moreover, the metabolites of microbiota can be absorbed and transported by 
the blood before crossing the BBB to modulate cerebral functions. The gut micro-
biota also contributes to cerebral developmental disorders by modulating the host 
immune response by releasing a storm of pro-inflammatory cytokines (including 
IL-1, IL-6, and IL-18) by intestinal epithelial cells, intestinal DCs, and macrophages 
[124]. Vagal afferents could be another potential mechanism by which the 
microbiota- gut-brain axis regulates communication, in which gut microbiota can 
send signals to the brain through the vagus nerve. Additionally, interruption of the 
microbiota-gut-brain axis in neurodevelopmental disorders such as autism is a 
comorbidity of neurodevelopmental deficits and intestinal symptoms. Moreover, 
autistic behaviors were often associated with gut microbiota dysbiosis [125]. 
Restoring the balance of the microbiota-gut-brain axis offers promising beneficial 
therapeutic effects on cerebellar developmental disorders such as autistic deficits.

Therefore, a link between the cerebellum and gastrointestinal tract might exist. 
Patients with gluten sensitivity and normal bowel mucosa (occasionally signified as 
potential celiac disease) have evidence of antibodies targeting tissue transglutamin-
ase (TG) in the small bowel mucosa and at extra-intestinal sites such as the CNS and 
or cerebellum [126]. IgA deposition on jejunal tissue transglutaminase has been 
reported in the jejunal tissue but also in the brain (mostly in the cerebellum) of 
patients with gluten ataxia and in none of the controls [127]. This immune response 
described for gluten ataxia suggests a neural transglutaminase and results in clinical 
manifestations primarily in the brain or the peripheral nervous system, with mini-
mal involvement of the gut; the gut may be involved through deposition of autoan-
tibodies against brain transglutaminases (TG6) [117]. Thus, gluten ataxia is 
immune-mediated and belongs to the same spectrum of gluten sensitivity as celiac 
disease. Transglutaminases may play a critical role in the pathogenesis of various 
signs seen in the context of gluten sensitivity. Thus, antibodies against TG6 may 
become novel markers for the neurological manifestations of gluten sensitivity. 
There is also cell-mediated immunopathogenesis. Most patients with celiac disease 
have HLA DQ2 or DQ8 class II molecules that bind, and present peptides derived 
from exogenous protein antigens to CD4 T-cells. Thus, it has been hypothesized that 
T cells that react with gluten peptides play key role physiology of cerebellar ataxia 
because celiac disease is caused by an exogenous protein antigen and is linked to 
HLA DQ2/8 expression.
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 Neurological Disorders Associated with Coronavirus 
Disease 2019

Viral infection has long been known to cause neurological complications resulting 
in neurodegenerative disorders [128, 129]. Among neurotropic viruses, in addition 
to well-known enterovirus such as poliovirus (poliomyelitis), respiratory viruses 
including influenza virus (flu), flavivirus (Zika), and coronaviruses (severe acute 
respiratory syndrome, SARS-CoV, and Middle Eastern respiratory syndrome, 
MERS) to name but few, have been shown to invade the CNS and infect CNS cells 
causing short- and long-term neurological sequelae [129].

Recently, a new coronavirus infection, SARS-coronavirus-2 (SARS-CoV-2), 
responsible for the coronavirus infectious disease 2019 (COVID-19) pandemic 
which started in late 2019, has spread worldwide [130]. Up until now, more than 
380 million COVID-19 confirmed cases have been recorded and retrospective stud-
ies from around the world report debilitating neurological manifestation in more 
than a third of severely ill COVID-19 patients [131–133]. Thus, emerging data from 
case reports described acute neurological symptoms including ischemic strokes, 
encephalopathy, and encephalitis and chronic neurological sequelae such as fatigue, 
ataxia, neurocognitive impairment along with visuospatial and executive dysfunc-
tions in patients with COVID-19 [131, 134, 135]. SARS-CoV-2 infection is medi-
ated by the engagement of its spiked (S) protein to the angiotensin-converting 
enzyme 2 (ACE2) receptor [130]. ACE2 receptors are not only present on the sur-
face of alveolar and respiratory epithelial cells but they are also highly expressed in 
CNS tissues and cells including neurons, astrocytes, cerebral blood vessel, thala-
mus, and the cerebellum [129, 134]. Although the mechanism associated with neu-
rological disorders in COVID-19 patients remains speculative, multiple potential 
pathogenic processes have been suggested and are currently under investigation. 
One of the proposed mechanisms associated with COVID-19 neuropathologies 
includes the invasion of the CNS by SARS-CoV-2 through ACE2 receptors which 
may result in viruses’ direct actions on neurons and astrocytes [136]. Secondly, 
SARS-CoV-2 have been shown to induce a systemic inflammatory response accom-
panied with cytokines storm and increase BBB permeability and microvascular 
injury [134]. Disruption of the BBB integrity may result in SARS-CoV-2 and host- 
activated immune cells entering the CNS and accentuating further neuro- 
inflammatory response and tissue damage [134]. While the microvascular injury 
may likely lead to thrombotic and microhemorrhage events as described in seriously 
ill COVID-19 patients [134, 137]. Based on our current knowledge, more investiga-
tion will be required to improve diagnosis and prevent potential long-term 
COVID-19 neurological disorders.
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 Diagnostic Tests and Managements of Immune-Mediated 
Cerebellar Disorders

Cerebellar disorders encompass a heterogeneous group of pathological conditions 
that result from various etiopathology. Hence, cerebellar dysfunction can arise from 
genetic defects, metabolic deficiencies, neurodegenerative diseases, toxins pres-
ence, structural lesions caused by tumor, trauma, or stroke, and immune-mediated 
cerebellar insults, which can lead to a myriad of sensorimotor, affect, and cognitive 
disorders along with autonomic nervous system problems [138, 139]. Therefore, to 
discover the underlying pathophysiological mechanisms during the cerebellar exam 
of an ill patient, cerebellum disorders are first broadly categorized into four distinct 
groups: genetics, non-genetic acquired conditions, sporadic neurodegenerative, and 
idiopathic late-onset cerebellar ataxia (ILOCA). Several elements including motor 
and non-motor symptoms, family history, risk factors (e.g., alcohol consumption, 
infection, multiple sclerosis), and diseases progression are investigated to reach an 
accurate diagnosis [140].

According to the differential diagnosis based upon the initial assessment, diag-
nostic tools such as brain magnetic resonance imaging (MRI), CT or PET scan of 
the whole body, genetic analysis, and blood chemistry can be performed in search 
for disorders caused by structural abnormalities, occult primary tumors, genetic or 
metabolic defects [138, 140–145]. Moreover, serum and cerebrospinal fluid testing 
are indicated to identify the presence of bacterial, viral, and parasitic infections such 
as Lyme, tuberculosis, Whipple, varicella, HIV, toxoplasma, and malaria as well as 
onconeuronal antibodies (e.g., Hu, Yo, Ri, Ma, TA, CARP8, CV2, Tr, LEMS, 
MGLUR1, CRMP5, GQ1b, amphiphysin, PCA-2, NMDA, VGKC) and autoanti-
bodies anti-GAD and gluten, all known to trigger immune-mediated cerebellar neu-
ropathologies [138, 140–144]. These testings also permit the segregation between 
all immune-mediated cerebellar disorders subtypes including gluten ataxia, cerebel-
lar degeneration, post-infection cerebellitis, and anti-GAD ataxia [138].

Despite the rapid progress in research on cerebellum development, functions, 
and pathologies in recent years, the treatment of cerebellar disease remains clini-
cally challenging owing to the various neurological and systemic disorders that may 
affect the cerebellum.

Hence, cerebellar diseases therapeutic strategies largely depend on the underly-
ing pathological causes and are based on measures such as rehabilitative therapies 
(see Chapter “Rehabilitation in Cerebellar Ataxia”), eliminating toxins, or remedi-
ating to metabolic deficiencies. In the case of immune-mediated cerebellar diseases 
initiated by gluten sensitivity, tumors, or infections, treatments focus mainly on 
eliminating these primary pathological conditions. However, in the absence of other 
underlying pathologies, at the source of the immune-mediated cerebellar disorders, 
immunotherapy treatments are immediately prescribed to control the immune 
response. The regimen of these immunotherapy treatments includes corticosteroids 
such as methylprednisolone and prednisolone, which are administrated intrave-
nously or orally to induce and maintain remission in patients with immune- mediated 
cerebellar diseases.
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Moreover, additional strategies such as intravenous immunoglobulin (IVIg), 
plasmapheresis, monoclonal antibodies treatment against B cell CD20 proteins 
Rituximab, and immunosuppressants drugs cyclosporin, mycophenolate mofetil, 
and cyclophosphamide, that selectively inhibit B and T cells activation and prolif-
eration, can be utilized to suppress the immune response.

 Conclusion

Understanding the links between the immune, CNS, enteric, and endocrine systems 
is fundamental to understanding the bidirectional communication between the 
immune system and cerebellum. An imbalance in the neuro-immune interaction 
may promote the onset of autoimmune disorders and constitute a key component of 
pathogenic mechanisms involved in neurodevelopmental (Fig. 2a) and neurodegen-
erative diseases (Fig. 2b) such as autism and cerebellar ataxia. The eventual chal-
lenge may be to elucidate how these various mechanisms of communication interact 
with each other.
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Teratogenic Influences on Cerebellar 
Development

Albert E. Chudley

Abstract The effects of environmental agents on cerebellar development are pro-
found, and this organ has not been given the attention that is deserving of it, based 
on its importance in motor, cognitive and behavioural functions. This chapter will 
review select agents associated with teratogenic effects on cerebellar structure and 
function. Mechanisms of teratogenesis and genetic influences will be addressed. 
The emerging role of effects of environmental agents and effects of epigenetic 
mechanisms and gene expression are discussed. Prenatal alcohol exposure and fetal 
alcohol spectrum disorder will be discussed in greater detail, as this disorder is the 
most common teratogenic disorder affecting humans. Indeed, many of the pheno-
typic effects of FASD are the result of cerebellar injury and dysfunction.

Keywords Teratogenesis · Brain imaging · Birth defects · Prenatal exposures · 
Viral infections · Zika virus · Rubella · Anticonvulsants · Valproic acid · Alcohol · 
Genetic factors · Epigenetics · Fetal alcohol spectrum disorder

 Introduction

Teratology can be defined as science dealing with the causes, mechanisms, and 
manifestation of developmental deviations of either structural or functional nature 
[1, 2]. A teratogen is any agent that compromises a healthy intrauterine environment 
and results in altering normal development during the period of embryonic or fetal 
development resulting in abnormal structure or function, restriction of growth, or 
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death of the embryo or fetus [3]. Known teratogenic agents include infectious agents 
(e.g. rubella virus, Zika virus, cytomegalovirus, toxoplasmosis, varicella, etc.); a 
chemical or drug (most anticonvulsant medication such as phenobarbital, diphenyl-
hydantoin, valproic acid; retinoic acid; warfarin; etc.); heavy metals and environ-
mental poisons (mercury, lead, manganese, and toluene/benzene derivatives); 
excessive radiation; maternal conditions (drug and alcohol abuse or addiction to 
illicit drugs, smoking, nutritional deficiencies, metabolic disorders in the mother 
such as phenylketonuria, diabetes, mental and emotional stress, etc.); invasive medi-
cal interventions (such as amniocentesis, chorionic villus sampling, etc.); changes 
in the environment (elevated core temperature for an extended period of time such 
as febrile illness, sauna or hot tub use, etc.) [4–6].

Teratogens in humans have certain characteristics that include evidence of an 
increase in the frequency of a known abnormal phenotypic effect, such as neurobe-
havioral changes or structural changes leading to birth defects; a dose-response 
relationship with a threshold effect; critical periods of significant risk; established 
mechanism of action; biological plausibility of teratogenicity; genetic and/or epi-
genetic predisposing risk factors. Identifying and confirming the etiological origins 
of birth defects can lead to better treatment and prevention, and in the case of infec-
tious diseases, the development of effective vaccines to reduce the risk in the popu-
lation [2].

The effects of teratogens are variable and dependent on timing of the exposure, 
the dose of the exposure, the frequency of exposure(s), maternal and fetal genetic 
factors and other mitigating or susceptibility factors that modify the effect. The 
exposure can lead to a variety of outcomes, from apparently normal and unaffected, 
to mild impairment, to severe impairments with multiple malformations or result in 
abortion and death.

As with all developing organs, the brain is often the target of teratogenic effects. 
The resulting impairments from a teratogenic exposure affecting brain development 
can lead to effects on brain structure (cellular defects, malformations or disruption) 
and/or brain function that can manifest as behavioural abnormalities, craniofacial 
dysmorphology, developmental delays, intellectual impairment and/or severe physi-
cal disability. It is rare for a teratogenic effect to be restricted to a single organ 
structure or specific region of the brain. However, for the purposes of this chapter, 
emphasis will be placed on the teratogenic effect on the cerebellum and the clinical 
consequences.

The cerebellum is relatively small but it has established functional connections 
to many other regions of the brain. Prenatal and postnatal injury due to a variety of 
toxins results in neurologic deficits, including ataxia, hypotonia, dysarthria and ocu-
lar motility problems. This can present with impairments in movement, motor coor-
dination, and sensory function, cognition and affect regulation or mood. Dysfunction 
of the cerebellum and its effects on connectivity to other brain regions has been 
correlated with a number of neurodevelopmental disorders that include autism, 
attention deficit hyperactivity disorder, dyslexia, as well as psychiatric diseases 
schizophrenia and bipolar diseases [7]. Many inherited disorders involving 
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abnormal development and function of the cerebellum including cerebellar hypo-
plasia have been described [8].

The nature of the injury or exposure would be dependent on the sub-regions of 
the cerebellum involved and determined by alterations in the corresponding cerebro- 
cerebellar circuitry [9]. Recent studies exploring the role of speech and language 
have demonstrated an important role of the cerebellum in communication in health 
and disease. Mariën et al. [10], in a consensus review of this topic, summarized their 
findings to date “cerebellar involvement in language extends far beyond the pure 
motor domain to a variety of high-level non-motor linguistic processes at both the 
expressive and receptive language level. In general the role of the cerebellum in 
language adds evidence to the view that timing and sequencing processing, senso-
rimotor adaptation and cognitive skill automatization act as the overall operational 
modes of the cognitive cerebellum”.

Developmental abnormalities of the cerebellum have been induced by several 
teratogenic agents, including such therapeutic agents as 13-cis retinoic acid 
(Accutane©) and misoprostol (Cytotec©) [11–13]. Many early studies, prior to the 
1970s, were limited in describing cerebellar abnormalities since techniques to visu-
alize this organ were crude or not yet available for wide clinical use. Evaluation of 
the brain in the 1960s and 1970s was restricted to investigations such as electroen-
cephalograms (EEG), pneumoencephalograms, ultrasound and the earlier genera-
tion computed tomography (CT) or autopsy findings. The list of disorders with 
identifiable cerebellar lesions is growing particularly with the advent and ubiquitous 
use of newer imaging techniques. With the advent of newer imaging modalities, 
brain imaging has been enhanced. Single-photon emission computed tomography 
(SPECT) can provide 3D information, and positron emission tomography (PET) 
can help assess functional abnormalities in the brain before anatomical changes 
occur in many diseases of the brain. Using magnetic resonance imaging (MRI), 
structural CNS defects and malformations are more readily and accurately defined 
or in the case of functional MRI analysis brain activation responses to a variety of 
external stimuli can be visualized. Magnetic resonance spectroscopy (MRS) can 
identify disturbances in the neurochemistry of the brain. Diffusion tensor imaging 
(DTI) assesses the integrity of the white matter and map normal and aberrant white 
matter tracts and brain circuitry. In this chapter, some examples of teratogenic 
agents with effects on the developing cerebellum will be presented.

 Intrauterine Infections

There are scores of infectious agents associated with intrauterine viral and parasitic 
infections. Most can cause a variety of developmental defects in exposed fetuses. 
Examples include the classical group of teratogenic pathogens, the so-called 
“TORCH” (Toxoplasma gondii, Others like Treponema pallidum, Rubella virus, 
Cytomegalovirus, Herpes simplex virus), and other agents including Parvovirus 

Teratogenic Influences on Cerebellar Development

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mariën P[Author]&cauthor=true&cauthor_uid=24318484
https://en.wikipedia.org/wiki/True_3D


366

B19, Varicella zoster virus and plasmodium falciparum to name a few. In this chap-
ter reviews of Rubella and the Zika virus are presented for illustration purposes, and 
readers are referred to recent reviews on intrauterine infections for further informa-
tion [14, 15].

 Congenital Rubella

As noted, several infectious agents have been implicated in causing birth defects 
and brain abnormalities [16]. The first report of a teratogenic agent in humans was 
made in 1941 by an Australian ophthalmologist Normal Gregg, who described chil-
dren with cataracts as a result of rubella in the children’s mothers during the preg-
nancy [17]. Congenital rubella is typically associated with other CNS abnormalities, 
microcephaly, growth retardation, congenital hepatitis, deafness, cataracts, retinop-
athy and cardiovascular defects. The mechanisms of teratogenesis have included 
inhibited cell growth, impaired blood flow, direct effects of the ongoing infection 
with cytopathic effects and immunopathological mechanisms [18, 19].

Townsend et al. [20] reported on a case of progressive panencephalitis in a child 
who was born with congenital rubella. Neuropathologic studies showed findings in 
the brain included diffuse destruction of white matter with perivascular inflamma-
tory cells and gliosis, moderate neuronal loss, numerous amorphous vascular depos-
its in the white matter and severe generalized cerebellar atrophy. Recently, Cluver 
et al. [21] reported on an infant with confirmed early prenatal rubella infection born 
with agenesis of the inferior cerebellar vermis. The authors suggest that the cerebel-
lar defect was likely the result of the spread of the virus through the vascular system 
causing vasculitis and endothelial necrosis [22]. There are only rare reports of cer-
ebellar defects in congenital rubella syndrome.

It is likely that most viral and other infectious agents causing intrauterine infec-
tions have similar mechanisms of teratogenesis [16, 23, 24]. Further investigations 
could clarify the role of viral infections‘over-stimulation of excitatory amino acid 
receptors, excess production of angiogenesis, pro-inflammatory cytokines neuro-
trophic factors and apoptotic-inducing factors [25].

 Congenital Zika Infection

Recently, the Aedes species mosquito-borne Zika virus has been confirmed to be 
causative of congenital microcephaly and other birth defects including arthro-
gryposis and sensorineural hearing loss [26–32]. The Zika virus belongs to a 
family of related arthropod-borne (arbovirus) that includes Dengue, Yellow 
Fever, West Nile and Japanese Encephalitis viruses and another virus from a dif-
ferent family, chikungunya virus [30]. The virus was first recognized in the Zika 
forest of Uganda from a Rhesus monkey with an acute febrile illness in 1947 [33] 
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with human infections first reported in Nigeria in 1954 [34]. Subsequent spread 
to the Yap Islands of Micronesia, the Pacific Islands and Polynesia showed that 
this was not a benign disease in humans [30]. From mid-2015 to 2016 over 
30,000 cases were reported in Brazil [29] and subsequently as far north as Florida 
[35]. Several cases have been imported to European countries and North America 
including Canada [36]. In a series of 23 infants from Brazil, de Fatima et al. [27] 
and Hazin et al. [37] identified common findings in the brain of these children 
through CT and MRI techniques. The abnormalities included brain calcifications 
in the junction between cortical and subcortical white matter, malformations of 
cortical development with simplified gyral patterns, pachygyria or polymicrogy-
ria in the frontal lobes, enlarged cisterna magna, abnormalities of corpus callo-
sum, ventriculomegaly, delayed myelinization and hypoplasia of the cerebellum 
and brainstem [37]. Garcez et  al’s [38] experimental studies on human brain 
culture confirm that the Zika virus abrogates neurogenesis during human brain 
development. Tang et  al. [39] showed that there is a downregulation of genes 
involved in cell-cycle pathways, dysregulation of cell proliferation and upregula-
tion of genes involved in apoptotic pathways resulting in cell death. Clearly until 
an effective vaccine is developed [40], better treatment and diagnostic capabili-
ties need to be developed and priority given to vector control. Outcomes of chil-
dren born with the congenital Zika virus infection show major CNS abnormalities 
and have features of severe delays in development and severe neurological dys-
function [27, 41].

 Congenital Anticonvulsant Syndrome

It is estimated that well over a million women of childbearing age in the United 
States have epilepsy, the vast majority of which are on drug therapy for management 
of this common disorder [42]. This is a concern since almost all antiepileptic drugs 
have potential risks for fetal anomalies and later developmental delay. This was first 
confirmed a reality in the early 1970s and 1980s with reports of children born to 
epileptic mothers on drugs that included phenobarbital, phenytoin and carbamaze-
pine presenting with recurrent patterns of birth defects that included major malfor-
mations, such as microcephaly, growth retardation, minor craniofacial and digital/
limb anomalies [43–50] (Fig. 1). Holmes et al. [50] showed that the risk of malfor-
mations was higher in women taking one anticonvulsant over women delivering 
babies who were on no anticonvulsants (odds ratio 2.8) and the risk when women 
were taking two or more anticonvulsants was even higher (odds ratio 4.2). Women 
with epilepsy who were not on medication during the pregnancy showed no increase 
in major congenital anomalies than the controls. Morrow et al. [51] studied pregnant 
women with a diagnosis of epilepsy in UK centres using a prospective, observa-
tional, registration and follow-up approach. They found 4.2% of women delivered 
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Fig. 1 Infant with typical facial features and distal digital hypoplasia with fetal hydantoin syn-
drome from Buehler et al. NEJM 1998, needs permission (with permission)

infants with major congenital malformations with a history of taking anticonvulsant 
medication. For polytherapy use, the rate was 6.0%, for monotherapy it was 3.7%, 
and for women with epilepsy taking no medication the rate was 3.5%. Valproic acid 
demonstrated the highest rate of major congenital malformations at 6.2%. This is 
compared with the expected “background” rate of major congenital malformations 
as between 1 and 2% in the general population at birth [52, 53]. It has been sug-
gested that some of the difference may be due to genetic factors that increase the 
frequency of anomalies in some children. This seems to be borne out by studies that 
show differences in activity of the detoxifying enzyme epoxide hydrolase, with defi-
ciency of the enzyme in infants presenting with clinical features of hydantoin 
embryopathy [54, 55]. It has been hypothesized that anticonvulsants increase the 
production of free radicals resulting in vulnerability to malformations as a potential 
etiological factor [56].

There are several anticonvulsants in common use today. The list of anticonvul-
sants is long, and the most commonly used drugs include valproic acid, phenobar-
bital, phenytoin, carbamazepine, gabapentin, lamotrigine, levetriracetam, 
topiramate, vigabratin and benzodiazepines. A detailed review of the effects of val-
proic acid on human development including the cerebellum is presented below.
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 Valproic Acid

Valproic acid (VPA) is a widely used and effective anticonvulsant medication that is 
also used in the treatment of mood disorders, schizophrenia and migraine head-
aches. Animal and human studies show that VPA is associated with a predictably 
higher rate of major congenital malformations that is dose-dependent [57]. The risk 
is 2–3 times that of the expected rates of malformations in the population, and is 
associated with a higher risk than other anticonvulsants.

The risk of adverse outcomes following the use of VPA includes major congeni-
tal malformation including spina bifida, atrial septal defects of the heart, craniosyn-
ostosis, cleft palate, hypospadias and polydactyly [53]. In 1984, DiLiberti et al. [58] 
described a consistent constellation of dysmorphic features that they called fetal 
valproate syndrome which has been confirmed subsequently in many reports [59, 
60]. Although periconceptional use of folic acid is recommended for all women, 
those using anticonvulsants may benefit by using a higher dose of this vitamin, 
although evidence suggests that folic acid may not be protective in preventing spina 
bida from occurring after exposure to VPA. This then begs the question what is the 
mechanism of the malformations in VPA and other anticonvulsants [44, 61]? VPA 
is also associated with neurodevelopmental and cognitive impairments [62] and is a 
known risk for autism spectrum disorders [63–65]. Christiansen et  al. [64] con-
firmed in their prospective study that maternal use of VPA was associated with a 
significantly increased risk of autism spectrum disorder even after adjusting for 
maternal epilepsy. It is of interest and perhaps not coincidental that one of the effects 
of prenatal exposure to VPA is an increased risk for autism as well as cerebellar 
anomalies. A subgroup of children with autism and a subgroup of children exposed 
to VPA both demonstrate structural cerebellar anomalies. The most common model 
used in environmentally induced ASD models in rodents is the one induced by 
VPA [66].

Not infrequent and severe consequences of long-term postnatal use of phenytoin 
and VPA include cerebellar atrophy [67–70]. Although the mechanism of both pre-
natal and acquired postnatal effects on the cerebellum may be different, genetic 
studies suggest that the risk of cerebellar complications may be determined by vari-
ations in enzyme activities that metabolize drugs. Buehler et al. [54] showed this to 
be a fact. They studied infants with the fetal hydantoin syndrome and confirmed 
reduced activity of epoxide hydrolase in those exposed affected compared to both 
those exposed and unaffected and normal controls. CYP2C9 mutation (*2 or *3) 
reduces phenytoin metabolism by 25–50% and can increase the risk of phenytoin- 
related side effects. CYP2C9 polymorphism has been associated with a reduction in 
cerebellar white matter volume in epileptic users of phenytoin [69]. Animal studies 
confirmed that prenatal exposure to VPA is associated with loss of volume in the 
vermis and hemispheres. Ingram et al. [64] identified reduced Purkinje cells in the 
vermis with greater loss in the posterior lobe with parallel in some human autistic 
populations.

As newer and safer drugs become available for the treatment of epilepsy and 
other seizure disorders in women of childbearing age, the use of drugs such as VPA 
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will likely continue to be reduced. It is important that women on these drugs need 
to be advised of the risks in pregnancy and screening measures and ongoing surveil-
lance to assess fetal well-being be instituted.

 Prenatal Alcohol Effects and Fetal Alcohol Spectrum Disorder

Whether prenatal alcohol exposure (PAE) can harm the human embryo and fetus 
has been a contentious issue over the past century. Following seminal studies by 
Lemoine et al. [71] in France in 1968 and Jones et al. [72, 73] in the United States 
in 1973 the irrefutable evidence of the harmful effects of alcohol in pregnancy 
becomes clear, and PAE is considered the most common teratogenic agent in 
humans. Based on extensive research in animals and humans, PAE has been demon-
strated to cause a variety of structural and/or functional deficits in the developing 
fetus, even after a single binge episode or equivalent use in experimental situations 
[74–76].

In humans, the first reports were on infants and young children born to mothers 
who were known alcoholics. These children typically presented with intrauterine 
growth retardation, microcephaly, characteristic facial dysmorphic features of short 
palpebral fissure lengths of the eyes, abnormal and short midface with a smooth 
poorly formed philtrum and a thin vermilion border of the upper lip, risk to various 
birth defects including cleft palate, cardiac malformations, limb anomalies and an 
increase in minor anomalies, with cognitive impairment and behavioural problems 
(Fig. 2). This presentation was called fetal alcohol syndrome (FAS) [73, 74, 77, 78]. 
Subsequently, less visible signs of the prenatal effects of alcohol were identified in 
which affected children showed few or little of the facial and growth features but 
presented with cognitive and behavioural difficulties. The use of other terminolo-
gies such as fetal alcohol effects (FAE), partial fetal alcohol syndrome (pFAS), and 
alcohol-related neurodevelopmental disorder (ARND) was applied [79–85]. The 
term fetal alcohol spectrum disorder has often been used to include the whole 
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Fig. 2 The typical facial features of fetal alcohol syndrome in two infants
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spectrum of effects of PAE. Cook et al. [84] recently updated the fetal alcohol spec-
trum disorder (FASD) diagnostic guidelines in Canada and the terminology has 
been changed to include two diagnostic categories: FASD with sentinel facial fea-
tures (FAS) and FASD without sentinel facial features (previously called partial 
FAS and ARND).

The diagnosis of FASD requires multidisciplinary team assessments to identify 
behavioural, cognitive, neurological and dysmorphic features congruent with FASD 
[82]. This means that referrals for suspected cases are sent to the multidisciplinary 
team for a thorough evaluation by other specialists that includes specialist physi-
cians (developmental paediatricians, geneticists) psychologists, speech and lan-
guage therapists, occupational therapists, education specialists and social work case 
workers. Details of the referral process, evaluations and steps in the diagnosis and 
management recommendations are described in detail elsewhere [82, 84].

Evaluation of the brain is an important component of diagnosis. This includes an 
in-depth assessment of brain function using standardized testing of 1. cognition, 2. 
memory, 3. language, 4. academic achievement, and 5. executive function (includ-
ing impulse control and hyperactivity, adaptive behaviour, social behaviour, social 
skills or social communication, attention, affect regulation) 6. motor skills, and neu-
rological assessment of brain size, neuroanatomy and neurophysiology (including 
neurologic examination and in some cases imaging)) [84].

There are many other conditions that can mimic FASD with an extensive differ-
ential diagnosis [86], and many co-morbid conditions are often co-occurring in 
FASD individuals, some conditions at rates greater than 100 times the general popu-
lation based on US data [87]. These children need to be identified as early as pos-
sible if therapy and interventions are to make a difference in their long-term 
prognosis, and so screening programs need to be introduced to afford early detec-
tion [88]. Many affected children and adults who are not identified or diagnosed 
until later in life can experience what has been referred to as secondary disabilities 
[89]. They can be lost in society and can experience apprehension by social service 
agents and foster care, school failure with early dropout, addiction problems, mental 
health difficulties, limited employment opportunities, homelessness and involve-
ment with crime and the justice system with frequent incarceration [89, 90].

The prevalence of fetal alcohol spectrum disorder (FASD) is estimated to be 
between 2.4% and 4.8% in a school-age population in the United States [91] and 
similar high rates of prevalence in a school-age population in Italy [92]. The highest 
rates at 18–26% were estimated in an at-risk rural and lower socioeconomic com-
munity in South Africa [93]. Because of the high prevalence in most populations 
studied and the high costs to society of the condition, prevention of drinking in 
pregnancy should be a high priority of governments, social and health care profes-
sionals, and the alcohol industry [87, 94–99].

It is relevant that several of the brain domain impairments observed in PAE and 
FASD individuals exhibit these difficulties, in part, because of teratogenic effects of 
alcohol on the cerebellum and their respective connections to other regions of the 
brain. For example, the functions of motor and balance, eye tracking and visual- 
spatial perception, cognitive abilities, learning, language, emotional responses and 
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attention pathways are connected to the cerebellum. Many children with FASD have 
impairments in these functions. Many research reports and clinical descriptions in 
the literature to support the above association of cerebellar dysfunction and FASD 
are presented in the following pages.

 Mechanisms for Alcohol Teratogenesis

Ethanol is toxic to the developing embryo and fetus. Alcohol readily crosses the 
placenta and the blood-brain barrier. Alcohol can affect normal placental function 
and cause altered blood flow, ischemia and hypoxia to the fetus. There is also an 
interaction between the direct toxic effects and indirect or maternally mediated 
effects of alcohol [100]. The mechanisms are complex, and involve variables in the 
timing, frequency and dose of exposure. Alcohol is known to act on or modulate 
many different target molecules with multiple mechanisms, activated at different 
stages of embryonic and fetal development or at different dose thresholds of expo-
sure, and stages of development, resulting in diverse phenotypes [101–103]. The 
earlier the exposure of teratogenic factors during organogenesis, the greater the 
harm that is likely to occur [74, 103–105].

 Molecular Pathways and Genetic Factors

PAE and FASD is perhaps best considered to be a prototypical multifactorial terato-
genic disorder whereby both genetic predisposing factors and environmental expo-
sures combine to have a variable phenotype (Fig. 3). It is evident that alcohol alone 
can be directly toxic to the embryo and fetus, but other factors also can either con-
tribute to risk (as aggravating factors) or have protective effects to some degree (a 
mitigating factor). PAE is both dose-dependent (acute vs chronic exposure; fre-
quency of exposure) and sensitive to critical periods of developmental stage. Factors 
shown to be protective include good nutrition prenatally and after birth [106], con-
sistent and nurturing child care, early diagnosis with earlier interventions, and 
favourable genetic factors (particularly those involved in alcohol metabolism). 
According to May and Gossage [107] maternal risk is multidimensional, including 
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factors related to quantity, frequency and timing of alcohol exposure; maternal age; 
number of pregnancies; number of times the mother has given birth; the mother’s 
body size; nutrition; socioeconomic status; metabolism; religion; spirituality; 
depression; other drug use; and social relationships. Some risk factors in the child 
include poor nutrition, exposure to neglect, physical or emotional or sexual abuse, 
repeated changes in caregivers and place of residence, “unfavourable” genetics and 
a diagnosis later in childhood [89]. It is well established that the genetic background 
of the mother and fetus influences the risk of ethanol-induced malformations [108]. 
The more efficient alcohol dehydrogenase (ADH) allele, ADH 1B*3, affords protec-
tion for FASD outcomes [109] while the maternal and fetal ADH1B*2 allele reduced 
the risk for FAS in a South African population (in comparison with ADH1B*1) 
[108]. For more recent reviews relevant to the importance of polymorphisms in the 
alcohol metabolizing pathway, the reader is referred to other reviews [110, 111] 
(Figs. 4 and 5).

A recent population-based prospective children’s health and development study 
from Britain confirmed a genetic risk to some children genetically predisposed to 
the effects of alcohol exposure in pregnancy [112]. The authors found four ADH 
genetic variants in alcohol metabolizing genes in 4167 children were strongly 
related to lower IQ at age 8, as was a risk allele score based on these 4 variants. All 
the mothers of these children took moderate amounts of alcohol during the preg-
nancy. The authors suggest that, even amongst women drinking moderate amounts 
of alcohol, subtle changes in exposure to alcohol due to an ability to metabolize the 
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Oxidative pathways of alcohol metabolism

Fig. 5 Oxidative pathways of alcohol metabolism. The enzymes alcohol dehydrogenase (ADH), 
cytochrome P450 2E1 (CYP2E1) and catalase all contribute to oxidative metabolism of alcohol. 
ADH, present in the fluid of the cell (i.e. cytosol), converts alcohol (i.e. ethanol) to acetaldehyde. 
This reaction involves an intermediate carrier of electrons, nicotinamide adenine dinucleotide 
(NAD+), which is reduced by two electrons to form NADH. Catalase, located in cell bodies called 
peroxisomes, requires hydrogen peroxide (H2O2) to oxidize alcohol. CYP2E1, present predomi-
nantly in the cell’s microsomes, assumes an important role in metabolizing ethanol to acetaldehyde 
at elevated ethanol concentrations. Acetaldehyde is metabolized mainly by aldehyde dehydroge-
nase 2 (ALDH2) in the mitochondria to form acetate and NADH. (From Chudley AE. Genetic 
factors in Fetal Alcohol Spectrum Disorder. In Fetal Alcohol Syndrome Disorder. Management 
and Policy Perspectives of FASD. E Riley, S. Clarren, J. Weinberg, E. Jonsson, New York, Wiley/
Blackwell, 109–126, 2011. Needs permission)

substrate may be important, and offers some support to the hypothesis that even 
small amounts of alcohol in utero have an effect on future cognitive outcomes.

Alterations in a number of molecular pathways have been suggested as candi-
dates responsible for the range of FASD phenotypes [101, 113, 114]. These include 
(1) alterations in the regulation of gene expression (e.g. reduced retinoic acid signal-
ling [115, 116]; homeobox gene expression, altered DNA methylation [117]; (2) 
interference with mitogenic and growth factor responses involved in neural stem 
cell proliferation, migration and differentiation [118]; (3) disturbances in molecules 
that mediate cell–cell interactions (L1, NCAM, loss of trophic support, e.g. [119, 
120]; (4) activation of molecular signalling controlling cell survival or death (growth 
factors deprivation, oxidative stress, apoptotic signalling and caspase-3 activation, 
suppression of NMDA glutamate and GABAA receptors, withdrawal-induced glu-
tamatergic excitotoxicity) [121, 122]; (5) derangements in glial proliferation, dif-
ferentiation and functioning [123].

Lombard et al. [124] utilized a computational candidate gene selection method 
that identified genes that may play a role in alcohol teratogenesis. Using a modifica-
tion of the methodology called Convergent Functional Genomics which combines 
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data from human and animal studies, this group identified a short list of high- 
probability candidate genes, with the inclusion of additional lines of evidence in the 
presence of limited expression studies in an animal model and the absence of FAS 
linkage studies. From a list of 87 genes, the group prioritized key biological path-
ways significantly over-represented among the top-ranked candidate genes. These 
pathways include the TGF-β signalling pathway, MAPK signalling pathway and the 
Hedgehog signalling pathway.

The genes in the TGF-β signalling pathway may play pivotal roles during 
embryogenesis and development and have a potential role in the distinct character-
istics associated with FAS, i.e. CNS dysfunction, craniofacial abnormalities and 
growth retardation. CNS dysfunction is the most severe and permanent consequence 
of in utero alcohol exposure and the only feature present in all diagnostic categories 
in FASD. These observations make the TGF-β signalling pathway an important con-
sideration, as it is essential in fetal and CNS development. Alcohol inhibits such 
TGF-β regulated processes as cortical cell proliferation and neuronal migration, 
disrupts axonal (the major extension of a nerve cell) growth and upregulates cell 
adhesion molecule expression [125]. TGF-β signalling pathway interacts with alco-
hol, and/or its metabolic breakdown products, and that alcohol may have a detri-
mental effect on the efficiency of this developmentally essential pathway.

The MAPK pathway transmits many signals, leading to growth, differentiation, 
inflammation and apoptosis responses [126]. This pathway is very complex and 
includes many protein components. MAPK-pathway components are involved in 
the regulation of meiosis, mitosis, and post-mitotic functions, and in cell differentia-
tion. The MAPK signalling pathway can be activated by a variety of stimuli as well 
as external stress factors, such as alcohol [127]. Using a mouse model of FAS, 
experimental manipulation of second-messenger pathways (that also impact on the 
MAPK pathway) completely reversed the action of ethanol on neuronal migration 
in vitro as well as in vivo [128].

The hedgehog signalling pathway was also identified to contain several genes 
within the candidate list. This signalling pathway is a highly conserved and key 
regulator of embryonic development. Knock-out mouse models lacking compo-
nents of this pathway have been observed to develop malformations in the CNS, 
musculoskeletal system, gastrointestinal tract and lungs [129]. FAS animal models 
have a similar craniofacial phenotype to mouse models treated with antibodies that 
block Hedgehog signalling components, specifically the sonic hedgehog (Shh) mol-
ecule [130–132]. Alcohol resulted in a significant decrease in Shh levels in the 
developing embryo, as well as a decrease in the level of other transcripts involved in 
Shh signalling. Addition of Shh after alcohol exposure led to fewer apoptotic (dead 
or dying) cranial neural crest cells, and a decrease in craniofacial anomalies [131]. 
Altered function of genes in the Hedgehog signalling pathway may thus contribute 
to the brain malformations and dysfunction in FASD.
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 Epigenetics

Epigenetic mechanism as a cause of the diverse effect of PAE and FASD is emerg-
ing as a potentially important mediator of the FASD phenotype [133–136]. 
Epigenetics refers to modifications of DNA and its packaging that alter the acces-
sibility of DNA to potentially regulate gene expression and cellular function with-
out changes to the underlying genomic sequences.[135, 137]. There are several 
mechanisms in which gene expression can be controlled and the most studied epi-
genetic modification in human populations is DNA methylation. DNA methylation 
generally represses gene expression, but this relationship is less well defined for 
CpGs located within gene bodies and intergenic regions [138]. Furthermore, DNA 
methylation is closely associated with several key developmental processes, includ-
ing genomic imprinting, tissue specification and differentiation [139]. Prenatal alco-
hol exposure has been shown in animal studies to alter methylation which is 
predicted to alter gene expression and thus alter developmental processes [134, 
140, 141].

There have been few human studies to test the role of changes in methylation and 
relationship to FASD. Several studies have demonstrated the effect of PAE on the 
H19 imprinted gene in both mice and humans [142, 143]. Altered expression of the 
H19 gene could interfere with normal growth mediated through the Igf2 gene. A 
smaller human study characterized the DNA methylation profile in buccal epithelial 
cells (BECs) from a small cohort of human FASD samples, identifying alterations 
in the epigenome of children with FASD, particularly within the protocadherin gene 
clusters which are involved in producing proteins involved in cell adhesion [144]. A 
genome-wide DNA methylation study in mouse embryos exposed to ethanol also 
identified significant changes within several imprinted genes including both H19 
and SLC22A18 [145]. The SLC22A18 gene is located in an imprinted region and 
plays a role in tumour suppression with other genes in the region mediating growth. 
A recent comparatively large study compared a cohort of FASD, and alcohol- 
exposed children with controls through genome-wide DNA methylation patterns of 
BECs were analysed (Portales). Results from the study by Portales-Casamar et al. 
[146] further confirmed these findings, as five down-methylated probes in H19 and 
six in SLC22A18 were altered in the FASD cohort. With validation, these findings 
provide initial insight into the molecular mechanisms underlying the effects of PAE 
on children and present a potential role for DNA methylation in the aetiology of 
FASD. It may also be possible to define a biomarker for alcohol exposure that may 
aid in the earlier diagnosis referral and treatment of this common disorder.

 FASD and the Cerebellum

The earliest autopsy studies described in humans diagnosed with FAS and PAE 
identified errors in cell migration, agenesis or thinning of the corpus callosum, and 
anomalies in the cerebellum and brain stem [73, 147–149]. Subsequent imaging 
studies with newer technology and resolution were consistent with autopsy findings 
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[150]. These showed overall volume reductions in the cranial, cerebral and cerebel-
lar vaults in FASD [151–156]. Furthermore, other studies have suggested that this 
decrease is not uniform but rather that the parietal lobe [153–155, 157], portions of 
the frontal lobe [154] and specific areas of the cerebellum [156, 158, 159] appear to 
be especially sensitive to alcohol insult (Fig. 6).

Studies of effects on brain volume using imaging techniques have reported dis-
proportionate size reductions in the cerebellum [153, 156, 160–162]. Cardenas et al. 
[162] studied PAE individuals using a cerebellar parcellation tool kit with 
T1-weighted MRI to assess cerebellar size. They concluded (1) PAE-related micro-
cephaly is strongly related to cerebellar hemispheric volumes, and (2) smaller cer-
ebellar measures in FASD are not fully explained by microcephaly, and suggest an 
additional direct effect of prenatal alcohol exposure on the cerebellum.

Experimental studies on animals confirmed that PAE targets certain areas of the 
brain, and particularly the cerebellum and the craniofacial structures [74, 163, 164]. 
Nathaniel et al. [165, 166] showed that the cerebellum and the area and circumfer-
ence of the vermal cerebellum were significantly reduced in ethanol-exposed pups 
compared with the pair-fed controls. Studies in rats showed that synaptic density of 
the molecular layer of the cerebellar lobule VI was decreased in 28-day-old animals 
which were exposed prenatally to ethanol [167].

Studies in the mouse cerebellum showed that microglia promote the death and 
subsequent engulfment of Purkinje cells that express activated caspase-3 when they 
are undergoing synaptogenesis [168]. Similar results were observed in a developing 
nematode C. elegans, where cells in the advanced caspase (CED-3)-dependent stage 
of degeneration could recover [169]. Sawant et al. [170] assessed fetal cerebellar 
Purkinje cell counts in an early-maturing region (lobules I-X) and a late-maturing 

Fig. 6 An MRI 
demonstrating a small 
cerebellum and vermis 
hypoplasia (arrow) in a 
child with FAS. (From fig. 
1 in Autti-Rämö I, Autti T, 
Korkman M, Kettunen S, 
Salonen O, Valanne 
L. MRI findings in children 
with school problems who 
had been exposed 
prenatally to alcohol. Dev 
Med Child Neurol. 2002 
Feb;44(2):98–106.) Needs 
permission)
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region (lobules VIc-VII) from mid-sagittal sections of the cerebellar vermis in 
sheep. Third trimester-equivalent ethanol exposure caused a significant reduction in 
the fetal cerebellar Purkinje cell volume density and Purkinje cell number only in 
the early-maturing region, and as expected, the first trimester-equivalent ethanol 
exposure resulted in significant reductions in both the early and late-maturing 
regions. The authors concluded prenatal ethanol exposure in the first trimester inter-
feres with the genesis of Purkinje cells in an unselective manner, whereas exposure 
during the third trimester selectively kills post-mitotic Purkinje cells in specific ver-
mal regions during a vulnerable period of differentiation and synaptogenesis.

Chronic prenatal alcohol exposure on the immature central nervous system 
(CNS) profoundly inhibits insulin and insulin-like growth factor (IGF) signalling 
[171, 172]. They conclude that insulin-stimulated central nervous system neuronal 
survival mechanisms are significantly impaired by chronic gestational exposure to 
ethanol, and that the abnormalities in insulin signalling mechanisms persist in the 
early postnatal period, which is critical for brain development. The same research 
group [173] observed ethanol dose-dependent reductions in cerebellar aspartyl 
(asparaginyl)-β-hydroxylase (AAH) immunoreactivity, and significant impairments 
in insulin- and IGF-I-stimulated directional motility in granule neurons isolated 
from ethanol-exposed rat pup cerebella. In addition to reduced motility, the authors 
observed that chronic in vivo ethanol exposure mainly reduced the percentages of 
migrant adherent cells, consistent with previous reports indicating that ethanol 
impairs neuronal cell adhesion mechanisms and neuronal migration [102, 120]. 
Tong et al. [174] showed that abnormalities in cerebellar function following chronic 
prenatal ethanol exposure were associated with inhibition of insulin/IGF, canonical 
Wnt, and Notch pathways. Thomas et al. [175] showed that neonatal ethanol expo-
sure induces cerebellar Purkinje and granule cell loss if exposure occurs before 
postnatal day (PD) 7, and that cerebellar damage may underlie ethanol-induced 
motor deficits. Exposure during PD 4/5 produced significantly more severe motor 
deficits and significantly more severe reductions in cerebellar and brainstem weights 
than did exposure later in life.

Another mechanism of disrupted development of the cerebellum involves synap-
tic defects. A recent study showed that reduced N-acetylaspartate NAA levels in 
children with PAE using MRS suggest impairment in the early developmental for-
mation of dendritic arborizations and synaptic connections [176]. The study showed 
additional finding of lower choline points to disrupted choline metabolism of mem-
brane phospholipids with potentially reduced content of dendrites and synapses. 
The alcohol-related alterations in glutamate plus glutamine that were identified sug-
gested a disruption of the glutamate–glutamine cycling involved in glutamatergic 
excitatory neurotransmission.

Fan et  al. [177] have confirmed abnormalities in eyeblink conditioning and 
FASD using the MRI and DTI analysis. Using DTI (which is used to assess the 
integrity of the white matter) they demonstrated a lower response (as measured by 
fractional anisotropy) bilaterally in the superior cerebellar peduncles and higher 
diffusivity in the left middle peduncle in the alcohol-exposed children compared to 
controls, and the findings correlated with poorer EBC performance. This may reflect 
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poorer myelination in these large bundles of myelinated nerve fibres that connect 
the cerebellum to the brain stem. The authors conclude that FASD deficits in EBC 
are likely attributed to poorer myelinization in key regions of the cerebellar 
peduncles.

 Clinical Consequences to Cerebellar Dysfunction in PAE and FASD

Many of the behavioural deficits seen in individuals with FASD, including spatial 
recognition, motor learning, and fine motor control, are mediated, in part, by the 
cerebellum [150]. There has been a longstanding recognition and association with 
cognitive function and cerebellar function [178–181]. Behavioural changes were 
clinically prominent in patients with lesions involving the posterior lobe of the cer-
ebellum and the vermis, and in some cases they were the most noticeable aspects of 
the presentation [178]. As noted previously, there is a frequent occurrence of cere-
bellar defects in autism [182], and also in ADHD children [183]. Berquin et  al. 
[183] showed vermal volume was significantly less in the boys with ADHD. This 
reduction involved mainly the posterior inferior lobe (lobules VIII to X) but not the 
posterior superior lobe (lobules VI to VII). A cerebello-thalamo-prefrontal circuit 
dysfunction may subserve the motor control, inhibition and executive function defi-
cits encountered in ADHD. It is of interest that FASD children frequently present 
with attention difficulties, and there may be an over-representation of autism in PAE 
and/or FASD children and adults [184].

In a study of children with heavy prenatal alcohol exposure experience, signifi-
cant deficits in isometric force production were identified that may impede their 
ability to perform basic motor skills and activities in everyday tasks [185]. In addi-
tion, another study’s results indicated children with FAS experience deficits in 
response programming and movement time production [186].

 Summary

This chapter summarizes select teratogenic agents to illustrate the importance in the 
recognition of aetiology, mechanisms of teratogenesis, pathogenesis and clinic 
impact these agents have on the developing human and particularly cerebellar struc-
tural and functional consequences. Where appropriate and relevant, the emerging 
role and effects of genetic and epigenetic mechanisms are discussed. Emphasis has 
been given to common conditions, and hence the greater attention to PAE and 
FASD. Because of the nature of teratogens, there is an opportunity to prevent the 
occurrence of phenotypic consequences of these exposures through various preven-
tion strategies.
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Kathleen Felton, Amanda Hogg, Lisa Liang, Christopher Aiken, 
Thomas Klonish, Frank van Landeghem, Tamra E. Werbowetski-Ogilvie, 
and David D. Eisenstat

Abstract In pediatric neuro-oncology practice, cerebellar tumors are often referred 
to as infratentorial tumors or tumors of the posterior fossa (a differential diagnosis 
is provided in Table 1); this anatomic region also contains the pons and medulla, 
which along with the midbrain comprise the brainstem. In Part I of this comprehen-
sive review, three important pediatric brain tumors usually localized to the cerebel-
lum are discussed (and summarized in Table 2): atypical teratoid/rhabdoid tumors 
(ATRT), pilocytic astrocytomas and ependymomas. In the companion chapter (Part 
II), an integrated clinical and molecular overview of medulloblastoma follows. 
These tumors have been selected, in part, due to their clinical significance as well as 
recent advances in their molecular genetics and pathological classification. For 
these entities and others, the histopathologic, cytogenetic, and molecular factors 
have been integrated into the updated 5th edition of the World Health Organization 
(WHO) classification of Tumors of the Central Nervous System (Louis et al. Neuro- 
Oncology. 2021;23(8):1231–51, 2021).
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 Introduction

Posterior fossa tumors are located in the infratentorial space that is separated 
from the supratentorial space by a meningeal fold, the cerebellar tentorium. 
Important neuroanatomical structures located within the infratentorial space are 
the cerebellum with the fourth ventricle and caudal part of the brainstem that 
includes the pons and medulla oblongata. The posterior fossa is the site of a 
variety of rare primary pediatric brain tumors, including tumors from brainstem 
glioma, meningioma, and schwannoma, hemangioblastoma, hemangiopericy-
toma, choroid plexus papilloma, and epidermoid cyst (Table  1, [115]). The 
three most common posterior fossa primary pediatric brain tumors are pilocytic 
astrocytoma (PA), ependymoma, and medulloblastoma (MB), all of which have 
associations with the cerebellum. While this chapter (Part I) will discuss pilo-
cytic astrocytoma, ependymoma, and atypical teratoid/rhabdoid tumors (ATRT), 
the following chapter (Part II) will focus primarily on MB. All of these tumors 
share three basic clinical and molecular characteristics (Table 2): (i) Clinical 
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Table 1 Posterior fossa mass: differential diagnosis

Pilocytic astrocytoma
Medulloblastoma
Ependymoma
Atypical teratoid/rhabdoid tumor (AT/RT)
Brainstem glioma
Metastatic deposits
Hemangioblastoma
Teratoma
Dermoid cyst
Meningioma
Vestibular schwannoma
Lymphoma
Ganglion cell tumor/ganglioglioma
Lhermitte-Duclos disease

Table 2 Posterior fossa tumors

Medulloblastoma Ependymoma ATRT
Pilocytic 
astrocytoma

Age group Peak incidence 
5–9 years

Mean age 6 years Peak incidence < 
3 years, median age at 
diagnosis 18 months

Peak incidence 
5–15 years

Gender M > F (1.6–1) M = F M > F (1.5:1) M = F

Molecular 
genetics

WNT, Sonic 
Hedgehog (SHH), 
non-WNT/non-SHH 
(WHO CNS 52021)

PFA: Epigenetic 
aberration PFB: 
Chromosomal 
aberration

Mutation or 
inactivation of INI1/
hSNF5/BAF47, 90% 
of tumors have loss of 
INI1 nuclear staining, 
indicative of biallelic 
inactivation of 
SMARCB1b

>70% of 
cerebellar PA 
have BRAF- 
KIAA fusion 
gene, germline 
mutations in 
NF1 with optic 
pathway PA

Histopathology Classic MB, 
desmoplastic MB, 
large cell MB, 
anaplastic MB, and 
MB with extensive 
nodularity (MBEN)

WHO grade II, III, 
myxopapillary, 
subependymoma, 
ependymoma

Characterized by 
rhabdoid cells, small 
round blue cell 
tumors

WHO grade I, 
rarely show 
anaplasia

Management Maximal safe 
surgical resection, 
craniospinal 
radiation (for those 
>3 years), and 
adjuvant 
chemotherapy

Surgical resection 
with adjuvant 
radiotherapy, 
chemotherapy in 
young children or 
patients with 
residual/recurrent 
disease

Surgical resection 
followed by intensive 
chemotherapy and 
focal or craniospinal 
radiation, high-dose 
chemotherapy with 
stem cell rescue is 
also an option

Surgical 
resection, 
chemotherapy/
targeted therapy 
for progressive 
disease; 
radiation is 
rarely indicated

Prognosis 10-year survival is 
63.3%; 5-year 
overall survival 
based on subgroups: 
WNT (>90%), SHH 
(~75%), group 3 
(40–60%), and 
group 4 (~75%)

5-year overall 
survival rate 
23–69%

Poor survival, though 
improving, with 
median survival of 10 
to 11 months

10-year overall 
survival 
rate > 90%
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symptoms are caused by posterior fossa compression and occluding hydroceph-
alus and result in increased intracranial pressure with headaches, progressive 
nausea, vomiting, lethargy, and drowsiness. Cerebellar tumor location fre-
quently causes ataxia. While these general symptoms do little to differentiate 
between posterior fossa tumors, children with ependymoma obstructing the 
foramen of Magendie show distinct torticollis which is rarely observed with 
other posterior fossa tumors, like MB or PA. (ii) Surgical tumor excision is the 
initial treatment of choice and, in cases where complete surgical removal is 
impossible, is combined with targeted radiotherapy, chemotherapy, or both 
depending on the tumor histology and age of the child. (iii) An emerging com-
mon molecular theme is that tumors located at different neuroanatomical loca-
tions have distinct molecular genetic signatures facilitated more recently by 
tumor DNA methylation- based classification [19]. This has important implica-
tions for the selection of future molecular targets and new therapeutic interven-
tion strategies.

