
48th International Conference on Current Trends
in Theory and Practice of Computer Science, SOFSEM 2023
Nový Smokovec, Slovakia, January 15–18, 2023, Proceedings

SOFSEM 2023:
Theory and Practice
of Computer ScienceLN

CS
 1

38
78

AR
Co

SS
Leszek Gąsieniec (Ed.)

Lecture Notes in Computer Science 13878

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Leszek Gąsieniec (Ed.)

SOFSEM 2023:
Theory and Practice
of Computer Science
48th International Conference on Current Trends
in Theory and Practice of Computer Science, SOFSEM 2023
Nový Smokovec, Slovakia, January 15–18, 2023
Proceedings

123

Editor
Leszek Gąsieniec
University of Liverpool
Liverpool, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-23100-1 ISBN 978-3-031-23101-8 (eBook)
https://doi.org/10.1007/978-3-031-23101-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-23101-8

Preface

This volume contains the papers selected for presentation at SOFSEM 2023, the 48th
International Conference on Current Trends in Theory and Practice of Computer
Science, which was held during January 15–18, 2023, in Nový Smokovec, Slovakia.
SOFSEM (originally the SOFtware SEMinar) is an annual international winter con-
ference devoted to the theory and practice of computer science. Its aim is to present the
latest developments in research for professionals from academia and industry working
in leading areas of computer science. While being a well-established and fully inter-
national conference, SOFSEM also maintains the best of its original Winter School
aspects, such as a high number of invited talks, in-depth coverage of selected research
areas, and ample opportunity to discuss and exchange new ideas. The series of
SOFSEM conferences was interrupted in 2022 due to the COVID-19 pandemic, but
SOFSEM was held again this year, in scenic Nový Smokovec in the Tatra Mountains,
Slovakia.

The renewed scope and format of SOFSEM is focused entirely on the original
research and challenges in foundations of computer science including algorithms,
AI-based methods, computational complexity, and formal models. The SOFSEM 2023
Program Committee was formed of 24 international experts supported by 55 external
reviewers. Due to the new format and the post-pandemic sentiment in academia the
event attracted only 43 full submissions; however, these were of high quality. The
conference program consisted of 26 papers, where each accepted paper went through a
thorough selection process supported by at least three external reviews. All reviews
were single blind.

The SOFSEM 2023 Program Committee decided to split the prize for the Best Paper
Award between two papers: “Balanced Substructures in Bicolored Graphs,” by
P. S. Ardra, R. Krithika, S. Saurabh, and R. Sharma and “On the Complexity of
Scheduling Problems With a Fixed Number of Parallel Identical Machines,” by K.
Kahler and K. Jansen. Similarly, the Best Student Paper Award was split between two
papers: “On the 2-Layer Window Width Minimization Problem,” by M. Bekos, H.
Förster, M. Kaufmann, S. Kobourov, M. Kryven, A. Kuckuk, and L. Schlipf and
“Sequentially Swapping Tokens: Further on Graph Classes,” by H. Kiya, Y. Okada, H.
Ono, and Y. Otachi.

I would like to thank the invited speakers for their talks, including Věra Kůrková
(Institute of Computer Science of the Czech Academy of Sciences, Czech Republic),
“Some implications of high-dimensional geometry for classification by neural net-
works”, Gerth Stølting Brodal (Aarhus University, Denmark), “Data Structure Design –
Theory and Practice”, and Sławomir Lasota (Uniwersytet Warszawski, Poland),
“Ackermannian lower bound for the reachability problem of Petri nets”. Many thanks
go to the SOFSEM 2023 Program Committee members, the external reviewers, and the

creators of EasyChair system. Special thanks go to the SOFSEM Steering Committee
members Július Štuller and Jan van Leeuwen for their advice and support throughout
the whole conference cycle.

January 2023 Leszek Gąsieniec

vi Preface

Organization

General Chair

Peter Gurský Pavol Jozef Šafárik University in Košice, Slovakia

Program Committee

Amihood Amir Bar-Ilan University, Israel, and Georgia Tech, USA
Michael Blondin Université de Sherbrooke, Canada
Marek Chrobak University of California, Riverside, USA
Paola Flocchini University of Ottawa, Canada
Anna Gambin Uniwersytet Warszawski, Poland
Robert Ganian Vienna University of Technology, Austria
Leszek Gąsieniec (Chair) University of Liverpool, UK
Davide Grossi University of Groningen, Netherlands
Christoph Haase University of Oxford, UK
Cezary Kaliszyk University of Innsbruck, Austria
Ralf Klasing CNRS and University of Bordeaux, France
Rastislav Královič Comenius University in Bratislava, Slovakia
Giuseppe Liotta University of Perugia, Italy
Paweł Parys University of Warsaw, Poland
Vangelis Paschos LAMSADE, Paris Dauphine University, France
Daniel Paulusma Durham University, UK
Tomasz Radzik King’s College London, UK
David Sarne Bar-Ilan University, Israel
Christian Scheideler University of Paderborn, Germany
Paweł Sobociński Tallinn University of Technology, Estonia
Paul Spirakis University of Liverpool, UK
Grzegorz Stachowiak University of Wrocław, Poland
Sebastian Wild University of Liverpool, UK
Qin Xin University of the Faroe Islands, Faroe Islands

Steering Committee

Barbara Catania University of Genoa, Italy
Mirosław Kutyłowski Wrocław University of Technology, Poland
Tiziana Margaria-Steffen University of Limerick, Ireland
Branislav Rovan Comenius University in Bratislava, Slovakia
Petr Šaloun Technical University of Ostrava, Czech Republic
Július Štuller (Chair) Czech Academy of Sciences, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands

Additional Reviewers

Barloy, Corentin
Boneh, Itai
Bose, Prosenjit
Brakensiek, Joshua
Calamoneri, Tiziana
Chakraborty, Dibyayan
Chrzaszcz, Jacek
Chung, Neo Christopher
Czerwiński, Wojciech
Daming, Zhu
Deligkas, Argyrios
Di Lavore, Elena
Dojer, Norbert
Earnshaw, Matthew
Eiben, Eduard
Erlebach, Thomas
Fischer, Johannes
Fleischmann, Pamela
Foucaud, Florent
Fox, Kyle
Grüttemeier, Niels
Gupta, Siddharth
Hermelin, Danny
Itzhaki, Michael
Kindermann, Philipp
Klobas, Nina
Kobayashi, Yasuaki
Korchemna, Viktoriia

Kozłowski, Łukasz Paweł
Kurpicz, Florian
Kutner, David
Lubiw, Anna
Marcus, Shoshana
Montecchiani, Fabrizio
Niemiro, Wojciech
Niemyska, Wanda
Ochem, Pascal
Ordyniak, Sebastian
Ortali, Giacomo
Pajak, Dominik
Pardubska, Dana
Paszek, Jarosław
Patro, Subhasree
Polesiuk, Piotr
Przybylski, Bartłomiej
Raptopoulos, Christoforos
Raskin, Mikhail
Roditty, Liam
Román, Mario
Rzążewski, Paweł
Shabtay, Dvir
Skretas, George
Tappini, Alessandra
Walen, Tomasz
Wasa, Kunihiro

viii Organization

Contents

Graphs Problems and Optimisation

The Complexity of Finding Tangles . 3
Oksana Firman, Philipp Kindermann, Boris Klemz, Alexander Ravsky,
Alexander Wolff, and Johannes Zink

A Spectral Algorithm for Finding Maximum Cliques in Dense Random
Intersection Graphs . 18

Filippos Christodoulou, Sotiris Nikoletseas, Christoforos Raptopoulos,
and Paul G. Spirakis

Solving Cut-Problems in Quadratic Time for Graphs with Bounded
Treewidth. 33

Hauke Brinkop and Klaus Jansen

More Effort Towards Multiagent Knapsack . 47
Sushmita Gupta, Pallavi Jain, and Sanjay Seetharaman

Graph Drawing and Visualization

Dominance Drawings for DAGs with Bounded Modular Width 65
Giacomo Ortali and Ioannis G. Tollis

Morphing Planar Graph Drawings Through 3D. 80
Kevin Buchin, Will Evans, Fabrizio Frati, Irina Kostitsyna, Maarten
Löffler, Tim Ophelders, and Alexander Wolff

Visualizing Multispecies Coalescent Trees: Drawing Gene Trees Inside
Species Trees . 96

Jonathan Klawitter, Felix Klesen, Moritz Niederer, and Alexander Wolff

Parameterized Approaches to Orthogonal Compaction 111
Walter Didimo, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta,
Alexander Wolff, and Meirav Zehavi

NP-Hardness and Fixed Parameter Tractability

Hardness of Bounding Influence via Graph Modification 129
Robert D. Barish and Tetsuo Shibuya

Heuristics for Opinion Diffusion via Local Elections 144
Rica Gonen, Martin Koutecký, Roei Menashof, and Nimrod Talmon

On the Parameterized Complexity of s-club Cluster Deletion Problems 159
Fabrizio Montecchiani, Giacomo Ortali, Tommaso Piselli,
and Alessandra Tappini

SOFSEM 2023 Best Papers

Balanced Substructures in Bicolored Graphs . 177
P. S. Ardra, R. Krithika, Saket Saurabh, and Roohani Sharma

On the Complexity of Scheduling Problems with a Fixed Number
of Parallel Identical Machines . 192

Klaus Jansen and Kai Kahler

SOFSEM 2023 Best Student Papers

On the 2-Layer Window Width Minimization Problem 209
Michael A. Bekos, Henry Förster, Michael Kaufmann,
Stephen Kobourov, Myroslav Kryven, Axel Kuckuk, and Lena Schlipf

Sequentially Swapping Tokens: Further on Graph Classes 222
Hironori Kiya, Yuto Okada, Hirotaka Ono, and Yota Otachi

Communication and Temporal Graphs

On the Preservation of Properties When Changing
Communication Models . 239

Olav Bunte, Louis C. M. van Gool, and Tim A. C. Willemse

Introduction to Routing Problems with Mandatory Transitions 254
Christian Laforest and Timothée Martinod

Payment Scheduling in the Interval Debt Model . 267
Tom Friedetzky, David C. Kutner, George B. Mertzios, Iain A. Stewart,
and Amitabh Trehan

Multi-Parameter Analysis of Finding Minors and Subgraphs
in Edge-Periodic Temporal Graphs . 283

Emmanuel Arrighi, Niels Grüttemeier, Nils Morawietz, Frank Sommer,
and Petra Wolf

Complexity and Learning

Lower Bounds for Monotone q-Multilinear Boolean Circuits 301
Andrzej Lingas

x Contents

A Faster Algorithm for Determining the Linear Feasibility of Systems
of BTVPI Constraints . 313

Piotr Wojciechowski and K. Subramani

Quantum Complexity for Vector Domination Problem 328
Andris Ambainis and Ansis Zvirbulis

Learning Through Imitation by Using Formal Verification 342
Avraham Raviv, Eliya Bronshtein, Or Reginiano, Michelle Aluf-Medina,
and Hillel Kugler

Robots and Strings

Delivery to Safety with Two Cooperating Robots . 359
Jared Coleman, Evangelos Kranakis, Danny Krizanc,
and Oscar Morales-Ponce

Space-Efficient STR-IC-LCS Computation . 372
Yuuki Yonemoto, Yuto Nakashima, Shunsuke Inenaga,
and Hideo Bannai

The k-Centre Problem for Classes of Cyclic Words 385
Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev,
and Igor Potapov

Author Index . 401

Contents xi

Graphs Problems and Optimisation

The Complexity of Finding Tangles

Oksana Firman1(B) , Philipp Kindermann2 , Boris Klemz1 ,
Alexander Ravsky3, Alexander Wolff1 , and Johannes Zink1

1 Institut für Informatik, Universität Würzburg, Würzburg, Germany
{oksana.firman,boris.klemz,johannes.zink}@uni-wuerzburg.de

2 Fachbereich IV – Informatikwissenschaften, Universität Trier, Trier, Germany
kindermann@uni-trier.de

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine

alexander.ravsky@uni-wuerzburg.de

Abstract. We study the following combinatorial problem. Given a set
of n y-monotone curves, which we call wires, a tangle determines the
order of the wires on a number of horizontal layers such that any two
consecutive layers differ only in swaps of neighboring wires. Given a
multiset L of swaps (that is, unordered pairs of wires) and an initial
order of the wires, a tangle realizes L if each pair of wires changes its
order exactly as many times as specified by L.

Deciding whether a given multiset of swaps admits a realizing tangle is
known to be NP-hard [Yamanaka et al., CCCG 2018]. We prove that this
problem remains NP-hard if every pair of wires swaps only a constant
number of times. On the positive side, we improve the runtime of a
previous exponential-time algorithm. We also show that the problem is
in NP and fixed-parameter tractable with respect to the number of wires.

Keywords: Tangle · NP-hard · Exponential-time algorithm · FPT

1 Introduction

This paper concerns the visualization of chaotic attractors, which occur in
(chaotic) dynamic systems. Such systems are considered in physics, celestial
mechanics, electronics, fractals theory, chemistry, biology, genetics, and popula-
tion dynamics; see, for instance, [4], [13], and [6, p. 191]. Birman and Williams [3]
were the first to mention tangles as a way to describe the topological structure
of chaotic attractors. They investigated how the orbits of attractors are knot-
ted. Later Mindlin et al. [9] characterized attractors using integer matrices that
contain numbers of swaps between the orbits.

Olszewski et al. [10] studied the problem of visualizing chaotic attractors.
Using [n] as shorthand for {1, 2, . . . , n}, define two permutations σ and τ of
[n] to be adjacent if they differ only in transposing neighboring elements, that
is, for every i ∈ [n], σ(i) ∈ {τ(i)} ∪ {τ(i − 1) | i > 1} ∪ {τ(i + 1) | i < n}.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-23101-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_1&domain=pdf
http://orcid.org/0000-0002-9450-7640
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0002-4532-3765
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-031-23101-8_1

4 O. Firman et al.

Fig. 1. Tangles T and T ′ of different heights realizing the list L = {(1, 2), (1, 4), (3, 4)}.

For two adjacent permutations σ and τ , let diff(σ, τ) =
{{σ(i), σ(i + 1)} | i ∈

[n−1] ∧ σ(i) = τ(i+1) ∧ σ(i+1) = τ(i)
}

be the set of neighboring transpositions
in which σ and τ differ. Given a set of y-monotone curves called wires that hang
off a horizontal line in a prescribed order π0, and a multiset L (called list) of
unordered pairs of wires (called swaps), the problem consists in finding a tangle
realizing L, i.e., a sequence π0, π1, . . . , πh of permutations of the wires such that
(i) consecutive permutations are adjacent and (ii) L =

⋃h−1
i=0 diff(πi, πi+1).

For example, the list L in Fig. 1 admits a tangle realizing it. We call such a
list feasible. The list L′ = L ∪ {(1, 2)}, in contrast, is not feasible. Note that,
if the start permutation π0 is not given explicitly, we assume that π0 = id =
〈1, 2, . . . , n〉. In Fig. 2, the list Ln is feasible; it is specified by an (n×n)-matrix.
The gray horizontal bars correspond to the permutations (or layers).

Olszewski et al. gave an exponential-time algorithm for minimizing the height
of a tangle, that is, the number of layers. They tested their algorithm on a
benchmark set, which showed that instances with up to 18 swaps can be solved
within seconds, but instances with more than 22 swaps can take several hours.

We [5] showed, by reduction from 3-Partition, that tangle-height minimiza-
tion is NP-hard. We also presented two (exponential-time) algorithms, one for
the general problem and one for simple lists, that is, lists where each swap occurs
at most once. Using an extended benchmark set, we showed that in almost all
cases our algorithm for the general problem is faster and more memory-efficient
than the algorithm of Olszewski et al.

In an independent line of research, Yamanaka et al. [16] showed that the prob-
lem Ladder-Lottery Realization is NP-hard. As it turns out, this problem
is equivalent to deciding the feasibility of a list.

Sado and Igarashi [11] used the same optimization criterion for tangles in the
setting where only the beginning and final permutation are given (but they can
choose the swaps performed to get there). They used odd-even sort, a parallel
variant of bubble sort, to compute tangles with at most one layer more than the
minimum in O(n2) time. Wang [15] showed that there is always a height-optimal
tangle where no swap occurs more than once. Bereg et al. [1,2] considered a
similar problem. Given a final permutation, they showed how to minimize the
number of bends or moves (which are maximal “diagonal” segments of the wires).

Notation and Conjecture. For n wires, a list L = (lij) of order n is a symmetric
n × n matrix with entries in N0 and zero diagonal. Let |L| =

∑
i<j lij be the

length of L. A list L′ = (l′ij) is a sublist of L if l′ij ≤ lij for each i, j ∈ [n].

The Complexity of Finding Tangles 5

Fig. 2. A list Ln of order n (left) and a tangle realizing Ln (right). Entry (i, j) of Ln

defines how often wires i and j must swap in the tangle. Here, n = 7.

If there is a pair i, j ∈ [n] such that l′ij < lij , then L′ is a strict sublist of L. A
list is 0–2 if all entries are zeros or twos; it is even (odd) if all non-zero entries
are even (odd).

For a list to be feasible, it also has to fulfill the following property. We say
that a list is consistent if the final positions of all wires form a permutation
of [n]. For a wire i, its final position is its initial position (namely, i) minus one
for each wire on its left that it swaps an odd number of times, plus one for each
wire on its right that it swaps an odd number of times. We have shown that
consistency is sufficient for the feasibility of odd lists [5]. Clearly, an even list is
always consistent as, for any tangle realizing an even list, the initial permutation
equals the final permutation.

For any list to be feasible, each triple of wires i < j < k requires an i–j or
a j–k swap if there is an i–k swap—otherwise wires i and k would be separated
by wire j in any tangle. We call a list fulfilling this property non-separable. It is
natural to ask whether this necessary condition is also sufficient. For odd lists,
non-separability is implied by consistency (because consistency is sufficient for
feasibility [5]). Although the NP-hardness reduction from Sect. 3 shows that a
non-separable list can fail to be feasible even when it is consistent. For even lists,
the following question remains.

Conjecture 1 [5]. Every non-separable even list is feasible.

In order to understood the structure of feasible lists better, we consider the
following relation between them. Let L = (lij) be a feasible list. Consider the
list L′ that is identical to L except that it has two additional i–j swaps. We
claim that if lij > 0 then the list L′ is also feasible. Note that any tangle T that
realizes L has a permutation π that supports the i–j swap. Directly after π, we
can insert two i–j swaps into T . This yields a tangle that realizes L′. Given two

6 O. Firman et al.

lists L = (lij) and L′ = (l′ij), we write L → L′ if the list L can be extended to
the list L′ via the above operation.

For a list L = (lij), let 1(L) = (lij mod 2) and let 2(L) = (l′′ij) with l′′ij = 0 if
lij = 0, l′′ij = 1 if lij is odd, and l′′ij = 2 otherwise. We call 2(L) the type of L.
Clearly, L′ → L if and only if 2(L′) = 2(L) and l′ij ≤ lij for each i, j ∈ [n].

A feasible list Lmin is minimal if there exists no feasible list L� such that
L� → Lmin. Thus a list L is feasible, if and only if there exists a minimal feasible
list Lmin of type 2(L) such that Lmin → L.

For a tangle T , let L(T) = (lij) be the symmetric n × n matrix with zero
diagonal, where lij is the number of i–j swaps in T . Note that T realizes L(T).

Our Contribution. We call the problem of testing the feasibility of a given list
List-Feasibility. As mentioned above, Yamanaka et al. [16] showed that this
problem is NP-hard. However, in their reduction, for some swaps the number
of occurrences is linear in the number of wires. We strengthen their result by
showing that List-Feasibility is NP-hard even if all swaps have constant mul-
tiplicity; see Sect. 3. Our reduction uses a variant of Not-All-Equal 3-SAT
(whereas Yamanaka et al. used 1-in-3 3SAT).

We start the paper, however, by studying exact algorithms for the List-
Feasibility problem; see Sect. 2. We present an exponential-time algorithm
with runtime O

(
(2|L|/n2+1)n2/2 ·n3 log |L|), where L is the given list of order n.

The runtime is expressed in terms of the logarithmic cost model of computation.
This improves our previous algorithm [5] (which actually computes a tangle of
minimum height, if possible). That algorithm runs in O((2|L|/n2+1)n2/2 ·ϕn ·n)
time in the unit-cost model and in O((2|L|/n2 + 1)n2/2 · ϕn · n log |L|) time in
the log-cost model, where ϕ ≈ 1.618 is the golden ratio. Although we cannot
characterize minimal feasible lists, we can bound their entries. Namely, we show
that, in a minimal feasible list of order n, each swap occurs at most n2/4 + 1
times. As a corollary, this yields that List-Feasibility is in NP. Combined with
our exponential-time algorithm, this also leads to a fixed-parameter tractable
algorithm for testing feasibility (parameterized by the number of wires).

Finally, we disprove Conjecture 1; see Sect. 4. We could verify our counterex-
ample (with 16 wires and 55 swaps of multiplicity 2) only by computer.

2 Exact Algorithms

We remind the reader of our algorithm for tangle-height minimization [5]; a
dynamic program that runs in O((2|L|/n2 + 1)n2/2 · ϕn · n) time in the unit-cost
model; in the log-cost model the runtime increases by a factor of O(log |L|).
We adjust this algorithm to the task of testing feasibility, which makes the
algorithm simpler and faster. Then we will bound the entries of minimal feasible
lists (defined above) and use this bound to turn our exact algorithm into a
fixed-parameter algorithm where the parameter is the number of wires (i.e., n).

The Complexity of Finding Tangles 7

Theorem 1. There is an algorithm that, given a list L of order n, tests
whether L is feasible in O

(
(2|L|/n2 + 1)n2/2 · n3 · log |L|) time in the log-cost

model.

Proof. Let F be a Boolean table with one entry for each sublist L′ of L such that
F (L′) = true if and only if L′ is feasible. This table can be filled by means of a
dynamic programming recursion. The empty list is feasible. Let L′ be a sublist
of L with |L′| ≥ 1 and assume that for each strict sublist of L′, the corresponding
entry in F has already been determined. A sublist L̃ of L is feasible if and only
if there is a realizing tangle of L̃ of height |L̃| + 1. For each i–j swap in L′, we
check if there is a tangle realizing L′ of height |L′| + 1 such that i–j is the last
swap. If no such swap exists, then L′ is infeasible, otherwise it is feasible. To
perform the check for a particular i–j swap, we consider the strict sublist L′′

of L′ that is identical to L′ except an i–j swap is missing. If F (L′′) = true, we
compute the final positions of i and j with respect to L′′. The desired tangle
exists if and only if these positions differ by exactly one.

The number of sublists of L is upper bounded by (2|L|/n2 + 1)n2/2 [5]. For
each sublist, we have to check O(n2) swaps. To check a swap, we have to compute
the final positions of two wires, which can be done in O(n log |L|) time. ��

The following lemma follows from odd-even sort and is well-known [8].

Lemma 1. For each integer n ≥ 2 and each pair π, σ of permutations of [n],
we can construct in O(n2) time a tangle T of height at most n + 1 that starts
with π, ends in σ, and whose list L(T) is simple.

Now we consider the following tangle shortening construction.

Example 1. Let T be a tangle and T ∗ = (π1, . . . , πh) be a subsequence of T
containing the initial and the final permutations of T . By Lemma 1, we can
augment T ∗ to a tangle T ′, overwriting each two consecutive elements πk and
πk+1 of T ∗ by a tangle T ′

k which starts from πk, ends at πk+1, and whose list
L(T ′

k) = (l′k,ij) is simple. Now let Tk be the subtangle of T that starts from πk

and ends at πk+1. Let L(Tk) = (lk,ij). The simplicity of the list L(T ′
k) implies

that l′k,ij ≤ lk,ij for each i, j ∈ [n]. It follows that l′ij ≤ min{lij , h − 1} for each
i, j ∈ [n], where L(T) = (lij) and L(T ′) = (l′ij). Since the tangles T ′ and T have
common initial and final permutations, for each i, j ∈ [n] the numbers lij and
l′ij have the same parity, that is, 1(T ′) = 1(T).

We want to upperbound the entries of a minimal feasible list. We first give
a simple bound, which we then improve by a factor of 2 in Proposition 2 below.

Proposition 1. If L = (lij) is a minimal feasible list of order n then lij ≤(
n
2

)
+ 1 for each i, j ∈ [n].

Proof. The list L is feasible, so there is a tangle T realizing L. We choose a
subsequence T ∗ of T consisting of at most h =

(
n
2

)
+2 permutations. To this end,

we pick the initial and the final permutation of T and, for each pair (i, j) ∈ [n]2

with i < j and lij ≥ 1, we pick a permutation that swaps i and j.

8 O. Firman et al.

Let T ′ be the tangle that we construct from T using T ∗, as described in
the shortening construction, and let L′ = L(T ′) = (l′ij) be the list of T ′. The
construction of the tangle T ′ assures that, for any i, j ∈ [n], if lij > 0, then
l′ij > 0. This, together with 1(L′) = 1(L), yields 2(L′) = 2(L). Hence, L′ → L.
List L is minimal, so L = L′. Thus, lij = l′ij ≤ h − 1 ≤ (

n
2

)
+ 1 for i, j ∈ [n]. ��

Proposition 2. If L = (lij) is a minimal feasible list of order n, then lij ≤
n2/4 + 1 for each i, j ∈ [n].

Proof. Let T be a tangle (starting from id that realizes L). Given an i–j swap,
we define its span to be |i − j|. Order the swaps in 1(L) according to decreasing
span. We will color the swaps as follows. At each step we color in red the first
non-colored swap i–j (with i < j) from the list. Since the tangle T realizes the
list L, it contains a permutation π with π(j) < π(i). Put π into an initially empty
set P for later use. Let k ∈ {i + 1, . . . , j − 1} be an integer strictly between i
and j. Since π(j) < π(i), we have π(k) < π(i) or π(k) > π(j). We color in blue
the i–k swap in the former case and the k–j swap in the latter case. In any case,
if Tπ is a tangle that starts from id and contains π, the list L(Tπ) contains the
swap(s) we just colored in blue.

Let G be a graph with vertex set [n] and edge set consisting of the red swaps.
The coloring algorithm assures that the graph G is triangle-free, so, by Turán’s
theorem [14], it has at most n2/4 edges.

Let T ∗ be a subsequence of the tangle T consisting of the initial permutation
id, all permutations in P , and the final permutation of T . Let T ′ be the tangle
that we construct from T using T ∗ as described in Example 1. Let L′ = L(T ′).

The construction of the tangle T ′ assures that if 1 ≤ i < j ≤ n and lij > 0
then π(j) < π(i) in some selected permutation π. Since π is a member of the
tangle T , l′ij > 0. Moreover, since 1(L′) = 1(L), 2(L′) = 2(L). Hence L′ → L.
The list L′ is minimal, therefore L′ = L. Since each entry of the list L′ is at most
|P | + 2 − 1 ≤ n2/4 + 1, the same holds for the entries of the list L. ��

Combining Proposition 2 and our exact algorithm yields a fixed-parameter
tractable algorithm.

Theorem 2. There is a fixed-parameter algorithm for List-Feasibility with
respect to the parameter n. Given a list L of order n, the algorithm tests
whether L is feasible in O

(
(n/2)n2 · n3 log n + n2 log |L|) time.

Proof. Given the list L = (lij), let L′ = (l′ij) with l′ij = min{lij , n
2/4 + 1}

for each i, j ∈ [n]. We use our exact algorithm described in the proof of The-
orem 1 to check whether the list L′ is feasible. Since our algorithm checks the
feasibility of every sublist L′′ of L′, it suffices to combine this with checking
whether 2(L′′) = 2(L). If we find a feasible sublist L′′ of the same type as L,
then, by Proposition 2, L is feasible; otherwise, L is infeasible. Checking the
type of L′′ is easy. The runtime for this check is dominated by the runtime for
checking the feasibility of L′′. Constructing the list L′ takes O(n2 log |L|) time.
Note that |L′| ≤ (

n
2

) · (n2/4 + 1) ≤ (n4 − 4n2)/8. Plugging this into the runtime

The Complexity of Finding Tangles 9

O
(
(2|L′|/n2 + 1)n2/2 · n3 log |L′|) of our exact algorithm (Theorem 1) yields a

total runtime of O
(
(n/2)n2 · n3 log n + n2 log |L|).

3 Complexity

Yamanaka et al. [16] showed that List-Feasibility is NP-hard. In their reduc-
tion, however, some swaps have multiplicity Θ(n). In this section, we show that
List-Feasibility is NP-hard even if all swaps have multiplicity at most 8.
We reduce from Positive NAE 3-SAT Diff, a variant of Not-All-Equal
3-SAT. Recall that in Not-All-Equal 3-SAT one is given a Boolean for-
mula in conjunctive normal form with three literals per clause and the task is
to decide whether there exists a variable assignment such that in no clause all
three literals have the same truth value. By Schaefer’s dichotomy theorem [12],
Not-All-Equal 3-SAT is NP-hard even if no negative literals are admitted. In
Positive NAE 3-SAT Diff, additionally each clause contains three different
variables. We show that this variant is NP-hard, too.

Lemma 2. Positive NAE 3-SAT Diff is NP-hard.

Proof. We show NP-hardness of Positive NAE 3-SAT Diff by reduction from
Not-All-Equal 3-SAT. Let Φ = c1 ∧ c2 ∧ · · · ∧ cm be an instance of Not-
All-Equal 3-SAT with variables v1, v2, . . . , vn. First we show how to get rid
of negative variables and then of multiple occurrences of the same variable in a
clause.

We create an instance Φ′ of Positive NAE 3-SAT Diff as follows. For
every variable vi, we introduce two new variables xi and yi. We replace each
occurrence of vi by xi and each occurrence of ¬vi by yi. We need to force yi to
be ¬xi. To this end, we introduce the clause (xi ∨ yi ∨ yi).

Now, we introduce three additional variables a, b, and d that form the clause
(a ∨ b ∨ d). Let c = (x ∨ x ∨ y) be a clause that contains two occurrences of the
same variable. We replace c by three clauses (x ∨ y ∨ a), (x ∨ y ∨ b), (x ∨ y ∨ d).
Since at least one of the variables a, b, or d has to be true and at least one has
to be false, x and y cannot have the same assignment, i.e., x = ¬y. Hence, Φ′

is satisfiable if and only if Φ is. Clearly, the size of Φ′ is polynomial in the size
of Φ. ��

Our main result is as follows.

Theorem 3. List-Feasibility is NP-complete even if every pair of wires has
at most eight swaps.

We split our proof into several parts. First, we introduce some notation, then
we give the intuition behind our reduction. Next, we explain variable and clause
gadgets in more detail. Finally, we show the correctness of the reduction.

10 O. Firman et al.

Notation. We label the wires by their index in the initial permutation of a tangle.
In particular, for a wire ε, its neighbor to the right is wire ε + 1. If a wire μ is
to the left of some other wire ν, then we write μ < ν. If all wires in a set M are
to the left of all wires in a set N , then we write M < N .

Setup. Given an instance F = d1 ∧ · · · ∧ dm of Positive NAE 3-SAT Diff
with variables w1, . . . , wn, we construct in polynomial time a list L of swaps such
that there is a tangle T realizing L if and only if F is a yes-instance.

In L, we have two inner wires λ and λ′ = λ + 1 that swap eight times. This
yields two types of loops (see Fig. 3): four λ′–λ loops, where λ′ is on the left
and λ is on the right side, and three λ–λ′ loops with λ on the left and λ′ on
the right side. Notice that we consider only closed loops, which are bounded
by swaps between λ and λ′. In the following, we construct variable and clause
gadgets. Each variable gadget will contain a specific wire that represents the
variable, and each clause gadget will contain a specific wire that represents the
clause. The corresponding variable and clause wires swap in one of the four λ′–λ
loops. We call the first two λ′–λ loops true-loops, and the last two λ′–λ loops
false-loops. If the corresponding variable is true, then the variable wire swaps
with the corresponding clause wires in a true-loop, otherwise in a false-loop.

Apart from λ and λ′, our list L contains (many) other wires, which we split
into groups. For every i ∈ [n], we introduce sets Vi and V ′

i of wires that together
form the gadget for variable wi of F . These sets are ordered (initially) Vn <
Vn−1 < · · · < V1 < λ < λ′ < V ′

1 < V ′
2 < · · · < V ′

n; the order of the wires inside
these sets will be detailed in the next two paragraphs. Let V = V1 ∪V2 ∪· · ·∪Vn

and V ′ = V ′
1 ∪ V ′

2 ∪ · · · ∪ V ′
n. Similarly, for every j ∈ [m], we introduce a set Cj

of wires that contains a clause wire cj and three sets of wires D1
j , D2

j , and D3
j

that represent occurrences of variables in a clause dj of F . The wires in Cj are
ordered D3

j < D2
j < D1

j < cj . Together, the wires in C = C1 ∪ C2 ∪ · · · ∪ Cm

represent the clause gadgets; they are ordered V < Cm < Cm−1 < · · · < C1 < λ.
Additionally, our list L contains a set E = {ϕ1, . . . , ϕ7} of wires that will make
our construction rigid enough. The order of all wires in L is V < C < λ < λ′ <
E < V ′. Now we present our gadgets in more detail.

Variable Gadget. For each variable wi of F , i ∈ [n], we introduce two sets of
wires Vi and V ′

i . Each V ′
i contains a variable wire vi that has four swaps with λ

and no swaps with λ′. Therefore, vi intersects at least one and at most two λ′–λ
loops. In order to prevent vi from intersecting both a true- and a false-loop, we
introduce two wires αi ∈ Vi and α′

i ∈ V ′
i with αi < λ < λ′ < α′

i < vi; see Fig. 3.
These wires neither swap with vi nor with each other, but they have two swaps
with both λ and λ′. We want to force αi and α′

i to have the two true-loops on
their right and the two false-loops on their left, or vice versa. This will ensure
that vi cannot reach both a true- and a false-loop.

To this end, we introduce, for j ∈ [5], a βi-wire βi,j ∈ Vi and a β′
i-wire

β′
i,j ∈ V ′

i . These are ordered βi,5 < βi,4 < · · · < βi,1 < αi and α′
i < β′

i,1 <
β′

i,2 < · · · < β′
i,5 < vi. Every pair of βi-wires as well as every pair of β′

i-wires
swaps exactly once. Neither βi- nor β′

i-wires swap with αi or α′
i. Each β′

i-wire

The Complexity of Finding Tangles 11

Fig. 3. A variable gadget with a variable wire vi that corresponds to the variable that
is true (left) or false (right). The λ-λ′ loops are labeled T for true and F for false.

has four swaps with vi. Moreover, βi,1, βi,3, βi,5, β
′
i,2, β

′
i,4 swap with λ twice.

Symmetrically, βi,2, βi,4, β
′
i,1, β

′
i,3, β

′
i,5 swap with λ′ twice; see Fig. 3.

We use the βi- and β′
i-wires to fix the minimum number of λ′–λ loops that

are on the left of αi and on the right of α′
i, respectively. Note that, together with

λ and λ′, the βi- and β′
i-wires have the same rigid structure as the wires shown

in Fig. 2.

Observation 1 [5]. The tangle in Fig. 2 realizes the list Ln specified there; all
tangles that realize Ln have the same order of swaps along each wire.

This means that there is a unique order of swaps between the βi-wires and λ
or λ′, i.e., for j ∈ [4], every pair of βi,j+1–λ swaps (or βi,j+1–λ′ swaps, depending
on the parity of j) can be done only after the pair of βi,j–λ′ swaps (or βi,j–λ
swaps, respectively). We have the same rigid structure on the right side with
β′

i-wires. Hence, there are at least two λ′–λ loops to the left of αi and at least
two to the right of α′

i. Since αi and α′
i do not swap, there cannot be a λ′–λ loop

that appears simultaneously on both sides.
Note that the λ–λ′ swaps that belong to the same side have to be consecutive,

otherwise αi or α′
i would need to swap more than twice with λ and λ′. Thus, there

are only two ways to order the swaps among the wires αi, α′
i, λ, λ′; the order

is either α′
i–λ′, α′

i–λ, four times λ–λ′, α′
i–λ, α′

i–λ′, αi–λ, αi–λ′, four times λ–λ′,
αi–λ′, αi–λ (see Fig. 3(left)) or the reverse (see Fig. 3(right)). It is easy to see

12 O. Firman et al.

Fig. 4. A realization of swaps between the variable wire vj and all wires that belong
to the variable gadget corresponding to the variable wi. On the left the variables wi

and wj are both true, and on the right wi is true, whereas wj is false.

that in the first case vi can reach only the first two λ′–λ loops (the true-loops),
and in the second case only the last two (the false-loops).

To avoid that the gadget for variable wi restricts the proper functioning of
the gadget for some variable wj with j > i, we add the following swaps to L:
for any j > i, αj and α′

j swap with both Vi and V ′
i twice, the βj-wires swap

with α′
i and Vi twice, and, symmetrically, the β′

j-wires swap with αi and V ′
i

twice, vj swaps with αi and all wires in V ′
i six times. We briefly explain these

multiplicities. Wires from Vj and V ′
j \ {vj} swap their partners twice so that

they reach the corresponding λ–λ′ or λ′–λ loops and go back. None of the wires
from Vi or V ′

i is restricted in which loop to intersect. Considering the wire vj ,
note that it has to reach the λ′–λ loops twice. For simplicity and in order not
to have any conflicts with the β′

i-wires, we introduce exactly six swaps with αi

and all wires in V ′
i , see Fig. 4.

Clause Gadget. For every clause dj from F , j ∈ [m], we introduce a set of
wires Cj . It contains the clause wire cj that has eight swaps with λ′. We want to
force each cj to appear in all λ′–λ loops. To this end, we use the set E with the
seven ϕ-wires ϕ1, . . . , ϕ7 ordered ϕ1 < · · · < ϕ7. They create a rigid structure
similar to the one of the βi-wires. Each pair of ϕ-wires swaps exactly once. For
each k ∈ [7], if k is odd, then ϕk swaps twice with λ and twice with cj for every

The Complexity of Finding Tangles 13

Fig. 5. A gadget for clause cj showing only one of the three variables, namely vi. The
region shaded in yellow is the arm of cj that is protected from other variables by γk

j .
(Color figure online)

j ∈ [m]. If k is even, then ϕk swaps twice with λ′. Since cj does not swap with λ,
each pair of swaps between cj and a ϕ-wire with odd index appears inside a λ′–λ
loop. Due to the rigid structure, each of these pairs of swaps occurs in a different
λ′–λ loop; see Fig. 5.

If a variable wi belongs to a clause dj , then L contains two vi–cj swaps.
Since every clause has exactly three different positive variables, we want to force
variable wires that belong to the same clause to swap with the corresponding
clause wire in different λ′–λ loops. This way, every clause contains at least one
true and at least one false variable if F is satisfiable.

We call a part of a clause wire cj that is inside a λ′–λ loop—i.e., a λ′–cj

loop—an arm of the clause cj . We want to “protect” the arm that is intersected
by a variable wire from other variable wires. To this end, for every occurrence
k ∈ [3] of a variable in dj , we introduce four more wires. The wire γk

j will protect
the arm of cj that the variable wire of the k-th variable of dj intersects. Below
we detail how to realize this protection. For now, just note that, in order not to
restrict the choice of the λ′–λ loop, γk

j swaps twice with ϕ� for every odd � ∈ [7].
Similarly to cj , the wire γk

j has eight swaps with λ′ and appears once in every
λ′–λ loop. Additionally, γk

j has two swaps with cj .

14 O. Firman et al.

Fig. 6. Tangle obtained from the satisfiable formula F = (w1 ∨ w2 ∨ w3) ∧ (w1 ∨ w3 ∨
w4) ∧ (w2 ∨ w3 ∨ w4) ∧ (w2 ∨ w3 ∨ w5). Here, w1, w4 and w5 are set to true, whereas
w2 and w3 are set to false. We show only λ, λ′, and all variable and clause wires.
Inset: problems that occur if variable wires swap with clause wires in a different order.

We force γk
j to protect the correct arm in the following way. Consider the

λ′–λ loop where an arm of cj swaps with a variable wire vi. We want the order of
swaps along λ′ inside this loop to be fixed as follows: λ′ first swaps with γk

j , then
twice with cj , and then again with γk

j . This would prevent all variable wires that
do not swap with γk

j from reaching the arm of cj . To achieve this, we introduce
three ψk

j -wires ψk
j,1, ψ

k
j,2, ψ

k
j,3 with ψk

j,3 < ψk
j,2 < ψk

j,1 < γk
j .

The ψk
j -wires also have the rigid structure similar to the one that βi-wires

have, so that there is a unique order of swaps along each ψk
j -wire. Each pair of

ψk
j -wires swaps exactly once, ψk

j,1 and ψk
j,3 have two swaps with cj , and ψk

j,2 has
two swaps with λ′ and vi. Note that no ψk

j -wire swaps with γk
j . Also, since ψk

j,2

does not swap with cj , the ψk
j,2–vi swaps can appear only inside the λ′–cj loop

that contains the arm of cj we want to protect from other variable wires. Since
cj has to swap with ψk

j,1 before and with ψk
j,3 after the ψk

j,2–λ′ swaps, and since
there are only two swaps between γk

j and cj , there is no way for any variable
wire except for vi to reach the arm of cj without also intersecting γk

j ; see Fig. 5.

The Complexity of Finding Tangles 15

Finally, we consider the behavior of wires from different clause gadgets among
each other and with respect to wires from variable gadgets. For every � > k and
for every j ∈ [m], the wires cj and γ�

j have eight swaps and the ψ�
j-wires have

two swaps with all wires in Cj . Since all wires in V are to the left of all wires
in C, each wire in C swaps twice with all wires in V and, for i ∈ [n], with α′

i.
Finally, all α- and α′-wires swap twice with each ϕ-wire.

Note that the order of the arms of the clause wires inside a λ′–λ loop cannot
be chosen arbitrarily. If a variable wire intersects more than one clause wire, the
arms of these clause wires occur consecutively, as for v2 and v3 in the shaded
region in Fig. 6. If we had an interleaving pattern of variable wires (see inset),
say v2 first intersects c1, then v3 intersects c2, then v2 intersects c3, and finally
v3 intersects c4, then v2 and v3 would have to swap at least three times within
the same λ′–λ loop. However, we have reserved only eight swaps for each pair of
variable wires—two for each of the four λ′–λ loops.

Correctness. Clearly, if F is satisfiable, then there is a tangle obtained from F as
described above that realizes the list L, so L is feasible; see Fig. 6 for an example.
On the other hand, if there is a tangle that realizes the list L that we obtain from
the reduction, then F is satisfiable. This follows from the rigid structure of a
tangle that realizes L. The only flexibility is in which type of loop (true or false)
a variable wire swaps with the corresponding clause wire. As described above,
a tangle exists if, for each clause, the corresponding three variable wires swap
with the clause wire in three different loops (at least one of which is a true-loop
and at least one is a false-loop). In this case, the position of the variable wires
yields a truth assignment satisfying F .

Membership in NP. To show that List-Feasibility is in NP, we proceed as
indicated in the introduction. Given a list L = (lij), we guess a list L′ = (l′ij)
with 2(L) = 2(L′) and l′ij ≤ min{lij , n

2/4+1} together with a permutation of its
O(n4) swaps. Then we can efficiently test whether we can apply the swaps in this
order to id = 〈1, 2, . . . , n〉. If yes, then the list L′ is feasible (and, due to L′ → L,
a witness for the feasibility of L), otherwise we discard it. By Proposition 2, L
is feasible if and only if such a list L′ exists and is feasible.

4 Counterexample to Conjecture 1

Recall that Conjecture 1 claims that every non-separable even list is feasible. We
showed that all non-separable 0–2 lists up to n = 8 wires are feasible [5].

We now construct a family (L∗
m)m≥1 of non-separable 0–2 lists such that Lm

has 2m wires and is not feasible for m ≥ 4. We number the wires from 0 to
2m − 1. There is no swap between two wires i < j in L∗

m if each 1 in the binary
representation of i also belongs to the binary representation of j, that is, the
bitwise OR of i and j equals j; otherwise, there are two swaps between i and j.
E.g., for m = 4, wire 1 = 00012 swaps twice with wire 2 = 00102, but doesn’t
swap with wire 3 = 00112.

16 O. Firman et al.

Each list L∗
m is clearly non-separable: assume that there exists a swap between

two wires i = (i1i2 . . . im)2 and k = (k1k2 . . . km)2 with k > i+1. Then there has
to be some index a with ia = 1 and ka = 0. Consider any j = (j1j2 . . . jm)2 with
i < j < k. By construction of L∗

m, if ja = 0, then there are two swaps between i
and j; if ja = 1, then there are two swaps between j and k.

We confirmed by computer experiments (the Java source code is available on
github [7]) that L∗

4 – and hence all L∗
m with m ≥ 4 – are infeasible. The list L∗

m

has 1
2

∑m
r=1 3r−12m−r(2m−r − 1) swaps of multiplicity 2, so L∗

4 has 55 distinct
swaps. The full list L∗

4 in list form and in matrix form is given below. Unfortu-
nately, we could not (yet) find a combinatorial proof that the non-separable 0–2
list L∗

4 is not feasible.

Theorem 4. Conjecture 1 is false.

L∗
4 = 2 {(1, 2), (1, 4), (1, 6), (1, 8), (1, 10), (1, 12), (1, 14), (2, 4), (2, 5), (2, 8), (2, 9),

(2, 12), (2, 13), (3, 4), (3, 5), (3, 6), (3, 8), (3, 9), (3, 10), (3, 12), (3, 13),
(3, 14), (4, 8), (4, 9), (4, 10), (4, 11), (5, 6), (5, 8), (5, 9), (5, 10), (5, 11),
(5, 12), (5, 14), (6, 8), (6, 9), (6, 10), (6, 11), (6, 12), (6, 13), (7, 8), (7, 9),
(7, 10), (7, 11), (7, 12), (7, 13), (7, 14), (9, 10), (9, 12), (9, 14), (10, 12),
(10, 13), (11, 12), (11, 13), (11, 14), (13, 14)}

L∗
4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 2 2 2 0 2 2 2 0 2 2 2 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 2 0 2 2 2 2 2 0 2 0
0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Acknowledgments. We thank Stefan Felsner for discussions about the complexity
of List-Feasibility.

The Complexity of Finding Tangles 17

References

1. Bereg, S., Holroyd, A., Nachmanson, L., Pupyrev, S.: Representing permutations
with few moves. SIAM J. Discrete Math. 30(4), 1950–1977 (2016). https://arxiv.
org/abs/1508.03674, https://doi.org/10.1137/15M1036105

2. Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations
with few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
484–495. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 42

3. Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems—I:
Lorenz’s equation. Topology 22(1), 47–82 (1983). https://doi.org/10.1016/0040-
9383(83)90045-9

4. Crutchfield, J.P., Farmer, J.D., Packard, N.H., Shaw, R.S.: Chaos. Sci. Am.
254(12), 46–57 (1986)

5. Firman, O., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: Computing height-
optimal tangles faster. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS,
vol. 11904, pp. 203–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35802-0 16

6. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

7. Kindermann, P., Zink, J.: Java and Python code for computing tangles. Github
repository (2022). https://github.com/PhKindermann/chaotic-attractors

8. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-
ing, 2nd edn. Addison-Wesley, Boston (1998). https://www.worldcat.org/oclc/
312994415

9. Mindlin, G., Hou, X.-J., Gilmore, R., Solari, H., Tufillaro, N.B.: Classification of
strange attractors by integers. Phys. Rev. Lett. 64, 2350–2353 (1990). https://doi.
org/10.1103/PhysRevLett.64.2350

10. Olszewski, M., et al.: Visualizing the template of a chaotic attractor. In: Biedl,
T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 106–119. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04414-5 8

11. Sado, K., Igarashi, Y.: A function for evaluating the computing time of a bubbling
system. Theor. Comput. Sci. 54, 315–324 (1987). https://doi.org/10.1016/0304-
3975(87)90136-8

12. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of 10th
Annual ACM Symposium on Theory Computing (STOC’78), pp. 216–226 (1978).
https://doi.org/10.1145/800133.804350

13. Stewart, I.: Does God Play Dice?: The New Mathematics of Chaos. Penguin (1997)
14. Turán, P.: On an external problem in graph theory. Mat. Fiz. Lapok 48, 436–452

(1941)
15. Wang, D.C., Novel routing schemes for IC layout part I: two-layer channel routing.

In: Proceedings of 28th ACM/IEEE Design Automation Conference (DAC 1991),
pp. 49–53 (1991). https://doi.org/10.1145/127601.127626

16. Yamanaka, K., Horiyama, T., Uno, T., Wasa, K.: Ladder-lottery realization. In:
Proceedings of 30th Canadian Conference on Computational Geometry (CCCG),
pp. 61–67 (2018). http://www.cs.umanitoba.ca/∼cccg2018/papers/session2A-p3.
pdf

https://arxiv.org/abs/1508.03674
https://arxiv.org/abs/1508.03674
https://doi.org/10.1137/15M1036105
https://doi.org/10.1007/978-3-319-03841-4_42
https://doi.org/10.1016/0040-9383(83)90045-9
https://doi.org/10.1016/0040-9383(83)90045-9
https://doi.org/10.1007/978-3-030-35802-0_16
https://doi.org/10.1007/978-3-030-35802-0_16
https://github.com/PhKindermann/chaotic-attractors
https://www.worldcat.org/oclc/312994415
https://www.worldcat.org/oclc/312994415
https://doi.org/10.1103/PhysRevLett.64.2350
https://doi.org/10.1103/PhysRevLett.64.2350
https://doi.org/10.1007/978-3-030-04414-5_8
https://doi.org/10.1016/0304-3975(87)90136-8
https://doi.org/10.1016/0304-3975(87)90136-8
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/127601.127626
http://www.cs.umanitoba.ca/~cccg2018/papers/session2A-p3.pdf
http://www.cs.umanitoba.ca/~cccg2018/papers/session2A-p3.pdf

A Spectral Algorithm for Finding
Maximum Cliques in Dense Random

Intersection Graphs

Filippos Christodoulou1(B) , Sotiris Nikoletseas2,3 ,
Christoforos Raptopoulos3 , and Paul G. Spirakis2,4

1 Gran Sasso Science Institute, L’Aquila, Italy
filippos.christodoulou@gssi.it

2 Computer Engineering and Informatics Department,
University of Patras, Patras, Greece

{nikole,raptopox}@ceid.upatras.gr
3 Computer Technology Institute & Press Diophantus (CTI), Patras, Greece
4 Department of Computer Science, University of Liverpool, Liverpool, UK

P.Spirakis@liverpool.ac.uk

Abstract. In a random intersection graph Gn,m,p, each of n vertices
selects a random subset of a set of m labels by including each label
independently with probability p and edges are drawn between ver-
tices that have at least one label in common. Among other applications,
such graphs have been used to model social networks, in which indi-
viduals correspond to vertices and various features (e.g. ideas, interests)
correspond to labels; individuals sharing at least one common feature are
connected and this is abstracted by edges in random intersection graphs.
In this paper, we consider the problem of finding maximum cliques when
the input graph is Gn,m,p. Current algorithms for this problem are suc-
cessful with high probability only for relatively sparse instances, leaving
the dense case mostly unexplored. We present a spectral algorithm for
finding large cliques that processes vertices according to respective values
in the second largest eigenvector of the adjacency matrix of induced sub-
graphs of the input graph corresponding to common neighbors of small
cliques. Leveraging on the Single Label Clique Theorem from [16], we
were able to construct random instances, without the need to externally
plant a large clique in the input graph. In particular, we used label choices
to determine the maximum clique and then concealed label information
by just giving the adjacency matrix of Gn,m,p as input to the algorithm.
Our experimental evaluation showed that our spectral algorithm clearly
outperforms existing polynomial time algorithms, both with respect to
the failure probability and the approximation guarantee metrics, espe-
cially in the dense regime, thus suggesting that spectral properties of

Christoforos Raptopoulos was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support
Post-Doctoral Researchers” (Project Number: 704).
Paul Spirakis was supported by the NeST initiative of the EEE and CS of the University
of Liverpool and by the EPSRC grant EP/P02002X/1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 18–32, 2023.
https://doi.org/10.1007/978-3-031-23101-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_2&domain=pdf
http://orcid.org/0000-0003-3176-3759
http://orcid.org/0000-0003-3765-5636
http://orcid.org/0000-0002-9837-2632
http://orcid.org/0000-0001-5396-3749
https://doi.org/10.1007/978-3-031-23101-8_2

A Spectral Algorithm for Maximum Cliques in RIGs 19

random intersection graphs may be also used to construct efficient algo-
rithms for other NP-hard graph theoretical problems as well.

Keywords: Random intersection graphs · Maximum cliques ·
Heuristics

1 Introduction

A clique in an undirected graph G is a subset of vertices any two of which
are connected by an edge. The problem of finding the maximum clique in an
arbitrary graph is fundamental in Theoretical Computer Science and appears in
many different settings. As an example, consider a social network where vertices
represent people and edges represent mutual acquaintance. Finding a maximum
clique in this network corresponds to finding the largest subset of people who
all know each other. More generally, the analysis of large networks in order to
identify communities, clusters, and other latent structure has come to the fore-
front of much research. The Internet, social networks, bibliographic databases,
energy distribution networks, and global networks of economies are some of the
examples motivating the development of the field.

From a computational complexity point of view, it is well known that
determining the size of the largest clique of an arbitrary graph of n vertices
is NP-complete [13]. This fact is further strengthened in [11], showing that, if k
is the size of the maximum clique, then the clique problem cannot be solved in
time no(k), unless the exponential time hypothesis fails. Additionally, there are
several results on hardness of approximation which suggest that there can be
no approximation algorithm with an approximation ratio significantly less than
linear (see e.g. [10]).

The intractability of the maximum clique problem for arbitrary graphs lead
researchers to the study of the problem for appropriately generated random
graphs. In particular, for Erdős-Rényi random graphs Gn, 12

(i.e. random graphs
of n vertices, in which each edge appears independently with probability 1

2), there
are several greedy algorithms that find a clique of size about log2 n with high
probability (whp, i.e. with probability that tends to 1 as n goes to infinity), see
e.g. [9,14]. Since the clique number of Gn, 12

is asymptotically equal to 2 log2 n
with high probability, these algorithms approximate the clique number by a
factor of 2. It has been conjectured that finding a clique of size (1+Θ(1)) log2 n,
in a random graph instance Gn, 12

, in which we have planted a randomly chosen
clique of size n0.49, with at least constant probability, would require techniques
beyond the current limits of complexity theory. This conjecture seems to identify
a certain bottleneck for the problem; finding the maximum clique in the case
where the planted clique has size at least

√
n can be done in polynomial time

by using spectral properties of the adjacency matrix of the graph (see [1]).
In this paper, we consider random instances of the random intersection graphs

model (introduced in [12,19]) as input graphs. In this model, denoted by Gn,m,p,

20 F. Christodoulou et al.

each one of m labels is chosen independently with probability p by each one of
n vertices, and there are edges between any vertices with overlaps in the labels
chosen. One of the most interesting results regarding this model is that, when
the number of labels is sufficiently large (in particular, when m = nα, α ≥ 3)
the random intersection graphs model is equivalent to the Erdős-Rényi random
graphs model (in the sense that the total variation distance between the two
spaces tends to 0; see [7,18]). Random intersection graphs are relevant to and
capture quite nicely social networking. Indeed, a social network is a structure
made of nodes (individuals or organizations) tied by one or more specific types
of interdependency, such as values, visions, financial exchange, friends, conflicts,
web links etc. Social network analysis views social relationships in terms of nodes
and ties. Nodes are the individual actors within the networks and ties are the
relationships between the actors. Other applications include oblivious resource
sharing in a (general) distributed setting, efficient and secure communication in
sensor networks [15], interactions of mobile agents traversing the web etc. For
recent research related to random intersection graphs we refer the interested
reader to the surveys [3,4] and references therein.

1.1 Previous Work on Maximum Cliques in Random Intersection
Graphs

In [19], the authors used the first moment probabilistic method to provide a lower
bound on the clique number of random instance of Gn,m,p in the case where mp2

tends to a constant as n → ∞. In [16,17] this range of values was considerably
extended and a precise characterization of maximum cliques was given in the case
where m = nα, α < 1 and p = O(m−1/2). In particular, the Single Label Clique
Theorem was proved, indicating that, with high probability any clique Q of size
|Q| ∼ np in a random instance of Gn,m,p (and thus also the maximum clique)
is formed by a single label. However, these structural results are existential and
thus do not lead to algorithms for finding the maximum clique. It is worth noting
that, the equivalence results between the random intersection graphs model and
the Erdős-Rényi random graphs model for large number of vertices suggest that
the problem of finding a maximum clique in a random instance of Gn,m,p in this
range of values should not be any easier in the former that it is in the latter. On
the other hand, in the range of values m = nα, α < 1 and p = O(m−2/3), greedy
algorithms for finding large cliques in random intersection graphs were presented
in the work [5]. The first algorithm in that paper, referred as GREEDY-CLIQUE,
finds a clique of the optimal order in a random instance of Gn,m,p with high
probability, in the case where the asymptotic degree distribution is a power-
law with exponent within (1, 2). The algorithm considers vertices in decreasing
order of degree and greedily constructs a clique by extending by a vertex if
and only if the latter is connected to all other vertices already included; it can
be implemented to run in expected time O(n2). In the same paper [5], in the
case where the input graph is a random instance of Gn,m,p with bounded degree
variance, a second greedy algorithm, named MONO-CLIQUE, was suggested,
which can be implemented to run in expected time O(n). The main idea of

A Spectral Algorithm for Maximum Cliques in RIGs 21

this algorithm is to try and construct a large clique directly by considering
common neighbours of endpoints of every edge in the graph. The pseudocodes
for GREEDY-CLIQUE and MONO-CLIQUE can be found in Appendixes 7.1
and 7.2 respectively.

