
On the Complexity of Scheduling
Problems with a Fixed Number
of Parallel Identical Machines

Klaus Jansen(B) and Kai Kahler(B)

Department of Computer Science, Kiel University, Kiel, Germany
{kj,kka}@informatik.uni-kiel.de

Abstract. In parallel machine scheduling, we are given a set of jobs,
together with a number of machines and our goal is to decide for each
job, when and on which machine(s) it should be scheduled in order to
minimize some objective function. Different machine models, job char-
acteristics and objective functions result in a multitude of scheduling
problems and many of them are NP-hard, even for a fixed number of
identical machines. In this work, we give conditional running time lower
bounds for a large number of scheduling problems, indicating the opti-
mality of some classical algorithms. Most notably, we show that the algo-
rithm by Lawler and Moore for 1|| ∑ wjUj and Pm||Cmax, as well as
the algorithm by Lee and Uzsoy for P2|| ∑ wjCj are probably optimal.
There is still small room for improvement for the 1|Rej ≤ Q| ∑ wjUj

algorithm by Zhang et al., the algorithm for 1|| ∑ Tj by Lawler and the
FPTAS for 1|| ∑ wjUj by Gens and Levner. We also give a lower bound
for P2|any|Cmax and improve the dynamic program by Du and Leung
from O(nP 2) to O(nP ), matching this new lower bound. Here, P is the
sum of all processing times. The same idea also improves the algorithm
for P3|any|Cmax by Du and Leung from O(nP 5) to O(nP 2). While our
results suggest the optimality of some classical algorithms, they also
motivate future research in cases where the best known algorithms do
not quite match the lower bounds.

Keywords: SETH · Subset sum · Scheduling · Fine-grained
complexity · Pseudo-polynomial algorithms

1 Introduction

Consider the problem of working on multiple research papers. Each paper j has
to go to some specific journal or conference and thus has a given due date dj .
Some papers might be more important than others, so each one has a weight wj .
In order to not get distracted, we may only work on one paper at a time and
this work may not be interrupted. If a paper does not meet its due date, it is not
important by how much it misses it; it is either late or on time. If it is late, we
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must pay its weight wj . In the literature, this problem is known as 1||∑ wjUj and
it is one of Karp’s original 21 NP-hard problems [16]. The naming of 1||∑ wjUj

and the problems referred to in the abstract will become clear when we review
the three-field notation by Graham et al. [10] in Sect. 2. Even when restricted to
a fixed number of identical machines, many combinations of job characteristics
and objective functions lead to NP-hard problems. For this reason, a lot of
effort has been put towards finding either pseudo-polynomial exact or polynomial
approximation algorithms. Sticking to our problem 1||∑ wjUj , where we aim to
minimize the weighted number of late jobs on a single machine, there are e.g.
an O (nW ) algorithm by Lawler and Moore [21] and an FPTAS by Gens and
Levner [9]. Here, W is the sum of all weights wj and n is the number of jobs.

In recent years, research regarding scheduling has made its way towards
parameterized and fine-grained complexity (see e.g. [2,12,18,26,27]), where one
goal is to identify parameters that make a problem difficult to solve. If those
parameters are assumed to be small, parameterized algorithms can be very effi-
cient. Similarly, one may consider parameters like the total processing time P
and examine how fast algorithms can be in terms of these parameters, while
maintaining a sub-exponential dependency on n. That is our main goal in this
work. Most of our lower bounds follow from a lower bound for Subset Sum:

Problem 1. Subset Sum

Instance: Items a1, . . . , an ∈ N, integer target T ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai = T .

Fine-grained running time lower bounds are often based on the Exponential
Time Hypothesis (ETH) or the Strong Exponential Time Hypothesis (SETH).
Intuitively, the ETH conjectures that 3-Sat cannot be solved in sub-exponential
time and the SETH conjectures that the trivial running time of O (2n) is optimal
for k-Sat, if k tends to infinity. For details, see the original publication by
Impagliazzo and Paturi [13]. A few years ago, Abboud et al. gave a beautiful
reduction from k-Sat to Subset Sum [1]. Previous results based on the ETH
excluded 2o(n)T o(1)-time algorithms [15], while this new result based on the
SETH suggests that we cannot even achieve O (

2δnT 1−ε
)
:

Theorem 1 (Abboud et al. [1]). For every ε > 0, there is a δ > 0 such that
Subset Sum cannot be solved in time O (

2δnT 1−ε
)
, unless the SETH fails.1

By revisiting many classical reductions in the context of fine-grained complexity,
we transfer this lower bound to scheduling problems like 1||∑ wjUj . Although
lower bounds do not have the immediate practical value of an algorithm, it is
clear from the results of this paper how finding new lower bounds can push
research into the right direction: Our lower bound for the scheduling problem
P2|any|Cmax indicated the possibility of an O (nP )-time algorithm, but the
best known algorithm (by Du and Leung [8]) had running time O (

nP 2
)
. A

modification of this algorithm closes this gap.
It should be noted that all lower bounds in this paper are conditional, that

is, they rely on some complexity assumption. However, all of these assumptions
1 Though it might seem unintuitive at first, it is not required that ε < 1.
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are reasonable in the sense that a lot of effort has been put towards refuting
them. And in the unlikely case that they are indeed falsified, this would have
big complexity theoretical implications.