 Atypical Teratoid/Rhabdoid Tumor (ATRT)

 Epidemiology

Atypical teratoid/rhabdoid tumors (ATRTs) are highly aggressive embryonal tumors 
that predominantly affect very young children. Until recently, this tumor type was 
thought to be universally fatal [52, 145]. These brain tumors have historically been 
characterized by their aggressive behavior and poor prognosis, with a median sur-
vival ranging from 6 to 11 months [23, 74, 100, 136]. ATRTs are the most common 
malignant CNS tumor affecting children younger than 6  months of age [39]. 
Approximately 70% of cases arise in children younger than one year of age, and 
90% occur before three years of age [60], with a median age of 18 months [42].

Overall, ATRTs are estimated to comprise 1–3% of pediatric brain tumors [77, 
82], but they account for 20% of CNS tumors in children under the age of 3 years 
[77]. The CBTRUS data from 2008 to 2012 determined the incidence of ATRT to be 
0.34 per 100,000 population in children aged 0–4 years, and 0.02 per 100,000 popu-
lation in children aged 5–9 years [98]. Relative survival estimates for embryonal 
tumors are low, but vary significantly by histology. The current 10-year survival rate 
for ATRT is 26.5% [98].

SEER data between 1973 and 2010 identified 174 cases of ATRT. There was a 
significantly higher incidence in males (56.3%), Caucasians (59.1%), and chil-
dren less than 3 years (80.5%). The most common primary sites were the cerebel-
lum (17.8%), the ventricles (16.1%), and the frontal lobe (12.6%) [77]. In the 

K. Felton et al.



393

past, ATRT was associated with an extremely poor prognosis, with mean overall 
survival ranging from 6 to 18  months [100, 141]. SEER data showed a mean 
overall survival of 3.2 ± 0.4 years, while overall and cancer-specific mortality 
were 63.2% and 56.3%, respectively. In earlier decades, most ATRT cases were 
treated with surgery alone (58.0%), followed by a combination of surgery and 
radiation (34.3%), no treatment (6.5%), and radiation alone (1.2%). However, 
since 2005, the use of combination therapy has increased significantly (16.1%). 
The rates of primary surgical resection and radiation therapy remain relatively 
unchanged. The longest survival has been observed among ATRT patients receiv-
ing combination therapy (5.9 ± 0.7 years). Multivariable analysis identified only 
distant metastases (OR 4.6) as independently associated with increased mortal-
ity, whereas combination therapy (OR 0.4) was associated with reduced mortal-
ity [77].

ATRTs were first described in 1987, but were not recognized as a separate 
tumor entity by the World Health Organization (WHO) until 1993 [70], when they 
were classified as an embryonal grade IV neoplasm [71]. ATRT is now defined by 
alterations of either INI1/SMARCB1 or, very rarely, BRG1/SMARCA4 [48, 66, 
156]. These alterations can be evaluated using immunohistochemistry for the cor-
responding proteins, with loss of nuclear expression correlating with genetic 
alteration.

Under the revised WHO 2016 and 2021 classifications, the diagnosis of ATRT 
requires confirmation of the characteristic molecular defect. If a tumor has histo-
logical features of ATRT but does not harbor either of the diagnostic genetic altera-
tions, only a descriptive diagnosis of CNS embryonal tumor with rhabdoid features 
can be made [81, 83, 84].

 Clinical Presentation

ATRTs arise in infratentorial or supratentorial locations in almost equal proportions, 
and rarely arise in the spine [8, 74, 150]. The clinical presentation of ATRT depends 
on the age of onset and the location of the tumor. Because ATRT grows rapidly, 
patients typically have a fairly short history of progressive symptoms, measured in 
days to weeks.

Children younger than 3 years usually present with non-specific symptoms and 
signs such as vomiting, lethargy, irritability, weight loss, enlarging head circumfer-
ence, and failure to thrive. Older patients commonly present with increased intracra-
nial pressure or localizing signs. Cranial nerve palsies, headache, and hemiplegia 
are common [110, 123, 124]. They may also develop ataxia, or regression of devel-
opmental milestones.

Primary Pediatric Brain Tumors of the Posterior Fossa: Part I
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 Diagnostic Imaging (Fig. 1)

Among 116 ATRTs in the European Rhabdoid Registry (EU-RHAB), 49% were 
located within the cerebellum or fourth ventricle, 34% were located in the hemi-
spheres, 4% were located in each of the mesencephalic and pineal regions, 1.7% 
were found in the spine, and 6% crossed anatomic borders such that origin could not 
be determined [39].

Imaging features have often been considered non-specific [110, 152]. Parmar 
et  al. [110] demonstrated that lesions are commonly large at presentation, with 
moderate- to-marked surrounding edema.

In the earlier literature, ATRTs were described as occurring more commonly in 
the infratentorial region, although this has not been reported in more recent series. 
Warmuth-Metz et  al. [152] described preoperative imaging examinations of 33 
patients with ATRT. In their series, supratentorial tumors were more frequent than 
infratentorial tumors in accordance with some of the largest series evaluating treat-
ment and outcome in ATRT [52, 141]. Supratentorial tumors and those affecting 
both compartments were significantly larger than those in the infratentorial area. 
15% of their patients showed meningeal dissemination at diagnosis, and this was 
significantly correlated with a younger age.

Most (52%) of the tumors were surrounded by some edema. Cysts or necrosis 
were present in 75% of tumors. Cysts in a peripheral position between the solid part 
of the tumor and the normal brain were seen in 39% of patients, with an even distri-
bution between the infra- and supratentorial compartments. This feature seems to be 
a regular finding in ATRTs [152]. On CT scan, ATRTs are solid or mixed lesions. 
The solid portion is commonly hyper-dense on non-enhanced CT, a feature attrib-
uted to the tumor’s high cellularity and high nuclear to cytoplasmic ratio [110, 152].

Fig. 1 17-month male with a 3.5 cm atypical teratoid/rhabdoid tumor, localized to the right cere-
bellar hemisphere with a central solid component and several cystic loculations. (a) T1 post- 
gadolinium. (b) T2-weighted image
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Fig. 2 (a) Rhabdoid component of an atypical teratoid/rhabdoid tumor. (b) Diagnostic loss of 
nuclear expression of INI1 in tumor cells, in contrast to INI1 expression in endothelial cells (serve 
as internal positive controls)

On MRI, signal intensity values on T1- and T2-weighted MR images vary widely 
[152]. An example is provided in Fig. 1. Parmar et al. [110] found that greater than 
50% of these tumors revealed iso-intensity on T1-weighted images and more than 
80% were either hypo-intense or heterogeneous on T2-weighted images. Moderate 
to marked enhancement with gadolinium was seen in all tumors. All intra-axial 
tumors showed extensive vasogenic edema. Hemorrhage was seen in 46% of 
patients [110, 152], calcification in 36%, necrosis in 46%, and cysts in 18%. These 
tumors also had a high propensity for subarachnoid dissemination, with 46% show-
ing the presence of leptomeningeal metastasis at the time of presentation [110].

Parmar et al. [110] recommend that contrast-enhanced MR imaging of the brain 
and spine should be undertaken at the time of presentation and on follow-up because 
of the high rate of recurrence and leptomeningeal spread. Similar to most malignan-
cies, ATRT cannot be reliably distinguished from other malignant brain tumors 
based on clinical history or radiographic evaluation. Surgery is necessary to obtain 
tissue to confirm the diagnosis of ATRT.

 Tumor Pathology (Fig. 2)

Macroscopically, ATRT are soft, pinkish-red, often well-circumscribed tumors with 
areas of necrosis and hemorrhages. These tumors arise in the cerebellopontine angle 
and variably infiltrate the cerebellum and brain stem. ATRTs consist of heteroge-
neous cells with various morphological appearances [123]. Small undifferentiated 
embryonal cells are the most common tumor cell population, characterized by high 
nuclear:cytoplasmic ratio. They often contain a vesicular nucleus, a single nucleo-
lus, and show less nuclear hyperchromasia than cells of other CNS embryonal 
tumors. Small groups or scattered rhabdoid cells typically with eccentrically placed 
nucleus, large eosinophilic nucleolus, abundant eosinophilic cytoplasm, and eosino-
philic globular “ball-like” cytoplasmic inclusion are encountered in most ATRTs 

Primary Pediatric Brain Tumors of the Posterior Fossa: Part I



396

(Fig. 2a) but may be absent. In only a minority of ATRTs are rhabdoid cells the 
predominating component. Cells with glial, neuronal, epithelial, or mesenchymal 
features are observed in most tumors [89]. Occasionally, multinucleated or pleo-
morphic giant cells are noted. The mitotic and proliferative index is markedly 
increased, in particular in pediatric ATRTs. Zonal necrosis and hemorrhage are 
common. Characteristically, a fine fibrovascular network is present within the tumor 
but microvascular proliferation may occur.

By immunohistochemistry, expression of glial fibrillary acidic protein (GFAP), 
epithelial membrane antigen (EMA), smooth muscle alpha-actin (SMA), and 
vimentin is found most consistently. Often, small groups or scattered tumor cells are 
immunopositive for synaptophysin, microtubule-associated protein 2 (MAP2), neu-
rofilament protein (NFP), desmin, cytokeratins, and HMB-45. ATRTs lack nuclear 
expression of INI1, the SMARCB1 gene product, in contrast to normal tissue ([67]; 
Fig. 2b) and most other tumors, in particular other CNS embryonal tumors, poly-
morphous gliomas, or rhabdoid meningiomas. ATRTs with retained INI1 expres-
sion but with loss of nuclear expression of BRG1, the SMARCA4 gene product, 
are rare.

Cribriform neuroepithelial tumor (CRINET) also lacks nuclear INI1 expression 
but shows no rhabdoid tumor component. This rare tumor is morphologically char-
acterized by cribriform strands and trabeculae of epithelial cells [50] and is provi-
sionally recognized as a distinct tumor class in the WHO CNS 5 [84]. Molecular 
findings of CRINETs including the methylation pattern are similar to those seen in 
the molecular ATRT-TYR subgroup, but the morphological appearance of the 
CRINET tumor cells and the cribriform architecture are different [61]. Diagnosis of 
CRINETs is important since these tumors may have a favorable prognosis.

 Molecular Genetics and Biology

In order to specifically target ATRT with novel therapeutics, it is important to clearly 
understand the driving molecular mechanisms. In ATRT, recent analysis has eluci-
dated recurring mutations in genes for components of the chromatin remodeling 
complex, SWItch/sucrose nonfermentable (SWI/SNF) in patients with ATRT; with 
SMARCB1 being most commonly mutated, followed rarely by SMARCA4 [39, 49, 
78, 79]. Both SMARCB1 and SMARCA4 are essential components of the SWI/SNF 
complex, which is important for lineage specification, maintenance of stem cell 
pluripotency, and gene regulation [60, 154]. The SWI/SNF complex has important 
functions in neural development [31,158]. Using iPSC and cerebral organoid mod-
els, it was demonstrated that SMARCB1 loss interacts with neurodevelopmental 
processes in the process of ATRT tumorigenesis [107].

ATRTs are associated with mutation or inactivation of the INI1/hSNF5/BAF47 
tumor suppressor locus on chromosome 22q11.23 in almost all cases [120, 149]. 
ATRT is characterized by the biallelic loss of SMARCB1 expression [123]. Up to 
35% of patients with CNS rhabdoid tumors have germline SMARCB1 alterations, 
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and a rhabdoid tumor predisposition syndrome characterized by the development of 
multiple rhabdoid tumors [16, 28, 129]. The majority of germline mutations occur 
de novo, and transmission across generations is rare [3, 41].

Although findings from small patient cohorts suggest molecular heterogeneity 
may underlie the clinical spectrum seen in ATRT tumors, cumulative genomic anal-
yses, including whole exome sequencing studies, have shown SMARCB1 loss as the 
only recurrent genetic event in ATRT [69, 78, 79]. Reconciling clinical heterogene-
ity with tumor biology has been challenging, because it is a rare disease and there 
have been few biological and clinical studies [17], especially ones which studied 
CNS ATRT independently from non-CNS rhabdoid tumors [145].

Despite the absence of recurring genomic alterations beyond SMARCB1 (and 
rarely other SWI/SNF complex members, such as SMARCA4), biologically dis-
tinctive subsets of ATRT have been identified [60, 145]. Torchia et al. [145] identi-
fied two molecular subgroups of SMARCB1 mutated ATRT with distinct features. 
Subsequently, Johann et al. [60] identified three distinctive subsets of ATRT, associ-
ated with differences in demographics, tumor location, and type of SMARCB1 
alterations through the use of DNA methylation arrays and gene expression arrays 
[60]. Johann et al. [60] termed these molecular subgroups ATRT-TYR, ATRT-SHH, 
and ATRT-MYC.

The international consensus following the transcription and methylation profil-
ing studies by Torchia et al. [145] and Johann et al. [60] supports the existence of 
three different molecular subgroups [53]. From a clinical perspective, Torchia et al. 
[145] stratified these tumors into average, high, and very high-risk groups by inte-
gration of tumor molecular subgrouping and clinical prognostic factors. They 
defined Group 1 ATRT tumors as those most highly enriched for genes involved in 
brain or neural development and axonal guidance, and demonstrated upregulation 
of genes involved in the NOTCH developmental signaling pathway. The genes 
FABP7 and ASCL1, markers of primitive neural lineage, were among the most 
highly upregulated genes [94, 131]. The HES5/6 and DLL1/3 genes, which are also 
involved in the NOTCH pathway, were also highly enriched in group 1 ATRTs [24]. 
Torchia et al. [145] found that as a group-specific marker, ASCL1 showed robust 
immunostaining and allowed for distinction between ASCL1-positive and ASCL1- 
negative tumors. ASCL1 expression correlated with superior overall survival (OS), 
but not with progression-free survival (PFS) for all patients treated with chemo-
therapy [145].

In group 2 ATRTs, neural lineage marker expression was significantly decreased. 
Instead, these tumors have enrichment of genes involved in mesenchymal differen-
tiation and the bone morphogenetic protein (BMP) signaling pathway including 
BMP4, BAMBI, SOST, SERPINF1, FBN2, and MSX1 loci [145]. These tumors were 
significantly associated with infratentorial location, in contrast to group 1 ATRTs 
which were mostly supratentorial. In a small cohort of patients who did not receive 
radiation as part of their primary therapy, ASCL1 positive group 1 tumors correlated 
significantly with higher 5-year PFS and 5-year OS relative to the ASCL1 negative 
group 2 tumors. On univariate analysis, it was noted that ASCL1 expression and not 
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supratentorial tumor location was a significant prognostic factor for both PFS and 
OS in non-irradiated children [145].

The ATRT-TYR subset represented approximately one-third of cases and was 
characterized by elevated expression of melanosomal markers such as TYR (the 
gene encoding tyrosinase), MITF, or DCT. TYR is highly expressed in almost every 
case in this subgroup, hence the designation ATRT-TYR. Cases in this subset were 
primarily infratentorial, with most presenting in children aged 0 to 1 years and 77% 
showing chromosome 22q loss, which was only seen in 20% and 12% of ATRT- 
SHH and ATRT-MYCN tumors, respectively.

The ATRT-SHH subset is heterogeneous and represented approximately 40% of 
cases characterized by elevated expression of genes in the sonic hedgehog (SHH) 
pathway such as GLI2 and MYCN. Cases in this subset occurred with near equal 
frequencies in supratentorial and infratentorial regions. While most presented 
before age 2  years, approximately one-third of cases presented between 2 and 
5 years. The group led by Kool and Hasselblatt further investigated 65 ATRT-SHH 
tumors using DNA methylation and t-SNE analysis and identified three molecular 
subgroups with different clinical, histopathological, and prognostic significance, 
SHH-1A (younger, supratentorial, less favorable), SHH-1B (older, supratentorial, 
more favorable), and SHH-2 (younger, infratentorial, less favorable outcomes) [35].

The ATRT-MYC subset represented approximately one-fourth of cases and was 
characterized by elevated expression of MYC. They tended to occur in the supraten-
torial region. While most ATRT-MYC cases occurred by age 5 years, this subset 
represented the most common subset diagnosed at age 6 years and older. Focal dele-
tions of SMARCB1 were the most common mechanism of SMARCB1 loss for 
this subset.

Despite few differences between the ATRT subgroups at the genetic level, there 
were remarkable epigenetic differences. Both ATRT-TYR and ATRT-SHH revealed 
genome-wide hypermethylation, particularly in promoter regions. ATRT-MYCN 
showed hypomethylation. These differentially methylated regions have a large 
impact on the expression of genes located within them, including tumor suppressor 
genes (which are silenced) and oncogenes (which are activated) in regions where 
the partially methylated domain is absent. SMARCB1 expression should be evalu-
ated in all young patients with embryonal tumors to confirm the diagnosis of ATRT 
rather than medulloblastoma or other CNS embryonal tumors.

A recent study assessed primary cilia which are present in all forms of 
ATRT. Although the three molecular subgroups demonstrate different patterns of 
ciliogenesis-associated gene expression, the ATRT-TYR subgroup is particularly 
enriched. Of potential therapeutic interest, disruption of primary ciliogenesis using 
SMARCB1-deficient Drosophila (Snr1 gene) or ATRT orthotopic xenograft mouse 
models resulted in improved survival in these model systems in vivo [14].

Epigenetic-based therapies using newer histone deacetylase inhibitors (HDACi) 
such as panobinostat may mimic histone acetylation in SMARCB1-deficient tumor 
cells. Increased neuronal differentiation, decreased tumor growth, and increased 
survival were evident in vitro and in vivo [25]. Proteosome inhibitors, especially 
marizomib which crosses the blood-brain barrier, have shown promising results 
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in vitro and in vivo [93]. A potentially promising preclinical study combined dual 
mTORC1/2 inhibition using TAK-228 and the BH3 mimetic obatoclax, a potent 
inducer of apoptosis and oxidative stress in ATRT tumor cells in vitro and in vivo, 
extending survival in orthotopic xenografts [109]. Furthermore, B7-H3 targeted 
CAR T cells administered either intracerebroventricularly or intratumorally in cere-
bral ATRT mouse xenografts; this provides a proof of principle for developing CAR 
T-cell therapies against this difficult-to-treat tumor in patients [142].

 Therapy and Prognosis

Survival rates for patients with ATRT are generally poor, but have improved over 
recent years due to the development of clinical trials specifically designed for ATRT 
with stringent inclusion and exclusion criteria, and a renewed focus on the vulner-
ability of affected young patients [46]. To date, no standard of therapy for ATRT has 
been defined. A significant proportion of ATRTs arise in children younger than 
3 years. Treatment with conventional postoperative chemotherapy alone results in 
less than 20% survival [45, 47, 141]. Small cohorts of patients treated with ATRT- 
specific regimens have achieved survival rates greater than 50% [23, 141]. Improved 
survival has also been demonstrated for patients with gross total resection [23, 74].

Most recent treatment strategies recommend maximal safe surgical resection fol-
lowed by intensive chemotherapy with or without intrathecal chemotherapy and 
focal or craniospinal radiation. However, treatment depends on the location of the 
tumor, initial staging, and age of the patient at presentation. The management of 
ATRT with conventional chemotherapy has been consistently associated with very 
poor outcomes and most series have supported the benefit of aggressive multimodal 
therapy [74, 118]. While a multi-modal approach that combines maximal safe resec-
tion, craniospinal irradiation, and intensive chemotherapy is considered optimal for 
long-term cure, the young age of many patients and/or involvement of critical struc-
tures within the CNS limits this approach [60, 135].

In recent years, treatment approaches in Canada have been more homogeneous 
and based on the use of high-dose chemotherapy [74]. Treatment factors that predict 
survival have included the use of multimodality regimens containing radiotherapy, 
intrathecal chemotherapy, and/or high-dose therapy with stem cell rescue [8, 23, 44, 
74, 141]. The series of patients investigated by Lafay-Cousin et al. [74] highlights 
the encouraging results associated with the use of high-dose chemotherapy and 
describes a proportion of long-term survivors (50%) who did not receive radiation. 
ACNS0333, a Children’s Oncology Group trial, was the first ATRT-specific study to 
prospectively evaluate the safety and efficacy of high-dose chemotherapy and 
3D-conformal RT. Fifty-four of 65 evaluable patients were <3 years of age; 4-year 
EFS and OS for the entire cohort were 37% and 43%, respectively [119].

Novel therapy that improves outcomes while it decreases toxicity is greatly 
needed. As ATRT is typically a tumor of infancy, radiation-free approaches are often 
used in patients to minimize long-term neurodevelopmental sequelae [145]. Current 
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curative therapy for ATRT is perhaps excessively toxic, including the acute toxicity 
of high-dose chemotherapy [44], and long-term toxicity of radiotherapy in young 
children. A major focus of current research is on the development of more focal, and 
potentially less harmful, methods of radiotherapy, such as proton beam radiation.

Data from a small cohort by Torchia et al. [145] suggests that children with local-
ized supratentorial ATRT, with high ASCL1 expression and complete surgical resec-
tion, represented a favorable-risk category with a projected 5-year PFS and OS of 
60%, with disease recurrence in only about 33% of patients [145]. This will have to 
be validated in future trials. The EU-RHAB registry analyzed 143 patients with 
clinical, genetic, and treatment data accrued from 2009 to 2017; DNA methylation 
profiles were available for 84 patients. Negative prognostic factors included: germ-
line SMARCB1 mutation, age <1  year, a non-ATRT-TYR molecular signature, 
metastatic or synchronous tumors, and omission of RT; however, only age and a 
non-TYR signature were independent negative prognostic factors for OS [40].

Investigators from the St. Jude Children’s Research Hospital’s consortium 
assessed the clinical relevance of ATRT molecular subgroups in 74 patients enrolled 
on two prospective clinical trials, SBMB03 (ages 3–21 years) and SJYC07 (ages 
<3  years). Methylation profiling was feasible in 64 patients and demonstrated 
ATRT-TYR in 21, ATRT-SHH in 30, and ATRT-MYC in 13 patients, respectively. 
The SHH was associated with metastatic disease. ATRT-TYR was prognostic for 
better survival in the infant group [148]. Ongoing, prospective studies will more 
precisely define the outcome of children with ATRT in the current era.

 Future Considerations

The availability of ATRT cell lines and accurate preclinical mouse models have 
enhanced the discovery of novel therapeutic targets for ATRT [54]. Current targets 
under consideration are aurora A kinase, cyclin D1, EZH2, and insulin-like growth 
factor-1. Based upon initial observations by Wetmore et al. [153], the Aurora Kinase 
A inhibitor Alisertib was evaluated in patients with recurrent/progressive ATRT in a 
Phase II clinical trial [55, 147]. Of 30 evaluable patients, stable disease (in 8) and 
partial response (in 1) were seen with PFS of 30% and 13.3% at 6  months and 
1 year, respectively, and a 1-year OS of 36.7% [147].

Results from Torchia et al. [145] suggest that inhibitors of NOTCH, BMP, and 
MAPK signaling and angiogenesis may be important novel, subgroup-specific ther-
apeutic agents for ATRT.
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 Pilocytic Astrocytoma

 Epidemiology

Pilocytic astrocytomas (PAs) are a distinct histologic and biologic subset of gliomas 
and account for 5% of all gliomas. PAs are typically well-circumscribed WHO 
grade 1 tumors that have a slow growth rate. PA is the most common primary brain 
tumor in 0- to 19- year olds. Pilocytic astrocytoma accounts for 15% of children and 
adolescents (0–14  years) and 18% of childhood (0–14  years) primary brain 
tumors [18].

 Clinical Presentation

Pilocytic astrocytomas arise throughout the CNS, although most frequently occur in 
the cerebellum (42%), followed by the supratentorial compartment (36%), the optic 
pathway and hypothalamus (9%), brainstem (9%), and the spinal cord (2%) [18]. A 
rare variant termed “pilomyxoid astrocytoma” occurs predominantly in children 
under 1 year of age, in the hypothalamic/chiasmatic region. Pilomyxoid astrocy-
toma was categorized as WHO grade II in the 2007 WHO Classification due to 
reports of an increased likelihood of recurrence, but tumor grading for this entity 
was omitted in the 2016 update [81, 83] and the entity was not included in the 2021 
update [84].

The presentation of PAs is generally insidious in onset due to the slow growth of 
the tumor. Identification of early symptoms is dependent on tumor localization and 
the ability of the patient to communicate neurological change. Cerebellar tumors 
commonly present with ataxia, cranial nerve defects, and signs of increased intra-
cranial pressure (headache, nausea, and vomiting).

 Diagnostic Imaging (Fig. 3)

Neuroimaging in PA is used to determine the size and the site of origin of the lesion, 
establishing a primary diagnosis. PA is easily imaged on both CT and MR imaging. 
On CT images, PAs classically present as a mass with both a solid and cystic com-
ponent. The solid component usually enhances with contrast and the cyst wall has 
variable enhancement. The appearance of a cyst with a mural nodule is almost 
pathognomonic for PA. On MR imaging, the cystic and solid components are better 
appreciated. PAs are typically hypo- or iso-intense on T1-weighted sequences and 
hyperintense on T2-weighted or FLAIR sequences ([2]; Fig. 3). RAPNO (Response 
Assessment in Pediatric Neuro-Oncology) guidelines for the neuroradiological 

Primary Pediatric Brain Tumors of the Posterior Fossa: Part I



402

Fig. 3 4-year-old with a large 5.4 × 5.8 × 5.2 cm mass, a pilocytic astrocytoma located in the left 
cerebellum with extension across the vermis into the medial aspect of the right cerebellar hemi-
sphere. (a) T1 post-gadolinium. (b) T2-weighed image

Fig. 4 (a) Pilocytic astrocytomas are characterized by a biphasic tumor architecture, with a solid 
fibrillary and a loose microcystic component (H&E). (b) Strong expression of the astrocytic 
marker glial fibrillary acidic protein (GFAP) is present in bipolar tumor cells of solid fibrillary 
areas in contrast to multicystic tumor cells of microcystic areas

assessment to treatment of pediatric low-grade gliomas, including PAs, have been 
published [34].

 Tumor Pathology (Fig. 4)

Pilocytic astrocytomas (PAs), WHO grade I, are macroscopically soft, grey, often 
mucoid, and well-demarcated tumors. Many cerebellar PAs form cysts within or 
adjacent to the tumor, with a contrast-enhancing solid mural nodule, similar to 
hemangioblastomas and gangliogliomas. These cysts contain clear, yellow, or 
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brown protein-rich fluid and are often demarcated by a compressed tumor area with 
variable fibrous changes.

Histopathologically, PAs characteristically have a biphasic architecture, com-
posed of a loosely textured microcystic and a compact fibrillary component (Fig. 4a). 
The microcystic component contains astrocytes with short multipolar process, 
whereas the astrocytes of the fibrillary component have uni- or bipolar hair-like 
(“piloid”) processes. Rosenthal fibers, amorphous sausage-like eosinophilic struc-
tures, are more frequent in the fibrillary component but may be absent. Eosinophilic 
granular bodies (EGBs), proteinaceous material positive in periodic acid Schiff 
(PAS) stain, are present in the multicystic component of some PAs. Both structures 
can be found in other neoplasms and in non-neoplastic lesions. Many PAs are rich 
in vasculature, most often hyalinized vessels are present but serpent-like microvas-
cular proliferations with glomeruloid vessels are also frequent. Often, these glo-
meruloid proliferations are lining the tumor cyst wall. Some classical PAs show 
zonal, ischemic-like necrosis. Neither the presence of necrosis, microvascular pro-
liferations nor of degenerative features such as nuclear hyperchromatism, pleomor-
phism, and pseudoinclusions indicate a worse prognosis. Rare mitotic figures may 
be present in classical PAs. Diffuse brisk mitotic activity, usually defined as >4 
mitotic figures per 10 high-power fields, indicates anaplastic change and has prog-
nostic implications [122]. Necrosis is often present but not associated with anapla-
sia. The prognosis of these “anaplastic” pilocytic astrocytomas is better than in 
glioblastomas. However, the most recent WHO CNS tumor classification does not 
formally recognize this entity; certainly, PAs with histologic features of anaplasia 
are more common in adults [84, 92].

Classical PAs are well-circumscribed tumors which typically show only focal 
infiltration of surrounding brain tissue. In contrast, some PAs mimic diffusely infil-
trating astrocytomas by morphology, tumor architecture, and infiltration behavior 
but have a much better prognosis than diffusely infiltrating astrocytomas. This dif-
fuse “variant” of pilocytic astrocytomas (dPAs) has a similar prognosis compared 
to classical PAs [51], and approximately 50% harbor the most common BK fusion 
variant [57]. Thus, molecular findings and biological behavior suggest that classical 
PAs and dPAs represent a single tumor entity. Diffuse astrocytomas account for 
approximately 15% of all cerebellar astrocytic tumors but most are high-grade 
astrocytomas. Particularly cerebellar PAs often show infiltration of leptomeninges 
with focal desmoplasia, a finding that does not predict subarachnoid dissemination 
or CSF spread, and does not affect prognosis.

Pilomyxoid astrocytoma (PMA) is typically found in the hypothalamic region 
but rarely occurs in the cerebellar location. PMA is characterized by monomor-
phous bipolar tumor cells, often in angiocentric arrangement, and myxoid tumor 
matrix [143]. PMAs are associated with a more aggressive clinical course; thus, 
these tumors were assigned to WHO grade II in the 2007 CNS tumor classification. 
However, the tumor grade for PMA has been reconsidered in the subsequent upgrade 
[81] and the entity is no longer provided with a distinct classification in the 2021 
update [84].
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PAs characteristically show strong immunoreactivity for glial fibrillary acidic 
protein (GFAP), S100, and OLIG2. The bipolar tumor cells of compact areas are 
strongly immunopositive for GFAP whereas multipolar tumor cells show weaker 
expression (Fig.  4b). Rosenthal fibers are often GFAP immunopositive in their 
fibril-rich periphery. Weak expression of synaptophysin may be present in occa-
sional PAs and PMAs.

 Molecular Genetics and Biology

Molecular classification of PAs has been slowly evolving since 2008. High- 
throughput genetic sequencing and gene expression profiling has made information 
regarding the biologic processes necessary for tumor growth and a molecularly 
based approach to therapy possible. Alterations in the RAS/RAF/mitogen-activated 
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway are 
found in the majority of PAs [62, 92, 138]. Ryall et  al. [126] integrated tumor 
molecular genetics in over 1000 clinically annotated pediatric low-grade gliomas 
and demonstrated that ~85% of these tumors harbored a driver genetic alteration of 
the RAS/MAPK pathway and that most of the remaining tumors in which a driver 
alteration could not be identified, there was evidence of RAS/MAPK pathway 
upregulation [126].

The most common genetic alteration found in PAs is the tandem duplication at 
7q34, which produces a fusion between two genes, BRAF and KIAA1549. This 
“B-K” gene fusion occurs in up to 70% of PAs and is most frequent in cerebellar 
tumors (72–98%) and less frequent in the other sites such as the optic pathway 
(43–69%) [11, 13, 58, 62]. The N-terminal end of KIAA1549 replaces the N-terminal 
end of BRAF, producing a constitutively activated BRAF kinase domain and activa-
tion of the Ras/ERK pathway [13, 38, 64, 133]. The fusion protein can be derived 
from at least nine different fusion site combinations, with the most common fusion 
between KIAA1549 exon 16 and BRAF exon 9 [63, 160]. Other gene fusions leading 
to constitutively active BRAF protein fusion products have also been described in 
PAs, including FAM131B, RNF130, CLCN6, MKRN1, GNA11, QK1, FZR1, and 
MACF1 [26, 38, 63, 112, 160].

Activating gene mutations have also been described in a subset of PAs (2–9%). 
The BRAFV600E mutation results in constitutively active BRAF protein. This muta-
tion, unlike the KIAA1549-BRAF fusion protein, is not specific to PAs and can be 
identified in other pediatric and adult CNS tumors, including pleomorphic xantho-
astrocytoma and ganglion cell tumors (formerly ganglioglioma) [13, 65, 84, 128, 
133]. The BRAFinsT mutation has also been described in PA in up to 3% of tumor 
samples specifically in the young adult population [29].

Multiple additional genetic alterations have been described in PAs. KRAS somatic 
mutations occur at low frequency (3–5%) [27, 42]. Aberrations affecting FGFR1, 
including point mutations (P.N546K, P.K656E), FGFR1-TACC1 fusions, and inter-
nal tandem duplications have been identified [63, 134, 160]. NTRK family receptor 
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kinase mutations have also been reported at a low rate, due to gene fusions leading 
to kinase activation [63, 160]. FGFR1 alterations are more frequent in midline 
structures, whereas BRAF V600E and NTRK family fusions are more frequent in 
supratentorial tumors [75, 132, 140]. There is unknown significance of reported 
41% of PAs having MYB protein upregulation. Genomic alterations of MYB have 
only been found in diffuse gliomas [138] with the designation of a distinct classifi-
cation in the WHO CNS 5 update of diffuse astrocytoma, MYB- or MYBL1 altered 
or angiocentric glioma [84].

PAs, particularly optic pathway tumors, occur in up to 20% of neurofibromatosis 
type 1 (NF1) patients. NF1 is an autosomal dominant syndrome due to mutations in 
the Nf1 tumor suppressor gene leading to an increase in the active form of Ras and 
constitutive activation of the Ras/ERK signaling pathway [9, 27, 78, 79, 130]. In 
general, patients with NF1-associated PAs may have a more indolent course and are 
less likely to require treatment. If treated with carboplatin and vincristine chemo-
therapy, NF1 patients with PA have better EFS and experience less toxicity [6].

Epigenetic analysis revealed a hypomethylation signature specific to PA that 
included many differentially methylated developmental genes and suggests aberrant 
expression of developmental regulatory processes as a genetic cause of PA [59, 75]. 
Both transcriptome and methylome analyses revealed a distinctive pattern for 
infratentorial versus supratentorial PA [75, 132, 140].

 Therapy and Prognosis

Overall, PA has an excellent prognosis with 10-year survival over 90% [18]. The 
treatment is primarily surgical and prognosis depends on the completeness of the 
resection. Patients who undergo sub-total resection are often treated with chemo-
therapy at tumor progression to improve long-term survival. Until recently, the stan-
dard of care has been carboplatin with vincristine, both administered intravenously 
(I.V.) [99, 101] and demonstrated less toxicity than an alternative multi-agent regi-
men in the COG A9952 randomized clinical trial [7]. Vinblastine given weekly 
I.V. has demonstrated similar efficacy as the carboplatin/vincristine regimen, with 
partially non-overlapping toxicities. Lassaletta et  al., on behalf of the Canadian 
Pediatric Brain Tumour Consortium, assessed the activity of vinblastine in 54 
therapy- naïve children with pediatric low-grade gliomas, of which almost half were 
PAs. Five-year OS and PFS were 94.4% and 53.2%, respectively [76]. Radiation 
therapy is effective but in clinical neuro-oncology practice it is often deferred in 
pediatric patients and young adults until two or more salvage therapies using either 
chemotherapy or targeted therapies have failed. Chemotherapy following low-grade 
glioma protocols is the preferred option for younger patients due to the long-term 
sequelae of radiation in the developing neuroaxis [113]. Infrequently major postop-
erative sequelae occur, such as postoperative posterior fossa mutism syndrome 
(<5% of patients) or marked new brainstem or cerebellar deficits [96]. More com-
monly, mild fine motor or balance issue occur, but often do not interfere with 
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activities of daily living. Long-term survivors usually have close-to-normal aca-
demic achievement and measures of quality of life are usually normal [1, 162].

 Current and Future Considerations

Although targeted therapies may eventually become the standard of care for newly 
diagnosed PA, identification of the BRAF V600E mutation suggests a poorer prog-
nosis and these tumors may respond to BRAF inhibitor therapies, such as with 
vemurafenib and dabrafenib [21]. Nobre et al. retrospectively reviewed 56 patients 
with pediatric low-grade gliomas; the majority were PAs. 80% of these patients 
demonstrated objective responses compared to less than 30% treated with conven-
tional chemotherapy. While >75% of responding patients progressed after discon-
tinuing BRAF inhibitors, 90% of this cohort responded upon BRAF inhibitor 
rechallenge [95]. In recently completed Phase I/II clinical trials using MEK inhibi-
tors, such as selumetinib and trametinib, there was demonstrated efficacy in both 
NF1 and non-NF1 patients with PA and other pediatric low-grade gliomas along 
with a tolerable side-effect profile [10, 32, 33, 114].

Since resistance to BRAF inhibitors is often encountered, combination with a 
MEK inhibitor is under study in recurrent/progressive disease [37]. Bouffet and col-
leagues recently reported an interim analysis of a randomized Phase II study com-
paring first-line dabrafenib and trametinib versus carboplatin and vincristine in 
newly diagnosed patients with BRAF V600E mutations (NCT02684058). The ORR 
(CR + PR) and median PFS were 47% and 20.1 months with dabrafenib and tra-
metinib versus 11% and 7.4 months with carboplatin plus vincristine, respectively. 
The safety profile was very good [15]. Future clinical trials for pediatric low-grade 
gliomas including PAs will incorporate molecular genetic tumor profiling and tar-
geted therapies will be carefully integrated, including NTRK and FGFR inhibitors 
where indicated [92, 102, 137].

 Ependymoma

 Epidemiology

Ependymomas are primary tumors in the CNS and account for 10% of childhood 
brain tumors and about 30% of tumors in children less than 3 years of age [82, 87]. 
The majority of ependymomas are seen in children less than 7  years old, with 
25–51% of cases in children under 3 years of age. A second peak is observed in 
adults in the third to fifth decades, although the histologic subtypes and neuroana-
tomic compartments vary considerably between children and adults. Ependymomas 
originate from the radial glial stem cells and therefore can occur at any site along the 
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ventricular system and in the spinal cord [139]. The anatomical distribution varies 
according to age, supratentorial compartment and spinal cord being more common 
sites in older children and adults, with infratentorial locations more frequent in 
infants and children [82]. Overall, supratentorial tumors account for one-third, 
whereas posterior fossa tumors, including the cerebellum, account for two-thirds of 
ependymomas.

 Clinical Presentation

The presentation of ependymoma depends on the location of the tumor and often, 
due to slow growing nature of the tumor, onset of symptoms and signs can be insidi-
ous. Posterior fossa lesions present with symptoms of raised intracranial pressure, 
such as headache, nausea and vomiting, ataxia, vertigo, and papilledema. Cranial 
nerve palsies are also common, involving cranial nerves VI to X. When tumors arise 
in the supratentorial compartment, seizures or focal neurologic deficits may be pres-
ent. Tumors involving the spinal cord present with deficits due to compression of 
nerve roots or ascending/descending nerve tracts, and are related to the anatomical 
level of the tumor.

 Diagnostic Imaging (Fig. 5)

Imaging in ependymomas, similar to other CNS tumors, is used to establish a pri-
mary diagnosis and determine the size and site of origin of the lesion. Ependymoma 
can be imaged using both CT and MRI. On CT, the tumors are usually isodense to 
the brain parenchyma and may have calcifications in up to 50% of cases [22]. On 
T1-weighted MR imaging, ependymomas are usually hypointense or isotense to 
normal gray matter and heterogeneously enhance after contract administration. On 
T2-weighted images, they are typically isodense or slightly hyperintense to normal 
gray matter. Foci of signal heterogeneity representing methemoglobin, hemosid-
erin, necrosis, calcification, encased native vessels, or tumor vascularity are com-
monly seen [22] (Fig. 5). It is important to image the entire craniospinal axis, as 
neuroaxis dissemination can occur in 3–11% of cases [111].

 Tumor Pathology (Fig. 6)

Ependymomas are well-circumscribed, soft, occasionally cystic, tan-colored tumors 
that most often arise from the fourth ventricle in the posterior fossa. Commonly, 
they extend through the foramina of Luschka and Magendie into the cerebellopon-
tine angle and basal cisterns where they often enclose cranial nerves and vessels.
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Fig. 5 15-month male with ependymoma with cystic and solid components localized to the fourth 
ventricle measuring 3.9 × 3.4 cm. (a) T1 post-gadolinium image. (b) T2-weighted image

Fig. 6 (a) Ependymoma, WHO grade III, with markedly increased mitotic activity. Five mitotic 
figures are seen in this high-power field. (b) Cytoplasmic dot- and ring-like immunoreactivity for 
epithelial membrane antigen (EMA) in an ependymoma, grade III

Histopathologically, ependymal tumors are sharply demarcated and present with 
a wide spectrum of cell morphology but share key features: pseudorosettes are peri-
vascular arrangements of tumor cells which fibrillary cell processes create perivas-
cular anuclear zones (Fig. 6a). True ependymal rosettes are composed of mostly 
cuboidal tumor cells with a central lumen.

Classic ependymoma (WHO grade II) is characterized by small uniform tumor 
cells with round to oval nuclei in variable cell density. In some ependymomas, nod-
ules of high tumor cell density are present, often associated with an increased 
mitotic activity. Pseudorosettes are a typical feature of ependymomas, whereas true 
ependymal rosettes are seen in ~25%. Hemorrhages and dystrophic calcifications 
are often observed. Other morphological variants include papillary, clear cell, and 
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tanycytic ependymomas (WHO grade II) which occur less often in the poste-
rior fossa.

Anaplastic ependymoma (WHO grade III) is defined by a high cell density, high 
mitotic activity, microvascular proliferation, and necrosis but the association 
between histological grade and clinical outcome is controversial. Age of the patient 
and anatomical site of the tumor appear to be more reliable prognostic factors in 
ependymomas. One interesting subgroup, the Trisomy 19 ependymomas, are WHO 
grade III, usually located in the supratentorial compartment and are often associ-
ated with chromosome 9 deletions and/or deletion of 13q21.31-31.2 [125]. In the 
WHO CNS 5 classification, ependymomas may be classed as either WHO grades II 
or III, but the term anaplastic ependymoma is no longer used [30, 84].

Immunohistochemically, the vast majority of ependymomas express S100, 
vimentin, glial fibrillary acidic protein (GFAP), and epithelial membrane antigen 
(EMA). Expression of GFAP is typically present on the luminal surface of true 
ependymal rosettes and in the perivascular anuclear zones of pseudorosettes. Many 
ependymomas show dot- or ring-like cytoplasmic immunopositivity for EMA 
(Fig. 6b). In contrast to supratentorial ependymomas, expression of L1CAM, which 
indicates rearrangement of ZFTA (zinc finger translocation associated), formerly 
known as C11orf95 [84], is not detectable in posterior fossa ependymomas.

 Molecular Genetics and Biology

Risk stratification based on histological categorization is difficult in ependymomas, 
and variability has been seen in outcomes despite similarities in microscopic char-
acteristics. Therefore, molecular analyses have been undertaken to elucidate the 
pathogenesis of these tumors. In genomic studies, supratentorial ependymomas 
have been found to have genomic clustering in the region of chromosome 11q12.1-
 q13.3. This region undergoes gross interchromosomal and intrachromosomal rear-
rangements, leading to the fusion of ZFTA (C11orf95) and RELA, a downstream 
target of NF-κB, an important regulator of cell maintenance. This rearrangement 
has been found in up to 70% of supratentorial ependymomas [108]. A second recur-
rent gene fusion product, ZFTA (Cllorf95) and YAP1, has also been described pre-
dominantly in the younger age group and appears to have a favorable survival 
outcome, although further studies need to occur to elucidate its role in tumorigene-
sis [104]. Three recent studies have further provided important insights into these 
ZFTA fused supratentorial ependymomas (ZFTAfus ST-EPN) [5, 73, 161].

Posterior fossa ependymomas have also been studied in genomic analyses, lead-
ing to the transcriptional profiles of posterior fossa (PF) group A (PFA) and group 
B (PFB) ([155]; Table 3). PFA patients are usually younger, with tumors located 
laterally and extending to the cerebellopontine angle. Overall PFA tumors are more 
aggressive in nature and are associated with poor outcomes. These tumors demon-
strate relatively stable cytogenetics, although up to 25% of PFA ependymoma has a 
gain of chromosome 1q, correlating with a poor prognosis [85, 104]. Furthermore, 
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Table 3 Posterior fossa ependymoma summary

PFA PFB

Age group Children Adults and older adolescents
Gender M > F M < F
Prognosis Poor Good
Molecular 
genetics

Epigenetic modification, LAMA-2 
expression

Chromosomal modification, NELL2 
expression

Histopathology Ependymoma, WHO grade II/III
Loss of H3 K27me3 expression

Ependymoma, WHO grade II/III
H3 K27me3 retained

loss of chromosome 6q identifies a very high-risk group of PFA ependymomas [12]. 
Upregulation of multiple cancer-related signaling pathways has been observed, 
although they are not specific to ependymomas, including PDGFR, EGFR, VEGF, 
MAPK, and TGFβ [151, 155]. Epigenetic modification, specifically hypermethyl-
ation, has also been demonstrated in PFA tumors. The genes that are CpG methyl-
ated in PFA ependymomas are similar to the genes that are silenced by the polycomb 
repressive complex 2 (PRC2) in embryonic stem cells. PRC2 controls all forms of 
methylation of lysine 27 (K27) on histone H3 and is responsible for silencing genes 
involved in cell differentiation and tumorigenesis [36, 97]. Of clinicopathological 
significance, there is frequently global loss of repressive Histone H3K27me3 (tri-
methylation) or overexpression of EZHIP (enhancer of Zeste homologs inhibitory 
protein, formerly Cxorf67) in PFA ependymomas, that can readily distinguish them 
from PFB tumors [56, 84, 105, 116]. Subsequent methylation array profiling of 675 
PFA ependymomas identified 2 subgroups, PFA-1 and PFA-II, and 9 subtypes 
[103]. Panwalker et al. [106] also identified increased expression of H3 K27 acety-
lation (H3K27ac) in PFA tumors, including enrichment of this activating mark at 
several important glycolytic and TCA cycle-related genes, such as hexokinase-2 
and pyruvate dehydrogenase [106].

PFB ependymomas often arise in older patients, occur more frequently in the 
midline, and are less likely to metastasize. PFB tumors demonstrate greater copy 
number variation with gain of chromosome 9, 15q and 18 or loss of chromosome 6q 
and 22q. These cytogenetic abnormalities have been associated with improved 
prognosis [72, 155]. PFB ependymoma does not demonstrate the epigenetic modi-
fications and hypermethylation profiles when compared to PFA tumors. However, 
insights into the molecular heterogeneity of PFB tumors provide some guidance 
toward future therapeutic strategies [20].

An unsupervised gene clustering and multivariate analysis revealed a 10-gene 
signature that qualified as an independent predictor of recurrence-free survival in 
infratentorial ependymoma [151]. As a result of these key discoveries, novel thera-
peutic strategies can now be tested that target PRC2 and alter DNA methylation 
status in ependymoma [43, 127].
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 Therapy and Prognosis

Overall the prognosis for ependymoma is relatively unsatisfactory with overall sur-
vival reported as 50–71%. For posterior fossa ependymoma, molecular subgroup is 
an important prognostic factor independent of age and extent of resection [117]. 
Local control with surgical resection is clinically important as ependymoma is often 
locally invasive with low metastatic potential. Leptomeningeal dissemination is 
seen at diagnosis in only 7–12% of cases and recurrent disease most frequently 
occurs at the primary tumor site [90]. Survival of patients with GTR ranges from 66 
to 80%, compared to sub-total resection survival of 0–47%. Unfortunately, GTR can 
only be achieved in approximately 50% of cases due to tumor location and risk of 
unacceptable neurological injury, often requiring patients to be managed with a 
tracheostomy and/or gastric feeding tubes [88]. Postoperative involved field radia-
tion therapy is standard of care for patients older than 1 year with non-disseminated 
ependymoma to lower the risk of local recurrence. Many children in the USA and 
other countries are being referred to treatment centers that offer proton radiotherapy 
instead of the more widely available 3D conformal photon-based delivery systems. 
The role of chemotherapy is less well established and is being investigated in clini-
cal trials. The goal of chemotherapy is to defer radiation therapy in younger patients 
and as an adjunct for patients with residual disease to improve overall survival [80]. 
However, chemotherapy has not made a significant impact on this disease [68]. The 
COG ACNS0121 clinical trial reinforced the backbone of maximal safe resection 
and adjuvant conformal RT to the involved field but did not demonstrate the efficacy 
of a chemotherapy window in children with ependymoma [91]. The SIOP 
Ependymoma I clinical trial reinforced the conclusions of ACNS0121. However, 
there was a modest response of some patients to VEC chemotherapy, with the che-
motherapy response rate of 65.5% exceeding the pre-specified 45% [121].

Relapsed ependymoma has an extremely poor prognosis with 5-year overall sur-
vival rate reported at 28%, with the median time to recurrence or progression dis-
tributed at 18–45  months [144, 159]. Reoperation, when safe to proceed, and 
re-irradiation (either to the involved field or craniospinal) is the usual treatment 
strategy for locally recurrent/progressive posterior fossa ependymoma [86, 146]. 
Many patients are offered oral or intravenous etoposide (CNS 2001 4, [4]), but the 
clinical impact has not been very encouraging.

 Future Considerations

The impact of chemotherapy as a therapeutic strategy to delay radiotherapy or per-
mit “second look” surgery remains unclear. Although several Phase II studies offer-
ing EGFR inhibitors and/or other receptor tyrosine kinase inhibitors to patients with 
recurrent, progressive ependymomas have been completed or are ongoing, results 
have been less than promising [127]. Given the more common presentation of the 
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genomically “bland” PFA tumors in childhood, epigenetic, metabolic (e.g., metfor-
min) and CAR T-cell directed therapies (including HER2- and B7-H3-specific) may 
hold more promise [68, 106, 127, 157].
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molecular subgroups that exhibit different genomic alterations, gene expression 
profiles, response to treatment, and developmental cell of origin: WNT, Sonic 
Hedgehog (SHH), Group 3, and Group 4. Additional stratification into as many as 
14 molecular subtypes underscores the extensive heterogeneity and complexity 
both between and within the major subgroups. While targeted therapies are being 
evaluated, the current treatment for MB still consists of aggressive surgery, high 
doses of cytotoxic chemotherapy, and radiation to the whole brain and spinal cord. 
These treatments do not take into account the extensive heterogeneity between and 
within MB subgroups. Cancer stem cells also play an important role in treatment 
failure and recurrence in MB, adding an additional layer of complexity in the form 
of cellular heterogeneity. This chapter will focus on the clinical presentation of MB, 
current treatment options including proton-based radiotherapy, histological classifi-
cations, and a detailed description of the current molecular subgroups and subtypes, 
followed by exploration of cellular heterogeneity in the molecular era. Further dis-
section of tumor heterogeneity and identification of subgroup and subtype-specific 
biomarkers will be crucial in the development of novel diagnostic markers and tar-
geted therapies for these highly aggressive pediatric brain tumors.

Keywords Posterior fossa tumors · Medulloblastoma · Pediatric · Tumor 
heterogeneity · Cancer stem cell

 Medulloblastoma (MB)

Medulloblastoma (MB) is the most common primary malignant pediatric brain can-
cer in North America [1]. Primary MB tumors typically develop in the cerebellum 
and fourth ventricle with frequent dissemination through the cerebrospinal fluid 
(CSF) driving metastasis and tumor recurrence [1]. MB is a highly heterogeneous 
disease consisting of a mixture of malignant cells that display distinct genetic, 
molecular, and cellular characteristics including differences in morphology, gene 
expression profiles, genetic abnormalities, cellular differentiation, proliferation, 
response to therapy, and metastatic potential. Extensive heterogeneity exists not 
only between tumors (intertumoral heterogeneity) but also within tumors (intratu-
moral heterogeneity). It is now known that tumor heterogeneity plays an important 
role in treatment failure and recurrence in brain tumors.

 Clinical Presentation

MBs typically arise in the cerebellum with tumor cells filling the fourth ventricle, 
resulting in obstructive hydrocephalus [2]. Due to the rapid growth of MBs, patients 
generally have a short duration of symptomatology prior to presentation, ranging 
from 1 to 3 months [3, 4]. Signs and symptoms can be divided into four categories:
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 (a) Increased intracranial pressure

Some degree of hydrocephalus and increased intracranial pressure is present in 
nearly 80% of patients at the time of diagnosis. Initial nonspecific headaches are 
frequently followed by more severe headaches, especially morning headaches, nau-
sea, and vomiting. Papilledema is often present at diagnosis. In infants and very 
young children, the clinical presentation may not be classical. Instead, they may 
present with papilledema, vomiting, irritability, delayed closure of the fontanelles, 
or bulging of the anterior fontanelle with open sutures and increasing head circum-
ference. Due to dilatation of the third ventricle, very young children are also more 
likely to have paralysis of upward gaze, a phenomenon known as “sun setting” eyes 
[2]. In older patients, especially adolescents and young adults, MBs tend to be 
located more laterally involving the lateral cerebellar hemispheres and/or the 
cerebello- pontine angle. With a more lateral presentation, hydrocephalus is slightly 
less common [2]. Headaches may be nonspecific for 2–5 months before the tumor 
becomes large enough to cause CSF obstruction and localizing cranial nerve deficits 
including unilateral sixth, seventh, and eighth cranial nerve dysfunction. Hoarseness 
and swallowing difficulties are less common but may be present at the time of diag-
nosis due to lower cranial nerve dysfunction.

 (b) Localizing signs

Midline cerebellar deficits are also common including truncal and gait ataxia. 
Head tilt may be present due to cerebellar tonsillar herniation with some associated 
neck rigidity [2]. Infrequently, in midline tumors, other cranial nerve deficits may 
be present such as facial weakness, hoarseness, or swallowing difficulties.

 (c) Non-localizing signs

Subjective diplopia (double vision) occurs in less than 50% of patients and is 
most commonly due to a non-localizing abducens nerve palsy [2].

 (d) Signs of metastatic disease

Up to 30% of patients with MB will have disseminated disease at the time of 
diagnosis; however, symptoms attributed to leptomeningeal dissemination are rela-
tively infrequent [2]. Occasionally, children who have disseminated disease at diag-
nosis will complain of neck and back pain relatively early in the course of their 
illness.

 Current Treatment and Traditional Therapies

The current treatment for MB consists of aggressive surgery followed by high doses 
of cytotoxic chemotherapy and radiation to the whole brain and spinal cord depend-
ing on the age of the patient [5]. Risk-stratification and treatment regimens over the 
past 20  years have been determined by the presence of metastasis, extent of 
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resection at diagnoses, and age of the patient [6]. Based on these criteria, patients 
are stratified into three treatment groups. The first treatment group consists of chil-
dren greater than 3 years of age with standard (or average) risk disease with 80–85% 
overall survival. These patients have total or near total resection of their tumors and 
no evidence of dissemination in the CSF [6, 7]. Michalski et al. recently [8] described 
the results of the COG ACNS0331 (NCT00085735) randomized clinical trial for 
patients with average and low-risk disease. Of significance, a radiation boost to the 
involved field was not inferior to a boost to the entire posterior fossa, the former 
standard of care (hazard ratio 0.97). However, the overall dose reduction of cranio-
spinal irradiation (CSI) from 24.3 Gy (standard dose) to 18 Gy in children aged 
3–7 years was inferior with a hazard ratio of 1.67.