In [2] a more general greedy algorithm was presented, namely the Maximum-
Clique Algorithm, which constructs a large clique by considering the common
neighborhood of vertex subsets of fixed size k (i.e. independent of n) and check-
ing whether it forms a clique. From the cliques found in this way, it takes the
largest ones in order to cover the graph. This algorithm finds maximum cliques
whp for a wider range of parameters of the model (but still within the sparse
regime) than both algorithms GREEDY-CLIQUE and MONO-CLIQUE, at the
cost of larger running time. In particular, the Maximum-Clique Algorithm out-
puts a maximum clique in a random instance of Gn,m,p with m = nα, α < 1 and
ln2 n/n ≤ p = O(m−2/3), with high probability. Since in this paper we consider
metrics regarding the ability of an algorithm to find large cliques (namely failure
probability and approximation guarantee), we use the Maximum-Clique Algo-
rithm as a benchmark in relation to which we evaluate our spectral algorithm. In
fact, we use a slightly more efficient version where we directly exclude k-subsets
of vertices that are not complete, in order to significantly reduce the

(
n
k

)
factor

corresponding to the number of all k-sets in the running time. The pseudocode of
the benchmark algorithm is shown in Appendix 7.3. Different pruning ideas for
reducing the running time of greedy algorithms for finding large cliques through
the reduction of the size of the input graph, have been considered in [8].

2 Our Contribution

In this paper we consider the problem of finding maximum cliques when the
input graph is Gn,m,p. We present a spectral algorithm for finding large cliques
that processes vertices according to respective values in the second largest eigen-
vector of the adjacency matrix of carefully selected induced subgraphs of the
input graph created by common neighborhoods of small (constant size) k-cliques.
Because of the computation of the spectral decomposition, the running time of
our algorithm is larger than greedy algorithms in the relevant literature, but
it succeeds with higher probability in finding large cliques. In particular, we
compared our algorithm with the most efficient version of the Maximum-Clique
Algorithm from [2]. Leveraging on the Single Label Clique Theorem from [16],
we were able to avoid the construction of artificial input graph instances with
known planted large cliques. In particular, we used label choices to determine
the maximum clique and then concealed label information by just giving the
adjacency matrix of Gn,m,p as input to the algorithm. Our experimental evalua-
tion showed that, as we move from sparse instances to denser ones, both metrics
regarding the failure probability of our algorithm as well as the approxima-
tion guarantee (when the maximum clique is not found) are much better than
the corresponding values for the Maximum-Clique algorithm. This difference is
especially highlighted as we move from sparser instances to denser ones, in which

22 F. Christodoulou et al.

there is no guarantee that greedy algorithms will succeed (but the Single Label
Clique Theorem still holds) and also as the size of the k-cliques used for cre-
ating induced subgraphs increases (yet remains a relatively small constant, e.g.
k = 6, 7, 8). We believe that our current paper suggests that spectral properties
of random intersection graphs may be used to construct efficient algorithms for
other NP-hard graph theoretical problems as well.

3 Definitions, Notation and Useful Results

Given an undirected graph G, we denote by V (G) and E(G) the set of vertices
and the set of edges respectively. Edges of G will be denoted as 2-sets; two vertices
v, u are connected in G if and only if {u, v} ∈ E(G). For any vertex v ∈ V (G),
we denote by N(v) = NG(v) the set of neighbours of v in G, namely N(v) def=
{u ∈ V (G) : {u, v} ∈ E(G)}. In addition, for any subset of vertices S ⊆ V , we
denote by N(S) the set of vertices having at least one neighbor in S. We denote
by deg(v) = |N(v)| the degree of v. For any subset S ⊆ V , we denote by G[S]
the induced subgraph of G on S, namely G[S] = (S, {{u, v} ∈ E(G) : v, u ∈ S}).
Given an arbitrary ordering of the vertices, say v1, v2, . . . , v|V |, the adjacency
matrix AG of G is an |V | × |V | matrix where AG[i, j] = 1 if {vi, vj} ∈ E(G)
and AG[i, j] = 0 otherwise. An eigenvector of AG with corresponding eigenvalue
λ is a vector x for which AGx = λx. Since by definition AG is symmetric, it
has |V | real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ|V |, with orthogonal corresponding
eigenvectors x(1),x(2), . . . ,x(|V |).

The formal definition of the random intersection graphs model is as follows:

Definition 1 (Random Intersection Graph - Gn,m,p [12,19]). Consider
a universe M = {1, 2, . . . ,m} of labels and a set of n vertices V . Assign
independently to each vertex v ∈ V a subset Sv of M, choosing each element
� ∈ M independently with probability p and draw an edge between two vertices
v
= u if and only if Sv ∩ Su
= ∅. The resulting graph is an instance Gn,m,p of
the random intersection graphs model.

In this model we also denote by L� the set of vertices that have chosen
label � ∈ M . Given Gn,m,p, we refer to {L�, � ∈ M} as its label representation.
Furthermore, the bipartite graph with vertex set V ∪ M and edge set {(v, �) :
� ∈ Sv} = {(v, �) : v ∈ L�} is the bipartite random graph Bn,m,p associated to
Gn,m,p. Notice that the associated bipartite graph is uniquely defined by the
label representation.

Given a graph G, a clique is a set of vertices every two of which are connected
by an edge; the size of the maximum clique in G is its clique number. Notice that,
by definition, for any � the set of vertices within L� forms a clique in Gn,m,p.
Furthermore, the expected size of such a clique is E[|L�|] = np. Observe that
edges of cliques in Gn,m,p may be formed by different labels. However, when the
number of labels is smaller than the number of vertices, the following theorem
states that, under mild conditions, with high probability, in any large enough
clique of Gn,m,p, edges are formed by a single label.

A Spectral Algorithm for Maximum Cliques in RIGs 23

Theorem 1 (Single Label Clique Theorem [17]). Let Gn,m,p be a random
instance of the random intersection graphs model with m = nα, 0 < α < 1 and
mp2 = O(1). Then whp, any clique Q of size |Q| ∼ np in Gn,m,p is formed by a
single label. In particular, the maximum clique is formed by a single label.

Leveraging on the above theorem, in our experiments we avoid the artificial
construction of graph instances with planted cliques. In particular, during the
construction of the random intersection graph, we use its label representation to
find a set L� of maximum cardinality; by the above theorem, this will correspond
to a maximum clique, and its size will be the clique number of Gn,m,p with
high probability. Subsequently, we hide the label representation and give the
constructed graph Gn,m,p as input to the algorithms that we consider in our
experimental evaluation (i.e. just the vertex and edge sets).

3.1 Range of Values for m,n, p

It follows from the definition of the model that the edges in Gn,m,p are not
independent. In particular, the (unconditioned) probability that a specific edge
exists is 1 − (1 − p2)m. Therefore, when mp2 = o(1), the expected number of
edges of Gn,m,p is (1 + o(1))

(
n
2

)
mp2. For the range of values p = O(m−2/3),m =

nα, α < 1, where the Maximum-Clique Algorithm of [2] is guaranteed to output
a large enough clique whp, this becomes O(n2m−1/3) = O(n2−α/3). On the other
end, when mp2 = ω(1) then the graph is almost complete. In view of this, we
will refer to the range of values m = nα, α < 1,mp2 = Ω(m−2/3) as the dense
regime, noting that the Single Label Clique Theorem continues to hold in this
range of values.

4 The Spectral Algorithm

We can now give the details of Spectral-Max-Clique algorithm. Inspired by the
algorithm in [1], our algorithm takes as input the graph Gn,m,p, the size k of a
witness k-clique (i.e. a small clique that is assumed to belong to the maximum
clique) and a parameter t, which is a lower bound on the maximum clique size
in Gn,m,p (recall that, by Theorem 1, when m = nα, α < 1, any clique Q with
size |Q| ∼ np in Gn,m,p is formed only by a single label; since np is the expected
size of E[|L�|], for any � ∈ M, we set t = np). The main difference between our
algorithm and the algorithm of [1] is a kind of preprocessing on the input graph,
which is done at step 3 of the algorithm; in particular, since the input graph
Gn,m,p has many large cliques of size np (in fact, by Theorem 1, it has exactly
m whp), we work on the induced graph H which has fewer (ideally exactly one)
large cliques, namely the ones including S.

At the beginning of the execution, we initialize an empty set M , which at the
end of the execution will be the output of the algorithm (the maximum clique
of the graph). The algorithm enters a for-loop to be repeated as many times
as the number of subsets S ⊆ V of size k in the Gn,m,p. At every iteration of

24 F. Christodoulou et al.

the for-loop, we construct the induced graph H which contains all the vertices
of the subset S of the original graph Gn,m,p as well as all the neighbors of the
vertices in subset S (namely H = G[S ∪ N(S)]). We then find the adjacency
matrix AH of H and we find the eigenvector corresponding to the second largest
eigenvalue, namely x(2); the latter can be done in polynomial time. The algorithm
then sorts the vertices of H in decreasing order of the absolute values of the
corresponding coordinates in the second eigenvector x(2), where equalities are
broken arbitrarily. Subsequently, we consider only the first t vertices in this
ordering and store them in an empty set W . We then define an empty set Q,
where the clique (not necessarily the maximum) will be added. Afterward, for
every vertex v in H, the algorithm checks whether v has at least 3np/4 neighbors
in the set W and exactly |Q| neighbors in the set Q. If the two conditions are true,
v is included in the set Q. In the end, we check if the size of the newly added
clique Q is largest from the size of the existing clique in set M (|Q| ≥ |M |)
and finally the maximum clique M is returned by the algorithm. The main
heuristic idea why this algorithm works as intended is that, most of the time,
the second eigenvector x(2) of AH can be used to find a big portion of the largest
clique; intuitively this happens because the maximum clique will be by far the
largest most dense induced subgraph of the graph, and this will be depicted in
the (absolute) values of the corresponding positions of the second eigenvector
(in the extreme case where the n-vertex graph consists only of a k-sized clique
Q, the only positions where an eigenvector corresponding to the second largest
eigenvalue can have non-zero elements is on the positions corresponding to the
vertices of Q); see also [1] for a theoretical explanation why this heuristic works
in the planted clique model. Therefore, since the algorithm checks all of the
subsets of V of size k, in some step it will reach a subset S, which belongs to the
maximum clique M . Our experimental evaluation shows that at this iteration
our algorithm succeeds in finding the largest clique of the graph in most cases.
The pseudocode of our algorithm is shown below.

Algorithm 1. Spectral-Max-Clique

Input: Random instance of Gn,m,p, parameters k ∈ N, t = np
Output: Clique M of Gn,m,p

1: M = ∅;
2: foreach subset S ⊆ V, |S| = k do
3: Construct the induced graph H = G[S ∪ N(S)];
4: Compute the eigenvector x(2) corresponding to the second largest

eigenvalue of AH ;
5: Sort the vertices of H in decreasing order of the absolute values of cor-

responding coordinates in x(2);
6: Let W be the first t vertices in this ordering;
7: Set Q = ∅;
8: foreach v ∈ H do
9: if v has at least 3np/4 neighbors in W and |Q| neighbors in Q then

10: Q = Q ∪ {v};
11: end if

A Spectral Algorithm for Maximum Cliques in RIGs 25

12: end for
13: if |Q| > |M | then
14: Set M = Q;
15: end if
16: end for
17: return M

4.1 Running Time of Our Algorithm

We note that the outer for-loop of our algorithm runs for
(
n
k

)
times. Furthermore,

for a given k-set S, steps 3, 4 and 5 take O(n3) time, with step 4 regarding spec-
tral decomposition being the most expensive (in theory, spectral decomposition
can be done more efficiently in O(n2.4), but here we use the time complexity of
most practical implementations). Finally, it is easy to see that the for-loop in
steps 8 to 12 runs in O(n3) time, while all other steps are either direct assign-
ments, definition of easily checked conditions and thus take O(1) time. Overall,
the running time of our algorithm is

(
n
k

)·O(n3). Clearly the most time consuming
factor is the number of times that the outer for-loop is running in order to find
a good enough starting k-set S. A similar situation arises also in the algorithm
Maximum clique (see Appendix 7.3), whose running time is

(
n
k

) ·O(n2). To allow
for the algorithms considered and evaluated in our paper to run for larger val-
ues of k in the experimental evaluation, we assume, without loss of generality,
that a suitable k-set is known from the start, thus avoiding the

(
n
k

)
factor in the

running time. This is where Theorem 1 becomes useful, since a suitable k-set S
can be any subset of a (single label) maximum clique.

5 Experimental Evaluation

This section is devoted to the presentation of our experimental results regard-
ing the comparison of the algorithms Spectral-Max-Clique and Maximum-Clique
with respect to two metrics, namely failure probability and approximation guar-
antee. In particular, the failure probability is defined as the probability that
an algorithm fails to find the maximum clique; in our experimental evaluation
this probability is approximated by the fraction of the number of independent
instances of random intersection graphs where an algorithm fails to find a maxi-
mum clique. The approximation guarantee is defined as the fraction of the clique
found by an algorithm over the size of a maximum clique; in our experimental
evaluation this is approximated by the average of the corresponding fractions
achieved by an algorithm for various independent instances of random intersec-
tion graphs.

The number of Gn,m,p graph instances that have been given as input to the
algorithms for small values of k (k = 1, 2, 3) were 2000. However, it is worth
noting that, as we increase the value of k, the computational resources required
also increases, because the dependency on k becomes more prevalent even for

26 F. Christodoulou et al.

straightforward steps of the algorithm 1 (as for example in step 3 for construct-
ing the induced subgraph H). In particular, the number of independent graph
instances used for k = 4, 5, 6, 7, 8 were 1600, 1400, 800, 700, 500 respectively.

In this section we provide our experimental results between the two algo-
rithms for finding the maximum clique that we have considered and secondly we
show an approximation guarantee (denoted by fraction variable in the Figs. 4, 5
and 6 of the output maximum clique found by each algorithm over the maximum
clique of the graph. We present a comparison between Spectral-Max-Clique and
Maximum-Clique algorithm. Further experimental results for different values of
k and α can be found in the full version of our paper [6].

Our computing platform is a machine with AMD Ryzen Threadripper 3970X
at 3.7 GHz, 32 cores, 256 GB RAM, GPU with 2x NVIDIA GeForce RTX 3080
10GB and running Ubuntu Linux version 20.04.2 LTS. The code has been written
in Python 3. The code for repeating the experiments is available here.

The goal of our experimental evaluation is to verify whether the Spectral-Max-
Clique algorithm performs better, meaning that it succeeds to find the maximum
clique in a Gn,m,p, in comparison with the Maximum-Clique. As we already
mentioned, this happens for dense graphs. In our experiments, we ran both
algorithms for different instances of Gn,m,p. Specifically, we use three different
values of parameter α, with α = 1/3, 2/3, 1 and for the number of nodes (n),
we set n equal to 1000 and 3000. Regarding parameter p, we cover a different
range of values for each experiment in order to test sparse instances as well as
dense ones. It is important to explain how we understand that the output of
each algorithm is actually the maximum clique in the graph. We take a Gn,m,p

instance with the above parameters and find the heaviest label (i.e. the label
with the largest number of vertices), call it �max. By Theorem 1, the set of
vertices in L�max form a maximum clique in Gn,m,p whp, so in this way there is
no need to externally plant a known large enough clique in the graph. Then, we
run the algorithms on this instance, but we give only the graph as input (i.e. the
algorithm is unaware of the specific label choices). We say that the algorithms
fail if they do not find a clique at least as large as |L�max |. Note that this is a
strict condition, namely, even finding a clique of size |L�max | − 1 is considered a
failure. In each case, we gradually increase the selection probability p, in order
to highlight that the failure probability curve of Spectral-Max-Clique is much
lower than the failure probability curve of Maximum-Clique, especially when the
input graphs become denser.

It is worth noting that, the selection of a correct starting set S of k vertices in
Step 1 of Spectral-Max-Clique pseudocode, implies a multiplicative Θ(nk) factor
on the running time of our algorithm. Even though for constant k this remains
polynomially bounded, in order to allow our experiments to run for large values
of n and k, we have assumed that the initial set of k vertices is always chosen
from those in the maximum clique.

The Figs. 1,2 and 3 show the failure probability of each algorithm, when p
increases, meaning that the Gn,m,p becomes denser. These experiments show that
for smaller values of k and p, the two algorithms perform in a similar manner;

https://github.com/filipposchr/SpectralMaxClique

A Spectral Algorithm for Maximum Cliques in RIGs 27

(a) k = 3 (b) k = 6

Fig. 1. Failure probability curves for α = 1/3, n = 1000 and k = 3, 6.

(a) k = 4 (b) k = 7

Fig. 2. Failure probability curves for α = 2/3, n = 1000 and k = 4, 7.

they both find successfully the maximum clique in the graph. This is true for
all the different values of parameter a. Indeed, as it is demonstrated in Fig. 2b,
when k = 7, the Spectral-Max-Clique algorithm has failure probability close to
0 for the smaller values of p, while Maximum-Clique fails to find the maximum
clique in almost all the cases, with failure probability close to 100%. One more
example is Fig. 1b, where the failure probability of Maximum-Clique starts at
p ≈ 0.17 and increases as the graph gets denser, and fails in all of the cases to
find the maximum clique when p ≈ 0.27. On the other hand, the probability
of failure of Spectral-Max-Clique begins when p ≈ 0.25 and fails in all cases
when p ≈ 0.36. From all the figures it is obvious that the failure probability of
the spectral algorithm also increases but slower than the failure probability of
Maximum-Clique.

It is also interesting to demonstrate how far the resulting clique of each
algorithm is from the maximum clique of the graph. For that reason, we ran
experiments in the cases where both algorithms fail. In particular, Figs. 4,5 and 6
show the curves of the average of the fraction of the clique size found by the
algorithms over the maximum clique size of the input graph. By studying these

28 F. Christodoulou et al.

(a) k = 4 (b) k = 8

Fig. 3. Failure probability curves for α = 1, n = 3000 and k = 4, 8.

(a) k = 3 (b) k = 6

Fig. 4. Approximation guarantee curves for α = 1/3, n = 1000 and k = 3, 6.

figures, we can observe that for all the different values of parameters α and k, the
output clique of Spectral-Max-Clique algorithm is closer to the maximum clique
of the graph with respect to the output clique of Maximum-Clique algorithm;
the size of the clique that the Spectral-Max-Clique algorithm finds is closer to
the size of the maximum clique of the graph. For instance, for the case a = 1/3
and k = 3, Fig. 4a, when p ≈ 0.250 and the graph is denser, the approximation
guarantee for Spectral-Max-Clique is fraction ≈ 0.82 while for Maximum-Clique
is fraction ≈ 0.57. One more apparent example is Fig. 6b, when a = 1 and
k = 8. In this case, fraction ≈ 0.6 for Spectral-Max-Clique algorithm, although
for Maximum-Clique, fraction ≈ 0.15. Therefore, the former algorithm finds
more than half of the maximum clique while the latter fails to find approximately
85% of the maximum clique of the graph.

It should be noted that, as the value of α gets closer to 0, we were only able
to run our experiments for smaller values of n, because random graph instances
are denser and choosing the right k-clique S that leads to the maximum clique
is more time consuming.

A Spectral Algorithm for Maximum Cliques in RIGs 29

(a) k = 4 (b) k = 7

Fig. 5. Approximation guarantee curves for α = 2/3, n = 1000 and k = 4, 7.

(a) k = 4 (b) k = 8

Fig. 6. Approximation guarantee curves for α = 1, n = 3000 and k = 4, 8.

We conclude that for the cases when the graph gets more dense or when
parameter k gets larger, Spectral-Max-Clique has a lower failure probability as
well as it succeeds to find a larger portion of the maximum clique of the graph.
The spectral algorithm performs better in dense instances, while the other algo-
rithms for dense graphs do not perform well, meaning that they fail to find the
maximum clique for each instance of the graph. Hence, spectral algorithm works
for a larger interval of p than the other algorithms.

6 Conclusions

In this paper, we considered the problem of finding maximum cliques when the
input graph is a random instance of the random intersection graphs model.
Current algorithms for this problem are successful with high probability only
for relatively sparse instances, leaving the dense case mostly unexplored. We
presented a spectral algorithm for finding large cliques that processes vertices
according to respective values in the second largest eigenvector of the adja-
cency matrix of induced subgraphs of the input graph corresponding to common

30 F. Christodoulou et al.

neighbors of small cliques. Our experimental evaluation showed that our spectral
algorithm clearly outperforms existing polynomial time algorithms, especially in
the dense regime. A precise characterization of the performance guarantees of our
algorithm using formal methods remains open for future work. We believe that
spectral properties of random intersection graphs may be also used to construct
efficient algorithms for other NP-hard graph theoretical problems as well.

7 Appendix

7.1 Greedy-Clique Algorithm

The pseudocode of the GREEDY-CLIQUE Algorithm from [5] is shown below.

Algorithm 2. GREEDY-CLIQUE [5]
Input: Random instance G of Gn,m,p

Output: Clique Q
1: Let v1, . . . , v2 the vertices of G in order of decreasing degree;
2: Q = ∅;
3: for i = 1 to n do
4: if vi is adjacent to each vertex in Q then
5: Q = Q ∪ {vi};
6: end if
7: end for
8: return Q

7.2 Mono-Clique Algorithm

The pseudocode of the MONO-CLIQUE Algorithm from [5] is shown below.

7.3 Maximum-Clique Algorithm

The pseudocode of the Maximum-Clique Algorithm from [2] is shown below.

Algorithm 3. MONO-CLIQUE [5]
Input: Random instance G of Gn,m,p

Output: Clique Q
1: for {u, v} ∈ E(G) do
2: D({u, v}) = |N(u) ∩ N(v)|;
3: end for
4: for {u, v} ∈ E(G) in order of decreasing D({u, v}) do
5: S = N(u) ∩ N(v);
6: if S is a clique then
7: return Q = S ∪ {u, v}
8: end if
9: end for

10: return any vertex v ∈ V (G)

A Spectral Algorithm for Maximum Cliques in RIGs 31

Algorithm 4. Maximum-Clique [2]
Input: Random instance G of Gn,m,p and (fixed) parameter k ∈ N

Output: Clique Q of G
1: L = ∅;
2: for Uk = {v1, . . . , vk} ⊆ V such that G[Uk] is complete do
3: if ∃L ∈ L : Uk ⊆ L then
4: continue to the next Uk;
5: end if
6: Let Z = Z(Uk) := ∩i

k=1N(vi);
7: if G[Z] is complete then
8: L = L ∪ {Z};
9: end if

10: end for
11: M = ∅;
12: Y = ∅;
13: for Z ∈ L in decreasing order |Z| do
14: if E(G[Z]) �⊆ Y then
15: Y = Y ∪ E(G[Z]);
16: M = M ∪ {Z};
17: end if
18: end for
19: Sort M by decreasing order;
20: return largest Q ⊂ M

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random
graph. Random Struct. Algor. 13, 457–466 (1998)

2. Behrisch, M., Taraz, A.: Efficiently covering complex networks with cliques of sim-
ilar vertices. Theor. Comput. Sci. 355(1), 37–47 (2006)

3. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K.: Recent
progress in complex network analysis: properties of random intersection graphs.
In: Lausen, B., Krolak-Schwerdt, S., Böhmer, M. (eds.) Data Science, Learning
by Latent Structures, and Knowledge Discovery. SCDAKO, pp. 79–88. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-44983-7 7

4. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K.: Recent
progress in complex network analysis: models of random intersection graphs. In:
Lausen, B., Krolak-Schwerdt, S., Böhmer, M. (eds.) Data Science, Learning by
Latent Structures, and Knowledge Discovery. SCDAKO, pp. 69–78. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-44983-7 6

5. Bloznelis, M., Kurauskas, V.: Large cliques in sparse random intersection graphs.
Electr. J. Comb. 24(2), P2.5 (2017)

6. Christodoulou, F., Nikoletseas, S., Raptopoulos, C., Spirakis, P.: A spectral algo-
rithm for finding maximum cliques in dense random intersection graphs (2022).
https://doi.org/10.48550/ARXIV.2210.02121, https://arxiv.org/abs/2210.02121

7. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs
when m = ω(n): an equivalence theorem relating the evolution of the g(n, m, p)
and g(n, p) models. Random Struct. Algor. 16(2), 156–176 (2000)

https://doi.org/10.1007/978-3-662-44983-7_7
https://doi.org/10.1007/978-3-662-44983-7_6
https://doi.org/10.48550/ARXIV.2210.02121
https://arxiv.org/abs/2210.02121

32 F. Christodoulou et al.

8. Friedrich, T., Hercher, C.: On the kernel size of clique cover reductions for random
intersection graphs. J. Discrete Algorithms 34, 128–136 (2015)

9. Grimmett, G.R., McDiarmid, C.: On coloring random graphs. Math. Proc. Cam-
bridge Philos. Soc. 77, 313–324 (1975)

10. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182, 105–142
(1999)

11. Jianer, C., Xiuzhen, H., Iyad, A.K., Ge, X.: Strong computational lower bounds
via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006)

12. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection
graphs: the subgraph problem. Comb. Probab. Comput. 8, 131–159 (1999)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-
puter computations, pp. 85–103. Plenum Press (1972)

14. Karp, R.M.: Probabilistic analysis of some combinatorial search problems. In: Algo-
rithms and Complexity: New Directions and Recent Results, pp. 85–103. Academic
Press (1976)

15. Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Communication and security
in random intersection graphs models. In: 12th IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WOWMOM), pp. 1–6
(2011)

16. Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Maximum cliques in graphs
with small intersection number and random intersection graphs. In: Proceedings
of the 37th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pp. 728–739 (2012)

17. Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Maximum cliques in graphs
with small intersection number and random intersection graphs. Comput. Sci. Rev.
39, 100353 (2021)

18. Rybarczyk, K.: Equivalence of a random intersection graph and g(n, p). Random
Struct. Algor. 38(1–2), 205–234 (2011)

19. Singer-Cohen, K.B.: Random intersection graphs. Ph.D. thesis, John Hopkins Uni-
versity (1995)

Solving Cut-Problems in Quadratic Time
for Graphs with Bounded Treewidth

Hauke Brinkop(B) and Klaus Jansen

Kiel University, Kiel, Germany
{hab,kj}@informatik.uni-kiel.de

Abstract. In the problem (Unweighted) Max-Cut we are given a graph
G = (V, E) and asked for a set S ⊆ V such that the number of edges from
S to V \ S is maximal. In this paper we consider an even harder problem:
(Weighted) Max-Bisection. Here we are given an undirected graph G =
(V, E) and a weight function w : E → Q>0 and the task is to find a set
S ⊆ V such that (i) the sum of the weights of edges from S is maximal;
and (ii) S contains

⌈
n
2

⌉
vertices (where n = |V |). We design a framework

that allows to solve this problem in time O(2tn2) if a tree decomposition
of width t is given as part of the input. This improves the previously best
running time for Max-Bisection of Hanaka, Kobayashi, and Sone [9] by a
factor t2. Under common hardness assumptions, neither the dependence
on t in the exponent nor the dependence on n can be reduced [7,9,16]. Our
framework can be applied to other cut problems like Min-Edge-Expansion,
Sparsest-Cut, Densest-Cut, β-Balanced-Min-Cut, and Min-Bisection. It
also works in the setting with arbitrary weights and directed edges.

1 Introduction

Unweighted Max-Cut is one of Karp’s 21 NP-complete problems [13]; given a
graph G = (V,E) one is asked for a set S ⊆ V such that the number of edges
from S to V \ S is maximal. Formally, a cut is determined by a set of vertices
S ⊆ V of a graph. The size of a cut is given by the number of edges from S to
V \ S. We denote these edges as ∂S and, for the sake of shortness, if S = {v}
for some v, we write ∂v instead of ∂S = ∂{v}. If the graph is weighted, the
size of the cut is given by the sum of the edge weights w(∂S) :=

∑
e∈∂S w(e)

instead of their number |∂S|. In this paper we consider different cut problems
for directed and weighted graphs1, more precisely Max-Cut, β-Balanced-Min-
Cut, Max-Bisection, Min-Bisection, Min-Edge-Expansion, (uniform) Sparsest-
Cut, and Densest Cut. See Table 1 for precise formulations of these problems.

1 The undirected and unweighted versions can easily be modelled as directed and
weighted by setting each edge weight to 1 and by replacing each undirected edge
between vertices v1 and v2 by two directed edges, v1v2 and v2v1.

This work was partially supported by DFG Project “Fein-granulare Komplexität
und Algorithmen für Scheduling und Packungen”, JA 612 /25-1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 33–46, 2023.
https://doi.org/10.1007/978-3-031-23101-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_3&domain=pdf
http://orcid.org/0000-0002-7791-2353
http://orcid.org/0000-0001-8358-6796
https://gepris.dfg.de/gepris/projekt/453769249
https://gepris.dfg.de/gepris/projekt/453769249
https://doi.org/10.1007/978-3-031-23101-8_3

34 H. Brinkop and K. Jansen

Observe that Densest-Cut and Sparsest-Cut can easily be reduced on each
other in time O(n2) (where n = |V |) using the complementary graph [3]; how-
ever, this reduction might change the treewidth and the corresponding decom-
position, hence we have to consider both problems individually. We want to
point out that if negative edge weights are allowed, as they are in our algo-
rithm, Max-Bisection and Min-Bisection coincide. This does not hold for Max-
Cut and its corresponding minimization variant; Min-Cut is solvable in polyno-
mial time. We call those more general variants of the problem, where we get rid
of the non-negativity restrictions, Max-Bisection’, β-Balanced-Min-Cut’, Min-
Edge-Expansion’, Sparsest-Cut’, and Densest-Cut’. As we will see, our frame-
work is able to solve these more general variants of the problems.

Table 1. Problems that we solve in quadratic time.

Name Weights Objective

Max-Cut Arbitrary max
S⊆V

w(∂S)

β-Balanced-Min-Cut [8] Non-negative min
S⊆V

β·|V |≤|S|≤(1−β)·|V |
w(∂S)

Max-Bisection [11] Non-negative max
S⊆V∣

∣|S|−|V \S|
∣
∣≤1

w(∂S)

Min-Bisection [11] Non-negative min
S⊆V∣∣|S|−|V \S|

∣∣≤1

w(∂S)

Min-Edge-Expansion [17] Non-negative min
∅�=S⊆V

|S|≤|V \S|

w(∂S)

|S|

Sparsest-Cut [3] Non-negative min
∅�=S�V

w(∂S)

|S| · |V \ S|
Densest-Cut [3] Non-negative max

∅�=S�V

w(∂S)

|S| · |V \ S|

Many graph problems are in FPT if parametrized by treewidth. This holds
especially for the problems mentioned above [3,7,9,12]. The corresponding algo-
rithms usually assume that a tree decomposition with O(n) (or a similar bound
like O(nt)) nodes of width t is given as part of the input; we will later see why
that is a reasonable assumption and what we can do if a tree decomposition is
not given. We show that in the above setting, all aforementioned problems can
be solved in time O(2tn2).

Solving Cut-Problems in Quadratic Time 35

2 Related Work

Jansen et al. [11] proposed an algorithm for Max-Bisection and Min-Bisection
that runs in time O(2tn3) for a graph with n vertices, given a tree decomposition
of width t with O(n) nodes2. They transform the tree decomposition into a so-
called nice tree decomposition [15] and then formulate a dynamic program over
the nodes of the tree decomposition. The bottleneck of their analysis are nodes
that have more than one child, the so-called join nodes. There might be Ω(n) join
nodes and for each the dynamic program might take time Ω(2tn2) to compute
all the entries. Eiben, Lokshtanov, and Mouawad [7] have been able to improve
the running time3 in its dependence on n by balancing the tree decomposition
and recognizing that the entries in join nodes can be computed via (max,+)-
convolution; this yields a running time of O(8tt5n2 log n). Hanaka, Kobayashi,
and Sone [9] proved that the algorithm of Jansen et al. does in fact run in time
O(2t(nt)2), using a clever idea to improve the analysis: while for a single join
node computing all entries of the dynamic program might take Ω(2tn2), the
overall time for all join nodes altogether is O(2t(nt)2).

Lokshtanov, Marx, and Saurabh [16] proved that Max-Cut (without a tree
decomposition given as part of the input) cannot be solved in time O((2 −
ε)t poly n) for any ε > 0 assuming the Strong Exponential Time Hypothesis
(SETH) [5,10]. It is not hard to see that this result can be extended to the case
where a tree decomposition is part of the input. By adding isolated vertices, this
result can also be applied to Max-Bisection and Min-Bisection [9]. Eiben, Loksh-
tanov, and Mouawad [7] proved that Min-Bisection (and hence Max-Bisection’)
cannot be solved in truly subquadratic time, that is O(n2−ε) for some ε > 0,
even if a tree decomposition of width 1 is given as part of the input, unless
(min,+)-convolution can be solved in truly subquadratic time, which is consid-
ered unlikely [6].

Given a tree decomposition of width t with O(nt) nodes, in time O(2tn3) the
problems Sparsest-Cut [3], Densest-Cut [3], and Min-Edge-Expansion [12] can
be solved. To our knowledge, those are the best running times achieved so far.

Our Contribution and Organization of this Paper. In Sect. 4 we show how to
improve the running time by a factor t2 for Max-Bisection. In Sect. 5 we then
generalize this to a framework which can be used to solve different cut prob-
lems in time O(2tn2) (compare Table 1). Some problems (like Sparsest Cut) are
improved by a factor n, which is substantial when t is small. The instantiations
of our framework together with the corresponding correctness proofs are omited
due to space restrictions. We refer to the extended version [4] of the paper.

2 The upper bound on the number of nodes occurs only implicitly in their work within
the analysis of their algorithm’s running time.

3 To be precise, they consider Min-Bisection; however, in their paper as well as in [11],
all arguments work for both problems.

36 H. Brinkop and K. Jansen

3 Preliminaries

Notation. For tuples we write (a, b) ⊕ (c, d) = (a + c, b + d) (and analogously
define �). We write π to denote the projection on tuples, that is: for a tuple t
and an index i, πi(t) is the i-th component of t.

For a set M and a number k we write
(
M
k

)
= {M ′ ⊆ M : |M | = k}. For a

graph edge from v1 to v2 we write v1v2 for both, directed and undirected graphs.
A rooted tree T = (V, r, E) is a graph (V,E) that is connected, has no circles,
and where r ∈ V .

We use n as abbreviation for |V |. By Q̄ := Q ∪̇ {∞,−∞} we denote the
rational numbers with positive and negative infinity.

As already mentioned in the previous sections, we make use of tree decom-
positions, which are defined as follows:

Definition 1 (Tree decomposition). Let G = (V,E) be an undirected graph,
I be a finite set and X = (Xi)i∈I be a family of sets such that for any i ∈ I one
has Xi ⊆ V . Moreover, let T = (I, r,H) be a rooted tree with root r ∈ I. Then
(I, r,X,H) is called a tree decomposition of G if and only if T has the following
properties:

(i) Node coverage: Every vertex occurs in some Xi for some i ∈ I (and no
further vertices occur):

⋃
i∈I Xi = V ;

(ii) Edge coverage: for every edge v1v2 ∈ E there is a node i ∈ I such that
both, v1 and v2, are contained in Xi;

(iii) Coherence: for every vertex v ∈ V the subgraph T − {i ∈ I : v /∈ Xi} is
connected. �

By convention the nodes of the graph G are called vertices while the nodes
of the tree are just called nodes. For a node i ∈ I the set Xi is called a bag.
The width of a decomposition is the largest cardinality of any of its bags minus
1. The minimum width among all decompositions of G is called the treewidth
of G. If the node set of a decomposition is sufficiently small, more precisely if
|I| ≤ 4 · (|V | + 1), we call the decomposition small. A tree decomposition of a
directed graph is a tree decomposition of the underlying graph.

As the approaches mentioned before, our approach also makes use of a specific
kind of tree decompositions, which are of a very simple structure:

Definition 2 (Nice Tree Decomposition). Let G = (V,E) be an undirected
graph and (I, r,X,H) a tree decomposition of G. We call (I, r,X,H) a nice tree
decomposition if and only if for any i ∈ I the node i is of one of the following
forms:

(i) Leaf node: i has no child node in T , that is i is a leaf of the tree T ;
(ii) Forget node: i has exactly one child node j ∈ I in T and Xi ∪̇ {v} = Xj

for some v ∈ Xj , that is i forgets a vertex from Xj ;
(iii) Introduce node: i has exactly one child j ∈ I in T and Xi = Xj ∪̇ {v} for

some v ∈ V \ Xj , that is i introduces a new vertex v ∈ V \ Xj ; or

Solving Cut-Problems in Quadratic Time 37

(iv) Join node: i has exactly two child nodes j ∈ I, k ∈ I, j 	= k, in T such
that Xi = Xj = Xk, that is joining two branches of the tree T . �

The conversion of a tree decomposition into a nice tree decomposition can be
done in time O(nt2) as long as the number of nodes of the decomposition is at
most linear in the number of vertices.

Lemma 3 ([15, Lemma 13.1.3, p. 150]). Given a small tree decomposition
of a graph G with width t one can find a nice tree decomposition of G with
width t and with at most 4n nodes in O(nt2) time, where n is the number of
vertices of G. �

It is reasonable to assume that given tree decompositions are small for the fol-
lowing reason: No matter how the tree decomposition is constructed, it is always
possible to incorporate the following mechanism without asymptotically increas-
ing the running time: If a node j with parent i has Xj ⊆ Xi, merge those nodes.

We claim that we now can only have n edges. This is because for every node j
with parent i, we have Xj 	⊆ Xi; this means, at least one vertex has to disappear
when going from j up to i. Since by Coherence every vertex can disappear at
most once4, this upper bounds the number of edges by n and hence the number
of nodes by n + 1.

Note that this also allows us to easily extend our approach to the case where
a tree decomposition with O(nt) nodes is given as part of the input: simply apply
the procedure described above to reduce the number of nodes.

4 Max-Bisection: From O(2tn3) to O(2tn2)

In this section we focus on our idea on how the running time of the algorithm of
Jansen et al. [11] for Max-Bisection can be improved to O(2tn2), incorporating
the idea of Hanaka, Kobayashi, and Sone [9].

The algorithm of Jansen et al. [11] is a subroutine used in their PTAS for
the Max-Bisection problem on planar graphs. Their approach uses Baker’s tech-
nique (see [1]) where the idea is to solve the problem for k-outerplanar graphs
(instead of general planar graphs), for a k depending only on the approximation
factor, and then combining the results. Note that k-outerplanar graphs have a
treewidth in O(k) [14]. For those k-outerplanar graphs, the problem is solved
exactly using the aforementioned subroutine. Since – as opposed to the general
case – tree decompositions for k-outerplanar graphs can be computed in time
O(kn) [14], this subroutine gets tree decomposition as part of its input; other-
wise the running time of the subroutine would be dominated by the computation
of the decomposition.

Let us now focus on the subroutine. We will traverse the nice tree decompo-
sition bottom up in the algorithm of Jansen et al., hence the following notations
come in handy: For a node i the set Yi contains all the vertices appearing in
4 It might disappear on multiple leaf-root-paths; however, the node at which a vertex

disappears, is the same on each of those leaf-root-paths.

38 H. Brinkop and K. Jansen

bags associated with nodes below i. Moreover, we write Fi := Yi \Xi to describe
the set of vertices that “have been forgotten” somewhere below i, that is, that
they have appeared in bag of some node j below i, but are not contained in Xi.
Due to Definition 1 (iii), those vertices can never reoccur in any bag above i.

The algorithm of Jansen et al. uses a dynamic program to compute

Bi : {0, . . . , |Yi|} × 2Xi → Q̄>0

Bi(�, S) = max
̂S⊆Yi

|̂S|=�

S⊆̂S

w(∂Ŝ ∩ Y 2
i), (1)

given a small nice tree decomposition of a weighted, undirected graph G = (V,E)
with weight function w : E → Q>0. The idea is that for a node i the entry
Bi(�, S) is the size of the largest possible cut that consists of � vertices from Yi

and includes the set S ⊆ Xi. As the table might have preimages (�, S) where
there does not exist be a cut meeting the requirements above, ∞ and −∞ have
to be used to deal with those – we omit further details.

For the root r of the tree decomposition we can compute our optimal objective
value by iterating over all entries of Br and picking the best value where the
number of vertices is in the feasible interval for Max-Bisection.

The dynamic program traverses the decomposition bottom up. The bottle-
neck of the running time comes from the time spent at join nodes – the values for
each node of any different type can be computed in time O(2tn) using a simple
DP. For a join node i with left child j and right child k, they use the following
recurrence to compute Bi:

Bi(�, S) = max
|S|≤�1≤|V |
|S|≤�2≤|V |

�1+�2−|S|=�

(Bj(�1, S) + Bk(�2, S) − w(∂S ∩ (S × (Xi \ S)))
)

(2)

We omit the details on how the necessary values of w are computed in their case;
it suffices to see that a rough analysis of the equation above, assuming that we
are given the value of the w expression, is O(n2) per entry for a single join node.
It is also easy to see that there are indeed instances where the computation of an
entry for (�, S) takes Θ(n2) time. This yields an overall running time of O(2tn3)
as stated by Jansen et al. [11].

Hanaka, Kobayashi, and Sone [9] provided an improved analysis for the algo-
rithm of Jansen et al. [11]. They defined νi to be the sum of all |Xj | for nodes j
that are below i. It is not hard to see that the running time for the computation
of a single entry of a join node i with left child j and right child k can be done
in time O(νjνk). Using a labeling argument they then proved that

∑

i : join node with children j,k

νjνk ≤ (nt)2.

Their idea is that after labeling the vertices in all bags (possibly giving the same
vertex different labels for different bags), every pair of those labels can occur at

Solving Cut-Problems in Quadratic Time 39

at most one join node. The consequence of the above statement is that the worst
case for join nodes cannot occur too often; overall, all entries of all join nodes
can be computed in time O(2t(nt)2).

Our approach is now to reformulate the recurrence by something that can be
thought of as an index shift; for each node i we define a table

Γi : {0, . . . , |Fi|} × 2Xi → Q

Γi(�, S) := max
̂S∈(Fi

�)
w(∂(S ∪̇ Ŝ) ∩ Y 2

i). (3)

In comparison to (1), there are two differences.

1. The indices have a different meaning: In Γi(�, S) we store the value of the
best cut (with respect to f) that consists of the set S ⊆ Xi and � further
vertices that occur in bags below i, but not in Xi.

2. The table’s size is now O(|Fi|2t); this is not only smaller but also for every
entry (�, S) there is a cut consisting of � vertices from Fi and the vertices
from S (hence we do not have to consider those special cases of undefinedness
as it had to be done in [11]).

For the modified recursion, the join nodes are still the bottleneck; their recur-
rence is5

Γi(�, S) =
(

max
0≤�1≤|Fj |
0≤�2≤|Fk|
�2+�1=�

(
Γj(�1, S) + Γk(�2, S)

)
)

− w(∂S ∩ Y 2
i).

The key observation is that the running time is dominated by computing the
max expression6, which depends linearly on |Fj | · |Fk| = |Fj × Fk|. We can now
show that all of those occurring Cartesian products are disjunct:

Proposition 4. For each pair (v1, v2) ∈ V 2 there is at most one join node i
with left child j and right child k such that (v1, v2) ∈ Fj × Fk. �

Proof. Proof by contradiction. Assume there was a join node i′ 	= i with left
child j′ and right child k′ such that (v1, v2) ∈ Fj′ × Fk′ . Then, by Coherence,
either i′ is below i or i is below i′. We assume without loss of generality that i′ is
below i. Moreover, we assume without loss of generality that i′ is somewhere in
the left subtree of i. As (v1, v2) ∈ Fj × Fk by assumption, we have in particular
v2 ∈ Fk, and, additionally taking into account that Fj ∩ Fk = ∅ by Coherence,
v1 /∈ Fk. Since i′ is in the left subtree of i, we also have Fj′ ⊆ Fi′ ⊆ Fj , hence
v1 /∈ Fj′ . This is a contradiction to (v1, v2) ∈ Fj′ × Fk′ .

5 Since we only did an index shift, we can reuse the recurrence from [11] by applying
the same shift to it.

6 Note that ∂S can only take on O(2t) different values at some fixed node i. We
use a simple DP to precompute the w(·) terms efficiently (for a fixed node in time
O(2tn)).

40 H. Brinkop and K. Jansen

Using this statement we can now deduce that
∑

i : join node with children j,k

|Fj × Fk|

=

∣
∣
∣
∣
∣
∣

⋃̇

i : join node with children j,k

(
Fj × Fk)

∣
∣
∣
∣
∣
∣
≤ |V 2| = n2. (4)

We can thus deduce the overall running time of computing all entries for all
join nodes is O(2tn2), as we need time O(2t|Fj × Fk|) for a single join node.

As the running time for the other node types obviously remain unchanged,
this yields an algorithm with overall running time O(2tn2) for Max-Bisection.

5 Our Framework

In this section we discuss how we can generalize the idea from the previous
section to other cut problems. More precisely, we present a framework that can
solve several cut-problems (for directed, arbitrarily-weighted graphs G = (V,E)
with weight function w : E → Q) in time O(2tn2) if a small tree decomposition
of width t is given as part of the input. Without loss of generality we assume
that this small tree decomposition is also a nice tree decomposition (if not, we
could simply use Lemma 3 to convert it accordingly in sufficiently small time).

The main obstacle is finding an abstraction of the algorithm for Max-Bi-
section that maintains the running time, but also allows us tackle all the listed
problems. Especially extracting the formal arguments hidden implicitly in exist-
ing algorithms turned out to be a non-trivial task.

For our framework, we assume that we are given an objective function
f : N0 × Q → Q̄ that is either monotonic or antitonic7 in its second argument,
and a validator function Λ: N0 → {true, false}. We use a function of arity 2 to
be able to not only model Max-Bisection and similar, but also e.g. Sparsest-Cut,
where the objective depends on the size of the cut and the number of vertices
selected. The validator function is needed e.g. for Max-Bisection, as we some-
how have to tell the framework which entries correspond to feasible solutions and
which are infeasible; for Max-Bisection we would set Λ(x) := (|x− (n−x)| ≤ 1).
We assume that both, f and Λ, can be evaluated in time O(1).

Our task is now to compute an element of all possible preimages (in the sense:
there exists a corresponding cut)

{(
|S|, w(∂S)

)
: S ⊆ V, Λ(|S|)

}
of the objective

function f that maximizes f . We can reformulate this task in a more elegant way
by introducing the total quasiorder () ⊆ ({0, . . . , n} × Q) ∪̇ {⊥})2 defined by

a b ⇐⇒ a = ⊥ ∨ (
a 	= ⊥ 	= b ∧ f(a) ≤ f(b)

)
.

The intuition behind that quasiorder is as follows: if we compare two values
a, b 	= ⊥, then a b iff f(a) ≤ f(b), that is, we compare (non-⊥) values by their
image under f .
7 x ≤ y =⇒ f(a, x) ≥ f(a, y).

Solving Cut-Problems in Quadratic Time 41

The idea of the new symbol ⊥ is to represent the case where there is no
feasible solution and hence no possible preimage to f as we have to deal with
that case, too.

Our task is now to compute (where
⊔

is the supremum operator regarding
).

Φ =
⊔

S⊆V
Λ(|S|)

(
|S|, w(∂S)

)
. (5)

By definition, ⊥ is the smallest element of our order, so if there is a feasible
solution, the result cannot be ⊥.

From a strict mathematical perspective, Eq. 5 is incorrect as in general there
is no such thing as a unique supremum for a total quasiorder (there might be
multiple possible preimages of f taking on the optimal value). Taking this into
account would make the description of our approach way more complicated, as
we would need to reason about equivalence classes and eventually give a recur-
rence to compute a representant of the class of element optimizing the objective
function. Thus, we identify elements and their corresponding equivalence class
(set of possible preimages that have the same objective value) in this paper.

For the sake of shortness, for a subset of edges M ⊆ E we write wi(M) :=
w(M∩Y 2

i). We set up the dynamic program similar to the one for Max-Bisection,
that is for a node i we define

Γi : {0, . . . , |Fi|} × 2Xi → {0, . . . , n} × Q

Γi(�, S) :=
⊔

̂S∈(Fi
�)

(
� + |S|, wi(∂(S ∪̇ Ŝ))

)
. (6)

In comparison to Eq. 3 there are two differences.

1. An entry is no longer just the size of the corresponding cut, but a 2-tuple
consisting of the number of vertices selected and the size of the cut.

2. Instead of storing values for the largest cut, as we did for Max-Bisection, we
store the tuple that maximizes the function f .

We can now rewrite Eq. 5 in terms of Γ (recall that r is the root of the given
nice tree decomposition):

Lemma 5.
Φ =

⊔

S⊆Xr

0≤�≤|Fr|
Λ(�+|S|)

Γr(�, S) (7)

Proof (Omitted due to space restrictions, we refer to the extended version [4]).

It is easy to see that, if we are given the values Γr(�, S) for all 0 ≤ � ≤ |Fr|
and all S ⊆ Xr, we can compute Φ in time O(2tn). We claim that we can
compute the table Γ for all nodes together in overall time O(2tn2), implying
that Φ can be computed in time O(2tn2). To see this, we now show that we can

42 H. Brinkop and K. Jansen

use a dynamic program to compute the table Γ and eventually Γr in the desired
time. Therefor, we first set up recurrences for each node type that we can use
to efficiently compute the value for a node i of this type, given that we already
know all the values below i.

For our approach there is an important property of : Basically, we are able
to move the addition with a constant tuple outside of the supremum operator,
if the elements all have the same first component.

Lemma 6. For any a, any finite set M ⊆ {a} × Q and any z it holds that

z ⊕
⊔

x∈M

x =
⊔

x∈M

(
z ⊕ x

)
�

Proof. As M is finite, it suffices to show8 this property for the binary supremum
�. Let z = (b, w) and (a, x) ∈ M , (a, y) ∈ M . If x = y or f(a, x) = f(a, y), the
property is trivial. Thus we may assume without loss of generality that x > y
and f(a, x) 	= f(a, y). We now have two cases, depending on h �→ f(a, h). The
first case is that h �→ f(a, h) monotonic. Then our assumption implies that
f(a, x) > f(a, y) and hence:

(b, z)⊕((a, x)�(a, y)) = (b, z)⊕(a, x) = (a+b, x+z) = (a+b, x+z)�(a+b, y+z)

The last step follows from the monotony, as x + z ≥ y + z. The second case,
where h �→ f(a, h) is antitonic, can be proven analogously.

This property is absolutely crucial as it gives us some (necessary) freedom for
transformations of Eq. 6. Intuitively, this lemma tells us that the optimization
process works no different than it does e.g. Max-Cut or Max-Bisection; if we
fix the number of vertices we choose, given a set of cuts to pick from the cut
maximizing f is either the cut of largest size or the cut of smallest size.

Recurrences

We now set up a recurrence, depending on the node type, to compute the table
Γ by traversing the tree decomposition in a bottom-up fashion. In this section
we give the intuition behind the recurrences step by step. For correctness proofs
of the equations (which are very technical) we refer to the extended version [4]
of the paper.

8 For the reader not familiar with order theory: The binary supremum is an associative
and commutative map. If for every pair of elements there is a supremum, that is,
a smallest element that is larger than both elements of the pair, then so it does
for any finite set M . This can be shown by a simple inductive argument using the
aforementioned associativity/commutativity.

Solving Cut-Problems in Quadratic Time 43

Leaf Node. Let i be a leaf node. Then Fi = ∅. Thus, Γi is only defined for � = 0
and S ⊆ Xi. If S = ∅, there are no edges in the cut, hence Γi(0, ∅) = (0, 0). If
S = {v} consists of a single node, we can simply go through all its edges, that
is set

Γi(0, {v}) =
(
1,

∑

v′∈Xi

vv′∈E

w(vv′)
)
. (8)

Now let S = S′ ∪̇ {v} where S′ 	= ∅. We will now argue how we can compute the
value Γi(0, S) given the value Γi(0, S′). In the situation considered for Γi(0, S′)
we have v /∈ S′. If we move v into the selection and are able to track and compute
the changes, we can also compute Γi(0, S). After moving v into the selection,
there might be edges from S′ to {v} (which all have been in the cut before);
those edges are no more in the cut for S. Also, there might also be some new
edges in the cut, more precisely all edges from v to Xi \ S. There are no more
new edges in the cut and no other edges are removed from the cut. This yields

Γi(0,

�=∅⏐
�

S′ ∪̇ {v}
︸ ︷︷ ︸

S

) = Γi(0, S′) ⊕
(

|S|−|S′|=1, we now add the new vertex v⏐
�

1,
∑

v′∈Xi\S′

vv′∈E

w(vv′)

︸ ︷︷ ︸
edges from v to Xi \ S′

−
∑

v′∈S′
v′v∈E

w(v′v)

︸ ︷︷ ︸
edges from S′ to v

)
. (9)

Forget Node. Let i be a forget node with child j. Then there is v ∈ V such that
Xi ∪̇ {v} = Xj . Now, for the computation of the entries Γi(�, S) we only have
to deal with one question: is it better to include v into the selection or not? As
v ∈ Fi, this question is only relevant if � ≥ 1; if � = 0, then Γi(�, S) = Γj(�, S).
Now let � ≥ 1. If we included v into our selection, we have to include �−1 further
vertices from Fj ; if we do not include v, we have to include � further from Fj .
We now simply pick the better result of both options. Overall, this yields the
following recurrence:

Γi(�, S) =

{
Γj(� − 1, S ∪̇ {v}) � Γj(�, S) � ≥ 1
Γj(�, S) � = 0

. (10)

Introduce Node. Let i be an introduce node with child j. Then there is v ∈ V
such that Xi = Xj ∪̇ {v}. When computing Γi(�, S) we have to make a case
distinction whether v is in S or not.

In the first case v ∈ S we rely on Γj(�, S \ {v}) to compute the value. As
we consider a selection of S and � further vertices of Fi as opposed to the entry
Γj(�, S \ {v}) which only considers a selection of S \ {v} and � further vertices
of Fj = Fi, we have to add 1 to the first component of Γj(�, S \ {v}) to account
for the additional vertex v. For the second component, the size of the cut, we
only have to add the weight of all edges from v to Xj \ S. Note that there are
no weights that we need to subtract; while there might be edges between v and
S, those are not considered in the computation of Γj(�, S \ {v}) as the vertex v

44 H. Brinkop and K. Jansen

does not appear in Yj (due to Coherence and Edge Coverage). Thus, for v ∈ S
we get

Γi(�, S) =
(

we now add the new vertex v to the selection S \ {v}⏐
�

1, wi(∂v ∩ ({v} × (Xi \ S))
︸ ︷︷ ︸

edges from v to Xi \ S; we will later discuss how to compute this value

)
⊕ Γj(�, S \ {v}). (11)

Now let us consider the case v /∈ S. The argumentation is very similar. As
v /∈ S, there is no new vertex we add to the selection. However, there are possibly
new edges and that change the value of the cut: the edges from S to {v}. This
gives us the following recurrence for the case v /∈ S:

Γi(�, S) =
(
0, wi(∂S ∩ (Xi × {v}))

︸ ︷︷ ︸
edges from S to {v}; we will later discuss how to compute this value

)
⊕ Γj(�, S). (12)

In both cases there is a (case-dependent) additive term that has to b eadded
to an entry of Γj . Observe that this additive term is independent of �. As it turns
out, this additive term (depending only on S) can be rewritten as

π2

(
Γi(�, S) � Γj(�, S)

)
(13)

for any arbitrary, but fixed �; for details we refer to the extended version [4]. Thus,
we can do the following: for � = 0 we need to explicitly compute the additive
term for all S ⊆ Xi. For all � ≥ 1 we can simply use π2(Γi(�−1, S)�Γi(�−1, S))
for all S ⊆ Xi.

Join Node. Let i be a join node with left child j and right child k. Then Xi =
Xj = Xk. The value Γi(�, S) can then be interpreted as the tuple maximizing f

over all selections Ŝ ⊆ Yi where there are �1 vertices from Fj and �2 from Fk for
every 0 ≤ �1 ≤ |Fj |, 0 ≤ �2 ≤ |Fk| where �1 + �1 = �. This is closely related to

Γi(�, S) =
⊔

0≤�1≤|Fj |
0≤�2≤|Fk|
�2+�1=�

(
Γj(�1, S) ⊕ Γk(�2, S)

)
;

it is not hard to see that this equation almost computes the desired tuple, with
the exception that each vertex in S and each edge of E ∩ X2

i that is in the cut
is counted twice. Thus, by subtracting the doubly counted vertices/edge weights
and applying Lemma 6 we get

Γi(�, S) =
(⊔

0≤�1≤|Fj |
0≤�2≤|Fk|
�2+�1=�

(
Γj(�1, S) ⊕ Γk(�2, S)

)
)

�
(
|S|, wi(∂S)

)
. (14)

The running time analysis is analogous to the analysis of the algorithm for
Max-Bisection we presented before. We thus skip this part here (due to space
restrictions); if interested, the reader can find a detailed analysis of every case
in the extended version [4].

Solving Cut-Problems in Quadratic Time 45

6 Conclusion

We showed that – given a small tree decomposition of width t – many cut
problems can be solved in time O(2tn2) using our framework. To our knowledge,
the running times achieved by our framework are better than the previously
known algorithms for the considered problems. Moreover, this running time is
unlikely to be improved significantly (improvements by factors poly t and/or
poly log n are not excluded) in general: An algorithm (solving Min-Bisection)
that runs in time O(n2−εf(t)) for some f and some ε > 0 would imply an
algorithm of running time O(n2−δ) for some δ > 0 for (min,+)-convolution [7],
which is considered unlikely [6]. An algorithm (solving Max-Cut) cannot have
a running time O((2 − ε)t poly n) for some ε > 0 unless SETH fails [5,9,10,
16]. However, there might be problems that can be solved using our framework
that we have not considered yet. Moreover, it might be possible to generalize
the framework (with possibly worse running time) to e.g. be able to also cover
connectivity problems (see [2]).