This paper is organized as follows: We first give an overview on terminology,
the related lower bounds by Abboud et al. [2] and our results in Sect. 2. Then
we examine scheduling problems with a single machine in Sect. 3 and problems
with two or more machines in Sect. 4. Finally, we give a summary as well as open
problems and promising research directions in Sect. 5.

2 Preliminaries

In this section, we first introduce the Partition problem, a special case of
Subset Sum from which many of our reductions start. Then we recall common
terminology from scheduling theory and finally, we give a short overview of the
recent and closely related work [2] by Abboud et al. and briefly state our main
results.

Throughout this paper, log denotes the base 2 logarithm. Moreover, we
write [n] for the set of integers from 1 to n, i.e. [n] := {1, . . . , n}. If we con-
sider a set of items or jobs [n] and a subset S ⊆ [n], we use S = [n]\S to denote
the complement of S. The Õ-notation hides poly-logarithmic factors.

2.1 Subset Sum and Partition

In this work, we provide lower bounds for several scheduling problems; our main
technique are fine-grained reductions, which are like polynomial-time reductions,
but with more care for the exact sizes and running times. With these reductions,
we can transfer the (supposed) hardness of one problem to another. Most of the
time, our reductions start with an instance of Subset Sum or Partition and
construct an instance of some scheduling problem. Partition is the special case
of Subset Sum, where the sum of all items is exactly twice the target value:

Problem 2 Partition

Instance: Items a1, . . . , an ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai =∑

i∈S̄ ai.

In the following, we always denote the total size of all items by A :=
∑n

i=1 ai

for Subset Sum and Partition. Note that we can always assume that T ≤ A,
since otherwise the target cannot be reached, even by taking all items. Moreover,
in the reduction by Abboud et al. [1], A and T are quite close, in particular, we
can assume that A = poly(n)T . Hence, if we could solve Subset Sum in time
O (

2δnA1−ε
)

for some ε > 0 and every δ > 0, this would contradict Theorem 1
for large enough n. For details on this, we refer to the full version [14].

Corollary 1. For every ε > 0, there is a δ > 0 such that Subset Sum cannot
be solved in time O (

2δnA1−ε
)
, unless the SETH fails.
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Using a classical reduction from Subset Sum to Partition that only adds
two large items, we also get the following lower bound for Partition (for a
detailed proof, see [14]):

Theorem 2. For every ε > 0, there is a δ > 0 such that Partition cannot be
solved in time O (

2δnA1−ε
)
, unless the SETH fails.

2.2 Scheduling

In all scheduling problems we consider, we are given a number of machines and
a set of n jobs with processing times pj , j ∈ [n]; our goal is to assign each
job to (usually) one machine such that the resulting schedule minimizes some
objective.2 So these problems all have a similar structure: A machine model, some
(optional) job characteristics and an objective function. This structure motivates
the use of the three-field notation introduced by Graham et al. [10]. Hence, we
denote a scheduling problem as a triple α|β|γ, where α is the machine model, β is
a list of (optional) job characteristics and γ is the objective function. As is usual
in the literature, we leave out job characteristics like due dates that are implied
by the objective function, e.g. for 1||∑ wjUj . In this work, we mainly consider
the decision variants of scheduling problems (as opposed to the optimization
variants). In the decision problems, we are always given a threshold denoted by
y and the task is to decide whether there is a solution with value at most y. Note
that the optimization and the decision problems are – at least in our context –
equivalent: An algorithm for the decision problem can be used to find a solution
of the optimization problem with a binary search over the possible objective
values (which are always integral and bounded, here). Vice versa, an algorithm
for the optimization problem can also solve the decision problem.

In order to have a unified notation, given some job-dependent parameters
g1, . . . , gn (e.g. processing times), we let gmax := maxi∈[n] gi, gmin := mini∈[n] gi

and G :=
∑

i∈[n] gi. We now briefly go over the considered machine models, job
characteristics and objective functions.

As the title of this work suggests, we consider problems with a fixed number
of m parallel identical machines, denoted by ‘Pm’ if m > 1 or simply ‘1’ if m = 1.
In this setting, a job has the same processing time on every machine.