The second treatment group consists of children greater than 3 years of age with 
high-risk disease. This is defined as the presence of greater than 1.5 cm2 of residual 
tumor after surgery or dissemination/metastasis with large cell/anaplastic histology. 
In the recently published results of the COG ACNS0332 (NCT00392327), Leary 
et al. [9] described the outcomes for 261 evaluable patients, 72% with metastatic 
disease. Five-year event-free survival (EFS) was 66.4% and overall survival (OS) 
was 73%. The 13-cis-retinoic acid maintenance arm was closed early due to clinical 
futility. Of interest, in patients who received weekly intravenous carboplatin during 
CSI, 5-year EFS was 66.4% compared with 59.2% in patients not receiving carbo-
platin. Yet, with molecular subgroup analysis (see below), patients with Group 3 
MBs had a 73.2% 5-year EFS with carboplatin compared to 53.7% without, account-
ing for almost all the patients for whom carboplatin provided improved outcomes. 
Patients with high-risk disease are at an increased risk for tumor recurrence or death 
compared to the average-risk disease group [6]. Lastly, children younger than 
3 years of age (infants) constitute a separate treatment group. Although radiation 
therapy consisting of CSI with a boost to either the posterior fossa or involved field 
can improve disease control and is typically used for MB patients over 3 years of 
age, it is not recommended for children under 3  years old at diagnosis. These 
patients are treated with high-dose chemotherapy to delay or remove the need for 
radiation therapy and allow the nervous system an opportunity to further develop [10].

 Proton Versus Photon Radiotherapy – The Emerging 
Standard of Care for MB

In the past decade, there has been a paradigm shift in how radiation therapy (RT) is 
delivered to children, especially those with brain tumors including MB.  Tumor- 
targeting using protons, a positively charged molecule with mass, results in less 
radiation to surrounding anatomic structures in the brain and body, thereby having 
the potential to reduce long-term neurocognitive and neuroendocrine sequelae in 
survivors. However, using protons increases LET (linear energy transfer) and RBE 
(relative biological effectiveness), with the potential for increased neurotoxicity, 
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such as brainstem injury, radiation necrosis, and the development of second malig-
nant neoplasms (SMN). Although photon-based linear accelerators remain the 
international standard of care, in the USA, UK, Europe, and Japan, proton beam 
therapy (PBT) units have been established with patterns of referral from countries, 
such as Canada and Australia, where this therapy is being implemented or planned.

In 2016, Yock et al. [11] showed a global decrease in IQ points at 1.5 points/year 
with protons. In total, 55% of patients experienced neuroendocrine deficits, includ-
ing growth hormone (GH) deficiency. There was only one late brainstem injury. In 
another study involving a mixed cohort of children with brain tumors, Kahalley 
et al. [12] established that photon-based RT results in an overall reduction of 8.7 
global IQ points compared to protons (p = 0.011). A landmark follow-up study by 
the same group [13] focused exclusively on MB demonstrated superior neurocogni-
tive outcomes in children and adolescents who received proton-based RT, including 
global IQ, perceptual reasoning, and working memory. However, there was no dif-
ference between photons and protons for verbal reasoning or processing speed.

In a cohort of 88 patients with standard risk MB, patterns of failure following 
protons and photons were similar [14]. Giantsoudi et al. [15] studied a cohort of 111 
patients and identified only 3.6% with any evidence of CNS injury; there was an 
increased risk in patients who received a radiation boost to the posterior fossa rather 
than the involved field. Eaton et al. [16] evaluated 77 children with standard risk 
MB. Compared to those who received photon-based RT, patients treated with pro-
tons had decreased hypothyroidism (23% versus 69%), sex hormone deficiency (3% 
versus 19%), and fewer required endocrine replacement therapy (55% versus 78%). 
However, there were no significant differences regarding GH deficiency or the inci-
dence of precocious puberty.

Baligaet al. [17] established the 10-year cumulative incidence of SMN at 5.6% 
and brainstem injury at 2.1% using proton-based RT. In another study focused on 
the incidence of second tumors, Indelicato et al. [18] evaluated their large referral- 
based proton RT database (n = 1713; 22% were less than 3 years of age). Of this 
population, 2.2% had a tumor predisposition syndrome such as type 1 neurofibro-
matosis or Li Fraumeni Syndrome. However, only 11 patients developed an SMN 
with a calculated 5- and 10-year cumulative incidence of 0.8% and 3.1%, respec-
tively; 10/11 received proton RT at less than 5 years of age.

 Histological Classification

Traditionally, MB has been classified based on histological properties. MB appears 
as a small round blue cell tumor. This is a characteristic seen upon hematoxylin and 
eosin (H&E) staining attributed to the presence of large nuclei and scant cytoplasm 
in less differentiated cells [19]. MB can be divided into four main histological vari-
ants. They are known as classic, large cell/anaplastic (LCA), desmoplastic/nodular, 
and MB with extensive nodularity (Fig. 1) [20].
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Fig. 1 (a) Classic medulloblastoma (MB), WHO grade IV, hematoxylin and eosin (H&E). (b) 
Large cell/anaplastic MB, WHO grade IV (H&E). (c) Desmoplastic/nodular MB, WHO grade IV 
stained with Ki67, a proliferation marker. (d) MB with extensive nodularity, WHO grade IV 
(H&E). (e) MB with extensive nodularity, WHO grade IV, reticulin stain. (f) MB with extensive 
nodularity, WHO grade IV, synaptophysin immunostaining

Classic Histology accounts for about 70% of MBs and is characterized by the 
presence of small, round, undifferentiated cells with a high nuclear-to-cytoplasmic 
ratio and hyperchromatic nuclei (Fig.  1a). Approximately 40% of classic MBs 
exhibit Homer-Wright rosettes which are circular nuclear arrays with fine tangled 
cytoplasmic processes [20]. Most classic MBs express, at least focally, neuronal 
antigens such as synaptophysin, class III beta-tubulin, or microtubule-associated 
protein 2 (MAP2). GFAP expression in the undifferentiated tumor cells is demon-
strated in approximately 10% of classic MB. In some classic MB, no expression of 
neuronal or glial antigens is observed. A strong relationship is observed between 
CTNNB1 (encoding β-catenin) mutations and nuclear accumulation of β-catenin 
which is indicative of WNT pathway activation in classic MB [21]. Nuclear accu-
mulation of β-catenin is associated with excellent clinical outcomes in these tumors 
[21, 22].

Large Cell/Anaplastic (LCA) MB is the most malignant histologic variant and is 
characterized by nuclear pleiomorphism with large nuclei, prominent nucleoli, and 
abundant cytoplasm (Fig. 1b) [20, 23]. Most large cell MBs are heterogeneous and 
contain intermingled areas of anaplastic and/or classic tumor cells. Expression of 
synaptophysin is detected in nearly all tumors whereas neurofilament protein or 
chromogranin may not be found by immunohistochemistry, while GFAP expression 
is rare. Cell-cell wrapping is a typical feature of anaplastic MBs with the engulfed 
cell often undergoing cannibalistic cell death.

Anaplastic MBs consist of tumor cells with enlarged pleomorphic nuclei and 
distinctive nuclear molding [20, 23, 24]. The nuclear:cytoplasmic ratio is high. 
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Mitotic, proliferative, and apoptotic indices are high comparable to those in large 
cell MBs. Cell-cell wrapping is a typical feature of anaplastic MBs with the engulfed 
cell often undergoing cannibalistic cell death (Fig. 1b). The anaplastic tumor com-
ponent should be the most prominent to diagnose this rare histopathological MB 
subtype. The combination of large cell and anaplastic components is often seen and 
accounts for approximately 10% of all MBs.

Desmoplastic/Nodular MBs consist of nodules of differentiated neurocytic cells 
surrounded by internodular, reticulin-rich zones (Fig. 1c). The internodular zones 
contain densely packed, highly proliferative cells [20]. Immunohistochemically, 
Ki67 labeling index is higher in internodular zones reflecting the higher mitotic 
activity of the typically undifferentiated cells present in these areas [20]. Expression 
of the neuronal markers synaptophysin or NeuN is variable, whereas GFAP expres-
sion can be detected only in some desmoplastic/nodular MBs, preferentially in 
internodular zones. Rare desmoplastic/nodular MBs show nuclear accumulation of 
p53 and this may indicate an underlying somatic or germline mutation in TP53.

MB with Extensive Nodularity is characterized by an expanded nodular or lobu-
lar architecture with elongated reticulin-free, neuropil-rich zones containing uni-
form neurocytic tumor cells [25] (Fig. 1d). Frequently, no mitotic activity of these 
cells is detected. The neurocytic cells often exhibit a streaming pattern. The inter-
nodular zones may be reduced compared to desmoplastic/nodular MBs but show the 
same characteristic features of undifferentiated, proliferating tumor cells within a 
dense reticulin network (Fig. 1e). By immunohistochemistry, neurocytic cells show 
a strong expression of synaptophysin (Fig. 1f) or NeuN.

 Emergence of the MB Molecular Subtypes

Despite the existence of histopathological subtyping, treatment regimens for all MB 
patients are currently based on metastatic stage and age at the time of diagnosis. It 
was therefore necessary to develop a new risk stratification system that could reli-
ably classify MB tumors while better predicting clinical outcome and enabling 
more appropriate selection of treatment options. The advancement of multi-omic 
sequencing technologies has led to the complete restructuring of the different types 
of MB and this has now been incorporated into the World Health Organization 
(WHO) Classification of Central Nervous System Tumors [1].

The first gene expression array profiling studies [26–29] led to the stratification 
of MB into 4 consensus molecular subgroups: WNT, Sonic Hedgehog (SHH), 
Group 3, and Group 4 (Fig. 2) [19, 26–29]. These initial findings were followed by 
large-scale next-generation sequencing (NGS) studies of primary MB samples that 
provided deep insight into their heterogeneity and biological complexity [30–32]. 
Indeed, the 4 distinct molecular subgroups exhibit different genomic alterations, 
gene expression profiles, and response to treatment (Fig.  2). Following the 
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integration of this new molecular classification scheme by the WHO in 2016, deeper 
analyses of clinical trends and molecular features further resolved each of the 4 
major subgroups into multiple subtypes [33–35], with the most recent consensus 
outlined below for each. No longer considered a single disease entity, these studies 
underscored the highly heterogeneous nature of MB. The extensive multi-omic bulk 
tumor analyses on MB patient samples have recently been summarized in the com-
prehensive review by Hovestadt et al. [36].

This novel molecular classification system has been adopted by the WHO [1], 
can reliably predict patient prognosis, and has the potential to drive subgroup or 
even subtype-specific treatment regimens. Importantly, molecular subgrouping/sub-
typing has improved risk stratification, thus providing opportunities to reduce ther-
apy for lower-risk groups like WNT and intensify therapy for the very high-risk 
Group 3 MB patients [37]. Sequencing has also revealed mechanisms of resistance 
to targeted therapies. For example, SHH pathway inhibitors are not predicted to 
work on tumors harboring mutations in downstream SHH pathway genes such as 
SUFU or MYCN [38–41]. While targeted therapies are currently being evaluated in 
clinical trials (SJDAWN (NCT03434262), SJELIOT (NCT04023669), or SJMB012 
(NCT01878617)), over 30% of MB patients die while survivors are left with the 
long-term physical and cognitive side effects associated with chemotherapy and 
radiation [6]. For the highest risk groups of childhood MB patients, novel therapies 
are urgently needed.

The molecular subgroups differ in their demographics, gene expression profiles, 
somatic genetic events, clinical outcomes, and histology (Fig. 2) [1, 19]. The SHH 
and WNT variants are aptly named for the well-established signaling pathways that 

Subgroup WNT SHH Group roup 4

Frequency 10% 30% 25 5%
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Fig. 2 MB is divided into 4 major molecular subgroups that exhibit different genomic alterations, 
gene expression profiles, response to treatment and developmental cell of origin. The 4 subgroups 
are WNT, Sonic Hedgehog (SHH), Group 3, and Group 4
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drive tumorigenesis. Less is known about the molecular basis of disease progression 
for the most aggressive Group 3 MB tumors that exhibit the worst prognosis, as well 
as for Group 4 MBs. Each MB subgroup and their corresponding substructure or 
subtypes will now be discussed in detail below. Demographics, genetic/molecular 
alterations, cell of origin, mouse models, and treatment options for each will be 
described.

 WNT-Activated MB

WNT tumors are characterized by the upregulation of genes associated with the 
WNT signaling pathway and have a favorable prognosis with a 5-year survival rate 
of 95% or better (Figs. 2 and 3) [19, 36]. The small percentage that do not survive 
long-term often succumb to complications from therapy or secondary neoplasms 
caused by radiation therapy rather than WNT MB recurrence [42].

 Demographics

WNT tumors represent the smallest group of MBs at just 10% of diagnoses. These 
tumors have a nearly equal distribution between males and females [19]. WNT MBs 
occur primarily in children from 4 years of age to early adulthood with a peak inci-
dence at 10–12 years of age and are not typically seen in infants [36]. Recently, the 
WNT subgroup has been further subdivided into two molecular subtypes (Fig. 3), 
WNT-α and WNT-β which differ in the age at diagnosis [33]. WNT-α tumors have 
a median age of 10 years old and WNT-β tumors have a median age of 20 years old 
[33]. WNT tumors are typically located along the midline of the fourth ventricle and 
infiltrate the brain stem. These tumors are usually of classic histology and infre-
quently metastasize [43].

 Genetic and Molecular Alterations

The WNT signaling pathway (Fig. 4) plays a critical role in defining the midbrain- 
hindbrain boundary during brain development [44, 45] and is important for regulat-
ing self-renewal of neural precursors during neurogenesis [46]. The first indication 
that mutations in the WNT pathway caused a form of MB came from the study of 
patients with Turcot syndrome which is a rare disease that predisposes individuals 
to high rates of benign adenomatous polyp growths in the gastrointestinal tract and 
a 92-fold increased risk of developing MB [47, 48]. ß-catenin (encoded by CTNNB1) 
is the main signaling molecule in the canonical WNT signaling pathway [49, 50]. In 
the absence of WNT ligands, β-catenin levels are kept low in the cytoplasm. 
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Fig. 3 The Wingless (WNT) subgroup is divided into 2 different subtypes, WNTα and WNTβ, 
based on demographics, clinical, and molecular features. Adapted from Hovestadt et al. Nature 
Reviews Cancer, 2019 and Cavalli et al., Cancer Cell, 2017

ß-catenin levels are regulated by a multi-protein destruction complex [50]. This 
complex is composed of the proteins adenomatous polyposis coli (APC) and axin, 
which enable the phosphorylation of β-catenin by casein kinase 1α (CK1α) and 
glycogen synthase kinase 3β (GSK-3β) (Fig. 4) [50], leading to its eventual protea-
somal destruction and subsequent gene target repression [49, 50]. Low levels of 
β-catenin in the nucleus also allow transcription factor T-cell-specific factor/lym-
phoid enhancer-binding factor (TCF/LEF) to be associated with Groucho (a gene 
repression cofactor) leading to target gene repression [51, 52]. However, in the pres-
ence of WNT ligands binding to frizzled (FRD) and its co-receptor LDL-receptor- 
related protein 5/6 (LRP), the proteasomal degradation of β-catenin is blocked 
resulting in an accumulation of stable β-catenin in the cytoplasm [53, 54]. In the 
nucleus, β-catenin displaces Groucho and activates TCF/LEF which increases the 
transcription of target genes such as cyclin D1 [55, 56] and the transcription factor 
MYC-proto-oncogene (MYC) [57, 58].

Somatic mutations in downstream WNT signaling pathway components such as 
CTNNB1, AXIN1, and APC are the hallmark genetic events defining this subgroup 
and are found in sporadic MB [59–63]. The majority of WNT subgroup tumors 
show stabilizing mutations in CTNNB1 (70–90%) and monosomy 6 (90%) [19, 31, 
64–66]. However, a small number of WNT MB tumors lack mutations in CTNNB1 
and APC implying that other mechanisms lead to aberrant WNT signaling and 
tumorigenesis in these cancers [64, 65]. WNT tumors lacking CTNNB1 mutations 
have been reported to exhibit mutations in the cadherin-1 (CDH1) gene [64]. This 
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Fig. 4 The Wingless (WNT) pathway plays a critical role in WNT-activated MB tumorigenesis. 
Canonical (β-catenin dependent) WNT signaling plays a key role in the formation of the midbrain/
hindbrain boundary through the control of neural stem cell proliferation and is believed to drive 
tumor initiation in WNT MB. When no WNT is present, β-catenin levels are kept low through 
phosphorylation-targeted destruction by the multi-protein destruction complex (Axin, APC, 
GSK3β, and CK1α) leading to target gene repression. Binding of WNT to the Frizzled (FZD) 
receptor and its co-receptor LDL-receptor-related protein 5/6 (LRP) results in elevated intracellu-
lar β-catenin through the inhibition of targeted destruction. Stable non-phosphorylated β-catenin is 
translocated into the nucleus where it displaces Groucho and activates TCF/LEF, enabling tran-
scription of target genes such as cyclin D1 and MYC. Adapted from “Wnt Signaling Pathway, 
Activation and Inhibition”, by BioRender.com (2021). Retrieved from https://app.biorender.com/
biorender- templates

protein is responsible for sequestering β-catenin at the cellular membrane and alter-
ations in this process may also result in aberrant activation of the WNT signaling 
pathway in this molecular subtype [67]. In addition to WNT signaling aberrations, 
36–50% of WNT tumors show mutations in the DEAD Box Helicase 3 (DDX3X) 
gene [30–32, 64]. DDX3X is an RNA helicase that has been implicated in mRNA 
splicing and processing, translational control, chromosome segregation, cell cycle 
regulation, and cancer progression [68, 69]. Approximately 21% of SHH, but no 
Group 3 or 4 tumors, exhibit mutations in the DDX3X gene [31, 64]. Indeed, elegant 
work by Patmore et al. [70] has shown that Ddx3x is a Wnt- and Shh- MB tumor 
suppressor and key regulator of both normal and malignant hindbrain development. 
Ddx3x restricts cell lineage competence to form these MB subgroups, whereas 
Ddx3x deletion removed this inhibition enabling tumor formation [70]. Other muta-
tions in genes such as SWI/SNF-related, matrix-associated, actin- dependent regula-
tor of chromatin, subfamily A, member 4 (SMARCA4), CREB-binding protein 
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(CREBBP), transformation/transcription domain-associated protein (TRRAP), and 
mediator complex subunit 13 (MED13), which are all regulators of gene expression 
through chromatin remodeling, have also been discovered in WNT tumors [64, 71–
74]. Aberrant WNT signaling is the dominant molecular driver of this MB sub-
group; however, in addition to stabilization of CTNNB1, formation of WNT MBs 
may require disruption of chromatin remodeling at WNT-responsive genes.

 Cell of Origin and Mouse Models of WNT-Activated MB

Tumors of the WNT subgroup have been shown to arise from lower rhombic lip 
progenitor cells of the dorsal brainstem [75]. An activating mutation in Ctnnb1 dis-
rupts the normal differentiation and migration of these progenitor cells resulting in 
abnormal accumulation of cells [75]. Regional expression of 24 WNT-MB signature 
genes was charted using software that generates three-dimensional gene expression 
maps across the developing mouse brain [75]. WNT MB signature genes were pre-
dominately expressed in the lower rhombic lip at embryonic day (E) 11.5 and in the 
dorsal brainstem at E15.5 [75]. Based on these data, mice were generated that carry 
Ctnnb1 mutations in the progenitor populations of the hindbrain. Ctnnb1 mutations 
were selectively expressed in cells that exclusively express the brain lipid-binding 
protein (Blbp) gene, which includes the ventricular zone progenitors. Ctnnb1 muta-
tions were also expressed in granule neural precursor cells (GNPCs) using the 
enhancer of the atonal BHLH transcription factor 1 (Atoh/Math1) gene. No persis-
tent cellular masses or tumors were found in the cerebellum or dorsal brainstem of 
mice harboring the Ctnnb1 tumors in GNPCs [75], while Blbp-driven Ctnnb1 muta-
tions in mice formed aberrant cell collections in the dorsal brainstem. However, in 
the Blbp-driven Ctnnb1 mice, only animals that harbored an additional mutation in 
the Tp53 gene formed classic MBs that were confined to the dorsal brainstem and 
displayed expression profiles similar to WNT-subgroup MB [75]. Together, these 
studies show that aberrant WNT signaling in the progenitor cells of the dorsal brain-
stem gives rise to WNT MB, providing the first evidence for the cell of origin for 
this subgroup. Indeed, more recent single-cell RNA sequencing (scRNA-seq) stud-
ies by Jessa et al. [76] provided further support for these findings in mouse models 
by demonstrating that WNT MBs match to the lower rhombic lip pontine mossy 
fiber lineage in the brainstem.

 Treatment

Patients with WNT MB undergo standard current treatment including surgery, che-
motherapy, and radiation therapy. As WNT tumors exhibit a relatively good progno-
sis, it has been recommended that patients with non-metastatic disease receive 
reduced chemotherapy and radiation therapy [32]. While some are advocating to 
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remove the use of craniospinal irradiation (CSI) in patients with average risk WNT 
MB, COG ACNS 1422 (NCT02724579) offers reduced dose CSI to 18 Gy, omis-
sion of weekly vincristine during CSI and reduced doses of adjuvant lomustine and 
cisplatin chemotherapy. In fact, recent findings in a cohort of 93 WNT MB suggest 
that these studies should proceed with caution as maintenance chemotherapy was a 
strong predictor of relapse while those individuals treated with high-dose chemo-
therapy exhibited significantly improved outcomes [77]. WNT MBs have also been 
shown to exhibit a highly aberrant and leaky vasculature, enabling substantial accu-
mulation of intra-tumoral chemotherapy [78] and likely contributing to the more 
robust clinical response. Clearly, more research is required to better understand the 
clinical behavior of this MB subgroup. Although there are small-molecule inhibi-
tors of the WNT signaling pathway, crosstalk between signaling pathways necessi-
tates treatment options that can target multiple pathways [79]. For example, the 
WNT and PI3K/AKT signaling pathways have been shown to exhibit crosstalk, thus 
small molecule inhibitors targeting PI3K/AKT have been suggested to inhibit WNT 
signaling. Baryawno et al. [80] have shown that small molecule PI3K/AKT inhibi-
tors such as OSU03012 decrease WNT signaling by activating GSK-3β and promot-
ing degradation of β-catenin. The anti-cancer compound Norcantharidin (NCTD) 
has also been shown to impair nuclear translocation of β-catenin signaling and 
reduce tumor growth in an orthotopic mouse xenograft model of MB [81].

 SHH-Activated MB

 Demographics

The SHH subgroup is characterized by the upregulation of genes associated with the 
SHH signaling pathway. Mutations in the SHH signaling pathway represent the 
most common genetic events, including inactivating germline or somatic mutations 
and deletions of patched 1 (PTCH1) and of suppressor of fused homolog (SUFU) as 
well as activating mutations in smoothened homolog (SMO) and amplifications of 
glioma-associated oncogene family zinc finger 2 (GLI2) [35, 41]. Demographically, 
SHH MB is more common in males than in females with approximately a 2:1 ratio 
(Fig. 2). SHH MB displays a bimodal age distribution with most cases occurring in 
both infants (<3 years of age) and adults (>17 years of age) and fewer cases being 
diagnosed during childhood and adolescence [19, 26]. These tumors make up 
approximately 28% of all MBs diagnosed and have an intermediate prognosis [19]. 
SHH MBs frequently arise in a cerebellar hemisphere in adults [75] and in the cer-
ebellar vermis in children [26].

The 5-year overall survival (OS) rate in infants is 77%, which drops to 68% in 
children and 75% in adults [66]. This difference in survival between age groups is 
most likely attributed to the high percent of infant SHH tumors exhibiting desmo-
plastic/extensive nodularity which has been shown to be a positive prognostic factor 
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in these young patients [82]. The majority of all SHH tumors are described as either 
having classic or desmoplastic/nodular histology with the remainder being large 
cell/anaplastic (LCA) histology. Nearly all desmoplastic/nodular variants are of the 
SHH subtype; however, 50% of all SHH tumors are not desmoplastic [19]. This 
highlights the importance of incorporating additional molecular profiling into diag-
nostics. Moxon-Emre et al. [83] investigated the intellectual outcomes of 121 
patients treated with MB from 1991 to 2013. Of interest, those with an SHH tumor 
had a distinct neurocognitive phenotype, with less decline in processing speed. 
Moreover, this molecular subgroup had the lowest incidence of cerebellar mutism 
(also referred to as posterior fossa syndrome), which occurs in up to 25% of MB 
patients post-operatively [84–86].

 Genetic and Molecular Alterations

The SHH signaling pathway (Fig. 5) plays an essential role in the control of GNPC 
proliferation in the external granular layer (EGL), as well as glial differentiation in 
the cerebellar cortex [87–89] and is believed to drive tumor initiation in the SHH 
MB subgroup [19]. The membrane-bound receptor PTCH plays an inhibitory role 
that represses SHH signaling when it is unbound [90]. Binding of the SHH ligand 
to PTCH releases the inhibitory effect PTCH has on SMO, a member of the G 
protein- coupled receptor family [91]. De-inhibition of SMO results in the activation 
of the zinc-finger proteins of the GLI transcription factor family including GLI1, 
GLI2, and GLI3 [90]. GLI proteins can function as either transcription activators or 
repressors. In the absence of SHH, GLI2 and GLI3 are phosphorylated leading to 
their proteolytic cleavage to generate their repressor (GLIr) forms [90]. With the 
activation of SMO, transcriptionally active forms of GLI (GLIa) are formed in com-
bination with inhibition of suppressor of fused (SUFU), a protein responsible for 
sequestering GLI in the cytoplasm (Fig. 5) [90, 92]. Inhibition of SUFU allows the 
activating forms of GLI to translocate to the nucleus where they replace the repres-
sor forms of GLI on target genes leading to transcriptional activation [92].

The link between MB and the SHH pathway was made through studies of indi-
viduals with Gorlin syndrome. Gorlin syndrome (also known as nevoid basal cell 
carcinoma syndrome) is a disease that results from hereditary mutations in the SHH 
receptor PTCH. Gorlin syndrome is characterized by macrocephaly, skeletal abnor-
malities and in some patients, a high rate of cancer, including basal cell carcinomas 
and MB [19, 93]. Germline mutations of the SHH inhibitor SUFU also predispose 
individuals to MB. In addition, somatic mutations of PTCH, SMO, and SUFU, as 
well as amplification of GLI1 and GLI2, have been found in sporadic MB, pointing 
toward the SHH signaling pathway as the primary driver of tumorigenesis in this 
MB subgroup. Deletion of chromosome 9q, the location of the PTCH gene, is also 
limited to SHH MB and is the most common chromosomal abnormality found in 
this subgroup [26, 30, 94]. Other genomic abnormalities include gain of chromo-
somes 2 and 9p, and loss of 10q, 14q, and 17p [30, 95]. For a thorough summary of 
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Fig. 5 The Sonic Hedgehog (SHH) signaling pathway plays a critical role in SHH-activated MB 
tumorigenesis. The SHH signaling pathway plays an essential role in the control of GNPC prolif-
eration in the EGL and is believed to drive tumor initiation in SHH MB. When SHH is not present, 
the Patched (PTCH) receptor plays an inhibitory role repressing SHH signaling. In the absence of 
SHH, GLI2 and GLI3 are phosphorylated leading to proteolytic cleavage to generate their repres-
sor forms. Binding of SHH to PTCH releases the inhibitory effect PTCH has on Smoothened 
(SMO). De-inhibition of SMO results in activation of GLI transcription factors. Suppressor of 
fused (SUFU) is found in the cytoplasm and nucleus and plays a role in sequestering GLI proteins 
when SHH is not bound to PTCH. Binding of SHH to PTCH leads to inhibition of SUFU resulting 
in translocation of activated GLI to the nucleus. Adapted from “Hedgehog Signaling Pathway”, by 
BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates

the genomic alterations associated with SHH MB, see the recent excellent review by 
Garcia-Lopez et al. [96].

The extensive heterogeneity observed at the genetic and molecular levels has led 
to the discovery of additional subtypes within SHH MBs [97]. In a large cohort 
study, it was shown that mutations in TP53 are found in 21% of SHH MB tumors, 
and this was found almost exclusively in patients between 5 and 18, a rare age for 
this molecular variant [97]. In addition, 72% of patients aged 5 or older who suc-
cumbed to their disease had harbored a TP53 mutation. TP53 mutation status was 
shown to be the most important independent risk factor in SHH variant MB when 
compared to age, sex, histology, and presence of metastasis at diagnosis [97]. TP53- 
wildtype patients have a 5-year OS of 81% whereas patients with TP53-mutations 
exhibit a 41% 5-year OS [97].

More recent studies by Cavalli et al. [33] have provided even further insight into 
the heterogeneity within SHH MBs by subdividing this subgroup into 4 distinct 
subtypes: SHHα, SHHβ, SHHγ, and SHHδ (Fig. 6). SHHβ and SHHγ correspond to 
infant subtypes, whereas SHHα and SHHδ correspond to childhood/adolescent and 
adult subtypes, respectively [33]. Adult SHH MBs are characterized by a higher 
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prevalence of SHH pathway-associated mutations (including higher incidence of 
PTCH1 and SMO alterations) and a more expansive list of chromatin modifier 
mutations [41]. Virtually all such MBs also harbor telomerase reverse transcriptase 
(TERT) promoter mutations [98, 99]. Interestingly, a recent study also identified 
highly recurrent mutations in the non-coding U1 spliceosomal small nuclear RNA 
(U1 snRNA) in 97% of adult SHH MB (SHHδ) [100]. These mutations lead to 
PTCH inactivation and GLI2 and CCND2 activation, opening up the intriguing pos-
sibility of targeting the spliceosome in SHH MB tumors [100]. Subtype SHHα is 
enriched for GLI2 and MYCN amplifications as well as TP53 mutations which have 
been shown to confer a poor prognosis [97], compared with patients with the SHHδ 
subtype which have a more favorable prognosis. SHHβ consists of infants aged 
0–3 years old and has a lower 5-year survival rate compared to the SHHγ subtype 
which also consists of infants but with a better prognosis [33]. Of note, the most 
recent WHO classification of Central Nervous System Tumors has redesignated the 
SHH MB subtypes as SHH-1 (−β), SHH-2 (−γ), SHH-3 (−α), and SHH-4 (−δ) 
(Fig. 6) [1].

 Cell of Origin and Mouse Models of SHH-Activated MB

During normal cerebellar development, SHH signaling plays a crucial role in the 
proliferation of GNPCs in the EGL. As SHH signaling is decreased, GNPCs begin 
to differentiate and migrate inward to the internal granule layer (IGL). Aberrant 
SHH signaling may result in prolonged proliferation of GNPCs in the EGL, the 
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Fig. 6 The Sonic Hedgehog (SHH) MB subgroup is divided into 4 different subtypes based on 
demographics, clinical features, and molecular features: SHHα, SHHβ, SHHγ, and SHHδ. These 
have since been redesignated as SHH-1 (−β), SHH-2 (−γ), SHH-3 (−α), and SHH-4 (−δ) in the 
2021 WHO Classification of Central Nervous System Tumors.  Adapted from Hovestadt et  al. 
Nature Reviews Cancer, 2019 and Cavalli et al., Cancer Cell, 2017.* New designations based on 
WHO Classification of Central Nervous System Tumors, 2021
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anatomical region where SHH tumors originate. Schüller et al. [101] demonstrated 
that both early multipotent progenitors (GFAP+ and Olig2+) and late unipotent 
(Atoh1+/Math1+) progenitor cells of the cerebellum can give rise to SHH 
MB. However, the acquisition of GNPC identity is crucial for SHH MB tumorigen-
esis. Similarly, Yang et al. [102] showed that deletion of Ptch and over- activation of 
the SHH pathway can result in MB in both neural stem cells (GFAP+) and GNPCs 
(Atoh1+/Math1+), but only after commitment to, and expansion of, the neuronal 
lineage. These studies show that SHH MB can develop from neural stem cells or 
GNPC progenitor cells of the cerebellum. However, commitment to the GNPC lin-
eage is a necessary step in SHH MB tumorigenesis, providing evidence that GNPCs 
are the cell of origin for SHH MB [101, 102]. Recently, Zhang et al. have shown that 
OLIG2+ progenitor cells can drive SHH subgroup MB tumorigenesis in mice and 
are enriched in recurrent or resistant SHH MB [103]. They used single-cell tran-
scriptomic analyses to demonstrate a developmental hierarchy of progenitor pools 
in SHH MB and identified OLIG2-expressing glial progenitors as transit- amplifying 
cells at the tumorigenic onset [103]. OLIG2+ progenitor cells are quiescent stem-
like cells in full-blown MB but re-emerge during relapse and are highly enriched in 
therapy-resistant and recurrent SHH MB. These results demonstrate that OLIG2+ 
glial progenitor cells are critical tumor-initiating cells during MB tumorigenesis and 
relapse that could have important implications for the design of therapies to target 
cell lineage vulnerability during MB tumorigenesis and recurrence [103].

Many transgenic and knockout mouse models have been generated to study SHH 
MB initiation and progression. Since dysregulation of the SHH signaling pathway 
is a major contributor to SHH MB tumorigenesis, mouse models are typically gen-
erated by genetic manipulations of SHH pathway genes. Deletion of PTCH1 or 
SUFU, as well as activation of SMO in mice results in tumors that resemble human 
SHH MB [104–106]. Mouse xenograft models are also used where cultured human 
SHH MB cells are injected into the cerebellum of immunodeficient mice. Patient- 
derived xenograft (PDX) lines are generated by implanting patient cells directly into 
the cerebellum of immunodeficient NSG mice and propagating them from mouse to 
mouse without in  vitro passaging. PDXs are considered to be “gold standard” 
in  vivo models. However, recent studies have shown differences in blood-brain- 
tumor barrier (BBTB) integrity between PDX and genetically engineered mouse 
models. This is important and should be considered in the design of preclinical stud-
ies to test novel therapeutics [107].

 Treatment

Activation of the SHH signaling pathway in SHH MBs has been extensively stud-
ied. Accordingly, SMO inhibitors such as cyclopamine and vismodegib have been 
evaluated for MB patients with SHH pathway activation, especially in the setting of 
recurrent disease [108]. Cyclopamine is a naturally occurring small molecule inhib-
itor that suppresses SHH signaling by binding to SMO [109, 110]. However, the 
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potency of cyclopamine is relatively low and therefore synthetic SMO inhibitors 
such as vismodegib, sonidegib, and saridegib have also been utilized [111–114]. 
SMO inhibitors are initially successful, but patients eventually relapse due to drug 
resistance. This is partially attributed to mutations of downstream targets such as 
SUFU and activation of GLI in the absence of SMO [41, 108, 115]. Furthermore, 
patients with TP53 mutations are resistant to vismodegib treatment [97]. Morrissy 
et al. have recently shown that genetic events in a murine model of recurrent SHH 
MB exhibit poor overlap with the matched primary tumors [116]. Whole-genome 
sequencing in human samples also demonstrated genetic divergence between 
matched tumors at diagnosis and post-therapy [116]. Thus, targeted therapy against 
the primary tumor will most likely be ineffective against recurrent disease resulting 
in failed clinical trials.

As SHH tumors also exhibit upregulation of other signaling pathways, crosstalk 
between pathways may play a role in treatment resistance. There is conflicting evi-
dence regarding the importance of the NOTCH pathway in SHH-activated MBs. 
Hallahan et al. demonstrated that targeting the NOTCH pathway with ϒ-secretase 
inhibitors decreases proliferation and increases apoptosis in an SHH MB xenograft 
model [104]. However, Hatton et al. have shown that targeting the NOTCH pathway 
is not beneficial in SHH MBs [117]. Liang et al. have recently identified novel roles 
for the CD271/p75 neurotrophin receptor and the MEK/ERK signaling pathway in 
contributing to SHH MB growth and tumor progression [118]. Bioinformatics anal-
yses of large patient datasets and tumorspheres from SHH MB cultures demon-
strated that CD271 is a novel and promising diagnostic marker for these tumors 
[118, 119]. CD271+ cells exhibit upregulated MEK/ERK signaling and inhibiting 
this pathway reduced endogenous CD271 levels, stem cell proliferation, survival, 
and migration in  vitro [118]. The MEK inhibitor selumetinib crosses the blood- 
brain barrier and has been extensively tested in clinical trials for the treatment of 
other pediatric cancers like low-grade glioma and plexiform neurofibromas associ-
ated with type 1 neurofibromatosis [120–122]. Interestingly, treatment with selu-
metinib extends survival and decreases CD271 levels in  vivo providing the first 
evidence that the MEK/ERK pathway is a therapeutic target in human SHH MB 
[118]. The MAPK signaling pathway has also recently been shown to drive SHH 
pathway inhibitor resistance [123]. Zhao et al. demonstrated that MAPK pathway 
activation is increased in metastatic SHH MB [123]. While Liang et al. show that 
selumetinib treatment significantly extends survival in an intracerebellar transplant 
model of SHH MB, the mice still succumb to disease progression [118]. The com-
bination of selumetinib with the JAK/STAT3 pathway inhibitor pacritinib has 
recently been shown to further reduce tumor growth and increase survival in pre-
clinical mouse xenograft models [124]. However, future work will continue to focus 
on identifying therapeutics that act synergistically or in combination with selu-
metinib to further attenuate tumor growth. Several studies have shown that genes 
associated with PI3K pathway contribute to SHH MB progression and drug resis-
tance in addition to the MEK/ERK pathway [39, 125, 126]. PI3K pathway inhibi-
tors in combination with SHH pathway inhibitors have demonstrated enhanced 
efficacy and improved survival in MB orthotopic xenograft mouse models [39, 
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127]. This provides further evidence that a combinatorial treatment approach will 
be necessary to treat SHH tumors. Additionally, a major hurdle in the development 
of effective therapies for MB is the impaired delivery of systemic therapies to tumor 
cells due to a specialized endothelial blood-brain barrier. Drug delivery across the 
BBTB is critical for the successful translation of novel therapies to treat brain 
tumors. Genovesi et al. [107] showed that BBTB integrity is highly variable in pre-
clinical models of MB. This raises questions as to the scope of the translational 
relevance of these models. The authors highlight the importance of characterizing 
the functional status of the BBTB in preclinical models of MB and propose that 
these methods should be adopted more broadly in preclinical drug discovery studies 
for pediatric brain tumors [107].

 Group 3 and Group 4 MB

These two “non-SHH/WNT” subgroups share similar clinical presentations and 
molecular characteristics and will therefore be discussed together.

 Demographics

Group 3  MB occurs predominantly in infants and children and is rarely seen in 
patients older than 18  years of age, whereas Group 4  MB occurs across all age 
groups [19] (Fig. 2). Group 3 makes up approximately 25–30% of MB diagnoses 
and Group 4 is the most common MB subgroup with a frequency of 35% [94]. 
However, Group 4 is the least understood [19]. The majority of Group 3 and Group 
4 tumors present with classic histology, with some desmoplastic and LCA cases 
[19]. LCA histology is more prevalent in Group 3 than in Group 4 tumors. Group 3 
patients have the worst prognosis of the four subgroups with infants having a 5-year 
OS of 45% and children having a 5-year OS of 58% [94]. Group 3 MB tumors have 
a very high rate of metastasis which is a major contributor to their poor prognosis. 
Group 4 MB tumors have an intermediate prognosis, similar to the SHH subgroup 
[19]. Both Group 3 and Group 4 MBs occur in a 2:1 ratio in males compared to 
females and 30–40% of patients are metastatic at diagnosis in both subgroups [29]. 
Early nomenclature did not always separate Group 3 and Group 4 into distinct sub-
groups and in some cases described them as a single “mixed” subgroup of patients 
designated as “non-WNT/non-SHH” MB because they share similar clinical pre-
sentations and molecular characteristics [29]. To reconcile this issue, the two sub-
groups have recently been subdivided into 8 different subtypes: I, II, III, IV, V, VI, 
VII, and VIII (Fig. 7) [35, 36].

Subtype I is the least common while Subtypes II and III are associated with poor 
survival, and Subtype IV tumors have a more favorable outcome in non-infant 
patients. Group 4 MBs mostly make up Subtypes V, VI, and VII but these subtypes 
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also include some Group 3 tumors [35, 36]. Subtype VIII is purely Group 4, mostly 
occurs in older children and is the most common. While Subtype VIII is associated 
with favorable 5-year survival; however, many patients with this subtype are affected 
by late relapse and death [35, 36]. Overall, the extensive variation both between and 
within subgroups highlights the power of the molecular subtype classifica-
tion system.

 Genetic and Molecular Alterations

Isochromosome 17q is the most common cytogenetic change observed in Group 3 
and 4 tumors, occurring in 26% of all Group 3 tumors and 66% of Group 4 tumors 
[26, 28, 31]. Other cytogenetic changes seen in Group 3 and 4 tumors include: 17p 
deletion, gain of chromosome 1q, and loss of chromosome 5q and 10q. Group 3 
tumors are more likely to show gain of chromosome 1q and/or loss of chromosome 
5q and 10q [19]. Disruptions of chromatin genes that are associated with histone 
methylation have also been found in MB. These epigenetic disruptions are likely 
subtype-specific and are necessary components of MB tumorigenesis [31, 64, 71–
74]. Mutations in genes including enhancer of zeste 2 polycomb repressive complex 
2 subunit (EZH2), lysine demethylase 6A (KDM6A), chromodomain helicase DNA 
binding protein 7 (CHD7), and zinc finger MYM-type containing 3 (ZMYM3) 
appear to disrupt chromatin marking of genes such as orthodenticle homeobox 2 
(OTX2), MYC and MYCN in Group 3 and 4 tumors [31, 64, 128, 129].

Evaluation of genetic abnormalities and gene expression has revealed that Group 
3 is most often associated with amplification and overexpression of MYC but not 
MYCN [19, 31]. While WNT tumors exhibit MYC amplifications, they also show 
amplifications in MYCN [26, 31]. Within the new Group 3 and 4 subtype classifica-
tion system, Subtypes II and III have MYC amplification and are associated with the 
worst prognosis [35, 36]. While Subtype V consists of mostly Group 4 tumors, they 
exhibit amplification of either MYC or MYCN (Fig. 7).

Subtype I tumors are enriched for amplification of the OTX2 oncogene and acti-
vation of growth factor independent 1 (GFI1) or GFI1B [35, 36]. Interestingly, it has 
recently been shown that OTX2 regulates MB stem-cell function in a subgroup- 
dependent manner [130, 131]. OTX2 plays an inhibitory role when overexpressed 
in SHH MB and is oncogenic in Group 3 and 4 MB. OTX2 promotes growth and 
self-renewal while inhibiting differentiation in vitro and increases tumor initiation 
from MB stem/progenitor cells in vivo [130, 131]. Further evaluation of the mecha-
nisms regulated by OTX2 in Group 3 and 4 MB has provided a better understanding 
of the molecular signatures that contribute to pathogenesis of these highly aggres-
sive subtypes. For example, Stromecki et al. [131] characterized the OTX2 regula-
tory network and identified novel relationships between OTX2 and genes associated 
with neuronal differentiation and axon guidance signaling in Group 3 stem/progeni-
tor cells. This suggests that OTX2 actively represses differentiation while maintain-
ing Group 3 cells in a primitive, stem/progenitor cell state. Additionally, Zagozewski 
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Fig. 7 The Group 3 and Group 4 MB subgroups are currently divided into 8 different subtypes 
based on demographics, clinical and molecular features: Subtypes I, II, III, IV, V, VI, VII, and 
VIII. Adapted from Hovestadt et al. Nature Reviews Cancer, 2019

et al. recently identified another OTX2 regulatory network that controls the balance 
between the Group 3 MB stem cell state and differentiation [132]. They showed that 
OTX2 broadly restricts expression of transcription factors that are critical for neu-
ronal differentiation, including members of the PAX gene family. They further iden-
tified mTORC1 signaling as a downstream effector of OTX2-PAX3, thus revealing 
a novel role for protein synthesis pathways in Group 3 MB tumor progression [132].

Group 3 and 4 tumors have a higher propensity to occur in males compared to 
females; however, the reason for this remains unclear. This may be partially 
explained by the three recurrently mutated genes, ZMYM3, KDM6A, and DDX3X, 
located on the X chromosome [64]. ZMYM3 and KDM6A mutations are found 
almost exclusively in tumors from males [64, 133], while three out of four female 
MB patients carry a heterozygous mutation in DDX3X that escapes X inactivation 
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[64, 134]. In addition, 80% of all females with Group 4 tumors show a loss of the X 
chromosome within the tumor [19, 28].

 Cell of Origin and Mouse Models of Group 3 and 4 MB

Although less is known about the cell of origin for Group 3 and 4 tumors, two inde-
pendent groups developed a mouse model that recapitulated Group 3 Myc-subtype 
tumors [135, 136]. Overexpression of MYC combined with TP53 mutation resulted 
in highly aggressive tumors that histologically and molecularly resemble Group 3 
MBs, albeit using different cells of origin. While Kawauchi et  al. [135] overex-
pressed MYC in GNPCs, Pei et  al. [136] used cerebellar stem cells (Prominin1/
CD133+, Lineage-), both of which resulted in similar tumor phenotypes. Expression 
profiles showed that both Myc-driven tumors exhibit significant similarities to neu-
ral stem cells, induced pluripotent stem cells, and embryonic stem cells, suggesting 
that Group 3 MB may arise from a neural stem cell or a de-differentiated GNPC 
[135–137]. Indeed, studies by Hovestadt et al. [138] used scRNA-seq analysis to 
determine that Group 3 MB tumors predominantly consist of undifferentiated pro-
genitor/stem-like cells. Similarly, Vladoiu et  al. [139] also used single-cell tran-
scriptomics to show that the different molecular subgroups of MB mirror the 
transcription programs from distinct, temporally restricted cerebellar lineage cell 
types. They determined that Group 3 MB tumors resemble Nestin+ stem cells [139].

It has been recently proposed that Group 4 MBs arise from progenitor cells of the 
upper rhombic lip [140]. Lin et al. [140] have shown that three master regulator 
transcription factors {LIM homeobox transcription factor 1 alpha (LMX1A), eome-
sodermin (EOMES), and LIM homeobox 2 (LHX2)} in Group 4 tumors exhibit 
overlapping spatiotemporal expression in deep cerebellar nuclei of the nuclear tran-
sitory zone. These studies suggest that deep cerebellar nuclei, or their earlier precur-
sors from the upper rhombic lip, are the putative cell of origin for Group 4 tumors. 
Extending these findings, Hovestadt et al. [138] also analyzed Group 4 MB tumors 
using single-cell transcriptomes and determined that these tumors consist almost 
exclusively of more differentiated neuronal-like cells and resembled the unipolar 
brush cell (UBC) lineage, a glutamatergic neuronal cell population that arises from 
the upper rhombic lip. Similarly, Vladoiu et al. [139] also found that Group 4 MB 
are aligned with the UBC lineage.

While these cross-species comparisons in the mouse provided significant insight 
into the origins of Group 3 and Group 4 MBs, more recent and specific comparisons 
to the developing human cerebellum have revealed that these tumors predominantly 
arise from the rhombic lip subventricular zone (RLSVZ), a region that is unique to the 
human cerebellum and not found in mice or macaques [141, 142]. These new and 
exciting findings suggest that humans are predisposed to the development of Group 
3 and Group 4  MB and that there may be a window of opportunity to improve 
screening approaches for high-risk patients or to possibly start treatment at earlier 
stages of tumor development.
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 Treatment

Group 3 MBs are the most aggressive subgroup and exhibit frequent metastasis, 
making it incredibly difficult to treat these tumors. Thus, there is a critical need to 
identify the pathways contributing to Group 3 MB pathogenesis not only to better 
understand how these tumors progress but also to develop targeted therapies with 
less harmful side-effects on the developing brains of children. MYC amplification 
provides a target for Group 3 MB treatment. Morfouace et al. [143] have identified 
two FDA-approved compounds, pemetrexed and gemcitabine, that preferentially 
inhibit proliferation of Group 3 tumors that exhibit MYC amplification or overex-
pression. Moreover, the combination of these two drugs results in an increased sur-
vival in a Group 3 mouse xenograft model [143].

The lack of a preclinical model to study Group 4 MBs has hampered the develop-
ment of targeted therapy for these tumors. However, since OTX2 is amplified or 
overexpressed in both Group 3 and 4 MBs, this transcription factor and/or its down-
stream effectors provide potential therapeutic targets for these subgroups. While 
there is currently no treatment targeting OTX2 specifically, studies have shown that 
the use of 9-cis-retinoic acid can reduce OTX2 expression and induces neuronal 
differentiation [144]. However, tumor cells quickly become resistance to retinoic 
acid treatment and different MB cell lines exhibit variable responses [145, 146]. In 
order to develop novel targeted therapeutics for Group 3 and 4 MBs, a much better 
understanding of the underlying mechanisms associated with tumor progression 
and metastasis is required.

 Diagnostic Imaging in the Molecular Era

The typical MB appears as a well-defined, homogeneous tumor localized within the 
vermis, with marked contrast enhancement on preoperative computed tomography 
(CT) scanning [147]. On magnetic resonance imaging (MRI), tumors are hypo- 
intense on T1 and hyper-intense on T2-weighted images and show marked contrast 
enhancement (Fig. 8). The number of patients with an atypical phenotype is low.

Perreault et al. [148] previously demonstrated that tumor location and enhance-
ment patterns were correlated with specific MB subgroups suggesting that MRI 
may potentially serve as a complement to genomic diagnostic testing for these 
tumors. Seventy-five percent of WNT tumors occurred uniquely along the cerebel-
lar pontine and the cerebellar pontine angle (CP/CPA). However, these data conflict 
with previous studies that demonstrated midline occurrence [149] or midline occur-
rence concomitant with dorsal brainstem infiltration [75]. The majority (54%) of 
SHH tumors were in the cerebellar hemispheres and this result was consistent with 
previously reported findings [149]. In contrast, Groups 3 and 4 MBs were primarily 
midline and occupied the fourth ventricle. Interestingly, tumor margins were not 
well defined in Group 3 MBs and in Group 4 tumors. Very minimal or no 
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enhancement was observed [148]. This characteristic distinguished Group 4 from 
Group 3 MBs and may prove useful for differential diagnosis.

The other MRI features including cysts, peritumoral edema, and tumoral necro-
sis were not characteristic of specific molecular subgroups. Diffusion-weighted 
imaging (DWI) did not significantly differ among the molecular subgroups [148]. 
Collectively, these results suggested that using MRI to predict MB molecular sub-
groups might have additional diagnostic value in centers where genetic/molecular 
testing is limited.

 Cancer Stem Cells and Their Contribution to MB 
Tumor Heterogeneity

Characterization of the extensive genetic and molecular heterogeneity in MB has 
led to the current classification system. However, there are additional layers of het-
erogeneity to consider, including the cancer stem cell hierarchy.

The cancer stem cell (CSC) model has evolved over the past two decades. 
Originally intended to explain the cellular and functional heterogeneity found 
between and within tumor subgroups, including MB, CSCs exhibit stem cell-like 
properties including self-renewal capacity and multi-lineage differentiation (Fig. 9) 
[150, 151]. These cells are operationally defined by their ability to regenerate an 
original tumor in xenograft serial transplantation assays. Thus, in theory, only the 
CSCs can create new tumors following long-term passage in immunodeficient ani-
mals. CSCs generate progenitor cells which are highly proliferative but have limited 
self-renewal capacity and are ultimately unable to maintain tumor growth 

Fig. 8 5-year-old with multi-focal MB with a heterogeneous mass in the fourth ventricle and 
several other enhancing lesions in the posterior fossa. (a) T1 post-gadolinium image. (b) 
T2-weighted image
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long-term. In addition to fueling tumor growth, CSCs have also been shown to drive 
therapy resistance through enhanced drug efflux and DNA repair [151, 152]. Despite 
the important clinical implications of CSCs, the model has generated substantial 
controversy over the years due to inconsistencies in CSC frequency, tumor- initiating 
capacity and proliferative potential as well as the methods and markers used to iso-
late putative CSC populations. While originally thought to be rare and quiescent, it 
has become increasingly evident that CSCs, and even progenitor cells, exhibit phe-
notypic plasticity in response to external stimuli from the microenvironment [151].

Singh et al. [153] were the first to demonstrate the presence of putative CSCs in 
MB. They further identified a cell surface marker CD133 (Prominin1), which selects 
for a highly self-renewing cell population in both MB and glioblastoma [153]. 
Subsequent studies provided further support for this model by demonstrating that 
CD133+ brain tumor cells from MB and glioblastoma patient samples were capable 
of initiating tumor growth when injected into NOD SCID mice. While CD133 is the 
most utilized BTPC marker, little is known about its biological function. These 
initial studies revolutionized the brain tumor CSC field. However, additional 
research determined that CD133 is not restricted to the CSC population as it was 
shown to be expressed in a variety of different cell types including normal stem cells 
and differentiated epithelial cells [154]. Read et al. and Ward et al. both identified 
an additional BTPC marker, CD15/SSEA1 (stage-specific antigen 1) in a Ptch 
mutant mouse model of SHH MB [155, 156]. While Read et al. [155] demonstrated 
that Math1+/CD15+ neuronal progenitors are responsible for tumor propagation, 
Ward et al. [156] suggested that CD15 selects for a stem cell population rather than 
progenitor cells. More recent studies demonstrated that the stem cell marker Sox2 
also plays a role in SHH MB tumor propagation [157, 158]. These authors showed 
that following treatment with chemotherapy and SHH pathway antagonists, the 
Sox2+ cell population was enriched resulting in tumor growth and relapse [157]. 
Although Ward et al. and Read et al. demonstrated that CD15 can be used to isolate 
BTPCs in Ptch-driven mouse models of SHH MB [155, 156], further work by 
Vanner et  al. also showed that in order to reliably isolate the BTPC population, 
CD15 must be used in combination with Sox2. The potential clinical relevance of 
this SHH MB cell population is underscored by more recent findings demonstrating 
that specific subsets of stem-like cells within the Sox2+ cell compartment are resis-
tant to treatment with the SHH-pathway antagonist vismodegib [159].

Recent studies have also identified a role for the low-affinity transmembrane 
neurotrophin receptor, CD271 (p75NTR), in regulating stem/progenitor cells in 
SHH MB [118, 119, 160]. Liang et al. have shown that CD271 expression is nearly 
exclusive to primary SHH MB patient tumors and functional characterization 
revealed a role for this cell surface marker in SHH MB tumor propagation and 
maintenance by modulating stem cell properties [118, 119]. Identification and func-
tional validation of additional cell surface markers that select for MB stem cell 
populations in the different subgroups will undoubtedly provide further insight into 
the cellular complexity within these tumors. As recent studies have demonstrated 
that functional screening identifies more treatment options than MB sequencing 
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Fig. 9 Stem cells and cancer stem cells possess two characteristics, self-renewal and multi-lineage 
differentiation. Self-renewal is the ability to propagate oneself indefinitely and is a defining stem 
cell feature. Progenitor cells exhibit limited self-renewal capacity and ultimately differentiate. 
Self-renewal can occur as asymmetrical division, whereby one stem cell gives rise to one stem cell 
and one further differentiated cell. In asymmetrical stem cell division, the stem cell population 
does not expand but is maintained through subsequent cell divisions. Alternatively, stem cells can 
undergo symmetrical division, whereby one stem cell gives rise to two stem cells (not shown). This 
allows for exponential expansion of the stem cell population. NB. Green denotes a stem cell, blue 
denotes further differentiated cells such as transit-amplifying progenitors

alone [161], this will require more extensive integration of bioinformatics data with 
functional assessment of relevant CSC signatures.