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650.
ISSN 0004-5411

2. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

3. Bonsma, P.S., Broersma, H., Patel, V., Pyatkin, A.V.: The complexity of finding
uniform sparsest cuts in various graph classes. J. Discrete Algorithms 14, 136–149
(2012). https://doi.org/10.1016/j.jda.2011.12.008

4. Brinkop, H., Jansen, K.: Solving cut-problems in quadratic time for graphs with
bounded treewidth. https://arxiv.org/abs/2101.00694

5. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
75–85. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0 6

6. Cygan, M., Mucha, M., W ↪egrzycki, K., W�lodarczyk, M.: On problems equivalent
to (min,+)-convolution. ACM Trans. Algorithms 15(1), 1–25 (2019). https://doi.
org/10.1145/3293465. ISSN 1549-6325

7. Eiben, E., Lokshtanov, D., Mouawad, A.E.: Bisection of bounded treewidth graphs
by convolutions. J. Comput. Syst. Sci. 119, 125–132 (2021). https://doi.org/10.
1016/j.jcss.2021.02.002

8. Feige, U., Yahalom, O.: On the complexity of finding balanced oneway cuts. Inf.
Process. Lett. 87(1), 1–5 (2003). https://doi.org/10.1016/S0020-0190(03)00251-5

9. Hanaka, T., Kobayashi, Y., Sone, T.: A (probably) optimal algorithm for bisection
on bounded-treewidth graphs. Theor. Comput. Sci. 873, 38–46 (2021). https://
doi.org/10.1016/j.tcs.2021.04.023

10. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

11. Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approximation
schemes for max-bisection on planar and geometric graphs. SIAM J. Comput.
35(1), 110–119 (2005). https://doi.org/10.1137/S009753970139567X

https://doi.org/10.1145/174644.174650
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1016/j.jda.2011.12.008
https://arxiv.org/abs/2101.00694
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1016/j.jcss.2021.02.002
https://doi.org/10.1016/j.jcss.2021.02.002
https://doi.org/10.1016/S0020-0190(03)00251-5
https://doi.org/10.1016/j.tcs.2021.04.023
https://doi.org/10.1016/j.tcs.2021.04.023
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/S009753970139567X

46 H. Brinkop and K. Jansen

12. Javadi, R., Nikabadi, A.: On the parameterized complexity of sparsest cut and
small-set expansion problems. Computing Research Repository, abs/1910.12353
(2019). http://arxiv.org/abs/1910.12353

13. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

14. Katsikarelis, I.: Computing bounded-width tree and branch decompositions of
k-outerplanar graphs. Computing Research Repository, abs/1301.5896 (2013).
http://arxiv.org/abs/1301.5896

15. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

16. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Trans. Algorithms 14(2), 13:1–13:30 (2018).
https://doi.org/10.1145/3170442

17. Mahoney, M.: Lecture: Overview of graph partitioning. https://www.stat.berkeley.
edu/∼mmahoney/s15-stat260-cs294/Lectures/lecture05-05feb15.pdf. Accessed 04
Jan 2022

http://arxiv.org/abs/1910.12353
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1301.5896
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1145/3170442
https://www.stat.berkeley.edu/~mmahoney/s15-stat260-cs294/Lectures/lecture05-05feb15.pdf
https://www.stat.berkeley.edu/~mmahoney/s15-stat260-cs294/Lectures/lecture05-05feb15.pdf

More Effort Towards Multiagent
Knapsack

Sushmita Gupta1, Pallavi Jain2, and Sanjay Seetharaman1(B)

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{sushmitagupta,sanjays}@imsc.res.in

2 IIT Jodhpur, Jodhpur, India
pallavi@iitj.ac.in

Abstract. In this paper, we study two multiagent variants of the knap-
sack problem. Fluschnik et al. [AAAI 2019] studied the model in which
each agent expresses its preference by assigning a utility to every item.
They studied three preference aggregation rules for finding a subset
(knapsack) of items: individually best, diverse, and Nash welfare-based.
Informally, diversity is achieved by satisfying as many agents as pos-
sible. Motivated by the application of aggregation operators in multi-
winner elections, we extend the study from diverse aggregation rule to
Median and Best scoring functions. We study the computational and
parameterized complexity of the problem with respect to some natural
parameters, namely, the number of agents, the number of items, and
the distance from an easy instance. We also study the complexity of the
problem under domain restrictions. Furthermore, we present significantly
faster parameterized algorithms with respect to the number of agents for
the diverse aggregation rule.

Keywords: Social choice · Voting · Complexity

1 Introduction

Knapsack is a paradigmatic problem in the area of optimization research, and
its versatility in modeling situations with dual objectives/criterion is well estab-
lished [28]. Unsurprisingly, it has been generalized and extended to incorporate
additional constraints; and encoding preferences is a move in that direction.
This type of modeling allows us to address the need for mechanisms to facilitate
complex decision-making processes involving multiple agents with competing
objectives while dealing with limited resources. We will use multiagent knapsack
to refer to this setting. One natural application of multiagent knapsack would
be in the area of participatory budgeting (PB, in short), a democratic process
in which city residents decide on how to spend the municipal budget.

In the context of multiagent knapsack, approval ballot/voting is among the
most natural models. It fits quite naturally with the motivation behind PB, in
which for a given set of projects, every voter approves a set of projects that s/he
would like to be executed. However, utilitarian voting (variously called score
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 47–62, 2023.
https://doi.org/10.1007/978-3-031-23101-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_4

48 S. Gupta et al.

or range voting) is a more enriched ballot model, where every voter expresses
his/her preferences via a utility function that assigns a numerical value to each
alternative on the ballot (approval ballot is a special case as 0 utility denotes
disapproval). This model applies to PB very well in situations where residents
do not really have the motivation to reject any project. For example, consider
the proposal to build different sporting facilities in a city. One might like a sport
over another but would not really have any objections against building facilities
for any sport. So, instead of disapproving a project, residents could be asked to
give some numerical value (called utility) to every project, depending on how
much they value that project. In a realistic scenario, citizens would be asked to
“rate” the proposed projects by a number between 1 to 10, with 10 being the
highest. A larger (smaller) range can be conveniently chosen if the number of
proposed projects is reasonably high (low).

Recently, this model has been studied by Fluschnik et al. [18], analysing the
problem from a computational viewpoint; and Aziz and Lee [5] who considered
the axiomatic properties. Formally, we define the problem as follows:

R-Utilitarian Knapsack (R-UK)
Input: A set of items P = {p1, . . . , pm}, a cost function c : P → N, a set
of n voters V , a utility function utilv : P → N for every voter v ∈ V , a
budget b ∈ N, and a target utgt ∈ N.
Question: Does there exist a set Z ⊆ P such that the cost of Z is at most
b and the total satisfaction (defined below) of voters is at least utgt under
the voting rule R?

Notably, Committee Selection problem is a special case of PB (or UK)
where the candidates (items) are of unit cost, and we are looking for a committee
(bundle) of size exactly b. An important and well-studied class of voting rules for
Committee Selection is the class of Committee Scoring Rules (CSR) [15–17].
The satisfaction of a voter is given by a function that only depends on the utility
of committee members, assigned by the voter. Towards this, for a committee S,
we define the utility vector of a voter v as a vector of the utilities of the candidates
in S, assigned by v. For example, let P = {p1, p2, p3}. Consider a voter v such
that utilv(p1) = 3, utilv(p2) = 2, and utilv(p3) = 5. Then, for S = {p1, p2},
the utility vector of v is (3, 2). The scoring function, f , takes the utility vector
and returns a natural number as the satisfaction of a voter. In these voting rules,
the goal is to maximize the summation of satisfactions of all the voters.

Background. In PB, the city residents are asked for their opinion on the
projects to be funded for the city, and then the preferences of all the voters
are aggregated using some voting rule, which is used to decide the projects for
the city. Initiated in Brazil in 1989 in the municipality of Porto Alegre [38], PB
has become quite popular worldwide [19], including in the United States [33]
and Europe [34]. In the last few years, PB has gained considerable attention
from computer scientists [5–7,18,24–27,31,37]. We would like to note that Goel
et al. [20] introduced the topic of knapsack voting that captures the process of

More Effort Towards Multiagent Knapsack 49

aggregating the preferences of voters in the context of PB. The authors state
that their motivation was to incorporate the classical knapsack problem by mak-
ing the voter choose projects under the budget constraint but in a manner that
aligns the constraints on the voters’ decisions with those of the decision-makers.
Their study is centered around strategic issues and extends knapsack voting
further to more general settings with revenues, deficits, and surpluses.

Fluschnik et al. [18] propose three CSRs for R-PB, and one of the rules
uses a scoring function that takes the utility vector of a voter and returns the
maximum utility in that vector as the satisfaction of the voter. This rule is a
generalization of Chamberlin-Courant multiwinner (CC, in short, also known as
the 1-median) voting rule, where the utilities are given by the Borda scores. This
is called the Diverse Knapsack problem.

In this paper, we consider the median scoring function (and the best scoring
function) [35], in which given a value λ ∈ N, the scoring function takes a utility
vector and returns the λth maximum value (the sum of the top λ values) as the
satisfaction of the voter. If the size of the bundle is less than λ, then the utility
of every voter under the median scoring function is 0. For a bundle Z ⊆ P and
λ ∈ N, let satλ

v (Z) (sat[λ]v (Z)) denote the satisfaction of the voter v from the
set Z under median (best) scoring function. These rules are generalizations of
the 1-median and k-best rules that are widely found in the literature. To the
best of our knowledge, none of these are actually applied to real-life situations
to determine the “winner”. As with almost any mathematical model dealing
with social choice, these are also proposals with provable guarantees and may
be applied in practice. Let us consider a hypothetical PB situation where the
proposed projects are building schools in different parts of the city, and the
citizens are invited to vote for possible locations of choice. It is highly unlikely
that after the facilities are built, all the students are admitted to their top
choice. Suppose that they are guaranteed to be admitted to one of their top
three choices. Then, aggregating preferences based on maximizing the utility of
the λth most-preferred school for λ = 3 takes that uncertainty into account; and
gives a lower bound on the utility derived by all who get admitted to one of their
top λ choices.

Formally stated, we consider the problems Median-Utilitarian Knap-
sack (Median-UK, in short) and Best-Utilitarian Knapsack (Best-UK,
in short) where the inputs are the same, and the goal is to decide if there exists
a bundle Z ⊆ P such that

∑
p∈Z c(p) ≤ b and

∑
v∈V satλ

v (Z) ≥ utgt for

the former; and
∑

v∈V sat
[λ]
v (Z) ≥ utgt for the latter. In the optimization ver-

sion of this problem, we maximize the satisfaction of the voters. We use both
variants (decision and optimization) in our algorithmic presentation, and the
distinction will be clear from the context. Without loss of generality, we may
assume that the cost of each item is at most the budget b. To be consistent
with the literature, when λ = 1, we refer to both Median-UK and Best-UK
as Diverse Knapsack.1

1 Missing details and proofs are present in a longer version of the paper at https://
arxiv.org/abs/2208.02766.

https://arxiv.org/abs/2208.02766
https://arxiv.org/abs/2208.02766

50 S. Gupta et al.

A Generalized Model. It is worthwhile to point out that our work and that of
Fluschnik et al. [18] are initial attempts at studying the vast array of problems in
the context of multiagent knapsack with various preference elicitation schemes
and various voting rules - this includes R-UK as a subclass. For over a decade,
researchers have studied scenarios where the votes/preferences are consistent
with utility functions [1–4,8,9,11,32].

Algorithmic Concepts. A central notion in parameterized complexity is fixed-
parameter tractability. A parameterized problem L ⊆ Σ∗ × N is fixed-parameter
tractable (FPT) with respect to the parameter k (also denoted by FPT(k)), if for
a given instance (x, k), its membership in L (i.e., (x, k) ∈ L) can be decided in
time f(k)·poly(|x|), where f(·) is an arbitrary computable function and poly(·) is
a polynomial function. However, all parameterized problems are not FPT. Con-
trastingly, W-hardness, captures the intractability in parameterized complexity.
An XP algorithm for L with respect to k can decide (x, k) ∈ L in time |x|f(k),
where f(·) is an arbitrary computable function.

In some of our algorithms, we use the tool of a reduction rule, defined as a
rule applied to the given instance of a problem to produce another instance of
the same problem. A reduction rule is said to be safe if it is sound and complete,
i.e., applying it to the given instance produces an equivalent instance. We refer
the reader to books [12,14,30]. A central notion in the field of approximation
algorithms is the fully polynomial-time approximation scheme (FPTAS). It is an
algorithm that takes as input an instance of the problem and a parameter ε > 0.
It returns as output a solution whose value is at least (1− ε) (resp. (1+ ε)) times
the optimal solution if it is a maximization (minimization) problem and runs in
time polynomial in the input size and 1/ε.

Our Contributions. In this paper, we study the computational and parame-
terized complexity of Median-UK with respect to various natural input param-
eters and have put more effort towards identifying tractable special cases amid
a sea of intractability. Moreover, we extend those results to Best-UK.

For a start, we show that both the problems are NP-hard for every λ
(Theorem 1). Since the Committee Selection problem with median scoring
function is W[1]-hard with respect to n, the number of voters, for all λ > 1 [10],
it follows that its generalization Median-UK must be as well (Corollary 1).
Hence, even though an FPT algorithm with respect to n is unlikely for Median-
UK, we are able to present an XP algorithm with respect to n (Theorem 2), that
runs in time O((m(λ+1))npoly(n,m)). Additionally, it is known that Median-
UK with λ = 1 (i.e. Diverse Knapsack), binary utilities, and unary costs is
W[2]-hard with respect to budget b [18]. In the case of parameterization by both
n and b, we obtain an XP algorithm for both the problems. While there is a
trivial O�(2m) algorithm, where m denotes the number of items, for both the
problems, unless ETH fails there cannot be a O(2o(m+n)poly(n,m)) algorithm
[18]. In light of these dead ends, we turn our attention to identifying tractable
special cases, and our search forked into three primary directions: the value of λ,

More Effort Towards Multiagent Knapsack 51

preference profiles, and encoding of utilities and costs. When λ = 1, the problem
is NP-hard [18] and remains so even when profile is single-crossing or single-
peaked. We show that despite this intractability, when the profile is unanimous,
that is, all the voters have the exact same top preference, Diverse Knapsack
is polynomial-time solvable (Lemma 3); but both Median-UK and Best-UK
remain NP-hard for unanimous as well as single-crossing profiles (Theorem 1)
when λ > 1. In the situation where there is a priority ordering over all the
items, captured by a strongly unanimous profile, Median-UK is polynomial-
time solvable. Furthermore, we observe that given an instance, the “closer” it is
to a strongly unanimous profile, the faster the solution can be computed. Conse-
quently, we consider d, the distance away from strong unanimity, as a parameter
and show that Diverse Knapsack is FPT with respect to d. In the special case
where λ = 1 and the utilities or costs are polynomially bounded or are encoded in
unary, we have three different FPT algorithms, all of which are improvements on
the one given by [18]. Additionally, when λ = 1 and the profile is single-peaked
(or crossing) the problem admits an FPTAS (Theorem 6), an improvement over
the (1 − 1/e)-factor approximation algorithm by [18]. Table 1 summarizes the
main results with precise running times of our algorithms.

Table 1. Results on Median-UK and Best-UK. Here n, m, b, and d denote the
number of voters, the number of items, the budget, and the distance away from SU,
respectively. The abbreviations SC, SP, SU, and U are preference restrictions which
are defined in Sect. 1.

Restriction Result Ref.

SC NP-hard Theorem 1

λ > 1 & U

λ = 1 O(n! poly(û, n, m)) [18]

O(4npoly(ū, n, m)) Theorem 4

O(4npoly(b, n, m)) Corollary 4

O(2npoly(ū, b, n, m)) Theorem 5

λ > 1 & Median-UK O((m(λ + 1))npoly(n, m)) Theorem 2

W [1]-hard w.r.t. n [10]

No restriction O∗(b2(b!)nmb) Theorem 3

SU & Median-UK poly(n, m) Lemma 2

SU & Best-UK poly(ū, n, m), poly(b, n, m) Lemma 2

Median-UK XP w.r.t. d, XP w.r.t. b, d Corollary 3

Best-UK XP w.r.t. b, d Corollary 3

λ = 1 FPT w.r.t. d for unary utilities Corollary 2

λ = 1 & SP/SC FPTAS Theorem 6

λ = 1 & U O(m) Lemma 3

52 S. Gupta et al.

Preliminaries. Let V = {v1, . . . , vn} be a set of n voters and P = {p1, . . . , pm}
be a set of m items. The preference ordering of a voter v ∈ V over the set of items
is given by the utility function utilv : P → N. That is, if utilv(p) ≥ utilv(p′),
then v prefers p more than p′, and we use the notation p �v p′. We drop the
subscript when it is clear from the context. For a subset Y ⊆ V , we use utilY (p)
to denote the utility of the item p to voters in Y : utilY (p) =

∑
v∈Y utilv(p).

The set of utility functions form the utility profile, denoted by {utilv}v∈V . For
integers i, j, we use [i, j] to denote the set {i, i + 1, . . . , j}. For an integer i, we
use [i] to denote [1, i]. In an instance of Median-UK, we say that an item p ∈ P
is a representative of a voter v ∈ V in a bundle Z ⊆ P if p is the λth most
preferred item of v in Z .

Preference profiles. A preference profile (P, in short) is said to be

– unanimous (U) if all voters have the same top preference;
– strongly unanimous (SU) if all voters have identical preference orderings;
– single-crossing (SC) if there exists an ordering σ on voters V such that for

each pair of items {p, p′} ⊆ P, the set of voters {v ∈ V : utilv(p) ≥
utilv(p′)} forms a consecutive block according to σ;

– single-peaked (SP) if the following holds for some ordering, denoted by �, on
the items P: Let topv denote voter v’s most preferred item. Then, for each
pair of items {p, p′} ⊆ P and each voter v ∈ V , such that p � p′ � topv or
topv �p′ �p we have that v weakly prefers p′ over p, i.e. utilv(p′) ≥ utilv(p).

2 Hardness of Median-UK

We dedicate this section to identifying intractable cases. Clearly, Median-UK
is NP-hard as its unweighted version, Committee Selection, under the same
rule, is NP-hard [35]. We begin with the following strong intractability result.

Theorem 1. Median-UK and Best-UK are NP-hard for every λ ∈ N even
for SCPs. Furthermore, for λ>1, both are NP-hard even for UPs.

Proof. We give a polynomial-time reduction from the Diverse Knap-
sack problem, which is known to be NP-hard for SCPs [18]. Let I =
(P,V , c, {utilv}v∈V , b, utgt) be an instance of Diverse Knapsack with SCP.
Let σ = (v1, . . . , vn) be an SC ordering of the voters in V . Without loss of gen-
erality, let the preference order of v1 be p1 � p2 � . . . � pm. Let umax denote
the maximum utility that a voter assigns to an item.

To construct an instance of Median-UK, the plan is to add λ − 1 new
items, say Pnew = {pm+1, . . . , pm+λ−1}, to P and ensure that they are in any
feasible bundle by setting appropriate utilities and costs. Formally, we construct
an instance I ′ = (P ′,V , c′, {util′

v}v∈V , b′, utgt, λ) of Median-UK as follows.
Let P ′ = P ∪ Pnew. For p ∈ P, let c′(p) = c(p), and for p ∈ Pnew, let
c′(p) = 1; and we set the budget b′ = b+ λ − 1. Note that the set of voters and

More Effort Towards Multiagent Knapsack 53

the target utility in the instance I ′ are the same as in the instance I. Next, we
construct the utility function for a voter v ∈ V as

util′
v(pj) =

{
umax + j − m if pj ∈ Pnew,

utilv(pj) otherwise.

Clearly, the construction is doable in polynomial time. Without loss of gen-
erality, we assume that utgt > 0, otherwise we return an empty bundle.

In the case of Best-UK, we can use the same reduction as above. From the
construction, it follows that Pnew belongs to any feasible bundle. We obtain the
hardness result proceeding similarly. �

Since Committee Selection problem is W[1]-hard with respect to n for
λ > 1 [10], we have the following result.

Corollary 1. Median-UK is W[1]-hard with respect to n for λ > 1.

Hence, it is unlikely to be FPT. Now, we show that there exists an XP algo-
rithm for Median-UK with respect to n. The intuition is as follows. For every
voter v ∈ V , we guess the representative in the solution. We know that for every
voter v, we must pick λ − 1 other items whose utility is larger than the repre-
sentative’s. Thus, we reduce the problem to the Weighted Set Multicover
(WSMc) problem, which is defined as follows:

Weighted Set Multicover (WSMc)
Input: A universe U , a family, F , of subsets of U , a cost function c : F → N,
a budget b ∈ N, and a positive integer k ∈ N.
Question: Find a subset F ′ ⊆ F such that every element of U is in at least
k sets in F ′, and

∑
F∈F ′ c(F) ≤ b.

If a set F contains an element u ∈ U , then we say that F covers u. We first
present an FPT algorithm for WSMc with respect to k + n, which is similar to
the FPT algorithm for Set Cover with respect to n.

Lemma 1. WSMc can be solved in O((k + 1)n|F|) time.

Proof. We give a dynamic-programming algorithm. Let (U,F , c, b, k) be an
instance of WSMc. Let U = {u1, . . . , un} and F = {F1, . . . , Fm}. For a set
S ⊆ U , let χ(S) denote the characteristic vector of S, i.e., it is an |U |-length
vector such that χ(S)i = 1 if and only if ui ∈ S. For any two |U |-length vectors−→
A,

−→
B , we define the difference

−→
C =

−→
A − −→

B as
−→
C i = max(0,

−→
A i − −→

B i) for each
i ∈ [|U |]. Let R = {0, 1, . . . , k}n. We define the dynamic-programming table as
follows. For every

−→
X ∈ R and j ∈ [0,m], let T [

−→
X, j] be the minimum cost of

a subset of {F1, . . . , Fj} that covers ui at least
−→
X i times for every i ∈ [n]. We

compute the table entries as follows.

54 S. Gupta et al.

Base Case: For each
−→
X ∈ R, we set

T [
−→
X, 0] =

{
0, if

−→
X = {0}n,

∞, otherwise.
(1)

Recursive Step: For each
−→
X ∈ R and j ∈ [m], we set

T [
−→
X, j] = min{T [

−→
X, j − 1], T [

−→
X − χ(Fj), j − 1] + c(Fj)}. (2)

If there exists an
−→
X ∈ R such that

−→
X i ≥ k for each i ∈ [n], and the value in the

entry T [
−→
X,m] is at most b, then we return “YES”, else we return “NO”. �

Now, we are ready to give an XP algorithm for Median-UK.

Theorem 2. Median-UK can be solved in O((m(λ + 1))npoly(n,m)) time.

Proof. We begin by guessing the representative of every voter. Let rv denote
the guessed representative of a voter v, and R be the set of all guessed repre-
sentatives. Next, we construct an instance of WSMc as follows. For every voter
v ∈ V , we add an element ev to U . Corresponding to every item p ∈ P, we have
a set Fp in F , where Fp = {ev : utilv(p) ≥ utilv(rv)}. Note that Fp contains
the elements corresponding to the set of voters who prefer p at least as much
as their representative. For every Fp ∈ F , c(Fp) = c(p). We set b̂ = b and
k = λ. Let F ′ ⊆ F be the solution of the WSMc instance (U,F , c, b̂, k). We
construct a set P ′ ⊆ P that contains items corresponding to the sets in F ′, i.e.,
P ′ = {p ∈ P : Fp ∈ F ′}. Note that the cost of P ′ is at most b. Also, every ele-
ment of U is covered at least λ times. Therefore, for every voter v, P ′ contains
at least λ items whose utilities are at least that of rv. Thus, the total utility
is at least

∑
v∈V utilv(rv). Note that the cost and utility of a bundle can be

computed in time polynomial in n and m. Since “guessing” the representatives
takes mn steps, the running time follows due to Lemma 1. �

We cannot expect a similar result for Best-UK due to the following reduc-
tion. Let (A = {a1, . . . , am}, b, w, c′, vtgt) be an instance of Knapsack problem
where each item ai costs c′(ai) and has value w(ai). The goal is to determine if
there exists a knapsack with value at least vtgt and cost at most b. Construct
an instance of Best-UK with exactly one voter v1, set of items A, budget b,
target utility vtgt, and λ = m. An XP algorithm for Best-UK will give us a
polynomial time algorithm for Knapsack, implying P=NP.

Due to Bredereck et al. [10], Best-UK is FPT(n, λ) when the item costs are
equal to 1. We extend their algorithm to solve both Median-UK and Best-UK.

Theorem 3. Median-UK and Best-UK can be solved in O∗(b2(b!)nmb) time.

Proof. Since the item costs are natural numbers, the maximum cardinality of a
solution bundle is min(b,m). Let S = {s1, . . . , sk} be a solution bundle. First,
we guess the value of k = |S|. Next, for each voter vi, we guess the permutation

More Effort Towards Multiagent Knapsack 55

ψi of [k]: ψi(j) = l if and only if sj is the lth most preferred item of vi in S.
Note that ψi gives us the projection of S on the preference order of vi: �i. Let
I[ψi(j)] indicate whether ψi(j) = λ. We consider the following complete bipartite
graph G with bipartitions [k] and P: the weight of an edge (l, p) is given by
w(l, p) =

∑
vi∈V I[ψi(l)] · utilvi

(p). An edge (l, p) captures item p taking the
role of sl in S: w(l, p) is the contribution of sl to the utility of S. Our goal is to
find a matching M of size k that agrees with the guesses such that the cost of
the bundle corresponding to M is at most b, and the weight of M is maximum.
Each of the m items in P can be encoded using ln =
log2 m�+1 bits. Thus, any
matching of size k in G can be encoded using k · ln bits: the first ln bits represent
the item that s1 is matched to, and so on. To find M , we iterate through all
2k·ln binary strings of length k · ln and look for a desired matching.

Let M ⊆ E(G) be a matching with the maximum weight over all possible
guesses of k and {ψi : vi ∈ V }. We return “YES” if the weight of M is at least
utgt; otherwise we return “NO”.

Complexity: There are b guesses for the cardinality of S, and
∑

k∈[b](k!)n

guesses for the permutations {ψi : vi ∈ V }. For each guess k, {ψi : vi ∈ V },
we iterate through 2k·ln strings of length k · ln, and for each string we spend
polynomial time to process. Thus, the total running time is O∗(b · b(b!)n · mb).

By redefining the indicator function I as I(ψi(j)) = 1 if and only if ψi(j) ≤ λ
and continuing as before, we obtain the result for Best-UK. �

3 Algorithms for Special Cases

We now present algorithms for some restrictions in the input. First, we consider
the case of a SUP in which all voters have identical preference orders. We first
apply the following reduction rule that simplifies the input.

Reduction Rule 1 (†). If there exist two voters v1, v2 ∈ V such that their
preference orders are identical, then we can “merge” the two voters: Set V ′ =
(V \ {v1, v2}) ∪ {v12} with util′

v12
(p) = utilv1(p) + utilv2(p), for all p ∈

P, and for all other voters util′
v(p) = utilv(p). The new instance is I ′ =

(P,V ′, c, {util′
v}v∈V ′ , b, utgt, λ).

After the exhaustive application of Reduction Rule 1, the profile contains
only one voter. In the case of Best-UK with one voter, it is equivalent to a
knapsack problem on the items. Thus, we have the following lemma.

Lemma 2 (†). Median-UK can be solved in polynomial time for SUPs. Fur-
thermore, Best-UK can be solved in polynomial time for SUPs, when either the
budget, or the utilities are encoded in unary.

Now, we consider the distance from an easy instance as a parameter, which
is a natural parameter in parameterized complexity. Let d be the minimum
number of voters that need to change their utility function so that the profile is

56 S. Gupta et al.

SU. Given an instance of Median-UK, d can be computed in polynomial time
as follows. First, we sort the utility profile. Let l be the length of the longest
block of voters with the same utility function. Then, d = n − l. We consider the
problem parameterized by d. This parameter has also been studied earlier for
the Connected CC problem [22].

Without loss of generality, we assume that voters {vd+1, . . . , vn} are SU.
We first apply Reduction Rule 1 exhaustively. Note that after the exhaustive
application of the rule, the instance has at most d + 1 voters. Since Diverse
Knapsack is FPT with respect to n when the utilities are encoded in unary
[18], we have the following corollary.

Corollary 2. Diverse Knapsack is FPT with respect to d when utilities are
encoded in unary.

Furthermore, due to Theorems 2 and 3, we have the following.

Corollary 3

(1) Median-UK can be solved in O((m(λ + 1))d+1poly(d,m)) time.
(2) Median-UK and Best-UK can be solved in O∗(b2(b!)d+1mb) time.

3.1 When λ = 1: Diverse Knapsack

Unlike Median-UK for λ > 1, Diverse Knapsack can be solved in polynomial
time for UPs. The optimal solution contains the most preferred item of all voters.

Lemma 3 (†). Diverse Knapsack can be solved in polynomial time for UPs.

Let I = (P,V , c, {utilv}v∈V , b, utgt) be an instance of Diverse Knap-
sack. For our subsequent discussions, we define

ū =
∑

v∈V

max
p∈P

utilv(p), and û =
∑

p∈P

∑

v∈V

utilv(p).

Next, we design FPT algorithms with respect to n for Diverse Knapsack.
Fluschnik et al. [18] gave an algorithm that runs in O(n! poly(û, n,m)), which
is an FPT algorithm with respect to n when the total utility is either unary
encoded or bounded by poly(n,m).

We first give an algorithm that runs in O(4n poly(ū, n,m)) time. Further, we
give an algorithm that runs in O(2n poly(ū, b, n,m)) time. It is worth mentioning
that the best known algorithm for Chamberlin Courant, a special case of
Diverse Knapsack, also runs in O(2n poly(n,m)) time [23].

A O(4n poly(ū, n,m)) algorithm. To design the algorithm, we first reduce the
problem to the following variant of the Set Cover problem, which we call
Knapsack Cover due to its similarity with the Knapsack and Set Cover

More Effort Towards Multiagent Knapsack 57

problems. Then, using the algorithm for Knapsack Cover (Theorem 5), we
obtain the desired algorithm for Diverse Knapsack.

Knapsack Cover
Input: Two sets of universe U1 = {u1

1, . . . , u
n
1} and U2 = {u1

2, . . . , u
m
2 }, a

family of sets F = {{F, u} : F ⊆ U1, u ∈ U2}, a profit function profit : F →
N, a cost function cost : F → N, budget b ∈ N, and total profit p.
Question: Does there exist a set Z ⊆ F such that (i) for every two sets
{F, u} and {F ′, u′} (u can be equal to u′) in Z , F ∩F ′ = ∅, (ii)

⋃
{F,u}∈Z F =

U1, (iii)
∑

{F,u}∈Z cost({F, u})≤ b, and (iv)
∑

{F,u}∈Z profit({F, u}) ≥ p?

We first discuss the intuition behind reducing Diverse Knapsack to Knap-
sack Cover. Consider a non-empty bundle S. For each voter, there exists an
item that represents the voter in the bundle. An item can represent more than
one voter. For each subset of voters X and each item p, we create a set {X, p}.
The goal is to find a family of sets such that the set of voters is disjointly covered
by the voter subsets, and the set of items forms a bundle with utility at least p
and cost at most b. We first present the reduction from Diverse Knapsack to
Knapsack Cover, which formalizes the intuition, in the following lemma.

Lemma 4. Diverse Knapsack can be reduced to Knapsack Cover in
O(2npoly(n,m)) time.

Proof. Given an instance I, we create an instance J = (U1, U2,F , cost,
profit, b′, p) of Knapsack Cover as follows. We first construct universe sets:
U1 = V , and U2 = P. For each X ⊆ U1 and each r ∈ U2, we add a set {X, r}
in the set family F . Note that the size of F is 2nm. Next, we define the cost
and the profit functions. For every set {X, r} ∈ F , cost({X, r}) = c(r) and
profit({X, r}) = utilX(r). We set b′ = b and p = utgt. This completes the
proof of Lemma 4. �

Next, we design an algorithm for Knapsack Cover.

Lemma 5 (†). Knapsack Cover can be solved in O(2|U1||F |pmax) time,
where pmax =

∑
F∈F profit(F).

Lemmas 4 and 5 give us an algorithm for Diverse Knapsack. Analogous to
Lemma 2, an alternative dynamic-programming approach to solve Knapsack
Cover is that instead of finding the minimum cost of a subset with a particular
utility, we find the maximum utility of a subset with a particular cost. This
results in an algorithm running in time O(2|U1||F |b). Thus, we have the following
results.

Theorem 4. Diverse Knapsack can be solved in O(4n poly(ū, n,m)) time.

Corollary 4. Diverse Knapsack can be solved in O(4n poly(b, n,m)) time.

A O(2n poly(ū, b, n,m)) algorithm. Next, we give an algorithm that improves
the exponential dependency on n, but it additionally has a dependency on the
budget. In particular, we prove the following theorem.

58 S. Gupta et al.

Theorem 5. Diverse Knapsack can be solved in O(2n poly(ū, b, n,m)) time.

To prove Theorem 5, we use the technique of polynomial multiplication,
which has also been recently used to give a O(2n poly(n,m))-time algorithm for
CC [23]. Our algorithm is similar to the one for CC. Here, we additionally keep
track of the budget.

Note that there exists a solution S of I that induces an |S|-sized partition
of the voter set, because if an item is not a representative of any voter, then we
can delete this item from the solution, and it still remains a solution. We use the
method of polynomial multiplication to find such a partition that is induced by
some solution. We begin with defining some notations and terminologies, which
are same as in [23].

Let U = {u1, . . . , un}. For a subset X ⊆ U , let χ(X) denote the characteristic
vector of the set X: an |U |-length vector whose jth bit is 1 if and only if uj ∈ X.
Two binary strings of length n are said to be disjoint if for each i ∈ [n], the
ith bit of both strings is not same. Let H(S) denote the Hamming weight of a
binary string S: the number of 1s in S. The Hamming weight of a monomial
xi, where i is binary vector, is the Hamming weight of i. Let Hs(P (x)) denote
the Hamming projection of a polynomial P (x) to a non-negative integer s: the
sum of all monomials in P (x) with Hamming weight s. Let R(P (x)) denote the
representative polynomial of P (x): if the coefficient of a monomial is non-zero in
P (x), then the coefficient of the monomial is one in R(P (x)). Next, we state a
basic result following which we prove Theorem 5.

Lemma 6 [13,21]. Subsets S1, S2 ⊆ U are disjoint if and only if Hamming
weight of the string χ(S1) + χ(S2) is |S1| + |S2|.
Proof (Proof of Theorem 5). We define the polynomials as follows. We first
construct the Type-1 polynomial, in which for each s ∈ [n], α ∈ [ū], and β ∈ [b],
the non-zero polynomial P 1

s,α,β(x) denotes that there exists an s-sized subset of
voters Y ⊆ V corresponding to which there is an item p ∈ P such that c(p) = β
and utilY (p) = α:

P 1
s,α,β(x) =

∑

Y ⊆V : |Y |=s
∃p∈P : utilY (p)=α

c(p)=β≤b

xχ(Y).

Next, for every s ∈ [n], α ∈ [ū], β ∈ [b], and j ∈ [2, n], we iteratively define
the Type-j polynomial as follows:

P j
s,α,β(x) =

∑

s1,s2∈[n]: s1+s2=s
α1,α2∈[ū]: α1+α2=α
β1,β2∈[b]: β1+β2=β

R(Hs(P 1
s1,α1,β1

× P j−1
s2,α2,β2

)).

A non-zero polynomial P j
s,α,β(x) denotes that there exists j disjoint voter

subsets Y1, . . . , Yj such that |Y1|+ . . .+ |Yj | = s, and there exists items p1, . . . , pj

More Effort Towards Multiagent Knapsack 59

such that
∑

i∈[j] utilYi
(pi) = α and

∑
i∈[j] c(pi) = β ≤ b. Among all polynomi-

als, we check if for some α ≥ utgt and β ≤ b, the polynomial P k
n,α,β is non-zero.

If so, we return “YES”, otherwise we return “NO”.
Note that the total number of polynomials is at most nūb. A polynomial

has at most 2n monomials, each of which has degree at most 2n. Given two
polynomials of degree 2n, we can compute their product in time O(2nn) [29].
Hence, the running time is O(2n poly(m,n, ū, b)). �

FPTAS for Diverse Knapsack. Due to the submodularity, Diverse Knap-
sack admits a factor (1 − 1/e)-approximation algorithm [18,36]. Here, we give
an FPTAS when the profile is either SP or SC.

The idea is to first scale down the utilities, round-off, and then use the known
polynomial time algorithms for SP and SC profile under unary utilities [18].

Proposition 1 [18]. Diverse Knapsack can be solved in time poly(n,m, û),
when the utility profile is encoded in unary, and is either SP or SC.

Let umax = maxv∈V ,p∈P utilv(p), the maximum utility that a voter assigns
to an item. Let 0 < ε ≤ 1 be the error parameter. We scale down the utility
of every voter for every item by a factor of s, where s = (ε/2n)umax, as follows:
utilv(p) = �utilv(p)/s�. Next, we round the utilities as follows: ũtilv(p) = s ·
utilv(p). Clearly,

utilv(p) ≤ ũtilv(p) ≤ utilv(p) + s. (3)

For simplicity of analysis, we assume that s is an integer. From now on, by
util(S), we denote

∑
v∈V maxp∈S utilv(p). Next, we show that the total utility

of the optimal bundle under the utilities ũtil is not very far from the total
utility of the optimal bundle under the utilities util. In particular, we prove the
following lemma, where Ĩ = (P,V , c, {ũtilv}v∈V , b).

Lemma 7 (†). Let S� be an optimal solution to Ĩ. Let S be any subset of P
such that

∑
p∈S c(p) ≤ b. Then, util(S) ≤ (1 + ε) util(S�).

In light of Lemma 7, our goal is reduced to finding an optimal solution for
Ĩ. Note that for any v ∈ V and p ∈ P, ˜utilv(p) and utilv(p) differ by a
factor of s. Thus, the utility of optimal solutions under these functions differ
by a factor of s. Thus, our goal is reduced to finding an optimal solution for
I = (P,V , c, {utilv}v∈V , b). Note that by scaling the utilities, the profile still
remains SP or SC. Thus, we can solve I using Proposition 1 in polynomial time.
The running time is due to the fact that for any voter, the utility for any item
under util is at most 2n/ε. Thus, we have the following theorem.

Theorem 6. There exists an FPTAS for Diverse Knapsack when the utility
profile is either SP or SC.

60 S. Gupta et al.

4 Conclusion

In this paper, we studied the computational and parameterized complexity of
three multiagent variants of the knapsack problem. For Diverse Knapsack,
we presented improved FPT algorithms parameterized by n, an FPTAS under
SP and SC restrictions, and algorithms for special cases. Additionally, we gave
some hardness results and algorithms for Median-UK and Best-UK.

Diverse Knapsack is NP-hard even for SPPs, as shown in [18]. Further, for
unary encoded utilities, Diverse Knapsack can be solved in polynomial time
for SPP and SCP. An open question is the complexity of Median-UK/Best-
UK with SPP for λ ≥ 2. In this paper, we studied two aggregation rules. One
can study multiagent knapsack with other combinations of preference elicitation
schemes and aggregation rules.

Acknowledgements. Pallavi Jain received funding from Seed Grant (IITJ/
R&D/2022–23/07). Sushmita Gupta received funding from SERB’s Matrics Grant
(MTR/2021/000869). Additionally, both were supported by SERB’S SUPRA Grant
(SPR/2021/000860).

References

1. Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., Skowron, P.: Approximating
optimal social choice under metric preferences. Artif. Intell. 264, 27–51 (2018)

2. Anshelevich, E., Bhardwaj, O., Postl, J.: Approximating optimal social choice
under metric preferences. In: AAAI, pp. 777–783 (2015)

3. Anshelevich, E., Postl, J.: Randomized social choice functions under metric pref-
erences. J. Artif. Intell. Res. 58(1), 797–827 (2017)

4. Anshelevich, E., Sekar, S.: Blind, greedy, and random: algorithms for matching and
clustering using only ordinal information. In: AAAI, pp. 383–389 (2016)

5. Aziz, H., Lee, B.E.: Proportionally representative participatory budgeting with
ordinal preferences. In: AAAI, pp. 5110–5118 (2021)

6. Aziz, H., Lee, B.E., Talmon, N.: Proportionally representative participatory bud-
geting: axioms and algorithms. In: AAMAS, pp. 23–31 (2018)

7. Aziz, H., Shah, N.: Participatory budgeting: models and approaches. In: Rudas,
T., Péli, G. (eds.) Pathways Between Social Science and Computational Social
Science. CSS, pp. 215–236. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-54936-7 10

8. Benadé, G., Procaccia, A.D., Nath, S., Shah, N.: Preference elicitation for partici-
patory budgeting. Manage. Sci. 67(5), 2813–2827 (2021)

9. Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A.D., Sheffet, O.: Opti-
mal social choice functions: a utilitarian view. Artif. Intell. 227, 190–213 (2015)

10. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Knop, D., Niedermeier, R.:
Parameterized algorithms for finding a collective set of items. In: AAAI, pp. 1838–
1845 (2020)

11. Caragiannis, I., Procaccia, A.D.: Voting almost maximizes social welfare despite
limited communication. Artif. Intell. 175(9), 1655–1671 (2011)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-030-54936-7_10
https://doi.org/10.1007/978-3-030-54936-7_10
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

More Effort Towards Multiagent Knapsack 61

13. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411(40–42), 3701–3713 (2010)

14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4.
TCS, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

15. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner vot-
ing rules. Soc. Choice Welfare 48(3), 599–632 (2017). https://doi.org/10.1007/
s00355-017-1026-z

16. Endriss, U.: Trends in computational social choice. Lulu. com (2017)
17. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Committee scoring rules:

axiomatic characterization and hierarchy. TEAC 7(1), 1–39 (2019)
18. Fluschnik, T., Skowron, P., Triphaus, M., Wilker, K.: Fair knapsack. In: AAAI,

pp. 1941–1948 (2019)
19. Ganuza, E., Baiocchi, G.: The power of ambiguity: how participatory budgeting

travels the globe. J. Public Deliberation 8(2), 1–12 (2012)
20. Goel, A., Krishnaswamy, A.K., Sakshuwong, S., Aitamurto, T.: Knapsack voting

for participatory budgeting. ACM Trans. Econ. Comput. 7(2), 1–27 (2019)
21. Gupta, S., Jain, P., Panolan, F., Roy, S., Saurabh, S.: Gerrymandering on graphs:

computational complexity and parameterized algorithms. In: SAGT, pp. 140–155
(2021)

22. Gupta, S., Jain, P., Saurabh, S.: Well-structured committees. In: IJCAI, pp. 189–
195 (2020)

23. Gupta, S., Jain, P., Saurabh, S., Talmon, N.: Even more effort towards improved
bounds and fixed-parameter tractability for multiwinner rules. In: IJCAI, pp. 217–
223 (2021)

24. Hershkowitz, D.E., Kahng, A., Peters, D., Procaccia, A.D.: District-fair participa-
tory budgeting. In: AAAI, pp. 5464–5471 (2021)

25. Jain, P., Sornat, K., Talmon, N.: Participatory budgeting with project interactions.
In: IJCAI, pp. 386–392 (2020)

26. Jain, P., Sornat, K., Talmon, N., Zehavi, M.: Participatory budgeting with project
groups. In: IJCAI, pp. 276–282 (2021)

27. Jain, P., Talmon, N., Bulteau, L.: Partition aggregation for participatory budget-
ing. In: AAMAS, pp. 665–673 (2021)

28. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2010).
https://doi.org/10.1007/978-3-540-24777-7

29. Moenck, R.T.: Practical fast polynomial multiplication. In: SYMSAC86, pp. 136–
148 (1976)

30. Niedermeier, R.: Invitation to Fixed-Parameter algorithms. Oxford University
Press (2006)

31. Pierczyński, G., Skowron, P., Peters, D.: Proportional participatory budgeting with
additive utilities. In: Advances in Neural Information Processing Systems 34 (2021)

32. Procaccia, A.D., Rosenschein, J.S.: The distortion of cardinal preferences in voting.
In: Proceedings of the 10th International Conference on Cooperative Information
Agents, pp. 317–331. CIA2006 (2006)

33. Gilman, H.R.: Transformative deliberations: participatory budgeting in the United
States. J. Public Deliberation 8(2), 1–20 (2012)

34. Sintomer, Y., Herzberg, C., Röcke, A.: Participatory budgeting in Europe: poten-
tials and challenges. Int. J. Urban Reg. Res. 32(1), 164–178 (2008)

35. Skowron, P., Faliszewski, P., Lang, J.: Finding a collective set of items: from pro-
portional multirepresentation to group recommendation. Artif. Intell. 241, 191–216
(2016)

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00355-017-1026-z
https://doi.org/10.1007/s00355-017-1026-z
https://doi.org/10.1007/978-3-540-24777-7

62 S. Gupta et al.

36. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

37. Talmon, N., Faliszewski, P.: A framework for approval-based budgeting methods.
In: AAAI, pp. 2181–2188 (2019)

38. Wampler, B.: Participatory budgeting in brazil: contestation, cooperation, and
accountability. Penn State Press (2010)

Graph Drawing and Visualization

Dominance Drawings for DAGs
with Bounded Modular Width

Giacomo Ortali1(B) and Ioannis G. Tollis2

1 Università degli Studi di Perugia, Perugia, Italy
giacomo.ortali@studenti.unipg.it

2 Computer Science Department, University of Crete, Heraklion, Crete, Greece

tollis@csd.uoc.gr

Abstract. A weak dominance drawing Γ of a DAG G = (V, E) is a d-
dimensional drawing such that D(u) < D(v) for every dimension D of Γ
if there is a directed path from a vertex u to a vertex v in G, where D(w)
is the coordinate of vertex w ∈ V in dimension D of Γ . If D(u) < D(v)
for every dimension D of Γ , but there is no path from u to v, we have a
falsely implied path (fip). Minimizing the number of fips is an important
theoretical and practical problem, which is NP-hard. We show that it
is an FPT problem for graphs having bounded modular width mw and
when d is bounded. This result in weak dominance, which is interesting
by itself, lets us prove our main contributions. Computing the dominance
dimension of G, that is, the minimum number of dimensions for which G
has a dominance drawing (a weak dominance drawing with 0 fips), is a
well-known NP-hard problem. We show that the dominance dimension of
G is bounded by mw

2
(mw, if mw < 4) and that computing the dominance

dimension of G is an FPT problem with parameter mw.

Keywords: Modular width · (Weak) dominance drawings ·
FPT-algorithms

1 Introduction

A directed acyclic graph (DAG) G = (V,E), with n vertices and m edges, is
a directed graph with no directed cycles. For any dimension D of a drawing
Γ of G, we denote by D(v) the coordinate of vertex v ∈ V in dimension D.
A d-dimensional dominance drawing Γ of G is a d-dimensional drawing of G
where, given any pair of vertices u, v ∈ V , D(u) < D(v) for every dimension D
of Γ if and only if there exists a (directed) path connecting u to v in G. The
efficient computation of dominance drawings of DAGs has many applications,
including computational geometry [7], graph drawing [8], and databases [18].
The dominance dimension of G is the minimum d∗ such that there exists a
d∗-dimensional dominance drawing of G.

A partially ordered set (poset) is a mathematical formalization of the concept
of ordering. Any poset P can be viewed as a transitive DAG G∗, i.e., as a DAG

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 65–79, 2023.
https://doi.org/10.1007/978-3-031-23101-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_5&domain=pdf
http://orcid.org/0000-0002-4481-698X
http://orcid.org/0000-0002-5507-7692
https://doi.org/10.1007/978-3-031-23101-8_5

66 G. Ortali and I. G. Tollis

that contains its transitive closure graph. See [19] for a formal definition of a
poset and the dimension of a poset. Since the dimension of a DAG G is the same
as the dimension of its transitive closure G∗, the results on the dimension of
posets transfer directly to DAGs and their dominance dimension. The literature
concerning dominance dimension of DAGs is vast, we report here some results.

Testing if a DAG has dominance dimension 2 can be done in linear time [6,
15], while it is NP-complete to decide if the dominance dimension is d for any
d ≥ 3 [19]. A linear-time algorithm that constructs straight-line 2-dimensional
dominance drawings of upward planar graphs is described in [4] (see also [8]).
Two vertices u, v ∈ G are incomparable if there is no path from u to v or from
v to u in G. The dominance dimension of a DAG G with n vertices (n ≥ 4) is
bounded by n

2 [2,10] and by the width of the graph [5], that is, the maximum
cardinality of a set of incomparable vertices of G.

Most DAGs have dominance dimension greater than two and, in general,
computing dominance drawings with a bounded number of dimensions is diffi-
cult. For this reason, a relaxed version of the concept of dominance drawings, the
weak dominance drawings, was introduced in [12]. In weak dominance, the “if
and only if” of the definition of dominance becomes an “if”. More formally, in a
weak dominance drawing Γ of a DAG G = (V,E), for any two vertices u, v ∈ V ,
D(u) < D(v) for every dimension D of Γ if there is a path from u to v in G. We
have a falsely implied path (fip) when D(u) < D(v) for every dimension D of Γ ,
but u and v are incomparable.

For any DAG G and any value d, G admits a d-dimensional weak dominance
drawing. Recently, the concept of weak dominance drawing was adopted in order
to construct compact representations of the reachability information of large
graphs that are produced by large datasets in the database community [14,18].
In these works the focus lies on the computational time required by a reachability
query. In a reachability query, we ask if there is a path connecting two vertices of
the graph. Given a d-dimensional weak dominance drawing, it is possible to test
in O(d) time (i.e., very fast, since d is usually much smaller than n) if two vertices
u and v of G are incomparable. Hence, by minimizing the number of fips of the
drawings we maximize the number of reachability queries that we can perform
in O(d) time. The number of fips (or false positives in their terminology) plays
a crucial role. However, the problem of computing a weak dominance drawing
with the minimum number of fips is NP-hard [11,12].

We consider a parameter denoted by modular width, introduced in [9] and
recently used to produce FPT-algorithms for several problems both in its undi-
rected and directed version [3,13,17]. In particular, we are interested in the
directed modular width. In the rest of the paper we omit the word “directed”
and we denote our parameter simply by modular width. The modular width is
a parameter based on the concept of module, which we define in Sect. 2. The
concept of module is defined in different ways in the literature. Here, we con-
sider the module as defined in [1]. In Sect. 2 and in the last paragraphs of Sect. 5
we observe that the results obtained by using such definition directly imply the
same results when using other definitions.

Dominance Drawings for DAGs with Bounded Modular Width 67

Our Contributions: Let mw be the modular width of DAG G. We show that
computing a d-dimensional weak dominance drawing of a DAG G with the mini-
mum number of fips is an FPT problem when parameters mw and d are bounded.
A key property that we use is described by Compaction Lemma, where we show
an interesting property of any weak dominance drawing of G with the minimum
number of fips. This result in weak dominance, which is interesting by itself,
lets us prove our main contributions. We show that the dominance dimension
of G is bounded by mw

2 , if mw ≥ 4, and by mw, otherwise. The above results
imply that computing the dominance dimension of G is an FPT problem with
parameter mw.

2 Preliminaries

In this section we introduce two concepts that we use in the rest of the paper.
In order to prove Theorem 1, which is our main contribution, our strategy is to
iteratively consider graphs obtained from the input DAG G by merging some of
its vertices into “super-vertices”. This way of merging and the parameter mw,
that we use in our fixed-parameter algorithm, are introduced in Sect. 2. A key
ingredient of our algorithm is the fact that every super-vertex has a cost, that
is equal to the number of vertices of G it contains. In this section we define the
concept of cost-minimum weak dominance drawing.

Modules and Directed Modular-Width. Let G = (V,E) be a DAG. An edge-based
module M of G is a subset of V so that every vertex of M is adjacent to the same
set of vertices of V \M . More formally, |M | = 1 (in this case the module is trivial)
or, for any two vertices v1, v2 ∈ M and any vertex u ∈ V \ M , (v1, u) ∈ E if and
only if (v2, u) ∈ E and (u, v1) ∈ E if and only if (u, v2) ∈ E. In the literature,
edge-based modules are simply called “modules” [16].

An edge-based congruence partition CP of V is a partition of V into edge-
based modules. The edge-based quotient graph G/CP is the graph obtained from
G by merging into a vertex each edge-based module in CP . The edge-based
modular decomposition of G is a tree T describing a decomposition of G based
into its edge-based modules. The root of T is the edge-based module V and any
leaf of T is a trivial edge-based module {v}, where v ∈ V . For further details
about the concepts defined so far see [16]. Figure 1(a) depicts a DAG G and its
edge-based modules. The non-trivial modules are M1 = {2, 3} and M2 = {6, 11}.
Figure 1(b) depicts the edge-based modular decomposition tree of G.

In this paper we consider path-based modules. A path-based module M of G
is a non-empty subset of V so that |M | = 1 or, for any two vertices v1, v2 ∈ M
and any vertex u ∈ V \ M : There is a path connecting v1 to u if and only if
there is a path connecting v2 to u; there is a path connecting u to v1 if and only
if there is a path connecting u to v2. The path-based modules are used in [1] as
a generalization of the concept of edge-based modules.

Notice that a path-based module of G is an edge-based module for the tran-
sitive closure graph G∗ of G. We define the concepts of path-based congruence

68 G. Ortali and I. G. Tollis

partition, path-based quotient graph, and path-based modular decomposition tree
also for path-based modules. Since the edge-based modular decomposition tree
can be computed in O(m) time [16], the path-based modular decomposition tree
can be computed in O(nm) time (which is needed to compute G∗).

Fig. 1. (a–b) A DAG G and the edge-based modular decomposition tree of G. (c–d)
G and the path-based modular decomposition tree of G.

Figure 1(c) depicts a DAG G and its path-based modules. Notice that M1

and M2 are also edge-based modules. Figure 1(d) depicts the path-based modular
decomposition tree of G. Figure 2(a) depicts a DAG G and a path-based con-
gruence partition C/P = {M1,M2,M3, M4,M5,M6} of G. Figure 2(b) depicts
the path-based quotient graph G/CP , where every vertex vi is the super-vertex
associated to the path-based module Mi ∈ C/P (i ∈ [1, 6]).

As already observed, the edge-based modules are simply denoted as modules
in literature and the modular width mw is the maximum number of children of
a node in the modular decomposition tree. So far we introduced two different
definitions of modules; the edge-based and the path-based. Hence, we distinguish
between edge-based and path-based modular width. Since the definition of an edge-
based module is more restrictive than the definition of a path-based module (i.e.,

Dominance Drawings for DAGs with Bounded Modular Width 69

an edge-based module is always a path-based module, but not vice versa), the
path-based modular width is less than or equal to the edge-based modular width.

See, for example, Fig. 1(a) and (c). If we consider its edge-based modular
decomposition tree, depicted in Fig. 1(b), we have mw = 12. If we consider its
path-based modular decomposition tree, depicted in Fig. 1(d), we have mw = 4.

In this paper we focus on path-based modules and path-based modular width.
Every result that we obtain is also implied for edge-based modules and edge-
based modular width. Since here we only consider path-based modules and mod-
ular width, from now on for simplicity we omit the word “path-based”.

We denote by GM the subgraph of G induced by the vertices in Module
M . From now on, given the modular decomposition tree T of G and a mod-
ule M , if |M | > 1 we associate to GM the congruence partition induced by
the children of the vertex associated to M in T . Consider Fig. 1. The root of
the tree is the trivial module V and GV = G. We associate to G the congru-
ence parition {M4,M5,M6, {14}}. We associate to GM4 the congruence partition
{M1, {1}, {4}}.

Cost-Minimum Weak Dominance Drawings. Let H be a DAG such that every
vertex v is assigned a cost c(v). Let Γ be a weak dominance drawing of H. The
cost of a fip (u, v) in Γ is c(u, v) = c(u) · c(v). The cost of Γ is the sum of the
costs of its fips.

Let G be a DAG, CP = {M1, . . . ,Mh} be a congruence partition of G,
and vi be the super-vertex representing Mi ∈ CP in the quotient graph G/CP

(i ∈ [1, h]). We assign the cost to the vertices of G and G/CP such that: For any
v ∈ G, c(v) = 1; For any vi ∈ G/CP , c(vi) = |Mi| (i ∈ [1, h]). Observe that, with
such a cost assignment, the cost of a weak dominance drawing of G is equal to
its number of fips.

Figure 2(a) depicts a DAG G and a congruence partition CP = {M1, . . . ,M6}
of G. Figure 2(b) depicts the quotient graph G/CP . Figure 2(c) depicts three 2-
dimensional weak dominance drawings of G/CP .

– Drawing Γ1 has the following six fips: #1 (v1, v2); #2 (v1, v3); #3 (v1, v6);
#4 (v2, v5); #5 (v3, v4); #6 (v4, v5); #7 (v6, v5). The cost of Γ1 is c(v1, v2)+
c(v1, v3) + c(v1, v6) + c(v2, v5) + c(v3, v4) + c(v4, v5) + c(v6, v5) = 6 + 12 + 6 +
1 + 18 + 9 + 1 = 53.

– Drawing Γ2 contains only the fip (v3, v4) and its cost is c(v3, v4) = 18.
– Drawing Γ3 contains only the fip (v2, v5) and its cost is c(v2, v5) = 1.

Since G/CP is a crown graph, the cost of a weak dominance drawing of G/CP

it is at least 1 [12] . Hence, Γ3 is a cost-minimum 2-dimensional weak dominance
drawing of G/CP .

3 The Compaction Lemma

In this section we introduce and prove Lemma 1, that we denote by Compaction
Lemma. This lemma shows an interesting property of a weak dominance drawing

70 G. Ortali and I. G. Tollis

Fig. 2. (a) A DAG G and a congruence partition CP = {M1, . . . , M6}. (b) The cor-
respondent quotient graph G/CP and the costs of its vertices. (c) Three different 2-
dimensional weak dominance drawings Γ1, Γ2, and Γ3 of G/CP . Drawing Γ3 is cost-
minimum.

with the minimum number of fips with respect to its modules. Before introducing
the lemma, we define some notation.

A module M of a DAG G is compact in a dimension D of a weak dominance
drawing Γ of G if the coordinates of the vertices of M in D are consecutive.
Also, M is compact in Γ if it is compact in every dimension of Γ . A congruence
partition CP of G is compact in Γ if every module M ∈ CP is compact in Γ .

