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Abstract. One of the most fundamental methods for comparing two
given strings A and B is the longest common subsequence (LCS), where
the task is to find (the length) of the longest common subsequence. In
this paper, we address the STR-IC-LCS problem which is one of the
constrained LCS problems proposed by Chen and Chao [J. Comb. Optim,
2011]. A string Z is said to be an STR-IC-LCS of three given strings A,
B, and P , if Z is one of the longest common subsequences of A and
B that contains P as a substring. We present a space efficient solution
for the STR-IC-LCS problem. Our algorithm computes the length of an
STR-IC-LCS in O(n2) time and O((� + 1)(n − � + 1)) space where � is
the length of a longest common subsequence of A and B of length n.
When � = O(1) or n − � = O(1), then our algorithm uses only linear
O(n) space.

Keywords: String algorithm · Constrained longest common
subsequence · Dynamic programming

1 Introduction

Comparison of two given strings (sequences) has been a central task in Theoret-
ical Computer Science, since it has many applications including alignments of
biological sequences, spelling corrections, and similarity searches.

One of the most fundamental method for comparing two given strings A and
B is the longest common subsequence LCS, where the task is to find (the length
of) a common subsequence L that can be obtained by removing zero or more
characters from both A and B, and no such common subsequence longer than
L exists. A classical dynamic programming (DP) algorithm is able to compute
an LCS of A and B in quadratic O(n2) time with O(n2) working space, where n
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is the length of the input strings [12]. In the word RAM model with ω machine
word size, the so-called “Four-Russian” method allows one to compute the length
of an LCS of two given strings in O(n2/k + n) time, for any k ≤ ω, in the case
of constant-size alphabets [9]. Under a common assumption that ω = log2 n,
this method leads to weakly sub-quadratic O(n2/ log2 n) time solution for con-
stant alphabets. In the case of general alphabets, the state-of-the-art algorithm
computes the length of an LCS in O(n2 log2 k/k2 + n) time [2], which is weakly
sub-quadratic O(n2(log log n)2/ log2 n) time for k ≤ ω = log2 n. It is widely
believed that such “log-shaving” improvements would be the best possible one
can hope, since an O(n2−ε)-time LCS computation for any constant ε > 0 refutes
the famous strong exponential time hypothesis (SETH) [1].

Recall however that this conditional lower-bound under the SETH does not
enforce us to use (strongly) quadratic space in LCS computation. Indeed, a
simple modification to the DP method permits us to compute the length of an
LCS in O(n2) time with O(n) working space. There also exists an algorithm
that computes an LCS string in O(n2) time with only O(n) working space [6].
The aforementioned log-shaving methods [2,9] use only O(2k + n) space, which
is O(n) for k ≤ ω = log2 n.

In this paper, we follow a line of research called the Constrained LCS prob-
lems, in which a pattern P that represents a-priori knowledge of a user is given
as a third input, and the task is to compute the longest common subsequence of
A and B that meets the condition w.r.t. P [3–5,7,8,11]. The variant we consider
here is the STR-IC-LCS problem of computing a longest string Z which satisfies
that (1) Z includes P as a substring and (2) Z is a common subsequence of A
and B. We present a space-efficient algorithm for the STR-IC-LCS problem in
O(n2) time with O((�+1)(n−�+1)) working space, where � = lcs(A,B) denotes
the length of an LCS of A and B. Our solution improves on the state-of-the-art
STR-IC-LCS algorithm of Deorowicz [5] that uses Θ(n2) time and Θ(n2) work-
ing space, since O((�+1)(n−�+1)) ⊆ O(n2) always holds. Our method requires
only sub-quadratic o(n2) space whenever � = o(n). In particular, when � = O(1)
or n − � = O(1), which can happen when we compare very different strings or
very similar strings, respectively, then our algorithm uses only linear O(n) space.

Our method is built on a non-trivial extension of the LCS computation
algorithm by Nakatsu et al. [10] that runs in O(n(n − � + 1)) time with
O((� + 1)(n − � + 1)) working space. We remark that the O(n2−ε)-time con-
ditional lower-bound for LCS also applies to our case since STR-IC-LCS with
the pattern P being the empty string is equal to LCS, and thus, our solution is
almost time optimal (except for log-shaving, which is left for future work).