 MB in the Molecular Era

MB currently represents one of the most extensively characterized cancers through 
large-scale bioinformatics analyses of patient cohorts. The extensive heterogeneity 
between and within the MB subgroups has led to the discovery of over a dozen 
molecular subtypes [33–35]. Consideration of these MB subtypes is becoming 
imperative to improve diagnosis and allow for selection of the most appropriate 
treatment regimens. For example, clinical trials have begun to implement molecular 
subgroup-informed strategies for treatment stratification [37]. Subgroup/subtype- 
specific therapies should be further explored by identifying and characterizing bio-
markers that could ultimately lead to the development of novel diagnostic tools and 
targeted therapies. However, there are currently no molecular biomarkers to mea-
sure residual disease in children with CNS tumors, including MB. As a result, the 
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extent of tumor eradication cannot be assessed beyond the resolution of MRI. To 
address this challenge, multiple groups have recently explored the clinical utility of 
cerebrospinal fluid (CSF)-derived cell-free DNA (cfDNA) for monitoring and mea-
suring residual disease in patients with MB [162, 163]. They found that CSF-derived 
cfDNA allows measurable residual disease detection and can predict treatment 
response in MB patients. These findings suggest that CSF-derived liquid biopsies 
should be incorporated into future trials.

 Conclusions

MB research has significantly evolved in the past 10 years. Early gene expression 
array profiling studies led to the stratification of MB into 4 molecular subgroups. 
Further analysis of molecular features and clinical trends among these groups has 
resulted in additional substructure and classification of the MB subgroups into more 
than a dozen subtypes [33–35]. These studies, along with more recent work that 
resolved MB at a single cell level [76, 138, 139], have revealed the highly heteroge-
neous nature of MB that was once considered a single disease entity. From a clinical 
perspective, molecular subgrouping/subtyping has improved risk stratification and 
treatment options. However, despite concerted efforts to improve therapy, approxi-
mately 30–40% of patients still succumb to their disease while survivors are left 
with extensive cognitive and physical delays following surgery and treatment. The 
knowledge gleaned from over a decade of genomic, epigenomic, transcriptome, and 
even proteomic studies has paved the way for further functional studies that will 
fully characterize the mechanistic role of newly identified genes/pathways both 
in vitro and in vivo. This will ultimately lead to the development and implementa-
tion of innovative targeted therapies, including immune-molecular therapies via 
CAR T-cell-based approaches [164].
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Can Cerebellar Neurodevelopmental 
Disorders Affect Behavioral Disorders 
or Vice Versa?

Razieh Mohammad Jafari, Amir Shadboorestan, Seyed Soheil Saeedi Saravi, 
and Ahmad Reza Dehpour

Abstract Recent investigations have been focused on understanding the role of the 
cerebellum in non-motor behaviors and of the cerebellar dysfunction in neurodevel-
opmental, neurobehavioral, and schizo-affective disorders. Non-motor behaviors, 
including emotion, cognition, and social behavior, seem to be modified by impair-
ment of the cerebellar structure-function relationship. Clinically, these behavioral 
defects have been observed in patients with autism spectrum disorders (ASD), 
attention deficit-hyperactivity disorder (ADHD), and schizophrenia. These behav-
ioral outcomes have been demonstrated to be associated with prenatal and/or early 
postnatal damages of cerebro-cerebellar circuits. Understanding the cerebellum's 
essential role in early neurodevelopment, and the association between cerebellar 
injury and long-term alteration in behavior is crucial. This chapter attempts to sum-
marize the recent evidence of involvement of the cerebellum in neurodevelopment 
and behavior, and that both these views remain to be revised for declaration of the 
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paradoxical relationship between cerebellar function and behavioral despair, as well 
as, neurodevelopmental disorders including ASD and ADHD.

Keywords Cerebellum · Neurodevelopment · Behavioral despair · Schizo- 
affective disorders

 Introduction

The cerebellum is traditionally considered the brain region involved in motor and 
non-motor activities [37, 101]. Given the major role of the cerebellum, in posture 
and movements, preliminary studies have shown that removal of this area can lead 
to impaired these activities [45]. These were in line with clinical reports that cere-
bellar degeneration may impair posture and speech, voluntary movement of extrem-
ities, and gait [50]. Several studies have been performed to understand the exact 
function of the cerebellum [51] and the importance of this area in controlling motor 
movements [104] and learning [54]. On the other hand, evidences have shown that 
extensive cerebellar connections to other areas of the brain (e.g., prefrontal and 
posterior parietal cortex) are associated with non-motor functions [21, 22]. Lately, 
imaging techniques have shown a link between cerebellar function and cognitive 
processes such as language [89], attention [2], and affective processes [43]. 
Therefore, it is believed that changes in the structure and function of the cerebellum 
can be attributed to several abnormalities in the emotional, cognitive, and social 
domains that are observed in patients with neurodevelopmental disorders such as 
autism spectrum disorders (ASD) and behavioral despair [73, 74, 95]. Consistent 
with the complex neurobiology of neurodevelopmental disorders and behavioral 
despair, the role of the cerebellum in non-motor functions should be well defined [8].

In this chapter, we provide a summary of the importance of the cerebellum in the 
pathophysiology of neurodevelopmental and behavioral disorders. Although the 
cerebellum has been shown to be involved in neurodevelopmental disorders, struc-
tural and functional differences in different regions of the cerebellum play an impor-
tant role in attention-deficit hyperactivity disorder (ADHD), developmental 
dyslexia, and ASD. This suggests the hypothesis that the involvement of different 
cerebro-cerebellar circuits may lead to differences between the neurodevelopmental 
disorders [105]. In addition to these disorders, there are neurodevelopmental disor-
ders such as developmental coordination disorder (DCD), which are often associ-
ated with the aforementioned neurodevelopmental disorders (e.g., ADHD and 
dyslexia) and hypothesize an association with cerebellar dysfunction [11, 130]. This 
information raises the question of how cerebellar dysfunction affects developmental 
processes and causes developmental disorders, and differences in the localization of 
cerebellar dysfunction may cause different disorders.

Cerebellum growth has been enormous during the first 24–40 weeks of preg-
nancy, resulting in approximately 5-fold volume and more than 30-fold in surface 
area [24, 121]. Cerebellar growth continues throughout the first postnatal year, 
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although neural differentiation and the growth of axonal inputs and outputs occur 
more slowly than in the prenatal stage [24, 121]. This process could interpret the 
fact that premature infants are at increased risk for cerebellar developmental disor-
der, hemorrhages, and future neurodevelopmental disabilities [24, 121]. As a result, 
cerebellar injury in childhood may lead to a range of long-term motor, cognitive and 
affective disorders with poorer outcomes than cerebellar damage in adulthood [98, 
123]. The findings put the cerebellum at the center for neurological research into 
neurodevelopmental disorders, such as ASD [24]. Confidential evidence empha-
sized the obvious link between cerebral cortex injury in early life, which leads to an 
increased risk of affective and attention deficits, internalizing behavioral disorders, 
and withdrawal from social contact [77, 123]. Consistent with cerebellar tumor and/
or resection of the tumor in children, an abnormal increase in the risk of cognitive 
and adaptive impairments [10], as well as the vermis injury, has been shown to be 
associated with long-term affective dysregulation [75]. It has also been shown that 
the vermis malformations are involved in higher rates of affective and behavioral 
disorders, including ASD [24, 111]. Congenital cerebellar malformations as well as 
types of early cerebellar lesions are directly related to ASD. To conclude from these 
findings, some scientists like Schmahmann et al. classified ASD as one of the psy-
chiatric disorders associated with cerebellar damage or disease [97]. The studies 
have demonstrated that cerebellar injury in infancy is one of the main risk factors, 
which increases approximately 40-fold in developing ASD [77, 123]. Evaluation of 
various pathological conditions of the injured cerebellum has confirmed the asso-
ciation between injuries and ASD. For instance, tuber load in the cerebellum in 
children with tuberous sclerosis is considered a specific predictor of ASD [24, 124]. 
Cerebellar damage may cause some complications such as gaze aversion, stereo-
typed movements, linguistic impairments, as well as complete avoidance of physi-
cal contact, which eventually leads to ASD [93]. In line with the basic and 
experimental findings, the clinical evidence suggests that cerebellar injury at early 
stages through developmental diaschisis can affect the development of the cerebral 
cortical area to which the cerebellum projects [123]. Therefore, not only cerebellar 
function, but also the structure and function of multiple regions of the cerebral cor-
tex can negatively be influenced by cerebellar developmental differences in patients 
with ASD.

Numerous studies in patients with ASD have reported abnormal changes in the 
size and shape of neurons in the deep cerebellar nuclei, as well as a decrease in the 
number of Purkinje cells (PC) [4, 60, 61, 85, 101]. Postmortem studies have con-
firmed experimental results showing a reduction in the gyrification, and size of 
granular and molecular layers of thee vermis, along with PC loss [8, 81, 110]. These 
findings may hypothesize that ASD is the source of prenatal defects, which persist 
in the early postnatal stage. Neuroimaging techniques, such as structural magnetic 
resonance imaging (MRI), provide conflicting information that shows vermal hypo-
plasia occurs in most people with ASD. The neuroimaging studies have also shown 
changes in the anatomical and functional connectivity of the cerebellum with other 
areas of the brain, including the thalamus and cerebral cortex [79, 101, 120].
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In addition to the neuroimaging studies, pharmacological researches have shown 
that the cerebellar glutaminergic and GABAergic systems are targeted for dysfunc-
tion in ASD patients [12, 101].

Also, major psychiatric disorders, including major depressive and bipolar disor-
ders, and schizophrenia, are presumed to have comprehensive changes in the 
GABAergic signaling system, such as altered cerebellar GABA receptor expression 
[101]. This could be associated with decreased FMRP expression and changes in 
FMRP–mGluR5 signaling and downstream targets, including RAC1, APP, STEP, 
and homer 1. On the other hand, GABA receptor expression is influenced by epi-
genetics or monoallelic expression. Thus GABAergic receptor agonism, modula-
tion of mGluR5 activity, and inhibition of glutamate-induced excitotoxicity may be 
potential therapeutic strategies, along with drugs that affect monoamine systems, 
including dopaminergic or serotonergic pathways [39]. Indeed, the GABAergic sys-
tem can be an important target for new drugs for psychiatric disorders [41].

Furthermore, papers on gene and protein expression analyses have demonstrated 
the downregulation of synaptophisin (SNAP-25, synaptosome-associated protein) 
and complexin, as well as the upregulation of semaphorin 3A, an axonal chemore-
pellant [35, 36, 82, 101]. Interestingly, dysregulation of activity and levels of 
D-amino acid oxidase (DAO), an enzyme that metabolizes D-serine, a co-agonist of 
NMDA (N-methyl-D-aspartate) receptor, were also observed [16]. Therefore, the 
available evidence seems to indicate disease-specific, including decreased vermis 
volume, and non-specific pathological factors, such as decreased PC count and 
pharmacological changes of the cerebellum in the neurodevelopmental disor-
ders [101].

In addition to ASD, the cerebellum is involved in schizophrenia, demonstrating 
coordination and postural abnormalities, impaired eyeblink conditioning, and pro-
cedural learning deficits [63, 64, 103]. Neurological signs are thought to be related 
to structural changes in the cerebellum [8, 126]. Due to the extensive connections 
between the cerebellum and the forebrain regions, cognitive dysmetria and poor 
mental coordination have been suggested to be caused by cerebellar abnormalities 
in schizophrenic patients [6, 7].

 Contribution of the Cerebellum in Neurodevelopment

There is growing evidence that emphasizes the role of the cerebellum in brain devel-
opment. Studies in fetal, neonatal, and pediatric individuals support the hypothesis 
that the developing cerebellum is clearly involved in motor, cognitive, and socio- 
behavioral development, and exert the role associated with a regional functional 
topography of the cerebellum. Consistent with these data, investigational studies 
have indicated the relationship between early-life and older children with cerebellar 
injury (e.g., pediatric posterior fossa tumors), and infants with cerebellar malforma-
tions and neurodevelopmental disorders, clarifying the importance of cerebellar 
structure-function relationships in brain development [106].
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The developmental process of the cerebellum possesses a highly regulated pat-
tern, which more rapidly grows during 20–40 weeks of gestation in comparison 
with other cerebral structures, demonstrating the importance of the critical period 
for cerebellar development [20, 78]. Cerebellar development in humans continues 
from the beginning of the first trimester to the end of the second postnatal year. 
However, prominent cerebellar development stage, including granule neuron pro-
genitors (GNPs) proliferation, occurred in the last trimester [47]. Thus, cerebellar 
vulnerability and its developmental repercussions of injury can disrupt this highly 
orchestrated, programmed developmental process during a critical period. On the 
other hand, disruption of cerebellar growth significantly affects other areas of the 
brain, for example, the developing cerebral cortex [123]. The cerebellum makes up 
only 10% of the total volume of the brain, but makes up ~80% of the neurons in the 
brain [117, 122].

On the other hand, given the complexity of cerebellar development and the role 
of different genetic pathways in it (e.g., mutation of RELN gene induced cerebellar 
hypoplasia [52]), it is unlikely to impair its development. This is due to the rich 
interconnection of the cerebellum with different areas of the cerebral cortex that 
supports movement, cognition, and affective regulation [108]. In this regard, the 
cerebellum seems to play a modulatory role in cerebro-cerebellar circuits, and sup-
ports behavioral optimization, particularly in procedural learning and skill acquisi-
tion [106].

Subsequently, it is believed that early disruption of the cerebellum due to prena-
tal cerebellar developmental lesions (i.e., malformations), preterm delivery, and cer-
ebellar posterior fossa tumors in early childhood can lead to neurodevelopmental 
disorders with long-lasting and wide-ranging alterations in the structure and func-
tion of cerebro-cerebellar systems, leading to long-term behavioral disorders [106].

 Role of the Cerebellum in Adaptive Behaviors, Autism 
Spectrum, and Neuropsychiatric Disorders

It is clear that the removal of cerebellar tumor in children and cerebellar parenchy-
mal injury in very preterm infants resulted in impairment of adaptive behaviors [10] 
and various types of affective disorders [75, 77]. For instance, affective dysregula-
tion is associated with cerebellar dysfunction in children [75], while emotional 
lability is also observed following posterior fossa syndrome [90].

Regarding specific structure-function relationship, an association between the 
posterior vermis injury and vermal lesions with behavioral dysregulation, flattened 
affect, and disinhibited behavior was observed [1, 75]. Some reports have men-
tioned that most children with midline or vermal tumors are encountered to affect 
dysregulation [1]. These findings were supported by a study by Richter et al. [92] 
that both positive (e.g., reduced aggression and thoughtful behavior) and negative 
(e.g., depression, anxiety, and aggression) behavioral symptoms were seen in 
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children with chronic cerebellar lesions. The association between the vermis and 
behavioral regulation pays attention to the critical role of the posterior vermis and 
its defects in neurodevelopmental disorders, including ADHD [57] and autism [9].

In addition, Schmahmann implied that more than half of the surviving preterm 
infants with cerebellar parenchymal tissue damage show psychiatric disorders [97], 
and functional limitations on socialization skills. Also, distinct socio-behavioral 
defects of attention, affective, internalizing, and pervasive sub-domains were 
reported in children with cerebellar injury [77].

Taken together, reports have shown that cerebellar injury and lesion at early life 
in preterm infants are associated with wide-ranging neurodevelopmental disorders 
[15]. Moreover, a reduction in the volume of the posterior vermis is thought to be 
consistent with neurodevelopmental-related behavioral dysregulation, including 
autism and ADHD. Psychiatric disorders have also been reported to be correlated 
with cerebellar injury during childhood [106].

 Cerebellum Plays a Role in ASD

Evidence has proposed that dysfunction in specific areas of the cerebellum can 
result in neurodevelopmental disorders, including ASD, according to the cerebel-
lum involvement in the developing brain. Scientists have demonstrated the signifi-
cant role of cerebellar damage in the neuropsychiatric consequences in five main 
domains: (1) impairment of attention, and (2) emotion, (3) disruption of social skill, 
(4) psychosis, and (5) autism spectrum disorders [97]. In ASD, data strongly sup-
port the structural-functional abnormalities in the cerebellum in patients with 
autism. Although ASD is adjusted to result from cerebellar dysfunction, it is obvi-
ous that several brain regions undergo dysfunction. Thus, the specific contribution 
of the cerebellum in the pathophysiology of ASD is needed to be clearly under-
stood. The cerebellum has been demonstrated to modulate and automatize motor 
movements to optimize performance [55]. Also, it has been observed that activation 
patterns in the primary motor cortex are modulated by transcranial magnetic stimu-
lation of the cerebellum [42]. This shows the cerebro-cerebellar relationship and 
verifies that alteration in cerebellar activity can affect different regions of the cere-
bral cortex, influence internal models of behavior, and optimize and predict future 
behavior [56]. Despite these effects, it does not mean that the cerebellar injury leads 
to complete loss of its function [95]. To this, a cerebellar injury may not include 
paralysis, but classic motor dysfunction, such as poorly calibrated dysmetric move-
ments, can be occurred. The modulatory effect of the cerebellum is not exclusively 
related to motor movement but is associated with impairment of cognition and 
affect [56]. Moreover, there is region-specific motor dysfunction, as the posterior 
cerebellar injury demonstrates no severely impaired cognition and language, but it 
can lead to disrupted modulation and optimization of cognitive performance such as 
agrammatism or semantic fluency [95, 96]. These findings emphasized the impor-
tance of the cerebellum in implicit learning and skill acquisition, which are directly 
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associated with the process of building and optimizing internal models. The cere-
bellum is believed to be completely associated with initial motor skill learning, 
while cortico-striatal pathways and primary motor cortex are more involved in the 
learned motor behaviors, as well as, cognition and working memory [30, 42]. A 
cerebellar role in learning and skill acquisition is compelling in neurodevelopment 
and neurodevelopmental disorders. Indeed, impairment of skill acquisition is more 
correlated to developmental disorders including ASD, dyslexia, and developmental 
coordination disorder [11, 115]. Several studies indicated that up to 40% of infants 
with cerebellar hemorrhages and lesions are diagnosed with ASD [117].

Another point to note is the sex difference in the prevalence of ASD. For every 
woman, three to four men are diagnosed. Due to the cerebellum's role in cognition 
and skill acquisition, it is a candidate to examine this sex difference. A study con-
ducted by Smith et al. indicates a pattern of cortico-cerebellar hyperconnectivity in 
ASD females and a pattern of hypoconnectivity in ASD males [102].

A preprint study was conducted by Li et al. to establish a link between the clini-
cal traits of ASD and the cerebellum. For this purpose, they performed amplitude of 
low-frequency fluctuations (ALFF) analysis. They found that the cerebellum but not 
other regions of the brain compared to normal controls showed significantly weaker 
average ALFF values [76].

These differences are assumed to be related to cerebro-cerebellar circuits [105]. 
Thus, behavioral defects resulting from neurodevelopmental disorders are linked to 
differences in the structure-function relationship of specific regions of the cerebel-
lum [105]. For instance, damage of the posterior cerebellar area may result in com-
munication impairments in patients with ASD, whereas motor defects of speech, 
Stuttering, are found to be relevant to overactivation of the anterior lobe of the cer-
ebellum [109]. Deficits of the mentioned cerebellar circuits were observed to cause 
long-term disorders by influencing the acquisition of motor, communication, and 
social skills during early neurodevelopment in patients with ASD.

 Cerebellum Plays a Role in ADHD

Regarding the present findings, alteration in structure and function of the cerebel-
lum is believed to the common phenomenon in ADHD [26, 32, 116], but the genetic 
and/or environment are thought to be predisposing risk factors of the neurodevelop-
mental disorder.

In children with ADHD the volume of the cerebellum, especially the gray matter 
in the left cerebellum is smaller compared to normal children ([65, 100]).

In a multicohort study, the role of cerebellar development in ADHD was investi-
gated. The findings of this study showed that the growth pattern of cerebellum white 
matter in children with ADHD is slower during early childhood that was followed 
by faster growth in later childhood [100].

As well as the cerebellum’s importance in ADHD pathogenesis, its correlation 
with other brain regions maybe have a prominent role. Ding and Pang indicated 
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strong functional connections between the cerebellum and the left, right middle 
frontal gyrus and the left parahippocampal gyrus, in comparison to the control 
group [29].

One of the drugs used in the treatment of ADHD is methylphenidate, which is 
able to improve T2 relaxation time in the cerebellar vermis in ADHD children [5]. 
Also, a systematic review study demonstrated that the cerebellum besides the mid-
dle and inferior frontal gyri and basal ganglia were most often affected by methyl-
phenidate administration in ADHD patients [23].

Genetic investigations have shown that a family-based single-nucleotide poly-
morphism (SNP) in the XKR4-gene (XK-Kell blood group complex subunit-related 
family, member 4) in the cerebellum is suggested to be related to the incidence of 
ADHD [68, 84]. Despite the unclear function of this gene in the brain, the impor-
tance of this gene was understood by finding that it codes for an inferred protein 
related to the XK-protein, part of the XK-Kell blood group complex [32, 70, 71]. 
XK-protein is observed to be widely overexpressed in the brain compared to Kell- 
protein in the Purkinje cells of the cerebellum. As the linkage between XK-gene and 
McLeod syndrome, a syndrome with sex-dependent defects of central nervous, neu-
romuscular, and hematologic systems in males including impairment of movement 
and cognition, and psychiatric disorders [25] was found; the hypothesized relation-
ship between XKR4-gene and psychiatric phenotypes was potentiated. It is note-
worthy that a correlation exists between XKR4- gene and substance abuse [114], 
while an SNP in the XKR4-gene has contributed to responsiveness to antipsychotic 
therapy [40, 69].

Recently, it has been shown that there is a significant relationship between 
MANBA gene (encoding for β-mannosidase) expression in the cerebellum and 
ADHD risk. As a result of rs1054037(C > T) mutation, and elimination of the bind-
ing site for hsa-miR-5591-3P, MANBA gene expression was upregulated [18].

Environmental and epigenetic factors are found to be linked to the cerebellum 
and its function in prenatal and postnatal stages. Studies of children with ADHD 
have demonstrated lower pronounced familial effects on the cerebellum volume 
compared to other regions of the brain [33]. Moreover, in contrast to some reports 
suggesting that the cerebellum’s heritability may be enhanced into adolescence and 
adulthood [88, 118], the cerebellum is considered as the least heritable brain struc-
ture at birth [44] and in childhood [87]. Prenatal adversity may influence cerebellar 
development, which begins in early intrauterine life [78, 112, 113]. These show the 
importance of prenatal and early postnatal periods in the development of the cere-
bellum to reach a normal structure and function. Unless, negative effects on the 
cerebellum in patients with ADHD have been demonstrated to be relevant to impair-
ment of the cognitive phenotypes, such as temporal processing [34]. However, the 
role of environmental effects on cerebellar development and its contribution to the 
symptoms of neurodevelopmental disorders remained to be obviously understood.
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 Cerebellum Plays a Role in Behavioral Despair 
and Neuropsychiatric Illnesses

Body of evidence has proposed that there is regionally abnormality in the brain 
volume in patients with major depressive disorder (MDD). Several meta-analyses 
have confirmed this hypothesis that a reduction in gray matter volume (GMV) of the 
dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and hip-
pocampus was observed in patients with MDD [14, 28, 31, 66, 129]. The reports 
have suggested two disorders as the pathophysiological factors of MDD, as below:

- Impairment of structure and function within cortico-limbic circuitry [58].
- Alterations in the functional organization of multiple brain networks are impli-

cated in attention regulation, emotional processes, and cognitive control [58].
Although the involvement of the cerebellum in both cognitive and affective pro-

cesses is now well-established, meta-analyses show no significant and obvious con-
tribution of the cerebellum in MDD.  The studies indicated the linkage of the 
cerebellum with cerebral cortices and paralimbic regions. Indeed, corticocerebellar 
circuits are the key point to clarify the role of the cerebellum in MDD [97, 107]. 
Limited data on the involvement of the cerebellum in MDD may be related to the 
few studies of cerebellar structure in MDD.

Cerebro-cerebellar circuits have been affected in MDD. He et al. evaluated this 
circuit in MDD and BD (bipolar disorder); their results demonstrated weaker nega-
tive and positive functional connectivity in the cerebro-cerebellar affective and 
cerebro-cerebellar default mode networks, respectively. However, connectivity 
within the cerebro-cerebellar default mode network in MDD patients was weaker 
compared to the BD patients [49].

However, the analytical studies were focused on the vermian volume and lack of 
gray/white matter parcellation [127]. Moreover, clinical evidence reported an 
abnormal structure of the cerebellum in depressed patients using whole-brain inves-
tigations of altered GMV in depression [28, 67, 86, 119, 127].

In addition, in remitted MDD (rMDD) patients with cognitive deficits, GMV 
significantly lowered in left area VIIA, crus II, and in vermal area VIIB in compari-
son to healthy controls. Depping et al. based on their findings suggest that the VII 
area in the cerebellum can be targeted to treat cognitive deficits related to MDD by 
non-invasive brain stimulation [27].

In another study, Bogoian et al. looked at the link between depressive symptoms 
dimension and the cerebellum in late life. There is a positive relationship between 
depressive symptom profiles severity and cerebellum especially vermis volume (VI 
and VIII) [13].

In a study, self-perception of negative mood was evaluated in patients with cer-
ebellar damage mostly posterior vermis, that allows conscious emotional process-
ing. Their results showed that this damage might slow the data integration for mood 
state awareness. Authors believed it is one of the reasons for the underdiagnosis of 
depression in cerebellar patients [19].
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To better understand the role of the cerebellum in behavior, fMRI data were ana-
lyzed in adolescents and young adults to identify the possible association between 
emotional and behavioral disorders with brain areas [91]. Interestingly, the results 
emphasized that the cerebellum, as well as cerebral sensorimotor and limbic areas, 
had the strongest link to behavioral despair.

In addition to MDD, the investigations demonstrated a significant association 
between obsessive-compulsive disorder (OCD) and abnormalities in the cerebel-
lum. There were found significant, obvious abnormalities in the cerebellum, along 
with in the temporo-parieto-occipital and fronto-striatal areas in patients with OCD 
compared to healthy controls [53].

There are various reports that confirm the alteration of cerebellar-default-mode 
network (DMN) connectivity in OCD [80, 83].

Several studies sought to establish an association between the cerebellum and 
functional networks in the pathogenesis of OCD. Zhang et al. highlight functional 
connectivity between the cerebellum and the cortico-striato-thalamo-cortical 
(CSTC) circuit in OCD patients. The mean amplitude of low-frequency fluctuation 
(mfALFF) values significantly increased in the cerebellum of OCD patients com-
pared to healthy controls. Their hypothesized, weak functional connection between 
the cerebellum and CSTC may be involved in the pathogenesis of the OCD [128].

In another study, Sha et al. demonstrated that the cerebello-thalamo-cortical net-
work is functionally disrupted in OCD patients. Their results exhibited lower con-
nectivity within the somatomotor network (SMN) and greater SMN-subcortical 
network and SMN-cerebellar connectivity in OCD [99].

Although we have limited data on the role of the cerebellum in the pathogenesis 
of anxiety disorders, the accumulation of evidence of the importance and involve-
ment of the cerebellum in a wide variety of psychiatric and neurodevelopmental 
disorders are needed to be elucidated [3].

In a study, Sakakibara et al. sought to evaluate the resting-state activity of the 
cerebellum and its correlation with trait anxiety and parenting stress. It was found 
in mothers with less adaptive sensory processing, resting-state network activities 
significantly increased in the left lobule VI of the cerebellum [94].

Anxiety is one of the most frequent psychiatric illnesses in adolescents. Lee et al. 
evaluate functional connectivity alteration in the cerebellum and its relation with 
anxiety in Adolescents. Dentate nuclei communicate the cerebellum with cortical 
regions. They highlighted alterations in this area during anxiety in patients and 
found significant hyperconnectivity between salience-motor Dentate nuclei func-
tional territories and cerebral cortical salience-motor regions compared to con-
trols [72].

Schizophrenia, as known as a neurodevelopmental disorder with uncertain etiol-
ogy, is thought to be associated with the cerebellum, which has been considered as 
a proposed target of the neurodevelopmental processes. The schizophrenic pheno-
type consists of a variety of neuronal and behavioral disorders. Also, it includes 
impaired cognition, termed “cognitive dysmetria” that involves the thought-form. 
The literature proposed that this condition may be relevant to the pathological status 
of the cerebellum [125]. The brain regional analogy has also demonstrated that 
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deficits in the cerebellar cognitive or affective circuits may lead to thought disorder 
and/or tangentiality. The investigations using longitudinal and cross-sectional struc-
tural MRI proposed the implication of cerebellar development in schizophrenic 
patients with childhood-onset and compared the resulted data to healthy controls 
[3, 59].

The functional connectivity between the cerebellum and cortical/subcortical net-
work is disturbed in schizophrenia. Reduction in the gray matter of the cerebellum 
during schizophrenia increased static and decreased dynamic functional connectiv-
ity between the cerebellum and cortical/subcortical networks, respectively [48]. In 
another study on schizophrenia patients, significant hypoconnectivity was shown 
between the cerebellum and cortical resting-state network. They suggest impaired 
resting-state functional connectivity in specific lobules of the cerebellum, could be 
a biomarker for schizophrenia [62].

Cai et  al. in their study evaluated the association between cerebellar-cerebral 
resting-state (rsFC) functional connectivity and neurological soft signs. Results of 
this study demonstrate that in schizophrenia patients, uncoupling of rsFC between 
the cerebellum and the cerebral cortex may induce the expression of neurological 
soft signs. They concluded that in these patients, cerebellar-prefrontal rsFC has a 
positive correlation with both motor coordination deficits and negative symp-
toms [17].

The results showed a decrease in the volume of the cerebellum and cerebrum in 
adolescent patients with schizophrenia. Moreover, Greenstein et al. [46] explored 
abnormal different trajectories of cerebellar development in patients with childhood- 
onset schizophrenia.

 Conclusion

The body of evidence has shown a critical role of the cerebellum in the development 
of motor and non-motor (e.g., cognition and behavior) conditions, that were dis-
rupted by cerebellar injury in preterm infants, developmental cerebellar lesions in 
infants, cerebellar tumor in pediatric patients, and neurodevelopmental defects. As 
developmental differences have occurred in cerebellar malformations and neurode-
velopmental disorders, it is thought to be associated with motor, cognitive, and 
behavioral dysfunction. Cerebellar injury in preterm infants can increase the rate of 
cognitive and socio-behavioral dysfunction. Consistent with preterm newborns, cer-
ebellar tumors resulted in similar motor, cognitive, and behavioral defects in pedi-
atric patients. Furthermore, the region-specific lesions may determine the effects of 
early cerebellar damages on neurodevelopmental and behavioral disorders. 
Cerebellar dysfunction in early life can cause distinct, long-term effects on the brain 
distal areas which are projected by the cerebellum. Developmental diaschisis can 
affect the structure-function of the areas of the cerebral cortex that may be opti-
mized by the cerebellar input. In summary, increasing clinical and neuroimaging 
evidence in newborns with acquired and developmental cerebellar lesions, along 
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with older children with cerebellar damage, provided a new approach to the role of 
the cerebellar lesions in early life on cerebral development. On the other hand, 
determining the age of cerebellar injury to a developing brain may help us predict 
possible long-term outcomes (Fig. 1).

However, the effects of cerebellar lesions at prenatal and postnatal periods on 
cerebral development should be clarified. Further studies are needed to better under-
stand the structure-function relationship in the developing cerebellum to improve 
clinical prognosis, early intervention services, and educational planning. The find-
ings can open a new way to explore a new treatment for cerebella injury-induced 
neurodevelopmental and behavioral disorders caused by cerebellar neuromodula-
tion. It is also possible that therapeutic interventions, such as cerebellar neuromodu-
lation, may offer alternative treatment options in these populations. Growing our 
knowledge of the association between cerebellar circuits and specific behaviors can 

Fig. 1 Schematic of the cerebellum and its associated non-motor, neurobehavioral, and behavioral 
disorders. The cerebellar damages and dysfunction may lead to a variety of non-motor deficits and 
behavioral outcomes in patients with neurodevelopmental disorders
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facilitate reaching to point of optimization of timing and localization of the thera-
peutic strategies. These essential findings will guide us to improve the lives of mil-
lions of children affected by cerebellar injury and subsequent developmental 
disorders.
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Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder with 
an incidence of 1 in 68 children. Cerebellar abnormalities have been observed in 
many ASD patients. The cerebellum is an elaborate brain region crucially important 
for motor learning and coordination of movement, and increasing lines of evidence 
indicate that the cerebellum also contributes to emotion and cognition. In this chap-
ter, we will review the genetic and environmental factors that may contribute to 
cerebellar deficits in ASD patients. Structural and functional cerebellar abnormali-
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ties based on neuroimaging and histopathological studies and current approaches to 
management will be discussed.

Keywords Cerebellum · Neurodevelopmental disorders · Motor skills · Language 
· Cognition · Autism spectrum disorder

 Introduction

Autism is a complex neurodevelopmental disorder that was described as “early 
infantile autism” for the first time by Leo Kanner, a child psychiatrist (1943). He 
used this term for patients with “a powerful desire for aloneness” and “an obsessive 
insistence on persistent sameness” [1–4]. A similar behavioral disorder, “Asperger’s 
Syndrome,” was reported by Hans Asperger [5]. To avoid using different terminolo-
gies, these disorders were together named “autism disorders” in 1987. Recently, the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) col-
lectively designated all autism-like disorders as “autism spectrum disorder” 
(ASD) [3].

Despite the fact that the symptoms of ASD are extremely different, it is charac-
terized by a triad of symptoms: (1) impairment in social interaction, (2) communi-
cation difficulties, and (3) restricted, repetitive, and stereotyped patterns of behavior 
[3, 6–10]. Additional conditions that can be associated with ASD are psychiatric 
disorders such as attention deficit hyperactivity disorder (ADHD) and genetic 
defects [5]. Current diagnostic methods can detect autism in children as young as 
2 years old [11]. It is estimated that 1 in 68 children in the United States has ASD 
[12], and 1–2% has the disorder in Asia, Europe, and North America (see chapter 
“Epidemiology of Cerebellar Disorders”), as well as male children are four times 
more likely to be diagnosed with ASD than female children [11]. Part of the reason 
for this ratio in the diagnosis of autism is further complicated by co-occurring con-
ditions such as depression, sensory problems, and seizures in women that lead to 
misdiagnosis of ASD at a young age [13].

The etiology of ASD is complicated: in some patients it is unknown and in some 
cases individuals are affected due to gene mutations and/or environmental factors 
[7]. However, the interplay of genetic, environmental, and epigenetic factors prob-
ably underlies the mechanisms of ASD [8, 14].

A subset of ASD patients, about 1 in 5, displays increased head circumference 
and brain volume in early childhood, typically until 5–6 years of age [15, 16]. These 
patients have a greater cerebral white matter, a thicker corpus callosum, and a higher 
volume of cerebrospinal fluid (CSF) in the subarachnoid space from 6 to 9 months 
of age [17–19]. The frontal cortex has been reported to be larger, probably due to 
increased neuronal density in the prefrontal cortex [20]. Other brain regions that are 
prominently implicated in ASD include the cerebellum, brainstem, and limbic 
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system, including the hippocampus and basal ganglia [21]. These areas are most 
likely responsible for the symptoms of those patients with abnormalities related to 
social behavior, executive functions, atypical use of language, and difficulties with 
speech [22]. Additionally, enlargement of the amygdala and caudate nucleus may 
cause anxiety and repetitive behavior [23].

Recent advances in molecular genetics and imaging technologies have shown 
that the cerebellum is one of the most consistently affected brain regions in ASD 
patients [8, 13, 24, 25]. The cerebellar neurodevelopmental deficits in ASD include 
increased size of the cerebellum (increased cortex in lobule V); reduced cerebellar 
cortex, especially lobule VIII, right Crus I, and midline IX; decreased size in vermal 
lobules VI and VII; and abnormal cerebellar circuits with rostral part [13]. Neuronal 
malmigration may cause cortical distortion and the presence of ectopic neurons in 
the white matter [26], neurodegeneration, and impaired cerebellar circuits. Together, 
these deficits affect motor, sensory, language, and cognitive functions [27–30].

 Autism Spectrum Disorder Pathogenesis

Emerging evidence from genetic association studies and post-mortem human brain 
tissue indicates that ASD is either hereditary or caused probably by de novo muta-
tions in a number of genes. Additionally, certain environmental risk factors have 
been proposed to be causative in ASD. Autism affects a large number of biological 
processes, brain networks, and behaviors. As a result, it has been difficult to uncover 
the neurobiological underpinnings of ASD [9, 31] and in what ways cerebellum 
contributes to the etiology of ASD has been particularly underappreciated.

The cerebellum develops from early embryogenesis to the first year postnatally 
in human. This long period of pre- and postnatal cerebellar development makes 
cerebellum susceptible to many risk factors [32–36]. In this section, we briefly 
review the findings regarding currently identified genetic and environmental risk 
factors in ASD. Epigenetic susceptibility factors have been discussed in chapter 
“Epigenetic Control and Cerebellar Neurodevelopmental Disorders”.

 Genetic Factors

Several lines of evidence have revealed that ASD is a neurodevelopmental disorder 
determined largely by genetic factors [37]. For example, twin studies have higher 
concordance rates for monozygotic twins than for dizygotic; approximately 80% of 
monozygotic twins are concordant compared to 10% of dizygotic twins, with a heri-
tability of over 90% [38]. Recently, various genes have been discovered as risk fac-
tors for ASD in genome-wide association studies. These genes, which span several 
chromosomal loci, are highly expressed and involved in the development of the 
cerebellum [39, 40]. Sadakata et al. [40] categorized these genes based on their role 
in the development of the nervous system and synapse development and function. 
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Some of these genes, such as CDH9, CDH10, RELN, and PTEN, are involved in 
developmental process such as neuronal differentiation, migration, and circuit for-
mation. An important category of ASD-associated genes regulates synaptic adhe-
sion and synaptic transmission, including genes encoding for neurexins, neuroligins, 
and leucine-rich repeat transmembrane neuronal proteins (LRRTMs), Shanks and 
SynGAP [41–44]. Another category of ASD risk genes, such as EN2, TSC1, FMR1, 
and MECP2, encode for proteins necessary for transcription and translation [40, 45].

Chromodomain-helicase-DNA binding protein 8 (CHD8), previously called 
Duplin, is one of the genes most strongly associated with ASD [46, 47]. CHD8 is a 
chromatin-remodeling factor that is contributed to a variety of biological processes 
such as cell cycle, cell adhesion, development of neurons, myelination, and synap-
togenesis [48]. CHD8 is an ATP-dependent chromatin-remodeling factor [49] and 
may serve as a “master regulator” for other ASD risk genes during fetal develop-
ment [46, 50]. Knockdown of CHD8 in human neural stem cells affects the expres-
sion of several ASD risk genes [46], and human patients with mutations in CHD8 
display ASD symptoms and have macrocephaly and gastrointestinal difficulties 
[39]. Furthermore, in mice, cerebellar granule neuron progenitor (GNP)-specific 
deletion of CHD8 affects cell proliferation and differentiation, as well as causing 
cerebellar hypoplasia and a motor coordination deficit [51]. These findings sug-
gested that CHD8 regulates other ASD risk genes and targets a collection of genes 
throughout brain development [46]. Some of the ASD risk genes regulate develop-
mental processes in the cerebellum [14]. These include genes encoding for Reelin, 
RORα, EN2, BDNF, neuroligins, and neurexins [8, 52].

RELN dysregulation has been observed in a subset of autistic individuals 
(reviewed in [38, 52]). Reelin, encoded by the RELN gene (located in chromosome 
7 in human and chromosome 5 in mice), is a 388 kDa extracellular matrix glycopro-
tein, which is essential for proper neuronal migration and positioning during embry-
onic and perinatal development of the brain/cerebellum [8, 38]. Though the precise 
mechanisms of RELN’s role in ASD pathogenesis is uncertain, trinucleotide repeat 
expansion in the RELN gene has been observed in autistic individuals [8, 52]. 
Persico et  al. first reported that the polymorphic GGC repeats located in the 50 
untranslated region (50 UTR) of the RELN are associated with ASD disorder [53]. 
The finding was subsequently replicated in three studies: Zhang et al. [54], Skaar 
et al. [55], and Dutta et al. [56], but there were no confirmed association between the 
triplet repeats in the 50 UTR of the RELN and autism. The family-based association 
analyses revealed that many CGG repeats present in RELN alleles may causes ASD, 
particularly in patients with speech difficulties [57]. Several RELN genetic variants 
including triple replication of 5′UTR CGG and polymorphisms rs736707, rs362691, 
and rs2229864 were examined. No significant associations were observed between 
allele frequency or genotype of the studied polymorphisms and triple replication of 
5′UTR with ASD [58].

Reelin mutations in mouse models lead to irregular cortex formation and abnor-
mal layering, which may responsible for behavioral and neurological disorders [59]. 
Adulthood changes in Reelin protein level caused cognitive impairment and reduced 
synaptic plasticity [59–62]. Given that the genetic evidence implicates RELN in the 
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etiopathology of ASD, it has been attempted to add biochemical evidence by mea-
suring the Reelin level in brain tissue and blood by using Western blotting. They 
showed that the levels of Reelin were significantly reduced in patients with ASD 
[63]. A study by Cuchillo-Ibáñez comparing plasma Reelin levels in children with 
autism and healthy children of similar ages, in both sexes, showed that Reelin 
expression was 30 times higher in half of children with autism than in non-autistic 
individuals. This protein was shown to be significantly higher in boys with autism 
than in girls [64].

Several lines of evidence indicate that genes encoding retinoic acid receptor- 
related orphan receptors (RORs) are also associated with ASD. The RORα, β, and γ 
are nuclear receptors regulate a range of physiological processes during brain devel-
opment [65–67]. RORα and RORγ are broadly expressed in the body, whereas 
RORβ expression is more restricted to the central nervous system [67, 68]. RORα 
protein expression significantly decreases in the brains of ASD patients probably 
through epigenetic alterations [69]. Devanna and Vernes demonstrated that miR-137, 
a microRNA implicated in neuropsychiatric disorders, targets a number of genes 
associated with ASD including RORα [70]. RORα is a transcription factor that is 
critically important for development of the cerebellum [65, 66, 71]. The role of the 
RORα in neural development has been demonstrated in mouse strain staggerer, 
which harbors a spontaneous deletion within RORα [72]. These mice have small 
stature and develop ataxia and hypotonia. The major neural deficit was underdevel-
opment of the cerebellar cortex with a pronounced deficiency in both granule and 
Purkinje cells [72]. Furthermore, disruption of RORα in staggerer mice shows 
behavioral phenotypes such as abnormal spatial learning, reduced exploration, lim-
ited maze patrolling, and perseverative behavior, which are associated with ASD 
[66, 67].

Engrailed 2 (EN2), a homeobox transcription factor, has been associated with 
normal cerebellar development, and mutations or deletions of EN2 result in reduced 
cerebellum volume and structural abnormalities [73, 74], which are both associated 
with susceptibility to ASD [75].

Brain-derived neurotrophic factor (BDNF) plays a key role in the development 
of the nervous system and modulation of neuronal activity, both of which impact 
complex human behaviors. Several studies have been performed to measure periph-
eral blood levels of BDNF in an attempt to find a biomarker for children with 
ASD. Peripheral blood levels of BDNF are known to be highly correlated with brain 
BDNF levels [76]. Although there is no consistency in the association between 
BDNF levels in blood and ASD, a recent review by Qin et al. using meta-analysis 
indicated that there are increased peripheral blood levels of BDNF in ASD patients 
[77]. Increased platelet counts in autistic children could provide a clue as to why 
BDNF levels are increased, since these are the most important peripheral reservoirs 
for BDNF [78]. Furthermore, Ca2

+-dependent activator protein for secretion 2 
(CADPS2) contributes to normal cerebellar development by enhancing release of 
BDNF and neurotrophin-3 (NT-3) [79, 80]. The CADPS family is a secretory- 
related protein family that regulates secretory granule exocytosis, which in verte-
brates consists of two genes, CAPS1/CADPS1 and CAPS2/CADPS2. The 
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expression level of the CAPS2 has been observed to be unusually high in some 
patients with ASD [40, 81].

Mutations in the methyl CpG-binding protein 2 (MECP2) gene are known to 
cause Rett syndrome, a disorder characterized by language impairments, motor 
deficiencies, and stereotypical behavior [82], which is under the umbrella of 
ASD. Patients with Rett syndrome frequently have cerebellar atrophy that increases 
with age [14] (see chapter “Epigenetic Control and Cerebellar Neurodevelopmental 
Disorders”).

Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors 
in the body, including brain [83]. Mutations in the TSC1 and TSC2 genes cause 
TSC with a neurodevelopmental disorder that involves higher rates of ASD [83, 84]. 
TSC produces a protein that negatively regulates the target of the rapamycin 
(mTOR) signaling pathway to control molecular and cellular process. Tsai et  al. 
designed a mutant mouse model in which the gene for Tsc1 is not expressed in 
Purkinje cells [84]. These mutant mice displayed ASD-like behaviors such as abnor-
mal social interaction, ultrasonic vocalization, and inflexibility. In addition, recent 
discovery have shown that the granule cells/Purkinje cells are important for cogni-
tive processing in the cerebellum [85]. These studies are significant because they 
demonstrated a clear involvement of the cerebellum in nonmotor functions as 
well [84].

 The Role of Glia

There is growing evidence that glia cells have been implicated in pathophysiology 
of ASD. Glia cells play a key role in developing synapse, myelination, neurogene-
sis, and inflammation within the brain. Autism-related neurogenesis and synapto-
genesis deficiencies suggest that glia cell dysfunction may contribute to the 
development of autism or can play a dual role in improving or worsening ASD 
symptoms (reviewed in [86]).

Molecular studies on autism-related genes indicated a link between ASDs and 
genes involved in glial cell activation. Increased number of glia cells and activation 
of microglia in different areas of the brain including the cerebellum, as well as 
increased expression of proinflammatory factors such as cytokines, were observed 
in brain samples of people with ASD using PET scan and post-mortem brain sam-
ples [87–89].

 Environmental Factors

It has been suggested that the risk of developing ASD increases with exposure to 
environmental factors such as teratogenic substances (e.g., thalidomide, valproate, 
and misoprostol, Bisphenol A [90], gestational diabetes [91], infection with viruses 
(e.g., influenza, rubella, and cytomegalovirus)) during pregnancy, and advanced age 
of parents (for reviews, see Refs. [40, 92, 93]). Additional factors such as zinc 
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deficiency, abnormal melatonin synthesis, and prenatal stress may also contribute to 
autism [93].

Some environmental risk factors, such as prenatal valproic acid exposure, have 
been linked to aberrant cerebellar development and ASD [94]. In rat, valproic acid 
exposure reduces the number of Purkinje cells in the cerebellum accompanied by 
increases in the number of apoptotic cells [95]. Cole et al. have shown changes in 
cerebellar gene expression in mice treated with chlorpyrifos [96]. Dermal exposure 
of young adult mice to chlorpyrifos causes increased glial fibrillary acidic protein 
expression of the cerebellum [97]. Furthermore, Purkinje cell numbers are reduced 
in rats prenatally exposed to chlorpyrifos [98]. Other factors such as organophos-
phate pesticides and antiepileptic drugs have been shown to affect cerebellar devel-
opment and potentially cause ASD [99]. Maternal fever is another environmental 
risk factor that affects the cerebellum and leads to apoptosis. It also interferes with 
neuronal maturation and may cause heat shock protein activation during cerebellum 
development in ASD [100–102]. The risk of diseases such as preeclampsia, fetal 
macrosomia, perinatal mortality, caesarean delivery, and preterm childbirth is higher 
in women with gestational diabetes, which can increase the risk of developmental 
neurological disorders and ASD [103].

Viral infections can affect cerebellar and neocortical development during pre- 
and neonatal and cause neuropathy in ASD [104, 105]. Influenza virus also has the 
same impact on cerebellum development such as reduced the number of Purkinje 
cells and interruption in migration of Purkinje and granule cells during perinatal 
development, which may cause deficits in working memory and behavioral impair-
ments [106–109] (see chapter “Infections of the Cerebellum”).

 Covid-19 and ASD

A group of evidence indicated that deficiency of insulin-like growth factor-1 (IGF-1) 
seen in newborns of women suffering from Covid-19 may plays a vital role in the 
etiology of ASD [110–112]. In a Covid-19 condition, maternal immunologic activa-
tion elevates interleukin (IL-6), which lowers growth hormone and IGF-1 synthesis 
in the placental environment. It is suggested that IL-6 causes decreased Covid-19 
infection resistance due to suppressed IGF-1, which is typical in older people. The 
ability of the developing nervous system of the fetus to myelinate would be dam-
aged and leading to brain connectivity impairment [110, 112]. This could increase 
autism in the newborns of pregnant women who are currently suffering from 
Covid-19 [110].

 Functional Gastrointestinal Disorders and ASD

Functional gastrointestinal disorders (FGIDs) are disorders independent of organic 
or physiological conditions that are the most common causes of gastrointestinal 
disorders in children with ASD. FGID symptoms include abdominal pain, 
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constipation, irritable bowel syndrome, and functional dyspepsia [113]. The FGIDs 
are associated with impaired behaviors and sensory responses and changes in sleep 
patterns [114]. Because many autistic children have co-occurring gastrointestinal 
disorders, new research suggests a probable relationship between ASD and the gut 
microbiome (reviewed in [115]). It is suggested that inadequate brain–gut interac-
tions may be responsible for these symptoms in ASD patients [113]. Changing the 
gut microbiome to treat the ASD behaviors such as anxiety and depression is a new 
line of study that hopes to find alternate treatments for ASD patients [116, 117].

 Air Pollution and ASD

Exposure to air pollution, which may cause immune response, is another likely 
environmental risk factor for ASD [118]. A maternal illness with a fever during the 
second trimester of pregnancy increases the infant’s risk of developing autism after 
birth [119]. The immune response results in the activation of immune cells and 
antibody production and increases the leukocyte migration to the brain tissue by 
increasing diffusion through the blood–brain barrier. It is suggested that maternal 
immune activation at a critical time impairs cerebellar morphology and various 
motor and nonmotor behaviors [120]. The abnormal level of immunological mark-
ers in the blood of ASD patients is shown to be evidence of interaction between 
genetic/environmental factors and the immune system in these patients [121, 122] 
(see chapter “Interrelation Between the Immune and the Nervous Systems in the 
Context of Cerebellar Development and Developmental Disorders”).

 Diagnosis of ASD

Studies on patients with ASD using advanced brain imaging, genetic, and behav-
ioral observations improved our knowledge of ASD symptoms. As of yet, there are 
no biomarkers for the diagnosis of ASD, and the current clinical diagnosis of these 
patients is based on behavioral observations combined with patient history [23, 
123]. Three ASD diagnosis criteria  – social reciprocity, communication, and 
restricted/repetitive behavior  – have been published by DSM-IV. However, it 
recently has been revised by DSM-V and International Classification of Diseases, 
Tenth Edition (ICD-10) into two domains of diagnosis criteria: (1) deficits in social 
communication/interaction and (2) restricted and repetitive behaviors, with evi-
dence of persistent symptoms that cause functional impairment [123]. Murphy et al. 
highlighted three key issues regarding physical health that may be important in the 
diagnosis of ASD patients: sleep, gastrointestinal problems, and epilepsy [123]. The 
mental health issues are present in adults and children with ASD, including mood 
and anxiety disorders, obsessive-compulsive disorder (OCD), attention deficit 
hyperactivity disorder (ADHD), and psychotic disorders. These persist from child-
hood to adulthood in both sexes. Additionally, ASD patients have specific cognitive 
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anomalies, including poor planning, decision-making, timing, and motor skills, 
which impact their daily activities [123–125].

 The Cerebellum and ASD

Cerebellar abnormalities have been linked to a variety of developmental disabilities 
and behavioral disorders, including ASD (see review by Bolduc and Limperopoulos 
[33]). Vakorin and colleagues employed resting-state magnetoencephalography to 
calculate resting spectral power and interregional synchronization in early and late 
childhood of people with and without ASD. They found that the frontal cortex and 
cerebellum play a prominent role in ASD [126]. Motor impairment and clumsiness 
have been noted as essential features of ASD [127]. It is shown that about 80% of 
children with ASD have motor coordination deficits, which positively correlate with 
the severity of the ASD and intellectual disabilities [13, 128]. Cerebellar motor dys-
function in ASD includes eye-movement abnormalities, fine and gross motor defi-
cits, gait, balance and coordination impairment, postural instability, and motor 
learning deficits [13, 129]. Motor impairments are among the earliest signs of an 
autistic phenotype [130]. It has been shown that motor impairments are predictive 
of the ASD outcome. During early movement activities, individuals who are later 
diagnosed with ASD, have poor fine and gross motor skills, as well as language 
development delays [13, 131].

Similarly, difficulties in oral and manual motor skills in infancy can label indi-
viduals as ASD patients, and late speech fluency is predictable [132]. In addition, 
early motor delays are more common in infants at risk for ASD and are related to 
later communication delays [133]. Therefore, the timing of language acquisition 
may serve as an indicator for neurodevelopmental and behavior disorders and may 
be a marker to diagnose people with ASD.

Emotional/behavioral disturbance and communication disorders may be associ-
ated with motor task performance in ASD patients [134]. The lack of gesture and 
imitation in ASD patients has been linked to motor dysfunction, suggesting a 
method through which cerebellar impairment could affect the core social communi-
cation symptoms in ASD patients [13, 135].

 ASD and Cerebellar Structure Abnormalities

Cerebellar abnormalities such as reduced white matter integrity [136], abnormal 
dentato-cerebral functional connectivity [137], abnormal gray matter volume in the 
cerebellar cortex [138], and decreased cerebellar cortex (which is a key landmark 
for diagnosis in ASD brains) are the most consistently reported brain structural 
changes in ASD [13, 139]. Cerebellar enlargement has been reported in ASD young 
children compared to the total brain volume and may be associated with the 
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cerebellar white matter [28, 140, 141]. However, the growth rate declines later dur-
ing development and eventually results in a smaller cerebellar volume by adulthood 
in ASD patients [141, 142].

MRI reveals hyperplasia and hypoplasia (with hypoplasia being more common) 
in the cerebellar vermal lobules VI and VII of patients with ASD, with possible 
origins from environmental trauma or genetic factors [143, 144]. It is suggested that 
these alterations may be responsible for increased stereotypes and repetitive move-
ments [145]. The language impairment in ASD may be associated with a decreased 
volume of the vermis and anterior lobe and abnormal left-lateralization in lobule 
VIIIA [146, 147]. A voxel-based morphometry study suggested that structural dif-
ferences such as increase and decrease in cerebellar gray and white matters are 
related to specific abnormalities at the different stages of cerebellar development in 
ASD patients [13, 148].

Neurohistological studies show changes in the anatomy of the cerebellum in 
patients with ASD, including a decrease in the number of Purkinje cells [149, 150], 
immature cerebellar development [151–153], morphological changes in the size of 
the cerebellar nuclei which are small and abnormal, and an increase in the number 
of Bergmann glial cells [154, 155]. The low density of the Purkinje cells in the cer-
ebellum of ASD patients was observed in the vermis, Crus I–II, lobules IV–VI, and 
lobule X [156]. Small-sized Purkinje cells may indicate an atrophic process [157]. 
Purkinje cells have a high metabolic demand because of their large size and numer-
ous synapses with parallel and climbing fibers. Therefore, they have extensive 
amounts of calcium storage that may cause increases in intracellular calcium, which 
elevates the risk of excitotoxicity and cell death [158].