Figure 3 depicts three 2-dimensional weak dominance drawings of the same
graph. Module M = {5, 7, 10, 12, 14} is: Not compact in any dimension in
Fig. 3(a); compact in Dimension Y and not in X, in Fig. 3(b); compact (in both
dimensions) in Fig. 3(c). Figure 4(e) depicts a 2-dimensional weak dominance
drawing where the congruence partition CP = {M1, . . . ,M6} is compact.

Recall that we assume c(v) = 1 for every vertex v of G. Hence, by definition
of c(·), a cost-minimum weak dominance drawing of G is a weak dominance
drawing of G with the minimum number of fips.

Lemma 1 (Compaction Lemma). Let G be a DAG, CP be any congruence
partition of G and d be a constant. There exists a cost-minimum d-dimensional
weak dominance drawing of G where CP is compact.

Dominance Drawings for DAGs with Bounded Modular Width 71

Before proving Lemma 1 we introduce some notation and prove some inter-
mediate results. Let M be a module of G, Γ be a weak dominance drawing
of G, and D be a dimension of Γ . The separator of M in D is the maximal
set S ⊆ V \M so that, for any v ∈ S, there exist two vertices u,w ∈ M so
that D(u) < D(v) < D(w). For example, consider Fig. 3(a) and the module
M = {5, 7, 10, 12, 14}. The separator of M in dimension X and Y is {2, 3, 9, 13}
and {6, 8, 9, 11, 16}, respectively. Note that if S = ∅, M is compact in D.

Lemma 2. Let Γ be a weak dominance drawing of G. Let M be a module of G,
D be a dimension of Γ , and S be the separator of M in D. Any vertex u ∈ S is
incomparable with the vertices of M .

Proof. Let v ∈ S and u,w ∈ M such that D(u) < D(v) < D(w). There is no
path from v to u, since D(v) > D(u). Similarly, there is no path from w to v,
since D(w) > D(v). Hence, v is incomparable to the vertices of M . ��

Given a weak dominance drawing Γ of G and a congruence partition CP of G,
a fip (u, v) of Γ is an inner-fip if u, v ∈ M , where M is a module of CP . Otherwise,
(u, v) is an outer-fip. Consider the 2-dimensional weak dominance drawing in
Fig. 4(e) and the congruence partition CP = {M1, . . . ,M6}: Fip (16, 19) is an
inner-fip; Fip (4, 11) is an outer-fip.

Let Γ be a weak dominance drawing of G. In the rest of the section, given
a module M , we consider the congruence partition CP = {M,V \M} of G. In
this setting, a fip (u, v) of Γ is an inner-fip of Γ if u, v ∈ M or u, v ∈ V \M .
Otherwise, it is an outer-fip of Γ . Switching u and v in dimension D is equivalent
to setting α = D(u), D(u) = D(v), and D(v) = α. For any v ∈ M , let outv be the
number of outer-fips involving v. We now describe an operation that we denote
by compaction of M .This operation modifies Γ such that the coordinates of all
the vertices of M are consecutive in every dimension of Γ , without increasing
the number of fips of Γ .

Compaction(Γ ,M): Let p be a vertex of M with the minimum number of outer
fips outp. For every dimension D of Γ , having separator S, perform the following
computation: While there are two vertices u ∈ S and v ∈ M such that D(v) =
D(u) − 1 < D(p) or D(p) < D(u) = D(v) − 1, switch u and v in D.

Illustration of the Operation of Compaction. Refer to Fig. 3(a–c) and
the module M = {5, 7, 10, 12, 14}. Consider the 2-dimensional weak dominance
drawing in Fig. 3(a). We have:

• out5 = 6 (outer-fip (3, 5) and (5, w) ∀ w ∈ {9, 11, 16, 17, 18}).
• out7 = 5 (outer-fip (7, w) ∀ w ∈ {9, 13, 16, 17, 18}).
• out10 = 5 (outer-fip (v, 10) ∀ v ∈ {2, 3, 6}) and (5, w) ∀ w ∈ {16, 18}).
• out12 = 7 (outer-fip (v, 12) ∀ v ∈ {3, 6, 8}) and (12, w) ∀ w ∈ {13, 16, 17, 18}).
• out14 = 6 (outer-fip (v, 14) ∀ v ∈ {3, 6, 8, 9}) and (12, w) ∀ w ∈ {17, 18}).

The vertex p of M having minimum outp can be either 7 or 10. We chose p = 7.
Figure 3(b) shows the drawing after that the operation of compaction of M in Γ

72 G. Ortali and I. G. Tollis

Fig. 3. Illustration of the operation of compaction.

performed its step on dimension Y (and still not on dimension X). Figure 3(c)
shows the graph resulting after the operation of compaction of M in Γ .

By construction, after the compaction of M in Γ , M is compact in Γ (S = ∅).
We have the following lemma.

Lemma 3. Let M be a module of G and let M ′ be a module different from M
that is compact in Γ . By performing the compaction of M , we have that: (1) Γ
is (still) a weak dominance drawing; (2) the number of fips of Γ is not increased;
(3) module M ′ is (still) compact in Γ .

Proof. Recall that p is a vertex of M with the minimum number of outer fips
outp. Notice that, after the compaction of M , the relative positions of two vertices
u and v in Γ changed if and only if u ∈ M and v ∈ S or vice versa. This fact
has two implications. First, by Lemma 2, Γ remains a weak dominance drawing
and we have that Property (1) is verified. Second, we have that:
(i) The number of inner-fips of Γ does not change (recall S ⊆ V \M).
By construction, the relative position of any u ∈ G and p do not change. Also,
recall that M is compact in Γ . Hence:
(ii) The number of fips of Γ involving p does not change.
(iii) The relative position between any v ∈ V \M and p is the same as the relative
position between v and any u ∈ M .

Dominance Drawings for DAGs with Bounded Modular Width 73

Consideration (iii) implies that every vertex v ∈ M is involved in outp outer-
fips of M and, by (ii) and since outp ≤ outv before the compaction, we have
that the number of outer-fips involving v is not augmented. Hence, by (i), the
number of fips of Γ is not increased. It follows that Property (2) of the lemma
is verified. It remains to show Property (3). Let D be any dimension of Γ and S
be the separator of M in D. If M ′ ∩S = ∅ the compaction of M does not modify
the position of the vertices of M ′ and M ′ remains compact. Suppose M ′ ∩S �= ∅.
Since M ′ is compact we have M ′ ⊆ S. Hence, if we switch u ∈ M ′ and v ∈ M ,
then we switch v with all the vertices of M ′. Hence, M ′ remains compact. �

Illustration of Lemma 3 (d = 2). We now illustrate the three properties of
the lemma with an example, when d = 2.
- Property (1). The drawing in Fig. 3(c), obtained by performing the com-
paction on module M = {5, 7, 10, 12, 14} in the weak dominance drawing in
Fig. 3(a), is a weak dominance drawing.
- Property (2). The outer-fips involving the any vertex v ∈ M in the weak
dominance drawing in Fig. 3(c) are (3, v) and (v, w) ∀ w ∈ {9, 11, 16, 17, 18}.
Before the compaction, Fig. 3(a), any vertex v where involved in not less outer-
fips. Notice that vertex p = 7 is involved in the same fips in both drawings. The
inner-fips in Fig. 3(a) and (c) are the same. Hence, the drawing in Fig. 3(c) has
no more fips than the one in Fig. 3(a).
- Property (3). Refer to Fig. 3(d–f). Denote now M = {6, 8, 13, 15} and M ′ =
{5, 7, 10, 12, 14}. Consider the weak dominance drawing in Fig. 3(d). Figure 3(e)
shows the drawing after that the operation of compaction of M in Γ performed
its step on dimension Y (and still not on dimension X). Figure 3(f) shows the
graph resulting after the operation of compaction of M in Γ . Notice that Module
M ′, that is compact in Fig. 3(d), is still compact in Fig. 3(e) and (f).

Given Lemma 3, we have all the ingredients to prove the Compaction Lemma.

Proof of the Compaction Lemma. Let Γ be a cost-minimum weak dominance
drawing of G. We show that, given Γ , it is possible to compute a cost-minimum
weak dominance drawing Γ of G having the same number of fips of Γ and
where CP is compact. We initialize Γ = Γ . For every M ∈ CP we perform the
compaction of M in Γ . After every compaction we have that: M is compact
in Γ by construction; Γ is still a weak dominance drawing by Property (1) of
Lemma 3; Γ has the minimum number of fips by Property (2) of Lemma3; every
module M ′ the that was compact before the compaction of M remains compact
by Property (3) of Lemma 3. Hence, Γ is a weak dominance drawing of G with
the minimum number of fips and where CP is compact. �

4 Minimizing the Number of Fips

In this section we present the main contribution of this paper, stated in Theo-
rem 1. Given a DAG G and a congruence partition CP of G, let opt(G/CP) be
the cost of a cost-minimum weak dominance drawing of G/CP . For example,

74 G. Ortali and I. G. Tollis

Γ3 in Fig. 2(c) is a cost-minimum 2-dimensional weak dominance drawing of the
graph G/CP in Fig. 2(b) and its cost is 1. Hence, opt(G/CP) = 1.

The next lemma, which is proved in the appendix, relates the number of
outer-fips of a weak dominance drawing of G where CP is compact to the
value opt(G/CP).

Lemma 4. Let G be a DAG and CP be a congruence partition of G. For any
weak dominance drawing Γ of G such that CP is compact in Γ and having t
outer-fips, we have t ≥ opt(G/CP).

Proof. Let CP = {M1, . . . ,Mh}. Let Γ be a weak dominance drawing of G where
CP is compact and with t outer-fips. It is possible to construct a weak dominance
drawing Γ ′ of G/CP by: Contracting every Mi ∈ CP (i ∈ [1, h]) to a vertex vi in
Γ ; assigning c(vi) = |Mi|. For example, Fig. 4(e) depicts a 2-dimensional weak
dominance drawing Γ of the graph in Fig. 2(a) where the congruence partition
CP = {M1, . . . ,M6} is compact. By contracting every module Mi to a vertex vi
and by assigning c(vi) = |Mi| (i ∈ [1, 6]) we obtain the weak dominance drawing
of G/CP in Fig. 4(d). Let t′ be the cost of Γ ′. Notice that t′ ≥ opt(G/CP) by
definition. We now prove t′ = t. Since CP is compact in Γ and by definition of
a module, we have that: For every fip (u, v) of Γ such that u ∈ Mi and v ∈ Mj ,
where i, j ∈ [1, h] and i �= j, there is a fip (u′, v′) for any couple of vertices u′

and v′ such that u′ ∈ Mi and v′ ∈ Mj . Hence, any fip (u, v) of Γ implies the
existence of |Mi| · |Mj | outer-fips in Γ . Also, since Γ ′ is obtained by contracting
the vertices of every module of CP and since CP is compact in Γ , fip (u, v)
implies a fip (vi, vj) having a cost c(vi) · c(vj) = |Mi| · |Mj | in Γ ′. Hence, t′ ≥ t.
The argument holds also in the other direction: Every fip (vi, vj) in Γ ′ implies
the existence of |Mi| · |Mj | outer-fips in Γ . Hence, t′ ≤ t. Since t′ ≥ t and t′ ≤ t
we have t′ = t. Since t′ = t and t′ ≥ opt(G/CP), we have t ≥ opt(G/CP). �

The following theorem is the main contribution of this section

Theorem 1. Let G be a DAG with n vertices and m edges, let mw be the
modular width of G and let k be any value such that k ≥ mw. For any d, it
is possible to compute a d-dimensional weak dominance drawing of G with the
minimum number of fips in O(nm + n2kd log(k)) time.

Proof. Recall that, by definition of c(·) and since we assign c(v) = 1 for every
v ∈ V , for any module M of G a cost-minimum weak dominance drawing of GM

has the minimum number of fips. If M = V , GV = G. It is possible to compute
a cost-minimum d-dimensional weak dominance drawing of any graph H having
k vertices in O(dk2(k!)d) time by using the following brute force algorithm:
(a) Compute all the possible d-dimensional weak dominance drawings of H in
O((k!)d) time; (b) test in O(dk2) time, for each drawing, its cost; (c) select
the drawing with the minimum cost. Notice that O(dk2(k!)d) ∈ O(2kd log(k)). In
order to compute the cost-minimum d-dimensional weak dominance drawing of
G drawing we do a bottom-up traversal of the modular decomposition tree T .

Dominance Drawings for DAGs with Bounded Modular Width 75

Base Step: Let M be a module of G such that the children of the corresponding
vertex in T are leaves of T . Every module of the congruence partition CP asso-
ciated to GM is a trivial module with cardinality 1. Hence, GM is equal to the
quotient graph GM/CP and it has less than k vertices. It is possible to compute
a cost-minimum weak dominance drawing of GM in O(2kd log(k)) time.

Recursive Step: Let M be a module of G such that the corresponding vertex in
T has k′ ≤ k children that are not all leaves of T (i.e., one of them is an internal
vertex of T). In order to simplify the notation, w.l.o.g., suppose k′ = k and
M = V (i.e., GM = G). Let CP = {M1, . . . ,Mh} be the congruence partition
that we associate to G given T . By inductive hypothesis, the cost-minimum weak
dominance drawing ΓMi

of GMi
is given for every Mi ∈ CP (i ∈ [1, h]).

For example, consider the DAG G in Fig. 2(a) and the case d = 2. For any
i ∈ {1, 2, 3, 5, 6}, GMi

is planar and ΓMi
is a dominance drawing. Drawing ΓM1

is in Fig. 4(a), while ΓM2 , ΓM3 , ΓM5 , and ΓM6 are very simple and they are
depicted in Fig. 4(b). Figure 4(c) depicts ΓM4 . We have that GM4 contains the
crown graph and ΓM4 is cost-minimum, since it has one fip, that is (16, 19).
Drawing Γ ′ is Γ3 of Fig. 2(c), which is cost-minimum.

We now compute a cost-minimum d-dimensional weak dominance drawing
Γ of G. Since G/CP has k vertices, we can compute a cost-minimum weak

Fig. 4. Refer to G and CP in Fig. 2. The cost-minimum weak dominance drawings of:
(a) GM1 ; (b) GM2 , GM3 , GM5 , GM6 ; (c) GM4 ; (d) G/CP ; (e) G.

76 G. Ortali and I. G. Tollis

dominance drawing Γ ′ of G/CP in O(2kd log(k)) time. Recall that, for any Mi ∈
CP (i ∈ [1, h]), c(vi) = |Mi|, where vi is the vertex of G/CP associated to Mi.

We compute a weak dominance drawing Γ of G by expanding the vertex vi to
the drawing ΓMi

in Γ ′, for any i ∈ [1, h]. See Fig. 4(d-e). More formally, let D′ a
dimension of Γ ′ and let V j

D′ be a set of vertices of G/CP so that D′(v) < D′(vj)
for any v ∈ V j

D′ . We perform the following coordinate assignment operation for
every v ∈ G and for every dimension D of Γ :
Coordinates Assignment Operation (v, D): Let Mi be the module of CP

containing v (i ∈ [1, h]). Let D′ and Di be the dimension corresponding to D in
Γ ′ and Γi. I.e., if D is the gth dimension of Γ , D′ and Di are the gth dimension
of Γ ′ and Γi, respectively. Set D(v) = D′(vi) +

∑
u∈V i

D′
(c(u) − 1) + Di(v).

For example, refer to Fig. 4. Figure 4(e) depicts Γ after the Coordinates
Assignment Operation is performed for every v ∈ G and every dimension
of Γ . The graphs G and G/CP are depicted in Fig. 2(a) and (b). Refer to
Vertex 16 and dimension X. We have 16 ∈ M4 and V 4

X = {v1, v2}. Hence,
X(16) = X ′(v4)+(|c(v1)|−1)+(|c(v2)|−1)+X4(16) = 2+(6−1)+(1−1)+2 = 9.

Recall that, for i ∈ [1, h], the vertices in ΓMi
are contained in the same

module Mi of G. Hence, since we obtain Γ by expanding the vertices of Γ ′

to the drawings ΓM1 , . . . , ΓMh
and since Γ ′, ΓM1 , . . . , ΓMh

are weak dominance
drawing, we have that Γ is a weak dominance drawing and that CP is compact
in Γ . We now show that Γ is a cost-minimum d-dimensional dominance drawing
of G having the minimum number of fips among all the d-dimensional dominance
drawings of G where CP is compact. By Lemma 1, Γ is cost-minimum.
The Inner-Fips: Notice that the drawing Γ restricted to the vertices of any
module Mi ∈ G/CP is ΓMi

. Since ΓMi
is cost-minimum, we have that Γ has the

minimum number of inner-fips.

The Outer-Fips: Notice that Γ ′ has a cost opt(G/CP). Since G/CP is compact
in Γ and since we obtained Γ by expanding the vertices of Γ ′ to the drawings
ΓM1 , . . . , ΓMh

, we can prove by argument similar to the ones of Lemma 4 that
Γ has opt(G/CP) outer-fips, that is the cost of Γ ′. By Lemma 4 we have that Γ
is the d-dimensional dominance drawing of G having the minimum number of
outer-fips and where CP is compact.

For any vertex of T we perform the O(2kd log(k)) time operation that we
described in the Base Step and in the Recursive Step. Hence, we have that the
algorithm requires O(n2kd log(k)) time. As already observed in Sect. 2, computing
T requires O(nm). ��

5 Minimizing the Number of Dimensions

In this section we discuss the implications of Theorem1 with respect to the
known results about dominance drawings and their dominance dimension.

Recall that testing if a DAG G has dominance dimension equal to any con-
stant value d ≥ 3 is NP-complete [19]. Observe that a constant d is the dominance
dimension of a DAG G = (V,E) if G admits a dominance drawing (i.e., a weak

Dominance Drawings for DAGs with Bounded Modular Width 77

dominance drawing with 0 fips) with d dimensions, but not with d − 1. Hence,
the following theorem follows by Theorem1.

Theorem 2. Let G be a DAG with n vertices and m edges, let mw be the
modular width of G, and let k be any value such that k ≥ mw. For any d,
we can test if d is the dominance dimension of G in O(nm + n2kd log(k)) time.
Also, if the test is positive, it is possible to construct a d-dimensional dominance
drawing of G in the same time.

We have the following simple, but interesting, corollary of Theorem2.

Corollary 1. Let G be a DAG with modular width k. It is possible to test if the
dominance dimension of G is equal to 3 in O(nm + n2k log(k)) time.

In the proof of Theorem 1 we compute dominance drawings of graphs having
k or less vertices, where k ≥ mw. Also, while merging dominance drawings of dif-
ferent DAGs GM1 , . . . , GMh

in order to compute the dominance drawing of their
parent GM in the modular decomposition tree, we do not add more dimensions
with respect to the ones used to compute drawings ΓM , ΓM1 , . . . , ΓMh

. Since the
dominance dimension of every DAG with n-vertices is at most n

2 if n ≥ 4 [10]
and it is lower than n in general, we have the following theorem.

Theorem 3. Let G be a DAG, let mw be the modular width of G, and let d∗ be
the dominance dimension of G. Then, d∗ ≤ mw

2 if mw ≥ 4; otherwise, d∗ ≤ mw.

As already observed in the introduction, d∗ is a parameter that is bounded
not only by n

2 [10], but also by the width w of G [5]. Observe that the modular
width mw is not bounded by w. For example, for cographs mw = 2 [17], but their
width, w, is not bounded. Similarly, it is not difficult to construct a graph with
bounded width and unbounded modular width. Consider a graph having width
2, i.e., that can be partitioned in two chains. Suppose that these two chains have
the same number of edges and that, for any vertex v of the first chain in position
i and any vertex w in position i + 1 there is an edge (v, w). In this case, no two
vertices of the first chain can belong to a same module and, consequently, mw
is unbounded. Theorems 2 and 3 imply the following result:

Theorem 4. Let G be a DAG, mw be the modular width of G and k be a value
such that k ≥ mw. It is possible to compute the dominance dimension d∗ of G
and a d∗-dimensional dominance drawing of G in O(nm + n2k

2 log(k)) time.

We conclude this section with a further discussion of the computational time
of Theorems 1, 2, and 4. We have that the additive term “nm” in the time
complexity of the theorems is required to compute G∗ and consequently the
path-based modular decomposition tree T of G. Our results hold if we use the
concept of edge-based module instead of the concept of path-based module.
In this case, since computing the edge-based modular decomposition requires
O(m) time, the time complexity of the theorems has an “m” instead of the
“nm”. However, as we already observed in Sect. 2, mw for edge-based modules
is typically greater than mw for path-based modules.

78 G. Ortali and I. G. Tollis

Notice that in general the concept of module can be defined in many ways by
restricting the internal structure of the modules, as observed in [3]. For example,
in [1] the authors consider only path-based modules M where GM is a simple
path or a set of |M | incomparable vertices. Given any definition of a module,
there is a corresponding modular width and assume that the time complexity
to compute the modular decomposition tree is y. Then Theorems 1 and 4 hold
with “y” instead of “nm”, in their the time complexity.

6 Concluding Remarks

In this paper we present a fixed parameter algorithm solving the fip-minimization
problem, which is NP-hard. In particular, we show that if the modular width
mw of DAG G is a constant, then the problem is polynomial-time solvable for
any constant number of dimensions. In order to prove this result we use the
Compaction Lemma, that shows that G always admits a weak dominance drawing
with the minimum number of fips such that each module of G is compact in the
drawing. Concerning dominance drawings (0 fips) we present an FPT algorithm
with parameter mw to compute a dominance drawing of G in d dimensions, if
it exists. Also, we show that mw

2 (mw, if mw < 4) is an upper bound for the
dominance dimension of any DAG G. These two results imply an FPT algorithm
with parameter mw that computes the dominance dimension of G.

Open Problems: From a practical point of view, it would be interesting to use the
results of this paper to invent heuristics to compute weak dominance drawings
with a smaller number of fips than is known in the literature [14,18]. Another
interesting problem is to find algorithms computing drawings with a bounded
number of fips. In this case, the problem of computing all the fips efficiently
could become very interesting also in practice. Finally, we also believe that com-
puting weak dominance drawings where the number of vertices involved in fips
is minimized could be an important step forward in this line of research.

References

1. Anirban, S., Wang, J., Saiful Islam, Md.: Modular decomposition-based graph
compression for fast reachability detection. Data Sci. Eng. 4(3), 193–207 (2019)

2. Bogart, K.P.: Maximal dimensional partially ordered sets I. Hiraguchi’s theorem.
Discrete Math. 5(1), 21–31 (1973)

3. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some
classes of bounded clique-width graphs. ACM Trans. Algorithms 15(3), 33:1–33:57
(2019)

4. Battista, G.D., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display
of planar upward drawings. Discrete Comput. Geom. 7(4), 381–401 (1992). https://
doi.org/10.1007/BF02187850

5. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
52, 161–166 (1950)

6. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)

https://doi.org/10.1007/BF02187850
https://doi.org/10.1007/BF02187850

Dominance Drawings for DAGs with Bounded Modular Width 79

7. ElGindy, H.A., Houle, M.E., Lenhart, W., Miller, M., Rappaport, D., Whitesides,
S.: Dominance drawings of bipartite graphs. In: Proceedings of the 5th Canadian
Conference on Computational Geometry, Waterloo, Ontario, Canada, August 1993,
pp. 187–191. University of Waterloo (1993)

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs, pp. 112–127. Prentice Hall, Upper Saddle River
(1998)

9. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

10. Hiraguchi, T.: On the dimension of partially ordered sets. Sci. Rep. Kanazawa
Univ. 77–94 (1951)

11. Kornaropoulos, E.M., Tollis, I.G.: Weak dominance drawings and linear extension
diameter. CoRR, abs/1108.1439 (2011)

12. Kornaropoulos, E.M., Tollis, I.G.: Weak dominance drawings for directed acyclic
graphs. In: Graph Drawing - 20th International Symposium, GD 2012, Redmond,
WA, USA, 19–21 September 2012, Revised Selected Papers, pp. 559–560 (2012)

13. Kratsch, S., Nelles, F.: Efficient and adaptive parameterized algorithms on modu-
lar decompositions. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual Euro-
pean Symposium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki, Finland.
LIPIcs, vol. 112, pp. 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018)

14. Li, L., Hua, W., Zhou, X.: HD-GDD: high dimensional graph dominance drawing
approach for reachability query. World Wide Web 20(4), 677–696 (2017)

15. McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation. In: Saks, M.E.
(ed.) Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 5–7 January 1997, New Orleans, Louisiana, USA, pp. 19–25. ACM/SIAM
(1997)

16. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discret. Math. 201(1–3), 189–241 (1999)

17. Steiner, R., Wiederrecht, S.: Parametrised algorithms for directed modular width.
CoRR, abs/1905.13203 (2019)

18. Veloso, R.R., Cerf, L., Meira Jr., W., Zaki, M.J.: Reachability queries in very
large graphs: a fast refined online search approach. In: Proceedings of the 17th
International Conference on Extending Database Technology, EDBT 2014, Athens,
Greece, 24–28 March 2014, pp. 511–522 (2014)

19. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Algebr. Discrete Methods 3, 303–322 (1982)

https://doi.org/10.1007/978-3-319-03898-8_15

Morphing Planar Graph Drawings
Through 3D

Kevin Buchin1 , Will Evans2, Fabrizio Frati3(B) , Irina Kostitsyna4 ,
Maarten Löffler5, Tim Ophelders4,5 , and Alexander Wolff6

1 Technische Universität Dortmund, Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 University of British Columbia, Vancouver, Canada
will@cs.ubc.ca

3 Roma Tre University, Rome, Italy
fabrizio.frati@uniroma3.it

4 TU Eindhoven, Eindhoven, The Netherlands
i.kostitsyna@tue.nl

5 Utrecht University, Utrecht, The Netherlands
{m.loffler,t.a.e.ophelders}@uu.nl

6 Universität Würzburg, Würzburg, Germany

Abstract. In this paper, we investigate crossing-free 3D morphs
between planar straight-line drawings. We show that, for any two (not
necessarily topologically equivalent) planar straight-line drawings of an
n-vertex planar graph, there exists a piecewise-linear crossing-free 3D
morph with O(n2) steps that transforms one drawing into the other. We
also give some evidence why it is difficult to obtain a linear lower bound
(which exists in 2D) for the number of steps of a crossing-free 3D morph.

Keywords: Linear morph · 3D graph drawing · Morphing steps

1 Introduction

A morph is a continuous transformation between two given drawings of the
same graph. A morph is required to preserve specific topological and geometric
properties of the input drawings. For example, if the drawings are planar and
straight-line, the morph is required to preserve such properties throughout the
transformation. A morphing problem often assumes that the input drawings are
“topologically equivalent”, that is, they have the same “topological structure”.
For example, if the input drawings are planar, they are required to have the
same rotation system (i.e., the same clockwise order of the edges incident to
each vertex) and the same walk bounding the outer face; this condition is obvi-
ously necessary (and, if the graph is connected, also sufficient [6,10]) for a morph

This research was partially supported by MIUR Project “AHeAD” under PRIN
20174LF3T8.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 80–95, 2023.
https://doi.org/10.1007/978-3-031-23101-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_6&domain=pdf
http://orcid.org/0000-0002-3022-7877
http://orcid.org/0000-0001-5987-8713
http://orcid.org/0000-0003-0544-2257
http://orcid.org/0000-0002-9570-024X
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-031-23101-8_6

Morphing Planar Graph Drawings Through 3D 81

to exist between the given drawings. A linear morph is a morph in which each
vertex moves along a straight-line segment, all vertices leave their initial posi-
tions simultaneously, move at uniform speed, and arrive at their final positions
simultaneously. A piecewise-linear morph consists of a sequence of linear morphs,
called steps. A recent line of research culminated in an algorithm by Alamdari
et al. [2] that constructs a piecewise-linear morph with O(n) steps between any
two topologically equivalent planar straight-line drawings of the same n-vertex
planar graph; this bound is worst-case optimal.

What can one gain by allowing the morph to use a third dimension? That is,
suppose that the input drawings still lie on the plane z = 0, does one get “better”
morphs if the intermediate drawings are allowed to live in 3D? Arseneva et al. [4]
proved that this is the case, as they showed that, for any two planar straight-
line drawings of an n-vertex tree, there exists a crossing-free (i.e., no two edges
cross in any intermediate drawing) piecewise-linear 3D morph between them
with O(log n) steps. Later, Istomina et al. [9] gave a different algorithm for the
same problem. Their algorithm uses O(

√
n log n) steps, however it guarantees

that any intermediate drawing of the morph lies on a 3D grid of polynomial size.

Our Contribution. We prove that the use of a third dimension allows us to
construct a morph between any two, possibly topologically non-equivalent, planar
drawings. Indeed, we show that O(n2) steps always suffice for constructing a
crossing-free 3D morph between any two planar straight-line drawings of the
same n-vertex planar graph; see Sect. 2. Our algorithm defines some 3D morph
“operations” and applies a suitable sequence of these operations in order to
modify the embedding of the first drawing into that of the second drawing. The
topological effect of our operations on the drawing is similar to, although not
the same as, that of the operations defined by Angelini et al. in [3]. Both the
operations defined by Angelini et al. and ours allow to transform an embedding
of a biconnected planar graph into any other. However, while our operations are
3D crossing-free morphs, we see no easy way to directly implement the operations
defined by Angelini et al. as 3D crossing-free morphs. We stress that the input
of our algorithm consists of a pair of planar drawings in the plane z = 0; the
algorithm cannot handle general 3D drawings as input.

We then discuss the difficulty of establishing non-trivial lower bounds for the
number of steps needed to construct a crossing-free 3D morph between planar
straight-line drawings; see Sect. 3. We show that, with the help of the third
dimension, one can morph, in a constant number of steps, two topologically
equivalent drawings of a nested-triangle graph (see Fig. 8) that are known to
require a linear number of steps in any crossing-free 2D morph [2].

We conclude with some open problems in Sect. 4.

82 K. Buchin et al.

2 An Upper Bound

This section is devoted to a proof of the following theorem.

Theorem 1. For any two planar straight-line drawings (not necessarily with
the same embedding) of an n-vertex planar graph, there exists a crossing-free
piecewise-linear 3D morph between them with O(n2) steps.

We first assume that the given planar graph G is biconnected and describe
four operations (Sect. 2.1) that allow us to morph a given 2D planar straight-
line drawing of G into another one, while achieving some desired change in the
embedding. We then show (Sect. 2.2) how these operations can be used to con-
struct a 3D crossing-free morph between any two planar straight-line drawings
of G. Finally, we remove our biconnectivity assumption (see Sect. 2.3 and the
full version of this paper [5]).

We give some definitions. Throughout this paragraph, every considered graph
is assumed to be connected. Two planar drawings of a graph are (topologically)
equivalent if they have the same rotation system and the same clockwise order of
the vertices along the boundary of the outer face. An embedding is an equivalence
class of planar drawings of a graph. A plane graph is a graph with an embedding;
when we talk about a planar drawing of a plane graph, we always assume that the
embedding of the drawing is that of the plane graph. The flip of an embedding E
produces an embedding in which the clockwise order of the edges incident to
each vertex and the clockwise order of the vertices along the boundary of the
outer face are the opposite of the ones in E .

A pair of vertices of a biconnected graph G is a separation pair if its removal
disconnects G. A split pair of G is a separation pair or a pair of adjacent vertices.
A split component of G with respect to a split pair {u, v} is the edge (u, v) or a
maximal subgraph Guv of G such that {u, v} is not a split pair of Guv. A plane
graph is internally-triconnected if every split pair consists of two vertices both
incident to the outer face.

2.1 3D Morph Operations

We begin by describing four operations that morph a given planar straight-line
drawing into another with a different embedding; see Fig. 1.

Operation 1: Graph Flip. Let G be a biconnected plane graph, let u and v
be two vertices of G, and let Γ be a planar straight-line drawing of G.

Lemma 1. There exists a 2-step 3D crossing-free morph from Γ to a planar
straight-line drawing Γ ′′ of G whose embedding is the flip of the embedding that
G has in Γ ; moreover, u and v do not move during the morph.

We implement Operation 1, which proves Lemma 1, as follows. Let Π be the
plane z = 0, which contains Γ . Let Π ′ be the plane that is orthogonal to Π
and contains the line �uv through u and v. Let Γ ′ be the image of Γ under

Morphing Planar Graph Drawings Through 3D 83

a clockwise rotation around �uv by 90◦. Note that Γ ′ is contained in Π ′. Now
let Γ ′′ be the image of Γ ′ under another clockwise rotation around �uv by 90◦.
Note that Γ ′′ is a flipped copy of Γ and is contained in Π. Consider the linear
morphs 〈Γ, Γ ′〉 and 〈Γ ′, Γ ′′〉. In each of them, every vertex travels on a line that
makes a 45◦-angle with both Π and Π ′, and all these lines are parallel. Due
to the linearity of the morph and the fact that both pre-image and image are
planar, all vertices stay coplanar during both linear morphs (although, unlike in a
true rotation, the intermediate drawing size changes continuously). In particular,
every intermediate drawing is crossing-free, and u and v (as well as all the points
on �uv) are fixed points.

Operation 2: Outer Face Change. Let G be a biconnected plane graph, let Γ
be a planar straight-line drawing of G, and let f be a face of Γ .

Fig. 1. The four operations that are the building blocks for our piecewise-linear morphs.

Lemma 2. There exists a 4-step 3D crossing-free morph from Γ to a planar
straight-line drawing Γ ′′′ of G whose embedding is the same as the one of Γ ,
except that the outer face of Γ ′′′ is f .

We implement Operation 2, which proves Lemma2, using the stereographic
projection. Let Π be the plane z = 0, which contains Γ . Let S be a sphere that
contains Γ in its interior and is centered on a point in the interior of f . Let Γ ′ be
the 3D straight-line drawing obtained by projecting the vertices of G from their
positions in Γ vertically to the Northern hemisphere of S. Let Γ ′′ be determined
by projecting the vertices of Γ ′ centrally from the North Pole of S to Π. Both
projections define linear morphs: 〈Γ, Γ ′〉 and 〈Γ ′, Γ ′′〉. Indeed, any intermediate
drawing is crossing-free since the rays along which we project are parallel in
〈Γ, Γ ′〉 and diverge in 〈Γ ′, Γ ′′〉, and there is a one-to-one correspondence between
the points in the pre-image and in the image. Since the morph also inverts the
rotation system of Γ ′′ with respect to Γ , we apply Operation 1 to Γ ′′, which,
within two morphing steps, flips Γ ′′ and yields our final drawing Γ ′′′.

84 K. Buchin et al.

Operation 3: Component Flip. Let G be a biconnected plane graph, and let
{u, v} be a split pair of G. Let G1, . . . , Gk be the split components of G with
respect to {u, v}. Let Γ be a planar straight-line drawing of G in which u and
v are incident to the outer face, as in Fig. 2a. Relabel G1, . . . , Gk so that they
appear in clockwise order G1, . . . , Gk around u, where G1 and Gk are incident
to the outer face of Γ . Let i and j be two (not necessarily distinct) indices with
1 ≤ i ≤ j ≤ k and with the following property1: If G contains the edge (u, v),
then this edge is one of the components Gi, . . . , Gj . Operation 3 allows us to flip
the embedding of the components Gi, . . . , Gj (and to incidentally reverse their
order), while leaving the embedding of the other components of G unchanged.
This is formalized in the following.

Fig. 2. Illustration for Operation 3 with i = 2 and j = 4: Construction of Ψ from Γ .

Lemma 3. There exists an O(n)-step 3D crossing-free morph from Γ to a pla-
nar straight-line drawing Γ ′ of G in which the embedding of G� is the flip of the
embedding that G� has in Γ , for � = i, . . . , j, while the embedding of G� is the
same as in Γ , for � = 1, . . . , i−1, j +1, . . . , k. The order of G1, . . . , Gk around u
in Γ ′ is G1, . . . , Gi−1, Gj , Gj−1, . . . , Gi, Gj+1, . . . , Gk.

In order to implement Operation 3, which proves Lemma 3, ideally we would
like to apply Operation 1 to the drawing of the graph Gi ∪ Gi+1 ∪ · · · ∪ Gj in Γ .
However, this would result in a drawing which might contain crossings between
edges of Gi ∪ Gi+1 ∪ · · · ∪ Gj and edges of the rest of the graph. Thus, we first
move Gi ∪ Gi+1 ∪ · · · ∪ Gj , via a 2D crossing-free morph, into a polygon that is
symmetric with respect to the line through u and v and that does not contain
any edges of the rest of the graph. Applying Operation 1 to Gi ∪Gi+1 ∪ · · · ∪Gj

now results in a drawing in which Gi ∪ Gi+1 ∪ · · · ∪ Gj still lies inside the same
symmetric polygon, which ensures that the edges of Gi ∪ Gi+1 ∪ · · · ∪ Gj do not
cross the edges of the rest of the graph.
1 This is a point where our operations differ from the ones of Angelini et al. [3]. Indeed,

their flip operation applies to any sequence of components of G, while ours does not.

Morphing Planar Graph Drawings Through 3D 85

We now describe the details of Operation 3; refer to Fig. 2b. We start by
drawing a triangle (a, b, c) surrounding Γ . Then we insert in Γ two polygons Pin

and Pout with O(n) vertices, which intersect Γ only at u and v; the vertices of
G1, . . . , Gi−1, Gj+1, . . . , Gk (except u and v) and a, b, and c lie outside Pout; the
vertices of Gi, . . . , Gj (except u and v) lie inside Pin; Pout contains Pin; and the
two paths of Pin connecting u and v have the same number of vertices. We let
Pin and Pout “mimic” the boundary of the drawing of Gi ∪ Gi+1 ∪ · · · ∪ Gj in Γ .

We triangulate the exterior of Pout; that is, we triangulate each region inside
(a, b, c) and outside Pout bounding a face of the current drawing. If this introduces
a chord (x, y) with respect to Pout, let (x, y, w) and (x, y, z) be the two faces
incident to (x, y); we subdivide (x, y) with a vertex and connect this vertex to
w and z. We also triangulate the interior of Pin. Let Ψ be the resulting planar
straight-line drawing of this plane graph H. Let Cout and Cin be the cycles of
H represented by Pout and Pin in Ψ , let Hout be the subgraph of H induced
by the vertices that lie outside or on Pout, and let Hin be the subgraph of H
induced by the vertices that lie inside or on Pin. Note that Hout is a triconnected
plane graph, as each of its faces is delimited by a 3-cycle, except for one face,
which is delimited by a cycle Cout without chords. Further, Hin is an internally-
triconnected plane graph, as each of its internal faces is delimited by a 3-cycle,
while the outer face is delimited by a cycle Cin which may have chords.

Fig. 3. Illustration for Operation 3.

We now construct another planar straight-line drawing of H, as follows. Con-
struct a strictly convex drawing Λout of Hout, e.g., by means of the algorithm
by Hong and Nagamochi [8] or of the algorithm by Tutte [11], as in Fig. 3a. Let
PΛ
out be the strictly convex polygon representing Cout in Λout. As in Fig. 3b, plug

a strictly convex drawing PΛ
in of Cin in the interior of PΛ

out (except at u and v)
so that PΛ

in is symmetric with respect to the line through u and v. This can be
achieved because the two paths of Cin connecting u and v have the same number
of vertices and because PΛ

out is strictly convex, hence the segment uv lies in its
interior, and thus also a polygon PΛ

in sufficiently close to uv does. Finally, plug

86 K. Buchin et al.

into Λout ∪ PΛ
in a strictly convex drawing Λin of Hin in which Cin is represented

by PΛ
in, as in Fig. 3c; this drawing can be constructed again by means of [8,11].

This results in a planar straight-line drawing Λ of H.
We now describe the morph that occurs in Operation 3. We first define a

morph 〈Ψ, . . . , Φ〉 from Ψ to another planar straight-line drawing Φ of H, as the
concatenation of two morphs 〈Ψ, . . . , Λ〉 and 〈Λ, . . . , Φ〉. The morph 〈Ψ, . . . , Λ〉
is an O(n)-step crossing-free 2D morph obtained by applying the algorithm of
Alamdari et al. [2]. The morph 〈Λ, . . . , Φ〉 is an O(1)-step 3D morph that is
obtained by applying Operation 1 to Λin only, with u and v fixed; Fig. 3d shows
the resulting drawing Φ. In order to prove that Operation 3 defines a crossing-
free morph, it suffices to observe that, during 〈Λ, . . . , Φ〉, the intersection of Hin

with the plane on which Λout lies is (a subset of) the segment uv, which lies
in the interior of a face of Λout; hence, Hin does not cross Hout. That no other
crossings occur during 〈Ψ, . . . , Φ〉 is a consequence of the results of Alamdari
et al. [2] (which ensure that 〈Ψ, . . . , Λ〉 has no crossings) and of the properties
of Operation 1 (which ensure that 〈Λ, . . . , Φ〉 has no crossings between edges
of Hout). Finally, Operation 3 is the morph 〈Γ, . . . , Γ ′〉 obtained by restrict-
ing the morph 〈Ψ, . . . , Φ〉 to the vertices and edges of G. Note that the effect
of Operation 1, applied only to Λin, is the one of flipping the embeddings of
Gi, . . . , Gj (and also reversing their order around u), while leaving the embed-
dings of G1, . . . , Gi−1, Gj+1, . . . , Gk unaltered, as claimed.

Operation 4: Component Skip. Operation 4 works in a setting similar to the
one of Operation 3. Specifically, G, G1, . . . , Gk, {u, v}, and Γ are defined as in
Operation 3; see Fig. 4a. However, we have one further assumption: If the edge
(u, v) exists, then it is the split component G1. Let i be any index in {2, . . . , k}.
Operation 4 allows Gi to “skip” the other components of G, so to be incident to
the outer face. This is formalized in the following.

Lemma 4. There exists an O(n)-step 3D crossing-free morph from Γ to a pla-
nar straight-line drawing Γ ′ in which the embedding of G� is the same as in Γ ,
for � = 1, . . . , k, and the clockwise order of the split components around u is
G1, . . . , Gi−1, Gi+1, . . . , Gk, Gi, where G1 and Gi are incident to the outer face.

In order to implement Operation 4, which proves Lemma 4, we would like to
first move Gi vertically up from the plane z = 0 to the plane z = 1, to then
send Gi “far away” by modifying the x- and y-coordinates of its vertices, and to
finally project Gi vertically back to the plane z = 0. There are two complications
to this plan, though. The first one is given by the vertices u and v, which belong
both to Gi and to the rest of the graph. When moving u and v on the plane
z = 1, the edges incident to them are dragged along, which might result in these
edges crossings each other. The second one is that there might be no far away
position that allows the drawing of Gi to be vertically projected back to the plane
z = 0 without introducing any crossings. This is because the rest of the graph
might be arbitrarily mingled with Gi in the initial drawing Γ . As in Operation 3,
convexity comes to the rescue. Indeed, we first employ a 2D crossing-free morph
which makes the boundary of the outer face of G convex and moves Gi into a

Morphing Planar Graph Drawings Through 3D 87

convex polygon. After moving Gi vertically up to the plane z = 1, sending Gi

far away can be simply implemented as a scaling operation, which ensures that
the edges incident to u and v do not cross each other during the motion of Gi

on the plane z = 1 and that projecting Gi vertically back to the plane z = 0
does not introduce crossings with the edges of the rest of the graph.

We now provide the details of Operation 4, which works slightly differently
if the edge (u, v) exists and if it does not. We first describe the latter case. Refer
to Fig. 4b. We insert two polygons Pin and Pout with O(n) vertices in Γ . As in
Operation 3, they intersect Γ only at u and v, with Pin inside Pout (except at u
and v). All the vertices of Gi (except u and v) lie inside Pin and all the vertices
of G1, . . . , Gi−1, Gi+1, . . . , Gk (except u and v) lie outside Pout. We also insert
in Γ a polygon Pext, with O(n) vertices, that intersects Γ only at u and v, and
that contains all the vertices of G and Pout (except u and v) in its interior.

Fig. 4. Illustration for Operation 4: Pin is blue, Pout is red, and Pext is purple. (Color
figure online)

We now triangulate the region inside Pext and outside Pout, without introduc-
ing chords for Pout. We also triangulate the interior of Pin without introducing
chords for Pin. Let Ψ be the resulting planar straight-line drawing of a plane
graph H. Let Cout, Cin, and Cext be the cycles of H represented by Pout, Pin,
and Pext in Ψ , respectively, and let Hout (Hin) be the subgraph of H induced by
the vertices that lie outside or on Pout (resp. inside or on Pin). Note that Hout

is an internally-triconnected plane graph and Hin is a triconnected plane graph.
We now construct another planar straight-line drawing of H, as follows. First,

construct a strictly convex drawing Qext of Cext such that the angle of Qext at u
(and the angle at v) is cut by the segment uv into two angles both smaller than
90◦. Next, construct a strictly convex drawing Λout of Hout in which Cext is
represented by Qext, by means of [8,11]. Let PΛ

out be the strictly convex polygon
representing Cout in Λout. As in Fig. 4c, plug a strictly convex drawing PΛ

in of Cin

in the interior of PΛ
out, except at u and v, so that the path Pin that is traversed

when walking in clockwise direction along Cin from u to v is represented by the
straight-line segment uv. Finally, plug into Λout∪PΛ

in a convex drawing Λin of Hin

88 K. Buchin et al.

in which the outer face is delimited by PΛ
in, by means of [8,11]. This results in a

planar straight-line drawing Λ of H, see Fig. 4d.
We now describe the morph that occurs in Operation 4. We first define a

morph 〈Ψ, . . . , Φ〉 from Ψ to an “almost” planar straight-line drawing Φ of H,
as the concatenation of two morphs 〈Ψ, . . . , Λ〉 and 〈Λ, . . . , Φ〉. The first morph
〈Ψ, . . . , Λ〉 is an O(n)-step crossing-free 2D morph obtained by applying the
algorithm in [2]. Translate and rotate the Cartesian axes so that, in Λ, the y-
axis passes through u and v and u has a smaller y-coordinate than v. The second
morph 〈Λ, . . . , Φ〉 is a 3-step 3D morph defined as follows.

– The first morphing step 〈Λ,Λ′〉 moves all the vertices of Hin, except for u and
v, vertically up, to the plane z = 1. As the projection to the plane z = 0 of
every drawing of H in 〈Λ,Λ′〉 coincides with Λ, the morph is crossing-free.

– The second morphing step 〈Λ′, Λ′′〉 is such that Λ′′ coincides with Λ′, except
for the x-coordinates of the vertices of Hin, which are all multiplied by the
same real value s > 0. The value s is large enough so that, in Λ′′, the following
property holds true: The absolute value of the slope of the line through u and
through the projection to the plane z = 0 of any vertex of Hin not in Pin is
smaller than the absolute value of the slope of every edge incident to u in
Hout; and likewise with v in place of u. This morph is crossing-free, as it just
scales the drawing of Hin up, while leaving the drawing of Hout unaltered.
Intuitively, this is the step where Gi “skips” Gi+1, . . . , Gk (although it still
lies on a different plane than those components, except for u and v).

– The third morphing step 〈Λ′′, Φ〉 moves the vertices of Hin vertically down,
to the plane z = 0. This morphing step might actually have crossings in
its final drawing Φ. However, the property on the slopes guaranteed by the
second morphing step ensures that the only crossings are those involving edges
incident to vertices of Pin different from u and v, which do not belong to G.
Hence, the restriction of 〈Λ′′, Φ〉 to G is a crossing-free morph.

Fig. 5. Illustration for Operation 4: construction of Γ ′ from the restriction of Λ to G.

As in Operation 3, the actual planar morph 〈Γ, . . . , Γ ′〉 is obtained by restrict-
ing the morph 〈Ψ, . . . , Φ〉 to G, see Fig. 5.

We now discuss the case that the edge (u, v) exists; then G1 is such an edge.
Now Pin and Pout surround all the components G1, . . . , Gi, and not just Gi;

Morphing Planar Graph Drawings Through 3D 89

consequently, Hin comprises G1, . . . , Gi. The description of Operation 4 remains
the same, except for two differences. First, PΛ

in is strictly convex; in particular,
Pin is not represented by a straight-line segment, so that the edge (u, v) lies in
the interior of PΛ

in. Second, in the 3-step 3D morph 〈Λ,Λ′, Λ′′, Φ〉, not all the
vertices of Hin are lifted to the plane z = 1, then scaled, and then projected
back to the plane z = 0, but only those of Gi. The arguments for the fact that
the restriction of such a morph to G is crossing-free remain the same.

2.2 3D Morphs for Biconnected Planar Graphs

We now describe an algorithm that constructs an O(n2)-step morph between
any two planar straight-line drawings Γ and Φ of the same n-vertex biconnected
planar graph G. It actually suffices to construct an O(n2)-step morph from Γ
to any planar straight-line drawing Λ of G with the same embedding as Φ, as
then an O(n)-step morph from Λ to Φ can be constructed by means of [2]. And
even more, it suffices to construct an O(n2)-step morph from Γ to any planar
straight-line drawing Ψ of G that has the same rotation system as Λ, as then an
O(1)-step morph from Ψ to Λ can be constructed by means of Operation 2.

As proved by Di Battista and Tamassia [7], starting from a planar graph draw-
ing (in our case, Γ), one can obtain the rotation system of any other planar draw-
ing (in our case, Φ) of the same graph by: (i) suitably changing the permuta-
tion of the components in some parallel compositions; that is, for some split pairs
{u, v} that define three or more split components, changing the clockwise (circu-
lar) ordering of such components; and (ii) flipping the embedding for some rigid
compositions; that is, for some split pairs that define a maximal split component
that is biconnected, flipping the embedding of the component. Thus, it suffices
to show how to implement these modifications by means of Operations 2–4 from
Sect. 2.1. We first take care of the flips, not only in the description, but also algo-
rithmically: All the flips are performed before all the permutation rearrangements
since the flips might cause some permutation changes, which we then fix later.

Let {u, v} be a split pair that defines a maximal biconnected split component
K of G, and suppose that we want to flip the embedding of K in Γ (the drawing
we deal with undergoes modifications, however for the sake of simplicity we
always denote it by Γ). Note that K is not the edge (u, v), as otherwise we
would not need to flip its embedding. Further, (u, v) does not belong to K, as
otherwise K would not be a maximal split component. However, (u, v) might
belong to E(G) − E(K). Apply Operation 2 to morph Γ so that the outer face
becomes any face incident to u and v. Let G1, . . . , Gk be the split components
of G with respect to {u, v}, in clockwise order around u, where G1 and Gk

are incident to the outer face. Let � ∈ {1, . . . , k} be such that G� = K. We
distinguish two cases, depending on whether the edge (u, v) belongs to G or not.

– If the edge (u, v) does not belong to G, then we simply apply Operation 3,
with i = j = �, in order to morph Γ to flip the embedding of G� = K.

– If (u, v) belongs to G, then let m ∈ {1, . . . , k} be such that Gm is (u, v).
Assume that � < m, the other case is symmetric. Apply Operation 3 with i = �

90 K. Buchin et al.

and j = m, in order to morph Γ to flip the embeddings of G�, G�+1, . . . , Gm.
If we again denote by G1, . . . , Gk the split components of G with respect to
{u, v}, in clockwise order around u, where G1 and Gk are incident to the outer
face, G� is now the edge (u, v) and Gm is K. Apply Operation 3 a second
time, with i = � and j = m−1, in order to morph Γ to flip the embeddings of
G�, G�+1, . . . , Gm−1 back to the embeddings they originally had. As desired,
only the embedding of K is actually flipped.

Flipping the embedding of K is hence done in O(n) morphing steps. Since
there are O(n) maximal biconnected split components whose embedding might
need to be flipped, all such flips are performed in O(n2) morphing steps.

Let {u, v} be a split pair of G that defines three or more split components
and suppose that we want to change the clockwise (circular) ordering of such
components around u to a different one. If the edge (u, v) exists, then apply
Operation 2 to morph Γ so that the outer face becomes the one to the left of
(u, v), when traversing (u, v) from u to v; otherwise, apply Operation 2 to morph
Γ so that the outer face becomes any face incident to u and v. Let G1, . . . , Gk be
the split components of G with respect to {u, v}, in clockwise order around u,
where G1 and Gk are incident to the outer face; note that, if (u, v) exists, then
it coincides with G1. Let G1, Gσ(2), Gσ(3), . . . , Gσ(k) be the desired clockwise
order of the split components of G with respect to {u, v} around u; since we
are only required to fix a clockwise circular order of these components, then we
can assume G1 to be the first component in the desired clockwise linear order of
such components around u that starts at the outer face.

We apply Operation 4 with index σ(2), then again with index σ(3), and so on
until the index σ(k). The first j applications make Gσ(2), Gσ(3), . . . , Gσ(j+1) the
last j split components of G with respect to {u, v} in the clockwise linear order
of the components around u that starts at the outer face. Hence, after the last
application we obtain the desired order. Each application of Operation 4 requires
O(n) morphing steps, hence changing the clockwise order around u of the split
components of G with respect to a split pair {u, v} takes O(nk) morphing steps,
where k is the number of split components with respect to {u, v}. Since the total
number of split components with respect to every split pair of G that defines a
parallel composition is in O(n) [7], this sums up to O(n2) morphing steps. This
concludes the proof of Theorem 1 for biconnected planar graphs.

2.3 3D Morphs for General Planar Graphs

We now sketch our algorithm for the case in which G is connected. A complete
description of this case and of the case that G is not connected are in the full
version [5] of this paper. Let Γ and Φ be the given planar straight-line drawings
of G. Let (u, v) and (u,w) be edges of G that are consecutive in the circular
order of the edges incident to u and that belong to different blocks of G, where
the block B containing (u, v) is a leaf of the block-cut-vertex tree of G. We are
going to augment G with a path (v, p, w). Repeating this augmentation makes G
biconnected and then the algorithm from Sect. 2.2 can be applied. While v and

Morphing Planar Graph Drawings Through 3D 91

w can be chosen so that (v, p, w) can be planarly inserted in Φ, they are not
necessarily incident to the same face of Γ , as in Fig. 6a. Thus, we let v and w
share a face by suitably morphing Γ .

Triangulate Γ into a planar straight-line drawing Ψ of a maximal planar
graph H, as in Fig. 6b, and then apply Operation 2 to change the outer face to a
face (u,w, q), as in Fig. 6c. By means of the algorithm by Hong and Nagamochi [8]
or of the algorithm by Tutte [11], construct a planar straight-line drawing Λ of H
in which (u,w, q) is a triangle whose angle at u is smaller than 45◦. We obtain an
O(n)-step crossing-free 2D morph from Ψ to Λ by means of [2]. Let 〈Γ, . . . , Γ ′〉
be the restriction of this morph to G, see Fig. 6d.

Translate and rotate the Cartesian axes so that Γ ′ lies on the plane z = 0,
the origin is at u, and the positive y-half-axis cuts the interior of the face to the
right of (u, v). We now make u and v incident to the same face in three morphing
steps. The first step moves all the vertices of B, except for u, vertically up, to the

Fig. 6. Illustration for the morph that allows path (v, p, w) to be inserted in Γ .

Fig. 7. Illustration for the morph that allows the path (v, p, w) to be inserted in Γ .
Scaling B up so that it surrounds the rest of the graph.

92 K. Buchin et al.

plane z = 1. The second step scales the x and y-coordinates of all the vertices
of B by a vector (α, β), where α and β are large enough so that: (i) every
vertex in V (B) − {u} has a y-coordinate larger than the one of every vertex in
V (G)−V (B); and (ii) the slope of every edge (u, r) of B is either between 0◦ and
45◦ (if r has positive x-coordinates) or between 135◦ and 180◦ (if r has negative
x-coordinates). The third step moves all the vertices of B vertically down, to
the plane z = 0. Now v and w are incident to the same face in Γ ′ and can be
planarly connected via a path (v, p, w), as in Fig. 7.

3 Discussion: Lower Bounds

Though the algorithm of Sect. 2 uses a quadratic number of steps, we are not
aware of any super-constant lower bound for crossing-free 3D morphs between
planar straight-line graph drawings. The nested-triangles graph provides a linear
lower bound on the number of steps required for a crossing-free 2D morph, as
proved by Alamdari et al. [2]. Specifically, let Tk be the pair of drawings of the
graph that consists of k + 1 nested triangles, connected by three paths that are
spiraling in the first drawing and straight in the second drawing, as in Fig. 8 for
k = 3. The lower bound of [2] relies on the fact that the innermost triangle or
the outermost triangle makes a linear number of full turns in any crossing-free
2D morph between the two drawings.

Fig. 8. The lower bound example of [2].

Even in 3D, it might seem that a linear number of linear morphs is required.
However, the extra dimension allows us to perform the “turns” in parallel by
“flipping” several triangles at once. The key operation is to morph T6 in a con-
stant number of steps without moving the innermost and outermost triangles,
as shown in Fig. 9 and animated in [1]. Then for any k, we can construct a
crossing-free 3D morph between the two drawings in T6k in a constant number
of steps by performing the morph of Fig. 9 in parallel for the k nested copies of
T6. Observe that in this morph the (6i+1)-th outermost triangle does not move,
for any i = 0, . . . , k. Each morphing step of T6 avoids a small tetrahedron above
and below its innermost triangle, allowing different nested copies of T6 to morph
in parallel without intersecting.

Morphing Planar Graph Drawings Through 3D 93

The above example gives hope that the number of steps required to construct
a crossing-free 3D morph between any two given planar straight-line graph draw-
ings could be far smaller than quadratic – potentially even constant. However,
it is unclear how to generalize our procedure.

The approach of Fig. 9 relies on the sequence of nested triangles to be inde-
pendent, as we can untangle each one locally without affecting the others. This
is not necessarily the case. For instance, the example in Fig. 10 shows a tree of
nested triangles that are recursively twisted by 120◦ at every level. Here, each
path in the tree has the same structure as a nested-triangles graph thus, in total,
it requires Ω(log n) morphing steps in 2D. It is unclear to us how to handle the
dependencies between different tree branches.