In the case of rigid and moldable jobs, each job has a given ‘size’ and must
be scheduled on that many machines or it may be scheduled on ‘any’ number
of machines, respectively, needing a possibly different (usually lower) processing
time when scheduled on multiple machines. Sometimes, not all jobs are available
at time 0, but instead each job j arrives at its release date ‘rj ’.3 Similarly, jobs
might have deadlines dj (i.e. due dates that may not be missed) and we must
assure that ‘Cj ≤ dj ’ holds for every job j, where Cj is the completion time of j.
Additionally, every job j might have a weight wj and we are allowed to reject

2 Depending on the scheduling problem, it may also be important in which order the
jobs of a machine are scheduled or whether there are gaps between the execution of
consecutive jobs.

3 This is not to be confused with online scheduling; we know the rj ’s in advance.
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(i.e., choose not to schedule) jobs of total weight at most Q; this constraint is
denoted by ‘Rej ≤ Q’.4

The arguably most popular objective in scheduling is to minimize the so-
called makespan ‘Cmax’, which is the largest completion time Cj among all jobs j,
i.e. the time at which all jobs are finished. In order to give the jobs different pri-
orities, we can minimize the total (weighted) completion time ‘

∑
Cj ’ (‘

∑
wjCj ’).

If there is a due date dj for each job, we might be concerned with minimizing
the (weighted) number of late jobs ‘

∑
Uj ’ (‘

∑
wjUj ’), where Uj = 1 if j is late,

i.e. Cj > dj and Uj = 0 otherwise. Similar objectives are the maximum lateness
‘Lmax’ and the maximum tardiness ‘Tmax’ of all jobs, where the lateness Lj of
job j is the (uncapped) difference Cj − dj and the tardiness Tj is the (capped)
difference max{Cj − dj , 0}. Another objective, the total tardiness ‘

∑
Tj ’, mea-

sures the tardiness of all jobs together and the total late work ‘
∑

Vj ’ is the late
work Vj := min{pj , Cj − dj} summed over all jobs. Both objectives may also
appear in combination with weights. Lastly, if release dates rj are present, we
might be interested in minimizing the maximum flow time ‘Fmax’, the total flow
time ‘

∑
Fj ’ or the weighted total flow time ‘

∑
wjFj ’. These objectives are sim-

ilar to the previous ones; Fj , the flow time of job j, is defined as Fj := Cj − rj ,
i.e. the time that passes between j’s release and completion.

2.3 The Scheduling Lower Bounds by Abboud et al.

In their more recent work [2], Abboud et al. show lower bounds for the problems
1||∑ wjUj , 1|Rej ≤ Q|∑ Uj , 1|Rej ≤ Q|Tmax, 1|rj , Rej ≤ Q|Cmax, P2||Tmax,
P2||∑ Uj , P2|rj |Cmax and P2|level-order|Cmax.5 From those problems, only
1||∑ wjUj appears in this version; the full version [14] also contains results
for 1|Rej ≤ Q|∑ Uj , 1|Rej ≤ Q|Tmax, P2||Tmax and P2||∑ Uj . As we will see
however, the results by Abboud et al. are not directly comparable to our results.

Standard dynamic programming approaches often give running times like
O (nP ); on the other hand, it is usually possible to try out all subsets of jobs,
yielding an exponential running time like O (2npolylog(P )) (see e.g. the work
by Jansen et al. [15]). The intuitive way of thinking about our lower bounds
is that we cannot have the best of both worlds, i.e.: ‘An algorithm cannot be
sub-exponential in n and sub-linear in P at the same time.’ To be more specific,
most of our lower bounds have this form: For every ε > 0, there is a δ > 0 such
that the problem cannot be solved in time O (

2δnP 1−ε
)
.

However, note that algorithms with running time Õ (n + P ) or Õ (n + pmax)
are not excluded by our bounds, as they are not sub-linear in P . But in a setting
where n and P (resp. pmax) are roughly of the same order, such algorithms
would be much more efficient than the dynamic programming approaches. In
particular, they would be near-linear in n instead of quadratic. This is where

4 This is usually denoted by Rej ≤ R, but since we will use R for the sum of all release
dates, we denote the total rejection weight by Q.

5 In ‘level-order’ problems, the jobs are ordered hierarchically and all jobs of one level
have to be finished before jobs of higher levels can be scheduled.
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the lower bounds from the more recent paper [2] by Abboud et al. come into play,
as they have the following form: There is no ε > 0 such that the problem can
be solved in time Õ (

n + pmaxn
1−ε

)
, unless the ∀∃-SETH fails. The ∀∃-SETH is

similar to the SETH, but assuming yet another assumption (the NSETH), ∀∃-
SETH is a strictly stronger assumption than SETH. However, these lower bounds
by Abboud et al. [2] can exclude algorithms with an additive-type running time
Õ (n + pmax). Algorithms with running time Õ (n + pmaxn) may still be possible,
but they would only be near-quadratic instead of near-linear in the n ≈ pmax

setting. It should be noted that our lower bounds also include parameters other
than pmax, e.g. the largest due date dmax or the threshold for the objective
value y.