It has been reported that the cortico-ponto-cerebello-thalamo-cortical circuit is 
immature and abnormal both functionally and anatomically in patients with ASD 
[9]. It is also shown that the cerebellar input and output pathways related to the 
neocortical areas are unusual in ASD patients [159, 160]. The cortico-ponto- 
cerebellar pathway carries inputs to the cerebellum from the primary sensory and 
motor cortex, posterior parietal, prefrontal, orbitofrontal, cingulate, temporal, and 
basal nuclei  [161, 162]. Outputs originate from the cerebellar nuclei and project to 
the neocortex through the thalamus [163–165]. These circuits are specialized for 
cognitive and behavioral functions such as executive functions, language, and emo-
tions. Thus, the cerebellum may be responsible for cognitive impairment, senso-
rimotor behavior, and social disconnection in ASD [14].

Eye-gaze abnormalities during social interaction are early diagnostic indicators 
in ASD patients. Gaze fixation is naturally used to fix the fovea on an image or 
object. The oculomotor system maintains fixation, which is supported by the nuclei 
of the brainstem. Therefore, inputs from the frontal eye fields and superior collicu-
lus actively block the saccades away from the object of interest [166]. The pontine 
nuclei stimulate Purkinje cells in lobules VI–VII vermis cerebellum, and inhibitory 
outputs from the oculomotor vermis stop undesired eye movements and keep an 
image on the fovea [167], which could potentially be used as an early marker of 
ASD patients.
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Control of upper limb movement is related to the frontoparietal cortex and the 
cerebellar cortex, as well as its output nuclei [168]. In patients with upper limb 
ataxia, atrophy of the intermediate and lateral cerebellum involving lobules I–V and 
more lateral portions of lobules V–VI extending into Crus I–II is linked to upper 
limb and manual motor impairments [169]. These loops regulate the amplitude, 
duration, and timing of movements [170, 171]. Patients with ASD have difficulties 
coordinating grasping and reaching activities [172]. Central defects may cause these 
difficulties in integrating sensory feedback information, motor output, and deficits 
in neocortical–posterior cerebellar circuitry. The compromised motor learning in 
individuals with ASD could be related to disturbances in the anterior cerebellar 
lobules IV–VI and their connectivity to frontal and parietal regions of the cortex. 
These effects may damage upper limb and manual motor actions that ultimately 
impact the patient’s ability to control motor behavior and learn new skills. Therefore, 
the development of more complex social motor skills in these patients is disabled. 
Medial and intermediate cerebellar circuits affected by insufficiency in both sensory 
feedback and forward control appear to cause motor impairments and difficulties in 
posture, gait, and walking in ASD patients [173]. The motor deficits start from 
infancy and extend to adolescence and adulthood [127, 174–176].

Cognitive function deficits such as attention and memory impairment, executive 
function, and cognitive flexibility deficits are common features in ASD [177]. The 
cerebellum communicates with Brodmann areas 46 and 9 of the prefrontal cortex, 
which are involved in cognitive functions, memory, planning, decision-making, and 
cognitive flexibility [178–180]. The cerebellum to prefrontal cortex pathway could 
directly or indirectly affect cognitive functions through the ventral tegmental area, 
which contains dopaminergic neurons that project and terminate in the prefrontal 
cortex [181]. Notably, the function of the prefrontal cortex dopaminergic pathway is 
associated with attention selection, cognitive flexibility, and memory [180]. A mal-
development and atypical connectivity of the cerebellum to this higher order circuit 
may explain the cognitive involvement of the cerebellum in patients with ASD.

The brain connectome reveals the structure and configurations of the brain in 
terms of its spatial and temporal alternation. The brain connectome can change at 
any moment during life due to neurodevelopmental diseases such as ADHD, ASD, 
or other neurodegenerative disorders in the early stages of development [182]. 
Although no functional brain connectome map for ASD exists now, there is an 
agreement based on biological characteristics that the ASD connectome reveals 
ectopic and immature connections [183], which could be the outcome of abnormal 
brain development. Moreover, these aberrant functional connectivity patterns were 
found to be substantially linked to the severity of ASD symptoms [184, 185]. In 
ASD, there have been reports of both hyperconnectivity and hypoconnectivity pat-
terns, which could result from hormonal changes in developmental growth during 
puberty that alter neural connections and function [186].
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 Assessment and Treatment

There is minimal accurate and practical information to assess, diagnose, and man-
age ASD conditions. Therefore, because the number of ASD patients has rapidly 
increased during the past decade, there is an urgent need to improve knowledge, 
develop assessment tools, and treat ASD patients [123].

ASD diagnosis can be difficult because of heterogeneity, varying presentation, 
and variability in symptoms [187]. There are no biomarkers to diagnose 
ASD. Therefore, the behavioral presentation of the patient is used for diagnosis 
[188]. The gold standard for clinical diagnosis in these patients is based on current 
diagnostic classification systems and careful assessment practices. These assess-
ments include physical examination, hearing test, observation of children’s behav-
ior, and a structured parent interview that covers the patient’s entire developmental 
history [188]. Currently, the best practice to diagnose ASD patients is the step-by-
step strategy recommended by the American Psychological Association [189]. This 
diagnostic strategy starts with the child’s parent/caregiver concern and is followed 
by a formal diagnostic assessment conducted by a pediatrician or/and appropriate 
referrals. The formal diagnostic assessment includes medical and functional evalu-
ation such as everyday verbal and nonverbal skills and level of ability and analysis/
assessment of behaviors based on the developmental aspect [190]. However, because 
of differences in cognitive function, age, language level, and the source of informa-
tion, diagnosis of ASD is very difficult [187].

Children diagnosed with ASD need to be reevaluated continuously during pre-
school years to identify their weaknesses, inabilities, and difficulties [187]. There 
are also some diagnostic instruments for ASD, such as the Autism Diagnostic 
Observational Schedule – Generic (ADOS-G) [191], which assesses communica-
tion, play, and creative use of materials and possibilities for children who may have 
ASD. The best Screening Tool for ASD in Toddlers and Young Children (STAT) 
[192] is structured to identify children between 24 and 36  months of age with 
ASD. One of the measures of early communication in children 8–24 months is the 
Communication and Symbolic Behavior Scales (CSBS) [193]. Additionally, there is 
a clinical diagnostic instrument named the Autism Diagnostic Interview – Revised 
(ADI-R) for the parent interview that addresses early development, 
communication/language, social interactions/interests, and restricted and repetitive 
behaviors [194]. The Social Communication Questionnaire (SCQ) is an appropriate 
method to get information from parents [195].

Usually, an assessment starts with a medical evaluation conducted by physicians. 
If the ASD is suspected, the patient is referred for diagnostic assessment by the 
pediatrician. When the diagnosis is confirmed, treatment planning should involve 
the professional health team [187].
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 Summary

Many genetic and environmental factors may cause ASD. The mechanisms are 
unknown, but presumably, genetic and environmental factors affect normal brain 
development and lead to functional disorders in patients with ASD.

There is mounting evidence that developmental abnormalities in the cerebellum 
may underlie the pathogenetic mechanisms associated with the ASD phenotype. 
Cerebellar developmental disorders associated with ASD pathogenesis show defi-
cits in motor coordination, balance, motor memory, and higher order dysfunctions, 
including speech and attention regulation.

The primary goal of management in ASD patients is an early diagnosis for 
behavioral and medical interventions to enhance the functional ability of these chil-
dren. The new approach involving brain–gut–microbiome interactions may provide 
a biomarker associated with gastrointestinal disorders that could be helpful in the 
early diagnosis of these patients. Because the number of ASD patients is increasing, 
studies are needed to develop assessment tools and treatment, increase public aware-
ness, and develop health-care strategies for patients with ASD.
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Clinical Aspects of the Inherited Cerebellar 
Malformations
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Abstract Inherited cerebellar malformations cause lifelong disability and are not 
well studied in the newborns because there is a lack of appropriate clinical examina-
tion tools. Recently, inherited cerebellar malformations have been investigated 
using emerging advanced neuroimaging technologies such as magnetic resonance 
imaging (MRI), which has revealed many developmental disorders of the cerebel-
lum. These malformations cause impairments that affect motor and nonmotor func-
tions. Cerebellar hypoplasia (CH), cerebellar dysplasia (CD), Dandy–Walker 
malformation (DWM), Joubert syndrome and related disorders (JSRDs), pontocer-
ebellar hypoplasia (PCH), rhombencephalosynapsis (RES), lissencephaly with cer-
ebellar hypoplasia (LCH), and Lhermitte–Duclos disease (LDD) are examples of 
cerebellar malformations which this chapter will focus on using characteristic 
symptoms and signs. The current approaches for evaluation of the affected patients, 
differential diagnosis, and management of the malformations will be discussed.
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 Introduction

The cerebellar development and structure have been discussed in chapter “The 
Embryology and Anatomy of the Cerebellum”. The cerebellar development begins 
during an early embryonic stage with a complicated developmental process that 
continues well into the first year after birth in human. Recent advances in neonatal 
intensive care and breakthroughs in neuroimaging techniques such as positron 
emission tomography (PET), structural MRI (sMRI), and functional MRI (fMRI) 
have improved our ability to understand the structural and functional anomalies that 
implicate cerebellar involvement in numerous motor and nonmotor functions, rang-
ing from motor/sensory integration and working memory to various higher order 
cognitive processes [1–4]. Despite the advanced technologies, understanding cere-
bellar malformations in children requires additional research regarding their prog-
nosis as well as their lifelong consequences. Because of a lack of an appropriate 
treatment, up to 80% of parents choose to terminate pregnancy after a prenatal diag-
nosis of a cerebellar malformation [1, 5]. The prolonged developmental process in 
the cerebellum makes it more vulnerable to perturbation caused by genetic and 
environmental factors, or a combination of both that occur during development. 
Cerebellar abnormalities range from subtle impairments including cognitive impair-
ments to significant structural defects with life-threatening or lifelong disabili-
ties [6].

Cerebellar dysfunction that disturbs the regulation of muscle tone, motor control, 
and coordination of movement is called ataxia – a broad term that refers to a distur-
bance in the smooth performance of the motor activities. The nonmotor dysfunction 
that results from cerebellar manifestations includes cognitive affective syndrome 
that includes impairment in executive function, spatial cognition, personality 
changes, and language deficits [7–9]. Cerebellar structural and functional abnor-
malities have been reported in psychiatric disorders such as schizophrenia, bipolar 
disorder, depression, anxiety disorders, attention deficit hyperactivity disorder 
(ADHD), and autism [10–15].

The specific constellation of symptoms is sometimes useful for localizing the 
cerebellar lesion, but often there is considerable overlap. Because of a complex 
developmental process during the formation of cerebellum, clinical classification of 
cerebellar neurodevelopmental disorder is difficult; however, there are classification 
that are based on embryological and genetic considerations [16, 17]. Before the 
introduction of MRI, Dandy–Walker variants was a term used to characterize sev-
eral types of cerebellar malformations. Now, cerebellar malformations can be clas-
sified into primary (malformation) and secondary (disruptive) lesions [17].

Secondary disruptive cerebellar defects are secondary to a developmental disor-
der in structures around the cerebellum such as Chiari malformation and vein of 
Galen malformation. Chiari malformations (Fig.  1) are posterior cranial fossa 
defects that range from herniation of the cerebellar tonsils through the foramen 
magnum to complete agenesis of the cerebellum, which are classified into four 
types (I–IV), with type IV being the most severe malformations [18]. Vein of Galen 
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Fig. 1 Chiari malformation type I. (a, b) Sagittal and coronal T2-weighted brain MR images. 
There is slight inferior herniation of cerebellar tonsils through the foramen magnum that is less 
than 5 mm and shows benign tonsillar ectopia that could be a mild variant of Chiari malformation. 
(c, d) Axial and sagittal T2-weighted MR images of the brainstem and cervical spinal cord. Note 
the presence of a large syrinx in association with tonsillar ectopia in Chiari malformation type I

malformation is another secondary cerebellar malformation that results from the 
presence of one or more arteriovenous fistulas, which constitute up to 30% of intra-
cranial vascular malformations presenting among pediatric patients [19, 20]. In 
patients with vein of Galen malformation, the superior cerebellar arteries also dis-
charge into the vein of Galen [21]. It is reasonable to assume that the dilated vein 
causes direct compression of cerebrospinal fluid (CSF) flow, increased intracranial 
pressure, and caudal displacement of the cerebellar tonsils [22], leading to cerebel-
lar signs and symptoms.

Primary cerebellar malformations are classified into two broad categories: (1) 
those with hypoplasia and (2) those with dysplasia. Both hypoplasia and dysplasia 
categories have their own subgroups, which are categorized in Diagram 1 [17]. This 
chapter aims to discuss primary cerebellar malformations and the current treatment 
approaches in affected patients. The included primary cerebellar malformations are 
the cerebellar hypoplasia (CH), cerebellar dysplasia (CD), Dandy–Walker malfor-
mation (DWM), pontocerebellar hypoplasia (PCH), Joubert syndrome and related 
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Diagram 1 Classification of cerebellar primary malformations

disorders (JSRDs), rhombencephalosynapsis (RES), lissencephaly with cerebellar 
hypoplasia (LCH), and dysplastic cerebellar gangliocytoma or Lhermitte–Duclos 
disease (LDD).

 Cerebellar Hypoplasia

Cerebellar hypoplasia (CH) is a heterogeneous group of disorders that was first 
reported by Crouzon in 1929. From the embryological aspect, the cerebellar primor-
dium emerges at approximately 28  days after fertilization in human (embryonic 
days 7–8 in the mouse) as a neuroepithelial swelling of the rostral lip of the fourth 
ventricle, which is part of the alar plate of the metencephalon (rhombomere-1) [6, 
23–25]. Therefore, any developmental dysregulation that targets the rhombomere-1 
causes failure to specify the anterior hindbrain and results in cerebellar aplasia/
hypoplasia because of defects in dorsal patterning mechanisms [26–28].

Distinguishing CH from cerebellar atrophy is very important because the treat-
ment approaches are different. CH refers to a cerebellum with reduced volume, but 
with normal shape, which is stable over time and normal interfoliate fissures and 
sulci. On the other hand, cerebellar atrophy represents a progressive loss of cerebel-
lar parenchyma along with secondary enlargement of both interfolial spaces and the 
fourth ventricle (29).
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The causes of the CH are broad and include chromosomal aberrations (such as 
trisomy 9, 13, and 18), metabolic disorders [29], teratogens (drugs and infections: 
see chapter “Hormonal Regulation of Cerebellar Development and Its Disorders”), 
or isolated genetic CH (such as very low density lipoprotein receptor (VLDLR) – a 
reelin receptor [30, 31], dyskerin pseudouridine synthase 1 (DKC1) [32], oligo-
phrenin 1 (OPHN1) [33], pancreas-specific transcription factor 1a (PTF1A) [34], 
and carbohydrate-deficient glycoprotein syndrome Types I and II (CDG 1 and 2) 
[35, 36]). Mutations in CHD7 (chromodomain helicase DNA binding protein 7) and 
retinoic acid exposure during early pregnancy are associated with variable cerebel-
lar CH [31]. Similar to most developmental anomalies, CH may be associated with 
other brain malformations and there may be multi-organ involvement. Based on 
recent studies, CH is classified into three categories: (1) focal hypoplasia which has 
three subgroups – (i) isolated vermis hypoplasia, which is mostly characterized by 
partial absence of the inferior portion of the vermis, (ii) predominantly vermis hypo-
plasia including DWM [37], and (iii) unilateral hemispheric hypoplasia; (2) global 
(diffuse or generalized) hypoplasia (involvement of both vermis and hemisphere), 
which is more common in congenital cytomegalovirus (CMV) infection; and (3) 
CH with brainstem involvement including PCH [17, 38–40].

Clinically, in cerebellar hypoplasia, ataxia and poor motor learning are the most 
common and nonprogressive presentations compared with atrophic cerebellar disor-
ders [41]. In infancy, hypotonia and global developmental delay are present earlier, 
and other signs include ocular motor disorders, dysarthria, intention tremor, and 
microcephaly. Behavioral abnormalities, intellectual disability, and speech and lan-
guage disorders can vary from mild to severe impairment [42].

Management It is important to consider that ataxia or other neurological signs in 
cerebellar hypoplasic patients usually do not worsen over time compared with atro-
phic cerebellar disorder. There is no standard course of treatment; therefore, the 
principal treatment is supportive including physical therapy, occupational therapy, 
speech therapy, psychiatric/behavioral medications, and special education (see 
chapters “Clinical Features, Assessment, and Management of Patients with 
Developmental and Other Cerebellar Disorders” and “Rehabilitation in Cerebellar 
Ataxia”).

 Cerebellar Dysplasia

Cerebellar dysplasia (CD) is defined by abnormal pattern in foliation, abnormal 
white matter arborization, heterotopic nodules of gray matter, and abnormal gray- 
white matter junction. CD may be associated with cysts resulting from disorganized 
cortical structures and pia matter disruption in which subarachnoid space is abnor-
mally engulfed by dysplastic cerebellar folia [43]. CD can be subdivided into: (1) 
global CD, which has been reported in some posterior fossa malformations such as 
Chudley-McCullough syndrome, α-dystroglycanopathies, GPR56-related 
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polymicrogyria, and Poretti-Boltshauser syndrome; and (2) focal CD including dys-
plasia of the superior cerebellar vermis in Joubert syndrome and increased volume 
of multiple cerebellar folia in Lhermitte-Duclos disease [43]. In addition, it has 
been reported a rare number of isolated unilateral cerebellar hemispheric dysplasia 
[44, 45].

It has been reported that CD with abnormal folia orientation may be a core find-
ing in PROS (PIK3CA-related overgrowth spectrum) patients that show somatic 
mutations in PIK3CA pathway genes, especially in those presenting MCAP 
(megalencephaly- capillary malformation) condition. Brain MRI of PROS patients, 
who are presented in clinics with vascular anomalies (mainly capillary malforma-
tions), segmental overgrowth dysregulation, and distal limb anomalies such as syn-
dactyly and polydactyly, should be focused on cerebellum to detect any cerebellar 
dysplasia, which could be followed by proper genetic testing [46].

Management Like CH, treatment of CD is symptomatic and supportive.

 Dandy–Walker Malformation

The fundamental structure that is affected in Dandy–Walker malformation (DWM) 
is the cerebellum [47–49]. DWM is a genetic disorder, with the most common and 
severe type being the Dandy–Walker syndrome malformation [47]. Deletion of Zinc 
finger 1 and 4 (ZIC1, ZIC4) genes on chromosome 3q24 [37, 50] and the Forkhead 
Box 1 (FOXC1) gene on chromosome 6p25 are candidates involving in DWM [37, 
51]. It is suggested that ZIC1 and ZIC4 are required for the full responsiveness of 
granule cell precursors (GCPs) to sonic hedgehog (SHH) [28]. It seems that FOXC1 
directly regulates the size of posterior fossa and FOXC1-dependent SDF1α-CXCR4 
(stromal cell derived factor 1α–CXC motif chemokine receptor 4) signaling from 
the surrounding mesenchyme to the developing cerebellar anlage regulates a pleth-
ora of cerebellar developmental programs [37]. Some other congenital abnormali-
ties, especially eye malformations consistent with Axenfeld-Rieger syndrome, are 
seen in FOXC1-related DWM, and sometimes overlap with 3C (cranio-cerebello- 
cardiac) syndrome in severely affected patients [31]. Recently discovered mutations 
in CCDC22 (coiled-coil domain containing 22) gene in X-linked cases of 3C syn-
drome indicate that the CCDC22 mutations may be another cause of DWM [31]. 
Deletion of FOXC1 can lead to vermian tail (a common extended and dysplastic 
posterior vermis with an indistinct choroid plexus) in infants of DWM [52]. 
Autosomal dominant mutations in LAMC1 (laminin subunit gamma 1) and NID1 
(nidogen 1) can also be considered as another causes of DWM [31].

DWM is characterized by agenesis or hypoplasia of the cerebellar vermis, 
upwardly rotated vermis, cystic dilatation of the fourth ventricle into the posterior 
cranial fossa, and an enlarged posterior cranial fossa [1, 37, 38, 53]. Enlargement of 
the posterior cranial fossa causes an abnormally high tentorium above the internal 
occipital protuberance and transverse occipital sulcus (location of transverse sinus), 
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as well as a variable degree of hydrocephalus [1, 54]. During cerebellar develop-
ment, the right and left cerebellar primordia are fused at the midline. Any misregu-
lation in this developmental process leads to a lack of cerebellar fusion at the 
midline. The lack of midline fusion causes the extension of membranous area/roof 
plate anteriorly, resulting in a large fourth ventricle. Cerebrospinal fluid pulsations 
cause roof plate expansion posteriorly within the posterior fossa, forming a large 
posterior cyst that represents the fourth ventricle [55].

Clinically, DWM can be defined via the characteristic triad consisting of the fol-
lowing: (1) complete or partial agenesis of the vermis, (2) cystic dilatation of the 
fourth ventricle, and (3) an enlarged posterior cranial fossa with upward displace-
ment of the transverse sinuses [56, 57]. If hydrocephalus is present, it suggests a 
common developmental disorder in which multiple brain regions are affected [58].

The signs and symptoms associated with DWM are broad. DWM patients often 
have global developmental delay (GDD), language delay, intellectual disability 
(ID), hypotonia, motor delay, ataxia, lack of coordination, jerky movements of the 
eyes, and progressive enlargement of the skull. Some patients may have normal 
cognition, whereas others have mild to severe mental retardation, even when hydro-
cephalus is effectively treated. The enlarged head circumference, which may bulge 
at the back of the skull, can increase pressure on the brainstem and nerves and can 
cause difficulties in controlling face and neck, and abnormal breathing patterns. 
Sagittal and axial MR images (Fig. 2) can distinguish DWM from other cerebellar 
malformations. In DWM, it is important to consider mega cisterna magna, retro- 
cerebellar cysts, and Blake’s pouch cyst [55, 59]. It should be noted that in addition 
to the absence of the middle part of the cerebellum, midline structures in the fore-
brain such as the corpus callosum may be absent, a condition known as agenesis of 
corpus callosum (ACC). Systemic malformations associated with DWM may 
include cardiac anomalies, urogenital anomalies, and other abnormalities may occur 
collectively in about half of the patients [60–63].

Fig. 2 Dandy–Walker malformation. (a) Sagittal T2-weighted brain MR image showing hypopla-
sia of the inferior vermis. A connection between the cisterna magna and the fourth ventricle is seen. 
(b) Axial T1-weighted brain MR image showing a cerebellum with isolated inferior vermian hypo-
plasia and normal cerebellar hemispheres, which is referred to as part of the Dandy–Walker variant
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Management If there is hydrocephalous, treatment could include shunting and 
CSF drainage from the lateral ventricles and/or posterior fossa cyst, which is cur-
rently considered the ordinary surgical treatment of choice [49, 64]. Another way of 
shunting is endoscopic method, including (1) endoscopic third ventriculostomy 
(ETV), (2) aqueduct stent with shunt insertion, and (3) trans-tentorial proximal 
catheter insertion with endoscopic shunting [64]. The treatment consists of physio-
therapy, occupational therapy, speech therapy, and specialized education. Although 
diagnosis of DWS during intrauterine development is difficult, if an ultrasound sug-
gests DWS, then amniocentesis should be performed to aid in the diagnosis [65]. It 
is important that the families of affected children be referred for genetic counseling.

 Joubert Syndrome and Related Disorders

Joubert syndrome (JS) was first identified by Marie Joubert in Montreal, Canada 
[66]. JS is a group of autosomal recessive conditions that are characterized by devel-
opmental anomalies, which are caused by defects in the structure or function of the 
primary cilium [67, 68]. Molar tooth sign (MTS) observed on axial images of plain 
MRI (Fig. 3) is one of the gold standards of JS, which is formed by cerebellar ver-
mis hypoplasia and dysplasia (most likely with a cleft in the superior vermis) 
accompanied by long, thick, elevated, and horizontally oriented superior cerebellar 
peduncles, with a deep interpeduncular fossa at the level of a thin midbrain–hind-
brain junction (isthmus) [17, 37, 69]. In addition, diffusion tensor imaging (DTI), an 
MRI technique for white matter tractography, can further demonstrate laterally dis-
placed and dysmorphic cerebellar nuclei, hypoplastic medial lemnisci, absent trans-
verse fibers in vermis, and deficient superior cerebellar peduncle decussation [31]. 

Fig. 3 Joubert syndrome and related disorders. (a) Coronal T2 FLAIR brain image. The cerebellar 
vermis is aplastic and superior cerebellar peduncles are elongated. (b) Axial T2 FLAIR brain 
image. This image shows a deep interpeduncular fossa, elongated superior cerebellar peduncles 
with cerebellar vermis hypoplasia, which are characteristic of the molar tooth sign in Joubert 
syndrome
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When other organs, such as the retina, kidney, and liver are involved, it is called 
Joubert syndrome and related disorders (JSRDs), and these patients also have the 
MTS [67].

JSRDs is the most common inherited congenital cerebellar malformation in 
which ciliopathy is a fundamental mechanism. The primary cilia are important in 
neuronal development and function as cellular antenna that are found in nearly all 
cell types. Two main conditions related to defective function of primary cilia are 
retinal dystrophy and nephronophthisis that are found in many patients with JS [70]. 
The function of cilia in cells includes protein trafficking, photoreception, embryonic 
axis patterning, and cell cycle regulation. Therefore, dysfunction of this microtubule- 
based extension of cellular membranes can affect a single tissue or manifest as hav-
ing multi-organ involvement, which is called ciliopathy [71]. Within the developing 
cerebellum, primary cilia have been shown to be essential for reception of the cell 
signaling ligand sonic hedgehog, which in turn is essential for proliferation of cer-
ebellar neurons such as granule cells [72, 73].

The causative gene of many ciliopathies in individuals with JSRDs has defined a 
new class of neurological diseases [71]. To date, over 16 causative genes have been 
associated with JSRDs and all encode proteins in the primary cilium or its apparatus 
[67]. For example, mutations in genes such as AHII, INPP5E, CC2D2A, and 
ARL13B cause JS with MTS and retinal blindness [74]. However, mutations in 
TMEM216 and RPGRIPIL genes lead to MTS and renal involvement. In more 
severe cases, mutations in the CEP290 gene causes MTS together with retinal and 
renal involvement and complete situs inversus [70], while mutations in TMEM67 
are the most common cause of MTS with liver involvement [75].

Clinically, JSRDs patients have developmental delay, motor disability, hypoto-
nia, ataxia, dysregulated breathing rhythms such as apnea and tachypnea (that 
results from dysfunction of the respiratory centers in the brainstem or cerebellum 
[69, 76]), abnormal eye and tongue movements, and subsequent mental retardation 
[70]. As ciliopathy interrupts a broad range of developmental process, a defect 
could be seen in other organs such as kidney, retina, and liver, and there were also 
facial abnormalities (cleft lip or palate, tongue abnormalities) and polydactyly 
(extra fingers and toes) [77–79]. In mild JSRDs, ataxic movement lessens with age 
and the ability to walk is delayed to age 4–5 years.

Management The treatment is symptomatic and supportive such as physical ther-
apy, occupational therapy, and speech therapy. Infants with abnormal breathing pat-
terns should be monitored closely for apnea, and this may be required during the 
first year of life because some neonates have died as a result of apnea. In this case, 
caffeine may be helpful to promote respiratory drive. These patients should be peri-
odically examined for any non-neurological signs and symptoms. Because of the 
heterogeneity of these conditions, genetic testing will show specific gene mutations, 
which can help predict the range of organ involvement such as retina, kidney, and 
liver [6, 80].
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 Pontocerebellar Hypoplasia

Pontocerebellar hypoplasia (PCH) is a group of autosomal recessive neurodevelop-
mental and neurodegenerative disorders with hypoplasia of the cerebellum and ven-
tral pons, followed by atrophy. It is also characterized by variable cerebral 
involvement such as microcephaly, seizures, and a severe delay in cognitive and 
motor development, which in many cases is fatal early in life [17, 38, 81, 82].

Ten different subtypes have been reported based on clinical and genetic features 
(i.e., PCH1–10) [83], and they are summarized in Table 1. Mutations in the follow-
ing genes cause PCH because of molecular malfunctions that are important for nor-
mal development of the neurons and non-neuronal cells. Mutations in the 
vaccinia-related kinase 1 (VRK1) gene on chromosome 14q32.2 cause PCH1A (or 
spinal muscular atrophy with pontocerebellar hypoplasia; SMA-PCH), in which 
there is spinal cord anterior horn cell degeneration [84, 85]. Mutations in the 
EXOSC3 (exosome component 3) gene on chromosome 9p13.2 lead to PCH1B 
[86]. Mutations in three genes, TSEN54, TSEN34, and TSEN2, encoding three of 
four subunits of the tRNA splicing endonuclease (TSEN) complex have been found 
to underlie PCH2, PCH4, and PCH5 [81]. PCH2 is characterized by CH in which 
the hemispheres are more severely affected than the vermis, and in contrast to 
PCH1, there is no anterior horn cell degeneration in the spinal cord. These patients 
have other signs and symptoms such as progressive cerebral atrophy, microcephaly, 
dyskinesia, seizures [81, 82], early hyperreflexia, developmental delay, and feeding 
problems [31]. In brief, it is known that mutations in TSEN54 on chromosome 

Table 1 Types of PCH

Gene Chromosome PCH types

VRK1 14q32.2 PCH1A
EXOSC3 9p13.2 PCH1B
TSEN34 17q25.1 PCH2A
TSEN2 3p25.2 PCH2B
TSEN34 19q13.42 PCH2C
SEPSECS 4p15.2 PCH2D
VPS53 17p13.3 PCH2E
TSEN15 1q25 PCH2F
PCLO 7q21 PCH3
TSEN54 17q25.1 PCH4
TSEN54 17q25.1 PCH5
RARS2 6q15 PCH6
? ? PCH7
CHMP1A 16q24 PCH8
AMPD2 1p13 PCH9
CLP1 11p12 PCH10
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17q25.1 cause PCH2A; mutations in TSEN2 on chromosome 3p25.2 cause PCH2B; 
mutations in TSEN34 on chromosome 19q13.42 cause PCH2C; mutations in 
SEPSECS (O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase) on chromo-
some 4p15.2 cause PCH2D (as known as progressive cerebello-cerebral atrophy; 
PCCA); mutations in the gene VPS53, a subunit of the Golgi-associated retrograde 
protein (GARP) complexes, on chromosome 17p13.3 cause PCH2E; and mutations 
in TSEN15 on chromosome 1q25 cause PCH2F [87–89]. PCH3 that seems to be 
associated with optic atrophy is caused by mutations in the gene encoding PCLO 
(piccolo presynaptic cytomatrix protein) on chromosome 7q21 [90, 91]. PCH4 is 
caused by a mutation in the TSEN54 gene on chromosome 17q25.1 [87]. PCH4 is 
associated with polyhydramnios, contractures, severe hyperreflexia, and early death 
because of central respiratory failure [31]. A mutation in the TSEN54 gene on chro-
mosome 17q25 causes PCH5, and mutations in the RARS2 (mitochondrial arginyl- 
tRNA synthetase 2) encoding gene on chromosome 6q15 cause PCH6, which is 
associated with elevated CSF lactate level [92]. The gene involved in PCH7 is 
unknown [93, 94]. PCH8 is caused by recessive loss-of-function mutations in the 
CHMP1A (charged multivesicular body protein 1A) encoding gene on chromosome 
16q24 [95]. Mutations in the AMPD2 (adenosine monophosphate deaminase 2) 
gene on chromosome 1p13 cause PCH9, which is associated with severely delayed 
psychomotor involvement, progressive microcephaly, spasticity, and seizures [31, 
96], and mutations in CLP1 (cleavage factor polyribonucleotide kinase subunit 1) 
gene on chromosome 11p12 cause PCH10, which is associated with progressive 
neurodegenerative features or static encephalopathy [31, 97]. Finally, loss-of- 
function mutations in SLC25A46 (solute carrier family 25 member 46) cause lethal 
congenital PCH [98].

Disorders presenting with PCH are constantly growing. Some examples are cal-
cium/calmodulin-dependent serine protein kinase (CASK)-related PCH (associated 
with progressive microcephaly, hypoplasia of pons and cerebellum, intellectual dis-
ability, and epilepsy in female), congenital disorders of glycosylation (CDG; associ-
ated with GDD, language delay, eye anomalies, coagulation defects, neuropathy, 
impaired liver function, abnormal fat distribution, and cerebellar and pons atrophy 
imitating PCH), cerebellofaciodental syndrome (BRF1-related PCH; associated 
with microcephaly, short stature, intellectual disability, cerebellar and brainstem 
hypoplasia, and dystrophic features including taurodontism), and osteogenesis 
imperfecta (WNT1-related PCH; associated with developmental defects of the mid-
brain, pons, and cerebellum including variable degree of cerebellar and brainstem 
hypoplasia) [17, 38].

Clinically, PCH patients have hypotonia and difficulty with coordination of 
sucking and swallowing, and problems with handling their oral and respiratory 
secretions [99]. There are no criteria to distinguish precisely between the different 
subtypes based on clinical signs and symptoms, and therefore genetic testing is 
important. The cerebellum and pontine hypoplasia can be revealed by MRI in which 
the cerebellar hemispheres may be more severely affected than the midline vermis. 
Flattened cerebellar hemispheres (the “wings”) and a slightly preserved vermis (the 
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Fig. 4 Pontocerebellar hypoplasia. (a) Sagittal T2-weighted brain MR images. The pons is very 
small but has a relative sparring bulging in its superior part. Vermis hypoplasia predominates at the 
inferior site. (b) Coronal T2-weighted brain MR images. Cerebellar hemispheric hypoplasia with 
vermis relatively spared leading to classic dragonfly image

“body”) together create dragonfly appearance on coronal MRI of PCH patients [17] 
(Fig. 4).

Management There is no known cure for PCH, and treatment is symptomatic and 
palliative and requires the teamwork of health-care professionals. Patients with 
PCH need a gastrostomy tube and airway control, and they may not survive beyond 
1  year of age. It is important to refer families of affected children for genetic 
counseling.

 Rhombencephalosynapsis

Rhombencephalosynapsis (RES) is a neurodevelopmental malformation that is 
characterized by midline fusion of the two cerebellar hemispheres, which is caused 
by failure of the midline structure development in the rhombencephalon. It is sug-
gested that disruption of dorsoventral patterning of the rhombencephalon may cause 
RES [100, 101]. RES is a rare condition with unknown etiology, and the most spe-
cific and key MRI finding is agenesis or hypogenesis of the vermis, in which the 
cerebellar vermis is completely or partially absent with a fused cerebellar hemi-
sphere, a fused superior cerebellar peduncle, and midline dentate nucleus, creating 
a horseshoe-shaped arch across the midline [17, 37, 100]. Coronal T2-weighted MR 
images show horizontal folia pattern and mid-sagittal T1-weighted MR images 
show the dentate nucleus [17].

RES may be associated with other cerebellar abnormalities, such as Purkinje cell 
heterotopias [102]. Although RES is seen most frequently in isolated form, it can 
also be seen together with other developmental malformations in the nervous sys-
tem or other organs. RES is a highly consistent finding in Gomez–Lopez–Hernandez 
syndrome (GLHS), which is also known as cerebellotrigeminal-dermal dysplasia (a 

A. Marzban et al.



511

neurocutaneous disorder) presenting with parietal/temporal alopecia (focal dermal 
dysplasia or lack of hair), trigeminal anesthesia (loss of sensation in the face), mid- 
face hypoplasia with towering skull shape, corneal opacities, mental retardation, 
and short stature. RES is also associated with midline brain structural defects 
including absent olfactory bulbs, dysgenesis of the corpus callosum, absent septum 
pellucidum, and in rare patients, atypical forms of holoprosencephaly [100]. RES 
has also been reported in VACTERL (vertebral anomalies, anal atresia, cardiovascu-
lar anomalies, trachea–esophageal fistula, renal anomalies, limb defects) associa-
tion and hydrocephalus [42, 102–105].

Ishak et al. (2012) proposed four groups based on the severity of cerebellar ver-
mis defect: (1) mild, in which the nodulus, anterior, and posterior vermis are par-
tially absent; (2) moderate, where there is a lack of posterior vermis with some 
anterior vermis but the nodulus is present; (3) severe, which is a lack of posterior 
and anterior vermis with the nodulus partially absent; and (4) complete, where there 
is a lack of the entire vermis [100]. They also divided RES-affected patients into 
four clinical categories using the following criteria: (1) RES in patients with GLHS; 
(2) RES plus at least one of the VACTERL association features without scalp alope-
cia; (3) RES plus a focal or diffuse forebrain midline fusion defect without alopecia; 
and (4) RES in patients with malformations that do not fit into the categories (1)–(3) 
(with abnormal head shape, midface hypoplasia, low-set and/or posteriorly rotated 
ears, telecanthus and/or hypertelorism). Based on other literatures, RES includes 
some specific clinical phenotypes such as biparietal alopecia, craniosynostosis, tri-
geminal anesthesia, and atresia of the fourth ventricle [106].

Clinically, signs and symptoms in patients with the isolated form of RES are 
variable such as developmental delay, in which motor learning and skills develop 
between 3 and 6 years of age, hypotonia, ataxia, abnormal eye movements, and head 
stereotypies [17, 107].

Management Treatment for RES infants is generally supportive and includes 
physical therapy and occupational therapy. If hydrocephalus is present in patients 
with RES and it is symptomatic, this can be an indication for surgical intervention 
with a ventriculostomy or ventricular shunt. It is important to refer families of 
affected children for genetic counseling.

 Lissencephaly with Cerebellar Hypoplasia

Lissencephaly with CH is a neurodevelopmental malformation in which cellular 
migration is severely impaired. The cerebellum in patients with lissencephaly is 
underdeveloped with prominent vermis hypoplasia or aplasia [108–111]. Mutations 
in the gene encoding reelin (RELN), which is mapped on chromosome 7q22, cause 
lissencephaly with severe abnormalities of the cerebellum, hippocampus, and brain-
stem. Reelin is a large extracellular matrix-associated protein [112] that is involved 
in migration of neurons through binding to its receptors (VLDLR), the 
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apolipoprotein E receptor 2 (ApoER2) [113–115], and also α3β1 integrin and pro-
tocadherins [116]. In a mouse model of lissencephaly, mutations in RELN and 
DAB1 prominently cause neuronal migration defects in the brain with accompany-
ing cerebellar hypoplasia, and there is also abnormal circuitry development [117, 
118]. Mutations in RELN also show abnormal developmental disorders outside the 
brain such as neuromuscular connectivity and congenital lymphedema [110]. It is 
also reported that mutations in α-dystroglycan may result in lissencephaly and cen-
tral nervous system developmental malformations [119].

Clinically, the important approach to diagnose is MRI of the cerebellum, which 
shows severe vermis and CH and cerebellar peduncle malformation.

Management Treatment of patients who have lissencephaly with CH are support-
ive care and symptom management. In case of difficulties with feeding, a gastros-
tomy tube may be considered. If seizures are present, anti-seizure medications are 
administered, and in the case of hydrocephalus, shunting is performed. It is impor-
tant to refer families of affected children for genetic counseling.

 Dysplastic Cerebellar Gangliocytoma or Lhermitte–
Duclos Disease

The first case of the Lhermitte–Duclos disease (LDD) was reported by Lhermitte 
and Duclos in 1920 as a cerebellar ganglion cell tumor or dysplastic cerebellar gan-
gliocytoma [120, 121]. LDD is a rare developmental disorder of the cerebellum and 
features both malformation and benign neoplasm. Most patients with LDD appear 
to have mutations in the phosphatase and tensin homologue (PTEN) gene [121–
123]. Most frequently, LDD occurs in young adults in the third and fourth decades 
of life [124, 125]. Because LDD presents in previously healthy children with fea-
tures of a unilateral cerebellar mass, the main considerations are the posterior fossa 
tumor and secondary hydrocephalus. LDD is not diagnosed as medulloblastoma in 
most patients because of differences in the age group, medical history, and unique 
imaging features. Neuroimaging with MRI is sufficient and important in the diag-
nostic process. Long-standing unilateral space-occupying skull lesions in the poste-
rior fossa leads to thinning of the skull in the occipital region [126, 127]. 
Histopathological findings show dysplastic gangliocytoma of the cerebellum in 
front of a hamartoma lesion with widening of the molecular layer occupied by 
abnormal ganglion cells, absence of the Purkinje cell layer, and hypertrophy of the 
granular layer [128].

Clinically, patients with LDD present with headache, nausea, cerebellar signs, 
hydrocephalus, and increased intracranial pressure. Patients may have symptoms 
for many years, such as cranial nerve palsies and cerebellar symptoms, because of 
the slowly progressive nature of this disease [126]. LDD patients may show mental 
retardation. LLD is commonly associated with other disorders of cortical formation, 
megalencephaly, gray matter heterotopia, polymicrogyria, polydactyly, 
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macroglossia, localized gigantism, and other congenital malformations such as 
familial hamartoma–neoplasia syndrome and Cowden’s disease (CD), an inherited 
cancer/hamartoma syndrome involving the breast, thyroid gland, and other organs 
[17, 129]. Widened cerebellar folia with striated appearance can be seen on 
T2-weighted MRI [17]. Elevated lactate, slightly reduced N-acetyl aspartate (NAA), 
reduced myoinositol, reduced choline, and reduced choline/creatine ratio are com-
mon on MR spectroscopy (MRS) [17].

Management Decompressive surgery for symptomatic patients is the accepted 
choice of treatment. The risk of performing surgery is the lack of clear tumor mar-
gins. Symptomatic and supportive treatments such as physical therapy and occupa-
tional therapy should be offered.

 Summary

In this chapter, cerebellar malformations and current treatment approaches were 
summarized. Based on available knowledge and our clinical experience, there is no 
curative treatment and most of the patients are managed using conservative 
approaches (see chapters “Clinical Features, Assessment, and Management of 
Patients with Developmental and Other Cerebellar Disorders” and “Rehabilitation 
in Cerebellar Ataxia”). Treatment is in response to symptoms and requires a team of 
specialists (neonatologists, pediatricians, neurologists, and therapists), health-care 
professionals, and genetic counselors.
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Clinical Features, Assessment, 
and Management of Patients 
with Developmental and Other Cerebellar 
Disorders

Michael S. Salman

Abstract The cerebellum is essential for processing, modulating, and controlling 
movement, behavior, social, and cognitive functions. Cerebellar disorders cause 
tremor and incoordination, increased variability and inaccuracy of movements dur-
ing eye and limbs movements, stance, and speech. Cerebellar dysfunction also 
results in impaired cognition and behavior. Details of the presenting complaints, 
including onset and time course of ataxia, other symptoms, past medical history, 
including developmental milestones, family history, and drug history, should be 
elicited during the clinical assessment. During examination, emphasis is placed on 
examining the motor system, especially speech, eyes, and limb movements. Other 
aspects include general examination, head size, dysmorphic features, neurocutane-
ous stigmata, and cognitive function assessment. A thorough examination of cranial 
nerves, tone, strength, coordination, reflexes, gait, and sensation should be under-
taken. A comprehensive assessment helps to narrow down the diagnostic possibili-
ties and offers clues to specific disorders of the cerebellum. Management is guided 
by disease etiology.
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 Introduction

Ataxia is a relatively common presentation in the pediatric population, with an esti-
mated prevalence rate of 26 per 100,000 children in Europe. The annual crude inci-
dence rate of chronic ataxia is 3.2 per 100,000 children for adolescents residing in 
Manitoba, Canada. Ataxia is caused by numerous diseases [1–5].

This chapter discusses the clinical features in children with cerebellar disorders 
including motor abnormalities, cognitive, affect, and behavioral dysfunction. The 
clinical assessment of patients with developmental and other cerebellar disorders is 
described and different aspects are discussed in detail.

Many clinical motor features of cerebellar disease and their interpretation have 
been described succinctly by Dr. Gordon Holmes in his Croonian lectures in 1922 
[6]. New roles for the cerebellum in health and disease continue to emerge with 
evidence implicating Purkinje cell dysfunction in the latter [7]. Few comprehensive 
reviews and consensus papers on symptoms and signs of cerebellar dysfunction, 
roles of the cerebellum in motor control, and nonmotor role of the cerebellum in 
language and other related disorders are available [8–11]. More recently, a consen-
sus paper on the cerebellum and social cognition has been published [12].

One of the themes that may underlie the motor and nonmotor manifestations of 
cerebellar disease is the disturbance or loss of precise timing in a variety of tasks in 
which the cerebellum plays a central role [13].

 Limbs Motor Control

Smooth and accurate execution of voluntary movements and adaptation to changing 
demands of motor tasks rely on an intact cerebellum [14]. The cerebellum can learn 
and store different combinations needed for precise complex movements through 
trial and error. Patients with cerebellar lesions can perform simple motor tasks. 
However, incoordination and impaired initiation of movement appear when com-
pound complex movements are performed, especially at a fast pace [15]. Cerebellar 
dysfunction causes greater impairment in predictive movements than in movements 
requiring feedback, for example, visual or somatosensory feedback [16]. Patients 
with cerebellar disorders appear to have proprioceptive deficits during active but not 
passive limb movements [17]. Furthermore, the ability to adapt to novel changes in 
movements is impaired. Table 1 shows several clinical motor signs in patients with 
cerebellar disease.
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Table 1 Cerebellar signs causing abnormal control of stance and voluntary movements 

Sign Comment

Asthenia Delay in initiating muscle contraction and slow attainment of full 
force. It can be elicited by asking the patient to grasp the 
examiners hand firmly

Adventitiousness 
(inappropriate accessary 
movements)

Failure to fix the proximal muscles to preserve the correct posture 
in relation to the moving part of a limb. This represents 
exaggerated activation of muscles that should be paused

Dysdiadochokinesia Slowness and irregularity of the frequency and amplitude of rapid 
alternating movements. It can be observed during successive 
pronation and supination of the forearm at the elbow joint. It also 
manifests with difficulty on repeating the syllables pa-ta-ka

Rebound Abnormally large displacement of an outstretched arm following 
a tap on the wrist with overshooting followed by few oscillations 
around the primary position

Dysmetria Inaccurate movement trajectory with under- or overshooting a 
target. It can be observed during finger–nose examination or 
heel-to-shin examination. It is speed- and inertia-sensitive

Intention tremor Oscillation of a limb, especially when approaching a target 
during goal-directed voluntary movements. It can be observed 
during finger–nose examination or heel-to-shin examination

Kinetic tremor Oscillation of a limb at the commencement of voluntary 
movements

Postural tremor Oscillations observed during postural tasks, e.g., maintaining the 
heel of one foot over the contralateral knee for a few seconds or 
maintaining the outstretched arms parallel to the ground. It 
affects proximal–distal muscles

Palatal tremor Rhythmic oscillations of the palate
Titubation Involuntary rhythmic oscillations of a body part, e.g., head or 

trunk
Head tilt Lateral displacement of the head
Truncal ataxia Swaying of an unsupported sitting or standing trunk
Ataxia of stance Swaying of the body while standing up
Ataxia of gait Wide-based gait with staggering and swaying. Tandem gait and 

running unmask more subtle gait ataxia
Inability to perform the 
Romberg maneuver with the 
eyes open

Inability to stand with the legs and feet touching each other while 
the eyes are open

Dysrhythmokinesia Abnormal rhythm observed during tapping of a limb
Abnormal handwriting or 
drawing

A written sentence will appear irregular, large, and tremulous. An 
Archimedes’ spiral will appear tremulous and dysmetria

Hypotonia Decreased resistance to passive stretch
Pendular reflexes Excessive oscillations of a limb (like the swing of a pendulum) 

observed after eliciting a deep tendon jerk
Motor delay Slow acquisition of motor milestones

Modified with permission from Ref. [11], Elsevier, 2016
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 Ocular Motor Control

The cerebellum serves an important part for the normal functioning of all types of 
eye movements including saccades, smooth ocular pursuit, modulation of the 
vestibulo- ocular reflex, and for ensuring visual fixation stability. The cerebellum 
fine-tunes eye movements and reduces their baseline variability to ensure that the 
two eyes are stable and working together. This is essential for bringing and main-
taining objects of interest on or very close to the fovea. This, in turn, leads to the 
best visual acuity whether the person is moving or not [8]. Three cerebellar regions 
are important for ocular motor control: the flocculus/paraflocculus, the nodulus- 
ventral uvula, and the dorsal ocular motor vermis/fastigial ocular motor region 
[8, 18].

Various types of nonphysiological nystagmus (i.e., pathological ocular oscilla-
tions), for example gaze-evoked nystagmus and saccadic intrusions (abnormal fast 
eye movements that take the fovea off the target), occur following cerebellar dam-
age and result in fixation instability [9, 18]. Saccadic (jerky) smooth ocular pursuit 
and saccadic dysmetria (hypo- or hypermetria) are other well-recognized ocular 
motor signs of cerebellar dysfunction [18]. Table 2 shows several ocular motor signs 
in patients with cerebellar disease.

 Speech Control

The production of speech is a complex process that involves several neural networks 
located in the cerebrum and cerebellum [10]. The production of speech involves the 
coordination of many muscles, in particular the tongue and orofacial muscles [19]. 
The cerebellum plays an important role in speech articulation, prosody (i.e., charac-
teristics of speech style including speed, rhythm, pitch, and emphasis), and planning 
and processing of speech and language [20].

Cerebellar impairment can cause ataxic dysarthria [10]. Abnormalities in speech 
motor programming through impaired timing and deficits in speech execution are 
both implicated in ataxic dysarthria [20]. Table  3 shows key features of speech 
abnormalities in patients with cerebellar disorders.

 Nonmotor Impairments in Cerebellar Disorders

A multitude of studies support nonmotor roles for the cerebellum in cognition and 
behavior control. Cerebellar abnormalities have been identified in patients with cog-
nitive and neuropsychiatric disorders. In addition, developmental delay, learning 
difficulties, and behavioral problems have been commonly reported in children with 
developmental cerebellar disorders [11].
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Table 2 Cerebellar ocular motor signs 

Sign Comment

Gaze-evoked 
nystagmus

Ocular oscillations observed while trying to hold gaze eccentrically (i.e., 
off-center), horizontally, and/or vertically. The fast phase of the 
nystagmus is toward the direction of gaze

Downbeat nystagmus Ocular oscillations observed with the eyes in central position (i.e., the 
eyes are located in the primary mid-orbital position). The fast component 
beats downward. The nystagmus is exacerbated in downgaze and lateral 
gaze

Upbeat nystagmus Ocular oscillations observed with the eyes in central position. The fast 
component beats upward. The nystagmus is exacerbated in upgaze

Rebound nystagmus Transient ocular oscillations observed with the eyes in central position 
after returning from a maintained eccentric gaze

Periodic alternating 
nystagmus

Horizontal ocular oscillations observed with the eyes in central position 
that change direction gradually after a silent phase. It occurs in a 
periodical manner, usually every 1–2 min

Opsoclonus Conjugate, random, involuntary, and multidirectional back-to-back fast 
eye movements observed during attempted fixation or movement of the 
eyes

Ocular flutter Conjugate, random, involuntary, and horizontal back-to-back fast eye 
movements observed during attempted fixation or movement of the eyes

Ocular bobbing Fast downward displacement of the eyes followed by slow return back to 
the central orbital position

Square wave jerks/
macro-saccadic 
oscillations

Fast, intruding, unwanted, involuntary, and conjugate eyes movements, 
which take the eyes off fixation. They may occur repetitively

Saccadic dysmetria Inaccurate fast eye movement that either undershoot (hypometria) or 
overshoot (hypermetria) a visual target

Saccade initiation 
delay (ocular motor 
apraxia)

Increased latency of fast eye movements that can usually be overcome 
with a head thrust or a blink

Slowing of smooth 
pursuit velocity 
(especially initiation)

Jerky (instead of smooth) eye movements that are observed during visual 
tracking

Impaired response of 
the vestibulo-ocular 
reflex

The vestibulo-ocular reflex normally drives the eyes contralateral to the 
direction of the head movement. Abnormal amplitude and direction of 
eye movements during the head impulse test may occur in cerebellar 
disease. The patient is asked to fixate on the examiner’s nose, while the 
head is actively and briskly rotated about 15° to the right and left

Impaired vestibulo- 
ocular reflex 
cancellation (VORc)

The ability to fixate objects moving in the same direction of the head 
requires cancellation of the vestibulo-ocular reflex. Patients with 
cerebellar disease may not be able to cancel the vestibulo-ocular reflex

Abnormal 
optokinetic 
nystagmus

Fast ocular oscillations (jerk nystagmus) are normally observed while 
tracking a rotating drum with alternating white and black stripes. The 
nystagmus generated with such a stimulus may be exaggerated with 
chronic cerebellar disease or dampened with acute cerebellar lesions

(continued)
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Table 2 (continued)

Sign Comment

Impaired adaptation 
of eye movements

Motor learning (adaptation) of the ocular motor system usually occur 
physiologically or following disease to repair and improve the accuracy 
or velocity of eye movements. Adaptation may be impaired in cerebellar 
disease

Skew deviation Non-paralytic vertical misalignment of the eyes (i.e., one eye is higher 
than the fellow eye) which changes as a function of horizontal gaze 
position

Esotropia Non-paralytic horizontal misalignment of the eyes with inward deviation
Abnormalities in the 
control of torsion

Abnormal rotational control of the eye around an axis perpendicular to 
the center of the pupil

Modified with permission from Ref. [11], Elsevier, 2016

Table 3 Speech abnormalities in cerebellar diseases 

Scanning speech (e.g., hesitation, accentuation of some syllables, omission of appropriate 
pauses, addition of inappropriate pauses)
Explosive speech
Slowness of speech
Syllables or words are not understandable with lack in speech clarity
Slurring of speech
Loss of intonation (abnormal rhythm and emphasis)
Voice tremor

Reproduced with permission from Ref. [11], Elsevier, 2016

 Language

The cerebellum modulates several aspects of language production and perception 
[8]. In addition, the cerebellum is involved in reading and writing [10]. Cerebellar 
impairment results in disturbances in syntax processing, prosody, and grammar 
[21], with anomia, perseveration, and reduced speech output and speed [22, 23].

 Cognition

Investigations on the cerebellar contribution to cognition are consistent with a role 
for the lateral cerebellar hemispheres in supporting cognitive processes [24]. In 
children, significant cognitive disruption is associated with pediatric cerebellar dis-
eases ranging from cerebellar developmental abnormalities to inflammatory disor-
ders, ischemic injury, and oncological and postsurgical injury [25–34]. These 
cognitive deficits are associated with executive dysfunction, impairment in working 
memory, procedural memory, and processing abilities, in addition to a lower intel-
lectual quotient and visuospatial abilities. Furthermore, new evidence is emerging 
on the role of the cerebellum in social cognition both in social “mirroring” and 
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“mentalizing.” Social impairments (e.g., the inability to understand the mental state 
of other people through nonverbal, usually visual, cues) seen in patients with degen-
erative ataxias and autism spectrum disorder have been postulated to occur as a 
result of cerebellar dysfunction [12].