Related Work. There exists four variants of the Constrained LCS prob-
lems, STR-IC-LCS/SEQ-IC-LCS/STR-EC-LCS/SEQ-EC-LCS, each of which is
to compute a longest string Z such that (1) Z includes/excludes the constraint
pattern P as a substring/subsequence and (2) Z is a common subsequence of
the two target strings A and B [3–5,7,8,11]. Yamada et al. [13] proposed an
O(nσ + (�′ + 1)(n − �′ + 1)r)-time and space algorithm for the STR-EC-LCS
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problem, which is also based on the method by Nakatsu et al. [10], where σ is
the alphabet size, �′ is the length of an STR-EC-LCS and r is the length of P .
However, the design of our solution to STR-IC-LCS is quite different from that
of Yamada et al.’s solution to STR-EC-LCS.

2 Preliminaries

2.1 Strings

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string
S is denoted by |S|. The empty string ε is a string of length 0. For a string
S = uvw, u, v and w are called a prefix, substring, and suffix of S, respectively.

The i-th character of a string S is denoted by S[i], where 1 ≤ i ≤ |S|. For a
string S and two integers 1 ≤ i ≤ j ≤ |S|, let S[i..j] denote the substring of S
that begins at position i and ends at position j, namely, S[i..j] = S[i] · · · S[j].
For convenience, let S[i..j] = ε when i > j. SR denotes the reversed string of
S, i.e., SR = S[|S|] · · · S[1]. A non-empty string Z is called a subsequence of
another string S if there exist increasing positions 1 ≤ i1 < · · · < i|Z| ≤ |S|
in S such that Z = S[i1] · · · S[i|Z|]. The empty string ε is a subsequence of any
string. A string that is a subsequence of two strings A and B is called a common
subsequence of A and B.

2.2 STR-IC-LCS

Let A,B, and P be strings. A string Z is said to be an STR-IC-LCS of two
target strings A and B including the pattern P if Z is a longest string such that
(1) P is a substring of Z and (2) Z is a common subsequence of A and B.

For ease of exposition, we assume that n = |A| = |B|, but our algorithm to
follow can deal with the general case where |A| �= |B|. We can also assume that
|P | ≤ n, since otherwise there clearly is no solution. In this paper, we present
a space-efficient algorithm that computes an STR-IC-LCS in O(n2) time and
O((�+1)(n−�+1)) space, where � = lcs(A,B) is the longest common subsequence
length of A and B. In case where there is no solution, we use a convention that
Z = ⊥ and its length |⊥| is −1. We remark that � ≥ |Z| always holds.

3 Space-efficient Solution for STR-IC-LCS Problem

In this section, we propose a space-efficient solution for the STR-IC-LCS prob-
lem.

Problem 1 (STR-IC-LCS problem). For any given strings A,B of length n and
P , compute an STR-IC-LCS of A,B, and P .

Theorem 1. The STR-IC-LCS problem can be solved in O(n2) time and O((�+
1)(n − � + 1)) space where � is the length of LCS of A and B.
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Fig. 1. Let A = bcdababcb, B = cbacbaaba, and P = abb. The length of an STR-
IC-LCS of these strings is 6. One of such strings can be obtained by minimal intervals
[4..7] over A and [6..8] over B because lcs(bca, cbacb) = 2, |P | = 3, and lcs(cb, c) = 1.

In Sect. 3.1, we explain an overview of our algorithm. In Sect. 3.2, we show a
central technique for our space-efficient solution and Sect. 3.3 concludes with the
detailed algorithm.

3.1 Overview of Our Solution

Our algorithm uses an algorithm for the STR-IC-LCS problem which was pro-
posed by Deorowicz [5]. Firstly, we explain an outline of the algorithm. Let IA

be the set of minimal intervals over A which have P as a subsequence. Remark
that IA is linear-size since each interval cannot contain any other intervals.
There exists a pair of minimal intervals [bA, eA] over A and [bB , eB ] over B
such that the length of an STR-IC-LCS is equal to the sum of the three values
lcs(A[1..bA − 1], B[1..bB − 1]), |P |, and lcs(A[eA + 1..n], B[eB + 1..n]) (see also
Fig. 1 for an example). First, the algorithm computes IA and IB and computes
the sum of three values for any pair of intervals. If we have an LCS table d of
size n×n such that d(i, j) stores lcs(A[1..i], B[1..j]) for any integers i, j ∈ [1..n],
we can check any LCS value between prefixes of A and B in constant time.
It is known that this table can be computed in O(n2) time by using a simple
dynamic programming. Since the LCS tables for prefixes and suffixes requires
O(n2) space, the algorithm also requires O(n2) space.