4 Open Problems

Our research raises several other open problems. An immediate one is to reduce
our quadratic upper bound for the number of steps that are needed to construct
a crossing-free 3D morph between any two planar straight-line graph drawings.
Extending the result of Arseneva at al. [4], we ask whether planar graph fami-
lies richer than trees, e.g., outerplanar graphs and series-parallel graphs, admit
crossing-free 3D morphs with a sub-linear number of steps.

Fig. 9. Morphing T6 in 3D without moving the innermost and outermost triangles.
Orange arrows show the vertices that exchange position in the next step. Empty / large
disks indicate that a vertex lies below / above the plane containing the initial drawing.
The drawing obtained by the morph is of the type of the right drawing in Fig. 8. (Color
figure online)

94 K. Buchin et al.

Fig. 10. A potential lower bound construction.

We have given an example of two topologically equivalent planar straight-line
drawings of a triconnected graph that can be untangled in 3D using only O(1)
steps. Still we think that there are examples of planar graphs with topologically
equivalent drawings where this is not the case. More specifically, we suspect that
in 3D, as in 2D, a linear number of steps is sometimes necessary.

If the initial configuration can also make use of the third dimension, the
initial configuration can be an arbitrary knot, and the final configuration can be a
regular polygon in the plane. Then, a morph exists only if the initial configuration
is the unknot, but this condition may not be sufficient because our edges must
remain straight during the morph. That is, it may be necessary to insert extra
vertices (e.g. by subdividing edges) before a (topological) unknot can actually
be unknotted by one of our morphs. It is unclear whether extra vertices are
necessary, and whether polynomially many extra vertices are sufficient.

Acknowledgements. The research for this paper started at the Dagstuhl Seminar
22062: “Computation and Reconfiguration in Low-Dimensional Topological Spaces”.
The authors thank the organizers and the other participants.

References

1. Nested triangles/spiral example: constant number of linear morphs. https://www.
geogebra.org/m/djmqqhst and https://vimeo.com/718624499

2. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017). https://doi.org/10.1137/16M1069171

3. Angelini, P., Cortese, P.F., Battista, G.D., Patrignani, M.: Topological morphing
of planar graphs. Theor. Comput. Sci. 514, 2–20 (2013). https://doi.org/10.1016/
j.tcs.2013.08.018

4. Arseneva, E., et al.: Pole dancing: 3D morphs for tree drawings. J. Graph Algo-
rithms Appl. 23(3), 579–602 (2019). https://doi.org/10.7155/jgaa.00503

5. Buchin, K., et al.: Morphing planar graph drawings through 3D. arXiv report.
https://doi.org/10.48550/arXiv.2210.05384

https://www.geogebra.org/m/djmqqhst
https://www.geogebra.org/m/djmqqhst
https://vimeo.com/718624499
https://doi.org/10.1137/16M1069171
https://doi.org/10.1016/j.tcs.2013.08.018
https://doi.org/10.1016/j.tcs.2013.08.018
https://doi.org/10.7155/jgaa.00503
https://doi.org/10.48550/arXiv.2210.05384

Morphing Planar Graph Drawings Through 3D 95

6. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly
51(5), 247–252 (1944). https://doi.org/10.1080/00029890.1944.11999082

7. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996). https://doi.org/10.1137/S0097539794280736

8. Hong, S.-H., Nagamochi, H.: Convex drawings of hierarchical planar graphs and
clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010). https://doi.
org/10.1016/j.jda.2009.05.003

9. Istomina, A., Arseneva, E., Gangopadhyay, R.: Morphing tree drawings in a small
3D grid. In: Mutzel, P., Rahman, M.S., Slamin (eds.) WALCOM 2022. LNCS,
vol. 13174, pp. 85–96. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
96731-4 8

10. Thomassen, C.: Deformations of plane graphs. J. Comb. Theor. Ser. B 34(3), 244–
257 (1983). https://doi.org/10.1016/0095-8956(83)90038-2

11. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3(13), 743–767 (1963).
https://doi.org/10.1112/plms/s3-13.1.743

https://doi.org/10.1080/00029890.1944.11999082
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1007/978-3-030-96731-4_8
https://doi.org/10.1007/978-3-030-96731-4_8
https://doi.org/10.1016/0095-8956(83)90038-2
https://doi.org/10.1112/plms/s3-13.1.743

Visualizing Multispecies Coalescent Trees:
Drawing Gene Trees Inside Species Trees

Jonathan Klawitter1,2(B) , Felix Klesen1 , Moritz Niederer3,
and Alexander Wolff1

1 Universität Würzburg, Würzburg, Germany
2 University of Auckland, Auckland, New Zealand

jo.klawitter@gmail.com
3 HTW Saar, Saarbrücken, Germany

Abstract. We consider the problem of drawing multiple gene trees
inside a single species tree in order to visualize multispecies coalescent
trees. Specifically, the drawing of the species tree fills a rectangle in which
each of its edges is represented by a smaller rectangle, and the gene trees
are drawn as rectangular cladograms (that is, orthogonally and down-
ward, with one bend per edge) inside the drawing of the species tree. As
an alternative, we also consider a style where the widths of the edges of
the species tree are proportional to given effective population sizes.

In order to obtain readable visualizations, our aim is to minimize the
number of crossings between edges of the gene trees in such drawings.
We show that planar instances can be recognized in linear time and that
the general problem is NP-hard. Therefore, we introduce two heuristics
and give an integer linear programming (ILP) formulation that provides
us with exact solutions in exponential time. We use the ILP to measure
the quality of the heuristics on real-world instances. The heuristics yield
surprisingly good solutions, and the ILP runs surprisingly fast.

1 Introduction

Fig. 1. A rectangular cladogram draw-
ing of a rooted binary phylogenetic tree
on seven taxa.

Visualizations of trees to present informa-
tion have been used for centuries [25] and
the study of producing readable, compact
representations of trees has a long tradi-
tion [32,34]. Trees and their drawings are
also an ubiquitous and fundamental tool
in the field of phylogenetics. In particu-
lar, a phylogenetic tree is used to model
the evolutionary history and relationships
of a set X of taxa such as species, genes,
or languages [35]. There exist many differ-
ent models, but most commonly a phylo-
genetic tree on X is a tree T whose leaves are bijectively labeled with X; see
Fig. 1. In a rooted phylogenetic tree, each internal vertex represents a branching
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 96–110, 2023.
https://doi.org/10.1007/978-3-031-23101-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_7&domain=pdf
http://orcid.org/0000-0001-8917-5269
http://orcid.org/0000-0003-1136-5673
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-031-23101-8_7

Visualizing Multispecies Coalescent Trees 97

event (such as species divergence); time (or genetic distance) is represented by
the edge lengths from the root towards the leaves. In most applications, the
tree is binary, that is, each internal vertex has indegree one, outdegree two, and
thus represents a bifurcation event. An unrooted phylogenetic tree, on the other
hand, models only the relatedness of the taxa. A phylogenetic tree where the
taxa are species is called a species tree. If the taxa are biological sequences, such
as particular genes or protein sequences, the tree is called a gene tree.

Multispecies Coalescent Models. One of the main tasks in phylogenetics is the
inference of a phylogenetic tree for some given data and model. When infer-
ring a species tree based on sequencing data, one might be inclined to set the
species tree as that of an inferred gene tree. However, gene trees can differ from
the species tree in the presence of so-called incomplete lineage sorting1 or when
divergence times are small2, which can lead to inaccurate edge lengths or even to
an incorrectly inferred species tree [1,26,29,33]. To address these issues, multi-
species coalescent (MSC) models have been developed. An MSC model provides
a framework for inferring species trees while accounting for conflicts between
gene trees and species trees [15,18,31]. Roughly speaking, by using multiple
samples (genes) per species, the model coestimates multiple gene trees that are
constrained within their shared species tree. In doing so, the model can infer
not only divergence times for inner vertices but also the effective population size
for each edge (branch) in the species tree. There exist several models for pop-
ulation sizes [39], two of which we define here. In the continuous linear model,
for each branch, the population size between the top and the bottom is lin-
early interpolated, and for a branch not incident to a leaf, the population size
at the bottom equals the sum of the population sizes at the top of its two child
branches; see Fig. 2a. In the piecewise constant model, the population size of each
branch is constant from the top to the bottom of the branch and there are no
restrictions between adjacent branches [12]; see Fig. 2b.

For a phylogenetic tree T , let V (T) be the vertex set of T , let E(T) be
the edge set of T , and let L(T) be the leaf set of T . We define an MSC tree
as a triple 〈S, T, ϕ〉 consisting of a species tree S, a gene tree T , and a map-
ping ϕ : L(T) → L(S) with the following properties. Both S and T are rooted
binary phylogenetic trees where all vertices have an associated height h that are
strictly decreasing from root to leaf. We consider only the case where h(�) is
zero for each leaf � in L(S) and L(T). For gene trees, we use the terms leaf, ver-
tex, and edge; whereas we use the terms species, node, and branch if we want to
stress that we talk about species trees. Each branch in E(S) is associated with
an upper and a lower population size. The mapping ϕ describes which leaves
of T belong to which species in S. Next, consider two leaves � and �′ of T with
1 We speak of incomplete lineage sorting if (i) in a population of an ancestral species

two (or more) variants of a gene were present, say red and blue, and (ii) when the
species diverged, this did not result in one child species having the red variant and the
other having the blue variant, but, e.g., one child species having both variants [33].

2 A small divergence time corresponds to a short edge in the phylogenetic tree, which
can be hard to infer correctly.

98 J. Klawitter et al.

Fig. 2. Multispecies coalescent of a species tree on four species A, B, C, D and a gene
tree on eleven taxa under two different models.

ϕ(�) �= ϕ(�′). Let v be the lowest common ancestor of � and �′. In the MSC
model we have that a divergence event of v occurred before the divergence event
at a node s of S that ultimately split ϕ(�) and ϕ(�′). Hence, h(v) > h(s) and we
can extrapolate ϕ to a mapping of each inner vertex v of T to a branch of S.
Lastly, we assume that the input consists of a single gene tree; otherwise we
merge multiple given gene trees by connecting all their roots to a super root.

Visualizing MSC trees. Visualizations of an MSC tree usually show the species
and gene tree together. This allows the user to detect any discordance between
them such as whether they have different topologies and where incomplete lin-
eage sorting occurs. It is also interesting to see where these events occur with
respect to the inferred population sizes. Furthermore, these drawings are used to
diagnose whether the parameters of the model are set up well. E.g., if all inner
vertices of the gene tree occur directly above nodes of the species tree or if all
occur near the root of the species tree, parameters may have been chosen poorly.

Wilson et al. [39] suggested a tree-in-tree style for an MSC tree 〈S, T, ϕ〉 under
continuous models similar to the one shown in Fig. 2a. There, the species tree S
is drawn in a space-filling fashion such that the branch widths of S reflect the
associated population sizes and the gene tree T is then drawn into S as a classic
node-link diagram. Without these constraints on the branch widths, T could
be drawn as a classic rectangular cladogram as in Fig. 1. As noted above, the
MSC model ensures that T can be drawn inside S without edges of T crossing
edges of S since, for each edge uv of T , we have that, if u and v lie inside the
branches eu and ev of S, respectively, then either eu precedes ev or eu = ev.

Douglas [12] developed the tool UglyTrees that generates tree-in-tree draw-
ings for MSC trees under the piecewise constant model; Fig. 2b resembles such a
drawing. He points out that the results are in many cases visually unpleasing
(as reflected in his choice for the tool’s name), in particular if the difference in
width between parent and child is large. This is amplified in practice by the
inverse relationship between the number of gene tree vertices and population
sizes, which results in clusters of vertices in the narrowest branches [12].

Visualizing Multispecies Coalescent Trees 99

Fig. 3. Representation of co-phylogenetic trees with the host tree as background shape
and the parasite tree drawn with a node-link diagram (after Calamoneri et al. [9]).

Related Work. There exist several applications where multiple phylogenetic trees
are displayed together. In a tanglegram, two phylogenetic trees on the same set of
taxa are drawn opposite each other and the corresponding leaves are connected
by line segments for easy comparison [8,14]. The tool DensiTree [7] allows the
user to compare many trees simultaneously by drawing them on top of each
other. A co-phylogenetic tree consists of two rooted phylogenetic trees, namely,
a host tree H and a parasite tree P , together with a mapping (reconciliation)
of the vertices of P to vertices of H. Other than in an MSC tree, the vertices
of P commonly do not have heights but are mapped to nodes of H, the host
branches do not have associated population sizes, and the edges of P can go from
one subtree of H to another, representing so-called host switches. Several tools
visualize the reconciliation of co-phylogenetic trees [10,11,27,36]. Commonly,
the branches of H are drawn with thick lines such that P can be embedded
into H; see Fig. 3. Recently, Calamoneri et al. [9] suggested a tree-in-tree style
for reconciliation similar to the one for MSC trees above. They draw H in a
space-filling way and embed P into H as an orthogonal node-link diagram.

More generally, visualizations have been studied for various models in phy-
logenetics, such as rooted phylogenetic trees [2,6,32], in conjunction with a geo-
graphic map [28,30], unrooted phylogenetic trees, and split networks [13,24,37].
In recent years, research has been extended from drawings of trees to drawings
of phylogenetic networks [19,20,22,23,38], which are more general.

All these applications share the main combinatorial objective of finding draw-
ings where the number of crossings between edges is minimized. To this end, good
embeddings of the trees (or networks) have to be found, which are mostly fully
defined by the order of the leaves. For example, Calamoneri et al. [9] investigated
the problem of minimizing the number of crossings of the parasite tree in their
drawings. They showed that this problem is in general NP-hard, though planar
instances can be identified efficiently, and they suggested two heuristics.

Contribution. Motivated by the drawing styles of Wilson et al. [39] and by the
recently proposed space-filling drawing style for reconciliation [9] and phyloge-
netic networks [38], we formally define tree-in-tree drawing styles for MSC trees
(Sect. 2). In our base, rectangular style, we draw the species tree such that it
completely fills a rectangle; the branch widths are based on the number of leaves

100 J. Klawitter et al.

in the respective gene subtree. Additionally, population sizes can be represented,
e.g., by a background color gradient. This avoids visual overload and can be used
for any population size model. Nonetheless, based on this, we also define a style
where the branch widths are proportional to the associated population sizes.

We then study the problem of minimizing the number of crossings between
edges of the gene tree both for the case when the embedding of the species
tree is already fixed and when it is left variable. We show that the crossing
minimization problem is NP-hard in both cases (Sect. 3). On the positive side,
we show that crossing-free instances can be identified in linear time (Sect. 4) and
we introduce two heuristics and an integer linear program (ILP) formulation for
the non-planar cases (Sect. 5). We measure the performance of the heuristics on
real-world instances by comparing them to optimal solutions obtained via the
ILP, which we have tuned to solve medium-size instances in reasonable time.

Complete proofs to some of our claims and detailed descriptions of our algo-
rithms can be found in the full version [21]. Implementations of our algorithm
are shared upon request.

2 Drawing Style

In this section, we define styles for tree-in-tree drawings of an MSC tree 〈S, T, ϕ〉.
A drawing is defined for particular leaf orders π(S) and π(T) of S and T , respec-
tively, and we assume that they satisfy the following requirements. (i) At least
one leaf is mapped to each species. (ii) The leaf order π(T) is consistent with ϕ
and π(S), that is, the sets of leaves of T mapped by ϕ to a species s are consecu-
tive in π(T) and succeed all leaves mapped to the species that precede s in π(S).
(iii) If all the leaves of a subtree T ′ of T are mapped to the same species s, then
these leaves must be consecutive in π(T), and T ′ must admit a plane drawing
above the leaves. We first describe the rectangular style where branch widths are
proportional to the number of leaves in subtrees, and then the proportional style
where branch widths are proportional to the population sizes. Finally, we define
the crossing minimization problem for tree-in-tree drawings.

Rectangular Style. Our drawing area is an axis-aligned rectangle R. The width
of R is twice the number of leaves of T . We assume that the roots of S and T
have out-degree 1. We scale h such that the heights of the roots equal the height
of R. The given heights of vertices and nodes thus correspond to heights in R.

The species tree S is drawn as follows; see Fig. 4. For a species s ∈ L(S), we
define n(s) = |ϕ−1(s)|, that is, the number of leaves of T mapped to s by ϕ.
The branches of S are represented by internally disjoint rectangles whose union
covers R. Of each such rectangle we only draw the left and the right border –
the delimiters. Their y-coordinates are defined by the heights of their start and
target nodes. The x-coordinates are defined recursively: A branch incident to a
species s has width 2n(s) and an internal branch has width equal to the width
of its two child branches; see Fig. 4b. Note that the branch incident to the root
has a width equal to the width of R.

Visualizing Multispecies Coalescent Trees 101

Fig. 4. In the rectangular drawing style for an MSC tree, the branch widths are pro-
portional to the number of leaves in the contained subtree.

The gene tree T is drawn in a classical orthogonal cladogram style: The
leaves of T are evenly distributed at the base of R by placing them on odd
coordinates and ordered by π(T). Since π(T) is consistent with ϕ and π(S), for
each species s, the leaves ϕ−1(s) are thus placed at the baseline of the branch
incident to s. Each inner vertex of T is centered horizontally between its two
children and placed at its respective height.

Note that two or more vertical line segments can end up with the same x-
coordinate. Suppose that this is the case for two vertical line segments eu and ev

that also overlap vertically and that have end vertices u and v, respectively;
see Fig. 4b for an example. Further suppose that eu ends below ev. We then
shift u slightly in the direction of its parent and v into the opposite direction.
Overlaps of horizontal line segments could be handled analogously, though one
would have to point out that the given heights are then misrepresented.

In this style, the population sizes are not represented by the branch widths.
Instead, one could set the background color of each branch to a corresponding
intensity. We advocate the rectangular tree-in-tree style (with or without color-
ing) since it yields a clear representation for MSC trees. This is helpful for model
diagnosis and for finding incomplete lineage sorting events.

Proportional Style. The proportional style conceptually follows the rectangular
style, though here the population sizes of each branch are represented by its
width in the drawing; see Fig. 2a for an example. We require that the shape of S
is symmetric with respect to the central vertical axis. Therefore, each branch e
is represented by a sequence of trapezoids whose widths are derived from the
population sizes associated with e. Embedding T into S may force the non-
horizontal line segments of T to take various different slopes, “following” the
trapezoids. The combinatorial properties of a drawing in the rectangular style
and a drawing in the proportional style may thus differ.

A proportional-style drawing can be computed as follows. First, we draw S
bottom to top by adding one row of trapezoids for each inner node u of S encoun-
tered. More precisely, at the height of u, we calculate the width of each “active”

102 J. Klawitter et al.

branch and the total width of S. We can then extend the delimiters between the
branches. Second, the width of each species s is subdivided into 2|ϕ−1(s)| pieces
at the baseline, such that each gene leaf can be placed at an odd position and
according to π(T). The rest of the gene tree can then be computed bottom-up.
For each inner vertex v of T , a sequence of line segments is drawn from each of
its two children up to the height of v. The two ends are connected with a hori-
zontal line segment on which v is placed centrally. The slope of a non-horizontal
line segment f is set such that f splits the top edge and the bottom edge of the
trapezoid containing f in the same ratio.

Crossing Minimization Problems. In the drawing styles above, by our assump-
tions for S, T , and ϕ, no edge of T crosses a segment that represents S. However,
edges of T may cross each other. Such crossings are determined by π(S) and
π(T). We do not know π(T), and we consider two subproblems: in one π(S) is
given, in the other π(S) is not given. Our objective is to find a leaf order of π(T)
and possibly of π(S) such that the number of crossings among edges of T is
minimized.

We define this problem formally for both drawing styles. In the Variable

Tree-in-Tree Drawing Crossing Minimization (VTT) problem, we are
given an MSC tree 〈S, T, ϕ〉 and an integer k, and the task is to find a tree-
in-tree drawing (in rectangular or proportional style) such that T has at most
k crossings; a solution is specified by leaf orders π(S) and π(T). In the Fixed

Tree-in-Tree Drawing Crossing Minimization (FTT) problem, we have
the same task, but we are additionally given a leaf order π(S); a solution is
specified by a leaf order π(T).

3 NP-Hardness

In this section, we show that VTT and FTT are NP-complete. For showing
hardness, we reduce from Max-Cut, which is NP-hard [16]. Recall that in an
instance of Max-Cut, we are given a graph G and a positive integer c. The task
is to decide whether there exists a bipartition {A,B} of the vertex set V (G) of G
such that at least c edges have one endpoint in A and one endpoint in B.

In the proofs below, we use the rectangular style. Since the branch widths of
the rectangles can also be seen as population sizes, the proofs also hold for the
proportional style. We make use of the following construction where we replace
a single leaf with a particular subtree. Let � be a leaf of T with its parent p at
height h(p). Suppose that we replace � with a full binary subtree T� that has a
specific number of leaves, say n� many. (Recall that a binary tree is full if every
vertex has either 0 or 2 children.) Now we have two options to influence the shape
of T� in the solution drawing. In option 1, we set the height of the lowest inner
vertex of T� to at least h(p) − ε for some appropriately small ε > 0. Now if the
vertical line segment incident to � is initially crossed by at least one horizontal
segment, then any drawing of T� will contain at least n� many crossings. In this
case, we call T� a thick expanded leaf. In option 2, we set the height of the root

Visualizing Multispecies Coalescent Trees 103

Fig. 5. Example for the reduction of a given graph to a rectangular tree-in-tree drawing
with variable species tree embedding. Each edge gadget is drawn in the respective color.

of T� to ε′, for some appropriately small ε′ > 0. Then a drawing of T� will require
n� horizontal space. In this case, we call T� a wide expanded leaf.

Theorem 1. The VTT problem is NP-complete.

Proof. The problem is in NP since, given an MCS tree 〈S, T, ϕ〉, an integer k,
and leaf orders π(S) and π(T), we can check in polynomial time whether the
resulting drawing has at most k crossings. To prove NP-hardness, we reduce
from Max-Cut as follows.

For a Max-Cut instance (G, c), we construct an instance (〈S, T, ϕ〉, k) of
the VTT problem with a species tree S, a gene tree T , a leaf mapping ϕ, and
a positive integer k; see Fig. 5. Let V (G) = {v1, . . . , vn} (n ≥ 3), let m =
|E(G)|, and let {A,B} be some partition of V (G). Let S be a caterpillar tree on
2n+1 species labeled 0, 1, 1′, . . . , n, n′ with decreasing depth, that is, S contains
phylogenetic subtrees on species sets {0, 1}, {0, 1, 1′}, . . . , {0, 1, 1′, . . . , n, n′}. For
each i ∈ {1, . . . , n}, we add to T a vertex gadget (described below) to enforce
that species i and i′ are on opposite sites of 0. Then species i being to the left
of 0 corresponds to vi being in A, whereas i being to the right of 0 corresponds
to vi being in B. Furthermore, for each edge {vi, vj} ∈ E(G) with i < j, we add
to T an edge gadget that consists of a cherry (i.e., a subtree on two leaves) from
i to j′ and that induces n5 crossings if and only if i and j are both to the left or
both to the right of 0. By construction, all pairs of vertex gadgets will induce at
most n2 crossings, all pairs of edge gadgets will induce at most n4 crossings, and
all pairs of vertex and edge gadgets will induce at most 2n3 crossings. In total,
these gadgets induce at most 2n4 crossings (using n ≥ 3). Hence, by setting
k = (m − c)n5 + 2n4, we get that a tree-in-tree drawing of 〈S, T, ϕ〉 with less
than k crossings exists if and only if G admits a cut containing at least c edges.

A vertex gadget consists of two cherries; see Fig. 6. The first cherry has one
leaf each in species 0 and i′ and their parent p gets some height h(p). The second
cherry has one leaf each in species 0 and i and their parent gets height h(p) + 1.
We replace the leaf in i with a thick expanded leaf on n8 many leaves. Note that
if i and i′ are on the same side of 0, then i lies between i′ and 0. Hence, in this

104 J. Klawitter et al.

Fig. 6. The vertex gadget for vi forces the species i and i′ on opposite sites of species 0.

case, the horizontal line segment through p crosses the thick expanded leaf and
causes n8 crossings. Since n8 > k, the vertex gadgets work as intended.

We set the heights of the roots of the edge gadget cherries above those of
all vertex gadgets. Furthermore, we add a thick expanded leaf on n5 leaves in
species 0 with the lowest inner vertex higher than any edge gadget. Hence, the
horizontal line segment of an edge gadget crosses n5 vertical segments if and
only if i and j are both in A or both in B.

To tie everything together in T , we introduce a path from the thick expanded
leaf in 0 to the root. To this path, going upwards, we first connect the cherries
of the vertex gadgets, whose leaves are in 1, 1′, . . . , n, n′, in this order. Above
those, we then connect the cherries of the edge gadgets to the path. �	

The complete proof of the following statement can be found in the full ver-
sion [21] of this paper.

Theorem 2. The FTT problem is NP-complete.

Proof (sketch). To prove NP-hardness, we again reduce from Max-Cut. For a
Max-Cut instance (G, c), we construct an instance (〈S, T, ϕ〉, π(S), k) of FTT.
Let V (G) = {v1, . . . , vn}, and let {A,B} be some partition of V (G). Our con-
struction consists of three parts and uses several different gadgets; see Fig. 7. On
the left side, we have a vertex gadget for each vertex vi. For each edge vivj , we
have an edge gadget that connects the vertex gadgets of vi and vj . The gadget
has a further leaf at the far right. We simulate vi being in either partition by
having a thick expanded leaf always being either left or right of all attached edge
gadgets; otherwise it would cause too many crossings. Using spacer gadgets, the
leaves of edge gadgets to the far right are horizontally placed such that the root
of each edge gadget lies exactly where we place a cut gadget. The cut gadget
will induce n4 crossings with the incoming edge of the root of each edge gadget
only if the respective vertices are in the same partition. While some parts of our
construction induce a fixed number of crossings, others cause in total at most
n3 crossings. Hence, as in the proof of Theorem 1, we can set k with respect to
c such that the instance admits a tree-in-tree drawing with at most k crossings
if and only if G admits a cut with at least c edges. �	

Visualizing Multispecies Coalescent Trees 105

Fig. 7. Sketch of the reduction of the graph from Fig. 5a to a rectangular tree-in-tree
drawing with fixed species tree embedding. Each edge gadget is drawn in the color of
the respective edge in Fig. 5a. The gadget for the edge v1v3 (orange) has n4 crossings
more than the other edge gadgets; namely with the cut gadget (purple). (Color figure
online)

4 Planar Instances

In this section, we show that we can decide in linear time whether an FTT or
VTT instance admits a planar drawing.

Theorem 3. Both when the embedding of S is fixed or variable, we can decide,
in linear time, whether an MSC tree 〈S, T, ϕ〉 admits a planar rectangular tree-
in-tree drawing. If yes, such a drawing can be constructed within the same time
bound.

Proof. Bertolazzi et al. [5] devised a constructive linear-time algorithm for
upward planarity testing of a single-source (or single-sink) digraph, that is,
whether the given digraph can be drawn with each edge uv drawn as a mono-
tonic upward curve from u to v. For both the VTT and FTT problem, we can
extend T to a single-source digraph T̄ that admits an upward planar embedding
if and only if 〈S, T, ϕ〉 admits a planar tree-in-tree drawing (respecting any given
leaf order for S). We can thus apply Bertolazzi et al.’s algorithm to T̄ .

First, suppose that the embedding of S is variable. Let L1, L2, . . . , Lm be the
subsets of L(T) corresponding to the m species of S. For i ∈ {1, . . . , m}, we merge
all vertices in Li into a single vertex vi. We then connect the vertices v1, . . . , vm

to a new vertex t; see Fig. 8b. We use the resulting single-source digraph as T̄ ,
which clearly has the desired properties.

Fig. 8. We can test efficiently whether a tree-in-tree instance 〈S, T, ϕ〉 admits a planar
drawing with a single-source upward planarity test on an extended gene tree.

106 J. Klawitter et al.

Second, if the embedding of S is fixed, we extend T̄ from above further to
ensure that the subsets L1, . . . , Lm end up in correct order. Let the species of S
be s1, . . . , sm from left to right. For i ∈ {1, . . . ,m − 1}, we add a vertex ui and
edges viui, vi+1ui, and uit; see Fig. 8c. The resulting graph is our new T̄ , which
works again as intended.

In both cases, T̄ has linear size and can be constructed in linear time. �	

5 Algorithms

For non-planar instances of the FTT and the VTT problem, we propose a
heuristic as well as an ILP. We describe the main ideas of the algorithms here;
more details can be found in the full version [21]. The ILP, which models a
drawing in a straightforward fashion, is also described in the full version [21].
Overlaps of vertical segments in an ILP solution are resolved in a post-processing
step. We focus here on the rectangular tree-in-tree style, though the heuristics
can also be set up analogously for the proportional style. However, since the
computation for the proportional style is more involved, as alternative, one can
simply use leaf orders computed for the rectangular style.

Heuristic for FTT. Let 〈S, T, ϕ〉 be an MSC tree and π(S) a leaf order for S. The
idea of the heuristic is to greedily sort the leaves in each species from the left and
from the right towards the centre. To this end, the algorithm (i) goes through the
inner vertices in order of increasing height and (ii) when the subtree T (v) of an
inner vertex v has leaves in more than one species, then any unplaced leaves of
T (v) are put on a left stack or a right stack of their respective species; see Fig. 9.
In doing so, we aim at a placement that minimizes the horizontal dimension of a
drawing of T (v). In particular, T (v) initially has unplaced leaves in at most two
species. Therefore, we place the leaves in the left species s on the right stack of
s and the leaves in the right species s′ on the left stack of s′; see Fig. 9b. When
leaves are pushed on a stack, it is ensured that any subtree with all leaves in one
species admits a planar drawing. This can be done in linear time.

Heuristic for VTT. We extend the heuristic for FTT to also compute a leaf
order for S as follows. The main idea is to set the rotation of inner nodes of S
such that subtrees of T horizontally span over few species. Therefore, when we
handle an inner vertex v with children x and y and we try to move the roots
of T (x) and T (y) close together. Suppose that x lies in the branch ending at node
x′ of S. Let S(x′) be the minimal phylogenetic subtree of S on all species that
contain a leaf of T (x); define S(y′) analogously. If S(x′) and S(y′) are disjoint,
then we set the rotation of each unfixed vertex on the path from the root of S(x)
to the root of S(y) such that the species of S(x) and S(y) get as close together
as possible; see Fig. 10. Only then is v processed with the FTT heuristic. There
are a few other cases to consider, which can be handled along the same line (see
the full version [21] for details). Overall, handling an inner vertex of T can be
done in linear time and so the overall running time is quadratic.

Visualizing Multispecies Coalescent Trees 107

Fig. 9. The heuristic sorts the leaves in each species from the sides towards the centre
by using a left stack and a right stack for each species (plus a central bucket of unplaced
(orange) leaves), here on the example from Figs. 2 and 4. (Color figure online)

Fig. 10. The heuristic for the VTT problem rotates inner nodes of S to bring the
leaves of the currently handled gene subtree closer together. Here, for the second inner
vertex v of T , two nodes would be rotated to bring the species A and E together.

Note if an instance admits a planar solution, then the heuristics find one.
That is, because any rotation of a node of S or an assignment to stacks keeps
the leaves of a subtree of T consecutively whenever possible.

Experimental Evaluation. We tested the heuristic and the ILP on three different
real world data sets: Gopher (S on 8 species, T on 26 gene taxa, 1083 instances,
i.e., different topologies and heights for pairs of S and T) [4], Barrow (21 species,
88 gene taxa, 312 instances) [3], and Hamilton (36 species, 83 gene taxa, 99
instances) [17]. On a laptop with 4 cores, 8 GB of RAM, Ubuntu 20.04, and
CPLEX 12.10 we tested each heuristic and the ILP on each instance once with
the default (start) embedding of S from the input file and 10 times with a random
(start) embedding for S. A proper experimental evaluation is out of scope for
this paper, but we observed the following:

– The VTT heuristic got a better result than the FTT heuristic for 60–75% of
the instances, the same result for 6–27%, and a worse result for 13–20%. For
the Barrow instances, they improved the average number of 24.5 crossings of
the default embeddings to 10.3 (FTT) and 7.2 (VTT) or even to 6.6 and 5.7
using random starting embeddings of S.

– Concerning FTT, the optimal solutions found by the ILP show that the FTT

heuristic also found the optimal solution for about 50–55% of the instances;

108 J. Klawitter et al.

e.g., for the Barrow instances, the FTT heuristic had on average only 1.3
crossings more than the optimal. Concerning VTT, the heuristics also got
within zero to few crossings to the best ILP solution for Gopher instances.

– Both heuristics are sensitive to the initial embedding of S as the lowest num-
ber of crossings was achieved with a random start embedding for 70–90% and
for 44–75% of the instances for FTT and for VTT, respectively. The results
between start embeddings vary more for VTT than for FTT.

– The FTT and the VTT heuristic run in a fraction of a second per instance,
while the ILP for the FTT problem takes about 1–4 s for most instances.
The ILP for the VTT problem only found solutions for the Gopher instance
within reasonable time for some instances.

Since the heuristics are so fast, our recommendation is to run both heuristics for
several different start embeddings of S and then take the best found solution.

To the best of our knowledge, this is the first software to visualize MSC trees
for the continuous linear model and so we hope that this will help researchers in
the emerging field of MSC to visualize their results.

Acknowledgments. We thank the reviewers for their comments and J. Douglas for
providing us with the test data and his helpful explanations concerning MSC.

References

1. Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P., Slowinski, J.B.: Estimat-
ing divergence times from molecular data on phylogenetic and population genetic
timescales. Ann. Rev. Ecol. Syst. 33, 707–740 (2002). https://doi.org/10.2307/
3069277

2. Bachmaier, C., Brandes, U., Schlieper, B.: Drawing phylogenetic trees. In: Deng,
X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1110–1121. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11602613_110

3. Barrow, L.N., Ralicki, H.F., Emme, S.A., Lemmon, E.M.: Species tree estimation of
North American chorus frogs (Hylidae: Pseudacris) with parallel tagged amplicon
sequencing. Mol. Phyl. Evol. 75, 78–90 (2014). https://doi.org/10.1016/j.ympev.
2014.02.007

4. Belfiore, N.M., Liu, L., Moritz, C.: Multilocus phylogenetics of a rapid radiation in
the genus Thomomys (Rodentia: Geomyidae). Syst. Biol. 57(2), 294–310 (2008).
https://doi.org/10.1080/10635150802044011

5. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998).
https://doi.org/10.1137/S0097539794279626

6. Besa, J.J., Goodrich, M.T., Johnson, T., Osegueda, M.C.: Minimum-width draw-
ings of phylogenetic trees. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019.
LNCS, vol. 11949, pp. 39–55. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-36412-0_4

7. Bouckaert, R.R.: DensiTree: making sense of sets of phylogenetic trees. Bioinfor-
matics 26(10), 1372–1373 (2010). https://doi.org/10.1093/bioinformatics/btq110

8. Buchin, K., et al.: Drawing (complete) binary tanglegrams – hardness, approxima-
tion, fixed-parameter tractability. Algorithmica 62(1–2), 309–332 (2012). https://
doi.org/10.1007/s00453-010-9456-3

https://doi.org/10.2307/3069277
https://doi.org/10.2307/3069277
https://doi.org/10.1007/11602613_110
https://doi.org/10.1016/j.ympev.2014.02.007
https://doi.org/10.1016/j.ympev.2014.02.007
https://doi.org/10.1080/10635150802044011
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1007/978-3-030-36412-0_4
https://doi.org/10.1007/978-3-030-36412-0_4
https://doi.org/10.1093/bioinformatics/btq110
https://doi.org/10.1007/s00453-010-9456-3
https://doi.org/10.1007/s00453-010-9456-3

Visualizing Multispecies Coalescent Trees 109

9. Calamoneri, T., Di Donato, V., Mariottini, D., Patrignani, M.: Visualizing co-
phylogenetic reconciliations. Theoret. Comput. Sci. 815, 228–245 (2020). https://
doi.org/10.1016/j.tcs.2019.12.024

10. Chevenet, F., Doyon, J., Scornavacca, C., Jacox, E., Jousselin, E., Berry, V.:
SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics 32(4), 608–610
(2016). https://doi.org/10.1093/bioinformatics/btv625

11. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the
cophylogeny reconstruction problem. Algorithms Molecul. Biol. 5(1), 1–10 (2010).
https://doi.org/10.1186/1748-7188-5-16

12. Douglas, J.: UglyTrees: a browser-based multispecies coalescent tree visualizer.
Bioinformatics 37(2), 268–269 (2020). https://doi.org/10.1093/bioinformatics/
btaa679

13. Dress, A.W.M., Huson, D.H.: Constructing splits graphs. Trans. Comput. Biol.
Bioinf. 1(3), 109–115 (2004). https://doi.org/10.1145/1041503.1041506

14. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization.
J. Comput. Syst. Sci. 76(7), 593–608 (2010). https://doi.org/10.1016/j.jcss.2009.
10.014

15. Flouri, T., Jiao, X., Rannala, B., Yang, Z.: Species tree inference with BPP using
genomic sequences and the multispecies coalescent. Molecul. Biol. Evol. 35(10),
2585–2593 (2018). https://doi.org/10.1093/molbev/msy147

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco (1979)

17. Hamilton, C.A., Lemmon, A.R., Lemmon, E.M., Bond, J.E.: Expanding anchored
hybrid enrichment to resolve both deep and shallow relationships within the spider
tree of life. BMC Evol. Biol. 16(1), 1–20 (2016). https://doi.org/10.1186/s12862-
016-0769-y

18. Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus
data. Mol. Biol. Evol. 27(3), 570–580 (2009). https://doi.org/10.1093/molbev/
msp274

19. Huson, D.H.: Drawing rooted phylogenetic networks. IEEE/ACM Trans. Comput.
Biol. Bioinf. 6(1), 103–109 (2009). https://doi.org/10.1109/TCBB.2008.58

20. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press, New York (2010)

21. Klawitter, J., Klesen, F., Niederer, M., Wolff, A.: Visualizing multispecies coales-
cent trees: drawing gene trees inside species trees. arXiv report (2022). https://
doi.org/10.48550/arXiv.2210.06744

22. Klawitter, J., Mchedlidze, T.: Upward planar drawings with two slopes. J. Graph
Algorithms Appl. 26(1), 171–198 (2022). https://doi.org/10.7155/jgaa.00587

23. Klawitter, J., Stumpf, P.: Drawing tree-based phylogenetic networks with minimum
number of crossings. In: Auber, D., Valtr, P. (eds.) GD 2020. LNCS, vol. 12590, pp.
173–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3_14

24. Kloepper, T.H., Huson, D.H.: Drawing explicit phylogenetic networks and their
integration into splitstree. BMC Evol. Biol. 8(1), 22 (2008). https://doi.org/10.
1186/1471-2148-8-22

25. Lima, M.: The Book of Trees: Visualizing Branches of Knowledge. Princeton Archi-
tectural Press, New York (2014)

26. Mendes, F.K., Hahn, M.W.: Gene tree discordance causes apparent substitution
rate variation. Syst. Biol. 65(4), 711–721 (2016). https://doi.org/10.1093/sysbio/
syw018

https://doi.org/10.1016/j.tcs.2019.12.024
https://doi.org/10.1016/j.tcs.2019.12.024
https://doi.org/10.1093/bioinformatics/btv625
https://doi.org/10.1186/1748-7188-5-16
https://doi.org/10.1093/bioinformatics/btaa679
https://doi.org/10.1093/bioinformatics/btaa679
https://doi.org/10.1145/1041503.1041506
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1093/molbev/msy147
https://doi.org/10.1186/s12862-016-0769-y
https://doi.org/10.1186/s12862-016-0769-y
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1109/TCBB.2008.58
https://doi.org/10.48550/arXiv.2210.06744
https://doi.org/10.48550/arXiv.2210.06744
https://doi.org/10.7155/jgaa.00587
https://doi.org/10.1007/978-3-030-68766-3_14
https://doi.org/10.1186/1471-2148-8-22
https://doi.org/10.1186/1471-2148-8-22
https://doi.org/10.1093/sysbio/syw018
https://doi.org/10.1093/sysbio/syw018

110 J. Klawitter et al.

27. Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of related
phylogenetic trees with divergence timing information. Theory Biosci. 123(4), 277–
299 (2005). https://doi.org/10.1016/j.thbio.2005.01.003

28. Page, R.: Visualising geophylogenies in web maps using geojson. PLoS Currents 7,
(2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481111

29. Pamilo, P., Nei, M.: Relationships between gene trees and species trees. Mol.
Biol. Evol. 5(5), 568–583 (1988). https://doi.org/10.1093/oxfordjournals.molbev.
a040517

30. Parks, D.H., et al.: Gengis 2: geospatial analysis of traditional and genetic biodi-
versity, with new gradient algorithms and an extensible plugin framework. PLoS
ONE 8(7), 1–10 (2013). https://doi.org/10.1371/journal.pone.0069885

31. Rannala, B., Edwards, S.V., Leaché, A., Yang, Z..: The multi-species coalescent
model and species tree inference. In: Scornavacca, C., Delsuc, F., Galtier, N. (eds.)
Phylogenetics in the Genomic Era, chapter 3.3, pp. 3.3:1–3.3:21. HAL (2020).
https://hal.archives-ouvertes.fr/hal-02535070v3

32. Rusu, A.: Tree drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph
Drawing and Visualization, chapter 3, pp. 155–192. Chapman and Hall/CRC
(2013)

33. Schrempf, D., Szöllősi, G.: The sources of phylogenetic conflicts. In: Scornavacca,
C., Delsuc, F., Galtier, N. (eds.) Phylogenetics in the Genomic Era, chapter 3.1,
pages 3.1:1–3.1:23. HAL (2020). https://hal.archives-ouvertes.fr/hal-02535070v3

34. Schulz, H.: Treevis.net: a tree visualization reference. IEEE Comput. Graphics
Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/MCG.2011.103

35. Semple, C., Steel, M.A.: Phylogenetics. vol. 24 of Oxford Lect. Ser. Math. & Its
Appl. Oxford University Press (2003)

36. Sennblad, B., Schreil, E., Berglund Sonnhammer, A.-C., Lagergren, J., Arvestad,
L.: Primetv: a viewer for reconciled trees. BMC Bioinf. 8(148), (2007). https://
doi.org/10.1186/1471-2105-8-148

37. Spillner, A., Nguyen, B.T., Moulton, V.: Constructing and drawing regular planar
split networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 395–407 (2012).
https://doi.org/10.1109/TCBB.2011.115

38. Tollis, I.G., Kakoulis, K.G.: Algorithms for visualizing phylogenetic networks. The-
oret. Comput. Sci. 835, 31–43 (2020). https://doi.org/10.1016/j.tcs.2020.05.047

39. Wilson, I.J., Weale, M.E., Balding, D.J.: Inferences from DNA data: Population
histories, evolutionary processes and forensic match probabilities. J. Royal Stat.
Soc. Ser. A 166(2), 155–188 (2003). https://doi.org/10.1111/1467-985X.00264

https://doi.org/10.1016/j.thbio.2005.01.003
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481111
https://doi.org/10.1093/oxfordjournals.molbev.a040517
https://doi.org/10.1093/oxfordjournals.molbev.a040517
https://doi.org/10.1371/journal.pone.0069885
https://hal.archives-ouvertes.fr/hal-02535070v3
https://hal.archives-ouvertes.fr/hal-02535070v3
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1186/1471-2105-8-148
https://doi.org/10.1186/1471-2105-8-148
https://doi.org/10.1109/TCBB.2011.115
https://doi.org/10.1016/j.tcs.2020.05.047
https://doi.org/10.1111/1467-985X.00264

Parameterized Approaches to Orthogonal
Compaction

Walter Didimo1, Siddharth Gupta2(B), Philipp Kindermann3 ,
Giuseppe Liotta1, Alexander Wolff4 , and Meirav Zehavi5

1 Universitá degli Studi di Perugia, Perugia, Italy
{walter.didimo,giuseppe.liotta}@unipg.it

2 University of Warwick, Coventry, UK
siddharth.gupta.1@warwick.ac.uk
3 Universität Trier, Trier, Germany

kindermann@uni-trier.de
4 Universität Würzburg, Würzburg, Germany

5 Ben-Gurion University of the Negev, Beersheba, Israel

Abstract. Orthogonal graph drawings are used in applications such as
UML diagrams, VLSI layout, cable plans, and metro maps. We focus
on drawing planar graphs and assume that we are given an orthogonal
representation that describes the desired shape, but not the exact coor-
dinates of a drawing. Our aim is to compute an orthogonal drawing on
the grid that has minimum area among all grid drawings that adhere to
the given orthogonal representation.

This problem is called orthogonal compaction (OC) and is known
to be NP-hard, even for orthogonal representations of cycles [Evans et
al. 2022]. We investigate the complexity of OC with respect to several
parameters. Among others, we show that OC is fixed-parameter tractable
with respect to the most natural of these parameters, namely, the num-
ber of kitty corners of the orthogonal representation: the presence of pairs
of kitty corners in an orthogonal representation makes the OC problem
hard. Informally speaking, a pair of kitty corners is a pair of reflex cor-
ners of a face that point at each other. Accordingly, the number of kitty
corners is the number of corners that are involved in some pair of kitty
corners.

Keywords: Orthogonal graph drawing · Orthogonal representation ·
Compaction · Parameterized complexity

This research was initiated at Dagstuhl Seminar 21293: Parameterized Complexity
in Graph Drawing. Work partially supported by: (i) Dep. of Engineering, Perugia
University, grant RICBA21LG: Algoritmi, modelli e sistemi per la rappresentazione
visuale di reti, (ii) Engineering and Physical Sciences Research Council (EPSRC) grant
EP/V007793/1, (vi) European Research Council (ERC) grant termed PARAPATH.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 111–125, 2023.
https://doi.org/10.1007/978-3-031-23101-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_8&domain=pdf
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-031-23101-8_8

112 W. Didimo et al.

1 Introduction

In a planar orthogonal drawing of a planar graph G each vertex is mapped to a
distinct point of the plane and each edge is represented as a sequence of horizon-
tal and vertical segments. A planar graph G admits a planar orthogonal drawing
if and only if it has vertex-degree at most four. A planar orthogonal representa-
tion H of G is an equivalence class of planar orthogonal drawings of G that have
the same “shape”, i.e., the same planar embedding, the same ordered sequence of
bends along the edges, and the same vertex angles. A planar orthogonal drawing
belonging to the equivalence class H is simply called a drawing of H. For exam-
ple, Figs. 1a and b are drawings of the same orthogonal representation, while
Fig. 1c is a drawing of the same graph with a different shape.

Given a planar orthogonal representation H of a connected planar graph G,
the orthogonal compaction problem (OC for short) for H asks to compute a
minimum-area drawing of H. More formally, it asks to assign integer coordinates
to the vertices and to the bends of H such that the area of the resulting planar
orthogonal drawing is minimum over all drawings of H. The area of a drawing is
the area of the minimum bounding box that contains the drawing. For example,
the drawing in Fig. 1a has area 7 × 5 = 35, whereas the drawing in Fig. 1b has
area 7 × 4 = 28, which is the minimum for that orthogonal representation.

The area of a graph layout is considered one of the most relevant readability
metrics in orthogonal graph drawing (see, e.g., [16,27]). Compact grid draw-
ings are desirable as they yield a good overview without neglecting details. For
this reason, the OC problem is widely investigated in the literature. Bridgeman
et al. [11] showed that OC can be solved in linear time for a subclass of planar
orthogonal representations called turn-regular. Informally speaking, a face of a
planar orthogonal representation H is turn-regular if it does not contain any pair
of so-called kitty corners, i.e., a pair of reflex corners (turns of 270◦) that point
to each other; a representation is turn-regular if all its faces are turn-regular.
See Fig. 1 and refer to Sect. 2 for a formal definition. On the other hand, Patrig-
nani [31] proved that, unfortunately, OC is NP-hard in general. Evans et al. [23]
showed that OC remains NP-hard even for orthogonal representations of sim-
ple cycles. Since cycles have constant pathwidth (namely 2), this immediately
shows that we cannot expect an FPT (or even an XP) algorithm parameterized
by pathwidth alone unless P = NP. The same holds for parametrizations with
respect to treewidth since the treewidth of a graph is upper bounded by its
pathwidth.

In related work, Bannister et al. [3] showed that several problems of com-
pacting not necessarily planar orthogonal graph drawings to use the minimum
number of rows, area, length of longest edge, or total edge length cannot be
approximated better than within a polynomial factor of optimal (if P�=NP).
They also provided an FPT algorithm for testing whether a drawing can be
compacted to a small number of rows. Note that their algorithm does not solve
the planar case because the algorithm is allowed to change the embedding.

The research in this paper is motivated by the relevance of the OC problem
and by the growing interest in parameterized approaches for NP-hard prob-

Parameterized Approaches to Orthogonal Compaction 113

Fig. 1. (a) Drawing of a non-turn-regular orthogonal representation H; vertices u and v
point to each other in the filled internal face, thus they represent a pair of kitty corners.
Vertices w and z are a pair of kitty corners in the external face. (b) Another drawing
of H with minimum area. (c) Minimum-area drawing of a turn-regular orthogonal
representation of the same graph.

lems in graph drawing [25]. Recent works on the subject include parameterized
algorithms for book embeddings and queue layouts [2,7,8,10,28], upward pla-
nar drawings [10,12], orthogonal planarity testing and grid recognition [18,26],
clustered planarity and hybrid planarity [15,29,30], 1-planar drawings [1], and
crossing minimization [4,21,22].

Contribution. Extending this line of research, we initiate the study of the param-
eterized complexity of OC and investigate several parameters:

– Number of kitty corners. Given that OC can be solved efficiently for orthog-
onal representations without kitty corners, the number of kitty corners (that
is, the number of corners involved in some pair of kitty corners) is a very
natural parameter for OC. We show that OC is fixed-parameter tractable
(FPT) with respect to the number of kitty corners (Theorem 1 in Sect. 3).

– Number of faces. Since OC remains NP-hard for orthogonal representations
of simple cycles [23], OC is para-NP-hard when parameterized by the number
of faces. Hence, we cannot expect an FPT (or even an XP) algorithm in this
parameter alone, unless P= NP. However, for orthogonal representations of
simple cycles we show the existence of a polynomial kernel for OC when
parameterized by the number of kitty corners (Theorem 2 in Sect. 4).

– Maximum face-degree. The maximum face-degree is the maximum number of
vertices on the boundary of a face. Since both the NP-hardness reductions by
Patrignani [31] and Evans et al. [23] require faces of linear size, it is interesting
to know whether faces of constant size make the problem tractable. We prove
that this is not the case, i.e., OC remains NP-hard when parameterized by
the maximum face degree (Theorem 3 in Sect. 5).

– Height. The height of an orthogonal representation is the minimum number of
distinct y-coordinates required to draw the representation. Since a w×h grid
has pathwidth at most h, graphs with bounded height have bounded path-
width, but the converse is generally not true [9]. In fact, we show that OC

114 W. Didimo et al.

admits an XP algorithm parameterized by the height of the given representa-
tion (see Theorem 4 in Sect. 6). In this context, we remark that a related prob-
lem has been considered by Chaplick et al. [13]. Given a planar graph G, they
defined π̄1

2(G) to be the minimum number of distinct y-coordinates required
to draw the graph straight-line. (In their version of the problem, however, the
embedding of G is not fixed.)

We start with some basics in Sect. 2 and close with open problems in Sect. 7.
Theorems marked with “�” are proven in detail in the full version [19] of this
paper.

2 Basic Definitions

Let G = (V,E) be a connected planar graph of vertex-degree at most four
and let Γ be a planar orthogonal drawing of G. We assume that in Γ all the
vertices and bends have integer coordinates, i.e., we assume that Γ is an integer-
coordinate grid drawing. Two planar orthogonal drawings Γ1 and Γ2 of G are
shape-equivalent if: (i) Γ1 and Γ2 have the same planar embedding; (ii) for each
vertex v ∈ V , the geometric angles at v (formed by any two consecutive edges
incident on v) are the same in Γ1 and Γ2; (iii) for each edge e = (u, v) ∈ E the
sequence of left and right bends along e while moving from u to v is the same in
Γ1 and Γ2. An orthogonal representation H of G is a class of shape-equivalent
planar orthogonal drawings of G. It follows that an orthogonal representation H
is completely described by a planar embedding of G, by the values of the angles
around each vertex (each angle being a value in the set {90◦, 180◦, 270◦, 360◦}),
and by the ordered sequence of left and right bends along each edge (u, v), mov-
ing from u to v; if we move from v to u, then this sequence and the direction
(left/right) of each bend are reversed. If Γ is a planar orthogonal drawing in the
class H, then we also say that Γ is a drawing of H. Without loss of generality,
we also assume that an orthogonal representation H comes with a given “orien-
tation”, i.e., for each edge segment pq of H (where p and q correspond to vertices
or bends), we fix whether p lies to the left, to the right, above, or below q.

Turn-Regular Orthogonal Representations. Let H be a planar orthogonal repre-
sentation. For the purpose of the OC problem, and without loss of generality, we
always assume that each bend in H is replaced by a degree-2 vertex. Let f be a
face of a planar orthogonal representation H and assume that the boundary of
f is traversed counterclockwise (resp. clockwise) if f is internal (resp. external).
Let u and v be two reflex vertices of f . Let rot(u, v) be the number of con-
vex corners minus the number of reflex corners encountered while traversing the
boundary of f from u (included) to v (excluded); a reflex vertex of degree one
is counted like two reflex vertices. We say that u and v is a pair of kitty corners
of f if rot(u, v) = 2 or rot(v, u) = 2. A vertex is a kitty corner if it is part of a
pair of kitty corners. A face f of H is turn-regular if it does not contain a pair of
kitty corners. The representation H is turn-regular if all faces are turn-regular.

Parameterized Approaches to Orthogonal Compaction 115

Parameterized Complexity. Let Π be an NP-hard problem. In the framework of
parameterized complexity, each instance of Π is associated with a parameter k.
Here, the goal is to confine the combinatorial explosion in the running time of an
algorithm for Π to depend only on k. Formally, we say that Π is fixed-parameter
tractable (FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where
f is an arbitrary computable function of k. A weaker request is that for every
fixed k, the problem Π would be solvable in polynomial time. Formally, we say
that Π is slice-wise polynomial (XP) if any instance (I, k) of Π is solvable in
time f(k) · |I|g(k), where f and g are arbitrary computable functions of k.

A companion notion of fixed-parameter tractability is that of kernelization.
A kernelization algorithm is a polynomial-time algorithm that transforms an
arbitrary instance of the problem to an equivalent instance of the same problem
whose size is bounded by some computable function g of the parameter of the
original instance. The resulting instance is called a kernel, and we say that
the problem admits a kernel of size g(k) where k is the parameter. If g is a
polynomial function, then it is called a polynomial kernel, and we say that the
problem admits a polynomial kernel. For more information on parameterized
complexity, we refer to books such as [14,20,24].

3 Number of Kitty Corners: An FPT Algorithm

Turn-regular orthogonal representation can be compacted optimally in linear
time [11]. We recall this result and then describe our FPT algorithm.

Upward Planar Embeddings and Saturators. Let D = (V,E) be a plane DAG,
i.e., an acyclic digraph with a given planar embedding. An upward planar drawing
Γ of D is an embedding-preserving drawing of D where each vertex v is mapped
to a distinct point of the plane and each edge is drawn as a simple Jordan arc
monotonically increasing in the upward direction. Such a drawing exists if and
only if D is the spanning subgraph of a plane st-graph, i.e., a plane digraph with
a unique source s and a unique sink t, which are both on the external face [17].
Let S be the set of sources of D, T be the set of sinks, and I = V \ (S ∪ T).
D is bimodal if, for every vertex v ∈ I, the outgoing edges (and hence the
incoming edges) of v are consecutive in the clockwise order around v. If an
upward planar drawing Γ of D exists, then D is necessarily bimodal and Γ
uniquely defines the left-to-right orderings of the outgoing and incoming edges
of each vertex. This set of orderings (for all vertices of D) is an upward planar
embedding of D, and is regarded an equivalence class of upward planar drawings
of D. A plane DAG with a given upward planar embedding is an upward plane
DAG.

Let e1 and e2 be two consecutive edges on the boundary of a face f of a
bimodal plane digraph D, and let v be their common vertex. Vertex v is a
source switch of f (resp. a sink switch of f) if both e1 and e2 are outgoing edges
(resp. incoming edges) of v. Note that, for each face f , the number nf of source
switches of f equals the number of sink switches of f . The capacity of f is the

116 W. Didimo et al.

Fig. 2. (a) An upward plane DAG D and the corresponding upward labeling. (b) A
plane st-graph obtained by augmenting D with a complete saturator (dotted edges).

function cap(f) = nf − 1 if f is an internal face and cap(f) = nf + 1 if f is the
external face. If Γ is an upward planar drawing of D, then each vertex v ∈ S ∪T
(i.e., a source or a sink) has exactly one angle larger than 180◦, called a large
angle, in one of its incident faces, and deg(v)−1 angles smaller than 180◦, called
small angles, in its other incident faces. For a source or sink switch of f , assign
either a label L or a label S to its angle in f , depending on whether this angle
is large or small. For each face f of D, the number of L-labels determined by
Γ equals cap(f) [6]. Conversely, given an assignment of L- and S-labels to the
angles at the source and sink switches of D; for each vertex v, L(v) (resp. S(v))
denotes the number of L- (resp. of S-) labels at the angles of v. For each face f ,
L(f) (resp. S(f)) denotes the number of L- (resp. of S-) labels at the angles
in f . Such an assignment corresponds to the labels induced by an upward planar
drawing of D if and only if the following properties hold [6]: (a) L(v) = 0 for each
v ∈ I and L(v) = 1 for each v ∈ S ∪ T ; (b) L(f) = cap(f) for each face f ∈ F .
We call such an assignment an upward labeling of D, as it uniquely corresponds
to (and hence describes) an upward planar embedding of D; see Fig. 2a. We will
implicitly assume that a given upward plane DAG is described by an upward
labeling.