 Affect and Behavior

The cerebellum is thought to modulate behavior. Schmahmann described the cere-
bellar cognitive-affective syndrome, which manifests with significant behavioral 
difficulties in patients with cerebellar disorders. The author and his colleagues 
described behaviors ranging from affective changes to disinhibited behaviors [21]. 
Other investigations of cerebellar lesions have supported these initial descriptions 
with many associated behavioral difficulties including alterations in attention, affec-
tive disruption, emotional and social blunting, anxious behaviors, and obsessive and 
compulsive behaviors [21, 29, 35, 36].

 Assessment of Pediatric Patients with Developmental 
and Other Cerebellar Disorders

 History

The assessment of patients with pediatric cerebellar disorders starts with a detailed 
clinical history, which can lead to the diagnosis in as many as 80% of patients [37]. 
Details of the presenting illness and complaints should be elicited including the age 
and date of onset, mode of the ataxia onset (i.e., acute, subacute, or chronic), loca-
tion including whether the symptoms are unilateral or bilateral, severity, duration, 
rate of progression, factors that make the symptoms better or worse, possible trig-
gers, and medications used [3–5, 38]. An inquiry should be specifically made about 
the presence of vertigo, dizziness, imbalance, oscillopsia, and blurred vision [8]. 
Systematic inquiry into other symptoms should then be pursued [37], including 
headache, confusion, developmental regression, seizures, numbness, tingling, and 
weakness.

Age of the parents at conception, previous miscarriages, mother health and tox-
ins exposure during pregnancy, antenatal screening and problems during pregnancy, 
birth history (birth weight, length, and head circumference), early feeding or respi-
ratory difficulties, neonatal course, the number of days spent in hospital after birth, 
and past medical history are important part of the assessment.

Observing videos of children at different ages can be very valuable [38]. 
Developmental milestones may give further clues. For example, many patients with 
nonprogressive ataxia without brain malformations or with developmental 
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cerebellar disorders manifest with motor delay and hypotonia before the ataxia 
becomes apparent [39–42].

Drug history and possible exposure to toxins or drugs should be obtained [4, 37]. 
Ethnicity, family history of consanguinity, ataxia, or other symptoms and disorders 
may all offer useful diagnostic clues [5]. However, it is important to be aware of 
challenges when obtaining the family history [43]:

 1. Young parents or grandparents in autosomal dominant disorders (age- dependent 
penetrance). In such situation, the disease may not have manifested in family 
members yet.

 2. Incomplete penetrance. The disease may not be manifested in affected family 
members.

 3. Early death in carriers from an unrelated cause.
 4. New (de novo) mutations.
 5. Lack of awareness of disease in family members, especially further than one or 

two generations (i.e., the disorder is not known in the past or is unrecognized, 
or if the individual affected has not sought an assessment, or information on 
deceased relatives is not passed on).

 6. Hidden or concealed symptoms from family members.
 7. Family members may be divorced or scattered or had symptoms after they are 

out of touch.
 8. Nonpaternity, infertility, adoption, or egg/sperm donation.
 9. Small family with no affected members.
 10. Negative prior genetic testing. It is important to inquire about what test was 

done, when, and how. New advances in techniques may have occurred since the 
test was done, pathogenicity of variants of unknown significance has been 
found, a previously unknown abnormality has been reported, or a newly 
described disease has been published.

 Physical Examination

Careful general and then more focused examination should then be undertaken to 
look for cerebellar (Tables 1, 2 and 3) and non-cerebellar signs [4, 5, 37, 41, 42], for 
example, head size, weight, height, dysmorphic features, neurocutaneous stigmata 
(i.e., skin abnormalities that may be indicative of an underlying brain malforma-
tion), other skin lesions (e.g., telangiectasia), respiratory, cardiac, and abdominal 
examination for enlarged liver and spleen, scoliosis, pes cavus, contractures, and 
wasting.

Visual acuity, visual fields, pupillary reaction to light and near objects, and fun-
duscopy examination in each eye should be done. A careful assessment of the dif-
ferent classes of eye movements in patients with ataxia can be quite helpful and may 
offer clues to the diagnosis [44]. A practical and comprehensive guide on the exami-
nation and interpretation of eye movements in children is available for the interested 
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reader [45]. Ocular alignment, fixation stability, slow and fast eye movements 
(including smooth ocular pursuit, convergence, vestibulo-ocular reflex and its can-
cellation, and saccades) (Table  2) should be ascertained. In addition, facial and 
tongue movements, bulbar (ability to swallow liquid and solid food safely and with-
out choking), speech (voice quality, clarity, prosody) (Table 3), tone (resistance to 
passive stretch), strength, coordination of the upper and lower limbs, reflexes, plan-
tar response, various sensation modalities including proprioception, and gait should 
then be assessed (Table 1) [18].

In young infants and toddlers, an opportunistic approach is recommended, at 
least initially, as the child may not be fully cooperative. A lot of information can be 
gleaned by hearing the child talk and watching the child interact with the parents, 
other siblings, or the physician while taking history. In addition, watching the child 
play, use an iPAD, tablet, smart phone, or move around the clinic room can be 
invaluable. It is worth paying attention to the child’s affect, behavior, language use, 
and cognitive abilities. Are there any features suggestive of the cerebellar cognitive- 
affective syndrome (Table 4)?

Extra-cerebellar features should be looked for to identify red flags [4, 37]. For 
example, swollen optic discs suggest an expanding mass; decreased visual acuity 
from optic neuritis suggests acute disseminated encephalomyelitis or multiple scle-
rosis; altered level of consciousness suggests acute disseminated encephalomyelitis, 
stroke, or intoxication; facial nerve palsy, hearing loss, tinnitus, nausea, and vomit-
ing may indicate brainstem compression from a tumor; apraxia of gait may be 
caused by hydrocephalus or Rett syndrome; and head size, if large then hydrocepha-
lus should be excluded and if small then genetic, viral, or metabolic diseases that 
affect the cerebrum should be pursued. Pyramidal tract signs (spasticity, hyperre-
flexia, Babinski’s sign, or clonus), seizures, and dyskinesia imply involvement of 
the cerebrum.

 Pitfalls in the Assessment of Ataxia

Although disorders of the cerebellum and its input or output tracts can cause inco-
ordination, which we refer to as ataxia, it is important to exclude mimickers of 
ataxia, i.e., pseudoataxia. Poor coordination may result from many causes such as 

Table 4 Cognitive and behavioral abnormalities in cerebellar diseases 

Language (nonmotor speech, reading, writing)
Executive function and working memory
Autistic behavior (repetitive/ restricted, social impairment)
Attention deficit hyperactivity disorder
Schizophrenia
Anxiety behavior
Mood disorders

Reproduced with permission from Ref. [11], Elsevier, 2016
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decreased level of consciousness, subtle seizures, postictal state, nonconvulsive sta-
tus epilepticus, extrapyramidal movement disorder, spasticity, weakness (e.g., from 
peripheral neuropathy), clumsiness only (i.e., developmental coordination disor-
der), muscular or skeletal disorders (e.g., irritable hip), and psychogenic disorders 
[37, 46].

 Formulating a Clinical Impression and a Plan 
of Investigations

After the history and physical examination are completed, the pattern of abnormali-
ties is summarized. Variations in the clinical phenotype in relation to several disease 
etiologies in 184 children with chronic ataxia have been explored using latent class 
analysis. Few specific clinical patterns emerged that were highly associated with 
certain disease etiologies [47]. For example, if a child presents with global develop-
mental delay, hypotonia, and seizures (which may occur before the ataxia becomes 
manifest), then Angelman syndrome, disorders of neuronal migration, and Joubert 
syndrome and related disorders should be suspected. A brain magnetic resonance 
imaging (MRI) with thin cuts will likely show the neuronal migration abnormali-
ties, while genetic testing is needed for the diagnosis of Angelman syndrome where 
brain MRI is typically normal. In addition, Joubert syndrome and related disorders 
have diagnostic MRI features, for example, the molar tooth sign. Another example 
is a child who has no history of seizures, has symptoms onset including ataxia at 
greater than 10 years of age, and has otherwise normal development but has slurred 
or scanning speech. In such a clinical scenario, episodic ataxia and Friedreich ataxia 
should be considered. If the ataxia is progressive, then Friedreich ataxia should be 
suspected first but if the symptoms are intermittent then episodic ataxia should be 
considered first. This clinical approach may help the diagnostic process by making 
it more efficient. In general, one should ascertain the following:

 1. What regions/networks are affected by the incoordination? Specifically, head, 
eye movements, speech, swallowing, arms, and gait involvement should be doc-
umented. There is a rough map for localizing cerebellar symptoms and signs. For 
example, symptoms of damage of the lateral cerebellar hemisphere include 
hypotonia, asthenia, intention tremor, and dysmetria, while vermal and paraver-
mal lesions are associated with ataxia of gait and stance. Similarly, damage to 
the dorsal vermis and fastigial nuclei are associated with saccadic dysmetria and 
impaired saccadic adaptation, while damage to the vestibulocerebellum is asso-
ciated with impaired smooth ocular pursuit and various types of nystagmus [8, 
18, 48].

 2. What is the mode of ataxia onset? Acute onset is suggestive of toxic, metabolic, 
vascular, or traumatic etiologies. Subacute onset may indicate infectious, inflam-
matory, or paraneoplastic etiologies, while chronic ataxia is more likely to be 
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caused by genetic or neurodegenerative disorders [43]. There is, however, an 
overlap in the mode of onset among the different etiologies.

 3. How does the ataxia change over time? Is the ataxia improving thus suggesting 
a postinfectious etiology, nonprogressive suggesting a cerebellar malformation, 
recurrent (i.e., episodic or intermittent with resolution between the episodes) 
suggesting an episodic ataxia or a metabolic disorder, or is the ataxia progressive 
suggesting a tumor or a neurodegenerative disorder? This information will help 
focus the investigations on more likely etiologies [3–5, 37, 38, 43].

 4. Is it pure ataxia? Some diseases only affect the cerebellum, thus narrowing the 
list of diagnostic possibilities.

 5. Are there any clues in the family history?
 6. Are there non-ataxia central nervous system features? For example, spasticity, 

dyskinesia, seizures, or optic atrophy imply widespread central nervous system 
involvement beyond posterior fossa structures [43].

 7. Are other organs affected? For example, heart, liver, or kidneys involvement 
raises suspicion of a metabolic disorder.

Based on the clinical impression, a plan of investigation is carried out [3, 37, 43, 47, 
49]. Neuroimaging is usually very helpful, even when it is normal [46]. A brain 
MRI with magnetic resonance angiography and spectroscopy if indicated, offers 
the best spatial resolution of cerebellar and extra-cerebellar brain structures [46, 
50]. A spinal MRI is occasionally helpful. For example, it may reveal spinal cord 
atrophy in patients with Friedreich ataxia [46]. In selected patients repeating a 
brain MRI several months or few years after the first brain MRI may offer further 
diagnostic clues in patients, who remain without a diagnosis despite extensive 
investigations [46].
Biochemical tests, drugs and toxin screens, and metabolic investigations on 

blood, urine, and, where appropriate, cerebrospinal fluid are then performed in a 
stepwise manner [3, 5, 43]. These include, but are not limited to, the following: full 
blood count, ESR, CRP, glucose, electrolytes, calcium, magnesium, phosphorus, 
albumin, creatinine kinase, liver and thyroid function tests, cholesterol, alpha feto-
protein, immunoglobulins, autoimmune antibodies (including ANA, ANCA, anti-
gliadin antibodies), and metabolic tests (including ammonia, lactate, amino acids, 
ceruloplasmin, transferrin isoelectric focusing, uric acid, total and free carnitine, 
acylcarnitine, very long-chain fatty acids, lysosomal enzymes, vitamins E, B1, and 
B12, phytanic acid, urine organic acids and amino acids, and CSF 
neurotransmitters).

Many genetic tests are available [38, 50] and are usually also requested in a step-
wise manner guided by findings from the clinical assessment and neuroimaging 
findings. The tests include microarray-based comparative genomic hybridization, 
karyotype, FISH, calcium channel mutations, and mutations in selected spinocere-
bellar ataxia genes. Ataxia gene panel testing is another option for diseases with 
similar phenotypes. Whole exome sequencing has become more widely available in 
routine clinical practice. It is proving to be a useful investigation in patients with 
undiagnosed ataxia.
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Nerve conduction studies, electromyogram, electroencephalogram, evoked 
potentials of the visual (VEP), auditory (BAEP), and somatosensory (SEP) systems 
may also be indicated in some patients with ataxia, who have additional clinical 
features, e.g., peripheral neuropathy or seizures. Abnormalities found in these 
investigations are reflective of the widespread pathology in many subtypes of 
genetic or hereditary ataxias [49]. Skin and muscle biopsies are being done less 
often nowadays since genetic testing has become more widely available.

Formal qualitative and quantitative assessment of speech, gait, and eye move-
ments are available in large medical centers. They rarely contribute to diagnosis. 
They are more useful in assessing response to therapy, especially in clinical tri-
als [49].

 Management

Management of the patients starts with discussing the findings of the clinical assess-
ment with the patient and their parents. The discussion needs to be done honestly 
and in a sensitive manner. Every effort should be made to avoid using technical and 
medical jargons, taking the age of the patient and level of parental education into 
account. Diagnostic uncertainties and limitations should be disclosed. A plausible 
list of diagnostic possibilities or details on a specific disorder when a diagnosis is 
made should then be discussed [51]. Prognosis and availability of antenatal diagno-
sis for families that are interested in having more children should be mentioned. 
Referral to a geneticist for further investigations and counseling should be made, if 
indicated.

Treatment of the underlying disease etiology in acquired ataxias is possible in 
some disorders, for example, tumors, strokes, avoidance of toxins and certain medi-
cations, and inflammatory disorders [3].

There is some evidence that the cerebellum can compensate for: (1) The loss of 
its parenchyma when it is acutely damaged, e.g., by a stroke, and (2) loss of its func-
tion, e.g., in immune-mediated ataxias, through mechanisms involving neighboring 
cerebellar or extra-cerebellar regions in the former and the functionally impaired 
region itself in the latter. This cerebellar reserve has a limited time window during 
which every effort should be made to stop further damage or eliminate/slow down 
the disease process; while at the same time, enhancing recovery through therapies 
that enable the cerebellum to potentially compensate, at least partially, for its lost 
function [52].

General nonspecific management options for the symptomatic treatment of 
ataxia include physiotherapy, occupational therapy, and referral to other rehabilita-
tion specialists. Continuous intensive motor training is beneficial [53]. Other nonin-
vasive cerebellar stimulation techniques are being explored and preliminary studies 
show possible therapeutic benefit [53, 54]. A recent consensus paper on neurostimu-
lation of the cerebellum is available for the interested reader [55]. The paper 
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discusses invasive and noninvasive methods to stimulate the cerebellum to treat 
cerebellar ataxia and other neurological disorders including stroke and dystonia.

Referral to a speech and language pathologist in patients with dysarthria and 
speech or language delay should be made. Social workers and referral to support 
organization such as the National Ataxia Foundation can be invaluable to the 
patients and their families [43].

There are limited treatment options available for the ataxic patients [51, 54]. 
Treatments for developmental cerebellar disorders and most hereditary ataxias are 
generally not available. A systematic review in 2018 reported that for patients with 
ataxia of various etiologies including Friedreich’s ataxia and spinocerebellar atax-
ias, riluzole is probably effective for short-term treatment of ataxia [54].

Specific treatments are only available for a handful of diseases that are usually 
caused by metabolic dysfunction [3, 5, 53]. For example, vitamin E is given to 
patients with abetalipoproteinemia or ataxia with vitamin E deficiency, biotin to 
patients with biotinidase deficiency, coenzyme Q10 to patients with coenzyme Q10 
deficiency, acetazolamide or 4-aminopyridine to patients with episodic ataxia type 
2 [54], nicotinamide for Hartnup disease, dietary modification and thiamine to 
patients with maple syrup urine disease, dietary modification and sodium benzoate 
to patients with urea cycle defects, and ketogenic diet to patients with pyruvate 
dehydrogenase deficiency or glucose transporter 1 (Glut-1) deficiency syndrome.

Other symptoms associated with ataxia should also be addressed and treated, 
e.g., epilepsy, spasticity, sleep disturbance, behavioral difficulties, and anxiety.

Patients with multisystem disease should be referred to other specialists [43]. For 
example, patients with Friedreich ataxia should be referred to an endocrinologist as 
they are at risk of developing glucose intolerance and diabetes, and a cardiologist 
since a life-threatening cardiomyopathy can occur in this disorder where possible 
treatments are available including Idebenone, vitamin E, and coenzyme Q10.

Finally, the Covid-19 pandemic has impacted the care of patients with ataxia and 
complicated their management including attendance to clinic, speech and language 
therapy, and other rehabilitation services. In addition, ataxic patients may be at 
higher risk of being infected with the virus because of the spectrum of neurological 
and comorbid illnesses that accompany their diagnosis, e.g., cardiomyopathy and 
diabetes in Friedreich ataxia. The pandemic has also affected the mental and physi-
cal well-being of many of us given future uncertainty and anxiety, which in turn 
exacerbated the neuropsychological morbidity of patients with cerebellar disor-
ders [56].

 Conclusions

The cerebellum functions beyond motor coordination (Table 4). Roles for the cere-
bellum in children are identified in motor functions, cognition, and behavior in both 
normal development and in disease. Since a significant part of cerebellar develop-
ment stretches from the third trimester of pregnancy to the early postnatal years, 
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diverse causes of cerebellar disruption contribute to the pathogenesis of neurodevel-
opmental disorders. A comprehensive detailed history and physical examination are 
essential components of the clinical assessment in patients with cerebellar diseases 
and usually guide clinical investigations. Based on the list of differential diagnosis 
(i.e., plausible diagnostic possibilities), neuroimaging, usually a brain MRI, and 
various investigations including genetic testing are usually performed as part of the 
evaluation of these patients to reach a specific diagnosis. General physical rehabili-
tation therapy (see chapter “Rehabilitation in Cerebellar Ataxia”) and disease-spe-
cific treatments are available.

Disclosure None.

Conflict of Interest None.

References

1. Salman MS, Lee EJ, Tjahjadi A, Chodirker BN. The epidemiology of intermittent and chronic 
ataxia in children in Manitoba, Canada. Dev Med Child Neurol. 2013;55(4):341–7.

2. Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, et  al. 
Prevalence of ataxia in children: a systematic review. Neurology. 2014;82(1):80–9.

3. Pandolfo M, Manto M.  Cerebellar and afferent ataxias. Continuum (Minneap Minn). 
2013;19(5):1312–43.

4. Prasad M, Ong MT, Setty G, Whitehouse WP.  Fifteen-minute consultation: the child with 
acute ataxia. Arch Dis Child Educ Pract Ed. 2013;98(6):217–23.

5. Bernard G, Shevell M.  The wobbly child: an approach to inherited ataxias. Semin Pediatr 
Neurol. 2008;15(4):194–208.

6. Holmes G. The Croonian lectures on the clinical symptoms of cerebellar disease and their 
interpretation. Lecture III Lancet. 1922;200:59–65.

7. Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst 
Neurosci. 2013;7:83.

8. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: 
revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–91.

9. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et  al. 
Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar 
involvement in movement. Cerebellum. 2012;11(2):457–87.

10. Marien P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus 
paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.

11. Salman MS, Tsai P. The role of the pediatric cerebellum in motor functions, cognition and 
behavior: a clinical perspective. Neuroimaging Clin N Am. 2016;26(3):317–29.

12. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus 
paper: cerebellum and social cognition. Cerebellum. 2020;19(6):833–68.

13. Bareš M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, et al. Consensus paper: decod-
ing the contributions of the cerebellum as a time machine. From neurons to clinical applica-
tions. Cerebellum. 2019;18(2):266–86.

14. Morton SM, Bastian AJ. Mechanisms of cerebellar gait ataxia. Cerebellum. 2007;6(1):79–86.
15. Thach WT. Does the cerebellum initiate movement? Cerebellum. 2014;13(1):139–50.
16. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement con-

trol. Curr Opin Neurobiol. 2006;16(6):645–9.

M. S. Salman



535

17. Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves 
proprioception. J Neurosci. 2013;33(36):14301–6.

18. Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol. 2011;2:53.
19. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech repre-

sentation: lesion topography in dysarthria as derived from cerebellar ischemia and functional 
magnetic resonance imaging. Arch Neurol. 2003;60(7):965–72.

20. Spencer KA, Slocomb DL. The neural basis of ataxic dysarthria. Cerebellum. 2007;6(1):58–65.
21. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 

1997;41:433–40.
22. Marien P, Engelborghs S, Fabbro F, Deyn D. The lateralized linguistic cerebellum: a review 

and a new hypothesis. Brain Lang. 2001;79(3):580–600.
23. Murdoch BE, Whelan BM. Language disorders subsequent to left cerebellar lesions: a case for 

bilateral cerebellar involvement in language? Folia Phoniatr Logop. 2007;59(4):184–9.
24. Stoodley CJ, Schmahmann JD.  Functional topography in the human cerebellum: a meta- 

analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.
25. De Smet HJ, Baillieux H, Wackenier P, De Praeter M, Engelborghs S, Paquier PF, et al. Long- 

term cognitive deficits following posterior fossa tumor resection: a neuropsychological and 
functional neuroimaging follow-up study. Neuropsychology. 2009;23(6):694–704.

26. McAndrew S, Listernick R, Kuntz N. Cerebellar mutism in acute disseminating encephalomy-
elitis. Pediatr Neurol. 2014;50(5):511–4.

27. Parrish JB, Weinstock-Guttman B, Yeh EA. Cerebellar mutism in pediatric acute disseminated 
encephalomyelitis. Pediatr Neurol. 2010;42(4):259–66.

28. Weier K, Till C, Fonov V, Yeh EA, Arnold DL, Banwell B, et al. Contribution of the cerebel-
lum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler. 
2015;22(5):599–607.

29. Bolduc ME, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of 
neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child 
Neurol. 2011;53(5):409–16.

30. Bolduc ME, Limperopoulos C.  Neurodevelopmental outcomes in children with cerebellar 
malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.

31. Hennes E, Zotter S, Dorninger L, Hartmann H, Häusler M, Huppke P, et al. Long-term out-
come of children with acute cerebellitis. Neuropediatrics. 2012;43(5):240–8.

32. Hoang DH, Pagnier A, Guichardet K, Dubois-Teklali F, Schiff I, Lyard G, et  al. Cognitive 
disorders in pediatric medulloblastoma: what neuroimaging has to offer. J Neurosurg Pediatr. 
2014;14(2):136–44.

33. Hoche F, Frankenberg E, Rambow J, Theis M, Harding JA, Qirshi M, et al. Cognitive pheno-
type in ataxia-telangiectasia. Pediatr Neurol. 2014;51(3):297–310.

34. Riva D, Cazzaniga F, Esposito S, Bulgheroni S. Executive functions and cerebellar develop-
ment in children. Appl Neuropsychol Child. 2013;2(2):97–103.

35. Catsman-Berrevoets CE, Aarsen FK. The spectrum of neurobehavioural deficits in the poste-
rior fossa syndrome in children after cerebellar tumour surgery. Cortex. 2010;46(7):933–46.

36. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cogni-
tive and affective development in cerebellar malformations. Brain. 2007;130(Pt 10):2646–60.

37. Poretti A, Benson JE, Huisman TA, Boltshauser E. Acute ataxia in children: approach to clini-
cal presentation and role of additional investigations. Neuropediatrics. 2013;44(3):127–41.

38. Fogel BL. Childhood cerebellar ataxia. J Child Neurol. 2012;27(9):1138–45.
39. Esscher E, Flodmark O, Hagberg G, Hagberg B. Non-progressive ataxia: origins, brain pathol-

ogy and impairments in 78 Swedish children. Dev Med Child Neurol. 1996;38(4):285–96.
40. Steinlin M, Zangger B, Boltshauser E. Non-progressive congenital ataxia with or without cer-

ebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol. 1998;40(3):148–54.
41. Wassmer E, Davies P, Whitehouse WP, Green SH. Clinical spectrum associated with cerebellar 

hypoplasia. Pediatr Neurol. 2003;28(5):347–51.

Clinical Features, Assessment, and Management of Patients with Developmental…



536

42. Shevell MI, Majnemer A. Clinical features of developmental disability associated with cer-
ebellar hypoplasia. Pediatr Neurol. 1996;15(3):224–9.

43. Ataxia FR, In: Roos RP, Editor-in-Chief. MedLink Neurology. San Diego: MedLink 
LLC. Available at www.medlink.com. Updated: 20th June 2021.

44. Salman MS, Chodirker BN. Neuro-ophthalmological findings in children and adolescents with 
chronic ataxia. Neuro-Ophthalmology. 2015;39(3):125–31.

45. Cassidy L, Taylor D, Harris C. Abnormal supranuclear eye movements in the child: a practical 
guide to examination and interpretation. Surv Ophthalmol. 2000;44(6):479–506.

46. Salman MS, Chodirker BN, Bunge M. Neuroimaging findings and repeat neuroimaging value 
in pediatric chronic ataxia. Can J Neurol Sci. 2016;43(6):824–32.

47. Klassen S, Dufault B, Salman MS. Can latent class analysis be used to improve the diagnostic 
process in pediatric patients with chronic ataxia? Cerebellum. 2017;16(2):348–57.

48. Dichgans J. Clinical symptoms of cerebellar dysfunction and their topodiagnostical signifi-
cance. Hum Neurobiol. 1984;2(4):269–79.

49. Ilg W, Branscheidt M, Butala A, Celnik P, de Paola L, Horak FB, et  al. Consensus paper: 
neurophysiological assessments of ataxias in daily practice. Cerebellum. 2018;17(5):628–53.

50. Doherty D, Millen KJ, Barkovich AJ.  Midbrain and hindbrain malformations: advances in 
clinical diagnosis, imaging, and genetics. Lancet Neurol. 2013;12(4):381–93.

51. Salman MS.  Epidemiology of cerebellar diseases and therapeutic approaches. Cerebellum. 
2018;17(1):4–11.

52. Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper: cerebellar 
reserve: from cerebellar physiology to cerebellar disorders. Cerebellum. 2020;19(1):131–53.

53. Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claaßen J, et al. Consensus paper: manage-
ment of degenerative cerebellar disorders. Cerebellum. 2014;13(2):248–68.

54. Zesiewicz TA, Wilmot G, Kuo S-H, Perlman S, Greenstein PE, Ying SH, et al. Comprehensive 
systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of 
the guideline development, dissemination, and implementation subcommittee of the American 
Academy of Neurology. Neurology. 2018;90(10):464–71.

55. Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, 
et  al. Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum. 
2019;18(6):1064–97.

56. Manto M, Dupre N, Hadjivassiliou M, Louis ED, Mitoma H, Molinari M, et al. Management 
of patients with cerebellar ataxia during the Covid-19 pandemic: current concerns and future 
implications. Cerebellum. 2020;19(4):562–8.

M. S. Salman

http://www.medlink.com


537

Rehabilitation in Cerebellar Ataxia

Jennifer L. Millar and Meredith P. Drake

Abstract The cerebellum is a unique structure that is densely connected to both 
motor and nonmotor regions of the brain and plays a critical role in coordinating 
and adapting movements. The most debilitating effect of damage to the cerebellum 
is resultant ataxia. Ataxia, derived from the Greek word meaning “lack of order,” is 
a nonspecific term that refers to uncoordinated movements. Ataxia may also be used 
as a medical diagnosis. In this chapter, we will focus on this hallmark feature of 
cerebellar damage, which is incoordination of movements without overt muscle 
weakness, and we will discuss the potential benefits of rehabilitation and the impor-
tance of optimizing sensorial and motor experiences to promote motor learning.

Keywords Rehabilitation · Motor learning · Ataxia

 Introduction

Cerebellar ataxias contribute to dysfunction of neurological pathways, influencing 
voluntary movements. Ataxias may be progressive or acquired in nature. Common 
symptoms include difficulties with balance, coordination, ocular motor, speech, and 
swallowing functions [1]. Evidence in the literature has shown that intensive reha-
bilitation is effective in managing motor limitations for optimizing function in peo-
ple living with ataxia [2–9].

In this chapter we will highlight current rehabilitation literature in ataxia, prin-
ciples behind the efficacy of rehabilitation, as well as evaluation and treatment con-
siderations, including exercise and safe mobility strategies for symptom management 
and fall prevention.
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 Motor Learning Principles

In healthy individuals, the role of the cerebellum is to optimize movement coordina-
tion as well as adaptation of new movement patterns to achieve a desired motor 
outcome [10]. It has been theorized that the cerebellum estimates a certain state of 
movement, and then forms a forward model predicting the sensory consequences of 
a movement [11–16]. If there is a discrepancy between the expected movement and 
actual movement, the cerebellum updates the forward model using a prediction 
error that is fed to the cerebellum by the parietal cortex [13]. Hence, motor com-
mands are linked with the predicted sensory consequences of movement [15].

Examples of when the body needs to adapt to a new movement pattern in real-life 
circumstances includes finding an app on one’s phone in after the app has been 
inadvertently moved, or driving a rental car that is different than your own vehicle, 
or adjusting to a Mac computer if you are more familiar with using a PC.

In healthy individuals, implementing appropriate movements and learning new 
movements are possible with the influence of sensory feedback from various sys-
tems (vision, somatosensory, vestibular). Visual feedback, in combination with ves-
tibular feedback, contributes to stable gaze in response to head and body turns. 
Additionally, vestibular feedback, including linear and rotational accelerations, pro-
vides information of spatial orientation. Somatosensory feedback provides neces-
sary information to accomplish precise movement at multiple joints. Importantly, 
the brain does not simply react to multimodal sensory feedback, but putatively uses 
an internal model of the body to predict the consequences of motor commands 
before sensory feedback arrives [15].

In individuals with cerebellar ataxia, the ability to adapt to new motor learning 
patterns, relative to previous experiences, is impaired [12]. However, reinforcement 
feedback learning has been established as an alternative motor learning strategy in 
cerebellar ataxia, where actions leading to a successful outcome are reinforced 
while unsuccessful actions are avoided [16]. Of interest, reinforcement motor learn-
ing has been shown to require a certain level of motor exploration to optimize and 
reduce variability of movement [16, 17].

 Evidence in the Literature

Current evidence in the ataxia rehabilitation literature emphasizes the value of 
intensive balance training and aerobic exercise to improve and maintain clinical and 
functional outcome measures [18]. High intensity, coordinated balance training has 
been shown to improve clinical neurological scores and gait kinematic measures in 
adults and children with neurodegenerative ataxias, such as decreased variability of 
steps, body sway, and increased gait velocity [3, 7, 19]. While clinically meaningful 
improvements may be experienced in the short term, maintaining an intensive home 
program for the long term is essential for retaining motor improvements in ataxia [2].
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A consensus as to the appropriate dosing has not yet been reached in the ataxia 
literature given the heterogeneity of individuals with ataxia. However, evidence 
shows that intensity of training (i.e., self-perceived level of difficulty) matters more 
so than frequency [7]. Intensive multidisciplinary inpatient rehabilitation has also 
been shown to improve functional outcomes in ataxia [4, 6]. Larger systematic 
reviews reveal consistent evidence that balance and endurance training, as well as 
multidisciplinary care has the potential to improve clinical and activity measures 
[5, 8, 9].

Evidence in the literature is primarily among the neurodegenerative, hereditary 
ataxias and in individuals who are ambulatory. Considering ataxia etiologies and 
level of severities are varied, future research is needed in larger patient cohorts to 
address questions such as dosage and motor learning preferences to optimize 
treatment.

 Evaluation

Neurorehabilitation specialists often refer to a clinical framework called the 
International Classification of Functioning (ICF) model to guide the evaluation and 
overall management of impairments that may potentially restrict a person’s overall 
abilities and participation in life activities [20]. Additionally, the ICF model helps 
organize which activity limitations are modifiable within the scope of rehabilitation. 
The ICF model also considers environmental factors, such as home setup, as well as 
personal factors, such as motivation and social support. It is important to consider 
that there are many factors that contribute to an individual’s overall function and 
quality of life, beyond the medical diagnosis. Clinicians must assess how a range of 
factors are contributing to the patient’s current functional situation, and work with 
the individual to address the limitations and barriers to life activities most meaning-
ful to them.

Common motor impairments observed on the evaluation may include ocular 
motor abnormalities, limb dysmetria – impaired ability to reach a target accurately, 
dyssynergia – impaired ability to move smoothly and precisely at multiple joints 
simultaneously, and imbalance. Current rehabilitation literature focuses on manage-
ment of motor impairments, impacting the person’s overall activity, such as balance, 
gait, and endurance. However, it is important to acknowledge nonmotor impair-
ments in ataxia, which may impact the patient’s health-related quality of life. Recent 
murine evidence of cerebellar fastigial nucleus outputs involving both motor and 
nonmotor circuitry brings attention to nonmotor aspects of cerebellar disease 
including generalized arousal, motivation, wakefulness, and working memory [21].

Understanding ataxia etiology is important (i.e., hereditary neurodegenerative 
ataxia versus the consequence of a stroke, traumatic brain injury, or autoimmune 
event). However, an individuals’ clinical presentation, as well as social, behavioral, 
environmental considerations, are equally important for rehabilitation management.
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 Examination

Key components of a physical therapy evaluation of an ataxia patient include an 
ocular motor exam; balance, coordination, sensation, strength, and gait testing; and 
functional and patient-reported outcome measures. The ocular motor exam should 
be performed in room light and with fixation removed (using goggles, such as 
Frenzel’s lenses) and should include static and dynamic gaze, pursuits, saccades, as 
well as vestibular ocular reflex responses with passive head rotation. Common 
abnormal ocular motor and clinical findings are detailed in Table 1.

Table 1 Ocular motor and clinical exam

Ocular motor exam Abnormal findings
Central gaze Spontaneous nystagmus – downbeating, pendular, periodic alternating 

nystagmus
Lateral gaze Direction changing gaze evoked nystagmus
Pursuits Choppy, saccadic eye movements
Saccades Latency, velocity, accuracy impairments
VVOR – visual 
vestibular ocular reflex

Difficulty maintaining focused on a stationary target with passive 
slow head movements or rapid head impulse

VVOR cancellation Choppy pursuits. Difficulty maintaining focus on a moving target as 
the eyes, head, target move around the head axis simultaneously

Vergence Convergence or divergence insufficiency
Positional testing Sustained nystagmus greater than 1 min

Slower velocity, smaller amplitude nystagmus than typically observed 
with peripheral BPPV
Pure upbeating or downbeating nystagmus; immediate onset
Nystagmus in more than 1 position

Dynamic visual acuity 
(DVA)

Impaired with or without evidence of vestibular involvement [22]

Video head impulse test 
(vHIT)

Abnormal VOR gains may be present in some cases
Eye movement patterns in response to passive head rotation may 
reveal the following in one or more semicircular canal: [23]
Hypometric VOR with saccades
Hypermetric VOR
Anti-compensatory saccades
Premature VOR deceleration

Clinical exam Abnormal findings
Sensation Standing balance testing, using the mCTSIB, may be more 

informative than great toe proprioception
Strength Strength is typically normal
Coordination Dysmetria

Dysdiadochokinesia
Dyssynergia

Balance Difficulty maintaining Romberg stance with feet together or in 
tandem on firm or foam surfaces, with eyes open or closed

Gait Wide-based, discontinuous steps, difficulty with tandem walking, 
walking with head and body turns

J. L. Millar and M. P. Drake



541

• Dynamic visual acuity (DVA) testing may be incorporated into the clinical exam 
and reveal abnormal results in individuals with cerebellar ataxia [22]. In ataxia 
individuals with additional vestibular clinical findings, the DVA severity is com-
parable to individuals with bilateral vestibulopathy [22].

• Video head impulse testing (vHIT) is an available clinical tool, beyond the stan-
dard ocular motor exam, in identifying impairment in eye and head coordination, 
with passive head rotations. In ataxia individuals with specific complaints of 
oscillopsia with head motion, symptom severity is comparable to those with 
bilateral vestibulopathy [23]. In ataxia individuals with oscillopsia, vestibular 
ocular reflex (VOR) gains may be impaired in at least one semicircular canal 
[24]. Interestingly, oscillopsia symptoms are inversely correlated with gait veloc-
ity (r = −0.55, p < 0.05), but not with VOR gains [24]. An example of a video 
head impulse test result in an individual whose clinical presentation included 
symptoms of oscillopsia, limb ataxia, and sensory impairments is shown in 
Fig. 1. In this individual’s case, genetic testing confirmed a diagnosis of cerebel-
lar ataxia with neuronopathy and vestibular areflexia syndrome (CANVAS).

• Sensation: Proprioception testing, whether the patient can identify if his/her toe 
is passively oriented up or down, is not informative enough to fully understand 
an individual’s potential for joint kinesthetic awareness with postural stability 
challenges. A modified clinical sensory integration and balance test (mCTSIB) is 
a useful tool for identifying somatosensory impairments pertaining to function. 
The mCTSIB consists of four subtests, each timed for 30 s each: [1] stance with 
feet together, firm surface, eyes open; [2] stance with feet together, firm surface, 
eyes closed; [3] stance on foam, eyes open; and [4] stance on foam, eyes closed. 
If the individual does have sensory ataxia symptoms, it is difficult for clinicians 
to distinguish between peripheral neuropathy and neuronopathy (i.e., ganglion-
opathy). However, individuals with neuronopathies may also have cranial nerve 
deficits (except for hearing loss) and will be distinguishable from neuropathy 
with the help of nerve conduction studies.

• Strength: Typically, strength is not an issue in degenerative cerebellar ataxias, but 
often individual’s with impaired motor control complain of “weakness.” In indi-
vidual’s who are less active, or fearful of falling, secondary weakness may be 

Fig. 1 On the left graph, the plots reflect the ratio of the area under the eye velocity curve relative 
to head velocity, otherwise known as visual vestibular ocular reflex (VVOR) gain. The normal 
VOR gain range would normally fall in between the red and blue lines on the left graph, or gain 
values of ~0.8–1.2. However, in this individual’s case, VOR gains were impaired, with evidence of 
overt compensatory saccades bilaterally
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more of an issue than primary neurological weakness, especially in hereditary 
ataxia conditions.

• Coordination: Evidence of dysmetria, dysdiadochokinesia, and dyssynergia may 
be evident with finger to nose movements, rapid alternating movements, and heel 
to shin movements. Clinical findings of incoordination may be subjectively rated 
using one of the validated ataxia rating scales described below.

• Gait: Common gait patterns in ataxias may include wide-based discontinuous 
steps, difficulty walking in tandem, with head and body turns, or with a dual task 
cognitive challenge.

 Clinical Outcomes

The most common clinical ataxia rating scales used by neurologists and therapists 
are the International Cooperative Ataxia Rating Scale (ICARS) [24] and Scale for 
Assessment and Rating of Ataxia (SARA) [25].

The International Cooperative Ataxia Rating Scale (ICARS) [24] is a 19-item 
scale with posture, gait, limb ataxia, dysarthria, ocular motor subscales. Total score 
ranges from 0 to 100, with a higher score implying a greater impairment. The 
ICARS is considered to have high interrater reliability (ICC = 0.95) and high test–
retest reliability (ICC = 0.97). [26, 27]

The Scale for Assessment and Rating of Ataxia (SARA) [25] is an 8-item scale 
with balance, gait, limb coordination, dysarthria subscales. Total score ranges from 
0 to 40, with a higher score implying a greater impairment. The SARA is considered 
to have high interrater reliability (ICC  =  0.98) and high test–retest reliability 
(ICC = 0.90) [26]. The EuroSCA natural history study revealed an average annual 
SARA score progression of up to 0.6–2.5 points per year among the most common 
hereditary degenerative spinocerebellar ataxias [28].

 Functional Outcomes

The Action Research Arm Test (ARAT) is a 19-item measure to evaluate upper 
extremity function coordination, dexterity in neurological individual’s [29]. The 
ARAT, in cerebellar ataxia, has high interrater reliability (ICC = 0.97) [30].

The Dynamic Gait Index (DGI) is an 8-item fall risk measure with various func-
tional tasks, including head and body turns and stepping over and around objects 
[31]. A total score of less than 19/24 indicates risk for falls. The DGI, in cerebellar 
ataxia, has high interrater reliability (ICC   =   0.98), high test–retest reliability 
(ICC  = 0.98), and construct validity (r = −0.81 SARA, r = −0.88 ICARS) [32].

The Timed Up and Go (TUG) measures the duration to stand, walk 3 m, and turn 
180° before returning to sit. The TUG indicates fall risk when scores are >13.5 s in 
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older adults with vestibular disorders. The TUG has high inter and intrarater reli-
ability [33].

The TUG with a dual task challenge may include a cognitive task (TUG Cog), 
such as counting backwards from 100 by 3 s. A TUG Cog score of >15 s in elderly 
subjects has been used to identify individuals with increased fall risk [33]. The TUG 
Cog score is helpful when assessing how dependent an individual with ataxia is on 
cognition for motor performance.

Gait velocity measures comfortable gait speed and may be captured with or with-
out an assistive device. Normal age range values are available in community dwell-
ing adults and are not explicitly known for patients with ataxia [34].

The Five Time Sit to Stand test is a useful clinical measure of an individual’s abil-
ity to transition from sit to stand five times sequentially. The measure has been vali-
dated in individuals with balance disorders [35].

 Patient Reported Outcomes

Activities-Specific Balance Confidence scale (ABC) evaluates an individual’s level 
of perceived balance confidence with various daily activities ranging from 0 (no 
confidence) to 100% (complete confidence). Total scores of >80% is considered a 
normal level of balance confidence and scores below 67% predict an individual is at 
risk of falling [36]. The ABC has excellent test–retest reliability (r = 0.92) [37, 38].

Oscillopsia Functional Index (OFI) was initially developed to assess oscillopsia 
symptoms in patients with peripheral vestibular dysfunction [39]. The 43-item 
questionnaire asks patients to rate their level of oscillopsia during various activities 
such as walking, driving a car, or the ability to recognize familiar faces. Scores 
range from 0 to 215 points, ranked from 0 (no oscillopsia symptoms) to 5 (severe 
oscillopsia such that the person has stopped doing the activity). A scoring option of 
“not applicable” reflects the people’s avoidance of a particular activity. The OFI has 
high internal consistency with excellent validity and is correlated with other oscil-
lopsia measures (oscillopsia visual analog scale: r = 0.69, p < 0.001; oscillopsia 
severity scale: r = 0.84, p < 0.0001). The OFI is also correlated with the Activities- 
Specific Balance Confidence scale (r = −0.84, p < 0.001) [38].

In summary, patient-reported outcomes, as well as clinical and functional out-
come measures, are valuable tools for identifying self-perceived level of disability, 
clinical impairments, and functional limitations impacting daily activities. These 
measures also provide individuals with helpful feedback on the value of maintain-
ing home exercise program compliance.
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 Rehabilitation Interventions

In general, functional recovery is possible in individuals with ataxia, and the extent 
of recovery depends on the cause and site of the cerebellar lesion. Degenerative 
cerebellar ataxias are difficult to treat due to the progressive nature and its effects on 
all parts of the cerebellum. In contrast, nondegenerative ataxias, such as poststroke, 
may affect only some regions of the cerebellum, leaving the intact regions available 
to assist with compensation. Rehabilitation of cerebellar-induced motor impair-
ments is also complicated by the role of the cerebellum in motor learning. Poor 
functional recovery may be a consequence of damage to cerebellar structures 
involved in adaptation [18].

The literature for specific rehabilitative interventions for ataxia is limited. The 
few available studies feature different populations (e.g., degenerative ataxias, post-
stroke ataxia, sensory ataxia, postsurgical cerebellar tumor resection, multiple scle-
rosis), as well as different interventions and outcome measures. Thus, here we will 
highlight common rehabilitation therapies for cerebellar ataxia featured in the lit-
erature as well as practical clinical considerations based on current evidence.

It is important to note that ataxia symptom management is often in contrast to 
rehabilitation management strategies for other movement disorders. For example, 
Parkinson’s disease management commonly focuses on high-amplitude and high- 
velocity movements, with external cueing strategies, whereas ataxia management 
focuses on slow, soft movements. Distinguishing the type of movement disorder, 
such as ataxia versus Parkinson’s disease, is important for guiding treatment.

 Intensive Balance and Gait Training

Many of the intervention studies for cerebellar ataxia emphasize stability and bal-
ance training [3–8]. Literature has shown high-intensity balance training may have 
indirect effects on quality of walking and gait velocity. Interestingly, balance defi-
cits have been found to be a better predictor of gait speed than leg-coordination defi-
cits in neurodegenerative ataxias [40]. Intensive coordinative training has been 
found to improve gait performance and reduce ataxia symptoms up to 2–5 SARA 
points. The natural disease progression of the most common degenerative cerebellar 
ataxias per year is 0.6–2.5 SARA points [28]. Therefore, neurodegenerative ataxia 
patients who participate in intensive balance training have the potential to gain clini-
cal improvements equivalent to 2 or more years of disease progression [3]. 
Additionally, several studies, in individuals with neurodegenerative ataxias of vary-
ing disease severity, have shown kinematic improvements correlating well with 
improvements in functional and clinical neurological scores following intensive 
balance training [3, 7, 41]. Long-term improvements have been observed in indi-
viduals who continue their home program [2]. Functional improvements are more 
likely experienced among individuals with pure cerebellar ataxia, more so than 
those with sensory ataxia [3]. The self-perceived difficulty of a task is important for 
achieving benefit. Exercises must be safe, yet challenging [7].
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Table 2 Example of balance and gait exercises

Common balance interventions include exercises in various positions. Home 
exercises of sufficient difficulty may indirectly improve gait performance [7]. 
Examples of balance and gait exercises, as well as samples of progressions are high-
lighted in Table 2.

Locomotor training overground and on treadmills, both with and without body 
weight support, has been used with some success in limited case studies [42, 43]. It 
is important to note that utilizing body weight support can be useful for achieving 
intensity and repetition to facilitate plasticity of the brain; however, it should be 
considered that body weight support minimizes balance challenge.
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A systematic review published in 2017 highlighted 17 studies, among 292 indi-
viduals with ataxia [8]. Treatment interventions included balance and coordinative 
training, multidisciplinary inpatient rehab, cycling, and treadmill training. Fifteen of 
the 17 studies revealed significant improvements in at least one outcome measure 
among ataxia symptoms, balance, function, and gait. The review revealed consistent 
evidence that rehabilitation improves function, mobility, ataxia, and balance in 
genetic degenerative ataxia. Interestingly, training intensity and frequency varied 
among studies. In some studies, individuals were asked to train 1 h per day, 7 days per 
week, while others just 20 min, 4 times per week, with a higher self-perceived level 
of challenge. The latter frequency/duration, with a higher intensity, has been shown 
to be the minimum dosage necessary to achieve significant improvement in gait 
velocity [7]. Rehabilitation professionals have a significant role in helping individu-
als establish the appropriate exercise dosage and type, based on response to training.

 Aerobic Exercise Training

Integration of aerobic exercise into the regimen is recommended, given with ataxia, 
movements are more effortful, requiring increased energy expenditure. Fatiguing 
activity worsens postural control [44] and contributes to risk for falls. Interestingly, 
balance capacity correlates with exercise performance [45].

The severity of ataxia has been associated with poor physical conditioning, 
decreased overall functionality, and lower quality of life [45]. Health professionals 

Table. 24.2 (continued)
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should promote physical exercise to help people with cerebellar dysfunction in pre-
venting functional losses caused not only by disease but also by inactivity. One 
study found cycling can normalize the modulation of reciprocal inhibition, restore 
short- and long-term adaptive plasticity, and improve coordination function in the 
individuals with ataxia [46]. Another study involving a high-intensity cycling pro-
gram found a 2-point reduction in severity of ataxia based on SARA scores, while 
the control counterparts increased by 0.3 points [9]. The results also revealed 
improvements in walking speed, balance outcomes, and general fitness. Thus, while 
it is well-established that balance and coordinative training are especially important 
in the rehabilitation of cerebellar dysfunction, cardiovascular and muscular fitness 
should not be neglected, and should be remembered as an important part of a routine 
exercise program for people with cerebellar dysfunction.

In individuals with Friedreich’s ataxia, a more cautious approach to aerobic exer-
cise is recommended. Rehabilitation has been shown to be effective in reducing the 
level of disability in Friedreich’s ataxia [47, 48]. Given the prevalence of cardiomy-
opathy (i.e., diastolic heart failure) in this population, a cardiac assessment under 
the direction of a cardiologist is recommended [49]. The main guide for determin-
ing an appropriate aerobic exercise intensity is self-reported symptoms (i.e., one 
should not exercise to a level of total exhaustion), as well as the cardiovascular 
response to exercise.

A secondary benefit of exercise is the impact on quality of sleep. Insomnia is a 
prominent issue in neurologic disorders [50]. More research on sleep is needed in 
the ataxia population, but in the general population it is known that people who are 
more active during the day have improved quality of sleep at night. The impact of 
physical therapy and home exercise programs on sleep among neurologic patients is 
a promising nonpharmacologic intervention for sleep disturbance.

 Compensatory Strategies

Compensation is a common component in the rehabilitation plan of care for people 
with cerebellar dysfunction. In individuals living with progressive ataxias, many 
start using alternative movement strategies without realizing; however, others may 
need to be taught when and how to deploy compensatory strategies. For individuals 
with degenerative or acquired ataxias, where recovery of premorbid mobility is not 
expected, compensatory movement strategies may promote modified independence 
and optimal safety despite mobility impairments.

A common compensatory strategy that is often taught in rehabilitation is to slow 
down a movement to help maintain self-awareness of where the limb is in space. 
Movement complexity may be minimized by reducing the number of moving joints 
to achieve a desired outcome. For example, one may place an elbow on the table to 
stabilize a single segment of movement when drinking from a cup. Another com-
mon strategy is to encourage individuals to focus on one task at a time. Individuals 
with ataxia rely on cortical function to execute smooth movement. Hence, avoiding 
multitasking, especially while walking, may help optimize motor performance.
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The use of assistive devices may promote modified independence during gait. 
For some individuals, the added support of a device may improve gait performance. 
For others, learning to coordinate the assistive device may cause further instability, 
and hence may not be worth pursuing. In general, people with limb ataxia and 
imbalance benefit more from the support of a wheeled walker rather than a cane or 
standard walker. A platform walker may provide proximal stability in those indi-
viduals who are more ataxic but still ambulatory. A wheelchair may be recom-
mended for those individuals who want to remain mobile but are not safe ambulators 
at home or in the community.

A common goal among individuals, family members, and the health-care team is 
fall prevention. Interestingly, fall history has been shown to be reliably predict 
future falls in patients with ataxia conditions [51]. Fall status and frequency may be 
reliably predicted, at an accuracy of 78% and 81%, respectively, primarily based on 
number of falls a person has experienced in the past. Additionally, in patients who 
are at risk of falling, instrument-based measures of gait and mobility may provide 
added information on the likelihood of severe fall-related injuries [51].

 Education for Lifelong Self-Management

Education of appropriate home exercises for optimizing function, as well as guid-
ance of effective and safe mobility strategies that yield successful function, is a key 
role of rehabilitation therapists. Neurorehabilitation clinicians also empower indi-
viduals with ataxia with the knowledge about motor learning principles available 
for optimizing emerging skills, as well as knowledge about which limitations are 
modifiable and within the scope of rehabilitation to focus on. Individuals should 
seek rehabilitation intervention to optimize activities that are most meaningful to 
them. If individuals are making progress between rehabilitation sessions at their 
own pace, frequency of therapy visits may be less often. Periodic therapy sessions 
may be valuable for providing individuals with feedback on their progress, as well 
as for educating individuals on appropriate modifications to their home program.

Adherence to home exercise programs is often challenging for individuals [52]. 
Psychological and situational factors vary between individuals and need to be con-
sidered by clinicians when designing personalized exercise programs. Utilization of 
technology is an option to help optimize compliance. Activity trackers are an acces-
sible technology that may be helpful for patients to assess their current ability and 
to set goals based on that ability. Smartphones are also a commonplace technology 
in most people’s pockets now. Smartphones have access to free or low-cost apps that 
can monitor steps and plot daily steps over days, months, and the year. Wearable 
technologies can even monitor heart rates and rhythms. Smartwatches often have 
safety features to detect falls and provide a means for calling for help in the event of 
an emergency. Activity trackers and smart devices can provide individuals with cer-
ebellar dysfunction excellent feedback on their current abilities and progress.
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Another strategy to optimize compliance is to find an exercise the person enjoys, 
and thus would be more motivated to perform regularly. Tai Chi involves whole- 
body movements and weight shifting and has been found to improve balance scores 
in people with degenerative ataxia [53]. Yoga and Pilates are other forms of exer-
cises that also incorporate controlled whole-body movements as well as core stabil-
ity. Swimming is a safe form of whole-body exercise where one may feel safe 
challenging themselves without the fear of the consequence of a fall.

Virtual reality and videogame (VR/VG)-based rehabilitation is a promising 
intervention among the neurological patient populations, with emerging evidence in 
the rehabilitation literature. A coordinative training program in adolescents with 
early onset degenerative ataxia, using the Xbox Kinect® at home for 8  weeks, 
revealed significantly improved SARA scores as well as Dynamic Gait Index and 
Activity-Specific Balance Confidence measures [19]. The kids who exercised more 
frequently benefitted more and they reported having fun. Another 4-week exergam-
ing study found significant improvements in the gait-posture SARA sub-score, but 
the overall outcomes were not significantly superior to conventional balance and 
coordination training [54]. In addition, a 12-week coordinative training program 
based on commercial VG systems (Nintendo Wii® and Microsoft Xbox Kinect® 
specifically) resulted in a 2.5-point reduction in the SARA score as well as improve-
ments in balance control of sitting, stance, and gait in ambulatory and nonambula-
tory subjects with degenerative ataxia [41]. Considering the advantages of being 
low-cost, enjoyable, and easy to implement at home, VR/VG-based rehabilitation 
deserves further research to assess its effectiveness.

 Controversial Interventions

The benefits of trunk and limb weighting for improving balance and gait have been 
debated among rehabilitation specialists over time. When discussing weighting, it is 
important to differentiate between trunk weighting and limb weighting, as there is 
different evidence for both. There is mixed evidence for trunk weighting [55], but 
there may be some benefit [56]. However, the use of external limb weights to con-
trol limb acceleration and inertial forces has been proven ineffective in people with 
degenerative cerebellar ataxias [57]. Instead, simple strategies such as slowing 
down movement are considered more beneficial.