2.4 Our Results

The main contribution of this work is two-fold: On the one hand, we give plenty of
lower bounds for classical scheduling problems with a fixed number of machines.
These lower bounds all either rely on the ETH, SETH or the (min,+)-conjecture6

and are shown by revisiting classical reductions in the context of fine-grained
complexity, i.e., we pay much attention to the parameters of the constructed
instances. On the other hand, we show how the dynamic programming algo-
rithms for P2|any|Cmax and P3|any|Cmax by Du and Leung [8] can be improved.
Most notably, we show the following (for the precise statements, we refer to the
upcoming sections):

– The algorithm by Lawler and Moore [21] is probably optimal for 1||∑ wjUj

and Pm||Cmax.
– The algorithm by Lee and Uzsoy [23] is probably optimal for P2||∑ wjCj .
– The algorithm by Zhang et al. [30] for 1|Rej ≤ Q|∑ wjUj , the algorithm by

Lawler [19] for 1||∑ Tj and the FPTAS by Gens and Levner [9] for 1||∑ wjUj

are nearly optimal, but there is still some room for improvement.
– P2|any|Cmax can be solved in time O (nP ) and this is probably optimal.
– P3|any|Cmax can be solved in time O (

nP 2
)
, which greatly improves upon

the O (
nP 5

)
-time algorithm by Du and Leung [8].

Due to space restrictions, this version does not include the following content,
which can be found in the full version [14]:

– Lower bounds for strongly NP-hard problems,
– implications of our lower bounds for other scheduling problems using classical

reductions between objective functions (see Fig. 1),
– detailed correctness proofs of the classical reductions from the literature and
– proofs of some of our (less prominent or more technical) results.

6 Under the (min, +)-conjecture, the (min, +)-convolution problem cannot be solved
in sub-quadratic time, see [6] for details.
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Note that our SETH-based lower bounds mainly show that improvements for
some pseudo-polynomial algorithms are unlikely. For problems that are strongly
NP-hard, pseudo-polynomial algorithms cannot exist, unless P = NP [4]. How-
ever, the lower bounds for strongly NP-hard problems may be of independent
interest, e.g. in the context of parameterized algorithms.

Fig. 1. Classical reductions between objective functions (see e.g. [20] and the very
useful website http://schedulingzoo.lip6.fr/about.php).

3 Problems with One Machine

In this section, we consider problems on a single machine. For these problems,
the main task is to order the jobs. First, consider again the problem 1||∑ wjUj

of minimizing the weighted number of late jobs on a single machine. With a
reduction very similar to the one by Karp [16], we get the following lower bound:7

Theorem 3. For every ε > 0, there is a δ > 0 such that 1||∑ wjUj cannot be
solved in time O (

2δn(dmax + y + P + W )1−ε
)
, unless the SETH fails.

7 It should be noted that some of the parameters in our lower bounds could be omitted,
as they are overshadowed by others. For example, we can assume w.l.o.g. that dmax ≤
P for 1|| ∑ wjUj , since we can assume a schedule to be gap-less and hence due dates
larger than P could be set to P . But having all the parameters in the lower bound
makes the comparison with known upper bounds easier.

http://schedulingzoo.lip6.fr/about.php
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Proof. Let a1, . . . , an be a Partition instance and let T = 1
2

∑n
i=1 ai. Construct

an instance of 1||∑ wjUj by setting pj = wj = aj , dj = T for each j ∈ [n] and
y = T . The idea is that the jobs corresponding to items in one of the partitions
can be scheduled early (i.e. before the uniform due date T ).

With this reduction, we get N := n jobs. We have P =
∑n

i=1 ai = A and
hence K := dmax + y + P + W = T + T + A + A = poly(n)A = ncA. The
reduction itself takes time O (N). Assuming that we can solve 1||∑ wjUj in time
O (

2δNK1−ε
)

for some ε > 0 and every δ > 0, we could also solve Partition in
time:

O (N) + O (
2δNK1−ε

)
= O (n) + O (

2δn(ncA)1−ε
) ≤ O (

2δnncA1−ε
)

= O
(
2δn+c log(n)A1−ε

)

≤ O (
22δnA1−ε

)

The last step holds for large enough n; for smaller n, we can solve the problem
efficiently, anyway, as n is then bounded by a constant. Now, to contradict
Theorem 2, we can set ε′ := ε and for every δ′ > 0, we have δ = δ′

2 > 0. So by

assumption, we can solve Partition in time O (
22δnA1−ε

)
= O

(
2δ′nA1−ε′

)
. �	

Using the algorithm by Lawler and Moore [21], 1||∑ wjUj is solvable in time
O (nW ) or O (nmin{dmax, P}). Our O (