Given an upward plane DAG D, a complete saturator of D is a set of vertices
and edges, not belonging to D, used to augment D to a plane st-graph D′. More
precisely, a complete saturator consists of a source s and a sink t, which will
belong to the external face of D′, and of a set of edges where each edge (u, v)
is called a saturating edge and fulfills one of the following conditions (see, e.g.,
Fig. 2b): (i) u, v /∈ {s, t} and u, v are both source switches of the same face f
such that u has label S in f and v has label L in f ; in this case u saturates v.
(ii) u, v /∈ {s, t} and u, v are both sink switches of the same face f such that u
has label L in f and v has label S in f ; in this case v saturates u. (iii) u = s and
v is a source switch of the external face with an L angle. (iv) v = t and u is a
sink switch of the external face with an L angle.

Parameterized Approaches to Orthogonal Compaction 117

We now recall how to compact in linear time a turn-regular orthogonal rep-
resentation. Let H be an orthogonal representation that is not necessarily turn-
regular. Let Dx be the plane DAG whose vertices correspond to the maximal
vertical chains of H and such that two vertices of Dx are connected by an edge
oriented rightward, if the corresponding vertical chains are connected by a hor-
izontal segment in H. Define the upward plane DAG Dy symmetrically, where
the vertices correspond to the maximal horizontal chains of H and where the
edges are oriented upward. Refer to Fig. 3. Dx and Dy are both upward plane
DAGs (for Dx rotate it by 90◦ to see all edges flowing in the upward direction).
For a vertex v of H, cx(v) (resp. cy(v)) denotes the vertex of Dx (resp. of Dy)
corresponding to the maximal vertical (resp. horizontal) chain of H that con-
tains v. For any two vertices u and v of H such that cx(u) �= cx(v), we write
u �x v if there exists a directed path from cx(u) to cx(v) in Dx. We also write
u �x v if either u �x v or v �x u, while u ��x v means that neither u �x v
nor v �x u. The notations u �y v, v �y u, u �y v, and u ��y v are used
symmetrically referring to Dy when cy(u) �= cy(v).

Bridgeman et al. [11] showed that H is turn-regular if and only if, for every
two vertices u and v in H, we have u �x v, or u �y v, or both. This is equiva-
lent to saying that the relative position along the x-axis or the relative position
along the y-axis (or both) between u and v is fixed over all drawings of H. Under
this condition, the OC problem for H can be solved by independently solving in
O(n) time a pair of 1D compaction problems for H, one in the x-direction and
the other in the y-direction. The 1D compaction in the x-direction consists of:
(i) augmenting Dx to become a plane st-graph by means of a complete satura-
tor; (ii) computing an optimal topological numbering X of Dx (see [16], p. 89);
each vertex v of H receives an x-coordinate x(v) such that x(v) = X(cx(v)).
We recall that a topological numbering of a DAG D is an assignment of integer
numbers to the vertices of D such that if there is a path from u to v then u
is assigned a number smaller than the number of v. A topological numbering is
optimal if the range of numbers that is used is the minimum possible. Regarding
step (i) of the 1D compaction, note that Dx admits a unique complete saturator
when H is turn-regular [11]. This is due to the absence of kitty corners in each
face of H. The 1D compaction in the y-direction is solved symmetrically, so that
each vertex v receives a y-coordinate y(v) = Y (cy(v)). Figure 3 illustrates this
process.

Unfortunately, if H is not turn-regular, the aforementioned approach fails.
This is because there are in general many potential complete saturators for
augmenting the two upward plane DAGs Dx and Dy to plane st-graphs. Also,
even when an st-graph for each DAG is obtained from a complete saturator,
computing independently an optimal topological numbering for each of the two
st-graphs may lead to non-planar drawings if no additional relationships are
established for the coordinates of kitty corner pairs, because for a pair {u, v}
of kitty corners we have u ��x v and u ��y v. We now prove that OC is
fixed-parameter-tractable when parameterized by the number of kitty corners.

118 W. Didimo et al.

Fig. 3. (a) A turn-regular orthogonal representation H. (b)–(c) The maximal horizontal
and vertical chains of H are highlighted. (d) The upward plane DAG Dx with its
complete saturator (dashed edges) and an optimal topological numbering. (e) The same
for Dy. (f) A minimum-area drawing of H where the x- and y-coordinates correspond
to the two optimal topological numberings.

Theorem 1. Let H be a planar orthogonal representation with n vertices and
k > 0 kitty corners. There exists an O(211kn log n)-time algorithm that computes
a minimum-area drawing of H.

Proof. Let H be an orthogonal representation and let k be the number of kitty
corners of H. For each pair {u, v} of kitty corners, we guess the relative positions
of u and v in a drawing of H, i.e., x(u) � x(v) and y(u) � y(v).

Namely, we generate all maximal plane DAGs (together with an upward
planar embedding) that can be incrementally obtained from Dx by repeatedly
applying the following sequence of steps: Guess a pair {u, v} of kitty corners
of H such that cx(u) and cx(v) belong to the same face; for such a pair either
add a directed edge (cx(u), cx(v)) (which establishes that x(u) < x(v)), or add
a directed edge (cx(v), cx(u)) (which establishes that x(u) > x(v)), or identify
cx(u) and cx(v) (which establishes that x(u) = x(v)); this last operation corre-
sponds to adding in H a vertical segment between u and v, thus merging the
vertical chain of u with the vertical chain of v. Analogously, we generate from Dy

a set of maximal plane DAGs (together with an upward planar embedding). Let
Dx and Dy be two upward plane DAGs generated as above. We augment Dx

(resp. Dy) with a complete saturator that makes it a plane st-graph. Observe
that, by construction, neither Dx nor Dy contain two non-adjacent vertices in
the same face whose corresponding chains of H have a pair of kitty corners.
Hence their complete saturators are uniquely defined. We finally compute a pair
of optimal topological numberings to determine the x- and the y-coordinates

Parameterized Approaches to Orthogonal Compaction 119

of each vertex of H as in [11]. Note that, for some pairs of Dx and Dy, the
procedure described above may assign x- and y-coordinates to the vertices of H
that do not lead to a planar orthogonal drawing. If so, we discard the solution.
Conversely, for those solutions that correspond to (planar) drawings of H, we
compute the area and, at the end, we keep one of the drawings having minimum
area.

Figure 4 shows a non-turn-regular orthogonal representation; Fig. 4d depicts
four drawings resulting from different pairs of upward plane DAGs, each estab-
lishing different x- and y-relationships between pairs of kitty corners. One of the
drawings has minimum area; another one is not planar and therefore discarded.

We now analyze the runtime. Let {f1, f2, . . . , fh} be the set of faces of H,
and let ki be the number of kitty corners in fi. Denote by ai the number of
distinct maximal planar augmentations of fi with edges that connect pairs of
kitty corners. An upper bound to the value of ai is the number cki

of distinct
maximal outerplanar graphs with ki vertices, which corresponds to the number of
distinct triangulations of a convex polygon with ki vertices. It is known that cki

equals the (ki−2)-nd Catalan number (see, e.g., [32]), whose standard estimate is
cki−2 ∼ 4ki−2

(ki−2)3/2
√

π
. Therefore, ai ∈ O(4ki). Note that all distinct triangulations

of a convex polygon can easily be generated with a recursive approach.
Now, for each edge (u, v) of a maximal planar augmentation of fi such that

{u, v} is a pair of kitty corners in H, we have to consider three alternative
possibilities: Dx has a directed edge (cx(u), cx(v)), or Dx has a directed edge
(cx(v), cx(u)), or cx(u) and cx(v) are identified in Dx. The same happens for
Dy. Therefore, since the number of edges of a maximal outerplanar graph on ki

vertices is 2ki−3, the number of different configurations to be considered for each
face fi both in Dx and in Dy is O(32ki4ki) · O(32ki4ki) = O(362ki) = O(211ki).
By combining these possible configurations over all faces of H, we obtain O(211k)
pairs of possible configurations for Dx and in Dy (clearly,

∑h
i=0 ki = k). For each

such pair, we augment each of the two upward plane DAGs to a plane st-graph
and compute an optimal topological numbering in O(n) time. Then we test
whether the drawing resulting from the two topological numberings is planar,
which can be done in O(n log n) time by a sweep line algorithm (see, e.g., [5,33]).
It follows that the whole testing algorithm takes O(211kn log n) time. ��

4 A Polynomial Kernel for Cycle Graphs

In this section, we sketch our proof of the following theorem.

Theorem 2. (�) Parameterized by the number of kitty corners, OC admits
a compression with linear number of vertices (and a polynomial kernel) on
cycle graphs.

Let G be a cycle graph with an orthogonal representation H. We traverse
the (single) internal face of H in counterclockwise direction to define a labeled
digraph G→: label each edge E, W, N, or S based on its direction, and label each
vertex F, C and R based on whether it is flat, convex or reflex from the internal

120 W. Didimo et al.

Fig. 4. (a) An orthogonal representation H with three pairs of kitty corners, {u, v},

{w, z}, and {q, z}. (b) Two distinct (saturated) upward plane DAGs Dx and Dx
′
, and

their optimal topological numberings X and X ′; in Dx
′
the nodes cx(u) and cx(v) are

identified (filled square). (c) Two distinct (saturated) upward plane DAGs Dy and Dy
′

and their optimal topological numberings Y and Y ′. (d) Drawings derived from the
four different combinations of the topological numberings: Γ1 and Γ3 have sub-optimal
areas, Γ2 has minimum area, and Γ4 is non-planar (the bold red face is self-crossing).
(Color figure online)

face. Given two vertices u and v, let Pu,v be the directed path from u to v in G→.
For an edge e, let weight(e) be the weight of e. (The addition of edge weights
will yield a compression, which can be turned into a kernel.)

Let 〈c1, . . . , ck, ck+1 = c1〉 be the cyclic order of kitty corners of H in G→.
For each Pci,ci+1 , we bound the number of internal vertices. As G→ is the union

Parameterized Approaches to Orthogonal Compaction 121

of these paths, this bounds the size of the reduced instance. We now present
reduction rules to reduce the number of vertices on these paths. We always
apply them in the given order. We first reduce a path of F-vertices to a weighted
edge:
Reduction Rule 1. We reduce every path Pu,v, whose internal vertices are all
labeled F, to a directed edge (u, v) with weight((u, v)) =

∑
e∈E(Pu,v)

weight(e).
Thus, next assume that G→ does not have any F-vertex. Observe that

if Pci,ci+1 has at least 7 internal vertices, then either all the internal ver-
tices are labeled R or Pci,ci+1 has an internal subpath with a labeling from
{RCR,RCCC,RCCR,RRRC, CRC,CRRC,CRRR,CCCR}. So, in the former case,
we give a counting rule to count all the R vertices against the kitty corners.
Moreover, in the later case, we give reduction rules to reduce those paths. This,
in turn, will bound the size of the reduced instance. Due to lack of space, we
refer the readers to the full version [19] of this paper for the details.

5 Maximum Face Degree: Parameterized Hardness

We show that the problem remains NP-hard even if all faces have constant
degree. Our proof elaborates on ideas of Patrignani’s NP-hardness proof for
OC [31].

Theorem 3. (�) OC is para-NP-hard when parameterized by the maximum
face degree.

Proof (sketch). Patrignani [31] reduces from SAT to OC. For a SAT instance φ
with n variables and m clauses, he creates an orthogonal representation Hφ that
admits an orthogonal grid drawing of size wφ · hφ if and only if φ is satisfiable.

Every variable is represented by a variable rectangle inside a frame; see Fig. 5.
Between the frame and the rectangles, there is a belt: a long path of 4 reflex ver-
tices alternating with 4 convex vertices that ensures that every variable rectangle
is either shifted to the top (true) or to the bottom (false).

Every clause is represented by a chamber through the variable rectangles
with one or two blocker rectangles depending on the occurrence of the variable
in the clause; see Fig. 6. Into the chamber, a pathway is inserted that can only
be drawn if there is a gap between blocker rectangles is vertically aligned with
a gap between two variable-clause rectangles, which represents a fulfilled literal.

We now briefly sketch how to adjust the reduction.
For the clause gadgets, there are two large faces of size O(m); above and

below the pathway. To avoid these, we connect the pathway to the top and the
bottom boundary of each of the variable-clause rectangles as in see Fig. 7.

For the face around the variable rectangles, we refine the left and the right
side (that both have O(m) vertices) by adding O(m) rectangles of constant
degree in a tree-like shape; see Fig. 8a. Instead of a single long belt, we use a
small belt of constant length around every variable rectangle that lies inside its
own frame and extend the variable rectangles vertically; see Fig. 8b.

After these adjustments, all faces have constant degree as desired. ��

122 W. Didimo et al.

Fig. 5. The shifting variable rectangles (shaded) and the belt (the path with hexagonal
vertices) in the NP-hardness proof by Patrignani [31].

Fig. 6. A clause gadget in the NP-hardness proof by Patrignani [31] for the clause
X1 ∨ X2 ∨ X4: the variable-clause rectangles (color shaded), the blocking rectangles
(gray shaded), and the pathway (the path with diamond vertices). The segment that
corresponds to a fulfilled variable assignment for this clause (X2) is highlighted.

Fig. 7. The clause gadget of Fig. 6 adjusted to constant face degree.

Fig. 8. The frame in our adjusted NP-hardness reduction. (a) The left and right exten-
sions of the variable rectangles; (b) the belts around the variable rectangles.

Parameterized Approaches to Orthogonal Compaction 123

6 Height of the Representation: An XP Algorithm

By “guessing” for every column of the drawing what lies on each grid point, we
obtain an XP algorithm for OC parameterized by the height of the representa-
tion.

Theorem 4. (�) OC is XP when parameterized by the height of a given orthog-
onal representation of a connected planar graph of maximum degree 4.

Proof (sketch). Let H be the given orthogonal representation, let n be the num-
ber of vertices of H, let b the number of bends in H, and let h ≥ 1. We want to
decide, in (O(n + b))O(h) time, whether H admits an orthogonal drawing on a
grid with h horizontal lines. Given a solution, that is, a drawing of H, we can
remove any grid column that does not contain any vertex or bend point. Hence
it suffices to check if there exists a drawing of H on a grid of width w ≤ n + b.

To this end, we use dynamic programming (DP) with a table B. Each entry
of B[c, t] corresponds to a column c of the grid and an h-tuple t. (The full
version [19] contains a figure with an example.) Each component of t represents
an object (if any) that lies on the corresponding grid point in column c. In a
drawing of H, a grid point g can either be empty or it is occupied by a vertex,
bend, or edge. Let T be the set of h-tuples constructed in this way. Note that
|T | ∈ (O(n + b))h.

The table entry B[c, t] stores a Boolean value that is true if an orthogonal
drawing of leftH(t) on a grid of size c × h exists, false otherwise. For a given
column c ∈ {2, . . . , w}, we check for each t ∈ T , whether t can be extended
to the left by one unit. We do this by going through all t′ ∈ T and checking
whether B[c − 1, t′] = true and whether t′ and t “match”. The DP returns true
if and only if, for any c ∈ {1, . . . , w} and t ∈ T , it holds that B[c, t] = true and
t is such that all elements of H lie on t or to the left of t. The desired runtime
is easy to see. ��

7 Open Problems

The following interesting questions remain open. (1) Can we find a polynomial
kernel for OC with respect to the number of kitty corners, or at least with
respect to the number of kitty corners plus the number of faces, for general
graphs? (2) Does OC admit an FPT algorithm parameterized by the height of
the orthogonal representation? (3) Is OC solvable in 2O(

√
n) time? This bound

would be tight assuming that the Exponential Time Hypothesis is true. (4) If we
parameterize by the number of pairs of kitty corners, can we achieve substantially
better running times?

References

1. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.
00457

https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00457

124 W. Didimo et al.

2. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018). https://doi.org/10.7155/jgaa.00479

3. Bannister, M.J., Eppstein, D., Simons, J.A.: Inapproximability of orthogonal com-
paction. J. Graph Algorithms Appl. 16(3), 651–673 (2012). https://doi.org/10.
7155/jgaa.00263

4. Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of cross-
ing minimization of almost-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 340–351. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 30

5. Bentley, J.L., Ottmann, T.: Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. 28(9), 643–647 (1979). https://doi.org/10.1109/
TC.1979.1675432

6. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 12(6), 476–497 (1994). https://doi.org/10.1007/
BF01188716

7. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. J. Graph Algorithms Appl. 24(4), 603–620 (2020).
https://doi.org/10.7155/jgaa.00526

8. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for queue layouts. In: GD 2020. LNCS, vol. 12590, pp. 40–54. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-68766-3 4

9. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2010). https://doi.org/
10.1007/s00454-010-9310-z

10. Binucci, C., Da Lozzo, G., Di Giacomo, E., Didimo, W., Mchedlidze, T., Patrig-
nani, M.: Upward book embeddings of st-graphs. In: Symposium on Computational
Geometry (SoCG), vol. 129 of LIPIcs, pp. 1–22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. https://doi.org/10.4230/LIPIcs.SoCG.2019.13

11. Bridgeman, S.S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vismara,
L.: Turn-regularity and optimal area drawings of orthogonal representations. Com-
put. Geom. 16(1), 53–93 (2000). https://doi.org/10.1016/S0925-7721(99)00054-1

12. Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov,
K.: Parameterized algorithms for upward planarity. arXiv (2022). https://doi.org/
10.48550/arXiv.2203.05364

13. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. J. Comput. Geom. 11(1), 433–475 (2020).
https://doi.org/10.20382/jocg.v11i1a17

14. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

15. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and
FPT algorithms for embedded flat clustered planarity. In: International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), vol. 11159 of LNCS, pp.
111–124. Springer (2018). https://doi.org/10.1007/978-3-030-00256-5 10

16. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

17. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175–198 (1988). https://doi.org/10.1016/0304-
3975(88)90123-5

https://doi.org/10.7155/jgaa.00479
https://doi.org/10.7155/jgaa.00263
https://doi.org/10.7155/jgaa.00263
https://doi.org/10.1007/978-3-319-03841-4_30
https://doi.org/10.1007/978-3-319-03841-4_30
https://doi.org/10.1109/TC.1979.1675432
https://doi.org/10.1109/TC.1979.1675432
https://doi.org/10.1007/BF01188716
https://doi.org/10.1007/BF01188716
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1007/978-3-030-68766-3_4
https://doi.org/10.1007/s00454-010-9310-z
https://doi.org/10.1007/s00454-010-9310-z
https://doi.org/10.4230/LIPIcs.SoCG.2019.13
https://doi.org/10.1016/S0925-7721(99)00054-1
https://doi.org/10.48550/arXiv.2203.05364
https://doi.org/10.48550/arXiv.2203.05364
https://doi.org/10.20382/jocg.v11i1a17
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0304-3975(88)90123-5

Parameterized Approaches to Orthogonal Compaction 125

18. Di Giacomo, E., Liotta, G., Montecchiani, F.: Orthogonal planarity testing of
bounded treewidth graphs. J. Comput. Syst. Sci. 125, 129–148 (2022). https://
doi.org/10.1016/j.jcss.2021.11.004

19. Didimo, W., Gupta, S., Kindermann, P., Liotta, G., Wolff, A., Zehavi, M.: Param-
eterized approaches to orthogonal compaction. arXiv (2022). https://doi.org/10.
48550/arXiv.2210.05019

20. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity, vol. 4 of
TCS. Springer (2013).https://doi.org/10.1007/978-1-4471-5559-1

21. Dujmović, V., et al.: On the parameterized complexity of layered graph drawing.
Algorithmica 52(2), 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1

22. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-
sided crossing minimization revisited. J. Discrete Algorithms 6(2), 313–323 (2008).
https://doi.org/10.1016/j.jda.2006.12.008

23. Evans, W.S., Fleszar, K., Kindermann, P., Saeedi, N., Shin, C.-S., Wolff, A.: Mini-
mum rectilinear polygons for given angle sequences. Comput. Geom. 100(101820),
1–39 (2022). https://doi.org/10.1016/j.comgeo.2021.101820

24. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press (2019)

25. Ganian, R., Montecchiani, F., Nöllenburg, M., Zehavi, M.: Parameterized com-
plexity in graph drawing (Dagstuhl Seminar 21293). Dagstuhl Rep. 11(6), 82–123
(2021). https://doi.org/10.4230/DagRep.11.6.82

26. Gupta, S., Sa’ar, G., Zehavi, M.: Grid recognition: classical and parameterized com-
putational perspectives. In: International Symposium on Algorithms and Compu-
tation (ISAAC), vol. 212 of LIPIcs, pp. 1–15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.37

27. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

28. Kobayashi, Y., Ohtsuka, H., Tamaki, H.: An improved fixed-parameter algorithm
for one-page crossing minimization. In: Lokshtanov, D., Nishimura, N. (eds.) 12th
International Symposium on Parameterized and Exact Computation (IPEC), vol.
89 of LIPIcs, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.IPEC.2017.25

29. Liotta, G., Rutter, I., Tappini, A.: Parameterized complexity of graph planarity
with restricted cyclic orders. In: International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG), vol. 13453 of LNCS, pp. 383–397. Springer
(2022). https://doi.org/10.1007/978-3-031-15914-5 28

30. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: C-planarity testing of
embedded clustered graphs with bounded dual carving-width. Algorithmica 83(8),
2471–2502 (2021). https://doi.org/10.1007/s00453-021-00839-2

31. Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom.
19(1), 47–67 (2001). https://doi.org/10.1016/S0925-7721(01)00010-4

32. Pickover, C.A.: The Math Book. Sterling (2009)
33. Shamos, M.I., Hoey, D.: Geometric intersection problems. In: 17th Annual Sympo-

sium on Foundations of Computer Science (FOCS), pp. 208–215 (1976). https://
doi.org/10.1109/SFCS.1976.16

https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.48550/arXiv.2210.05019
https://doi.org/10.48550/arXiv.2210.05019
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1016/j.jda.2006.12.008
https://doi.org/10.1016/j.comgeo.2021.101820
https://doi.org/10.4230/DagRep.11.6.82
https://doi.org/10.4230/LIPIcs.ISAAC.2021.37
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.4230/LIPIcs.IPEC.2017.25
https://doi.org/10.1007/978-3-031-15914-5_28
https://doi.org/10.1007/s00453-021-00839-2
https://doi.org/10.1016/S0925-7721(01)00010-4
https://doi.org/10.1109/SFCS.1976.16
https://doi.org/10.1109/SFCS.1976.16

NP-Hardness and Fixed Parameter
Tractability

Hardness of Bounding Influence via Graph
Modification

Robert D. Barish(B) and Tetsuo Shibuya

Division of Medical Data Informatics, Human Genome Center,
Institute of Medical Science, University of Tokyo,

4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
rbarish@ims.u-tokyo.ac.jp, tshibuya@hgc.jp

Abstract. We consider the problem of minimally modifying graphs and
digraphs by way of exclusively deleting vertices, exclusively deleting
edges, or exclusively adding new edges, with or without connectivity
constraints for the resulting graph or digraph, to ensure that centrality-
based influence scores of all vertices satisfy either a specified lowerbound
A or upperbound B. Here, we classify the hardness of exactly or approx-
imately solving this problem for: (1) all vertex- and edge-deletion cases
for betweenness, harmonic, degree, and in-degree centralities; (2) all
vertex-deletion cases for eigenvector, Katz, and PageRank centralities;
(3) all edge-deletion cases for eigenvector, Katz, and PageRank central-
ities under a connectivity or weak-connectivity constraint; and (4) a set
of edge-addition cases for harmonic, degree, and in-degree centralities.
We show that some of our results, in particular multiple results concern-
ing betweenness, eigenvector, Katz, and PageRank centralities, hold for
planar graphs and digraphs. Finally, under a variety of constraints, we
establish that no polynomial time constant factor approximation algo-
rithm can exist for computing the cardinality of a minimum set of vertices
or minimum set of edges whose deletion ensures a lowerbound between-
ness centrality score, or a lower- or upperbound eigenvector, Katz, or
PageRank centrality score (unless P = NP).

Keywords: NP hardness · Approximation hardness · PageRank
centrality · Katz centrality · Eigenvector centrality · Betweenness
centrality · Closeness centrality · Harmonic centrality · Degree
centrality · Vertex deletion · Edge deletion · Edge augmentation

1 Introduction

A fundamental measure of the robustness of a network – be it one of individu-
als, organisms, objects, or system states – is the uniformity of the distribution
of influence among its components, where we can quantify a component’s influ-
ence by the magnitude of the perturbation resulting from its failure or removal.

Supported by JSPS Kakenhi grants {20K21827, 21H05052, 20H05967}.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 129–143, 2023.
https://doi.org/10.1007/978-3-031-23101-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_9&domain=pdf
http://orcid.org/0000-0001-5207-0375
http://orcid.org/0000-0003-1514-5766
https://doi.org/10.1007/978-3-031-23101-8_9

130 R. D. Barish and T. Shibuya

Equidistribution of influence is accordingly a core design principal in the field
of network engineering. As evidence of this, we need look no further than the
telecommunications infrastructure underlying the modern internet. In particu-
lar, this infrastructure traces its origins to the fault-tolerant adaptable packet
switching models of Baran and Davies [3–5,16], developed (originally in the
form of the late 1960’s ARPANET project [5,38]) with the explicit motivation
of allowing communication systems to survive natural and manmade disasters.

In the other direction, understanding how to optimally minimize influence
is important in the context of allocating sparse resources to mitigate or decon-
struct “pathological” or “dark” networks. Botnets serve as a case in point, as their
topologies typically consist of more important “command and control” and “mas-
ter” servers directing a large number of lower influence “zombie” nodes [22,44,45].
This is often also the case for networks modeling the spread of pathogens, such
as contact tracing networks or compartmental models in epidemiology (e.g., the
well-known Susceptible, Infectious, or Recovered (SIR) model [41]).

As one might expect, the problem of finding the most influential nodes in a
network, and the problem of optimizing the influence of specified nodes, have
both received significant attention in the literature (see Sect. 2 “Related work”).
Surprisingly however, very little appears to be known concerning the hardness
or tractability of modifying directed or undirected networks to ensure the global
equidistribution of influence among its components, or to otherwise eliminate
components with too much or too little influence. In this work, we attempt to
address this gap by analyzing the problem of minimally modifying the topol-
ogy of a graph or digraph by exclusively deleting vertices, exclusively deleting
edges, or exclusively adding edges to ensure a lowerbound influence score of A
or upperbound influence score of B for all nodes. We also consider the constraint
that the graph or digraph remains connected or weakly-connected, respectively,
after vertex- or edge-deletion operations.

As detailed in Table 1, in Sect. 4 we determine the complexity of this problem
for: (1) all vertex- and edge-deletion cases for betweenness, harmonic, degree,
and in-degree centralities; (2) all vertex-deletion cases for eigenvector, Katz,
and PageRank centralities; (3) all edge-deletion cases for eigenvector, Katz, and
PageRank centralities under a connectivity or weak-connectivity constraint; and
(4) a set of edge-addition cases for harmonic, degree, and in-degree centralities.
In many instances we are also able to prove that our hardness results hold on
planar or bipartite classes of graphs and digraphs.

We further establish that no constant factor approximation algorithm can
exist for determining minimum cardinality sets of: (Corollary 1) vertices whose
deletion ensures a lowerbound betweenness centrality ≥ A for graphs and
digraphs with and without a connectivity or weak-connectivity constraint;
(Corollary 2) edges whose deletion ensures a lowerbound betweenness central-
ity ≥ A for graphs with and without a connectivity constraint; and (Corollary
3) exclusively vertices or exclusively edges whose deletion, under a connectivity
constraint, ensures a lower- or upperbound eigenvector, Katz, and PageRank
centrality ≥ A or ≤ B, respectively.

Hardness of Bounding Influence via Graph Modification 131

2 Related Work

Since at least the early 21st century, significant effort has been expended on the
problem of understanding and quantifying the perturbations of vertex centrality
scores caused by adding, removing, or rearranging edges in both directed and
undirected networks [2,9,10,12–15,18,23,25,26,29,36].

Concerning research focused on PageRank centrality [10,11,30,43], following
work by Bianchini et al. [10] on the influence of graph topological features on
PageRank centralities, Avrachenkov and Litvak [2] conducted an asymptotic
analysis on the effect of adding multiple links to a single vertex. In particular,
they established that, while the addition of a single directed edge will necessarily
increase the PageRank of the terminal vertex [10], the addition of multiple edges
may not necessarily improve the PageRank scores of the recipient nodes. The
authors then examined optimal strategies for improving the score of a fixed
node provided control over only its outlinks. Following this work, Kerchove et
al. [29] conducted a study to determine which local neighborhood link topologies
maximize a node’s PageRank centrality, and Ishii and Tempo [26] examined
the impact of removing broken, inconsistent, or otherwise noisy edges (what
the authors refer to as fragile links) on the PageRank centralities for all nodes
in a network. Later, Csaji et al. [13,14] explicitly considered the problem of
adding or removing the aforementioned fragile links to optimize (e.g., maximize
or minimize) the PageRank centrality of a fixed node, detailed a polynomial time
linear programming algorithm for the problem, and moreover proved that the
same problem becomes NP -hard if mutually exclusive fragile links are permitted.

Aside from PageRank, there has also been substantial work on optimizing
the centrality score for a given node in a network according to measures such
as betweenness centrality [19,30,46] and closeness centrality [6,8,24,30,40]. In
particular, Crescenzi et al. [12] defined the Maximum Betweenness Improvement
(MBI) and Maximum Closeness Improvement (MCI) problems (for both directed
and undirected graphs) of adding or removing a set of at most k edges incident
to a vertex to maximize its betweenness centrality score and closeness centrality
score, respectively. The authors then proved that no Polynomial-Time Approx-
imation Scheme (PTAS) can exist for either problem (unless P = NP), and
detailed a greedy algorithm for both cases that achieves an almost tight approx-
imation ratio. Subsequently, Dangelo et al. [15] showed that the MBI problem
for undirected graphs likewise cannot admit a PTAS (unless P = NP), and
furthermore showed that a greedy algorithm for the MBI problem can have an
unbounded approximation ratio in the worst case.

3 Preliminaries

3.1 Graph Theoretic Terminology

We will generally follow definitions that are more-or-less standard (see, e.g.,
Diestel [17]). However, for some brief clarifications, when we use the term graph
we are everywhere referring to simple undirected and unweighted graphs, and

132 R. D. Barish and T. Shibuya

when we use the term digraph we are everywhere referring to simple (i.e., loop
and multi-edge-free) and unweighted directed graphs that allow for edges (equiv.
arcs) of opposite orientation between the same pair of vertices (often referred to
as antiparallel arcs). Here, a graph is called cubic if and only if all of its vertex
degrees are uniformly equal to 3, and subcubic if and only if it has maximum
vertex degree 3. When we refer to the degree of a node in a digraph, we are
referring to the sum of its in-degree and out-degree. As a final clarification,
when we refer to the length of a path or cycle, we are referring to its edge count.

3.2 Centrality Measures

Letting G be a graph or digraph with vertex set VG, edge set EG, and n = |VG|
total vertices, we consider the following vertex centrality measures:

Betweenness centrality, CBetweenness – Letting f(SP,all) (G, va, vb) and
f(SP,vi) (G, va, vb) be functions which return the number of shortest paths from
a vertex va ∈ VG to a vertex vb ∈ VG and the number of such paths traversing
the vertex vi /∈ {va, vb}, respectively, the betweenness centrality [19,30,46] for a
vertex vi ∈ VG is given by: CBetweenness (vi) =

∑
(a,b∈[1,n]∧a<b∧a�=i∧b�=i)

⎧
⎨

⎩

(
f(SP,vi)

(G,va,vb)

f(SP,all)(G,va,vb)

)

, f(SP,all) (G, va, vb) �= 0

0, f(SP,all) (G, va, vb) = 0

⎫
⎬

⎭

in the case of graphs. For digraphs we change the constraint a < b to a �= b in
the sum.

Eigenvector centrality, CEigenvector – Letting M be the adjacency matrix of
a connected graph or weakly-connected digraph with primary eigenvector x1

corresponding to the eigenvalue λ1 (such that Mx1 = λ1x1), and letting x′
1 be

a normalization of x1 such that all of its entries sum to unity, the eigenvector
centrality [21,30,43] or Gould index of the ith vertex in a graph (where vertex
indexing must be the same as for M) corresponds to the ith entry in x′

1. Recall
here that the applicability of the Perron-Frobenius theorem to non-negative irre-
ducible square matrices (see e.g., [33] and references therein) guarantees a unique
primary eigenvector with only real positive entries.

Katz centrality, CKatz – Adopting the prior definitions from the description
of CEigenvector, Katz centrality [28,30,43] is a weighted and adjusted variant of
eigenvector centrality where, for some attenuation factor 0 ≤ α ≤ 1

λ1
and vector

of correction factors (or a scalar) β, we have that x1 = αMᵀ.x1 + β. We then
generate the normalized vector x′

1 from x1 as before.
PageRank centrality, CPageRank – Adopting the prior definitions from the

description of CEigenvector and CKatz, with the exception that we now assume
an attenuation factor with the bounds 0 ≤ α ≤ 1 (typically we set α ≈ 0.85),
PageRank centrality [11,30,43] is a variation on Katz centrality where, letting
D be a diagonal matrix in which the ith entry encodes the reciprocal of the
degree (or 1 in the case of a degree 0 vertex) for graphs and reciprocal of the
out-degree (or 1 in the case of an out-degree 0 vertex) for digraphs of the ith
vertex (note that vertex indexing must be the same as for M), we have that

Hardness of Bounding Influence via Graph Modification 133

x1 = αMᵀ.D.x1 + β. We then generate the normalized vector x′
1 from x1 as

before.
Harmonic centrality, CHarmonic – The harmonic centrality [34,39] is a varia-

tion on closeness centrality [6,8,24,30,40] where, in unnormalized form,

CHarmonic (vi) =
∑

(j∈[1,n]∧j �=i)

{(
1

d(G,vi,vj)

)
, for d (G, vi, vj) �= ∞

0, for d (G, vi, vj) = ∞

}

.

Degree centrality, CDegree – The degree centrality [30] of a vertex vi ∈ VG is
defined as its degree (i.e., the number of vertices it is adjacent to) for graphs,
and the sum of its in- and out-degree in the case of digraphs.

In-degree centrality, CDegree−In – The in-degree centrality of a vertex vi ∈ VG

in a digraph is simply defined as its in-degree (i.e., the number of inward-oriented
adjacent arcs).

4 Bounding the Influence of Vertex Centrality Scores

In this section, excluding results with straightforward or trivial proof arguments
(i.e., this is an extended abstract), we will establish the claims stated in Table 1.
Here, letting G be a graph, we write (Constraint Set 1) to refer to the constraint
that G is initially connected, and write (Constraint Set 2) to refer to the con-
straint that G is initially connected and remains so after modification. Likewise,
letting G be a digraph, we write (Constraint Set 3) to refer to the constraint
that G is initially weakly-connected, and write (Constraint Set 4) to refer to the
constraint that G is initially weakly-connected and remains so after modifica-
tion. When we write that a result holds true under all constraint sets, we are
referring to (Constraint Set 1) through (Constraint Set 4), or (Constraint Set 3)
and (Constraint Set 4) in the special case of in-degree centrality defined only for
digraphs. Unless otherwise specified, we everywhere let A ∈ R and B ∈ R be a
lowerbound and upperbound, respectively, for vertex centrality scores.

Definition 1. Triangle-replaced cubic graph. A triangle-replaced cubic graph G′

is the graph generated from a cubic graph G with vertex set VG by replacing each
vertex vi ∈ VG with the 3-cycle {v(i,1) ↔ v(i,2), v(i,1) ↔ v(i,3), v(i,2) ↔ v(i,3)},
such that vertices v(i,1), v(i,2), and v(i,3) are each the endpoints of a distinct edge
formerly adjacent to vi ∈ VG.

Lemma 1. For any of the centrality metrics discussed in the Sect. 3 “Prelimi-
naries” of this work applicable to graphs, if it is NP -hard to find a minimum set
of vertices to delete to ensure a minimum vertex centrality score ≥ A or maxi-
mum vertex centrality score ≤ B, then the problem is NP -hard for digraphs.

Proof. It suffices to observe that we can generate a digraph from a graph G by
replacing all undirected edges with pairs of antiparallel arcs, and that this will
have no additional consequences beyond doubling betweenness centralities.

134 R. D. Barish and T. Shibuya

Table 1. Complexity of modifying a graph by way of exclusively ≤ k vertex deletions,
exclusively ≤ k edge deletions, or exclusively ≤ k edge additions, to ensure that the
minimum vertex centrality is ≥ A for some A ∈ R, or the maximum vertex centrality
is ≤ B for some B ∈ R; the label NPH implies that a problem is NP -hard; the
label N̂PH implies that a problem is NP -hard to approximate within any constant
factor under at least one constraint set; subscript labels “a”, “b”, “c”, and “d” imply
the stated result holds for connected graphs (Constraint Set 1), connected graphs
that must remain connected post-modification (Constraint Set 2), weakly-connected
digraphs (Constraint Set 3), and weakly-connected digraphs that must remain weakly-
connected post-modification (Constraint Set 4), respectively; superscript labels T∗, P∗,
or C∗ refer to the theorem, proposition, or corollary establishing the stated result (or
a sub-result of the stated result), respectively; the superscript symbol ‡ (which occurs
twice) implies that the stated result is originally due to Yannakakis and Lewis [31,47];
the superscript symbol � implies that the proof of the stated result has been omitted
in this extended abstract.

Measure Constraint Vertex deletion Edge deletion Edge addition

CBetweenness ≥A ̂NPH
T1,C1
[a,b,c,d]

̂NPH
T2,C2
[a,b,c,d] —

≤B NPHP1
[a,b,c,d] NPHP2

[a,b,c,d] —

CEigenvector ≥A ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

≤B ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

CKatz ≥A ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

≤B ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

CPageRank ≥A ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

≤B ̂NPH
T3,P3,C3
[a,b,c,d]

̂NPH
T3,C3
[b,d] —

CHarmonic ≥A O (|V |2 · |E|)�
[a,b,c,d] O (|V | · |E|)�

[a,b,c,d] —

≤B NPH�
[a,b,c,d] NPH�

[a,b,c,d] O (|V | · |E|)�
[a,b,c,d]

CDegree ≥A O (|E|)�
[a,b,c,d] O (|E|)�

[a,b,c,d] O
(

|V | 52 · |E|
)�

[a,b,c,d]

≤B NPH‡,�
[a,b,c,d] [31,47] O (|V |2)�

[a,c] O (|E|)�
[a,b,c,d]

NPH�
[b,d]

CDegree−In ≥A O (|E|)�
[c,d] O (|E|)�

[c,d] O (|E|)�
[c,d]

≤B NPH‡,�
[c,d] [31,47] O (|E|)�

[c] O (|E|)�
[c,d]

NPH�
[d]

Theorem 1. It is NP -complete under all constraint sets to determine if ≤ k
vertices can be deleted to ensure a minimum betweenness centrality in a planar
graph or digraph of ≥ A.

Proof. Concerning first (Constraint Set 1) and (Constraint Set 2), for a cubic
planar graph G with vertex set VG and edge set EG, we proceed via reduction
from the problem of deciding the existence of an induced st-path between a pair
of adjacent vertices, vs, vt ∈ VG, of length r = 1

3 (2 · |VG| − 1), where we are
furthermore guaranteed that r is the longest possible induced path length. It is

Hardness of Bounding Influence via Graph Modification 135

straightforward to observe that this problem is NP -complete as a consequence
of the fact that the Hamiltonian cycle problem is NP -complete for cubic planar
graphs under the constraint that the Hamiltonian cycle traverses a specified edge
[20], and the fact that any Hamiltonian cycle in a cubic planar graph M with
vertex set VM will correspond to a set of longest possible induced paths of length
1
3 (2 · |VM | − 1) in the triangle-replaced cubic graph M ′ generated from M .

To begin, we construct a planar graph H from G via the following steps:
(step 0) we delete the edge between vs and vt; (step 1) we create two copies
of a cycle graph of length Υ ; (step 2) letting vx be any vertex in one copy of
the cycle graph and vy be any vertex in the other, we add an edge between vx

and vs as well as an edge between vy and vt; and (step 3) generating 7 copies
of a path graph of length r, we add an edge between one degree 1 vertex in
each path graph and vx, and add an edge between the other degree 1 vertex in
each path graph and vy. Accordingly, letting VH and EH be the vertex and edge
sets for the graph H, respectively, we have that |VH | = |VG| + 2Υ + 7r + 7 and
|EH | = |EG| + 2Υ + 7r + 16.

We next note Freeman’s observation [19] that the betweenness centrality
of a vertex in a graph on n vertices can be at most 1

2 (n − 1)(n − 2), which
is achieved by the central vertex of a star graph. This allows us to write a
naïve upperbound for the betweenness centrality of any vertex vi ∈ VH not
falling along a shortest path between vx and vy, or falling along one of ≥ 9
shortest paths between vx and vy, as a sum of the terms (everywhere letting
references to cycles of length Υ refer to the cycle graphs constructed in (step
1) of creating H): (term 1) 1

2 (|VG| + 7r + 6) (|VG| + 7r + 5), corresponding to
the maximum possible contribution to the betweenness centrality of vi from the
subgraph in H disjoint from the two cycles of length Υ ; (term 2) 2Υ , to account
for shortest paths between vertices in either of the two cycles of length Υ and
vertices disjoint from these two cycles; and (term 3) Υ 2

9 , to account for shortest
paths between pairs of vertices in the two cycles of length Υ . We can also write
a naïve lowerbound for the betweenness centrality of any vertex vi ∈ VH along
one of exactly 8 shortest paths between vx and vy as (term 4) Υ 2

8 .
We now note a result of Unnithan et al. [42] that the betweenness cen-

trality of a vertex in a cycle graph with n vertices is equal to 1
8 (n − 2)2 for

n even and 1
8 (n − 1) (n − 3) for n odd, implying that the minimum between-

ness centrality for any vertex in a cycle graph will be at least 1
8 (Υ − 1) (Υ − 3)

for Υ ≥ 3. Finally, we can observe that setting A = 1
8 (Υ − 1) (Υ − 3) and

Υ = 	
(√

2
√
18 · |VG|2 + 252 · r · |VG| + 198 · |VG| + 882 · r2 + 1386r + 4577

)
� +

90 will guarantee that the sum of (term 1), (term 2), and (term 3) will be < A
and that Υ 2

8 (term 4) will be > A for all |VG| ≥ 1.
Putting everything together, assuming k < |VG| vertices are deleted, we have

that every vi ∈ VH disjoint from the two cycles of length Υ created in (step 1)
will fall along one of exactly 8 shortest paths between vx and vy if and only if
k ≤ |VG|−(r+1) vertices can be deleted from G to yield a path graph of length r
corresponding to a longest possible induced path in G (=⇒ k = |VG|− (r+1)).

136 R. D. Barish and T. Shibuya

Accordingly, as a simple case analysis yields that deleting any vertex vi ∈ VH \VG

will ensure the minimum betweenness centrality of H will be equal to 0 unless
> |VG| additional vertices are deleted, we have that k ≤ |VG| − (r + 1) vertices
can be deleted from H to ensure the minimum betweenness centrality of every
vertex vi ∈ VH is ≥ A (as earlier specified) if and only if an induced st-path
of length r exists in G. As the problem of deciding if such a vertex cut exists
is clearly in NP , this yields the theorem in the case of (Constraint Set 1) and
(Constraint Set 2). Finally, appealing to Lemma 1, we can straightforwardly
extend this result to (Constraint Set 3) and (Constraint Set 4).

Corollary 1. Under all constraint sets, unless P = NP , no polynomial time
algorithm exists for approximating within a constant factor the minimum number
of vertices that must be deleted in a graph or digraph to ensure a minimum
betweenness centrality of ≥ A.

Proof. The problem of finding a longest induced st-path in a cubic graph, and
hence longest induced st-path in a triangle-replaced cubic graph (see Definition
1), does not admit a polynomial time constant factor approximation algorithm
unless P = NP [7]. This directly implies that, unless P = NP , there can be
no polynomial time constant factor approximation algorithm for the number
of vertices that must be deleted to yield an induced st-path in a cubic graph.
Accordingly, dropping the planarity constraint, we can simply follow the proof
argument given in Theorem 1 to establish that no polynomial time constant
factor approximation algorithm exists for the minimum number of vertices that
must be deleted in a graph or digraph to ensure a minimum betweenness cen-
trality of ≥ A.

Theorem 2. Determining if ≤ k edges can be deleted to ensure the minimum
betweenness centrality in a planar graph or digraph is ≥ A is NP -complete under
all constraint sets.

Proof. Concerning first (Constraint Set 1) and (Constraint Set 2), observe that
the st-Hamiltonian path problem for cubic planar graphs is NP -complete [20].
Accordingly, letting G be a cubic planar graph with vertex set VG and edge set
EG, we can follow almost exactly the proof argument in Theorem 1 to show
that ≤ k = 2

3 |VG| edges can be deleted from the graph H (constructed from G
in the same manner as before) to ensure the minimum betweenness centrality
of all vertices is ≥ A if and only if k = 2

3 |VG| edges can be deleted from G
to yield a path graph of length r = |VG| − 1 with vs and vt as its endpoints
(corresponding to an st-Hamiltonian path for G). In particular, we can again
perform a simple case analysis to show that deleting any edge ei ∈ EH \ EG

will ensure the minimum betweenness centrality of H will be equal to 0 unless
> |VG| additional edges are deleted.

Concerning (Constraint Set 3) and (Constraint Set 4), we proceed along the
same lines via reduction from the NP -complete st-Hamiltonian path problem
for cubic planar digraphs [37]. Here, letting G be a cubic planar digraph where
we wish to find an st-Hamiltonian path between a pair of vertices vs and vt,

Hardness of Bounding Influence via Graph Modification 137

we construct a graph H via the following steps: (step 1) we create two copies
of an undirected cycle graph of length Υ , then replace all edges with pairs of
antiparallel arcs; (step 2) letting vx be any vertex in one copy of the cycle graph
and vy be any vertex in the other, we add the edges vx → vs and vt → vy; and
(step 3) we generate 7 copies of a directed path graph of length r = |VG| − 1,
then add an edge between the vertex of in-degree 0 in each path graph and
vx oriented away vx, and add an edge between the vertex of out-degree 0 in
each path graph and vy oriented towards vy. We can now observe that the same
arguments as in the undirected case can be followed to complete the reduction.
Putting everything together yields the theorem.

Corollary 2. Under (Constraint Set 1) and (Constraint Set 2), unless P =
NP , no polynomial time algorithm exists for approximating within a constant
factor the minimum number of edges that must be deleted in a graph to ensure
a minimum betweenness centrality of ≥ A.

Proof. It is known that the problem of finding a longest st-path in a cubic
graph does not admit a polynomial time constant factor approximation algo-
rithm unless P = NP [7]. As this result specifically concerns bounded degree
cubic graphs, unless P = NP , there can be no polynomial time constant factor
approximation algorithm for the minimum number of edges that must be deleted
to yield an st-path. Accordingly, dropping the planarity constraint, we can follow
the proof argument given in Theorem 2 to establish that no polynomial time con-
stant factor approximation algorithm exists for the minimum number of edges
that must be deleted in a graph to ensure a minimum betweenness centrality of
≥ A.

Proposition 1. Determining if ≤ k vertices can be deleted to ensure the maxi-
mum betweenness centrality is ≤ B is NP -complete under all constraint sets.

Proof. Concerning first (Constraint Set 1), set B = 0 and observe that we now
have the problem of finding ≤ k vertices to delete to satisfy the property that
the resulting graph is a disjoint union of cliques. By a result of Yannakakis
& Lewis [31,47], this problem is NP -complete under (Constraint Set 1) and
(Constraint Set 2). Finally, the instances of this problem under (Constraint Set
3) and (Constraint Set 4) are addressed by Lemma 1.

Proposition 2. Determining if ≤ k edges can be deleted to ensure the maximum
betweenness centrality is ≤ B is NP -complete under all constraint sets.

Proof. To briefly treat (Constraint Set 1), observe that by setting B = 0 we
ensure any witness set of ≤ k edges will decompose G into a disjoint union
of cliques. It now suffices to observe that such a minimum cardinality set of
edges is also a witness for the NP -complete cluster deletion problem [35]. For
(Constraint Set 2), we proceed via reduction from the NP -hard problem of
finding a Hamiltonian path between a specified pair of vertices vs and vt [27]
in a graph G with vertex set VG and edge set EG. Here, this can be done by
generating a path graph with ≥ |VG|2 vertices, adding an edge between one path

138 R. D. Barish and T. Shibuya

end and vs, and adding an edge between the other path end and vy, to generate
a graph H with vertex set VH . Recalling the result of Unnithan et al. [42] that
the betweenness centrality of a vertex in a cycle graph with n vertices is equal to
1
8 (n − 2)2 for n even and 1

8 (n − 1) (n − 3) for n odd, we can then observe that
the bound B = 1

8 (|VH |−2)2 (for |VH | even) or B = 1
8 (|VH |−1)·(|VH |−3) (for |VH |

odd) will be satisfied if and only if, assuming |VG| ≥ 3, k = |EG|− |VG|+1 edges
can be removed from H to yield a cycle graph with |VH | total vertices. Finally,
we can observe that this will only be possible if there exists a Hamiltonian path
in G with endpoints at vs and vt.

Concerning (Constraint Set 3) and (Constraint Set 4), we proceed via reduc-
tion from the problem of deciding if ≤ r edges can be deleted in a triangle-free
2-subdivision of a cubic graph G (i.e., where we replace each edge with a path
of length 3) to make the graph bipartite, which can equivalently be formulated
as a maximum cut problem on the same graph. Here, we appeal to a result
of Yannakakis [47] that finding a minimum set of edges to delete to make a
graph bipartite is NP -complete for cubic graphs, even if we require the result-
ing bipartite graph to be connected, and appeal to a Karp reduction given by P.
Irzhavsky (see ref. “1648” from the Information System on Graph Classes and
their Inclusions (ISGCI) website [1]) from the maximum cut problem on graphs
to the maximum cut problem on 2-subdivisions of graphs.

For the reduction, we begin by transforming G into a digraph H with edge
set EH by replacing all undirected edges in G with pairs of antiparallel arcs.
We next specify B = 0, correspondingly tasking us with deleting ≤ k edges in
H to decompose the digraph into a collection of zero or more vertex disjoint 2-
cycles and zero or more 2-cycle-free bipartite digraphs, in the latter case where
all vertices in one partite set are sources and all vertices in the other partite set
are sinks (i.e., so that no directed paths of length ≥ 2 exist).

Here, a simple case analysis shows that, as a consequence of G being a 2-
subdivision of a connected cubic graph, if such a decomposition can be obtained
by deleting k edges, then there will also exist a decomposition into only the
aforementioned 2-cycle-free bipartite digraphs where all vertices are sources or
sinks that can likewise be obtained by deleting k edges. In particular, observe
that we can always delete one edge in a 2-cycle, then add an edge to connect the
resulting out-degree 0 vertex to a sink vertex in a 2-cycle-free bipartite digraph
without creating any directed paths of length ≥ 2. Putting everything together,
we have that k ≤ r+ 1

2 |EH | edges can be deleted in H to ensure that maximum
betweenness centrality is ≤ B = 0 if and only if ≤ r edges can be deleted in G
to yield a bipartite graph. As determining if ≤ r edges can be deleted to make
a cubic graph bipartite is again NP -complete even if we require the bipartite
graph to be connected [47], this establishes the theorem under (Constraint Set
3) and (Constraint Set 4).

Theorem 3. Determining if exclusively ≤ k vertices or exclusively ≤ k edges
can be deleted in a planar graph or digraph to ensure the minimum eigenvector,
Katz, or PageRank centrality is ≥ A, or to ensure the maximum values are ≤ B,
is NP -complete in all cases under (Constraint Set 2) and (Constraint Set 4).

Hardness of Bounding Influence via Graph Modification 139

Proof. Recall the definitions for eigenvector and Katz centrality in the Sect. 3
“Preliminaries” of the current work, and note that Katz centrality is equivalent
to eigenvector centrality under the constraint that β = 0 and α = 1

λ1
, where λ1

is the eigenvalue corresponding to the primary eigenvector x1. Here, let M be
the adjacency matrix for an arbitrary graph or digraph G with vertex set VG,
and specify α = 1

λ1
, β = 0, and A = B = 1

|VG| . Observe this will require Mᵀ.x1

to yield a vector where all entries are equivalent, and furthermore, that this will
be possible if and only if G is a regular undirected graph, or alternatively, a
digraph where all vertices have uniform in-degree.

Now consider the problem of deciding if ≤ k vertices can be deleted to ensure
that the minimum and maximum eigenvector or Katz centralities in a graph or
digraph G are ≥ A or ≤ B under the constraint that G must be connected
or weakly-connected post-modification. Here, in the undirected case we have a
straightforward reduction from the NP -complete problem of deciding the exis-
tence of a longest possible induced cycle in a subcubic planar graph of length
r ∈ N having at least one vertex of degree 2 (see Garey et al. [20] and the
proof argument for Theorem 1). Specifically, we can set A = B =

(
1

|VG|−k

)

and r = |VG| − k, then observe that k vertex deletions must yield a cycle of
length exactly r to simultaneously satisfy the lowerbound and upperbound con-
straint, and that this will necessarily be an induced cycle. The result can then be
extended to the directed case via Lemma 1. We can proceed similarly in the case
of deciding if ≤ k edges can be deleted to ensure that the minimum and maxi-
mum eigenvector or Katz centralities in a graph or digraph G are ≥ A or ≤ B
by specifying A = B =

(
1

|VG|−k

)
. In particular, we can reduce from the Hamil-

tonian cycle problem on subcubic planar graphs, and subcubic planar digraphs
with exactly one vertex of degree 2 having in-degree and out-degree 1, and with
all other vertices of degree 3 having in-degree and out-degree at most 2. The
former problem is NP -complete by a trivial extension of the NP -completeness
proof for the Hamiltonian cycle decision problem on cubic planar graphs [20],
and that the latter problem is NP -complete by a straightforward extension of
the NP -completeness proof for the Hamiltonian cycle decision problem on cubic
planar digraphs where all vertices have in-degree and out-degree at most 2 [37].

Finally, for the classes of subcubic planar graphs and digraphs, we can observe
that the aforementioned arguments also hold for PageRank centrality where we
require the expression Mᵀ.D.x1 to yield a vector where all entries are equivalent.
Here, recall that D is a diagonal matrix with entrees corresponding to inverse
vertex degrees or out-degrees (or an entry of 1 in the case where the degree or
out-degree is 0) as detailed in the Sect. 3 “Preliminaries” of the current work.
Accordingly, the dot product W = Mᵀ.D will be a matrix where the entries
in the ith row correspond to the inverse degrees (or 1 if the degree is 0) of the
neighbors of the ith vertex vi ∈ VG in the undirected case, or to the inverse out-
degrees (or 1 if the out-degree is 0) of the vertices with edges directed towards
the ith vertex vi ∈ VG in the directed case, and where to satisfy the bounds

140 R. D. Barish and T. Shibuya

A = B =
(

1
|VG|−k

)
, the sum of the entries in each row must be equal to a

constant.
Now observe in the undirected subcubic case that any row in W correspond-

ing to a vertex of degree 1, 2 and 3 will have exactly one, two, and three non-zero
entries drawn from the set { 1

3 , 1
2 , 1}. Here, a simple case analysis – or, alterna-

tively, checking the PageRank centralities for all possible root vertices and their
neighbors in the 466008 trees on ≤ 22 vertices having maximum degree ≤ 3 –
shows that, in order for Mᵀ.D.x1 to yield a vector where all entries are equiva-
lent, any degree 1 vertex will necessarily be adjacent to another degree 1 vertex
(otherwise there will be two rows in W with an unequal sum), and no vertex of
degree 2 can be adjacent to a vertex of degree 3. This correspondingly implies
that the graph must be regular for the row sum constraint for W to be satis-
fied. In the case of subcubic digraphs having in-degree and out-degree at most
2, we can use a similar analysis to establish that no two vertices with distinct
out-degrees can be adjacent. Putting everything together, we have that the same
proof arguments in the case of eigenvector and Katz centrality can be applied
to PageRank under the stated topological constraints, yielding the theorem.

Corollary 3. Under (Constraint Set 2), unless P = NP , no polynomial time
algorithm exists for approximating within a constant factor the minimum number
of vertices or minimum number of edges that must be deleted to ensure that the
minimum eigenvector, Katz, or PageRank centrality is ≥ A, or to ensure that
the maximum eigenvector, Katz, or PageRank centrality is ≤ B.
Proof. Concerning the edge deletion cases, by a result of Bazgan et al. [7] the
problem of finding a longest cycle in a cubic graph does not admit a polynomial
time constant factor approximation algorithm unless P = NP . As this result
specifically concerns bounded degree cubic graphs, unless P = NP , there can be
no polynomial time constant factor approximation algorithm for the minimum
number of edges that must be deleted to yield a cycle. Accordingly, dropping
the planarity constraint, and observing that the construction of Bazgan et al. [7]
allows us to preserve the stated inapproximability result for a subcubic graph
with a single degree 2 vertex, we can follow the proof argument given in Theorem
3 to establish that no polynomial time constant factor approximation algorithm
exists for the minimum number of edges that must be deleted in a graph to
ensure the stated lower- and upperbounds for eigenvector, Katz, and PageRank
centralities. For the remaining vertex deletion cases, the transformation of a
cubic graph into a triangle-replaced cubic graph (see Definition 1) yields a simple
reduction from the aforementioned edge deletion cases.

Proposition 3. Determining if exclusively ≤ k vertices can be deleted in a
bipartite graph or digraph to ensure the minimum eigenvector, Katz, or PageR-
ank vertex centrality is ≥ A, or determining if the same values are ≤ B, is
NP -complete in all cases under (Constraint Set 1) and (Constraint Set 3).