There has been some limited evidence in the speech therapy literature that Lee 
Silverman Voice Treatment (LSVT LOUD®) exercises can improve communica-
tion in people with ataxia [58]. However, this should not be interpreted as an 
endorsement of large amplitude exercises for physical impairments. Ataxia is best 
addressed by training smaller and softer movements, rather than the large amplitude 
exercises trained during LSVT BIG®.
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 Conclusion

Evidence in the literature has shown that exercise and activity in ataxia are benefi-
cial. Rehabilitation helps individuals gain the capacity to learn and integrate new 
skills through practice. Functional recovery is possible in individuals with ataxia, 
and the extent of recovery depends on the cause and site of the cerebellar lesion. 
Reinforcing movements that yield success is critical for sustained results. Functional 
tasks must be challenging but safe and within an individual’s capabilities. Endurance 
training is a helpful adjunct to balance and coordination training, in addition to the 
known cardiovascular health benefits. Rehabilitation aims to address the functional 
goals that are most meaningful to individuals, as well as impairments that are most 
amenable to change within the scope of rehabilitation. Additionally, barriers to 
function, such as pain, may be addressed with the help of rehabilitation therapists 
and the care team. Functional assessments provide individuals with feedback and 
may promote compliance with home programs and safe self-management. Safe 
strategies, including the use of adaptive equipment, are critical for fall prevention. 
Individuals living with ataxia are not alone in management of their disease, with 
neurorehabilitation therapists as part of their care team.
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Abstract In this updated chapter, we briefly describe the epidemiology of several 
cerebellar disorders, many of which are considered rare, and various risk factors 
associated with their development. For many cerebellar disorders, prevalence and 
incidence rates are unknown, or the values have been underestimated; this is true 
both at the global and regional levels. Scant epidemiological information can be 
attributed to lack of health-care systems in various parts of the world, inaccurate 
classification of disorders in published studies, broad inclusion criteria, or simply 
the rarity of the disorder. Information about the prevalence, incidence, or number of 
cases is important for the planning and provision of services to address the needs of 
affected individuals and their families. Epidemiological studies are also necessary 
to identify factors that contribute to the development of the disorder, which can be 
used to prevent or reduce the risk of developing the conditions at the popula-
tion level.
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 Introduction

In the first edition of this chapter, we described the epidemiology of cerebellar dis-
orders and where possible provided information on their global and local prevalence 
and incidence and risk factors [192]. For this second edition, we located recent 
research and updated the relevant sections of this chapter based on this literature. 
Prevalence and incidence are the two main measures of disease occurrence in popu-
lations. Prevalence refers to the proportion of population with the condition of inter-
est at a certain point in time, or within a specific period. Incidence refers to the rate 
at which new events or cases of the condition of interest occur in a population in a 
defined period. Prevalence estimates provide useful information for planning and 
provision of services to address the needs of persons living with the conditions of 
interest and their families. This information can also be used to examine trends in 
the occurrence of the conditions of interest to determine if the number of cases and 
rates have increased, decreased, or remained stable over time. Results of incidence 
studies are of great use for predicting future needs, investigating causality, and iden-
tifying factors associated with increased risk of a disorder of interest. Information 
on factors found to be significantly associated with the risk of the cerebellar disor-
ders aide in the identification of modifiable risk factors to prevent or reduce the risk 
of developing the condition at the population level.

 Selection of Studies

A search was performed on the MEDLINE, Embase, and Scopus databases, using 
the following search terms: [name of condition], AND “epidem*” OR “prevalence” 
OR “incidence” OR statistic* OR risk*. For the name of the condition, truncation 
was used to be more inclusive of alternative terms and spellings (e.g., cerebell* was 
used for cerebellum OR cerebellar). The search was restricted to records published 
in English and ending December 2016. For the first edition chapter [192], we located 
366 references, and our initial examination of the records revealed that 29 refer-
ences to book, chapters, and sections, and 337 references to articles were relevant to 
epidemiology or risk factors. For this updated chapter, we replicated our search, 
limited our search to publications beginning in January 2017 to February 2022, and 
reviewed an additional 515 titles and abstracts, using Covidence Systematic Review 
Software [227], and the full text of 83 sources were reviewed.

We selected studies providing estimates of prevalence and/or incidence for a 
specified population in a defined geographical region, and/or associated risk factors. 
Because we expected few publications for many of the conditions of interest, we 
defined broad inclusion criteria: (1) the article must mention estimates of prevalence 
and/or incidence and/or describe cases of the condition; or (2) the article must 

S. Shooshtari et al.



557

identify and describe risk factors for the condition; and (3) the article must be pub-
lished in English. Two authors independently reviewed the titles and abstracts of the 
publications identified by the initial search strategy. Studies that clearly did not 
meet the inclusion criteria were excluded, and the remaining studies were examined 
further. Inclusion was based on agreement between two reviewers. In cases of non- 
consensus, third (and sometimes fourth) reviews were obtained for decision. For 
selected articles, data were extracted using a predefined data extraction form, which 
included the following parameters: publication type, geographical area, study popu-
lation, number of patients identified, research design, study period, data source, 
condition and subtypes, prevalence and incidence estimates for each condition, and 
risk factors. For conditions in which prevalence and incidence estimates were not 
available, the number of cases of a condition was reported. The reference lists of the 
selected papers were examined for additional studies. Quality assessments of the 
studies were not conducted.

 Results

Many cerebellar disorders are described as rare, very rare, or extremely rare. 
According to the consortium of European partners [38], “rare” is defined as affect-
ing 1 per 2,000 people. Similarly, the United States Rare Diseases Act of 2002 [37] 
defines “rare” as “any disease or condition that affects fewer than 200,000 people in 
the United States” or about 1 per 1,500 people. In Japan, a “rare” disorder is one that 
affects fewer than 50,000 people or 1 per 2,500 people.

 Ataxia

The word ataxia is derived from the Greek word “a taxis,” which means “without 
order.” Individuals with ataxia suffer from lack or loss of movement coordination 
resulting in poor coordination of gait or hands, and disturbances in speech and ocu-
lomotor control [124]. Ataxia can negatively influence a person’s ability to walk, sit, 
and stand [193]. The prevalence of ataxia in children is 26 per 100,000 [124] and 
lifetime prevalence rate is 50 per 100,000 (see [52]), but these prevalence estimates 
vary depending on the type of ataxia or region studied. The most common types of 
ataxias are cerebellar (including hereditary and nonhereditary ataxias), sensory, and 
vestibular. Ataxia is associated with numerous conditions, including the presence of 
cerebellar tumors, Joubert syndrome and related disorders (JSRD), Gómez-López- 
Hernández (GLH), rhombencephalosynapsis, cerebellitis, and cerebellar stroke 
(see below).

Epidemiology of Cerebellar Disorders



558

 Hereditary Cerebellar Ataxias

Hereditary cerebellar ataxias (HCA) can be inherited in an autosomal recessive, 
autosomal dominant, X-linked, and mitochondrial manner.

Autosomal Recessive Ataxias

In their systematic review and meta-analysis of prevalence based on 22 studies, 
reporting on 14,539 patients from 16 countries, published between 1983 and 2013, 
Ruano et al. [173] reported that the prevalence rates for autosomal recessive heredi-
tary cerebellar ataxia (AR-HCA) ranged from 0.0 to 7.2 per 100,000. Studies from 
this review are briefly described here. Two hospital-based studies from Cantabria 
region in Spain and Alsace region in France reported the highest prevalence rates at 
7.2 per 100,000 [153] and 5.3 per 100,000 [10]. Prevalence estimates from multi-
source studies (i.e., cases from community settings, hospitals, and probands’ fami-
lies included in the estimates) tended to be lower (e.g., 2.3–4.8 per 100,000). For 
example, in a cross-sectional study conducted in southeast Norway between January 
2002 and February 2008, Erichsen et al. [49] found that the prevalence of AR-HCA 
was 2.3 per 100,000. On average, individuals were 32 years (Range: 4–71 years) 
and were diagnosed at the age of 9 years (Range: 1–55 years). Gender differences 
in prevalence have not been observed. Globally, the incidence rate for AR-HCA is 4 
per 100,000 (see [57]). See Table 1 for a summary of statistics found in studies 
examining the epidemiology of ataxia.

AR-HCA can be grouped into four classes based on the age of onset and key 
phenotypic features: Friedreich ataxia, and early-, adolescent-, and adult-onset atax-
ias [57]. Friedreich ataxia is the most common form of AR-HCA in the world (see 
[112, 173]). Some reports indicate that nearly 50% of all AR-HCA cases comprise 
Friedreich ataxia; therefore, screening all patients suspected of having AR-HCA for 
Friedreich ataxia prior to other genetic testing has been recommended [57]. In a 
retrospective cross-sectional study conducted in Iran, Friedreich ataxia and spino-
cerebellar ataxia (a type of adolescent-onset ataxia) were the most common types of 
HCA identified among 135 patients with cerebellar ataxia from March 1993 to 
March 1999 in Dr. Shariati Hospital, University of Tehran [125]. Other reports have 
estimated lower prevalence of Friedreich ataxia at 0.15 per 100,000, but higher rates 
for early-onset ataxias (i.e., 0.4 per 100,000 for ataxia telangiectasia) [49]. 
Consanguineous marriage is an important risk factor for autosomal recessive atax-
ias [51, 82, 146, 160, 229].

Autosomal Dominant Ataxia

In their review, Ruana and colleagues [173] found significant variation in the 
reported prevalence estimates for autosomal dominant HCA (AD-HCA) across 15 
studies. Overall, prevalence of AD-HCA was 2.7 per 100,000 (Range: 0–5.6 per 
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100,000). No cases of AD-HCA were found among 16 Italian patients with heredi-
tary ataxia [55], whereas other work conducted in Portugal suggests a prevalence 
rate of 5.6 per 100,000 population [40]. Prevalence rates in multisource population- 
based surveys (e.g., [40]) or in the registry studies (e.g., [215]) were higher than 
genetic center-based studies ranging from 1.6 to 2.5 per 100,000. For example, 
Velázquez-Pérez et al. [225] found the prevalence of hereditary ataxias in Cuba to 
be 8.91 per 100,000 using data obtained from a registry. In the Netherlands, the 
prevalence of the AD-HCA is at least 3 per 100,000 [221]. In Japan, Ono et al. [138] 
estimated the prevalence of childhood-onset ataxia to be 0.93 per 100,000 children. 
In a cross-sectional study conducted in southeast Norway between January 2002 
and February 2008, the prevalence rate of AD-HCA was estimated at 4.2 per 
100,000 and only 8% of cases had a genetic diagnosis [49]. The mean age of the 
sample of cases of AD-HCA was 57 years (Range: 13–94 years) without any gender 
difference after adjustment for age [49].

Among individuals with AD-HCA, spinocerebellar ataxia type 3 (SCA3), also 
known as Machado-Joseph disease, may be the most common [127, 206, 224, 229], 
followed by SCA2, SCA6 (see [173]), SCA7, and SCA10 [206], but prevalence 
estimates depend highly on the country or region within a country studied. For 
example, SCA3 is most common in China, Thailand, and Japan, whereas SCA2 is 
most common in India [21, 224] and Cuba [167, 225]. Interestingly, SCA1 and 
SCA3 are the most common subtypes in the Buriram province in northeast Thailand 
[231]. Nearly 50 subtypes of SCA have been identified (each presenting with classic 
progressive ataxia along with a differentiating non-ataxia symptom) [224] and the 
genetic mutations associated with each subtype are continually being identified 
[143] (see Table 1).

X-Linked Ataxia and Ataxia Due to Mitochondrial Mutations

Little information is available on the epidemiology of X-linked and mitochondrial 
HCA, which may be because the required genetic testing for the diagnosis of these 
conditions is not performed. Few cases of X-linked ataxias or ataxias linked to mito-
chondrial mutations have been described in the research literature [56]. For exam-
ple, in a retrospective study using multiple sources of data of children examined at 
Children’s Hospital in Manitoba, Canada, Salman et al. [179] reported nine cases of 
intermittent or chronic ataxia in children linked to mitochondrial disorder. Therefore, 
further epidemiological studies are required to determine the extent to which 
X-linked and mitochondrial HCA occur (see Table 1).

 Acquired Ataxias

Acquired ataxias are a group of nonhereditary ataxias associated with exposure to 
alcohol or other toxins or infections, or can be due to vitamin deficiency or meta-
bolic disorders [86, 98]. Acquired ataxias are typically divided into two main 
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groups: acute (in a period of minutes to hours it occurs) and subacute (onset is from 
days to weeks).

Our literature search revealed only one original research study describing the 
epidemiology of acquired ataxia. In a population-based study, Farghaly et al. [52] 
estimated the crude prevalence rate of acquired ataxia to be 27.16 per 100,000 in 
Al-Kharga district, New Valley, Egypt. Using a door-to-door survey method, 17 
cases of acquired ataxia were identified. On average, individuals were 31.8 years of 
age (Range: 4–-72 years) and a male-to-female ratio of 2.1:1 (see Table 1).

Describing the prevalence rates of acquired ataxia by age group is important 
because risk factors for the condition often differ across age. In a retrospective study 
conducted at a children’s hospital in Pittsburgh, USA, Thakkar et al. [208] reported 
that postinfectious cerebellar ataxia was a common cause of acute cerebellar ataxia 
(ACA), affecting 59% of patients with ACA. The authors reported no cases of ACA 
related to varicella infections. Evidence from other research, however, suggests that 
varicella and other infections are strongly associated with ACA [61, 97, 222]. In a 
case–control study to examine risk factors for ACA in children in Children’s 
Hospital of Nanjing Medical University, China, Zhu et  al. [240] found that age, 
infection, vaccination, head trauma, and surgeries for intussusception, indirect 
inguinal hernia, and congenital gastrointestinal malformation were independent risk 
factors for ACA. Postinfectious cerebellar ataxia accounts for up to 40% of ACA in 
preschool children (aged 1–4 years), which is followed by toxic ingestion (i.e., 30% 
of ACA cases) [193]. Strokes (ischemic or hemorrhagic) and medications are other 
potential cause of ACA, particularly in elderly individuals [52]. Subacute ACA can 
be observed in various situations, including nutritional deficiencies (vitamin B12, 
vitamin E, folate, copper), autoimmune or inflammatory diseases, and infectious, 
primary, and metastatic tumors [57].

 Autism Spectrum Disorder and the Cerebellum

Autism spectrum disorders (ASD) are neurodevelopmental conditions that are char-
acterized by deficits in social communication and social interaction, restricted and 
repetitive patterns of behavior, interests, or activities [8]. The comorbidity of ASD 
and intellectual disability (ID) is relatively low, with approximately 31% of US 
children with ASD being identified as having ID (i.e., IQ ≤ 70 [14]). The cerebel-
lum is one of the key brain regions affected in autism [19].

ASD are responsible for 0.3% of the global burden of disease and more than 
7.6 million disability-adjusted life years. The global prevalence of ASD is estimated 
to be 1 person in 160 [234]. Many epidemiological studies from developed coun-
tries have investigated ASD prevalence, but less is known about prevalence of ASD 
in developing countries. Variable estimates of ASD prevalence are reported, ranging 
from 0.4 to 22.4 per 1,000, depending on the age, sex, and race/ethnic composition 
of the population studied, ASD diagnostic criteria used, changes in diagnostic crite-
ria over time, the methods of data collection and case ascertainment. Although 
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earlier European studies reported ASD prevalence estimates of 1 in 2500 children 
across all ages in the population [64], more recent estimates of ASD prevalence 
based on large survey data suggest that 1–2% of all children are affected [104, 187]. 
For example, a UK school-based survey reported 99 per 10,000 children [16]. The 
most recent estimate of ASD prevalence for children aged 3–17 years in the United 
States was reported at 2.24% based on data from the 2014 National Health Interview 
Survey (NHIS) [238]. The estimated prevalence was significantly higher than the 
estimated prevalence of 1.25% based on earlier years of data from the same survey 
(2011–2013). The observed difference was attributed to the change in wording of 
the survey questions that allowed parents to better differentiate ASD from other 
types of developmental disabilities [238]. Other studies from Europe, North 
America, and Asia also reported prevalence estimates of higher than 2% [14, 
96, 168].

The Autism and Developmental Disabilities Monitoring (ADDM) Network is an 
active surveillance system in the United States (US), which provides estimates of 
the ASD prevalence among children aged 8  years living in 11 ADDM sites. 
According to this source, the overall prevalence of 8-year olds with ASD in 2010 
was 14.7 per 1,000 (1 in 68) [14] and 23.0 per 1,000 (1 in 44) in 2018 [114]. In both 
these reports, there was variation in the reported prevalence estimates by sex and 
racial/ethnic background. ASD was 3–5 times more prevalent in boys than in girls, 
depending on the geographic region. White children were also 30% more likely than 
non-Hispanic black children to be identified with ASD in the 2014 study but preva-
lence was similar across racial and ethnic groups in the 2021 study. An exception 
was that the ASD prevalence was higher for Indigenous children than White chil-
dren (29.0 vs 21.2 per 1,000) [114]. The median age at first ASD diagnosis was 
53 months in the 2014 study, which decreased to 50 months in the 2021 study.

The reported estimates of ASD prevalence in Canada are lower due to the differ-
ent case ascertainment method used. The National Epidemiologic Database for the 
Study of Autism in Canada (NEDSAC) has been monitoring the prevalence of ASD 
in three Canadian provinces (i.e., Newfoundland and Labrador, Prince Edward 
Island, and Southeastern Ontario) since 2003. Based on information from this data-
base, the prevalence of ASD was estimated at 1 per 94 children. Based on data col-
lected through 2008  in Newfoundland and Labrador and 2010  in Prince Edward 
Island and Southeastern Ontario, the estimated prevalence among children aged 
2–14 years ranged from 9.7% to 14.6% [141]. A more recent estimate of the preva-
lence of ASD in Canada in 2015 was reported by the National Autism Spectrum 
Disorder Surveillance System [158] to be 1 in 66 children and youth (or 15.2 per 
1000) aged 5–17 years. Age differences in prevalence were consistent with other 
regions in that more boys (1  in 42) than girls (1  in 165) were diagnosed with 
ASD. See Table 2 for a summary of prevalence estimates for ASD.

Epidemiological data over the past few decades suggest an increase in ASD prev-
alence globally. Several explanations are provided for this apparent increase in ASD 
prevalence including changes in diagnostic criteria and broadening of the diagnostic 
spectrum, greater awareness about ASD conditions among parents and clinicians, 
better diagnostic tools, and better reporting of cases and surveillance systems. The 
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observed increase in ASD prevalence could also be as a result of true increase in 
incidence. Given the complexity of the issue, however, no conclusions regarding 
causes of increased prevalence of ASD can be made at this time.

Research suggests that a complex and variable combination of genetic and envi-
ronmental factors influence early brain development, leading to ASD [41, 130]. For 
example, a higher concordance between monozygotic compared to dizygotic twins 
is consistently shown, suggesting a genetic link for ASD [109]. Other researchers 
have estimated that approximately 10–15% of persons with autism have a specific 
genetic mutation (see [3]).

Recent epidemiological studies revealed a positive association between increas-
ing parental age at conception and ASD risk in offspring (see [100] for a review). In 
contrast, a review of US data led to the conclusion that parental age is a very small 
contributor to the observed increases in the prevalence of ASD [163]. Maternal ill-
ness and infection during pregnancy, extreme prematurity, very low birth weight, 
and complications during birth, particularly those involving periods of oxygen 
deprivation to the baby’s brain are reported as important risk factors for ASD [89, 
100]. Mothers exposed to high levels of pesticides and air pollution may also be at 
higher risk of having children with ASD (e.g., [81]), although the evidence for this 
assertion has been described as limited and of moderate strength (see [105]). 
Interestingly, maternal smoking is also not associated with increased ASD [170]. A 
significant positive association has been observed between ASD prevalence and 
socioeconomic status (SES), suggesting increased risk of ASD with increasing 
SES. This observed association likely reflects diagnostic biases and/or disparities 
that exist in accessing services for ASD assessment [47]. Findings from a small 
number of studies suggest that autism risk is reduced among children whose moth-
ers ingested prenatal vitamins and folic acid, fish and fish oil supplements, and/or 
fatty acids in the months before and after conception (see [113] for a review). The 
information available on risk factors associated with ASD clearly suggests that there 
is no single cause of autism.

 Cerebellar Tumors

Primary brain tumors are the most common type of neoplasms of childhood, com-
prising approximately 20% of all pediatric tumors. Globally, about 30,000–40,000 
children develop central nervous system (CNS) tumors each year (see [22]). In the 
United States, over 3000 children under the age of 20 years are diagnosed with a 
brain or spinal cord tumor annually [203]. The incidence of brain tumors in children 
is estimated at 2.76–4.28 per 100,000 children per year [202]. In Thailand, the inci-
dence of CNS tumors in children ages 0–15 years of age has been reported to be 7.5 
per million for the period of 2003–2005 but much higher at 13.24 per million in 
2011–2012 [154]. Although significant progress has been made in the diagnosis and 
treatment of brain tumors in children, they are still the primary cause of cancer- 
related deaths in children. Tumor type and location are important prognostic factors. 
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Tumors of the cerebellum are associated with symptoms such as ataxia, horizontal 
nystagmus, dysmetria, headache, vomiting, and lethargy [24, 202]. In the following 
subsection, we review the existing epidemiological information on medulloblas-
toma, one of the most common malignant CNS tumors in children.

 Medulloblastoma

Medulloblastomas, which typically arise in the cerebellum, are the most common 
malignant CNS tumor in children and the second most common pediatric brain 
neoplasm. Medulloblastoma accounts for 12–25% of all CNS tumors in children 
[203, 233] and present at approximately 5–7  years of age, and occur more fre-
quently in boys than in girls [13, 111, 116, 137, 154, 194]. Of newly diagnosed 
cases of medulloblastoma, 25% occur in individuals aged 19 years and older [166]. 
The earlier incidence estimates of medulloblastoma brain tumor was 9.6 per million 
in children and 0.54 per million adults [65, 210]. The European annual incidence 
rate for primitive neuroectodermal tumors (PNET; morphologically similar tumors 
arising in other areas of CNS) was reported to be 6.5 per million children (age 
0–14 years) for the period 1988–1997 [149]. The incidence rates of medulloblas-
toma and PNET are stable from birth to 3 years of age and decline gradually there-
after. See Table 3 for a summary of statistics.

Several studies from Asia have examined the epidemiology of cerebellar tumors. 
In a retrospective cohort study, Tabatabaei et al. [202] reviewed the medical records 
for all pediatric cases of posterior fossa tumor that were referred to a neurosurgical 
clinic in Iran for surgery from 1981 to 2011. The authors extracted demographic 
data including patient’s age, gender, and tumor characteristics along with the loca-
tion and pathological diagnosis for all the cases and assessed the surgical outcomes 
according to pathological diagnosis. The study cohort consisted of 84 patients (52 
males, 32 females). Medulloblastoma was found in 42.8% of cases, followed by 
cerebellar astrocytoma (28.6%), ependymoma (14.3%), brainstem glioma (7.2%) 
and miscellaneous pathologies (e.g., dermoid and tuberculoma) (7.2%).

Ahmed et al. [5] examined the epidemiology of brain tumors during infancy and 
childhood using 10 years of data (1989–1998) at a tertiary care hospital in Karachi, 
Pakistan. Of the 81 cases identified, 71.6% were males and 28.4% were females 
(i.e., male-to-female ratio was 2.5:1). When dividing the cases into three age groups 
(0–4, 5–9, 10–14 years), the largest number of cases was found in children aged 
5–9 years. The mean age for all cases was 8.8 years (95% CI 7.9; 9.6), with a mar-
ginal variation for cases occurring in the cerebrum and cerebellum. Of the 81 cases, 
33.3% were supratentorial, 66.7% were infratentorial tumors, and 70.4% of the 
infratentorial tumors were medulloblastomas. Consistent with other research [194], 
Ahmed et al. [5] concluded that pediatric brain tumors are more prevalent among 
males than females and that medulloblastoma is the most common type of brain 
tumors in children. Similarly, Asirvatham et al. [13] found that medulloblastomas 
were the second most common type of brain cancers (11.4% of cases) among 1403 
tumors that were identified in children (aged 0–18 years) diagnosed between 1990 
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and 2004 at a tertiary care center in South India. The mean age at diagnosis was 
10.9  years, and males were more frequently diagnosed than females (i.e., ratio 
of 1.7:1).

Chan et al. [33] conducted a 9-year retrospective study based on data reported to 
the Singapore Children’s Cancer Registry from 1997 to 2005. A total of 39 children 
aged 15 years and younger were diagnosed with medulloblastoma or PNET arising 
in the cerebellum. Follow-up data for these children were collected up to 2006. 
Medulloblastoma/PNET were the most common type of brain tumor in the sample, 
accounting for 40.7% of all brain tumors. In Australia, Williams et al. [233] exam-
ined the 221 cases of newly diagnosed CNS tumors from January 2015 to December 
31, 2019 and found that 13.12% were medulloblastoma.

Several studies from North America provided estimates of prevalence and/or 
incidence rates of cerebellar tumors. Using data from the Surveillance, Epidemiology, 
and End Results (SEER) database, Smoll and Drummond [194] estimated the inci-
dence rates, ratios, and time trends of medulloblastoma and PNET in children and 
adults in the United States. Between 1973 and 2007, 1,372 people were diagnosed 
with a medulloblastoma and 530 with a PNET. The overall incidence rate of medul-
loblastoma and PNET was estimated at 1.5 and 0.62 per million, respectively, and 
children (1–9 years of age) were 10 times more likely to be diagnosed with these 
tumors than adults (6.0 vs. 0.6, respectively). Children were also 4.6 times more 
likely to be afflicted by a PNET than adults. During childhood, boys were 1.58 
times more likely than girls to be diagnosed with a medulloblastoma. Those catego-
rized as “black” were 0.61 times more likely than those classified as “white” to be 
diagnosed with an medulloblastoma, and this was significant in children and 
adults [194].

Roldan et  al. [169] examined 21 years of data (1975–1996) from the Alberta 
Cancer Registry, a population-based cancer registry for the province of Alberta in 
Canada, which had a population of 2.8 million in 1996. Of the 49 cases of medul-
loblastoma or PNET identified, the majority (61%) were children and male. The 
mean age at the diagnosis for children was 7 years and for adults it was 29.2 years. 
A 2014 Canadian study reported an overall incidence of medulloblastoma to be 4.82 
per 1,000,000 children aged 14 years and younger using data collected from 1990 
to 2009 by way of a questionnaire completed by 16 member centers of the Canadian 
Pediatric Brain Tumor Consortium [88]. The authors also showed a higher inci-
dence of medulloblastoma in male children (1.7:1) and an increase in incidence 
over the first three periods (1990–1994: 24%, 1995–1999: 27.5%, 2000–2004: 
27.7%), followed by a decrease in incidence during 2005–2009 (21%).

Although some genetic disorders (i.e., Gorlin syndrome, Turcot syndrome, 
Li-Fraumeni syndrome [LFS]) are associated with an increased risk of medulloblas-
toma, for most patients the etiology is unknown [228]. Because the highest inci-
dence rate is reported during childhood, very early life experiences may be 
contributing factors in the development of brain tumors [116]. A meta-analysis con-
ducted by Harder et al. [72] confirmed that high birth weight was associated with 
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increased risk for medulloblastoma. Infection during pregnancy and deficient social 
environment may also be significant risk factors for cerebellar tumors. For example, 
in a case–control study in England, children of mothers with a documented viral 
infection during pregnancy had 11-fold increased risk of malignant nervous system 
tumor compared to children whose mothers did not have such a history during their 
pregnancy [53]. Lack of social contact in the first year of life is associated with 
increased risk of developing a CNS tumor in childhood, and the effect is greater for 
medulloblastoma/PNET [73].

The role of diet as a potential risk or protective factor in brain tumors has been 
investigated (e.g., [15, 31, 152]). In rodents, maternal dietary intake of N-nitroso 
compounds (NOC) and NOC precursors (e.g., sodium nitrite, amines, and amides) 
during pregnancy is believed to increase the risk of brain tumor in offspring (e.g., 
[162]). A large international collaborative case-control study on childhood brain 
tumors reported that foods associated with increased risk of brain tumors were 
cured meats, eggs/dairy products, and oil products; however, yellow-orange vegeta-
bles, fresh fish, and grains reduced the risk significantly [152].

Studies based on a very small sample size have also reported that exposure to 
electromagnetic fields are a potential risk factor for childhood brain tumor [95]. 
However, in the large scale United Kingdom (UK) Childhood Cancer Study, the 
authors found that exposure to electromagnetic fields was not linked to childhood 
brain tumors [218]. A Canadian study examined the contribution of maternal occu-
pational exposure to extremely low frequency magnetic fields shortly before and 
during pregnancy on the incidence of childhood brain tumors [108]. A significantly 
increased risk was observed for astroglial tumors as well as for all childhood brain 
tumors, but no association was specifically assessed for medulloblastoma/
PNET [108].

Several epidemiological investigations have examined the association between 
parental exposure to pesticide and childhood brain tumors, with the majority report-
ing positive associations. For example, in a recent population-based case–control 
study, the association between brain cancer in children and parental exposure to 
pesticides in occupational and residential settings was investigated [191]. The 
researchers reported very weak associations between PNET for any of the pesticide 
classes or exposure sources considered. However, Rosso et al. [172] found an asso-
ciation between household exposure to chemicals and medulloblastoma/PNET in 
children registered with Children’s Cancer Group (the United States and Canada), 
particularly for pesticides used in lawn care. A US study using data obtained from 
the California Cancer Registry, Lombardi et al. [111] found an association between 
medulloblastoma in children 0–5 years of age and exposure to four pesticides: chlo-
rothalonil, propiconazole, dimethoate, and linuron. A European study found an 
increased risk of PNET with parental exposure to polycyclic aromatic hydrocarbons 
(OR = 2.0, 95% CI: 1.0, 4.0) and high maternal exposure to solvent (OR = 3.2, 95% 
CI: 1.0, 10.3) during the 5-year period before birth [39].

Epidemiology of Cerebellar Disorders
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 Fetal Alcohol Spectrum Disorders

Fetal alcohol spectrum disorders (FASD) are a group of conditions that occur when 
alcohol was consumed during pregnancy. FASD are divided into several subgroups: 
fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS), alcohol- 
related neurodevelopmental disorder (ARND), and alcohol-related birth defects 
(ARBD) [165]. Alcohol has irreversible effects on CNS, including abnormal func-
tioning of the amygdala, thinning of the corpus callosum and reduced brain volume 
with specific reductions in the frontal lobe, striatum and caudate nucleus, thalamus, 
and cerebellum [165]. Growth deficiency (height and weight), CNS and neurologi-
cal damage (memory problems, hearing loss, poor gait), and facial dysmorphism (a 
smooth philtrum, small palpebral fissures, and thin vermilion) are common features 
of individuals with FASD [20]. However, brain malformations are variable in FASD, 
as evidenced by an examination of 174 cases identified with prenatal exposure in a 
retrospective survey of autopsies at the Health Sciences Centre in Winnipeg, Canada 
[85] and blinded review of the MRIs of 164 individuals with prenatal exposure (and 
163 controls) in Edmonton, Canada [214].

A systematic review of FASD prevalence found significant variations in the 
reported prevalence estimates across the reviewed studies [139]. Ospina and Dennett 
[139] classified 54 studies into six categories based on FASD (or subtypes) preva-
lence for a specific population. The FASD prevalence estimates for communities 
based on population-level data range from 0.2 to 5 per 1,000 population. Studies of 
FASD prevalence in school settings also reported variable estimates, ranging 
between 0.5 and 10.7%. The reported estimates of FASD prevalence among chil-
dren in care was found to be much higher than the estimates for school settings or 
communities, ranging between 30.5 and 52%. A limited number of studies from 
North America examined FASD prevalence in correctional systems, providing esti-
mates between 9.8% and 23.3%. Most studies that have examined estimates of 
FASD prevalence in Indigenous populations were conducted in Canada. The pooled 
estimate of FAS prevalence in Aboriginal people based on six studies was 0.2%, or 
two FAS cases per 1,000 population. The FASD prevalence in other specialized set-
tings, such as special education settings, was found to be much higher. The pooled 
prevalence estimate of FAS was 4.9% (95% CI: 2.5, 7.3) and the pFAS prevalence 
was 5.4%. The great variation observed in the reported estimates could be in part 
due to the differences in the characteristics of the populations studied (e.g., age, sex, 
race/ethnicity, aboriginal status), diagnostic criteria used, methods of case ascer-
tainment, and years of data used.

Popova et al. [155] conducted a systematic review and meta-analysis of FASD 
comorbidity in 2016. The authors identified 428 comorbid conditions in persons 
with FASD. The identified comorbid conditions extended over 18 of 22 chapters of 
the ICD-10. The comorbid conditions with the highest prevalence were those related 
to peripheral nervous system and special senses, conduct disorder, receptive lan-
guage disorder, chronic serous otitis media, and expressive language disorder.
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 Cerebellar Malformations

 Cerebellar Agenesis

Cerebellar agenesis is an extremely rare condition with complete absence of the 
cerebellum or with only a small portion of the cerebellum (subtotal cerebellar agen-
esis) [107, 226]. Primary cerebellar agenesis has a high mortality rate and is typi-
cally identified during autopsy. Cerebellar agenesis negatively affects motor skill 
development, but may improve with age, and has been associated with abnormali-
ties of non-motor functions, such as expressive language, affective behavior, neuro-
logical abnormalities, and working memory [237].

Our search of the literature provided estimates of prevalence and/or incidence, or 
number of cases resulted in one article describing one new case of complete primary 
cerebellar agenesis [237]. Yu et  al. [237] described the clinical presentation and 
subsequent imaging tests of a 24-year-old female, who was married and having a 
daughter, living in China. Review of the article revealed seven other publications 
describing eight living cases of cerebellar agenesis, ranging in age from 4 months to 
59 years [188, 190, 207, 211, 223, 226, 236]. Interestingly, some individuals with 
total or subtotal cerebellar agenesis are asymptomatic and have typical neurobehav-
ioral, mental, and physical functioning [190]. See Table 4 for a summary of statistics.

 Dandy-Walker Malformation

Dandy-Walker malformation (DWM) is a complex developmental anomaly involv-
ing fourth ventricle and cerebellum, characterized by an enlargement of the fourth 
ventricle, vermian agenesis (partial or complete), and posterior fossa cysts [83, 129, 
164]. Hydrocephalus is a common finding in DWM cases, and can lead to death if 
not treated quickly [120]. Epidemiological studies of DWM have been conducted in 
the United States [101, 119], Italy [45], Saudi Arabia [71], and across Europe more 
broadly [180]. All studies had retrospective designs, with sample sizes ranging 
between 129 and 14,599. Di Bella and Pizzo [45] examined the health records of 
5000 children referred to a pediatric radiology unit at the University Hospital of 
Catania, Italy for diagnostic procedures over a 10-year period (1999–2009). The 
authors found 16 cases of DWM, ranging in age from 1 month to 9 years (10 males, 
6 females) and estimated the prevalence of DWM at 32 per 10,000 population.

In a retrospective analysis of prospectively collected data on all newborns admit-
ted to the Neonatal Intensive Care Unit in Riyadh Military Hospital, Riyadh, Saudi 
Arabia, Hakami and Majeed-Saidan [71] reported that 22 infants were identified 
with DMW (incidence: 2.3 per 10,000). This rate was higher than that estimated in 
a population of military personnel and their dependents in the northern region of 
Saudi Arabia. Ohaegbulam and Afifi [136] identified all infants diagnosed with 
DWM during an 11-year period (1989–1999) from a cohort of 45,274 live births. 

Epidemiology of Cerebellar Disorders
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The incidence of DWM was 1 per 10,000 live births per year and was higher for 
males (1.24 per 10,000) than for females (0.78 per 10,000).

Using data obtained from the European population-based registries of congenital 
anomalies belonging to the European Surveillance of Congenital Anomalies 
(EUROCAT) network, Santoro et al. [180] found 734 cases of DWM and DW vari-
ant among 8,028,454 total births. The overall prevalence of DWM and DW variant 
was estimated at 8.85 per 100,000 and 6.79 per 100,000 births for DWM alone. The 
authors found significant differences in prevalence between regions and countries 
with Wales (14.12 per 100,000) and Ukraine (11.40 per 100,000) having some of 
the highest rates in the study.

In the United States, the incidence of DWM was estimated at 1.36 per 1,000 in a 
study examining data from the Kids’ Inpatient Database containing information 
from hospitals in 22–36 states covering the years 1997–2003 [120]. Another US 
study reported that the incidence of DWM in complicated monochorionic twins was 
approximately 200 times higher than that expected for the general population [101]. 
DWM was also more likely to occur in the smaller twin, and more likely to be 
restricted in growth. Other research has shown that DWM is associated with mater-
nal non-Hispanic black ethnicity, a history of infertility treatment, preterm birth, 
low birth weight, and twin births [161], but these findings have been inconsistent 
[178] (see Table 4).

 Joubert Syndrome and Related Disorders

Joubert syndrome and related disorders (JSRD), originally described in 1968 as 
Joubert syndrome, is primarily an autosomal recessive neurologic disorder charac-
terized by absence or hypoplasia of the cerebellar vermis and a malformation in the 
brain stem resulting in hypotonia, developmental delay, neonatal respiratory dys-
regulation, abnormal eye movements, ataxia, polydactyly, and ID [90, 91, 128]. 
Nephronophthisis (NPHP) or cystic renal dysplasia and liver involvement have been 
observed in approximately one-quarter [213] and nearly one-half [200] of cases of 
JSRD, respectively. An important malformation is the molar tooth sign (MTS) – a 
pathognomonic midbrain–hindbrain malformation [27, 115].

Globally, the estimated incidence of JSRD ranges from 1 per 80,000 to 1 per 
100,000 live births, although some researchers suggest that this range may underes-
timate the actual number of cases of the syndrome [27]. For example, Srour [196] 
and Srour et al. [197] suggested that there is a higher prevalence of Joubert syndrome 
within the French–Canadian population, particularly in the Saint-Lawrence region of 
the province of Quebec, Canada. Akhondian et al. [6] identified and described the 
same presentations of JSRD in three family members in Iran. In a Saudi Arabian 
study, Hakami and Majeed-Saidan [71] (see also DWM) found 22 cases of JSRD 
(incidence: 1.7 per 10,000 live births). Nuovo et  al. [134] examined the clinical-
genetic database containing data from 46 Italian centers active in the diagnosis, care, 
and research of JSRD, and estimated the crude prevalence for total, females, and 
males were 0.47, 0.41, and 0.53 per 100,000 population, respectively. Prevalence 
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increased to 1.7, 1.62, and 1.80 for total, females, and males when the authors 
focused on individuals aged 0–19 years. Both parents of 80% of the cases were from 
Italian origin. Thus, it appears that ethnicity can be a risk factor for the condition.

 Lissencephaly and Cerebellar Hypoplasia

Lissencephaly and cerebellar hypoplasia (LCH) is a rare autosomal recessive disor-
der in which cerebellum, hippocampus, and brainstem are affected [77]. Generally, 
lissencephaly is caused by impairment in neuron migration, which is essential for 
development of cerebellar cortex. Consequently, the cerebellar cortex becomes 
smooth (i.e., lacks folia and sulci) [198]. Seizures, hypotony or spasm, and psycho-
motor retardation are the symptoms of LCH, and death typically occurs at an early 
age. Affected individuals have moderate to severe ID and delayed development. 
Prevalence of LCH is largely unknown [151]. Koul et al. [102] examined data from 
all children in Oman (population 2.3 million) from January 1993 to December 1997 
and identified 12 cases of lissencephaly. In another report, researchers in Turkey 
described a case of Joubert syndrome with lissencephaly [144] but the type of lis-
sencephaly was not reported. Howley et al. [79] examined National Birth Defects 
Prevention Study (NBDPS) data collected in ten US states from 1997 to 2011. The 
authors found 87 eligible cases with non-syndromic cerebellar hypoplasia, resulting 
in an overall birth prevalence of 1.30 per 100,000 births. Howley and colleagues 
also found that cases were more likely to be from multiple pregnancy births, to be 
born preterm, and to have low birth weight. In addition, the number of cases of cer-
ebellar hypoplasia increased in later years of the NDBPS. Zika virus infection in 
pregnant mothers has also been suggested as a risk factor for lissencephaly [42].

 Pontocerebellar Hypoplasia

Pontocerebellar hypoplasia (PCH) is a group of prenatal onset, autosomal recessive, 
neurodegenerative disorders that affects brain development [126]. Characteristic 
features of PCH include atrophy of brainstem, particularly pons (pontine nuclei), 
cerebellum (with a dragonfly pattern; [175]), movement problems, ID, and com-
munication difficulties (i.e., lacking ability to speak) [174]. Affected individuals die 
during infancy or childhood [17] before the age of 6 years [199].

The condition appears to affect males and females similarly and has been 
observed in infants born extremely prematurely [239]. About 100 cases of PCH 
have been reported in the literature [133]. In their retrospective study of the mag-
netic resonance imaging (MRI) and computed tomography images from 45 children 
(22 girls, 23 boys; 30 weeks–17 years of age) of cerebellar malformation, Alkan 
et al. [7] identified 12 cases with cerebellar hypoplasia. Grellner et al. [69] described 
one case of PCH Type 2 – a 1.5-year-old boy who had severe psychomotor delay, 
and dyskinesia and epileptic seizures. Given that the genetics of PCH are largely 
understood, genetic carrier screening in a specific community in the Netherlands 
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took place to identify high-risk couples for having children with PCH [117]. 
Between September 2012 and 2013, Mathijssen et al. [117] identified that 4 of 92 
couples were carriers with a 1-in-4 risk of having a child with PCH Type 2 in each 
pregnancy.

 Gómez-López-Hernández Syndrome

Gómez-López-Hernández (GLH) syndrome, also known as cerebellotrigeminal–
dermal dysplasia, is a neurocutaneous disorder characterized by rhombencephalo-
synapsis (see “Rhombencephalosynapsis” section below) and trigeminal anesthesia 
[99]. GLH manifestations may include alopecia (partial or complete hair loss), 
hypotonia, wide-spaced eyes, ataxia, impaired pain sensation, low-set, posteriorly 
rotated ears, short stature, developmental delay, and seizures [54]. Although ID is 
typically observed, individuals with normal cognitive function have been described 
in the literature (e.g., [123]).

According to Perrone et al. [150] review, 57 cases of GLH syndrome have been 
identified in the literature. Cases have been described in Armenia [201], Bahrain 
[48], Brazil [43, 150], Egypt [2], Germany [186], India [34], Japan [99], Spain [54], 
Switzerland [156], and Turkey [50, 181]. Because so many cases described have 
been found in Brazil, a “founder effect” has been suggested for GLH [43]. Several 
researchers have argued that GLH may not be as rare as has been previously sus-
pected and suggest that it is underrecognized in the pediatric population because 
clinical presentation varies in severity [99, 123, 156].

Suggested risk factors for GLH include smoking and cannabis use, and the use 
of other drugs (i.e., valproate, ethosuximide, misoprostol) by mothers during preg-
nancy [150, 204]. No specific mutation or chromosomal abnormality has been iden-
tified for GLH; however, the findings reported by various research groups suggest 
an autosomal recessive pattern of inheritance [43, 66, 181]. Erzin et al. [50] report 
the only case of GLH with schizophrenia. Consanguinity has been described in 
three cases [34, 43, 66].

 Rhombencephalosynapsis

Rhombencephalosynapsis is a rare midline brain malformation that involves the 
absence of cerebellar vermis, fusion (continuity) of the cerebellar hemispheres, and 
fusion of the dentate nuclei [216]. Rhombencephalosynapsis can occur in isolation 
or in combination with other anomalies such as Gómez-López-Hernández syn-
drome (see above), VACTERL [vertebral anomalies (V), anal atresia (A), cardiovas-
cular defects (C), esophageal atresia and/or tracheoesophageal fistula (TE), and 
renal (R) and limb/radial (L)] features, and holoprosencephaly [84, 216, 219]. 
Individuals suffer from truncal ataxia, limb ataxia, head stereotypies, delayed motor 
development, abnormal eye movements, and other features are determined by 
supratentorial abnormalities [25].
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According to some authors, only 30–35 cases of rhombencephalosynapsis have 
been identified in the literature from 1914 to 1995 [189, 219], but there may be over 
100 cases worldwide [148]. Several studies from the United States [216, 230], Japan 
[219], India [148], and Turkey [12, 189] have been published. Most of these studies 
are case reports describing one or two cases; however, Tully et al. [216] describe 
their comprehensive search for patients with rhombencephalosynapsis in a database 
of more than 6800 individuals with brain malformations and other developmental 
brain disorders. The authors found and described 53 cases of rhombencephalosyn-
apsis and the features of GLH, VACTERL, or other malformations that presented in 
conjunction with rhombencephalosynapsis. Based on an examination of MRI scans 
of 3000 children, Sener [189] estimated the prevalence of rhombencephalosynapsis 
to be 0.13% (13 per 10,000), a finding that was higher than expected. Clinicians 
generally recommend that differential diagnosis should be made from DWM and 
other anomalies [12].

 Chiari Malformations

Chiari malformations are classified by type (Types I–IV) based on the severity of 
the structural defects in the cerebellum, craniocervical junction, and brainstem 
[195]. In most cases, the posterior fossa is small, resulting in downward displace-
ment of the cerebellum and lower medulla together or cerebellum alone into the 
spinal canal [183]. Consequently, cerebrospinal fluid can be blocked and symptoms 
such as abnormal eye movements, headache, dizziness, muscle numbness, and 
problems with balance and coordination can be observed [1, 63, 68]. Chiari Type II 
malformations (CMII) are usually identified at or before birth [32], but may go 
undetected if symptoms are not apparent. This is often the case for Chiari Type I 
malformations (CMI), which is frequently asymptomatic and may not be recog-
nized until adolescence or adulthood [132]. The average age of a CMI diagnosis has 
been reported to be 24.9 ± 15.8 years [122].

Information on prevalence of Chiari malformations at the population level is 
lacking. Although several studies have provided estimates of Chiari malformation 
prevalence (0.01–3.6% of the population), these studies are based on imaging data 
collected at a single center or hospital and may not reflect the true prevalence of the 
condition at the population level [92, 185]. Nevertheless, these studies are valuable 
in describing the epidemiology of Chiari malformations. For example, Meadows 
et al. [121] conducted a retrospective examination of more than 22,000 brain mag-
netic resonance images in the United States and estimated the prevalence of CMI at 
7.8 per 10,000. Horn et al. [78] examined the 2003–2012 data collected and main-
tained by the Nationwide Inpatient Sample (NIS) in the United States, and found 
305,726 cases of CMI, 119,632 cases of CMII, 15,540 cases of CMIII, and 79,663 
cases CMIV are recorded in the database. The earlier studies from Western coun-
tries reported prevalence estimates of 8.2–8.4 per 100,000 [28, 29]. One study based 
on 2 years of data for newborns admitted to a hospital in Pakistan reported that 3% 
of all the cases were diagnosed with Chiari malformation [46].
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Lee et al. [106] retrospectively reviewed 21 years of medical records for pediat-
ric patients who underwent surgery at an institution in Korea for symptomatic 
CMI. A total of 54 children were identified with symptomatic CMI. Four patients 
were between the ages of 3–27  months, 9 were 3–4  years of age, and 41 were 
5–17 years of age. More males than females were identified in the younger two age 
groups, but more females than males were identified in the oldest age group. 
Sakushima et al. [177] conducted a survey of hospitals in Japan between August 
2008 and July 2009 and found that among a sample of 708 patients with syringomy-
elia, 48% were diagnosed with CMI and 8.1% with CMII. Sakushima et al. also 
reported that Chiari malformation was more common in children than adults. In 
Italy, Ciaramitaro et al. [36] examined the 2011 data from the Interregional Piemonte 
and Valle d’Aosta Rare Disease Registry and estimated the period prevalence of 
CMI to be 7.74 per 100,000, which was higher for females than males.

A few studies examined incidence of Chiari malformations. In one study, 3 years 
of ultrasound examinations for 22,500 pregnant women from East Azerbaijan in 
Iran were reviewed to estimate incidence of these conditions [62]. Of the 22,500 
pregnancies, 112 (or 0.5%) of fetuses had CNS anomalies and 41 had Chiari mal-
formations. Ghavami and Abedinzadeh [62] concluded that Chiari malformations 
and hydrocephalus were the two most common CNS abnormalities in East 
Azerbaijan. O’Reilly and Torreggiani [135] scanned a sample of 147 individuals 
(aged 15–93 years) over a 24-month period in Ireland and calculated an incidental 
rate of 2% for asymptomatic CMI. Incidence was estimated at 3.08 per 100,000 in 
the Republic of Tatarstan in Russia, but was significantly higher in the northern (due 
to a high prevalence of 413 per 100,000 in the northern Baltasy region) than the 
southern districts of Tatarstan [23] (see Table 4).

Although the exact cause of Chiari malformation is unknown, research suggests 
that genetic factors are the most likely. Schanker et al. [185] described a series of 
three family pairs with CMI, and suggested that along with the previously described 
underlying culprit genes, estrogen may also be a factor in the development of Chiari 
malformations. Birth injuries, heavy birth-weight babies, and history related to 
minor head or neck trauma have also been implicated in the development of Chiari 
malformations [76]. CMI has been found to coexist with ASD, but CMI is often 
under recognized in individuals with ASD because symptoms are attributed to 
autism [87].

 Tectocerebellar Dysraphia

Tectocerebellar dysraphia is an extremely rare congenital malformation character-
ized by vermian hypoplasia or aplasia, an occipital encephalocele, and dorsal trac-
tion of the brain stem, such that the hypoplastic cerebellar hemispheres are rotated 
around the brain stem to lie ventrolaterally to it [103]. Very few cases of tectocere-
bellar dysraphia have been reported in the scientific literature [212]. Children with 
tectocerebellar dysraphia generally have very low intellectual functioning and 
40–75% die before their first birthday, largely because of hydrocephalus [145].
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Tectocerebellar dysraphia is a condition so rare that prevalence and incidence 
estimates cannot and have not been made. We located eight reports that described 
the following ten cases: one 3-month-old boy in India [4]; one 5-month-old girl in 
Turkey [11]; two cases (one 8-year-old boy and one 2-month-old boy) but the 
authors also noted three other cases previously described in Switzerland [58]; one 
infant female in Brazil [67]; one 7-month-old male in India [103]; one 5-day-old 
boy in Saudi Arabia [131]; one 4-year-old girl in the United States [157]; and four 
cases (three girls and one boy) in Saudi Arabia [35]. Variants of tectocerebellar 
dysraphia (e.g., tectocerebellar dysraphism with an occipital encephalocele) may be 
considered structural manifestations of Joubert syndrome [157].

 Other

 Cerebellitis

Acute cerebellitis is an inflammatory syndrome characterized by cerebellar dys-
function ([18]; as cited in [59]). Vomiting, headaches, tremors, nystagmus, dysar-
thria, and states of consciousness ranging from sleepiness to coma are common 
symptoms of severe cerebellitis [26, 59]. Patients with acute cerebellitis may also 
exhibit broad-based gait disturbance, poor coordination of finger-to-nose move-
ments (dysmetria), and irritability [26]. Cerebellitis typically occurs in early child-
hood during or after infection, postvaccination, or has autoimmune etiologies.

An important causative pathogen for cerebellitis is varicella zoster virus (VZV), 
an acute, exanthematous, and highly infectious disease, which causes chickenpox 
(varicella) in childhood and shingles (herpes zoster) in later life [9, 26]. In a retro-
spective study using 10  years of data (October 2003–June 2013) from Bambino 
Gensu Hospital, Rome, Italy, Bozzola et al. [26] found that 48 of 457 (10.5%) chil-
dren hospitalized with varicella developed acute cerebellitis. All children were 
unvaccinated for the virus. The highest frequency of cerebellitis occurred in chil-
dren aged 1–5 years (60.9%), followed by children aged 5–10 years (34.1%), and 
those 10+ years (5%). Girls and boys were affected equally (see Table 5).

The majority of the literature describes isolated case reports of the most severe 
but rare cases of cerebellitis (cf. [44]), and these cases are typically associated with 
viruses other than VZV. Specifically, cases of acute cerebellitis have been associated 
with the Epstein-Barr virus, mycoplasma pneumoniae, rotavirus, human herpesvi-
rus 7, mumps, influenza, and nonspecific viral infections (see [44] for a review). 
Hackett et al. [70] recently reported a case of a 6-year-old girl with an influenza A 
(H1N1) infection in Ireland presented with acute cerebellitis. In the United States, 
Hashemi et al. [75] described the first reported case of a 9-year-old boy, who pre-
sented with hemorrhagic cerebellitis secondary to Plasmodium falciparum infec-
tion, after traveling in Tanzania. In their retrospective evaluation of the medical 
records of 194 patients with Epstein-Barr virus infection, who were hospitalized in 
the Department of Infectious Diseases and Child Neurology at the University of 
Medical Sciences in Poznan, Poland between January 2010 and January 2015, 
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Mazur-Melewska et  al. [118] found two cases of cerebellitis (1.03%). Uchizono 
et al. [217] reported what appears to be the first case of a 7-year-old girl presenting 
with cerebellitis following group A streptococcal infection in Japan. Although no 
genetic causes have been identified for acute cerebellitis, Xu et al. [235] reported its 
occurrence in identical twin boys (aged 15  years) 8  days apart in Shijiazhuang, 
China; a viral infection, however, could not be ruled out. An important challenge for 
physicians and epidemiologists is to correctly identify the acute cerebellitis because 
there is considerable overlap in presentation with acute postinfectious ataxia [193] 
and opsoclonus–myoclonus syndrome [205].

 Cerebellar Stroke

Cerebellar stroke is characterized by complaints of dizziness, vertigo, and vomiting 
[232]. Pontine compression and acute hydrocephalus secondary to the obstruction 
of the fourth ventricle may occur because of swelling after the infarction, which 
may further result in decreased level of consciousness and arousal. Cerebellar injury 
early in life stunts cerebellar growth and negatively affects neurodevelopment (cf 
[30]). The overall incidence of cerebellar stroke across all ages has been estimated 
to be about 1.5% of all strokes (see [94]). Researchers posit that the prevalence of 
cerebellar stroke is underestimated because it presents differently than more com-
mon types of stroke and the condition may be overlooked entirely or misdiagnosed 
as another condition [140, 182], because symptoms, such as ataxia, cannot be 
clearly observed during bedside examinations [232].

As is true of other cerebellar disorders, cerebellar stroke is unusual in children 
(see [110]). When cerebellar infarction does occur, it is documented in the research 
literature (see Table 5). Lin et al. [110] reported a case of a 12-year-old boy present-
ing with vomiting, gait disturbance, and headache; cerebellar stroke was confirmed 
with magnetic resonance angiography. Interestingly, the boy had no history of neck 
manipulation, trauma, or other relevant medical history. In their retrospective evalu-
ation of 977 childhood (<16 years of age) cases of malaria in England and Wales 
reported between January 2004 and December 2008, Garbash et al. [60] found that 
one child developed cerebellar infarction. Thakkar et al. [208] reported that of the 
120 cases of acute ataxia that occurred in children (0–18  years of age) seen at 
Children’s Hospital of Pittsburgh between January 2003 and December 2013, cer-
ebellar stroke was identified in 2 (1.7%) cases (see Table 5).