2δn(dmax + y + P + W )1−ε
)
-time lower

bound suggests the optimality of both variants, as we cannot hope to reduce
the linear dependency on W , dmax or P without getting a super-polynomial
dependency on n. As noted above, Abboud et al. [2] exclude Õ (

n + pmaxn
1−ε

)
-

time algorithms; Hermelin et al. [12] exclude algorithms with running time
Õ (

n + wmaxn
1−ε

)
, Õ (

n + w1−ε
maxn

)
and Õ (

nO(1) + d1−ε
max

)
(all under the stronger

∀∃-SETH).
One interesting property of 1||∑ wjUj is that its straightforward formulation

as an Integer Linear Program has a triangular structure that collapses to a single
constraint when all due dates are equal (see e.g. Lenstra and Shmoys [25]). This
shows that the problem is closely related to Knapsack:

Problem 3. Knapsack

Instance: Item values v1, . . . , vn ∈ N, item sizes a1, . . . , an ∈ N, knapsack
capacity T ∈ N and threshold y.

Task: Decide whether there is a subset S of items with
∑

j∈S aj ≤ T and∑
j∈S vj ≥ y.

Cygan et al. [6] conjectured that the (min,+)-Convolution problem cannot
be solved in sub-quadratic time (this is known as the (min,+)-conjecture) and
showed that this conditional lower bound transfers to Knapsack, excluding
O (

(n + T )2−δ
)

algorithms. As noted by Mucha et al. [28], these results also
hold when we swap the role of sizes and values. As we can discard items with
too large value vi, a lower bound depending on the largest item value vmax

directly follows from Corollary 9.6 in [28]:
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Corollary 2. For any constant δ > 0, there is no O
(
(n + vmax)

2−δ
)
-time exact

algorithm for Knapsack, unless the (min,+)-conjecture fails.

We show that the conditional hardness of Knapsack transfers to 1||∑ wjUj :

Theorem 4. For any constant δ > 0, the existence of an exact algorithm for
1||∑ wjUj with running time O (

(n + wmax)2−δ
)
refutes the (min,+)-conjecture.

Proof. We give a reduction from Knapsack to 1||∑ wjUj . Consider an instance
v1, . . . , vn, a1, . . . , an, T , y of Knapsack. We construct jobs with pj = aj ,
wj = vj and dj = T for every j ∈ [n]. The threshold is set to y′ =

∑n
j=1 vj − y.

Suppose that there is an O (
(n + wmax)2−δ

)
-time algorithm for 1||∑ wjUj .

Since wmax = vmax in the reduction and the reduction takes time O (n), we could
then solve Knapsack in time O (n)+O (

(n + wmax)2−δ
)

= O
(
(n + vmax)

2−δ
)
,

which is a contradiction to Corollary 2, unless the (min,+)-conjecture fails. �	
Lower bounds such as this one also imply lower bounds for approximation

schemes, as setting the accuracy parameter ε small enough yields an exact solu-
tion. The above result implies the following (see the full version [14] for the
proof):

Corollary 3. For any constant δ > 0, the existence of an O (
(n + 1

2nε )2−δ
)
-

time approximation scheme for the optimization version of 1||∑ wjUj refutes
the (min,+)-conjecture.

As the currently fastest FPTAS by Gens and Levner [9] has running time
O (

n2(log(n) + 1
ε )

)
, there is still a small gap. This relation between exact and

approximation algorithms might also be an interesting subject of further inves-
tigation, as many other scheduling problems admit approximation schemes and
exact lower bounds.

We wish to mention two other results that follow from examining classical
reductions, the proofs of which can also be found in the full version [14]. The
first result concerns 1||∑ Tj :

Theorem 5. For every ε > 0, there is a δ > 0 such that 1||∑ Tj cannot be
solved in time O (

2δnP 1−ε
)
, unless the SETH fails.

There is an O (
n4P

)
-time algorithm by Lawler [19] and while we can derive no

statement about the exponent of n, our lower bound suggests that an improve-
ment of the linear factor P is unlikely without getting a super-polynomial depen-
dency on n. We have a similar situation for the problem 1|Rej ≤ Q|Cmax:

Theorem 6. For every ε > 0, there is a δ > 0 such that 1|Rej ≤ Q|Cmax cannot
be solved in time O (

2δn(y + P + Q + W )1−ε
)
, unless the SETH fails.

The lower bound can also be shown to hold for 1|Rej ≤ Q|∑ wjUj using reduc-
tions between objective functions (see Fig. 1) and this problem can be solved
in time O (nQP ) with the algorithm by Zhang et al. [30]. This almost matches
our lower bound: An algorithm with running time O (n(Q + P )) might still be
possible, for example.
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4 Problems with Multiple Machines

We now turn our attention to problems on two or more machines. For standard
jobs, a straightforward reduction from Partition yields the following result
(for a formal proof, see [14]):

Theorem 7. For every ε > 0, there is a δ > 0 such that P2||Cmax cannot be
solved in time O (

2δn(y + P )1−ε
)
, unless the SETH fails.