Our algorithm uses a space-efficient LCS table by Nakatsu et al. [10] instead
of the table d for computing LCSs of prefixes (suffixes) of A and B. The algorithm
by Nakatsu et al. also computes a table by dynamic programming, but the table
does not gives lcs(A[1..i], B[1..j]) for several pairs (i, j). In the next part, we
show a way to resolve this problem.

3.2 Space-efficient Prefix LCS

First, we explain a dynamic programming solution by Nakatsu et al. for com-
puting an LCS of given strings A and B. We give a slightly modified description
in order to describe our algorithm. For any integers i, s ∈ [1..n], let fA(s, i) be
the length of the shortest prefix B[1..fA(s, i)] of B such that the length of the
longest common subsequence of A[1..i] and B[1..fA(s, i)] is s. For convenience,
fA(s, i) = ∞ if no such prefix exists. The values fA(s, i) will be computed using
dynamic programming as follows:

fA(s, i) = min{fA(s, i − 1), js,i},



376 Y. Yonemoto et al.

where js,i is the index of the leftmost occurrence of A[i] in B[fA(s−1, i−1)+1..n].
Let s′ be the largest value such that fA(s′, i) < ∞ for some i, i.e., the s′-
th row is the lowest row which has an integer value in the table fA. We can
see that the length of the longest common subsequence of A and B is s′ (i.e.,
� = lcs(A,B) = s′). See Fig. 2 for an instance of fA. Due to the algorithm, we
do not need to compute all the values in the table fA for obtaining the length of
an LCS. Let FA be the sub-table of fA such that FA(s, i) stores a value fA(s, i)
if fA(s, i) is computed in the algorithm of Nakatsu et al. Intuitively, FA stores
the first n − l+1 diagonals of length at most l. Let 〈i〉 be the set of pairs in the
i-th diagonal line (1 ≤ i ≤ n) of the table fA:

〈i〉 = {(s, i + s − 1) | 1 ≤ s ≤ n − i + 1}.

Formally, FA(s, i) = undefined if

1. s > i,
2. (s, i) ∈ 〈j〉 (j > n − � + 1), or
3. FA(s − 1, i − 1) = ∞ or undefined.

Any other FA(s, i) stores the value fA(s, i). Since the lowest row number of each
diagonal line 〈j〉 (j > n− �+1) is less than �, we do not need to compute values
which is described by the second item. Actually, we do not need to compute the
values in 〈n − �+ 1〉 for computing the LCS since the maximum row number in
the last diagonal line is also �. However, we need the values on the last line in
our algorithm. Hence the table FA uses O((� + 1)(n − � + 1)) space (subtable
which need to compute is parallelogram-shaped of height � and base n − �). See
Fig. 3 for an instance of FA.

Now we describe a main part of our algorithm. Recall that a basic idea is to
compute lcs(A[1..i], B[1..j]) from FA. If we have all the values on the table fA,
we can check the length lcs(A[1..i], B[1..j]) as follows.

Observation 1. The length of an LCS of A[1..i] and B[1..j] for any i, j ∈ [1..n]
is the largest s such that fA(s, i) ≤ j. If no such s exists, A[1..i] and B[1..j] have
no common subsequence of length s.

However, FA does not store several integer values w.r.t. the second condition of
undefined for some i and j. See also Fig. 3 for an example of the fact. In this
example, we can see that lcs(A[1..7], B[1..4]) = fA(3, 7) = 3 from the table fA,
but FA(3, 7) = undefined in FA. In order to resolve this problem, we also define
FB (and fB). Formally, for any integers j, s ∈ [1..n], let fB(s, j) be the length of
the shortest prefix A[1..fB(s, j)] of A such that the length of the longest common
subsequence of B[1..j] and A[1..fB(s, j)] is s. Our algorithm accesses the length
of an LCS of A[1..i] and B[1..j] for any given i and j by using two tables FA

and FB . The following lemma shows a key property for the solution.
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Fig. 2. The LCS-table fA which is defined by Nakatsu et al. of A = bcdababcb. This
figure also illustrates the table fB of B = cbacbaaba.