Proof. From the proof argument for Theorem 3, we have that the eigenvector,
Katz, or PageRank vertex centralities for a subcubic graph G, with vertex set

Hardness of Bounding Influence via Graph Modification 141

VG, will be uniform if and only if all vertices have uniform degree. Using this
observation, we can proceed in the current context by reducing from the NP -
complete problem of deciding the existence of an induced matching of size ≥ r
in a bipartite graph with maximum degree 3 [32]. Here, generate a graph H
from G by creating a star graph with central vertex va and k pendant (i.e.,
degree 1) vertices, subdivide each edge in the star graph, and finally add an
edge between va and an arbitrary vertex vi ∈ VG. Observe now that if k − 1
vertices must be deleted in G to yield an 1-regular graph (corresponding to an
induced matching for G), then k vertices must be deleted in H to yield a 1-
regular graph. Putting everything together, by setting A = B =

(
1

|VG|−k

)
we

will ensure that any witness for the problem of deleting ≤ k vertices in H to
satisfy a lowerbound A or upperbound B for the eigenvector, Katz, or PageRank
centrality will correspondingly serve as a witness for the problem of deciding if
an induced perfect matching of size

(
|VG|−k+1

2

)
exists in G. Finally, observe that

we can invoke Lemma 1 to nail the case of (Constraint Set 3).

References

1. de Ridder et al. H.N.: Information System on Graph Classes and their Inclusions
(ISGCI). https://www.graphclasses.org. Accessed Sept 2021

2. Avrachenkov, K., Litvak, N.: The effect of new links on google PageRank. Stoch.
Model. 22(2), 319–331 (2006). https://doi.org/10.1080/15326340600649052

3. Baran, P.: Reliable digital communications systems using unreliable network
repeater nodes. Document P-1995, pp. 1–30. the RAND Corporation, Santa Mon-
ica, CA (1960)

4. Baran, P.: On distributed communications: I. Introduction to distributed commu-
nications networks. Memorandum RM-3420-PR, pp. 1–51. the RAND Corporation,
Santa Monica, CA (1964)

5. Baran, P.: The beginnings of packet switching: some underlying concepts.
IEEE Commun. Mag. 40(7), 42–48 (2002). https://doi.org/10.1109/MCOM.2002.
1018006

6. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am.
22(6), 725–730 (1950). https://doi.org/10.1121/1.1906679

7. Bazgan, C., Santha, M., Tuza, Z.: On the approximation of finding a(nother)
Hamiltonian cycle in cubic Hamiltonian graphs. J. Algorithms 31(1), 249–268
(1999). https://doi.org/10.1006/jagm.1998.0998

8. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163
(1965). https://doi.org/10.1002/bs.3830100205

9. Bergamini, E., Crescenzi, P., D’Angelo, G., Meyerhenke, H., Severini, L., Velaj,
Y.: Improving the betweenness centrality of a node by adding links. J. Exp. Algo-
rithmics 23(1), 1.5:1–1.5:32 (2018). https://doi.org/10.1145/3166071

10. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Int. Technol.
5(1), 92–128 (2005). https://doi.org/10.1145/1052934.1052938

11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/
S0169-7552(98)00110-X

https://www.graphclasses.org
https://doi.org/10.1080/15326340600649052
https://doi.org/10.1109/MCOM.2002.1018006
https://doi.org/10.1109/MCOM.2002.1018006
https://doi.org/10.1121/1.1906679
https://doi.org/10.1006/jagm.1998.0998
https://doi.org/10.1002/bs.3830100205
https://doi.org/10.1145/3166071
https://doi.org/10.1145/1052934.1052938
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X

142 R. D. Barish and T. Shibuya

12. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own
closeness centrality in a network. ACM Trans. Knowl. Discov. Data 11(1), 9:1–9:32
(2016). https://doi.org/10.1145/2953882

13. Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization in polynomial
time by stochastic shortest path reformulation. In: Hutter, M., Stephan, F., Vovk,
V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 89–103. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16108-7_11

14. Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization by edge selec-
tion. Discret. Appl. Math. 169, 73–87 (2014). https://doi.org/10.1016/j.dam.2014.
01.007

15. D’Angelo, G., Severini, L., Velaj, Y.: On the maximum betweenness improvement
problem. Electron. Notes Theor. Comput. Sci. 322, 153–168 (2016). https://doi.
org/10.1016/j.entcs.2016.03.011

16. Davies, D.W.: Proposal for a digital communication network. Unpublished memo-
randum, pp. 1–28. National Physical Laboratory, London (1966)

17. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-53622-3

18. Fercoq, O., Akian, M., Bouhtou, M., Gaubert, S.: Ergodic control and polyhedral
approaches to PageRank optimization. IEEE Trans. Autom. Contr. 58(1), 134–148
(2013). https://doi.org/10.1109/TAC.2012.2226103

19. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35–41 (1977). https://doi.org/10.2307/3033543

20. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976). https://doi.org/10.1137/
0205049

21. Gould, P.R.: On the geographical interpretation of eigenvalues. Trans. Inst. Br.
Geogr. 42, 53–86 (1967). https://doi.org/10.2307/621372

22. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: overview and case study. In: Proceedings of 1st Workshop on Hot Topics
in Understanding Botnets (HotBots), pp. 1–8 (2007)

23. Han, C.G., Lee, S.H.: Analysis of effect of an additional edge on eigenvector cen-
trality of graph. J. Korea Soc. Comput. Inf. 21(1), 25–31 (2016). https://doi.org/
10.9708/jksci.2016.21.1.025

24. Harary, F.: Status and contrastatus. Sociometry 22(1), 23–43 (1959). https://doi.
org/10.2307/2785610

25. Ishakian, V., Erdös, D., Terzi, E., Bestavros, A.: A framework for the evaluation
and management of network centrality. In: Proceedings of 12th SIAM International
Conference on Data Mining (SDM), pp. 427–438 (2012). https://doi.org/10.1137/
1.9781611972825.37

26. Ishii, H., Tempo, R.: Computing the PageRank variation for fragile web data. SICE
J. Control Meas. Syst. Integr. 2(1), 1–9 (2009). https://doi.org/10.9746/jcmsi.2.1

27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2_9

28. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953). https://doi.org/10.1007/BF02289026

29. de Kerchove, C., Ninove, L., van Dooren, P.: Maximizing PageRank via outlinks.
Linear Algebra Appl. 429(5–6), 1254–1276 (2008). https://doi.org/10.1016/j.laa.
2008.01.023

https://doi.org/10.1145/2953882
https://doi.org/10.1007/978-3-642-16108-7_11
https://doi.org/10.1016/j.dam.2014.01.007
https://doi.org/10.1016/j.dam.2014.01.007
https://doi.org/10.1016/j.entcs.2016.03.011
https://doi.org/10.1016/j.entcs.2016.03.011
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1109/TAC.2012.2226103
https://doi.org/10.2307/3033543
https://doi.org/10.1137/0205049
https://doi.org/10.1137/0205049
https://doi.org/10.2307/621372
https://doi.org/10.9708/jksci.2016.21.1.025
https://doi.org/10.9708/jksci.2016.21.1.025
https://doi.org/10.2307/2785610
https://doi.org/10.2307/2785610
https://doi.org/10.1137/1.9781611972825.37
https://doi.org/10.1137/1.9781611972825.37
https://doi.org/10.9746/jcmsi.2.1
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF02289026
https://doi.org/10.1016/j.laa.2008.01.023
https://doi.org/10.1016/j.laa.2008.01.023

Hardness of Bounding Influence via Graph Modification 143

30. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in
social networks. Bus. Inf. Syst. Eng. 2, 371–385 (2010). https://doi.org/10.1007/
s12599-010-0127-3

31. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.
1016/0022-0000(80)90060-4

32. Lozin, V.V.: On maximum induced matchings in bipartite graphs. Inf. Process.
Lett. 81(1), 7–11 (2002). https://doi.org/10.1016/S0020-0190(01)00185-5

33. MacCluer, C.R.: The many proofs and applications of Perron’s theorem. SIAM
Rev. 42(3), 487–498 (2000). https://doi.org/10.1137/S0036144599359449

34. Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A 285(3–4), 539–546
(2000). https://doi.org/10.1016/S0378-4371(00)00311-3

35. Natanzon, A.: Complexity and approximation of some graph modification prob-
lems. Masters thesis, pp. 1–60. Tel Aviv University, Department of Computer Sci-
ence (1999)

36. Olsen, M., Viglas, A.: On the approximability of the link building problem. Theoret.
Comput. Sci. 518, 96–116 (2014). https://doi.org/10.1016/j.tcs.2013.08.003

37. Plesńik, J.: The NP-completeness of the Hamiltonian cycle problem in planar dia-
graphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979). https://
doi.org/10.1016/0020-0190(79)90023-1

38. Roberts, L.G.: Multiple computer networks and intercomputer communication. In:
Proceedings of 1st ACM Symposium on Operating System Principles (SOSP), pp.
3.1–3.6 (1967). https://doi.org/10.1145/800001.811680

39. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic
centrality index. In: Proceedings of 6th Conference on Applications of Social Net-
work Analysis (ASNA) (2009)

40. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603
(1966). https://doi.org/10.1007/BF02289527

41. Tolles, J., Luong, T.B.: Modeling epidemics with compartmental models. J. Am.
Med. Assoc. 323(24), 2515–2516 (2020). https://doi.org/10.1001/jama.2020.8420

42. Unnithan, S.K.R., Kannan, B., Jathavedan, M.: Betweenness centrality in some
classes of graphs. Int. J. Comb. 2014(Article ID 241723), 1–12 (2014). https://
doi.org/10.1155/2014/241723

43. Vigna, S.: Spectral ranking. Netw. Sci. 4(4), 433–445 (2016). https://doi.org/10.
1017/nws.2016.21

44. Vormayr, G., Zseby, T., Fabini, J.: Botnet communication patterns. IEEE Com-
mun. Surv. Tut. 19(4), 2768–2796 (2017). https://doi.org/10.1109/COMST.2017.
2749442

45. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. IEEE
Trans. Depend. Secure Comput. 7(2), 113–127 (2010). https://doi.org/10.1109/
TDSC.2008.35

46. White, D.R., Borgatti, S.P.: Betweenness centrality measures for directed graphs.
Soc. Netw. 16(4), 335–346 (1994). https://doi.org/10.1016/0378-8733(94)90015-9

47. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings
of 10th Annual ACM Symposium on Theory of Computing (STOC), pp. 253–264
(1978). https://doi.org/10.1145/800133.804355

https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/S0020-0190(01)00185-5
https://doi.org/10.1137/S0036144599359449
https://doi.org/10.1016/S0378-4371(00)00311-3
https://doi.org/10.1016/j.tcs.2013.08.003
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1145/800001.811680
https://doi.org/10.1007/BF02289527
https://doi.org/10.1001/jama.2020.8420
https://doi.org/10.1155/2014/241723
https://doi.org/10.1155/2014/241723
https://doi.org/10.1017/nws.2016.21
https://doi.org/10.1017/nws.2016.21
https://doi.org/10.1109/COMST.2017.2749442
https://doi.org/10.1109/COMST.2017.2749442
https://doi.org/10.1109/TDSC.2008.35
https://doi.org/10.1109/TDSC.2008.35
https://doi.org/10.1016/0378-8733(94)90015-9
https://doi.org/10.1145/800133.804355

Heuristics for Opinion Diffusion via Local
Elections

Rica Gonen1 , Martin Koutecký2 , Roei Menashof1(B) ,
and Nimrod Talmon3

1 The Open University of Israel, Raanana, Israel
RoeiMena@gmail.com

2 Charles University, Prague, Czech Republic
koutecky@iuuk.mff.cuni.cz

3 Ben-Gurion University, Be’er Sheva, Israel
talmonn@bgu.ac.il

Abstract. Most research on influence maximization considers asimple
diffusion model, in which binary information is being diffused (i.e., ver-
tices – corresponding to agents – are either active or passive). Here we
consider a more involved model of opinion diffusion: In our model, each
vertex in the network has either approval-based or ordinal-based prefer-
ences and we consider diffusion processes in which each vertex is influ-
enced by its neighborhood following a local election, according to certain
“local” voting rules. We are interested in externally changing the pref-
erences of certain vertices (i.e., campaigning) in order to influence the
resulting election, whose winner is decided according to some “global”
voting rule, operating after the diffusion converges. As the corresponding
combinatorial problem is computationally intractable in general, and as
we wish to incorporate probabilistic diffusion processes, we consider clas-
sic heuristics adapted to our setting: A greedy heuristic and a local search
heuristic. We study their properties for plurality elections, approval elec-
tions, and ordinal elections, and evaluate their quality experimentally.
The bottom line of our experiments is that the heuristics we propose
perform reasonably well on both the real world and synthetic instances.
Moreover, examining our results in detail also shows how the different
parameters (ballot type, bribery type, graph structure, number of vot-
ers and candidates, etc.) influence the run time and quality of solutions.
This knowledge can guide further research and applications.

Keywords: Social choice · Influence maximization · Bribery in
elections

Partially supported by Ministry of Science, Technology and Space Binational Israel-
Taiwan grant, number 3-16542.
Partially supported by Charles University project UNCE/SCI/004 and by the project
22-22997S of GA ČR. Computational resources were supplied by the project “e-
Infrastruktura CZ" (e-INFRA CZ LM2018140) supported by the Ministry of Education,
Youth and Sports of the Czech Republic, and by the ELIXIR-CZ project (LM2018131),
part of the international ELIXIR infrastructure.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 144–158, 2023.
https://doi.org/10.1007/978-3-031-23101-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_10&domain=pdf
http://orcid.org/0000-0002-8836-6140
http://orcid.org/0000-0002-7846-0053
http://orcid.org/0000-0001-8733-991X
http://orcid.org/0000-0001-7916-0979
https://doi.org/10.1007/978-3-031-23101-8_10

Heuristics for Opinion Diffusion via Local Elections 145

1 Introduction

Social networks are ubiquitous in our lives and, as such, they have extensive
influence on the public opinion in our society (see, e.g., [9]). In this paper we
model a scenario in which an external agent wishes to change the public opin-
ion; say, to have its preferred candidate win in an upcoming election (one such
classical example is the 2016 US presidential elections [1]).

The situation we set out to study is complex as it consists of an interplay
between several factors – a social network, opinions, an external agent, and
the public opinion. As a result, our high level modeling contains the following
ingredients:

A Social Network. There is a social network where each node initially pos-
sesses their own opinion. We model this naturally as a labeled graph, in which
each node corresponds to a voter and is labeled by her opinion, and edges corre-
spond to mutual influence of voters. Of course, there are many ways to formalize
human opinions; as we are interested in a setting in which there is an upcom-
ing election to be held, we model opinions as ballots. Importantly, we consider
several ballot types, in particular, plurality ballots, approval ballots, and ordinal
ballots.

A Bribing Agent. There is an external agent that can influence some vot-
ers and cause them to change their opinions. We model this through the well-
established line of work considering campaigning or bribery in elections (see,
e.g., [11,12,15]).

A Diffusion Process. There is a process by which information propagates
through the network, so that some voters may further change their opinions as
they are influenced by their neighbors. We model this through a probabilistic dif-
fusion process in which, repeatedly, voters look at the opinions of their neighbors
and may change their own opinion as a result (intuitively, if the opinions of their
neighbors are significantly different than their own opinion). Such processes are
studied quite extensively (see, e.g., [18,22]), however our modeling is different
from some existing work and generalizes others: Technically, we introduce the
concept of a local voting rule that builds upon the neighboring opinions of a
voter and returns a score for each alternative, and use it to define a probability
distribution for the altered opinion of the voter.

A Voting Rule. There is a mechanism that takes the eventual opinions of the
voters and declares a winner of the election. Such mechanisms are usually referred
to as voting rules, and are a fundamental structure studied in computational
social choice [2,10].

1.1 Our Contributions

Our first, conceptual contribution is our general model, that is able to capture the
diffusion of complex opinions; we then realize our model with plurality ballots,
approval ballots, and ordinal ballots. Moreover, as we use local voting rules

146 R. Gonen et al.

in a stochastic way, our modeling is inherently stochastic; indeed, introducing
further probabilistic diffusion processes to more complex kinds of opinions is a
main motivation of our work.

We then take the point of view of the bribing agent and ask whether such an
agent can efficiently find a bribery scheme that would maximize the chances of
its preferred alternative winning the eventual election and maximize its winning
gap. Not surprisingly, the corresponding combinatorial problem is computation-
ally intractable in general. Thus, we describe several heuristic methods and eval-
uate their effectiveness experimentally. Technically, we consider both standard
heuristic approaches (in particular, Simulated Annealing) and heuristics that
proved to be effective for related tasks of opinion diffusion (in particular, greedy
heuristics for Influence Maximization [20]).

1.2 Related Work

Our work fits naturally within the growing literature on opinion diffusion in
social choice [17]. In particular, a recent paper [13] considers a similar setting
that, while allowing some islands of computational tractability, differs in that the
diffusion process is deterministic. Another paper [6] considers bribery and opin-
ion diffusion for ordinal ballots, however their diffusion process is significantly
different than ours and, in our opinion, somewhat problematic. This is because
in their diffusion process, only the preferred candidate potentially moves up, but
this means that the process depends on the point of view of the briber, while
we hold that any definition of diffusion in the context of campaigning or bribery
needs to be oblivious to the bribing agent(s). Other related works are the paper
of Bredereck and Elkind [3] who consider a particular setting and approach it
from a theoretical point of view. Wilder and Vorobeychik [24] consider a dif-
fusion process related to the Linear Cascade model while we take an approach
that is more in line with the Threshold Voter model.

More generally, our work relates to the study on Influence Maximization [20]
(and hence, also to Target Set Selection [4]. These works usually deal with similar
situations as we do, albeit in which the opinions are rather simple, usually binary.
For this setting, there is a greedy heuristic [20] that was later improved [5,21],
which our greedy heuristics builds upon.

2 Formal Model

We describe the ingredients of our setting.

2.1 Opinion Graphs

We have a simple undirected graph G = (V,E), where each vertex corresponds
to a voter. The vertices of G are labeled by the votes, such that the label of
v ∈ V corresponds to the vote of the agent v.

In the elections we consider there is always an underlying set of alternatives
A. We consider several types of elections corresponding to the ballots a voter

Heuristics for Opinion Diffusion via Local Elections 147

casts: plurality, approval, and ordinal. We identify a voter with their ballot, thus:
In plurality elections, each voter v ∈ V is some v ∈ A; in approval elections, each
voter v ∈ V is some v ⊆ A; and in ordinal elections, each voter v ∈ V is some
v ∈ L(A), where L(A) is the set of linear orders over A. (I.e., formally, V is
a multisubset of A, 2A and L(A), for plurality, approval, and ordinal ballots,
respectively.) Then, v is the label of the vertex corresponding to voter v, and
such labeled graph is referred to as an opinion graph.

2.2 Campaigning and Bribery

We are interested in the problem of campaigning (also studied under the name
bribery [12]) in our setting. Thus, we assume an external agent (i.e., the briber),
who has a given budget, and can perform certain bribery operations on the
voters, where a bribery operation operating on a certain voter v ∈ V causes v
to change her vote.1 We consider several bribery settings, differing by the cost
of each possible bribery operation:

– In simple bribery [14], the briber pays one coin to change the vote of a voter
v to any vote the briber wishes.

– In approval bribery [23], which is relevant only for approval elections, the
briber pays one coin for adding an alternative to the approval set of a vote v
or removing an alternative from the approval set of a vote v.

– In swap bribery [8], which is relevant for ordinal elections, the briber pays one
coin for a single swap of two consecutive alternatives in the vote of a voter v.
We focus on a restricted variant, shift bribery [7], in which the briber is only
allowed to move the preferred candidate, and to only move them up.

In our setting we have an initial society graph, modeling the society before
the briber bribes; then, the society might change following the bribery operations
of the briber, into a society after the bribery.

Remark 1. Technically we speak of bribery but conceptually our work relates to
campaigning. One difference between the two is that in bribery one expects the
bribed voter to stay loyal, but in campaigning, one attempts to influence the
voter more indirectly and thus does not expect loyalty. Our model still allows
for this definition of bribery by setting a high stubbornness parameter, defined
below. That way, a bribed voter remains loyal, but also influences their peers.

2.3 Diffusion Processes via Local Elections

We are interested in the propagation of opinions after the bribery happens.
Specifically, we focus on synchronous diffusion, where in each step of the diffusion
all voters might change their labels simultaneously. An asynchronous diffusion
process, where in each step of the diffusion only one voter might change her label,
1 For simplicity, we assume bribery operations always succeed. A relaxation of this

assumption is left for future work.

148 R. Gonen et al.

can be defined analogously. The specific way by which voters might change their
labels is governed by two parameters: A local voting rule RL, and a stubbornness
parameter α ≥ 0.

The local elections voting rule RL is a function that takes a certain collection
of votes and returns a score for each alternative a ∈ A. It is used as follows: In
each step of the diffusion, each vertex v ∈ V applies RL on a collection of votes
obtained by taking the votes of all their neighbors, plus α-times their own vote
v. We refer to the set of votes obtained by taking the open neighborhood of
v, plus α · d(v) copies of v’s vote, as the local election. In particular, if α = 0,
then the local election of v consists of her open neighborhood (i.e., her opinion
is disregarded); if α = 1, then the local election consists precisely of the closed
neighborhood; and if α = 5, then the local election consists of all neighbors of v
plus 5 copies of v.

The scores reported by the local rule RL are used to define the probability
distribution according to which v changes her opinion. The definitions are specific
to the different voting rules, and are given below.

Remark 2. The fact that the diffusion process is defined by the local election
is a major extension of the existing models. Indeed, a main motivation for our
work was to enrich existing models of opinion diffusion in social networks and
push them closer to reality by considering various probabilistic processes.

A Diffusion Process for Plurality Elections. Here we use RL that returns
the plurality score of each alternative. Then, we swap the voter’s label to an
alternative a with probability which is the score of a in the local election, divided
by the number of votes in the local election.

Example 1. Consider a voter v with open neighborhood {u1, u2}. Assume that v
votes for (i.e., is labeled with) alternative c while u1 and u2 vote for alternative
d. If α = 0, then in the next timestep of a synchoronous diffusion process, v
would surely change her vote to d. In contrast, if α = 1 then v would change her
vote to d with probability 1/3, and with probability 2/3 would still vote for c.

A Diffusion Process for Approval Elections. Here RL is a function that
returns the approval score of each alternative. Then, for each alternative a /∈ v
(i.e., not currently approved by v), a is added to v with probability that equals
the relative approval score of a (the relative approval score of an alternative is
the fraction of voters approving the alternative); similarly, for each alternative
a ∈ v (i.e., currently approved by v), we remove a from v with probability that
is one minus the relative approval score of a.

Example 2. Consider again a voter v with open neighborhood {u1, u2}. Assume
v votes for {a, b} while u1 and u2 each votes for {b, c}. If α = 1, then v would:
Definitely keep on approving b; with probability 2/3 would also approve c; and
with probability 2/3 would cease approving a.

Heuristics for Opinion Diffusion via Local Elections 149

A Diffusion Process for Ordinal Elections. For ease of presentation, we
describe our diffusion process for the case where RL is the Borda rule; the
description can be generalized to any ordinal voting rule that assigns scores to
candidates (importantly, this includes also rules such as Copeland and STV,
which can be defined as such).

We proceed as follows: Denote by c1, . . . , cm the candidates ordered by
decreasing Borda scores in the local election centered at v; refer to this ordering
as the Borda-order (in particular, the first candidate in the Borda-order is the
Borda winner). The process is iterative, where in iteration i we consider ci and
do as follows: We look at position j of ci in the ranking of v. Denote the ranking
of v as a1, . . . , am; so, in particular, aj = ci as ci is the jth candidate in v’s
ranking. If j = 1 (i.e., if ci is ranked first by v), then the iteration is complete.
Otherwise, look at the Borda scores of aj and of aj−1 (i.e., the candidate ranked,
by v, just above ci), and denote by B(c) the Borda score of a candidate c. Now,
define x = B(aj)

B(aj−1)
, with probability x

x+ 1
x

, swap aj and aj−1 (i.e., shift ci one
position up in v’s ranking; otherwise (i.e., with the complement probability), the
iteration is complete.

So, intuitively, we go over the candidates in decreasing Borda scores and
we bubble-up each candidate with probability related to the Borda score of the
candidate and the Borda score of the candidates in front of it in v’s ranking.

Example 3. Consider voter v with open neighborhood {u1, u2}. Assume v has
stubbornness α = 1 and she votes for (x, y, z) while u1 votes for (y, z, x) and u2

votes for (z, y, x). Then the Borda score2 would give x = 5, y = 7 and z = 6
and v’s local Borda election will result with c = (y, z, x). The first iteration over
c would then be: i = 1, ci = y, j = 2. With probability

7
5

7
5+

1
7
5

= 0.66 candidate

y will be bubbled up resulting with v voting for (y, x, z). If the first iteration
resulted in v voting for (y, x, z), then the second iteration over c would be: i = 2,
ci = z, j = 3. With probability

6
5

6
5+

1
6
5

= 0.59 candidate z will be bubbled up

resulting with v voting for (y, z, x). If the second iteration resulted in v voting
for (y, z, x), then the third iteration over c would be: i = 3, ci = x, j = 3. With
probability

5
6

5
6+

1
5
6

= 0.4 candidate x will be bubbled up, and with probability 0.6

v’s vote will not change from the last iteration and will remain (y, z, x). With
the highest probability after all three iterations v’s vote is identical to c’s result,
i.e., the Borda local election.

Now consider Copeland as RL and v, u1, u2 vote in the same way above.
According to Copeland tournament y beats x, z beats x, and y beats z, and so
y has two outgoing arcs and z has one outgoing arc. In order to avoid division
by zero, we normalize the scores by adding 1. Then the Copeland score would
give x = 1, y = 3, and z = 2, and the Copeland v’s local election will result with
2 To avoid division by zero, we define the Borda score of a candidate ranked as jth

to be |A| − j + 1 instead of |A| − j, although the latter is more common. These
definitions are mathematically equivalent.

150 R. Gonen et al.

c = (y, z, x). The first iteration over c would be then: i = 1, ci = y, j = 2. With
probability

3
1

3
1+

1
3
1

= 0.9 candidate y will be bubbled up resulting with v voting

for (y, x, z). Then the second iteration over c would be: i = 2, ci = z, j = 3. With
probability

2
1

2
1+

1
2
1

= 0.8 candidate z will be bubbled up resulting with v voting

for (y, z, x). Then, finally, the third iteration over c would be: i = 3, ci = x,
j = 3. With probability

1
2

1
2+

1
1
2

= 0.2 candidate x will be bubbled up, and with

probability 0.8 v’s vote will not change from the last iteration and will remain
(y, z, x).

2.4 Election Results via Global Voting Rules

Intuitively, we wish to study the society after the bribery and after the diffusion
process halts. However, as the diffusion process is probabilistic and is not guar-
anteed to halt, let us consider the expected society at infinity. Let the Markov
chain of our process be a directed graph in which the starting node is the society
after bribery, and each node corresponds to a possible society reached during the
diffusion process; we have an arc from a node to another node with probability
p if p is the probability of transitioning from one node to the other. Then, imag-
ining an infinite random walk in this network, we wish to study the distribution
of probabilities of where we end up, over all nodes. In particular, the resulting
election is a probability distribution over the set of votes (i.e., labels) at infinity
(wrt. the diffusion steps). In the simple case in which there is one absorbing node
(i.e., a node with no outgoing edges), it means that the diffusion would halt on
a specific society. Finally, a global voting rule RG takes the society and returns
a single alternative as the winner.

We consider a society stable from the perspective of our problem if the winner
of the election is unlikely to change. We ran a sample of simulations for a large
number of diffusion steps to determine a number k of steps after which the
likelihood of a change of winner becomes reasonably small. Our finding is that
after 20 diffusion steps, the proportion of instances in which the winner changes
is at most 0.2%, and the trend is clearly decreasing. For figure illustrating see full
version [16]. Because modeling a diffusion step is computationally expensive, we
will assume from now on that, with respect to who wins the election, the society
is close enough to the state of the Markov chain at infinity after 20 steps.

2.5 Optimization Goals

In general, we would like to understand the effect of different bribery actions on
the resulting winner. Since the process is stochastic, we define two measures of
success:

Definition 1 (PoW). Given a society after bribery and diffusion, the PoW
(Probability of Winning) is the probability mass on the Markov chain nodes in
which p wins.

Heuristics for Opinion Diffusion via Local Elections 151

Definition 2 (MoV). Given a society after bribery and diffusion, the MoV
(Margin of Victory) is the expected MoV of p, defined for a specific society as
follows: If p wins, then the MoV is the difference between the score of p and the
score of the runner-up (so, in particular, positive); if p loses, then the MoV is the
difference between the score of p and the score of the winner (so, in particular,
negative).

To conclude, a specific model is characterized by:

1. A ballot type – Plurality, Approval, or Ordinal;
2. A bribery type – Simple bribery, Approval bribery, or Swap bribery;
3. A local voting rule RL – Plurality, Approval, or Borda/Copeland;
4. Stubbornness parameter α;
5. A global voting rule RG – Plurality, Approval, or Borda/Copeland;

For such models, we consider two computational problems, corresponding to
optimizing either the PoW or the MoV. The input for both problems – referred
to as Optimal-PoW and Optimal-MoV, respectively – contains an opinion graph
G and a budget of b coins; Optimal-PoW or Optimal-MoV asks for finding a
bribery scheme costing at most b that maximizes the PoW or MoV, respectively.

3 Computing Optimal Bribery Schemes

Not surprisingly, the problems we set out to solve are NP-hard. In fact, even
if there is no graph at all, our problems are intractable in general, since they
reduce to bribery in elections [12] when there is no graph, and it is known,
e.g., that bribery is hard for approval elections [11, Theorem 4.2]. Our setting is
drastically more involved as we also consider a graph and a stochastic diffusion
process operating on it.

3.1 Heuristic Methods

As our problems are generally intractable, our aim is to evaluate the possibility of
efficiently solving them by heuristic methods. We report on computational sim-
ulations performed on their implementations. In particular, we use two heuristic
algorithms. While there are indeed many other possibilities of heuristic algo-
rithms one might consider, here we concentrate on two classic methods that
proved to be useful in the setting of influence maximization (see below). Note
that, interestingly, the heuristics we consider are, in a sense, oblivious to the
specifics of the diffusion process considered; that is, their specific operation does
not depend on the specifics of the problem we consider (e.g., the ballot type and
other problem parameters).

Greedy. Our first heuristic approach is an adaptation of an algorithm consid-
ered for Influence Maximization [20] that works as follows: We iterate for b times
where in each iteration we bribe the vertex that, if bribed, would increase the

152 R. Gonen et al.

probability of p winning after the diffusion. Notice that computing the probabil-
ity of p winning after the diffusion is a non-trivial sub-problem. In our simulations
we handle this issue as follows: We perform 50 independent runs of the diffusion
process using Monte Carlo, where in each run we perform 20 diffusion steps.
Then we use the average over the 50 runs as an estimation of this probability.

Simulated Annealing. Our second heuristic approach is a local search algo-
rithm that is an adaptation of an algorithm considered for Influence Maximiza-
tion [19] that works as follows: With budget b, we start by selecting b vertices
and bribe them, each by one coin (e.g., for plurality elections this corresponds to
selecting an initial solution uniformly at random). Then, we estimate the proba-
bility of p winning after the diffusion, again using 50 iterations of Monte Carlo.
Then, in each iteration of local improvement, we select one of the currently-
bribed voters and one of her neighbors, and instead of bribing her, we bribe the
neighbor. If this small change to the current solution increases the probability of
p winning (as estimated by our Monte Carlo repetitions), then we keep this local
improvement; otherwise, with increasing probability, we reject it and consider a
different local improvement.

4 Simulations

We implemented the heuristics described above and evaluated them in various
settings. The main goal of the simulations was to understand the possibility
of computing optimal briberies in practice and to better identify the problem
parameters that make finding optimal bribery schemes hard. Below we describe
our experimental design for plurality elections, approval elections, and ordinal
elections.

4.1 Experimental Design

First, let us describe our input graphs. We use both synthetic and real world
data.

Synthetic Graphs. We use the following models:

– G(n,p) – We generate input graphs from G(n, p), as follows: For a given num-
ber n of vertices and a value 0 ≤ p ≤ 1, we first create n independent vertices.
Then, for each pair of vertices, independently and uniformly at random, we
flip a coin and with probability p put an edge between them. After we gen-
erate the G(n, p) graph as just described, we assign labels to its vertices; we
do so uniformly at random (thus, effectively, the resulting election behaves
according to the Impartial Culture model).

– k-k-clusters – We create k subgraphs, each a G(n/k, p1) graph with some p1.
Then, for each pair of vertices u, v which are from different subgraphs, we put
an edge with probability p2 < p1, independently and uniformly at random.
This model creates the graph together with the labels as follows:

Heuristics for Opinion Diffusion via Local Elections 153

• For plurality elections – The label of the vertices in the jth subgraph
(j ∈ [k]) is j.

• For approval elections – Make k random ballots and label them with
b1, . . . , bk. Denote bj the cluster Vj ’s “base ballot.” Set 0 < α < 1. Label
each vertex Vj with an α-pertubation of bj , where α-pertubation of a
ballot b is defined as: take each candidate approved in ballot b and make it
a not-approval with probability α, and take each candidate not approved
in ballot b and make it an approval with probability α.

• For ordinal elections – Make k random ballots and label them with
b1, . . . , bk. Donate bj the cluster Vj ’s “base ballot." Set 0 < α < 1. Label
each vertex Vj with an α-pertubation of bj . α-pertubation of a ballot
b = b1, b2, . . . defined as: Begin with a blank ranking r (this is the ballot
we are creating). For i from 1 to m: insert bi into r at position j ≤ i with
probability αi−j/(1 + α + · · · + αi−1).

Intuitively, while the G(n, p) model creates uniform graphs, the k-k-clusters
model creates random graphs that aim at mimicking communities.

Real-World Graphs. We use graphs from the email-Eu-core network3, referred
to below as real-world network graph. Vertices in this graph correspond to real
people, and there is a directed edge from one vertex to another if the person
corresponding to the head of the directed edge sent at least one email to the
person corresponding to the tail of the directed edge.

Metrics. We evaluate the heuristic algorithms described above by estimating
the PoW and the MoV (see Definitions 1 and 2). To estimate PoW (MoV) we
perform 50 Monte Carlo iterations to estimate the probability that p wins (the
expected margin of victory of p) after the bribery operations performed by the
heuristic algorithm and after 20 iterations of the diffusion process (recall Sect. 2.4
and the discussion above of why 20 iterations are a reasonable proxy to the stable
state). Recall that the higher the PoW (MoV) the better. Furthermore, we report
on the running times of our heuristics.

Model Settings summary of the various inputs for the model, as mentioned
above, with the parameter settings:

– Voting rule – Plurality, Approval, Borda or Copeland.
– Graph type – G(n, p), 5-k-clusters or Real-world Graphs.
– Budget – Supposedly, each coin can bribe a single node, there are b coins to

use for bribery. We experimented with amounts between 5 and 50.
– Number of candidates – The number of candidates that are running for elec-

tion is also expressed as m. We experimented with leaps of 5 between range
of 5 to 50.

3 http://snap.stanford.edu/data/email-Eu-core.html.

http://snap.stanford.edu/data/email-Eu-core.html

154 R. Gonen et al.

– Number of voters – The number of voters, also expressed as n. For G(n, p)
and 5-k-clusters we experimented with leaps of 100 between range of 100 to
1500 and also 1005, the values are fixed on 1005 nodes for Real-world Graphs.

4.2 Results

Our main results are threefold:

– When plurality election is used in the diffusion process and MoV is opti-
mized at the cost of a slower run time, then Simulated Annealing performs
the best.

– When approval election is used in the diffusion process and the available
budget is relatively high then again Simulated Annealing performs the best
with regards to all studied objectives, namely, it achieves higher PoW, higher
MoV, and shorter run time than Greedy.

– When ordinal election is used in the diffusion process then Greedy and
Simulated Annealing perform about the same though Greedy takes longer
time to run. A significant factor in the run time is the choice of an ordinal
rule, since computations for Borda are easier than computations for Copeland
and indeed runs with Copeland as the ordinal rule tend to last ten times longer
than runs with Borda as the ordinal rule. However, for Copeland, significantly
higher MoV in the real world network graph and slightly higher PoW in both
synthetic and real world network graphs is achieved.

More specifically, we compare the Greedy heuristic method performance with
that of Simulated Annealing on the different optimization goal and the different
diffusion processes (see full version [16] for additional details).

– In plurality and approval elections, the Simulated Annealing heuristic achieve
better MoV and PoW than the Greedy heuristic as the budget increases, in
particular with real world graph (See Fig. 2). For ordinal elections, however,
we were mostly unable to find a correlation.

– The impact of the number of candidates and voters on the Greedy and
Simulated Annealing heuristics is not significant.

– With high budgets, the Simulated Annealing heuristic performs better in
terms of the PoW run time, because it finds the maximum point quickly.

– The greedy heuristic performs and scales better in terms of the MoV run
time. The Simulated Annealing heuristic took longer to execute in most cases,
and there was not always a clear correlation (see Fig. 2).

Several more in-depth observations of the impact of the various parameters
in our analysis are:

1. We found that the PoW and the MoV performance of both the Greedy and
the Simulated Annealing heuristics are positively correlated with the budget
increase. This makes intuitive sense: the more money, the better the outcome.
This observation is true for the diffusion processes of plurality, approval, and

Heuristics for Opinion Diffusion via Local Elections 155

Borda in the real world graph (slightly) and Copeland in G(n, p) and the
real world graph. However we could not find correlation for Borda in G(n, p)
and the 5-clusters graphs and Copeland in 5-clusters graph. We can see that
even with a small number of candidates, there is a correlation to the budget;
however, as the number of candidates grows, the budget becomes irrelevant.
The intuitive reason is the implementations of the ordinal bribe and diffu-
sion operations; the bribe increases the candidate’s rank by one place only,
while the diffusion favors high-ranking candidates, so the diffusion process
may often change the ranking back down (see full version [16] for additional
details). While the Greedy heuristic run time is also positively correlated
with the budget increase with respect to the diffusion processes, the Simu-
lated Annealing heuristic’s run time is not correlated with the budget increase
with respect to the plurality, approval, and ordinal diffusion processes. The
intuitive reason is that, while the Greedy heuristic performs more iterations
as the budget increases, Simulated Annealing operates by local improvement,
irrespective of the budget.

2. We find that the Simulated Annealing heuristic takes less time to run than the
Greedy heuristic for PoW, especially with high budgets with a large number
of candidates and voters in any type of election. However, the MoV Simulated
Annealing heuristic performs slower than the Greedy heuristic when used with
a plurality or approval diffusion process. This is true for execution with the
ordinal diffusion process only when budgets are relatively small.

3. The MoV performance of the Simulated Annealing heuristic is higher than
that of the Greedy heuristic when measured as a function of the number of
voters in terms of plurality and approval diffusion processes. In terms of the
ordinal diffusion process, however, the Simulated Annealing heuristic’s MoV
performance is similar to that of Greedy.

4. The MoV performance of Simulated Annealing is similar to that of Greedy
as a function of the number of candidates in terms of plurality, approval, and
ordinal diffusion processes.

5. We found negative correlation between the number of voters and PoW per-
formance for both heuristics with respect to all three diffusion processes. One
exception to the above is no correlation between the number of voters and
PoW performance using the Greedy heuristic for Copeland G(n, p) and 5-
clusters graphs.

The tables in Fig. 1 provide a thorough overview of our findings.
Results comparing the various graph types are shown in Fig. 2. The main

insight is that, for plurality elections, the Simulated Annealing heuristic outper-
forms the Greedy heuristic in terms of MoV and PoW in the different types of
graphs, but at a significantly higher time cost.

For graph comparisons with our observations see full version [16].

156 R. Gonen et al.

Fig. 1. A summary of the performance of the Greedy and Simulated Annealing heuris-
tics with respect to each other in the different scenarios of plurality and approval (top)
ordinal Borda and Copeland (bottom) diffusion processes, optimization goal, and input
parameters. Correlation calculated based on Pearson correlation coefficient.

Heuristics for Opinion Diffusion via Local Elections 157

Fig. 2. Results for comparing the Greedy and SA heuristics in plurality elections on
3 different graphs and labels. The leftmost (middle, rightmost) shows the results for
PoW (respectively, MoV, running time) as a function of the budget b; The green (blue,
purple) represents the real-world network graph, i.e., email-Eu-core network (respec-
tively, G(n, p), and k-clusters graph where k = 5 (named in the plot 5-connected).
(Color figure online)

5 Outlook

We proposed a general model for diffusion of opinions in social networks and
considered heuristics that optimize over bribery schemes for several realizations
of the model. Our model is general enough to incorporate various diffusion pro-
cesses, including different ballot types and quite complex stochastic elements.
We performed simulations to evaluate the performance of heuristic solutions
that solve the task at hand; while our task is theoretically computationally
intractable, our simulations are quite encouraging, in the sense that they reach
good results in reasonable time. We also highlighted several parameter factors
affecting the quality of the heuristics. We briefly discuss some avenues for future
research.

Improved Heuristics. A natural future direction is to design better heuristic
solutions, in particular such that are oblivious to the specific type of diffusion;
E.g., local search heuristics with better initial solutions, other greedy approaches,
as well as methods based on general solvers would be natural to try.

Other Settings. While we considered plurality, approval, and ordinal elections,
it is natural to also consider utility-based elections and elections with cumulative
ballots. Furthermore, there are other natural ways to treat the diffusion of com-
plex opinions, most notably ordinal opinions. Fitting real-world data to various
modeling choices would be an interesting future direction.

References

1. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J.
Econ. Perspectives 31(2), 211–36 (2017)

2. Brandt, F., Conitzer, V., Endriss, U., Lang, J.: P rocaccia. Handbook of compu-
tational social choice. Cambridge University Press, A.D. (2016)

3. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In:
Proceedings of IJCAI 2017 (2017)

158 R. Gonen et al.

4. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret.
Math. 23(3), 1400–1415 (2009). https://doi.org/10.1137/08073617X, https://doi.
org/10.1137/08073617X

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208 (2009)

6. Coro, F., Cruciani, E., D’Angelo, G., Ponziani, S.: Exploiting social influence to
control elections based on scoring rules. In: Proceedings of IJCAI 2019 (2019)

7. Elkind, E., Faliszewski, P.: Approximation algorithms for campaign management.
In: Proceedings of WINE 2010, pp. 473–482 (2010)

8. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2_27

9. Ellison, N.B., Lampe, C., Steinfield, C.: Social network sites and society: current
trends and future possibilities. Interactions 16(1), 6 (2009)

10. Endriss, U.: Trends in Computational Social Choice. AI Access (2017)
11. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in

elections? J. Artif. Intell. Res. 35, 485–532 (2009)
12. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer,

V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social
Choice, chap. 7. Cambridge University Press (2015)

13. Faliszewski, P., Gonen, R., Kouteckỳ, M., Talmon, N.: Opinion diffusion and cam-
paigning on society graphs. In: Proceedings of IJCAI 2018, pp. 219–225 (2018)

14. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

15. Faliszewski, P., Skowron, P., Talmon, N.: Bribery as a measure of candidate suc-
cess: complexity results for approval-based multiwinner rules. In: Proceedings of
AAMAS 2017, pp. 6–14 (2017)

16. Gonen, R., Koutecky, M., Menashof, R., Talmon, N.: Heuristics for opinion dif-
fusion via local elections full version (2022). https://www.openu.ac.il/personal_
sites/rica-gonen/

17. Grandi, U., Lorini, E., Perrussel, L.: Propositional opinion diffusion. In: Proceed-
ings of AAMAS 2015, pp. 989–997 (2015)

18. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social
networks: a survey. ACM SIGMOD Rec. 42(2), 17–28 (2013)

19. Jiang, Q., Song, G., Cong, G., Wang, Y., Si, W., Xie, K.: Simulated annealing
based influence maximization in social networks. In: Proceedings of AAAI 2011.
vol. 11, pp. 127–132 (2011)

20. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of KDD 2003, pp. 137–146 (2003)

21. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429 (2007)

22. Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R.: Diffusion in Social
Networks. Springer (2015)

23. Wang, J., Su, W., Yang, M., Guo, J., Feng, Q., Shi, F., Chen, J.: Parameterized
complexity of control and bribery for d-approval elections. Theoret. Comput. Sci.
595, 82–91 (2015)

24. Wilder, B., Vorobeychik, Y.: Controlling elections through social influence. In:
Proceedings of AAMAS 2018, pp. 265–273 (2018)

https://doi.org/10.1137/08073617X
https://doi.org/10.1137/08073617X
https://doi.org/10.1137/08073617X
https://doi.org/10.1007/978-3-642-04645-2_27
https://www.openu.ac.il/personal_sites/rica-gonen/
https://www.openu.ac.il/personal_sites/rica-gonen/

On the Parameterized Complexity
of s-club Cluster Deletion Problems

Fabrizio Montecchiani , Giacomo Ortali , Tommaso Piselli ,
and Alessandra Tappini(B)

Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
{fabrizio.montecchiani,giacomo.ortali,alessandra.tappini}@unipg.it,

tommaso.piselli@studenti.unipg.it

Abstract. We study the parameterized complexity of the s-Club
Cluster Edge Deletion problem: Given a graph G and two inte-
gers s ≥ 2 and k ≥ 1, is it possible to remove at most k edges from G
such that each connected component of the resulting graph has diameter
at most s? This problem is known to be NP-hard already when s = 2.We
prove that it admits a fixed-parameter tractable algorithm when parame-
terized by s and the treewidth of the input graph. The same result easily
transfers to the case in which we can remove at most k vertices, rather
than k edges, from G such that each connected component of the result-
ing graph has diameter at most s, namely to s-Club Cluster Vertex
Deletion.

1 Introduction

Graph clustering [25] is a classical task in data mining, with important appli-
cations in numerous fields including computational biology [6], image process-
ing [28], and machine learning [5]. A prominent formalization is Cluster Edit-

ing (also known as Correlation Clustering): Given a graph G and an inte-
ger k as input, the goal is to find a sequence of k operations, each of which
can be an edge or vertex insertion or removal, such that the resulting graph is
a so-called cluster graph, i.e., each of its connected components is a clique. If
we restrict the editing operations to be edge removals only, then the problem is
known as Cluster Edge Deletion. Namely, Cluster Edge Deletion takes
a graph G and an integer k as input, and asks for a set of k edges whose removal
yields a cluster graph. Equivalently, we seek for a partition of the vertices of
G into cliques, such that the inter-cluster edges (whose end-vertices belong to
different cliques) are at most k.

Unfortunately, both Cluster Editing and Cluster Edge Deletion are
well-known to be NP-complete in general [27], even when the input instances have

This work was partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: effi-
cient Algorithms for HArnessing networked Data”; (ii) University of Perugia, Fondi di
Ricerca di Ateneo, edizione 2021, project “AIDMIX - Artificial Intelligence for Decision
making: Methods for Interpretability and eXplainability”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 159–173, 2023.
https://doi.org/10.1007/978-3-031-23101-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_11&domain=pdf
http://orcid.org/0000-0002-0543-8912
http://orcid.org/0000-0002-4481-698X
http://orcid.org/0000-0002-7088-920X
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-031-23101-8_11

160 F. Montecchiani et al.

Fig. 1. Removing the seven thicker edges yields a partition of the vertices of the graph
into five 3-clubs.

bounded vertex degree [17]. Indeed, their parameterized complexity with respect
to the natural parameter k has been intensively investigated; in particular, both
problems are in FPT [7,11], but do not allow subexponential-time parameterized
algorithms unless ETH fails [14,17].

In many applications, modelling clusters with cliques might be a severe lim-
itation, for instance, in presence of noise in the data collection process. Con-
sequently, several notions of relaxed cliques have been introduced and investi-
gated [4,16]. We focus on the concept of s-club, in which each pair of vertices is at
distance at most s ≥ 2 in the cluster. (Note that a 1-club is in fact a clique.) We
remark that defining clusters as s-clubs proved to be effective in several applica-
tion scenarios such as social network analysis and bioinformatics [2,3,18,21,22].
The s-Club Cluster Edge Deletion problem can be stated analogously as
Cluster Edge Deletion by replacing cliques with s-clubs (refer to Sect. 2
for formal definitions); see also Fig. 1. Unfortunately, s-Club Cluster Edge

Deletion is NP-complete already for s = 2 [19]. Also, 2-Club Cluster Edge

Deletion belongs to FPT parameterized by k [1,19]. Indeed, by using bounded
search trees (see [26, Theorem 6.3]), one easily verifies that s-Club Cluster

Edge Deletion is FPT parameterized by k + s. On the other hand, for any
s ≥ 2, the problem cannot be solved in time 2o(k)nO(1) unless ETH fails [20].

Contribution. Based on the above discussion, we know that it is unlikely
that s-Club Cluster Edge Deletion lies in FPT when parameterized by s,
while it lies in FPT parameterized by s + k. The main focus of this paper is
instead on those scenarios in which the solution size (measured by k) is large,
and we still aim for tractable problems based on alternative parameterizations.
In this respect, treewidth is a central parameter in the parameterized complexity
analysis (see [13,24]). We prove that s-Club Cluster Edge Deletion lies in
FPT when parameterized by s+ω, where ω is an upper bound for the treewidth
of the input graph. More precisely, our main contribution can be summarized as
follows.

On the Parameterized Complexity of s-club Cluster Deletion Problems 161

Theorem 1. There is an algorithm that, for any n-vertex graph G of treewidth
at most ω, solves the s-Club Cluster Edge Deletion problem on G in
O(22

O(ω2 log s) · n) time.

The algorithm used to prove Theorem 1 can be easily adapted to solve a
similar problem, namely s-Club Cluster Vertex Deletion. The task is to
find at most k vertices (rather than edges) whose removal yields a set of disjoint
s-clubs. Again, it turns out that 2-Club Cluster Vertex Deletion is NP-
complete [10,19] but FPT parameterized by k [19]. We prove the following.

Theorem 2. There is an algorithm that, for any n-vertex graph G of treewidth
at most ω, solves the s-Club Cluster Vertex Deletion problem on G in
O(22

O(ω2 log s) · n) time.

Overview. We first observe that using Courcelle’s theorem to prove that
s-Club Cluster Edge Deletion is in FPT using only s as parameter is not
obvious. Instead, we provide an explicit algorithm. Namely, the main crux of
our approach lies in the definition of sufficiently small records that allow to keep
track of the distances between pairs of vertices in a (partial) s-club. In particu-
lar, we cannot afford to explicitly store the distance between all possible pairs
of vertices, but we rather store sets of “requests for paths” placed by forgotten
vertices. With such records at hand, we then apply a standard dynamic program-
ming algorithm over a tree decomposition of the input graph, which still requires
a nontrivial amount of technicalities in order to maintain such data structures.

Our records have some similarities, but also several key differences and exten-
sions, with those used in a technique presented by Dondi and Lafond in [12,
Thm. 14] to solve a different problem. Namely, they describe an FPT algorithm
to decide whether the vertices of a graph can be covered with at most d (possi-
bly overlapping) 2-clubs, parameterized by treewidth. The main novelties of the
presented approach with respect to [12] will be suitably highlighted throughout
the paper.

For reasons of space, some proofs have been omitted or sketched. The corre-
sponding statements are marked with a (�) and can be found in [23].

2 Preliminaries

Problem Formulation. For any d ∈ Z
+, we use [d] as shorthand for the set

{1, 2, . . . , d}. Let G = (V,E) be a graph. For a subset W ⊂ V , we denote by
G[W] the subgraph of G induced by the vertices of W . The neighborhood of a
vertex v of G is defined as NG(v) = {u : uv ∈ E}. Given two vertices u, v ∈ V ,
the distance in G between u and v, denoted by dG(u, v), is the number of edges
in any shortest path between u and v in G. The diameter of G is the maximum
distance in G between any two of its vertices. An s-club of G, with s ≥ 1, is

162 F. Montecchiani et al.

a subset W ⊆ V such that the diameter of G[W] is at most s. A partition of
G is a collection of subsets C = {Ci}i∈[d] such that: (a)

⋃d
i=1 Ci = V , and (b)

Ci ∩ Cj = ∅ for each i, j ∈ [d] with i 	= j. We denote by EC the set of all edges
uv of G such that u, v ∈ Ci, for some i ∈ [d], and by ED = E \ EC .

We study the following problem.
s-Club Cluster Edge Deletion

Input: G = (V,E), k ≥ 1, s ≥ 2.
Output: A partition C = {Ci}i∈[d] of G such that Ci is an s-club for each
i ∈ [d], and |ED| ≤ k.

A partial partition of G is a collection of subsets C = {Ci}i∈[d] such that: (a)
⋃d

i=1 Ci ⊆ V , and (b) Ci ∩ Cj = ∅ for each i, j ∈ [d] with i 	= j. Denote by VC
the set of vertices v of G such that v ∈ Ci for some i ∈ [d], and by VD = V \ VC .

We study the following problem.
s-Club Cluster Vertex Deletion

Input: G = (V,E), k ≥ 1, s ≥ 2.
Output: A partial partition C = {Ci}i∈[d] of G such that Ci is an s-club for
each i ∈ [d], for each uv ∈ E either there exists C ∈ C such that u, v ∈ C or at
least one of u, v is in VD, and |VD| ≤ k.

Tree-Decompositions. Let (X , T) be a pair such that X = {Xi}i∈[�] is a
collection of subsets of vertices of a graph G = (V,E), called bags, and T is
a tree whose nodes are in one-to-one correspondence with the elements of X .
When this creates no ambiguity, Xi will denote both a bag of X and the node
of T whose corresponding bag is Xi. The pair (X , T) is a tree-decomposition of
G if: (i)

⋃
i∈[�] Xi = V , (ii) for every edge uv of G, there exists a bag Xi that

contains both u and v, and (iiii) for every vertex v of G, the set of nodes of T
whose bags contain v induces a non-empty (connected) subtree of T . The width
of (X , T) is max�

i=1 |Xi| − 1, while the treewidth of G, denoted by tw(G), is the
minimum width over all tree-decompositions of G. The problem of computing a
tree-decomposition of width tw(G) is fixed-parameter tractable in tw(G) [8]. A
tree-decomposition (X , T) of a graph G is nice if T is a rooted binary tree with
the following additional properties [9].

1. If a node Xi of T has two children whose bags are Xj and Xj′ , then Xi =
Xj = Xj′ . In this case, Xi is a join bag.

2. If a node Xi of T has only one child Xj , then Xi 	= Xj and there exists a
vertex v ∈ G such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj . In the former
case Xi is an introduce bag, while in the latter case Xi is a forget bag.

3. If a node Xi is the root or a leaf of T , then Xi = ∅.

Given a tree-decomposition of width ω of G, a nice tree-decomposition of G with
the same width can be computed in O(ω · n) time [15].

On the Parameterized Complexity of s-club Cluster Deletion Problems 163

Fig. 2. A 4-club C′ and a potential 4-club C ⊂ C′.

3 Algorithm for s-CLUB CLUSTER EDGE DELETION

The proof of Theorem 1 is based on a dynamic programming algorithm over a
nice tree-decomposition. We first describe the records to be stored at each bag,
and we then present the algorithm.

3.1 Definition of the Records

Let G = (V,E) be an n-vertex graph and let (X , T) be a nice tree-decomposition
of G of width ω. For each i ∈ [�], let Ti be the subtree of T rooted at the bag
Xi ∈ X and let Gi = (Vi, Ei) be the subgraph of G induced by the vertices that
belong to at least one bag of Ti. Moreover, given a subset of vertices C ⊆ Vi,
we call C a potential s-club, and let ∂C = C ∩ Xi and int(C) = C \ Xi. We are
now ready to describe the items of the record to be stored at each bag. Some of
these items are similar to those described in [12], although with some important
differences that allow us to deal with any fixed value of s.

Distances Between Vertices in ∂C. The first item of the record is a table
that stores the pairwise distances of the vertices in ∂C. Namely, let D(∂C) be a
table having one row and one column for each vertex in ∂C, and such that:

D(∂C)[a, b] =

⎧
⎪⎨

⎪⎩

0, if a = b

dG[C](a, b), if 1 ≤ dG[C](a, b) ≤ s

∞, otherwise.

For instance, in Fig. 2, D(∂C)[a, b] = ∞. Observe that D(∂C) contains at most
(ω + 1)2 ∈ O(ω2) entries.

Distances Between a Vertex in int(C) and a Vertex in ∂C. The second
item of the record is a table that stores the distances between pairs of vertices
such that one is in int(C) and the other is in ∂C. Two vertices u, u′ in int(C)
are equivalent with respect to ∂C, if for each vertex a ∈ ∂C, then either 1 ≤

164 F. Montecchiani et al.

dG[C](u, a) = dG[C](u′, a) ≤ s, or dG[C](u, a) > s and dG[C](u′, a) > s. For
example, in Fig. 2, vertices u and w are equivalent with respect to ∂C. Namely,
let H(∂C) be a table having one column for each vertex a ∈ ∂C, and one row
for each equivalence class [u]∂C with respect to ∂C. Namely:

H(∂C)[u, a] =

{
dG[C](u, a), if 1 ≤ dG[C](u, a) ≤ s

∞, otherwise.

For instance, in Fig. 2, let [u]∂C = {u,w}, then we have H(∂C)[u, a] = 1 and
H(∂C)[u, b] = ∞. Observe that H(∂C) contains at most (s + 1)(ω+1) rows, and
hence O(ω · sO(ω)) = O(2O(ω log s)) entries. It is worth observing that, if H(∂C)
contains two rows r and r′ such that cell-wise the values of r are smaller than
or equal to those of r′, then we can avoid storing r and keep only r′ in H(∂C).
However, this would not reduce the asymptotic size of H(∂C).