This lower bound also applies to the harder objectives (e.g. Tmax) and in par-
ticular to P2||∑ wjUj (using the reductions in Fig. 1); the dynamic program
by Lawler and Moore [21] (which is also sometimes attributed to Rothkopf [29])
solves most common objectives like Cmax and Tmax in time O (ny) but needs
O (

ny2
)

for P2||∑ wjUj (see [25], in particular exercise 8.10). So the gap is
likely closed in the Cmax, Tmax, . . . cases, but there is still a factor-y-gap for the∑

wjUj-objective.
In general, the dynamic program by Lawler and Moore [21] solves Pm||Cmax

in a running time of O (
nmym−1

) ≤ O (
nmPm−1

)
. Our matching lower bound

for m = 2 gives rise to the question whether the running time is optimal for

general m > 1. Chen et al. [5] showed a 2O
(

m
1
2 −δ

√
|I|

)
-time lower bound for

Pm||Cmax and with a careful analysis, one can also show the following lower
bound (see the full version [14] for a proof):

Theorem 8. There is no O
(

nmP
o
(

m
log2(m)

))

-time algorithm for Pm||Cmax,

unless the ETH fails.

So the algorithm by Lawler and Moore [21] is indeed almost optimal, as we
can at best hope to shave off logarithmic factors in the exponent (assuming
the weaker assumption ETH). Since the algorithm not only works for Cmax,
one might ask whether we can find similar lower bounds for other objectives as
well. For most common objective functions, we answer this question positively
using the reductions in Fig. 1 (see the full version [14]), but it remains open for∑

wjCj . Note that the unweighted Pm||∑ Cj is polynomial-time solvable [3].
An alternative dynamic program by Lee and Uzsoy [23] solves Pm||∑wjCj

in time O (
mnWm−1

)
. In order to get a matching lower bound (i.e. one that

depends on the weights) for m = 2, we examine another classical reduction:

Theorem 9. For every ε > 0, there is a δ > 0 such that P2||∑ wjCj cannot
be solved in time O (

2δn(
√

y + P + W )1−ε
)
, unless the SETH fails.

Proof. We show that the lower bound for Partition can be transferred to
P2||∑ wjCj using the reduction by Lenstra et al. [24] and Bruno et al. [3].

Given a Partition instance a1, . . . , an, we construct a P2||∑ wjCj instance
in the following way: Define pj = wj = aj for all j ∈ [n] and set the limit
y =

∑
1≤i≤j≤n ajai − 1

4A2. Of course, the idea of the reduction is that the limit
y forces the jobs to be equally distributed among the two machines (regarding
the processing time).
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Assume that there is an algorithm that solves an instance of P2||∑ wjCj

in time O (
2δNK1−ε

)
for some ε > 0 and every δ > 0, where N := n and

K :=
√

y + P + W . By the choice of y, we can see that

y =
∑

1≤i≤j≤n

ajai − 1
4
A2 ≤

⎛

⎝
∑

j∈[n]

aj

⎞

⎠

2

− 1
4
A2 =

3
4
A2 = O (

A2
)
.

Since wj = pj = aj , we also have P = W = A. Hence, we have K =
√

y+P+W =
O (A + A + A) = O (A) and an algorithm with running time

O (
2δNK1−ε

)
= O

(
2δnO (A)1−ε

)
= O (

2δnc1−εA1−ε
)

= O (
2δnA1−ε

)

would contradict the lower bound for Partition from Theorem 2. Here, c cov-
ers the constants in the O-term and the running time O (N) of the reduction
vanishes. �	
So the O (nW )-time algorithm by Lee and Uzsoy [23] is probably optimal for
P2||∑ wjCj , as we cannot hope to reduce the linear dependency on W without
getting a super-polynomial dependency on n.

We briefly turn our attention towards rigid jobs. Clearly, P2|size|Cmax is
a generalization of P2||Cmax (the latter problem simply does not have two-
machine jobs), so we get the following lower bound (for a formal proof, see the
full version [14]):

Theorem 10. For every ε > 0, there is a δ > 0 such that P2|size|Cmax cannot
be solved in time O (

2δn(y + P )1−ε
)
, unless the SETH fails.

Similarly, the algorithm by Lawler and Moore [21] can be used to find a feasi-
ble schedule for the one-machine jobs and the two-machine jobs can be sched-
uled at the beginning. This gives an O (ny)-time algorithm for P2|size|Cmax,
and the linear dependency on y cannot be improved without getting a super-
polynomial dependency on n, unless the SETH fails. For other objectives, the
problem quickly becomes more difficult: Already P2|size|Lmax is strongly NP-
hard, as well as P2|size|∑ wjCj (for both results, see Lee and Cai [22]). It is still
open whether the unweighted version P2|size|∑ Cj is also strongly NP-hard or
whether there is a pseudo-polynomial algorithm; this question has already been
asked by Lee and Cai [22], more than 20 years ago.