Fig. 3. A sparse table FA of fA for A = bcdababcb and B = cbacbaaba does not give
lcs(A[1..i], B[1..j]) for some (i, j).

Lemma 1. Let s be the length of an LCS of A[1..i] and B[1..j]. If FA(s, i) =
undefined then FB(s, j) �= undefined.

This lemma implies that the length of an LCS of A[1..i] and B[1..j] can be
obtained if we have the two sparse tables (see also Fig. 4). Before we prove this
lemma, we show the following property. Let UFA

be the set of pairs (s, i) of
integers such that FB(s, j) �= undefined where FA(s, i) = j.
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Fig. 4. Due to Observation 1, fA(3, 7) gives the fact that lcs(A[1..7], B[1..4]) = 3.
However, FA(3, 7) = undefined. Then we can obtain the fact that lcs(A[1..7], B[1..4]) =
3 by using FB . Namely, FB(3, 4) gives the LCS value.

Lemma 2. For any 1 ≤ s ≤ lcs(A,B), there exists i such that (s, i) ∈ UFA
.

Proof. Let � = lcs(A,B) and A[i1] · · · A[i�] be an LCS of A and B which can be
obtained by backtracking over FA. Suppose that FB(s, FA(s, is)) = undefined
for some s ∈ [1..�]. Since FA(1, i1) < . . . < FA(�, i�), FB(s′, FA(s′, is′)) =
undefined for any s′ ∈ [s..�]. However, FB(�, FA(�, i�)) is not undefined. Therefore,
FB(s, FA(s, is)) �= undefined for any s ∈ [1..�]. This implies that the statement
holds. ��
Now we are ready to prove Lemma 1 as follows.

Proof (of Lemma 1). Let � = lcs(A,B) and X = A[i1] · · · A[i�] be an LCS of A
and B which can be obtained by FA. j1, . . . , j� denotes the sequence of positions
over B where FA(k, ik) = jk for any k ∈ [1..�]. Assume that FA(s, i) = undefined.
Let m be the largest integer such that is+m ≤ i holds. If no such m exists,
namely i < i1, the statement holds since FA(s, i) �= undefined. Due to Lemma 1,
FA(s + m, i) > j. Thus j < js+m holds. On the other hand, we consider the
table FB (and fB). Let i′ = fB(s, j) and i′′ = fB(s + m, j). Due to Lemma 1,
i′ ≤ i < i′′ holds. From Lemma 2, FB(s + m, js+m) �= undefined. This implies
that FB(s + m, j) (= i′′) is not undefined. By the definition of X, js+m − j ≥
m− 1. Notice that (s, j) is in (j − s+1)-th diagonal line. These facts imply that
FB(s, j) �= undefined. See also Fig. 5 for an illustration. ��
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Fig. 5. This figure shows an illustration for the proof of Lemma 1. The length s of an
LCS of A[1..i] and B[1..j] cannot be obtained over FA because FA(i, s) = undefined
(the highlighted cell). However, the length can be obtained by FB(s, j) over FB . The
existence of FB(s + m, js+m) from an LCS path guarantees the fact that FB(s, j) �=
undefined.

3.3 Algorithm

First, our algorithm computes sets of minimal intervals IA and IB (similar to
the algorithm by Deorowicz [5]). Second, compute the tables FA and FB for
computing LCSs of prefixes, and the tables FAR and FBR for computing LCSs
of suffixes (similar to the algorithm by Nakatsu et al. [10]). Third, for any pairs
of intervals in IA and IB, compute the length of an LCS of corresponding pre-
fixes/suffixes and obtain a candidate of the length of an STR-IC-LCS. As stated
above, the first and the second steps are similar to the previous work. Here, we
describe a way to compute the length of an LCS of prefixes on FA and FB in the
third step. We can also compute the length of an LCS of suffixes on FAR and
FBR by using a similar way.