Risk factors for cerebellar stroke typically include trauma, drugs, CNS infection 
(see [74]), and inhalation of toluene-mixed paint [147]. Cases are emerging in the 
literature linking the coronavirus disease 2019 (COVID-19), caused by the novel 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to cerebrovascular 
accidents, including cerebellar stroke [140, 159]. When trauma is sustained through 
sport, stroke may occur in boys 6.6 times more than in girls [74] and may occur with 
sudden movement [93]. Other risk factors include congenital cervical anomaly and 
vascular or connective tissue disease. After reviewing pediatric cases of vertebral 
artery dissection (VAD) described in the literature, Hasan et al. [74] reported a high 
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incidence of associated cervical anomalies (i.e., 10/68 cases). Although rare, cere-
bellar stroke may occur in children and young adults who overdose on tricyclic 
antidepressants [80]. Thoon and Chan [209] also reported one case of stroke in the 
left cerebellum in a 10-year-old girl following influenza vaccination during influ-
enza season. Another important risk factor for cerebellar infarction is prematurity 
[30, 94]. Khair et al. [94] described a case of a 4.5-year-old girl, who was one mem-
ber of a quadruplet born at 28 weeks gestation, presenting with symptoms indicative 
of cerebellar stroke. Cerebellar infarction was subsequently confirmed with an 
MRI. Cerebellar injury is important to identify as it has important implications for 
long-term cognitive development [30]. It is important to note, however, that cerebel-
lar stroke in children remains unexplained in many cases [142, 171] as was the case 
of a 9-year-old girl in Iran [220].

 Conclusions

For many cerebellar disorders, prevalence and incidence rates are unknown, or the 
values have been underestimated; this is true both at the global and regional levels. 
Scant epidemiological information can be partly attributed to lack of comprehensive 
health-care systems in various parts of the world (see [124]), making diagnosis at an 
early age difficult or impossible. Fetal loss may also contribute to inaccurate epide-
miologic measure, because prevalence and incidence are typically estimated using 
living individuals [184]. Underestimates may also be the result of cases of cerebel-
lar disorder not being classified accurately in published studies; as such, they may 
be excluded from analysis (see [173]). In a similar vein, in an effort to include a 
greater number of affected individuals in epidemiological studies, groups of patients 
may be relatively heterogeneous in composition (see [173]). Thus, case studies 
become a very important means with which to communicate the various signs, 
symptoms, comorbidities, and complications associated with certain disorders, par-
ticularly for those cerebellar disorders that have been described as extremely rare 
(e.g., cerebellar agenesis, tectocerebellar dysraphia). Further population-based epi-
demiological studies are important for determining the impact of cerebellar disor-
ders worldwide, and to provide information regarding the causes and appropriate 
treatments for these disorders.
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Cerebellar Transplantation: A Potential 
Model to Study Repair and Development 
of Neurons and Circuits in the Cerebellum

Constantino Sotelo

Abstract Neuronal transplantation offers a unique experimental situation for the 
in vivo study of cell-to-cell interactions between embryonic and adult neural part-
ners. This approach was developed to study the possibility to replace missing neu-
rons in pathological situations. In our model, the cerebellum with spontaneous 
mutations, Purkinje cell degeneration, nervous, Lurcher (pcd, nr, Lc) affecting 
Purkinje cells (PCs), this substitution occurs. Embryonic PCs can trigger molecular 
changes in adult Bergmann fibers required for migration and ultimate synaptic inte-
gration of the former, although this integration is not complete because the full 
contingent of efferent projections fails to establish. The grafting approach evolved 
as a suitable tool that, through heterotopic and heterochronic transplants, allowed 
the investigation of the role of cellular and molecular microenvironment on the 
acquisition of neuronal phenotypes, and the ability to regenerate amputated axons 
of specific populations of central neurons. Finally, new approaches developed in the 
twenty-first century, with the advent of stem cells and cell reprogramming, are men-
tioned and some of the earliest cerebellar trials with these pluripotent cells are 
discussed.

Keywords Transplants · Embryonic and adult cell interactions · Neuronal 
replacement · Axon regeneration · Stem cells · Lineage reprogramming
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 Introduction and History

 The Neuron Doctrine: Plasticity of Adult Circuits, But Absence 
of Neuronal Regeneration

Until recently, neuroscientists of my generation, whose interest in the nervous sys-
tem began long ago, have believed in the dogmatic but erroneous concept that in the 
central nervous system (CNS) there is no further possibility for neuronal prolifera-
tion after the end of the constructive period of brain development. This notion was 
developed at the end of the nineteenth century and beginning of the twentieth cen-
tury by researchers working on brain development [1–3], or interested in principles 
of pathology based upon the regenerative and proliferative potential of body cells 
[4]. Ramón y Cajal [3] summarized this concept of the adult nervous system best in 
his famous statement: “In adult brains, nerve pathways are something fixed, ended, 
immutable. Everything may die, nothing can regenerate,” a pessimistic concept that 
foreshadows the fate of many neurological disorders related to the aging process.

The hope for a peaceful physiological aging became even more elusive at the 
beginning of the second half of the twentieth century, when Harold Brody [5] mor-
phometrically analyzed human brains from birth to the age of a 95-year old. Brody 
[5] concluded, based on volume shrinkage determinations correlated with cell 
counts, that from the age of 21 onward, there is a progressive neuronal loss ranging 
in magnitude depending on the analyzed cortical areas. Therefore, not only our 
adult brain was unable to proliferate but even worse, it started losing neurons early 
on. John Eccles [6] reflected on this dire situation: “Soon after birth ceases all gen-
eration of neurons. Thereafter neuronal death takes over.” All these arguments com-
pelled us to assume that age-related loss of neurons and the subsequent decline in 
brain function were unavoidable. With the arrival of modern and more accurate 
imaging (MRI) and morphometric methods (modern stereology), it became evident 
that the results mentioned earlier were due to technical limitations and that neuronal 
cell death was not as pronounced as supposed. In fact, Herbert Haug et al. [7, 8] 
were able to show that there is virtually no loss of neurons before the age of 60, and 
even then the progress of neuron death was slow and uneven across various brain 
regions. This makes a big difference in respect to neuronal loss between normal 
aging and neurodegenerative diseases, particularly Alzheimer’s disease [9]. 
Nevertheless, the controversy has not been fully resolved. Thus, it was recently 
proposed that “some aspects of age-related cognitive decline begin in healthy edu-
cated adults when they are in their 20s and 30s” [10], and that although this decline 
is not necessarily accompanied by neuronal death, dendritic alterations, especially 
the loss of spines and the reduced number of synapses, could be its cause [11].

Finally, the apparent lack of neuronal proliferation did not stop scientists from 
deeming the adult brain as a changeable organ. In his opera magna, “Texture of the 
Nervous System of Man and the Vertebrates,” Ramón y Cajal [12] clearly summa-
rized the concept developed by Alexander Bain [13] and known today as “morpho-
logical neuronal plasticity.” Eugenio Tanzi [14] and Ernesto Lugaro [15], followers 
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of Ramón y Cajal’s neuron doctrine, specifically formulated it, naming synapses as 
the preferred place for plastic changes (see [16]). These theoretical notions have 
evolved today so that it could be possible to accept the concept proposed by Tanzi 
that the nervous system is a “neoteny,” because some developmental features are 
preserved in adulthood (for further details regarding the recent history of morpho-
logical plasticity see [17]).

 Changing Bizzozero’s Classification: Not All Neurons Are 
Perennial Cells – The Discovery of the Existence of Adult 
Neurogenesis, and Neural Stem Cells Even 
in Mammalian Brains

The only drawback, but crucial in the history of “neoteny,” has been neuroscientists’ 
resistance to the possibility that even mild neuronal proliferation occurs in adult 
mammalian brains. The development of the autoradiographic method for labeling 
cell divisions with tritiated thymidine greatly advanced the search for neuronal divi-
sion [18], already conceived by Allen in 1912 [19]. It quickly became clear that 
adult neurogenesis was possible in cold-blooded vertebrates (fish, amphibians, and 
reptiles) but inexistent in mammals. It was Joseph Altman [20, 21] who foresaw the 
possibility of adult neurogenesis, at least in the granule cells of the hippocampal 
dentate gyrus. Despite the later ultrastructural analysis corroborating the neuronal 
nature of the labeled cells [22], the traditional dogma that the generation of new 
neurons in the brains of grown-up warm-blooded animals did not exist, persisted for 
almost another decade. Indeed, it was only toward the end of the twentieth century 
that Brent Reynolds and Samuel Weiss [23] provided irrefutable evidence of adult 
neurogenesis, and of the presence of neural stem cells in adult mouse CNS.

One of the early issues to be solved was to determine whether neurogenesis in 
the adult mammalian brain is just a vestige of the phylogenetic evolution or plays an 
important physiological role. Experiments carried out in the two centers where adult 
neurogenesis is more prominent, the dentate gyrus of the hippocampus [24] and the 
subventricular zone at the origin of the rostral migratory stream (RMS) to the olfac-
tory bulb [25, 26], showed that delayed neurogenesis exerts an important function, 
closely correlated with a respective increase or decrease in either spatial (dentate 
gyrus) [27] or olfactory (olfactory bulb) memory [28].
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 Neuronal Transplantation

 Neuronal Replacement in “Point-to-Point” Cerebellar Circuits

It is first important to remember that in addition to the majority of circuits, which 
are wired in a “point-to-point” manner as the cerebellum, the brain also has a second 
class of systems, called “global” [29]. The latter comprise monoaminergic and pep-
tidergic modulatory systems that can function without morphological synaptic junc-
tions through paracrine release of neurotransmitter [30] diffusing into the 
extracellular space to exert its inhibitory or excitatory action on nearby receivers 
equipped with specific receptors. The conditions that must be fulfilled for successful 
neuronal replacement in the cerebellum are therefore much more difficult to achieve 
than in “global systems” where most of the work in neural grafting for therapeutic 
purposes (Parkinson’s disease) has been carried out [31]. In cerebellar transplants, 
the grafted neurons replacing the missing ones have to reach their normal location, 
complete their synaptic integration with specific host afferents and provide efferent 
axons able to appropriately find distant postsynaptic elements of the host, allowing 
a mirror reconstruction of the normal cerebellar connectivity. In this section, only 
PCs will be considered. The results obtained with transplantation of molecular layer 
interneurons have been recently reviewed [32], and those regarding granule cells are 
discussed in the third part of this chapter (see Section “Cerebellar transplantation of 
granule cells”).

 Positive Results in Favor of the PC Replacement in Mutant Mice 
with Heredodegenerative Ataxia

Morphologic Results

The circuitry of the cerebellar cortex, as reported by Santiago Ramón y Cajal [33], 
is relatively simple: two main extracerebellar afferent systems, the climbing and the 
mossy fibers (CFs and MFs), convey their information either directly (CFs) or 
through the granule cells (MFs) to the Purkinje cells, the pivotal element and sole 
output neurons of this cortex, which in turn transfer the processed information to the 
deep cerebellar nuclei (DCN). In addition, these convergent and divergent excit-
atory inputs reaching each PC are balanced by the inhibitory action of the GABAergic 
interneurons, mainly the Golgi cells in the granular layer and the molecular layer 
interneurons. Given the pivotal role of the PCs, it is obvious that their loss would 
provoke a severe ataxia that will persist if they are not replaced by new neurons of 
a similar nature. The cerebellum appears, therefore, as a privileged neural center in 
which to test the reparative ability of grafts of embryonic neurons in “point-to- 
point” systems. The selected model for heredodegenerative ataxia was a mouse car-
rying the “Purkinje cell degeneration” (pcd/pcd) mutation [34]. “pcd” is an 
autosomal mutation that affects the gene Nna1 [35]. This gene codes a new  ATP/
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GTP-binding protein related to zinc carboxypeptidases. It is an interesting protein 
involved in regenerative as well as degenerative events, previously identified by its 
induction in motoneurons during axon regeneration [36]. Afterward, although we 
will not discuss the results here, we have corroborated the observations in pcd/pcd 
mice by using as host cerebella nervous (nr/nr) [37] and Lurcher (Lc/+) mutant 
mice [38], as well as exhibiting degeneration of PCs although these mutations 
involve completely different genes. Since the results were similar in each mutant, 
we concluded that they were independent of the affected genetic locus and the 
genetic background of the cerebella of the three different mutants used.

In pcd/pcd mice, the cerebellum at birth is morphologically normal, and it is only 
at P16–P18 that some PCs start degenerating. Three to 4 weeks later, more than 
99% of this neuronal population died [34]. Counts of the number of PCs (the only 
Calbindin-positive cells, CaBP+, of the cerebellum) showed that a maximum of 110 
cells survived in an adult (P60) pcd cerebellum, and almost all of them in lobule X, 
that is to say less than one per thousand [39]. Degeneration, followed by apoptotic 
death (see [40]), led to a severe ataxia, which started when the homozygous mice 
were 25 days old. The ataxia was worsened by the severe transsynaptic atrophy of 
the PCs’ presynaptic partners, particularly the inferior olivary neurons, whose num-
ber progressively dropped, such that in 300-day-old mutants almost half of them 
had disappeared [41]. These retrograde changes were accompanied by a drastic 
atrophy of the remaining target-deprived CFs, which showed monoplanar atrophic 
arbors, with sparse varicosities and a few round-shaped boutons radiating in the 
molecular layer [42, 43]. Moreover, the number of parallel fibers (PFs) was also 
diminished in aged pcd mutants, a reduction that was correlated with a substantial 
retrograde death of granule cells [44]. In 1-year-old pcd/pcd cerebella, basket cell 
axons also seemed severely reduced in number [45], indicating that a large propor-
tion of the neurons monosynaptically connected to the dying PCs was affected by 
retrograde transsynaptic death. Nevertheless, in the 50–60-day-old mutants used in 
our grafting experiments, only a few weeks after the disappearance of the Purkinje 
cells the vast majority of the different classes of presynaptic fibers, although slightly 
atrophic, were still present in the cortical neuropil, a prerequisite for the transplanted 
neurons’ successful synaptic integration.

The severe ataxia of 25–50-day-old pcd/pcd mutants helped identify and select 
them for the grafting experiments. Two types of transplants were used: cell suspen-
sions of E12 embryonic cerebella taken from isogenic embryos, or small pieces 
(less than 1 mm3) of E12 cerebellar anlagen, which we called “solid” grafts. The 
latter produced a much better yield and most of the transplantations were done with 
solid grafts [46]. To search for synaptic integration of grafted PCs in the adult 
mutant cerebellum, 1 to 2 months after the grafting the host cerebella were fixed and 
immunostained with an anti-CaBP antibody, or embedded in Araldite for ultrastruc-
tural study. In addition, some grafted mice were used for electrophysiological stud-
ies [47]. Due to the total depletion of PCs in most dorsal lobules where the grafts 
were placed, the CaBP stained cells belonged exclusively to grafted PCs. The latter 
always occupied an ectopic position because their cell bodies never reached the 
interface between molecular and granular layers (Fig. 1b). The dendritic trees of the 
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Fig. 1 Micrographs of the cerebellum of adult pcd/pcd mice immunostained for calbindin 
2–3 months after grafting. (a) Low magnification of the grafted PCs that have migrated into the 
host cortex. The asterisk marks the graft remnant. (b) Sagittal section through the vermal cortex, 
illustrating the flattened shape of the dendritic tree of grafted PCs. (c) Electron micrograph of the 
medial deep cerebellar nucleus. The immunolabeled axon terminal of a grafted PC is synapsing 
(arrows) on the cell body of a deep cerebellar nuclear neuron. (d) Graft remnant in the host white 
matter and adjacent cortex. The arrow points to a thin fascicle of PC axons in their way to the host 
deep cerebellar nuclei (DCN). (e) Immunofluorescence of calbindin positive thin fascicles of 
grafted PCs axons within the molecular layer (ML) of the host cerebellum. The arrow points to an 
arrested growth cone at its entrance into the granular layer (GL)
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grafted PCs, although flattened in the plane perpendicular to the host PFs (Fig. 1b), 
were atypical, and exhibited two or more stem dendrites emerging not only from the 
apical soma but from lateral and even basal regions as well. Secondary branches, 
provided with distal spiny branchlets studded with spines, emerged from the stem 
dendrites (Fig. 1b). The grafted PCs expanded over two and a half folia (Fig. 1a) and 
received a normal spatially distributed contingent of presynaptic inputs. Thus, PFs 
synapsed mainly upon PC long-necked spines arising from narrow distal branches 
(Fig. 2a), while CFs synapsed on thorns emerging from thicker dendrites (Fig. 2a), 
as in the normal cerebellum. However, the axons of the host basket cells never 
formed “pinceaux” around the initial segments of the axons of the ectopically 
located PCs, despite both elements being able to establish synaptic connections 
(Fig. 2b). This synaptic abnormality was reliably observed for all ectopic PCs stud-
ied whatever the mutation or the situation analyzed: weaver and reeler cerebella 
[48, 49], transgenic mice with a plexin B2 knockout [50]. This led to the conclusion 
that the abnormality was not due to the transplantation itself, but that the presence 
of the PC axon initial segment at the interface between granular and molecular lay-
ers is a prerequisite for “pinceaux” formation. Therefore, from a morphological 
viewpoint, despite the important synaptic failures reported above, it was concluded 
that the grafted PCs were synaptically integrated into the cortical circuit of the host 
cerebellum, and that the target-deprived host axons could recapitulate their develop-
mental synaptic affinity and regain their normal size when innervating the newly 
added PCs. Another important failure was the rarity of PC axons able to cross the 
underlying granule cells, a very important feature to reach the white matter and the 
deep cerebellar nuclei (see Section “The difficulties in restoring the corticonuclear 
projections argue against the possibility of successful complete PC replacement by 
embryonic cerebellar transplants”).

Electrophysiological Results

In collaboration with Francis Crépel and Robert Gardette [47], we studied the elec-
trophysiology of the grafted PCs. Using in vitro slices of pcd/pcd transplanted cer-
ebella, PCs were impaled with intracellular microelectrodes and their bioelectrical 
properties, as well as their synaptic interactions, were analyzed by electrical stimu-
lation of the white matter at the base of the folium for the anterograde activation of 
host CFs and MFs. The study demonstrated first that the grafted PCs had normal 
bioelectrical properties including sodium and calcium membrane conductances and 
inward rectification. Moreover, the vast majority of them, 54 out of 55, did not 
respond to white matter stimulation by antidromic spikes, in accordance with the 
rarity of PC axons in the granular layer and white matter described above. 
Nevertheless, all grafted Purkinje cells responded to electrical white matter stimula-
tion with a typical all-or-none CF (complex spike) response, or complex spike fol-
lowed by simple spikes. These disynaptic responses (MF–PF activation) were less 
frequently observed because the large amplitude and duration of the CF responses 
together with their short latency, usually masked the eventual consecutive excitatory 
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Fig. 2 Electron micrographs illustrating the synaptic input of grafted PCs. (a) Parallel fibers (PF) 
synapsing on spines (arrows) of a PC dendrite (PCD). A nearby climbing fiber (CF) synapses on 
two other PC spines (arrowheads). (b) Initial segment of the axon (AIS) of an ectopically located 
PC body (PC) among fascicles of parallel fiber (open arrows). Both AIS and perikaryon are synap-
tically contacted by axon terminals of molecular layer interneurons (arrows), but “pinceau forma-
tion” is missing
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postsynaptic potentials via MF and PFs. Finally, inhibitory postsynaptic potentials 
such as normally connected PCs were also recorded, corroborating the integration 
of the grafted neurons in the circuitry of the cerebellar cortex of the host [47].

Parasagittal Compartmentation of Grafted PCs

One of the special features of PCs is their biochemical heterogeneity, underlining 
the subdivision of the cerebellum into parasagittal modules that defines its anatomi-
cal and functional organization [51]. This biochemical heterogeneity, first detected 
by the asynchronous expression during early development of markers that are pres-
ent in all PCs in adulthood [52], maintains the same topography later in develop-
ment when the selective markers of adult heterogeneity begin to be expressed [53]. 
This continuity reflects the role of PCs as prime organizers of the extracerebellar 
afferent projections [54]. A PC marker of these modular compartments is the 
zebrin-1 molecule, which has allowed for the analysis of the possible development 
of a zonal organization within grafted PCs [55]. The study was carried out in adult 
rat’s grafted cerebellum pretreated with intraparenchymal kainic acid injections to 
produce necrosis and death of PCs. Modular organization was searched for either in 
the graft remnant itself or within those PCs that migrated to be incorporated into the 
host cortical circuit. Immunohistochemistry with zebrin-1 antibodies revealed with 
HRP was used to identify the alternating microzones with zebrin-1 positive and 
negative PCs, and immunofluorescence of CaBP was used to visualize those 
zebrin-1 negative PCs, the only ones to be visible due to the quenching of fluores-
cence by the diaminobenzidine precipitate of their zebrin-1 immunostaining. In 
both instances, alternating zebrin+ and zebrin− PC clumps were detected. In the 
graft remnant, the alternating clumps contained up to 10 PCs (Fig. 3a), whereas in 
the host parenchyma invaded by grafted PCs the bands were formed by only one to 
three PCs by section plane (Fig. 3b), indicating that PCs might have genomic het-
erogeneity and could reach their predetermined fate even in an adult environment. 
These bands did not correlate in distribution or size with the host stripes.

In collaboration with Richard Hawkes [56] we investigated, also using trans-
plants, if the micro-zonation of PCs during development was due to intrinsic molec-
ular differences between PC progenitors, or was the result of the presynaptic inputs 
they received, particularly from the host olivocerebellar projection. This could be 
the case for transplants in adult rat cerebellum after kainic acid injection where, 
despite the loss of PCs, the CFs (although atrophic) were maintained [42]. The 
approach was to isolate the cerebellar anlagen from the specific incoming afferent 
fibers, before the age of initiation of synaptogenesis between PCs and CFs or tran-
siently with MFs [57]. To this end, solid grafts of E12 rat cerebellum were trans-
planted to either a cavity in the neocortex of adult rats (in cortico) (Fig. 3c, d), or in 
the anterior chamber of the eye (in oculo). The grafts were therefore able to mature 
without being exposed to CFs and/or MFs. In both types of transplants, alternating 
clusters of zebrin-1+ and zebrin-1− PCs developed without the influence of either 
CFs or MFs, pointing to the intrinsic nature of the biochemical heterogeneity of 
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Fig. 3 (a, b) Double immunofluorescence of a grafted rat E13 cerebellar anlage into a cavity in 
adult rat cerebral cortex 2 months after grafting (“in cortico”). Note that while all PCs are calbindin 
positive (rhodamine), only part of them are zebrin-1 positive (fluorescein), revealing alternative 
clusters of zebrin-1 negative and positive PCs. (c, d) Two color stain of graft, derived from cell 
suspensions of rat E15 cerebellar anlage 1 month after injection into the PC devoid region of the 
kainic acid lesioned adult cerebellum, illustrating the alternating clusters of zebrin-1 positive PCs 
(green color) and zebrin-1 negative PCs (red color). (c) Graft remnant and integration of PCs into 
the adjacent host molecular layer. (d) Zone far away from the graft remnant where individual PCs 
alternate in the interfolial space
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PCs. This result was extremely useful to formulate the hypothesis that the topogra-
phy of the projections in the cerebellar cortex was regulated by PCs [54], which not 
only are the pivotal elements in transmitting functional information from the cortex 
to the DCN but also orchestrate the developmental organization of the cerebellum. 
It can be concluded that without PCs there is no cerebellum.

 The Difficulties in Restoring the Corticonuclear Projections Argue Against 
the Possibility of Successful Complete PC Replacement by Embryonic 
Cerebellar Transplants

Finally, the most negative part of the study focused on the fate of grafted PC axons 
and their efferent projections, which cannot establish proper connections with their 
remote host targets. As stated above, most of the axons of the grafted PCs remained 
within the host molecular layer without reaching the white matter, as if they could 
not transit the nonpermissive territory offered by the underlying granular layer, a 
barrier missing during the developmental period during which these axons normally 
reach the prospective white matter on their way toward the deep cerebellar nuclei 
(Fig.  1e). The electrophysiological analysis corroborated this morphologic result 
since only one of the 55 grafted PCs impaled had antidromic potentials after white 
matter stimulation [47]. Once in a while, a few CaBP+ axons ran within the white 
matter on their way to the DCN. In most of these cases, PC somata were present in 
the granule cell layer or even in the white matter. Axons from these ectopic neurons 
can form thin fascicles that can reach the DCN even after covering relatively long 
distances (Fig.  1d). The defasciculation of these thin fascicles took place once 
arrived to the DCN, where they gave rise to calbindin immunostained dots resem-
bling axon terminals. Their actual nature was corroborated by electron microscopy 
immunocytochemistry (Fig.  1c). Even more rarely, some of the Purkinje somata 
located within the host molecular layer, and therefore synaptically integrated, were 
in continuity with underlying clusters of grafted embryonic bridges. In these situa-
tions, their axons could grow through the bridges into the white matter and reach the 
DCN. These observations provided evidence emphasizing that distance was not the 
main obstacle for the correct growth of PC axons but rather the presence of the 
nonpermissive environment of the host granular layer. To overcome this obstacle, 
new grafts were prepared by placing tiny solid pieces of E12 cerebellar primordium 
in a cannula and implanting them deep in the cerebellar parenchyma of the host to 
establish a bridge between cortex and DCN that could serve as a permissive passage 
for axons of grafted PCs that have colonized the host molecular layer, rebuilding a 
new corticonuclear projection in this way [58]. Although technically effective, the 
obtained yield was very poor, since few grafted PCs cortically integrated found their 
way to the DCN through the bridge.

Interestingly, the problem disappears if the transplantation is performed in utero 
during embryonic life, as done by Ferdinando Rossi and collaborators [59]. For 
identification of grafted cells, donor cells were dissected from β-actin-enhanced 
green fluorescent protein (EGFP) transgenic rats (E14) and transplanted as a single 
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cell suspension in the IVth ventricle of E16 rat embryos. In this case, although the 
surviving grafted PCs were less numerous because of the competition with the 
almost isochronic PCs of the host [59], in adulthood their vast majority occupied an 
orthotopic position at the molecular/granular layer interface and their axons reached 
their normal terminal domains in the DCN. However, as the age of the host is pro-
gressively increased (P1, P8), the number of orthotopic PCs decreases, from almost 
90% at E16 to 40% at P1, and by P8 all surviving grafted PCs remain ectopic. These 
results emphasize the obstacle provided by the mature granular layer to the growth 
of PC axons, and the difficulties confronting cerebellar grafting as a way to treat 
ataxia due to difficulties encountered in the mature cerebellum.

 Embryonic and Adult Cells Interactions

Despite the indisputable importance of genetic programs for the developmental 
project of the cerebellum, it is well known that epigenetic factors that accompany 
cell–cell interactions are also important. In normal instances, these interactions 
occur between isochronic cells. Nevertheless, in reparative processes as well as dur-
ing the integration of newborn neurons either generated from adult neural stem cells 
or transplanted from embryos, adult neural cells should interact with immature 
ones. The first information we gathered regarding these interactions arose from 
morphological and electrophysiological studies done on adult cerebella transplanted 
with cerebellar embryonic cells (E12) and analyzed between 3 and 21 days after 
grafting (DAG) [60–62]. Three DAG transplants were already anchored into the 
host cerebellum, creating a new and ectopic stream of migratory cells at the surface 
of the affected folia, between the pial basal lamina and the upper surface of the host 
molecular layer. By 4–5 DAG, a vast band of large neurons funneled into this stream 
(Fig. 4a) covering large distances, as already discussed up to two and a half folia. In 
preparations immunostained with anti-CaBP antibodies, subpial bipolar PCs were 
tangentially oriented (tangential migration) (Fig. 4b), but 2 days later they changed 
direction to migrate radially and penetrated the adult molecular layer of the host 
cerebellum (Fig. 4c). This period of radial migration along Bergmann radial fibers 
took place between 5 and 8 DAG. Our ultrastructural examination showed that dur-
ing tangential migration, thin layers of astrocytes surrounded the migrating PCs, 
whereas during their radial migration they were apposed to the relatively thick 
stems of Bergmann glia.

Between 11 and 14 DAG, synaptogenesis between grafted PCs and adult host 
presynaptic axons was very active. CFs translocated from PC somatic spines, where 
they started synaptogenesis, to proximal branches spines. Simultaneously, PFs and 
axons of the molecular layer interneurons had established synaptic contacts respec-
tively with dendritic spines of the PC distal branches and the shafts of proximal 
branches. The electrophysiological results complemented the morphological ones, 
and revealed that synaptogenesis between host CFs and grafted PCs followed a 
similar process to that which occurs during development, when both partners are 
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Fig. 4 Development of reciprocal graft–host interactions during PC replacement. Events taking 
place during the fifth to the eighth day after grafting. (a) Between the subpial basal lamina (marked 
by two arrows) and the glial limiting membrane (marked by large dots), a funneling stream of 
tangentially migrating PCs invades the host cerebellum from the graft/host interface (right of the 
micrograph). Micrograph taking from a 1 μm thick plastic section. (b, c) Calbindin-labeled PCs, 
respectively, in tangential (b) and radial (c) migration. (d, e’) Histofluorescent visualization of 
grafted PCs in adult pcd/pcd cerebellum. The adult Bergmann fibers, in the presence of embryonic 
PCs, change their nestin expression from the null, which characterizes adult animals, to the posi-
tive of radial glia necessary for radial migration of grafted PCs
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immature. The grafted PCs also went through a transient period of polyinnervation 
with an average of three distinct CFs synapsing on each PC by 10 DAG, until at least 
14 DAG by which point they became monoinnervated [61].

In conclusion, the establishment of the newly formed connections mimicked 
very closely the time-course and sequence of events in normal development. It 
appears the embryonic PCs impose a program defined by their own internal clock 
that leads to their timely ordered synaptic integration [60]. We were fascinated by 
these new cyto-sociological rules imposed by the embryonic neural cells, and 
wanted to uncover some of the molecular mechanisms governing these embryonic/
adult interactions.

Molecular Mechanisms Underlying the Interactions Between 
Adult Host Bergmann Fibers and Grafted Embryonic PCs 
Migration, a New Type of Neural Plasticity Which is Called 
“Adaptive Rejuvenation” 

PC migration is a glial-guided migration from the ventricular cerebellar neuroepi-
thelium to the presumptive cerebellar cortex, to form the so-called PC plate (see in 
[63]). During ontogenesis it might be thought that expression of the necessary cues 
by the participating cells is coordinated because they are similar in age. This would 
not be the case, however, when embryonic neurons are grafted into adult brain. This 
raises the question as to whether the grafted embryonic PCs induce adult host cells, 
especially the Bergmann glia, to transiently reexpress the molecular cues needed for 
their migration and synaptic integration into the host [60], or whether isochronic 
embryonic astrocytes leave the graft, acquire within the host parenchyma the radial 
glia phenotype, and thereby provide the substrate for the migration of grafted PCs.

In order to determine whether either comigration of embryonic PCs and astro-
cytes or “rejuvenation” of host glia by the embryonic PCs was involved in graft 
integration, we performed the following experiment [64]. Mutant pcd mice were 
grafted with cerebellar primordia from homozygous embryos of the transgenic line, 
Krox20/lacZ14, where β-galactosidase activity in the cerebellum is detected exclu-
sively on Golgi epithelial cells and their Bergmann fibers, allowing grafted cells to 
be distinguished from host. Presumptive molecular changes in host Bergmann fibers 
were investigated by immunohistochemistry with rat mAb-401 antibody (gift Susan 
Hockfield) [65], which identifies nestin [66], an intermediate filament protein 
expressed transiently by neural progenitor cells and their glial axes for neuronal 
migration. This antibody is therefore temporally and spatially suited to identify 
radial glia involved in radial migration [65]. Cerebellar sections of pcd mice that 
received transplants of Krox-20/lacZ14 transgenic embryos were immunostained 
either 5 DAG, during the tangential migration of grafted PCs, or 7 DAG, during 
their radial migration, or once migration was complete (13 DAG). First, no X-gal 
positive cells were found outside the solid graft remnant, compelling evidence 
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against comigration. Second, in the folia invaded by grafted PCs, and only during 
the short period of their radial migration, Bergmann fibers subserving this migration 
expressed nestin (\hvb’ v. 4d, d’, d, e’). This close spatiotemporal correlation 
allowed us to conclude that a new class of plasticity did occur, a process of “rejuve-
nation” induced by the grafted embryonic PCs in their adult partners. Therefore, 
after transient expression of molecular cues associated with PCs migration, adult 
Bergmann fibers become able to recapitulate the mechanisms employed in normal 
ontogenesis, enabling migration and synaptic integration leading to the partial res-
toration of the disrupted cortical circuitry [60].

 Neural Grafting and the Balance Between Neuronal Intrinsic 
Growth Regulatory Mechanisms and Extrinsic Environmental 
Stimuli for Central Axon Regeneration

As discussed above, spontaneous recovery of function after mammalian CNS injury 
is very limited, not only because of the scarcity of adult neurogenesis but mainly 
because central neurons are unable to regenerate their axons, contrary to what hap-
pens in nonmammalian species [67–69] and in mammalian peripheral axons [3]. 
From the beginning, researchers wanted to know whether the distinct behavior of 
the mammalian central and peripheral neurons was intrinsic or the result of the dif-
ferent molecular and cellular environments they encountered. Francisco Tello [70], 
who worked in Ramón y Cajal’s laboratory, was among the first to answer this ques-
tion correctly. Two distant cuts in peripheral nerves produce aneural nerve frag-
ments, with preservation of their cellular sheaths, Schwann cells, and connective 
tissue accessories. Such isolated fragments of peripheral nerve were grafted deeply 
in the neocortex. The nearby cut central axons were then able to develop growth 
cones-like structures at the distal ends of their proximal stumps that grew for long 
distances, penetrating deeply into the grafted aneural nerve fragments. For Ramón 
y Cajal, these observations clearly indicated that simply by providing a suitable 
environment, a central axon could regenerate just as a peripheral one. As a result, 
the study of nonpermissive molecules preventing central axons regeneration has 
been a research topic for the past 30 years. Extracellular matrix proteins at the glial 
scar (cytotactin/tenascin and proteoglycans (see in [71]), and myelin remnants [72]) 
have been the focus of this search. Furthermore, these studies showed that regenera-
tive failure was not solely the result of environmental growth inhibitory molecules 
but also of central neurons’ intrinsic properties. Indeed, after the transitional period 
of development, central neurons lose their ability to reset the set of genes required 
for axon growth. For these reasons, it is commonly accepted nowadays that the suc-
cess of the regenerative process depends on the interplay between environmental 
cues and intrinsic properties of the damaged neurons. It is obvious that both ele-
ments should be taken into account when designing therapeutic strategies to pro-
mote central axon regeneration.
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Regarding the cerebellum, the main topic of this chapter, it has been possible to 
reveal an unusual feature of the adult PCs. They are a rare class of neurons that does 
not respond to axotomy with either somatic, retrograde, degenerative changes 
(chromatolysis), even when the injury is close to the axon hillock, as can happen in 
a few PCs after transection of cerebellar folia separating the anterior from the pos-
terior vermal lobes, or dendritic changes [73]. The absence of chromatolysis was 
most probably responsible for the lack of regeneration observed in these neurons, 
because degenerative events seemed needed to activate the metabolic and reparative 
genetic programs required for axon growth [74, 75]. Although PCs did not retract 
the proximal stumps of their severed axons that remained apposed to the wound 
cavity for long periods of time, they went through progressive changes – character-
ized by hypertrophy of the recurrent collateral system that yield “PCs with arciform 
axons” (Fig. 5b) [73]. Ramón y Cajal [3] described these changes as a compensa-
tory growth process that transformed PCs from projection neurons into interneurons 
with short axons. Nevertheless, 3 months after the lesion, thin and short terminal 
sprouts appeared, growing slowly up until 18  months, the longest survival time 
analyzed [76]. After 18 months, there were numerous sprouts and were arranged 
into randomly oriented plexuses, partially filling the regions of granular layer abut-
ting the lesion cavity. These terminal sprouts had established heterotypic synaptic 
contacts with granular cell dendrites at the glomeruli. These changes observed in 
the injured axons were spatially and temporally correlated with cellular and molec-
ular changes occurring in the glial scar. Activated macrophages disappeared much 
sooner than the initiation of sprouting. Myelin and its associated neurite growth 
inhibitory molecules began to decrease 3 months after the lesion. More importantly, 
some of the reactive astrocytes started to express Polysialylated-neural cell adhe-
sion molecule (PSA-NCAM), the embryonic form of the neural cell adhesion mol-
ecule, at this time the nonpermissive nature of the early glial scar changing 
completely into a permissive substratum for neurite outgrowth. Therefore, the 
belated axon growth attempt takes the form of early thickness increase and late 
terminal sprouting, the latter occurring at the same time as changes in the glial scar. 
This almost exclusive response of PCs to axotomy confers these neurons the reputa-
tion as the central neurons with the poorest spontaneous regenerative capacity.

The behavior of inferior olivary neurons, also axotomized at their distal arbors – 
CFs – after folial transection, was quite different [77]. They did not become hyper-
trophic but instead became thinner, ending in small terminal bulbs also apposed to 
the wound cavity. No spontaneous regeneration was observed, although these axons 
are known for their high plasticity [43]. Contrary to PCs, inferior olivary neurons 
suffered from a severe retrograde reaction that produced their progressive atrophy 
[42] and, for many of them, ultimate cell death [78]. Sixty days after axotomy, more 
than 50% of olivary cells had died [79].

Early information suggested that during development, young postmitotic neu-
rons have a much higher capacity for regeneration than mature ones. Furthermore, 
Oscar Sugar and Ralph W. Gerard [80], using immature rats and following Cajal’s 
method of implanting aneural peripheral nerve fragments, provided a clear demon-
stration that some regeneration could take place. Based on these facts, many 
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Fig. 5 Axotomy and transplantation, a combine approach in adult rat cerebellum to assess the 
intrinsic capacity of adult neurons to regenerate in permissive environment. After a cut separating 
anterior for posterior vermal cortices, the lesion site is filled with rat E13 cerebellar anlage. 
Survival times were up to 60 days. PCs were analyzed in calbindin stained sections, and to display 
climbing fibers, iontophoretic injections of biotinylated dextran amine (BDA) were done in the 
inferior olive 10 days before fixation. (a) Illustrates the narrow band formed by the graft, the entry 
of the regenerating thin axons, and their peridendritic plexuses around the grafted PC processes. 

(continued)
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(b) Axotomized PCs, with their normal looking dendritic trees and perikarya, whereas the axons 
have adopted the arciform shape reported by Cajal. (c) Retraction bulbs of axotomized PC axons, 
ending close to the host/graft interface, have failed their regeneration. (d) High magnifications of 
BDA filled inferior olivary axons entering the graft and forming small climbing-like terminals 
outlining the proximal dendrites of the grafted PCs (arrows)
Asterisk: The micrographs illustrated this chapter have been adapted from personal publications 
in the topic. (See Refs. [29, 46, 55, 56, 58, 60, 62, 64, 77])

investigators proposed to combine the injury of central regions with simultaneous or 
delayed filling of the injury track with a large array of grafted biological materials 
(aneural peripheral nerve fragments, embryonic spinal cord tissue, cultured embry-
onal tissue, tumor cells, or others, see references in Puchala and Windle [81]). This 
combined approach was extremely useful in revealing the heterogeneity of responses 
induced by axotomy in different neuronal populations, and has been used exten-
sively in cerebellar lesions.

In fact, to boost the almost inexistent spontaneous capacity to regenerate of the 
two cerebellar elements analyzed (PCs and CFs), the combined “lesion and trans-
plant” approach was followed to provide a permissive environment to the cut axons 
(Fig. 5a) [77]. Several biological materials and survival times were tested by using 
this approach, including segments of aneural peripheral nerve or Schwann cells 
[82–84], embryonic neocortical tissue [77, 84], and their specific target embryonic 
cerebellum, first with only 2 months survival [77] and later on up till 12 months to 
allow for the study of the late sprouting of PC axons [85]. In all cases, the presence 
of a grafted permissive growth substrate allowed CFs to regenerate into the grafts, 
although the newly formed terminal arbors were quite different for each type of 
graft. Only when the graft was embryonic cerebellum, their normal target, the 
regenerative branches, were able to form their characteristic CFs on the dendritic 
trees of grafted PCs (as illustrated in Fig. 5a, d of a rat 38 days after axotomy and 
transplantation). However, at the same survival time after the combined approach, 
and even in the presence of DCN in the transplant, PC axons neither changed their 
time of sprouting nor enhanced their capacity to regenerate (Fig. 5c). In conclusion, 
transplants have been most useful in revealing the differences in the regenerative 
capacity of two populations of neurons, emphasizing the importance of intrinsic 
factors in the regenerative process. Grafting has also disclosed that the protracted 
sprouting of PC axons is not at all equivalent to regenerative capability, corroborat-
ing many other studies indicating that the growth in sprouting is regulated by differ-
ent molecular mechanisms than the growth required for regeneration. Finally, the 
results also highlighted that cellular changes induced by axotomy in the soma of the 
injured neuron are the hub for the decision taken of either to start the cell death 
program or the regeneration program.
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 The Transplantation of Stem Cells: A New Approach

 Origins of the Cells: Embryonic and Adult Multipotent Stem 
Cells and Immortalized Cell Lines

Although the recent discovery of neural stem cells in the CNS of adult mammals has 
changed our vision of a static adult CNS, it did not alter the grim reality that is the 
spontaneous fate of nerve injuries. Indeed, neurologists have known for many years 
that the loss of a specific population of neurons provokes permanent and irreducible 
neurological deficits, despite a possible slow, and partial recovery from some of the 
symptoms. The latter is mostly the result of plastic changes due mainly to collateral 
sprouting of axons spared by the injury [86, 87] and does not seem to result from 
spontaneous proliferation of quiescent, local neural stem cells. Despite these nega-
tive premises, after the discovery of neural stem cells in the adult brain [23], scien-
tists became more optimism as they foresaw the possibility to treat and cure patients 
with neurodegenerative diseases as well as those with traumatic or ischemic lesions 
of the brain or spinal cord. Thus, numerous publications appeared on the therapeutic 
power of exogenous naïve stem cells transplantation to repair all types of lesions 
damaging nervous centers (see in [88]). They used not only adult neural stem cells 
taken from the central regions known for their abundance in such classes of cells 
(the subventricular zone of the anterior pole of the lateral ventricles, or the hippo-
campus) but also many other classes of multipotent cells of very different origins, 
including bone marrow-derived mesenchymal stem cells [89] and even immortal-
ized multipotent neural cell lines generated via retrovirus-mediated v-myc transfec-
tion [90, 91]. Unfortunately, the results of these experiments were rather 
disappointing because, often, the progeny of the engrafted stem cells either remained 
undifferentiated [90, 91] or were restricted to glial lineages [92].

 Neural Stem Cells from the Postnatal Cerebellum

Concerning the cerebellum, postnatal neural stem cells were found relatively late by 
Scott Wechsler-Reya’s group [93] in the cerebellar white matter. Two important 
features allowed for their identification: (1) the expression of the stem cell marker 
prominin-1 and (2) the lack of neuronal and glial cell lineage markers, even if they 
could, once transplanted into the cerebellum, differentiate into GABAergic, Pax2 
positive interneurons together with astrocytes and oligodendrocytes. These cerebel-
lar stem cells, once isolated from newborn or adult mouse cerebella, could produce 
clonal neurospheres for transplantation. It is important to remember that neural 
stem cells have different potentialities according to the brain region and the age of 
the donor. Gord Fishell’s group [94] has shown, in vivo (transplantation) and in vitro 
(cell cultures), that forebrain and cerebellum-derived neurospheres give rise to neu-
rons resembling those found endogenously in the brain. In other words, neural stem 
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cells progeny have regional characteristics and are not totipotent since they have 
already undergone some differentiation.

 The Reprogramming of Somatic Cells into Induced Stem Cells, 
or Directly into Precise Neuronal Fates, to Provide 
an Autologous Source of Transplantable Cells

 Historical Introduction

John Gurdon’s early cloning experiments [95], using somatic nuclear transfer from 
somatic differentiated cells (a tadpole intestinal cell), demonstrated that, when 
transplanted into an enucleated egg, the nucleus is reprogrammed to a pluripotent 
stage and may give rise to a complete tadpole. This important discovery made it 
possible to put to rest a seemingly inviolable principle of developmental biology: 
the widespread concept that cell differentiation takes place in one direction only, 
from pluripotent undifferentiated cells to highly differentiated ones such as neurons. 
This principle was progressively replaced by the idea that the differentiation process 
is reversible, thanks to a new mechanism named reprogramming. Reprogramming 
implies that fully differentiated cells could dedifferentiate and somatic cells trans-
form into pluripotent stem cells through the inductive action of suitable transcrip-
tion factors, and then differentiate again, but this time into the desired cell class 
[96]. Shinya Yamanaka’s team publication [96], showing that expression of only 
four transcription factors (Oct3/4, Sox2, Klf4, and c-Myc) was enough for this 
transformation, paved the way to the new stem cell era. Among the numerous new 
opportunities offered by reprogramming, an essential one is that it can supply a 
significant and unexpected source of neural stem cells (the induced pluripotent stem 
cells or iPSCs) for autologous cell therapy, while avoiding the immunological and 
ethical problems attached with the use of heterologous embryonic stem cells. 
Furthermore, human-induced pluripotent stem cells (hiPSCs) also allows the build-
ing of in vitro models of genetic and acquired cerebellar diseases, providing supe-
rior material to study molecular and cellular pathomechanisms of the precise 
pathways leading to cerebellar degeneration. However, this, as well as the potential 
of such models for drug screening, is totally outside the scope of this chapter.

It soon appeared that it was possible to reduce the number of “Yamanaka factors” 
from four to three (Sox2, FoxG1, and Brn2 [97]), and even one, as Sox2 in precise 
conditions was able to induce pluripotent stem cells [98], removing the danger of 
using the proto-oncogene c-Myc. The derived stem cells were able to be trans-
formed in turn into neural progenitors and neurons. We are living in a time of loga-
rithmic expansion of research on the reprogramming of mature somatic cells into 
pluripotent iPSCs and from there into unlimited categories of differentiated cells, 
especially the countless classes of central neurons. Also of great interest is the pos-
sibility to reprogram human fibroblasts directly into neurons, without passing 
through the status of a multipotent neural stem cell. Indeed, by using the 
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combination of three factors  – Ascl1, Brn2, and Myt1l  – the reprogramming 
occurred with an induced neuron conversion efficiency of 1.8–7.7%. These neurons 
had the membrane properties of “real” neurons and the ability to establish func-
tional synaptic connections [99].

Regarding the cerebellum (i.e., the focus of this chapter), Declercq et al. [100] 
showed that the Zic3 protein – from the Zic family genes mainly expressed in cer-
ebellar granule cells [101]  – was able to maintain the pluripotentiality of repro-
grammed mouse embryonic stem cells. This also minimizes the risk of tumorigenicity 
that may appear by the inductive action of the “Yamanaka cocktail.” This replace-
ment (substitution of c-Myc by Zic3) did not decrease but rather enhanced repro-
gramming efficiency two- to threefold. On the contrary, when Zic3 is blocked by 
shRNA-mediated knockdown of endogenous Zic3 during iPSC generation, the 
reprogramming efficiency decreases [100].

 Cerebellar Transplantation of Granule Cells

Transplantation of external granular layer cells was the starting point in the history 
of cerebellar grafting [102], and provided the main conditions required for the sur-
vival of transplanted cells. Moreover, the granule cell phenotype has also been the 
most frequently reached after transplantation of whatever class of stem cells into the 
early postnatal cerebellum [103, 104]. Nevertheless, and despite the existence of 
excellent murine models of ataxia subsequent to massive death of granule cells, 
very few studies have been published on the capability of multipotent cells for iso-
typic neuronal replacement.

An early attempt to replace missing granule cells was carried out by Evan 
Snyder’s group [103], using the vermal anterior lobe of the meander tail mutant 
mouse [105] as a model of an agranular cerebellum. The immortalized cell line used 
for this study (clone C17.2) was generated by retroviral transfection of the proto- 
oncogene v-Myc in cultures taken from neonatal mouse cerebellum [106]. Injection 
of these cells on the surface of control newborn cerebella resulted in their engraft-
ment, followed by their differentiation into granule cells. The dendrites of the latter 
received synapses from host mossy fibers, corroborating their partial synaptic inte-
gration [106]. When grafted to the anterior lobe of newborn mea/mea mutant cere-
bella, they survived not only in the granuloprival anterior lobe but also ectopically 
in the posterior lobe. In the former position, they migrated inward, under the PC 
layer, where they received synaptic contacts from host mossy fibers, as if the grafted 
neurons acquired a granule cell phenotype and built up a kind of immature inner 
granular layer. The parallel fibers, the putative efferent fibers of the grafted cells, 
were not considered in this study [103].

Naïve stem cells of two different origins (cerebellar-derived multipotent astro-
cytic stem cells and embryonic stem cell-derived neural precursors [107]) have been 
used in the weaver mutant mouse, another model of an agranular cerebellum [47]. 
Neither of them yielded neurons with a granule cell phenotype. After these negative 
results, new trials were carried out with human cells taken from either the hindbrain 
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of 5–7-week-old embryos [108], or obtained by stable reprogramming of cultured 
human fibroblasts taken from the scalp tissue of patients with traumatic brain injury 
[109]. The former cells were first propagated in culture with EGF and FGF2, and 
then oriented toward upper rhombic lip derivatives by treatment with bone morpho-
genetic proteins (BMPs). When grafted into the neonatal rat brain, they generated 
granule cells that integrated into host cerebellar circuitry. The great advantage of 
these human multipotent cell lines is their capacity for generation without genetic 
immortalization. The latter cells, scalp fibroblasts from patients with traumatic 
brain injury, were directly reprogrammed into human induced cerebellar granular-
like cells (hiGCs) [109] by the combination of three transcription factors (Ascl1, 
Sox2, and Oct4), followed by treatment with three secreted factors (BMP4, Wnt3a, 
and FGF8b). This protocol is a direct shortcut to convert one adult cell phenotype 
into a totally different one, without passing through a multipotent stem cell state. 
The hiGCs were used to assess their ability to replace missing cells in the cerebel-
lum of NmycTRE/TRE:tTS, a Nmyc conditional knockout mouse [110], a mutation 
characterized by severe microencephaly, including a profound atrophy of about 
65% of the cerebellar mass affecting mainly granule cells [110]. The cell transplan-
tation provided some positive results, at least regarding motor behavior. However, 
the morphological study was incomplete and though some markers for granule cells 
were positive, synaptic integration of the grafted cells was not examined, and the 
newly originated granule cells did not seem to be equipped with their distinctive 
“T”-shaped polarity phenotype [109]. It is important to note a major difference 
between previous trials in weaver and meander tail mutants and these later experi-
ments. While the results with the former were obtained after newborn transplanta-
tions, those of the third model of an agranular cerebellum were obtained with grafts 
from mice 8 weeks old when transplanted. In any case, the problem is again that the 
experiments providing real evidence of neuronal replacement with synaptic integra-
tion were only those done on newborn animals. Therefore, the mice experiments 
discussed here cannot validate the future use of cell therapy for presumptive clinical 
use, since valid experiments need to be done with older mice, after cerebellar histo-
genesis is finished, because in humans the mean age of onset of dominant ataxias is 
about 30 and 40 years [111], and the plasticity of immature cerebellar tissue is not 
at all comparable with that of adult cerebellum. It is therefore evident that cell ther-
apy in ataxias with loss of granule cells still remains out of reach.

 Cerebellar Transplantation of Purkinje Cells

Due to the difficulties in obtaining PCs from naïve stem cells, researchers decided 
to reprogram in cell cultures the cellular and molecular microenvironments, charac-
terizing all the known phases that progenitors should pass through to reach their 
ultimate identity. This was done either by transfecting with viral vectors the genes 
coding for transcription factors involved in the differentiation cascade, or by adding 
these factors to the culture medium. In such a way, Hideyuki Okano’s team [112] 
induced PCs from mouse embryonic stem cells in a coculture system where the 
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stem cells were floating over a serum-free culture of embryoid body-like aggregates 
treated with BMP4, Fgf8b, and Wnt3a. Later, a much higher production of PCs was 
obtained as a result of modifications introduced by Keiko Muguruma et al. [113, 
114], who reproduced in cell cultures of mouse embryonic stem cells, the molecular 
microenvironments containing the inductive signals that native PC progenitors suc-
cessively receive during their differentiation. As in previous experiments, the stem 
cells were first oriented toward cerebellar fates by the synergistic addition of insulin 
and Fgf2 to the culture medium, thus increasing the expression of genes, such as 
Wnt1, Fgf8, and En2, acting at the midbrain–hindbrain boundary, that regulate the 
polarity and identity for the specification of the cerebellar plate. However, almost 
60% of the En2-positive cells co-expressed Pax2, a marker of cerebellar GABAergic 
interneurons, and only a few attained a PC fate. The orientation toward the Ptf1a 
expression [115], and its corollary co-expression of Neph3 in stem cell-derived pro-
genitors necessary for their specification into PCs, was achieved in a second step, 
called dorsal specification, by inhibiting sonic hedgehog (Shh) signal transduction 
with cyclopamide. This inhibition prevented the expression of Atoh1 and the forma-
tion of granule cells [116]. Finally, in the third and last step, the differentiation of 
Neph3+/Ptf1a + cells [117] into Corl2-expressing PCs [118] – the earliest specific 
marker expressed in these neurons – was obtained after cell sorting and purification 
of the Neph3+ cells kept a few days in coculture with mouse cerebellar granular 
cells. This complex treatment allowed for the differentiation of embryonic mouse 
stem cells into PC progenitors with a very high yield, since over 80% of the cocul-
tured Neph3+ cells expressed Corl2.

The Neph3-derived cells obtained from GAD–GFP embryonic stem cells by 
Muguruma et al. [113] were injected into the subventricular space of the E15.5 cer-
ebellar plate. One month after transplantation, the surviving grafted cells appeared 
as normally polarized PCs, located at the interface of the molecular and granular 
layers, and with complete afferent and efferent synaptic integration. Indeed, their 
axons crossed the granular layer to enter the white matter axis, and some of them 
even reached their terminal domains, and established synaptic connections with 
DCN neurons. Therefore, the PCs derived from embryonic stem cells behaved in the 
same way as PC progenitors transplanted in embryonic cerebellum. By using their 
normal migratory pathway, they were able to access their orthotopic location and 
complete synaptic integration (see above and [59]). However, these apparently suc-
cessful PC replacements remain of questionable clinical potential as already dis-
cussed for PCs after E12 cerebellar grafts into adult pcd/pcd mutants (see Section 
“The difficulties in restoring the corticonuclear projections argue against the possi-
bility of successful complete PC replacement by embryonic cerebellar transplants”), 
and for granule cells (Section “Cerebellar transplantation of granule cells”). Indeed, 
until it can be shown that PCs derived from iPSCs can be implanted after the onset 
of ataxia symptoms, in young adults, not in fetal mice, and that the grafted cells can 
reproduce the same developmental behavior as in fetuses, this therapy will remain 
inapplicable to humans.
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 Future Prospects

For many researchers interested in the plasticity of the nervous system, it is obvious 
that the discovery of the in vivo reprogramming process has awakened the dream of 
manipulating at will the physiological mechanisms of regeneration available to the 
brain. The approach of genetic activation of neurogenesis in adult injured brains, 
particularly by transformation of reactive astrocytes into neurons able to replace the 
missing ones, leaving only – as memory or signal of the injury – a small scar, and 
does so without transplantation of exogenous biological material. Therefore, regard-
ing its regenerative capability, the nervous tissue should be considered from now on 
as the same as other body tissues. Although no one knows what the future holds, 
these current results give us great hope in a brighter future for reparative neurology.
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