It is not hard to see that the hardness of P2||Cmax also transfers to moldable
jobs (i.e. P2|any|Cmax); we simply create an instance where it does not make
sense to schedule any of the jobs on two machines (again, for a formal proof, see
the full version [14]):

Theorem 11. For every ε > 0, there is a δ > 0 such that P2|any|Cmax cannot
be solved in time O (

2δn(y + P )1−ε
)
, unless the SETH fails.

The problems P2|any|Cmax and P3|any|Cmax can be solved via dynamic pro-
gramming, as shown by Du and Leung [8] (a nice summary is given in the book
by Drozdowski [7]). We show that these programs can be improved to match our
new lower bound for the two-machine case:
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Theorem 12. The problem P2|any|Cmax can be solved in time O (nP ) via
dynamic programming.

Proof. Assume that we are given processing times pj(k), indicating how long it
takes to run job j on k machines. The main difficulty is to decide whether a job
is to be processed on one or on two machines. Our dynamic program fills out a
table F (j, t) for every j ∈ [n] and t ∈ [y], where the entry F (j, t) is the minimum
load we can achieve on machine 2, while we schedule all the jobs in [j] and
machine 1 has load t. To fill the table, we use the following recurrence formula:

F (j, t) = min

⎧
⎪⎨

⎪⎩

F (j − 1, t − pj(1))
F (j − 1, t) + pj(1)
F (j − 1, t − pj(2)) + pj(2)

Intuitively speaking, job j is executed on machine 1 in the first case, on machine
2 in the second case and on both machines in the third case. The initial entries
of the table are F (0, 0) = 0 and F (0, t) = ∞ for every t ∈ [y].

There are ny ≤ n
∑n

j=1 max{pj(1), pj(2)} = O (nP ) entries we have to com-
pute.8 Then, we can check for every t ∈ [y] whether F (n, t) ≤ y. If we find such
an entry, this directly corresponds to a schedule with makespan at most y, so we
can accept. Otherwise, there is no such schedule and we can reject. The actual
schedule can be obtained by traversing backwards through the table; alterna-
tively, we can store the important bits of information while filling the table (this
works exactly like, e.g., in the standard knapsack algorithm). Note that we might
have to reorder the jobs such that the jobs executed on two machines are run in
parallel. But it can be easily seen that all two-machine jobs can be executed at
the beginning of the schedule. Computing the solution and reordering does not
change the running time in O-notation, so we get an O (nP ) algorithm. �	
As Theorem 11 shows, improving the dependency on P to sub-linear is only possi-
ble if we get a super-polynomial dependency on n, unless the SETH fails. Using
a similar recurrence formula and the fact that information about an optimal
placement of jobs directly leads to an optimal schedule (i.e. there is a canonical
schedule), one can show a similar result for P3|any|Cmax (see the full version [14]
for a proof):

Theorem 13. The problem P3|any|Cmax can be solved in time O (
n2P

)
via

dynamic programming.

This improves upon the O (
nP 5

)
-algorithm by Du and Leung [8]. Even though

the same approach could be applied to an arbitrary number of machines m in
time O (

nmPm−1
)
, the strong NP-hardness of Pm|any|Cmax for m ≥ 4 shows

that the information on which machine each job is scheduled is not enough to
directly construct an optimal schedule in those cases, unless P=NP (see Henning
et al. [11] as well as Du and Leung [8]).
8 The precise definition of P in this context does not matter for the running time in

O-notation; we can either add pj(1) and pj(2) to the sum or just the larger of the
two.
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5 Conclusion

In this work, we examined the complexity of scheduling problems with a fixed
number of machines. Our conditional lower bounds indicate the optimality of
multiple well-known classical algorithms. For the problems P2|any|Cmax and
P3|any|Cmax, we managed to improve the currently best known algorithm, clos-
ing the gap in the case of two machines.

As we have seen at the example of 1||∑ wjUj , lower bounds for exact
algorithms can be quite easily used to obtain lower bounds for approximation
schemes. We strongly believe that the same technique can be used for other
problems, either to show tightness results or to indicate room for improvement.

For exact algorithms, there is a number of open problems motivated by our
results: First of all, there is still a gap between our lower bound for Pm||Cmax

(and other objectives) and the algorithm by Lawler and Moore [21]. So an
interesting question is where the ‘true’ complexity lies between m − 1 and
o
(

m
log2(m)

)
in the exponent. Zhang et al. give an O (n(rmax + P ))-time algorithm

for 1|rj , Rej ≤ Q|Cmax in their work [30]. Since rmax + P ≥ y w.l.o.g., it would
be interesting to find an O (

2δn(rmax + P )1−ε
)

or O (
2δny1−ε

)
lower bound for

this problem. As noted by Lenstra and Shmoys [25], the algorithm by Lawler and
Moore [21] cannot be improved to O (

mnym−1
)

for the objective
∑

wjUj . So
this algorithm would be quadratic in y for two machines, while our lower bound
excludes anything better than linear (and still polynomial in n). Hence, it would
be interesting to see whether there is a different algorithm with running time
O (ny). Similarly, there is an algorithm for 1|Rej ≤ Q|∑ wjUj with running
time O (nQP ) [30], while our lower bound suggests that an O (n(Q + P ))-time
algorithm could be possible.