We assume that IA and IB are sorted in increasing order of the beginning
positions. Let [bA(x)..eA(x)] and [bB(y)..eB(y)] be a x-th interval in IA and a y-
th interval in IB, respectively. We process O(n2)-queries in increasing order of the
beginning position of the intervals in IA. For each interval [bA(x)..eA(x)] in IA,
we want to obtain the length of an LCS of A[1..bA(x) − 1] and B[1..bB(1) − 1].
For convenience, let ix = bA(x) − 1 and jy = bB(y) − 1. In the rest of this
section, we use a pair (x, y) of integers to denote a prefix-LCS query (computing
lcs(A[1..ix], B[1..iy])). We will find the LCS by using Observation 1. Here, we
describe how to compute prefix-LCS queries (ix, j1), . . . , (ix, j|IB |) in this order
for a fixed ix.
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Lemma 3. All required prefix-LCS values for an interval [bA(x)..eA(x)] in IA

and all intervals in IB can be computed in O(n) time.

Proof. There exist two cases for each ix. Formally, (1) FA[ix, 1] �= undefined or
(2) FA[ix, 1] = undefined.

In the first case, we scan the ix-th column of FA from the top to the bottom
in order to find the maximum value which is less than or equal to j1. If such
a value exists in the column, then the row number s1 is the length of an LCS.
After that, we are given the next prefix-LCS query (ix, j2). It is easy to see that
s0 = lcs(A[1..ix], B[1..j1]) ≤ lcs(A[1..ix], B[1..j2]) since j1 < j2. This implies that
the next LCS value is equal to s0 or that is placed in a lower row in the column.
This means that we can start to scan the column from the s0-th row. Thus we
can answer all prefix-LCSs for a fixed ix in O(n) time (that is linear in the size
of IB).

In the second case, we start to scan the column from the top FA[ix, ix − n −
� + 1] (the first ix − n − � rows are undefined). If FA[ix, ix − n − � + 1] ≤ j1,
then the length of an LCS for the first query (ix, j1) can be found in the table
(similar to the first case) and any other queries (ix, j2), . . . , (ix, j|IB |) can be also
answered in the similar way. Otherwise (if FA[ix, ix −n− �+1] > j1), the length
which we want may be in the “undefined” domain. Then we use the other table
FB . We scan the j1-th column in FB from the top to the bottom in order to find
the maximum value which is less than or equal to ix. By Lemma 1, such a value
must exist in the column (if lcs(A[1..ix], B[1..j1]) > 0 holds) and the row number
s′ is the length of an LCS. After that, we are given the next query (ix, j2). If
FA[ix, ix − n − � + 1] ≤ j2, then the length can be found in the table (similar
to the first case). Otherwise (if FA[ix, ix − n − � + 1] > j2), the length must
be also in the “undefined” domain. Since such a value must exist in the j2-th
column in FB by Lemma 1, we scan the column in FB. It is easy to see that
s′ = lcs(A[1..ix], B[1..j1]) ≤ lcs(A[1..ix], B[1..j2]). This implies that the length
of an LCS that we want to find is in lower row. Thus it is enough to scan the
j2-th column from the s′-th row to the bottom. Then we can answer the second
query (ix, j2). Hence we can compute all LCSs for a fixed ix in O(n + �) time
(that is linear in the size of IB or the number of rows in the table FB).

Therefore we can compute all prefix-LCSs for each interval in IA in O(n)
time (since n ≥ �). ��

On the other hand, we can compute all required suffix-LCS values with com-
puting prefix-LCS values. We want a suffix-LCS value of A[eA(x) + 1..n] and
B[eB(y) + 1..n] (1 ≤ y ≤ |IB |) when we compute the length of an LCS of
A[1..bA(x)− 1] and B[1..bB(y)− 1]. Recall that we process all intervals of IB in
increasing order of the beginning positions when computing prefix-LCS values
with a fixed interval of IA. This means that we need to process all intervals of
IB in “decreasing order” when computing suffix-LCS values with a fixed interval
of IA. We can do that by using an almost similar way on FAR and FBR . The
most significant difference is that we scan the |A[eA(x)+1..n]|-th column of FAR

from the �-th row to the first row.
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Overall, we can obtain the length of an STR-IC-LCS in O(n2) time in total.
Also this algorithm requires space for storing all minimal intervals and tables,
namely, requiring O(n+ (�+ 1)(n − �+ 1)) = O((�+ 1)(n − �+ 1)) space in the
worst case. Finally, we can obtain Theorem 1.