On another note, it would be interesting to extend the sub-quadratic equiv-
alences by Cygan et al. [6] and Klein [17] to scheduling problems. Finally, the
question by Lee and Cai [22] whether P2|size|∑ Cj is strongly NP-hard or not
is still open since 1999.
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18. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched.
21(5), 493–503 (2017). https://doi.org/10.1007/s10951-017-0550-0

https://doi.org/10.1145/361011.361064
https://doi.org/10.1145/361011.361064
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1137/1.9781611973402.50
https://doi.org/10.1137/1.9781611973402.50
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1137/0402042
https://doi.org/10.1016/0166-218X(81)90008-1
https://doi.org/10.1016/0166-218X(81)90008-1
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.48550/ARXIV.2202.06841
https://doi.org/10.48550/ARXIV.2202.06841
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.48550/ARXIV.2202.07932
https://doi.org/10.48550/ARXIV.2202.07932
https://arxiv.org/abs/2202.07932
https://doi.org/10.1137/140952636
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1007/s10951-017-0550-0


206 K. Jansen and K. Kahler

19. Lawler, E.L.: A “pseudopolynomial” algorithm for sequencing jobs to minimize
total tardiness. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.)
Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 331–
342. Elsevier (1977). https://doi.org/10.1016/S0167-5060(08)70742-8

20. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H., Shmoys, D.B.: Chapter 9 sequenc-
ing and scheduling: algorithms and complexity. In: Logistics of Production and
Inventory, Handbooks in Operations Research and Management Science, vol. 4,
pp. 445–522. Elsevier (1993). https://doi.org/10.1016/S0927-0507(05)80189-6

21. Lawler, E.L., Moore, J.M.: A functional equation and its application to resource
allocation and sequencing problems. Manage. Sci. 16(1), 77–84 (1969). https://
doi.org/10.1287/mnsc.16.1.77

22. Lee, C.Y., Cai, X.: Scheduling one and two-processor tasks on two par-
allel processors. IIE Trans. 31(5), 445–455 (1999). https://doi.org/10.1080/
07408179908969847

23. Lee, C.Y., Uzsoy, R.: A new dynamic programming algorithm for the parallel
machines total weighted completion time problem. Operations Research Letters
11(2), 73–75 (mar 1992). https://doi.org/10.1016/0167-6377(92)90035-2

24. Lenstra, J.K., Rinnooy Kan, A.H., Brucker, P.: Complexity of machine scheduling
problems. Ann. Discrete Math. 1, 343–362 (1977). https://doi.org/10.1016/S0167-
5060(08)70743-X

25. Lenstra, J.K., Shmoys, D.B.: Elements of scheduling (2020). https://doi.org/10.
48550/ARXIV.2001.06005

26. Mnich, M., van Bevern, R.: Parameterized complexity of machine scheduling: 15
open problems. Comput. Oper. Res. 100, 254–261 (2018). https://doi.org/10.1016/
j.cor.2018.07.020

27. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Mathematical
Programming 154(1–2), 533–562 (dec 2015). https://doi.org/10.1007/s10107-014-
0830-9

28. Mucha, M., Wundefinedgrzycki, K., W�lodarczyk, M.: A subquadratic approxima-
tion scheme for partition. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 70–88. Society
for Industrial and Applied Mathematics, USA (2019). https://doi.org/10.1137/1.
9781611975482.5

29. Rothkopf, M.H.: Scheduling independent tasks on parallel processors. Manage. Sci.
12(5), 437–447 (1966). https://doi.org/10.1287/mnsc.12.5.437

30. Zhang, L., Lu, L., Yuan, J.: Single-machine scheduling under the job rejection
constraint. Theoret. Comput. Sci. 411(16–18), 1877–1882 (2010). https://doi.org/
10.1016/j.tcs.2010.02.006

https://doi.org/10.1016/S0167-5060(08)70742-8
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1080/07408179908969847
https://doi.org/10.1080/07408179908969847
https://doi.org/10.1016/0167-6377(92)90035-2
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1287/mnsc.12.5.437
https://doi.org/10.1016/j.tcs.2010.02.006
https://doi.org/10.1016/j.tcs.2010.02.006

	On the Complexity of Scheduling Problems with a Fixed Number of Parallel Identical Machines
	1 Introduction
	2 Preliminaries
	2.1 Subset Sum and Partition
	2.2 Scheduling
	2.3 The Scheduling Lower Bounds by Abboud et al.
	2.4 Our Results

	3 Problems with One Machine
	4 Problems with Multiple Machines
	5 Conclusion
	References