Algorithm 1. Algorithm for computing the length of STR-IC-LCS
Input: A,B, P (|A| = n, |B| = n, |P | = r)
Output: l, C

1: compute IA and IB

2: compute FA, FB , FAR , and FBR

3: � ← lcs(A,B);
4: l ← 0;
5: for i = 1 to |IA| do
6: kA

1 ← 1; kB
1 ← 1; kA

2 ← �; kB
2 ← �;

7: for j = 1 to |IB | do
8: k1 ← 0; k2 ← 0;
9: compute lcs(A[1..bA(i) − 1], B[1..bB(j) − 1]) // as k1 by Algorithm 2

10: compute lcs(A[eA(i) + 1..n], B[eB(j) + 1..n]) // as k2 by Algorithm 3
11: if k1 + k2 + r > l then
12: l ← k1 + k2 + r
13: end if
14: end for
15: end for
16: return l

In addition, we can also compute an STR-IC-LCS (as a string), if we store a
pair of minimal intervals which produce the length of an STR-IC-LCS. Namely,
we can find a cell which gives the prefix-LCS value over FA or FB . Then we
can obtain a prefix-LCS string by a simple backtracking (a suffix-LCS can be
also obtained by backtracking on FAR or FBR). On the other hand, we can also
use an algorithm that computes an LCS string in O(n2) time and O(n) space
by Hirschberg [6]. We conclude with supplemantal pseudocodes of our algorithm
(see Algorithms 1,2, and 3).
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Algorithm 2. Computing lcs(A[1..bA(i) − 1], B[1..bB(j) − 1])
1: for k ← kA

1 to � do
2: if FA[bA(i) − 1, k] ≤ bB(j) − 1 then
3: if FA[bA(i) − 1, k + 1] > bB(j) − 1 then
4: k1 ← k
5: kA

1 ← k
6: break
7: end if
8: else if FA[bA(i) − 1, k] > bB(j) − 1 then
9: if FA[bA(i) − 1, k − 1] = undefined then
10: kA

1 ← k

11: for k′ = kB
1 to � do

12: if FB [bB(j) − 1, k′] > bA(i) − 1 then
13: k1 ← 0
14: kB

1 ← k′
15: break
16: else if FB [bB(j) − 1, k′ + 1] > bA(i) − 1 then
17: k1 ← k′
18: kB

1 ← k′
19: break
20: end if
21: end for
22: else
23: k1 ← 0
24: kA

1 ← k
25: break
26: end if
27: end if
28: end for

Algorithm 3. Computing lcs(A[eA(i) + 1..n], B[eB(j) + 1..n])
1: for k = kA

2 to 1 do
2: if FAR [n − eA(i), k] ≤ n − eB(j) then
3: k2 ← k
4: kA

2 ← k
5: break
6: else if FAR [n − eA(i), k] > n − eB(j) then
7: if FAR [n − eA(i), k − 1] = undefined then
8: kA

2 ← k

9: for k′ = kB
2 to 1 do

10: if FBR [n − eB(j), k′] ≤ n − eA(i) then
11: k2 ← k′
12: kB

2 ← k′
13: break
14: else if FBR [n − eB(j), k′ − 1] = undefined then
15: k2 ← 0
16: kB

2 ← k′
17: break
18: end if
19: end for
20: end if
21: end if
22: end for
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4 Conclusions and Future Work

We have presented a space-efficient algorithm that finds an STR-IC-LCS of two
given strings A and B of length n in O(n2) time with O((�+1)(n−�+1)) working
space, where � is the length of an LCS of A and B. Our method improves on
the space requirements of the algorithm by Deorowicz [5] that uses Θ(n2) space,
irrespective of the value of �.

Our future work for STR-IC-LCS includes improvement of the O(n2)-time
bound to, say, O(n(n−�+1)). We note that the algorithm by Nakatsu et al. [10]
for finding (standard) LCS runs in O(n(n − � + 1)) time. There also exists an
O(nσ + (�′ + 1)(n − �′ + 1)r)-time solution for the STR-EC-LCS problem that
runs fast when the length �′ of the solution is small [13], where r = |P |.
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