Distances Between Vertices in int(C). The third (and last) item of the
record represents the key insight to extend the result in [12]. Roughly speaking,
in the case s = 2, pairs of vertices in int(C) must have distance at most two in
G[C], otherwise there is no C ′ ⊇ C such that C ′ is a 2-club of G. Unfortunately,
this is not true in general when s > 2. On the other hand, suppose that C is a
subset of an s-club C ′ of G and that there exist two vertices u, u′ ∈ int(C) whose
distance in G[C] is larger than s. Then, since each bag if T is a separator of G,
the shortest path in G between u and u′ goes through some pair of vertices in
∂C. We formalize this observation. Let w, z ∈ int(C) be two vertices such that
dG[C](w, z) > s. A request for ∂C, denoted by Rwz, is a table having one row and
one column for each vertex in ∂C. Namely, for each a, b ∈ ∂C, let 2 ≤ δ ≤ s − 2
be the largest value (if any) such that connecting a and b with a path π of length
δ makes the distance between w and z to be at most s, then Rwz[a, b] = δ. If
instead such a value δ does not exist, then Rwz[a, b] = �. For instance, in Fig. 2,
dG[C](w, z) > 4, while δ = 2, hence we would set Rwz[a, b] = 2.

Observe that if there exist two requests Rwz and Rw′z′ such that Rwz[a, b] =
Rw′z′ [a, b] for each pair a, b ∈ ∂C, then w and w′ are equivalent with respect
to ∂C (i.e., w,w′ ∈ [w]∂C), and the same holds for z and z′. For example, in
Fig. 2, this would be the case for Ruz and Rwz, and indeed we have already
observed that u and w are equivalent with respect to ∂C. Therefore we can
avoid storing duplicated requests, and we denote by Q(∂C) the set containing
all distinct requests for ∂C. Also, Q contains at most (s−2)(ω+1)2 ∈ O(sO(ω2)) =
O(2O(ω2 log s)) distinct requests.

Solutions. Before describing our algorithm, we need to slightly extend our
notation. If a potential s-club C is such that ∂C = ∅ (recall that C ⊆ Vi), then
we call it complete. Consider a partitioning P l

i of Gi into potential s-clubs and
let Cl

i = {Cl
j,i | j ∈ [dl]} be the potential s-clubs in P l

i that are not complete,
i.e., any C ∈ Cl

i is such that ∂C 	= ∅. In particular, let ∂Cl
i = {∂Cl

j,i | j ∈ [dl]}.

On the Parameterized Complexity of s-club Cluster Deletion Problems 165

Moreover, we let Dl
i = {D(∂Cl

j,i) | j ∈ [dl]}, Hl
i = {H(∂Cl

j,i) | j ∈ [dl]}, and
Ql

i = {Q(∂Cl
j,i) | j ∈ [dl]}. A solution of Xi is a tuple Sl

i = 〈∂Cl
i,Dl

i,Hl
i,Ql

i, k
l
i〉.

Here kl
i is an integer, called edge-counter, equal to |Ei\P l

i(Ei)|, i.e., kl
i counts the

number of edges having their endpoints in different potential s-clubs of P l
i , hence

kl
i ≤ k. Two solutions Sl

i = 〈∂Cl
i,Dl

i,Hl
i,Ql

i, k
l
i〉 and Sg

i = 〈∂Cg
i ,Dg

i ,Hg
i ,Qg

i , k
g
i 〉

are distinct if ∂Cl
i 	= ∂Cg

i , or Dl
i 	= Dg

i , or Hl
i 	= Hg

i , or Ql
i 	= Qg

i . Observe that if
Sl

i and Sg
i are not distinct but kl

i < kg
i , then it suffices to consider only Sl

i.

Lemma 1 (�). For a bag Xi, there exist O(22
O(ω2 log s)

) distinct solutions.

3.2 Description of the Algorithm

We are now ready to describe our dynamic-programming algorithm over a nice
tree-decomposition (X , T) of the input graph G. The main differences with
respect to the algorithm in [12] lie in the management of the sets Q(·) (which do
not exist in [12]), and on a more sophisticated updating of the tables D(·) and
H(·), as a consequence of the non applicability of some simplifying assumptions
that hold only when s = 2. Moreover, we also keep track of the number of edges
having their end-vertices in different potential s-clubs.

Let Xi be the current bag visited by the algorithm. We compute the set of
solutions for Xi based on the solutions computed for its child or children (if any).
In case the resulting set of solutions is empty, the algorithm halts and returns a
negative answer. We distinguish four cases based on the type of Xi.

Xi is a Leaf Bag. In this case Xi is empty and there exists only one trivial
solution S1

i , in which all tables are empty and k1
i = 0.

Xi is an Introduce Bag. Let Xj = Xi \ {v} be the child of Xi. The algorithm
exhaustively extends each solution Sl

j of Xj as follows. It first generates at most
dl new partitions by placing v in each ∂C ′ ∈ ∂Cl

j . Also, it generates a partition
in which v forms a new potential s-club C = ∂C = {v}. Consider one of the new
partitions generated by the algorithm. In order to build the corresponding new
solution for Xi, we distinguish the following two cases.

Case A (∂C = {v}). D(∂C) is trivially defined, H(∂C) and Q(∂C) are empty.

Case B (∂C = ∂C ′ ∪{v}). The next observation immediately follows from the
fact that ∂C = ∂C ′ ∪ {v} and int(C) = int(C ′).

Observation 1. Suppose that there exist a, b ∈ ∂C ′ such that dG[C′](a, b) >
dG[C](a, b), then any shortest path between a and b in G[C] contains vertex v.

We proceed as follows.

– Computing D(∂C) from D(∂C ′)1.
1 Since the matrix is symmetric, when we update a cell D(∂C)[a, b] we assume that

also D(∂C)[b, a] is updated with the same value.

166 F. Montecchiani et al.

1. We add a new row and a new column for vertex v.
2. For each vertex a ∈ ∂C ′, let δav = minb∈NG[Xi](v)

D(∂C ′)[a, b], and note
that δav = 0 if edge av belongs to G[C]. Clearly, it holds that

D(∂C)[a, v] =

{
∞, if δav ∈ {s,∞}
1 + δav, otherwise.

3. By Observation 1, for each pair a, b ∈ ∂C ′, the corresponding value of
D(∂C) can be updated as follows:

D(∂C)[a, b] = min{D(∂C ′)[a, b],D(∂C)[a, v] + D(∂C)[b, v]}.

– Computing H(∂C) from H(∂C ′).
1. We add a new column for vertex v.
2. For each equivalence class [u]∂C′ , let δuv = mina∈NG[Xi](v)

H(∂C ′)[u, a].
Since there is no edge uv such that u ∈ int(C), it follows that

H(∂C)[u, v] =

{
∞, if δuv ∈ {s,∞}
1 + δuv, otherwise.

3. By Observation 1, for each pair of vertices u ∈ int(C ′) and a ∈ ∂C ′, the
corresponding value of H(∂C) can be updated as follows:

H(∂C)[u, a] = min{H(∂C ′)[u, a],H(∂C)[u, v] + D(∂C)[v, a]}.

– Computing Q(∂C) from Q(∂C ′). Note that the addition of v cannot lead to
new requests but it may actually yield the update of some request in Q(∂C ′).
1. For each request Rwz in Q(∂C ′), we verify whether, as a consequence of

the introduction of v, there exists a cell Rwz[a, b] such that D(∂C)[a, b] ≤
Rwz[a, b]. If such a cell exists, we say that Rwz is fulfilled. We add Rwz

to Q(∂C) if and only if Rwz is not fulfilled.
2. If Rwz is not fulfilled, before adding it to Q(∂C), we update it as follows:

(a) We add a row and a column for v.
(b) For each pair a, b ∈ ∂C ′, we compute

δab = min{(H(∂C)[w, a]+H(∂C)[z, b],H(∂C)[z, a]+H(∂C)[w, b]}.

Observe that δab +D(∂C)[a, b] > s, otherwise the request would have
been fulfilled before.

(c) By definition of request, we have Rwz[a, b] = s − δab, if δab < s − 1,
and Rwz[a, b] = �, otherwise.

Finally, in both Case A and Case B, in order to obtain the edge-counter
of the new solution, kl

j needs to be increased by the number of edges incident to
v whose other end-vertex is in Xi but not in C. If the resulting edge-counter is
greater than k, the solution is discarded.

Xi is a Forget Bag. Let Xj = Xi ∪ {v} be the child of Xi. The algorithm
updates each solution Sl

j of Xj as follows. It first identifies the potential s-club
C ′ ∈ ∂Cl

j that vertex v belongs to. Then, it verifies whether ∂C ′ = {v}, i.e.,
whether removing v from C ′ makes it complete.

On the Parameterized Complexity of s-club Cluster Deletion Problems 167

Case A (∂C ′ = {v}). The algorithm checks the following completion condi-
tions:

1. The value of each cell of D(∂C ′) is at most s;
2. The value of each cell of H(∂C ′) is at most s;
3. The set Q(∂C ′) is empty.

Observation 2. If C ′ is complete, then it is an s-club of G if and only if the
completion conditions are satisfied.

If any of the completion conditions is not satisfied, the solution Sl
j is dis-

carded. Otherwise, we generate a new solution for Xi such that ∂Cl
i = ∂Cl

j\{∂C ′}.

Case B (∂C ⊃ {v}). First, we set ∂C = ∂C ′ \ {v} and ∂Cl
i = (∂Cl

j \ {∂C ′}) ∪
{∂C}. Note that the distance in G[C] between any two vertices is the same as
in G[C ′].

– Computing D(∂C) from D(∂C ′). We simply remove the row and column of v.
– Computing H(∂C) from H(∂C ′).

1. We remove the column corresponding to v.
2. We check whether H(∂C ′) already contains a row that represents the

distances of v with respect to the vertices in ∂C. Namely, we check if
there is an equivalence class [u]∂C such that for each vertex a ∈ ∂C, it
holds H(∂C)[u, a] = D(∂C ′)[a, v]. If such a row does not exist, we add it
to H(∂C).

– Computing Q(∂C) from Q(∂C ′). Forgetting vertex v causes the update of
existing requests in Q(∂C ′), as well as the introduction of new requests.
1. To update the existing requests, for each request Rwz in Q(∂C ′):

(a) We remove the row and column corresponding to v.
(b) We verify that there exist at least two vertices a, b ∈ ∂C such that

Rwz[a, b] 	= �. If this is the case, we add the updated request to Q(∂C),
otherwise we discard the solution Sl

j .
2. To introduce new requests, we verify whether there exists a cell

H(∂C ′)[u, v] = ∞, which represents the existence of an equivalence class
[u]∂C′ whose vertices have distance in C ′ from v larger than s. If such a
cell exists, then:
(a) We create a new request Ruv.
(b) For each pair a, b ∈ ∂C, we compute

δu = min{H(∂C)[u, a],H(∂C)[u, b]}
and

δv = min{H(∂C)[v, a],H(∂C)[v, b]}.

(c) By definition of request, we have Ruv[a, b] = s− (δu+δv), if δu+δv <
s − 1, and Ruv[a, b] = �, otherwise.

168 F. Montecchiani et al.

(d) If the value of at least one cell of Ruv is different from �, then we add
Ruv to Ql

i(∂C). Otherwise, we discard the solution Sl
j .

In both Case A and Case B, we observe that the edge-counter of the new
solution can be set to be equal to the original kl

j .
Finally, we observe that two solutions Sl

i and Sg
i , stemming from two distinct

solutions of Xj , may now be the same as a consequence of the removal of v, up
to the values of kl

i and kg
i . For each such a pair, it suffices to keep the solution

with lower edge-counter.

Xi is a Join Bag. Let Xj = Xj′ be the two children of Xi. The algorithm
exhaustively merges each pair of solutions Sl

j of Xj and Sl′
j′ of Xj′ , if possible.

A successful merge corresponds to a solution of Xi. Without loss of generality,
we can avoid merging Sl

j and Sl′
j′ when ∂Cl

j 	= ∂Cl′
j′ , because a resulting solution

(if any), can be obtained by merging a different pair of solutions Sh
j of Xj and

Sh′
j′ such that ∂Ch

j = ∂Ch′
j′ . Therefore we assume ∂Cl

j = ∂Cl′
j′ . In other words,

for each ∂C in ∂Cl
j there exists ∂C ′ in ∂Cl′

j′ such that ∂C = ∂C ′. Also, in the
following we denote by C∗ the potential s-club such that ∂C∗ = ∂C = ∂C ′ and
int(C∗) = int(C)∪ int(C ′). It remains to verify that, for each such C∗, each pair
of vertices u, u′ such that u ∈ int(C) and u′ ∈ int(C ′) is either at distance at
most s or we can generate a new request for u, u′. We remark that, when s > 2
(and hence differently from [12]), a new shortest path between u and u′ may be
formed by both vertices in int(C) and vertices in int(C ′). We proceed as follows.

– For each pair a, b ∈ ∂C, let ωab = min{D(∂C)[a, b],D(∂C ′)[a, b]}. We con-
struct the weighted complete graph W ∗ on the vertex set ∂C∗ and such that
the weight of any edge ab is ωab.

– Computing D(∂C∗) from D(∂C) and D(∂C ′): By construction of W ∗, it
follows that for each pair a, b ∈ ∂C∗, D(∂C∗)[a, b] corresponds to the weighted
shortest path between a and b in W ∗.

– Computing H(∂C∗) from H(∂C) and H(∂C ′).
1. We first merge H(∂C) and H(∂C ′) avoiding duplicated rows. Let H(∂C ′′)

be the resulting table.
2. Similarly as in the previous step, for each equivalence class [u]∂C′′ of

H(∂C ′′), we add a vertex u to W ∗ and, for each vertex a of W ∗ we add the
edge ua with weight ωua = H(∂C ′′)[u, a]. Then H(∂C∗)[u, a] corresponds
to the weighted shortest path between u and a in the resulting graph.

3. As some rows of H(∂C∗) may be the same, we remove possible duplicates.
– Computing Q(∂C∗) from Q(∂C) and Q(∂C ′).

1. We first merge the two sets Q(∂C) and Q(∂C ′) avoiding duplicated
requests. Let Q(∂C ′′) be the resulting set of requests.

2. We verify whether some of these requests have been fulfilled.
(a) For each request Rwz in Q(∂C ′′), we add Rwz to Q(∂C∗) if and

only if Rwz is not fulfilled (i.e., there is no cell Rwz[a, b] such that
D(∂C∗)[a, b] ≤ Rwz[a, b]).

On the Parameterized Complexity of s-club Cluster Deletion Problems 169

(b) If Rwz is not fulfilled, before adding it to Q(∂C∗), we update it as
follows:

i For each pair of vertices a, b ∈ ∂C∗, we compute

δab = min{(H(∂C∗)[w, a] + H(∂C∗)[z, b],
H(∂C∗)[z, a] + H(∂C∗)[w, b]}.

Observe that δab +D(∂C∗)[a, b] > s, otherwise the request would
have been fulfilled before.

ii Similarly as in the previous cases, by definition of requests it
follows that Rwz[a, b] = s − δab, if δab < s − 1, and Rwz[a, b] = �,
otherwise.

iii If the value of at least one cell of Rwz is different from �, we
add Rwz to Ql

i(∂C∗). Otherwise, we discard the pair of solutions
Sl

j , Sl′
j′ .

3. We now generate new requests, if needed.
(a) For each pair of rows [w]∂Cj

∈ H(∂Cj) and [z]∂Cj′ ∈ H(∂Cj′), we
add two representative vertices w and z to W ∗ and, for each vertex
v of W ∗ we add the edges wv and zv with weights H(∂C∗)[w, v] and
H(∂C∗)[z, v], respectively. Let σuv be the shortest path between any
two vertices u, v in this graph.

(b) If σwz > s, we generate a new request Rwz.
i For each pair u, u′ ∈ ∂C∗, we compute

δuu′ = min{σwu + σzu′ , σwu′ + σzu}.

ii Again it follows that Rwz[u, u′] = s − δuu′ , if δuu′ < s − 1, and
Rwz[u, u′] = �, otherwise.

iii If the value of at least one cell of Rwz is different from �, we add
Rwz to Ql

i(∂C∗). Otherwise, we discard the solutions Sl
j , Sl′

j′ .

Finally, let M the set of edges in the new solution between vertices of Xi

that belong to different partial s-clubs. The edge-counter of the new solution is
kl

i+kl′
i −|M | (to avoid double-counting such edges). If the resulting edge-counter

is larger than k, then the solution is discarded.

The next lemma establishes the correctness of the algorithm.

Lemma 2 (�). Graph G admits a solution for s-Club Cluster Edge Dele-

tion if and only if the algorithm terminates after visiting the root of T .

Proof (Sketch). We sketch one direction, namely, to derive a contradiction, sup-
pose that G admits a partition P into s-clubs that represents a valid solution
but the algorithm terminates prematurely. If this is the case, there must be a
bag Xi in which a solution Si of Xi has been discarded but the partition Pi

corresponding to Si could be extended to P. We can distinguish cases based

170 F. Montecchiani et al.

on the type of bag Xi, we only describe the case in which Xi is an introduce
bag. Then Si is discarded only if the edge-counter becomes larger than k, which
means that there exist at least k + 1 edges whose end-vertices are in distinct
potential s-clubs of Pi. Since any two distinct potential s-clubs of Pi will be
subsets of two distinct s-clubs of P, this is a contradiction with the fact that
partition P represents a valid solution. ��
Proof (of Theorem 1). The correctness of the algorithm derives from Lemma 2. It
remains to argue about its time complexity. A tree decomposition of G of width
ω can be computed in O(2O(ω3) ·n) [8] time, and from it a nice tree-decomposition
of width ω can be derived in O(ω · n) time [15].

For each bag X, by Lemma 1 and by the fact that we avoid storing duplicated
solutions, we have O(22

O(ω2 log s)
) solutions. Hence, when building the solution set

of X from its child or children, we process at most these many elements. The
size of a solution S of X is O(2O(ω2 log s)), and each extension takes polyno-
mial time in the size of the extended solution. Let f(ω, s) = 22

O(ω2 log s)
and

g(ω, s) = 2O(ω2 log s), and observe that g(ω, s)O(1) = o(f(ω, s)). It follows that
constructing the solution set of X takes O(f(ω, s) · g(ω, s)O(1)) = O(f(ω, s)) =

O(22
O(ω2 log s)

). In addition, if X is a forget bag, we also need to remove possi-
ble duplicated solutions. This can be done by sorting the solutions, which takes
O(g(ω, s)) × O(f(ω, s) log f(ω, s)). Also, since O(g(ω, s)) = O(log f(ω, s)), we
have O(f(ω, s) log f(ω, s)) = O(f(ω, s) · g(ω, s)) = O(f(ω, s)). The statement
then follows because there are O(n) bags. ��

4 Algorithm for s-CLUB CLUSTER VERTEX DELETION

The algorithm presented in Sect. 3 can be adapted to solve s-Club Cluster

Vertex Deletion, and hence to prove Theorem 2. At high level, the modified
algorithm does not allow inter-cluster edges but may ignore up to k vertices
that will not be part of the partial partition. Since the modifications are rather
minor, we simply describe such differences without repeating common parts.

Let Xi be the current bag visited by the algorithm. A solution Sl
i for Xi is

modeled in the same way as for s-Club Cluster Edge Deletion, with one
minor difference. Namely, kl

i is interpreted as a vertex-counter rather than an
edge-counter. Clearly, Lemma 1 still holds.

Concerning the algorithm, if Xi is a leaf bag, again there exists only one
trivial solution S1

i , in which all tables are empty and k1
i = 0.

If Xi is an introduce bag, the only modifications that we need are as follows.
Let Xj = Xi \ {v}. The algorithm still exhaustively extends each solution Sl

j

of Xj . It first generates at most dl new partitions by placing v in each ∂C ′ ∈
∂Cl

j . However, we can place v in ∂C ′ only if all v’s neighbors in Gi (if any)
belong to ∂C ′. Similarly, the algorithm generates a partition in which v forms
a new potential s-club C = ∂C = {v}, only if v does not have any neighbor
in Gi. Observe that this is equivalent as running the algorithm described in
Sect. 3 imposing that the edge counter of any solution be zero. Additionally, the

On the Parameterized Complexity of s-club Cluster Deletion Problems 171

algorithm can extend any solution Sl
j of Xj by ignoring v (i.e., assuming v to be

part of VD) and increasing the vertex-counter of the resulting solution by one.
If the resulting vertex-counter is larger than k, the solution is discarded.

If Xi is a forget bag, we only have an additional case when the forgotten
vertex v does not belong to any potential s-club. In this case, the algorithm
simply keeps the solution as is, since v is not part of the partial partition in
output. Similarly as in Sect. 3, two solutions Sl

i and Sg
i , stemming from two

distinct solutions of Xj , may now be the same up to the values of kl
i and kg

i . For
each such a pair, it suffices to keep the solution with lower vertex-counter.

If Xi is a join bag whose children are Xj and Xj′ , again there is no substantial
modification to be applied. Recall that we merge two solutions, say Sl

j of Xj

and Sl′
j′ of Xj′ , only if ∂Cl

j = ∂Cl′
j′ . Let M be the set of vertices of Xi that are

not part of any partial s-club of ∂Cl
j = ∂Cl′

j′ . Then the vertex-counter of a new
solution is kl

i+kl′
i −|M | (to avoid double-counting such vertices). If the resulting

vertex-counter is larger than k, then the solution is discarded.

5 Discussion and Open Problems

We have proved that the s-Club Cluster Edge Deletion and s-Club Clus-

ter Vertex Deletion problems parameterized by s+ω (where ω bounds the
treewidth of the input graph) belong to FPT. On the other hand, we know that
both problems parameterized by s alone are paraNP-hard. It remains open their
complexity parameterized by ω alone.

We also observe that it is possible to adjust a reduction in [12] to prove that
s-Club Cluster Edge Deletion remains paraNP-hard even when parameter-
ized by s + d, where d is the number of clusters in the sought solution. With
respect to parameter d, we also know that the problem has no subexponential-
time parameterized algorithm in k + d [20]. Yet, whether k + d is a tractable
parameterization is an interesting question.

References

1. Abu-Khzam, F.N., Makarem, N., Shehab, M.: An improved fixed-parameter algo-
rithm for 2-club cluster edge deletion. CoRR. arXiv:2107.01133 (2021)

2. Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Soc. 3,
113–126 (1973). https://doi.org/10.1080/0022250X.1973.9989826

3. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing bio-
logical networks. J. Comb. Optim. 10(1), 23–39 (2005). https://doi.org/10.1007/
s10878-005-1857-x

4. Balasundaram, B., Pajouh, F.M.: Graph theoretic clique relaxations and applica-
tions. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combina-
torial Optimization, pp. 1559–1598. Springer, New York (2013). https://doi.org/
10.1007/978-1-4419-7997-1_9

5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95

http://arxiv.org/abs/2107.01133
https://doi.org/10.1080/0022250X.1973.9989826
https://doi.org/10.1007/s10878-005-1857-x
https://doi.org/10.1007/s10878-005-1857-x
https://doi.org/10.1007/978-1-4419-7997-1_9
https://doi.org/10.1007/978-1-4419-7997-1_9
https://doi.org/10.1023/B:MACH.0000033116.57574.95

172 F. Montecchiani et al.

6. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Com-
put. Biol. 6(3/4), 281–297 (1999). https://doi.org/10.1089/106652799318274

7. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Discrete
Algorithms 16, 79–89 (2012). https://doi.org/10.1016/j.jda.2012.04.005

8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/
S0097539793251219

9. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996). https://doi.
org/10.1006/jagm.1996.0049

10. Chakraborty, D., Chandran, L.S., Padinhatteeri, S., Pillai, R.R.: Algorithms and
complexity of s-club cluster vertex deletion. In: Flocchini, P., Moura, L. (eds.)
IWOCA 2021. LNCS, vol. 12757, pp. 152–164. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-79987-8_11

11. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst.
Sci. 78(1), 211–220 (2012). https://doi.org/10.1016/j.jcss.2011.04.001

12. Dondi, R., Lafond, M.: On the tractability of covering a graph with 2-clubs. In:
Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651,
pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-
0_17

13. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science, 1st Edition. Springer (1999). https://doi.org/10.1007/978-1-4612-0515-9

14. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci. 80(7), 1430–1447 (2014). https://doi.org/10.1016/j.jcss.2014.
04.015

15. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

16. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algo-
rithms 9(1), 21 (2016). https://doi.org/10.3390/a9010021

17. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discret. Appl. Math. 160(15), 2259–2270 (2012). https://doi.org/10.1016/j.dam.
2012.05.019

18. Laan, S., Marx, M., Mokken, R.J.: Close communities in social networks: boroughs
and 2-clubs. Soc. Netw. Anal. Min. 6(1), 1–16 (2016). https://doi.org/10.1007/
s13278-016-0326-0

19. Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J.,
Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol. 7285, pp. 235–246.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29700-7_22

20. Misra, N., Panolan, F., Saurabh, S.: Subexponential algorithm for d-cluster edge
deletion: exception or rule? J. Comput. Syst. Sci. 113, 150–162 (2020). https://
doi.org/10.1016/j.jcss.2020.05.008

21. Mokken, R.: Cliques, clubs and clans. Qual. Quan. Int. J. Methodol. 13(2), 161–173
(1979). https://doi.org/10.1007/BF00139635

22. Mokken, R.J., Heemskerk, E.M., Laan, S.: Close communication and 2-clubs in
corporate networks: europe 2010. Soc. Netw. Anal. Min. 6(1), 1–19 (2016). https://
doi.org/10.1007/s13278-016-0345-x

23. Montecchiani, F., Ortali, G., Piselli, T., Tappini, A.: On the parameterized com-
plexity of the s-club cluster edge deletion problem. CoRR. arXiv:2205.10834 (2022)

24. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

https://doi.org/10.1089/106652799318274
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1007/978-3-030-79987-8_11
https://doi.org/10.1007/978-3-030-79987-8_11
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1007/978-3-030-25027-0_17
https://doi.org/10.1007/978-3-030-25027-0_17
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.3390/a9010021
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1007/s13278-016-0326-0
https://doi.org/10.1007/s13278-016-0326-0
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1016/j.jcss.2020.05.008
https://doi.org/10.1016/j.jcss.2020.05.008
https://doi.org/10.1007/BF00139635
https://doi.org/10.1007/s13278-016-0345-x
https://doi.org/10.1007/s13278-016-0345-x
http://arxiv.org/abs/2205.10834

On the Parameterized Complexity of s-club Cluster Deletion Problems 173

25. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007). https://
doi.org/10.1016/j.cosrev.2007.05.001

26. Schäfer, A.: Exact algorithms for s-club finding and related problems. Diploma
thesis, Friedrich-Schiller-Universität Jena (2009)

27. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret.
Appl. Math. 144(1–2), 173–182 (2004). https://doi.org/10.1016/j.dam.2004.01.007

28. Wu, Z., Leahy, R.M.: An optimal graph theoretic approach to data clustering: the-
ory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 15(11), 1101–1113 (1993). https://doi.org/10.1109/34.244673

https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1109/34.244673

SOFSEM 2023 Best Papers

Balanced Substructures in Bicolored
Graphs

P. S. Ardra1(B), R. Krithika1, Saket Saurabh2,3, and Roohani Sharma4

1 Indian Institute of Technology Palakkad, Palakkad, India
111914001@smail.iitpkd.ac.in, krithika@iitpkd.ac.in

2 The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

3 University of Bergen, Bergen, Norway
4 Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrücken, Germany
rsharma@mpi-inf.mpg.de

Abstract. An edge-colored graph is said to be balanced if it has an
equal number of edges of each color. Given a graph G whose edges are
colored using two colors and a positive integer k, the objective in the
Edge Balanced Connected Subgraph problem is to determine if
G has a balanced connected subgraph containing at least k edges. We
first show that this problem is NP-complete and remains so even if the
solution is required to be a tree or a path. Then, we focus on the param-
eterized complexity of Edge Balanced Connected Subgraph and
its variants (where the balanced subgraph is required to be a path/tree)
with respect to k as the parameter. Towards this, we show that if a
graph has a balanced connected subgraph/tree/path of size at least k,
then it has one of size at least k and at most f(k) where f is a lin-
ear function. We use this result combined with dynamic programming
algorithms based on color coding and representative sets to show that
Edge Balanced Connected Subgraph and its variants are FPT.
Further, using polynomial-time reductions to the Multilinear Mono-
mial Detection problem, we give faster randomized FPT algorithms
for the problems. In order to describe these reductions, we define a com-
binatorial object called relaxed-subgraph. We define this object in such
a way that balanced connected subgraphs, trees and paths are relaxed-
subgraphs with certain properties. This object is defined in the spirit of
branching walks known for the Steiner Tree problem and may be of
independent interest.

Keywords: Edge-colored graphs · Balanced subgraphs ·
Parameterized complexity

1 Introduction

Ramsey Theory is a branch of Combinatorics that deals with patterns in large
arbitrary structures. In the context of edge-colored graphs where each edge is col-
ored with one color from a finite set of colors, a fundamental problem in the area
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 177–191, 2023.
https://doi.org/10.1007/978-3-031-23101-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_12

178 P. S. Ardra et al.

is concerned with the existence of monochromatic subgraphs of a specific type.
Here, monochromatic means that all edges of the subgraph have the same color.
For simplicity, we discuss only undirected graphs where each edge is colored either
red or blue. Such a coloring is called a red-blue coloring and a graph associated
with a red-blue coloring is referred to as a red-blue graph. In this work, we study
questions related to the existence of and finding balanced subgraphs instead of
monochromatic subgraphs, where by a balanced subgraph we mean one which has
an equal number of edges of each color. These problems come under a subarea of
Ramsey Theory known as Zero-Sum Ramsey Theory. Here, given a graph whose
vertices/edges are assigned weights from a set of integers, one looks for conditions
that guarantee the existence of a certain subgraph having total weight zero. For
example, one may ask when is a graph whose all the edges are given weight -1
or 1 guaranteed to have a spanning tree with total weight of its edges 0. This is
equivalent to asking when a red-blue graph is guaranteed to have a balanced span-
ning tree. Necessary and sufficient conditions have been established for complete
graphs, triangle-free graphs and maximal planar graphs [7]. In the same spirit, one
may ask a more general question like when is a red-blue graph G guaranteed to
have a balanced connected subgraph of size (number of edges) k. An easy neces-
sary condition is that there are at least k/2 red edges and at least k/2 blue edges
in G. This condition is also sufficient (as we show in the proof of Theorem 3) if G
is a complete graph (or more generally a split graph). However, we do not think
that such a simple characterization will exist for all graphs. This brings us to the
following natural algorithmic question concerning balanced connected subgraphs.

Edge Balanced Connected Subgraph Parameter: k
Input: A red-blue graph G and a positive integer k
Question: Does G have a balanced connected subgraph of size at least k?

When the subgraph is required to be a tree or a path, the corresponding vari-
ants of Edge Balanced Connected Subgraph are called Edge Balanced

Tree and Edge Balanced Path, respectively. We show that these problems
are NP-complete.

– (Theorems 1, 2, 4) Edge Balanced Connected Subgraph, Edge Bal-

anced Tree and Edge Balanced Path are NP-complete.

In fact, Edge Balanced Connected Subgraph and Edge Balanced Tree

remain NP-complete on bipartite graphs, planar graphs and chordal graphs.
However, Edge Balanced Connected Subgraph is polynomial-time solvable
on split graphs (Theorem 3). Yet, Edge Balanced Path is NP-complete even
on split graphs.

Note that if a graph has a balanced connected subgraph/tree/path of size
at least k, then it is not guaranteed that it has one of size equal to k. This
brings us to the following combinatorial question: if a graph has a balanced
connected subgraph/tree/path of size at least k, then can we show that it has a
balanced connected subgraph/tree/path of size equal to f(k) for some function

Balanced Substructures in Bicolored Graphs 179

f? We answer these questions in the affirmative and show the existence of such
a function which is linear in k.

– (Theorems 5, 6, 7) If a graph has a balanced connected subgraph/tree of size
at least k, then it has one of size at least k and at most 3k + 3. Further, if a
graph has a balanced path of size at least k, then it has a balanced path of
size at least k and at most 2k.

Therefore, in order to find a balanced connected subgraph/tree/path of size
at least k, it suffices to focus on the problem of finding a balanced connected
subgraph/tree/path of size exactly k. This leads us to the following problem.

Exact Edge Balanced Connected Subgraph Parameter: k
Input: A red-blue graph G and a positive integer k
Question: Does G have a balanced connected subgraph of size k?

As before, when the connected subgraph is required to be a tree or a path,
the corresponding variants of Exact Edge Balanced Connected Subgraph

are called Exact Edge Balanced Tree and Exact Edge Balanced Path,
respectively. These problems are also NP-complete and so we study them from
the perspective of parameterized complexity. In this framework, each instance is
associated with a non-negative integer � called parameter, and a problem is said to
be fixed-parameter tractable (FPT) with respect to � if it can be solved in O∗(f(�))2

time for some computable function f . Algorithms with such running times are
called FPT algorithms or parameterized algorithms. Focusing on solution size k as
the parameter, we give randomized FPT algorithms for solving the three problems
using reductions to the Multilinear Monomial Detection problem.

– (Theorems 8, 9, 10) Exact Edge Balanced Connected Subgraph/

Tree/Path can be solved by a randomized algorithm in O∗(2k) time.

Many problems reduce to Multilinear Monomial Detection [17] and the
current fastest algorithm solving it is a randomized algorithm that runs in
O∗(2k) time [16,17,23]. The reductions that we give to Multilinear Mono-

mial Detection use a combinatorial object called relaxed-subgraph. This object
is defined in the spirit of branching walks known for the Steiner Tree problem
[20]. We define this object in such a way that balanced connected subgraphs,
trees and paths are relaxed-subgraphs with certain properties.

Then, using the color-coding technique [1,8] and representative sets [8,12,21],
we give deterministic dynamic programming algorithms for the problems.

– (Theorems 11, 12, 13) Exact Edge Balanced Connected Subgraph/

Tree can be solved in O∗((4e)k) time and Exact Edge Balanced Path

can be solved in O∗(2.619k) time.

The method of representative sets is a generic approach for designing efficient
dynamic programming based parameterized algorithms that may be viewed as
2 O∗ notation supresses polynomial (in the input size) terms.

180 P. S. Ardra et al.

a deterministic-analogue to the color-coding technique. Representative sets have
been used to obtain algorithms for several parameterized problems [12] and our
algorithm adds to this list.

Road Map. The NP-completeness of the problems are given in Sect. 2. In
Sect. 3, the combinatorial results related to the existence of small balanced con-
nected subgraphs, trees and paths are proven. Section 4 discusses the determin-
istic and randomized algorithms for the problems. Section 5 concludes the work
by listing some future directions.

Related Work. A variant of Exact Edge Balanced Connected Sub-

graph has recently been studied [2,3,9,15,18]. In order to state these results
using our terminology, we define the notion of vertex-balanced subgraphs of vertex-
colored graphs. A coloring of the vertices of a graph using red and blue colors is
called a red-blue vertex coloring. A subgraph of a vertex-colored graph is said to
be vertex-balanced if it has an equal number of vertices of each color. [2] and [3]
study the Exact Vertex Balanced Connected Subgraph problem where
the interest is in finding a vertex-balanced connected subgraph on k vertices
in the given graph associated with a red-blue vertex coloring. This problem is
NP-complete and remains so on restricted graph classes like bipartite graphs,
planar graphs, chordal graphs, unit disk graphs, outer-string graphs, complete
grid graphs, and unit square graphs [2,3]. However, polynomial-time algorithms
are known for trees, interval graphs, split graphs, circular-arc graphs and permu-
tation graphs [2,3]. Further, the problem is NP-complete even when the subgraph
required is a path [2]. FPT algorithms, exact exponential algorithms and approx-
imation results for the problem are known from [3], [15] and [18]. Observe that
finding vertex-balanced connected subgraphs in vertex-colored graphs reduces to
finding vertex-balanced trees while the analogous solution in edge-colored graphs
may have more complex structures.

Preliminaries. For k ∈ N+, [k] denotes the set {1, 2, ..., k}. In this work, we only
consider simple undirected graphs. For standard graph-theoretic terminology not
stated here, we refer the reader to the book by Diestel [10]. For the necessary
parameterized complexity background, we refer to the book by Cygan et al. [8].
For a graph G, its sets of vertices and edges, are denoted by V (G) and E(G),
respectively. The size of a graph is the number of its edges and the order of a
graph is the number of its vertices. An edge between vertices u and v is denoted
as {u, v} and u and v are the endpoints of the edge {u, v}. Two vertices u, v
in V (G) are adjacent if there is an edge {u, v} in G. The neighborhood of a
vertex v, denoted by NG(v), is the set of vertices adjacent to v. Similarly, two
edges e, e′ in E(G) are adjacent if they have exactly one common endpoint and
the neighborhood of an edge e, denoted by NG(e), is the set of edges adjacent
to e. The degree of a vertex v is the size of NG(v). A tree is an undirected
connected acyclic graph. A clique is a set of pairwise adjacent vertices and a
complete graph is a graph whose vertex set is a clique. A split graph is a graph
whose vertex set can be partitioned into a clique and an independent set. Given

Balanced Substructures in Bicolored Graphs 181

a graph G, its line graph L(G) is defined as V (L(G)) = {e | e ∈ E(G)} and
E(L(G)) = {{e, e′} | e and e′ are adjacent}. It is well-known that a graph G
without isolated vertices is connected if and only if L(G) is connected.

Due to space constraints, for results labelled with a [�], proofs are omitted
or only a proof sketch is given.

2 NP-hardness Results

We show the NP-hardness of Edge Balanced Connected Subgraph using
a polynomial-time reduction from the Steiner Tree problem [14, ND12]. In
this problem, given a connected graph G, a subset T ⊆ V (G) (called terminals)
and a positive integer k, the task is to determine if G has a subtree H (called
a Steiner tree) with T ⊆ V (H) and |E(T)| ≤ k. The idea behind the reduction
is to color all edges of G of the Steiner Tree instance blue and add exactly k
red edges incident to the terminals such that each terminal has at least one red
edge incident on it. Any balanced connected subgraph of size (at least) k of the
resulting graph is required to include all the red edges and hence includes all the
terminals which in turn corresponds to a Steiner tree of G.

Theorem 1. [�] Edge Balanced Connected Subgraph is NP-complete.

As the variant of the Steiner Tree problem where a tree on exactly k edges
is required is also NP-complete, we have the following result.

Theorem 2. Edge Balanced Tree is NP-complete.

The reduction described in Theorem 1 is a polynomial parameter transforma-
tion and hence the infeasibility of the existence of polynomial kernels for Steiner
Tree parameterized by the solution size (i.e., the size k of the tree) [8,11] extends
to Edge Balanced Connected Subgraph and Edge Balanced Tree as
well. Further, since Steiner Tree has no 2o(k) time algorithm assuming the
Exponential Time Hypothesis, it follows that Edge Balanced Connected

Subgraph and Edge Balanced Tree also do not admit subexponential FPT
algorithms. Moreover, the reduction in Theorem 1 preserves planarity, bipartite-
ness and chordality. This property along with the NP-completeness of Steiner

Tree (and its variant) on bipartite graphs [14], planar graphs [13] and chordal
graphs [22] imply that Edge Balanced Connected Subgraph and Edge

Balanced Tree are NP-complete on planar graphs, chordal graphs and bipar-
tite graphs as well.

2.1 Complexity in Split Graphs

Next, we consider Edge Balanced Connected Subgraph on split graphs.
Let (G, k) be an instance. An easy necessary condition for G to have a balanced
connected subgraph of size (at least) k is that there are at least k/2 red edges
and at least k/2 blue edges in G. We show that this condition is also sufficient
if G is a split graph leading to the following result.

182 P. S. Ardra et al.

Theorem 3. [�] Edge Balanced Connected Subgraph is polynomial-time
solvable on split graphs.

Now, we move on to Edge Balanced Path which we show is NP-hard on
split graphs by giving a polynomial-time reduction from Longest Path. In the
Longest Path problem, given a graph G and a positive integer k, the task is
to find a path P in G of length k. It is known that Longest Path is NP-hard
[14, ND29] and remains so on split graphs even when the starting vertex u0 of
the path is given as part of the input [14, GT39]. The reduction may be viewed
as attaching a red path of length k (consisting of new internal vertices) starting
from u0 to the split graph G (whose edges are colored blue) of the Longest

Path instance and adding certain additional edges (colored blue) to ensure that
the graph remains a split graph.

Theorem 4. [�] Edge Balanced Path is NP-complete on split graphs.

As Longest Path parameterized by the solution size (i.e., the size k of the
path) in general graphs does not admit a polynomial kernel [4,8] and the reduc-
tion described (which is adaptable for general graphs) is a polynomial parameter
transformation, it follows that Edge Balanced Path does not admit polyno-
mial kernels. Further, it is known that, assuming the Exponential Time Hypoth-
esis, Longest Path has no 2o(k) time algorithm in general graphs. Hence, Edge
Balanced Path also does not admit subexponential FPT algorithms.

3 Small Balanced Paths, Trees and Connected Subgraphs

In this section, we prove the combinatorial result that if a graph has a balanced
connected subgraph/tree/path of size at least k, then it has one of size at least
k and at most f(k) where f is a linear function. We begin with balanced paths.

Theorem 5. [�] Let G be a red-blue graph and k ≥ 2 be a positive integer. Then,
if G has a balanced path of length at least 2k, then G has a smaller balanced path
of length at least k.

Proof. (sketch) Let EB be the set of blue edges and ER be the set of red edges
in G. Consider a balanced path P in G with at least 2k edges. If the terminal
edges e and e′ are of different colors, then delete e and e′ to get a smaller path
of length at least k. Otherwise, let P = (v1, v2, . . . , v�) where ei denotes the edge
{vi, vi+1} for each i ∈ [�−1]. Without loss of generality, let e1, e�−1 ∈ ER. Define
the function h : E(P) → N as follows.

h(ei) =

⎧
⎪⎨

⎪⎩

1, if i = 1
h(ei−1) + 1, if i > 1 and ei ∈ ER

h(ei−1) − 1, if i > 1 and ei ∈ EB

We show that there is an edge ei with i < � − 1 and h(ei) = 0. Then, the
subpaths P1 and P2 with E(P1) = {e1, . . . , ei} and E(P2) = {ei+1, . . . , e�−1} are
two balanced paths strictly smaller than P . Further, as |E(P)| ≥ 2k, at least
one of them has at least k edges. ��

Balanced Substructures in Bicolored Graphs 183

Now, we move to the analogous result for balanced trees. An edge with an
endpoint that has degree 1 is called a pendant edge.

Theorem 6. [�] Let G be a red-blue graph and k ≥ 2 be a positive integer.
Then, if G has a balanced tree with at least 3k + 2 edges, then G has a smaller
balanced tree with at least k edges.

Proof. (sketch) Let EB be the set of blue edges and ER be the set of red edges in
G. Consider a balanced tree T in G with at least 3k+2 edges. If T is a path, then
by Theorem 5, we obtain the desired smaller tree (path). If T has pendant edges
e and e′ of different colors, then delete e and e′ to get a smaller tree on at least
k edges. Otherwise, without loss of generality, let all pendant edges of T be in
ER. Let n denote |V (T)|. Root T at an arbitrary vertex of degree at least 3. For
a vertex v ∈ V (T), let Tv denote the subtree of T rooted at v. Let u be a vertex
with maximum distance from the root such that |V (Tu)| > n

3 . Let u1, . . . , u� be
the children of u. Observe that for each i ∈ [�], |V (Tui

)| ≤ n
3 . Let i be the least

integer in [�] such that n
3 ≤ | ⋃

1≤j≤i

V (Tuj
)| ≤ 2n

3 . Let S denote
⋃

1≤j≤i

V (Tuj
) and

R denote V (T) \ S. As n
3 ≤ |S| ≤ 2n

3 , we have n
3 ≤ |R| ≤ 2n

3 . Further, since
n ≥ 3k+3, we have n

3 ≥ k+1 and 2n
3 ≤ 2k+2. Hence, k+1 ≤ |S|, |R| ≤ 2k+2.

If T [S ∪ {u}] or T [R] is balanced, then we get the desired result. Otherwise,
consider the case when T [S ∪ {u}] and T [R] have lesser edges from ER than
from EB . As E(T [S ∪ {u}]) and E(T [R]) partition E(T), this case implies that
T has more edges from EB than from ER contradicting that T is balanced. The
remaining case is when T [S ∪ {u}] or T [R] has more edges from ER than from
EB . Suppose T [R] has more edges from ER than from EB . Initialize T ∗ to be
T [R]. As T [R] has at least k+1 vertices (and therefore at least k edges), it has at
least k/2 edges from ER. Add the edges of T [S ∪ {u}] to T ∗ in the breadth-first
order until T ∗ becomes balanced. We show that T
= T ∗ leading to the desired
result. ��

Finally, we prove the result for balanced connected subgraphs using line
graphs, vertex-balanced subgraphs and vertex-balanced trees. For a red-blue
graph G, we define a red-blue coloring on V (L(G)) as follows: for each vertex x
in L(G) corresponding to a red (blue) edge {u, v} in G, color x using red (blue).
Then, G has a balanced connected subgraph of size � if and only if L(G) has a
vertex-balanced connected subgraph of order �. Now, it remains to show that if
L(G) has a vertex-balanced connected subgraph (equivalently, a vertex-balanced
tree T) with at least 3k + 3 vertices, then L(G) has a smaller vertex-balanced
connected subgraph (equivalently, a vertex-balanced tree T ∗) with at least k
vertices. The proof of this claim is similar to the proof of Theorem 6.

Theorem 7. [�] Let G be a red-blue graph and k ≥ 2 be a positive integer.
Then, if G has a balanced connected subgraph with at least 3k + 3 edges, then G
has a smaller balanced connected subgraph with at least k edges.

Due to Theorems 5, 6 and 7, it suffices to give FPT algorithms for Exact

Edge Balanced Connected Subgraph/Tree/Path in order to obtain FPT
algorithms for Edge Balanced Connected Subgraph/Tree/Path.

184 P. S. Ardra et al.

4 FPT Algorithms

We now describe parameterized algorithms for Exact Edge Balanced Con-

nected Subgraph/Tree/Path.

4.1 Randomized Algorithms

In this section, we show that Exact Edge Balanced Connected Subgraph,
Exact Edge Balanced Path and Exact Edge Balanced Tree admit ran-
domized algorithms that runs in O∗(2k) time. We do so by reducing the problems
to Multilinear Monomial Detection. In order to define this problem, we
state some terminology related to polynomials from [17]. Let X denote a set of
variables. A monomial of degree d is a product of d variables from X, with mul-
tiplication assumed to be commutative. A monomial is called multilinear if no
variable appears twice or more in the product. A polynomial P (X) over a ring is
a linear combination of monomials with coefficients from the ring. A polynomial
contains a certain monomial if the monomial appears with a non-zero coefficient
in the linear combination that constitutes the polynomial. Polynomials can be
represented as arithmetic circuits which in turn represented as directed acyclic
graphs. In the Multilinear Monomial Detection problem, given an arith-
metic circuit (represented as a directed acyclic graph) representing a polynomial
P (X) over Z+ and a positive integer k, the task is to decide whether P (X)
contains a multilinear monomial of degree at most k.

Proposition 1. [16,17,23] Let P (X) be a polynomial over Z+ represented by
a circuit. The Multilinear Monomial Detection problem for P (X) can be
decided in randomized O∗(2k) time and polynomial space.

The reductions from Exact Edge Balanced Connected Subgraph/

Tree/Path to Multilinear Monomial Detection crucially use the notions
of a color-preserving homomorphism (also known as an edge-colored homomor-
phism in the literature [6]) and relaxed-subgraphs.

Definition 1. Given graphs G and H with red-blue edge colorings colG :
E(G) → {red, blue} and colH : E(H) → {red, blue}, a color-preserving homo-
morphism from H to G is a function h : V (H) → V (G) satisfying the following
properties: (1) For each pair u, v ∈ V (H), if {u, v} ∈ E(H), then {h(u), h(v)} ∈
E(G). (2) For each edge {u, v} in H, colH({u, v}) = colG({h(u), h(v)}).
Definition 2. Given a red-blue graph G, a relaxed-subgraph is a pair S = (H,h)
where H is a red-blue graph and h is a color-preserving homomorphism from H
to G.

The vertex set of a relaxed-subgraph S = (H,h) is V (S) = {h(a) ∈ V (G) |
a ∈ V (H)} and the edge set of S is {{h(a), h(b)} ∈ E(G) | {a, b} ∈ E(H)}.
We treat the vertex and edge sets of a relaxed-subgraph as multi-sets. The size
of S is the number of edges in H (equivalently, the size of E(S)). S is said to

Balanced Substructures in Bicolored Graphs 185

be connected if H is connected and S is said to be balanced if H has an equal
number of red edges and blue edges. S is said to be a relaxed-path if H is a
path and a relaxed-tree if H is a tree. Next, we have the following observation
that states that relaxed-subgraphs with certain specific properties correspond to
balanced connected subgraphs, trees and paths.

Observation 1. [�] The following hold for a red-blue graph G.

– G has a balanced connected subgraph of size k if and only if there is a balanced
connected relaxed-subgraph S of size k such that E(S) consists of distinct
elements.

– G has a balanced path of size k if and only if there is a balanced relaxed-path
(P, h) of size k where h is injective.

– G has a balanced tree of size k if and only if there is a balanced relaxed-tree
(T, h) of size k where h is injective.

Now, we are ready to describe the randomized algorithms for Exact Edge

Balanced Connected Subgraph/Tree/Path based on Observation 1.
First, we consider Exact Edge Balanced Connected Subgraph.

Theorem 8. [�] Exact Edge Balanced Connected Subgraph admits a
randomized O∗(2k)-time algorithm.

Proof. (sketch) Consider an instance (G, k). Let ER denote the set of red edges
and EB denote the set of blue edges in G. In order to obtain an instance of
Multilinear Monomial Detection that is equivalent to (G, k), we will define
a polynomial P over the variable set {xe : e ∈ E(G)} satisfying the following
properties: (1) For each balanced connected relaxed-subgraph S = (H,h) of size
k there exists a monomial in P that corresponds to S. We say that a monomial
M corresponds to S, if M =

∏

e∈E(S)

xe. (2) Each multilinear monomial in P

corresponds to some balanced connected relaxed-subgraph S of size k where
E(S) has distinct elements.

If P is such a polynomial, then from Observation 1, G has a balanced con-
nected subgraph of size k if and only if P has a multilinear monomial of degree
k. This way, after the construction of P , we reduce the problem to Multilinear

Monomial Detection and use Proposition 1. In order to construct P , we first
construct polynomials Pj(e, r, b) for each e ∈ E(G), j ∈ [k] and 0 ≤ r, b ≤ k

2
with r + b ≥ 1. Monomials of Pj(e, r, b) will correspond to connected relaxed-
subgraphs S = (H,h) of size j such that H has r red edges, b blue edges and
e ∈ E(S). The construction of Pj(e, r, b) is as follows. For an edge e ∈ E(G),

P1(e, 1, 0) =

{
xe, if e ∈ ER

0 otherwise.
and P1(e, 0, 1) =

{
xe, if e ∈ EB

0 otherwise.
.

Also, Pj(e, r, b) = 0 if j
= r + b. Now, if e ∈ ER and r + b > 1, then we have
Pj(e, r, b) =

∑

e′∈NG(e),�<j
r′+r′′=r,b′+b′′=b

P�(e
′, r′, b′)Pj−�(e, r

′′, b′′) +
∑

e′∈NG(e)

xePj−1(e
′, r − 1, b).

186 P. S. Ardra et al.

If e ∈ EB and r+b> 1, then Pj(e, r, b) =
∑

e′∈NG(e),�<j
r′+r′′=r,b′+b′′=b

P�(e′, r′, b′)Pj−�(e, r′′, b′′)

+
∑

e′∈NG(e)

xePj−1(e′, r, b − 1).

We now show that every multilinear monomial of Pj(e, r, b) corresponds to
a connected relaxed-subgraph S = (H,h) of size j such that H has r red edges
and b blue edges while E(S) consists of distinct elements with e ∈ E(S). We
prove this claim by induction on j. The base case is easy to verify. Consider the
induction step. Suppose e = {u, v} ∈ ER (the other case is symmetric). Let M
be a multilinear monomial of Pj(e, r, b) where j > 1.
Case 1: M = xeM

′ where M ′ is a multilinear monomial of Pj−1(e′, r −1, b) such
that e′ ∈ NG(e). Let e′ = {v, w}. By induction, M ′ corresponds to a connected
relaxed-subgraph S′ = (H ′, h′) of size j−1 such that e′ ∈ E(S′) and H ′ has r−1
red edges, b blue edges with v ∈ V (h′(H ′)). Let z = h′−1(v) (well-defined due
to the multilinearity of M). Note that E(S′) consists of distinct elements and
e /∈ E(S′). Let H denote the graph obtained from H ′ by adding a new vertex
z′ adjacent to z with the edge {z, z′} colored red. Let h : V (H) → V (G) denote
the homomorphism obtained from h′ by extending its domain to include z′ and
setting h(z′) = u. Then, S = (H,h) is a connected relaxed-subgraph that M
corresponds to.
Case 2: M = M1M2 where M1 is a multilinear monomial of Pj1(e

′, r′, b′) and
M2 is a multilinear monomial of Pj2(e, r

′′, b′′) such that e′ ∈ NG(e), j1, j2 < j,
r′′ ≤ r and b′′ ≤ b. Let e′ = {v, w}. By induction, M1 corresponds to a connected
relaxed-subgraph S1 = (H1, h1) of size j1 such that e′ ∈ E(S1). Similarly, M2

corresponds to a connected relaxed-subgraph S2 = (H2, h2) of size j2 such that
e ∈ E(S2). Further, H1 has r′ red edges, b′ blue edges and H2 has r′′ red edges
and b′′ blue edges. Also, v ∈ V (h1(H1)) ∩ V (h2(H2)) and E(S1) ∩ E(S2) = ∅.
Without loss of generality, assume that V (H1) ∩ V (H2) = ∅ as this can be
achieved by a renaming procedure. Let z1 = h−1

1 (v) and z2 = h−1
2 (v). Observe

that z1 and z2 are well-defined due to the multilinearity of M1 and M2. Now,
rename z1 in S1 and z2 in S2 as z. Let H denote the graph with vertex set
V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). Observe that H is a connected
graph. Let h : V (H) → V (G) denote identity map. Then, S = (H,h) is a
connected relaxed-subgraph that M corresponds to.

Similarly, we show (by induction on j) that if there is a connected relaxed-
subgraph S = (H,h) of size j with r red edges, b blue edges and such that
e = {u, v} ∈ E(S), then there is a monomial of Pj(e, r, b) that corresponds to it.
Suppose e ∈ ER (the other case is symmetric). The base case is trivial. Consider
the induction step (j ≥ 2). Let a = h−1(u), b = h−1(v) and z denote the edge
{a, b} of H.
Case 1: H−z is connected. Then, S′ = (H−z, h) is a connected relaxed-subgraph
of size j−1 with r−1 red edges and b blue edges and contains an edge e′ ∈ NG(e).
By induction, there is a monomial M ′ corresponding to S′ in Pj−1(e′, r − 1, b).
Then, the monomial M = xeM

′ which is in Pj(e, r, b) corresponds to S.

Balanced Substructures in Bicolored Graphs 187

Case 2: H−z is disconnected. Then H has two components Ha (containing a) and
Hb (containing b). Without loss of generality let Ha have at least one edge. Let
H ′

b denote the subgraph of H obtained from Hb by adding the vertex a and edge
{a, b}. Let j1 and j2 denote the number of edges in Ha and H ′

b, respectively. Let r′

and r′′ be the number of red edges in Ha and H ′
b, respectively. Similarly, let b′ and

b′′ be the number of blue edges in Ha and H ′
b, respectively. Then j = j1+j2, r =

r′ + r′′, b = b′ + b′′. Let ha and hb denote the color-preserving homomorphism
obtained from h by restricting the domain to V (Ha) and V (Hb), respectively.
Now, considering the connected relaxed-subgraphs S1 = (Ha, ha) and S2 =
(Hb, hb), by induction there is a monomial M1 in Pj1(e

′, r′, b′) that corresponds
to S1 and there is a monomial M2 in Pj2(e, r

′′, b′′) that corresponds to S2. Then,
the monomial M1M2 which is in Pj(e, r, b) corresponds to S. Finally, let P =∑

e∈E(G)

Pk(e, k
2 , k

2). Every monomial in P has degree k. Then from the arguments

above, P is the desired polynomial. As these polynomials can be represented as
a polynomial-sized arithmetic circuit, the reduction runs in polynomial time. ��

Next, we move on to Exact Edge Balanced Tree. We define a polyno-
mial over the variable set corresponding to vertices (as opposed to variable set
corresponding to edges as in Exact Edge Balanced Connected Subgraph)
leading to the following result.

Theorem 9. [�] Exact Edge Balanced Tree admits a randomized O∗(2k)-
time algorithm.

Proof. (sketch) We define a polynomial P =
∑

e∈E(G)

Pk(e, k
2 , k

2) over the variable

set {yv : v ∈ V (G)} with subtle differences from the one defined for balanced
connected subgraphs where Pj(e, r, b) is defined as follows with e = {u, v}.

P1(e, 1, 0) =

{
yuyv, if e ∈ ER

0 otherwise.
and P1(e, 0, 1) =

{
yuyv, if e ∈ EB

0 otherwise.
.

For j > 1, if e ∈ ER (the polynomial for e ∈ EB is similar),

Pj(e, r, b) =
∑

e′,e′′∈NG(e)
u∈V (e′),v∈V (e′′)

r′<r,b′≤b,�<j

P�(e′, r′, b′)Pj−1−�(e′′, r − 1 − r′, b − b′)

+
∑

e′∈NG(e)
v∈V (e′)

yuPj−1(e′, r − 1, b) +
∑

e′∈NG(e)
u∈V (e′)

yvPj−1(e′, r − 1, b).

The properties of P =
∑

e∈E(G)

Pk(e, k
2 , k

2) then lead to the claimed result. ��

Finally, we define a (simpler) polynomial for Exact Edge Balanced Tree

satisfying certain properties leading to the following result.

Theorem 10. [�] Exact Edge Balanced Path admits a randomized
O∗(2k)-time algorithm.

188 P. S. Ardra et al.

4.2 Deterministic Algorithms

We first describe deterministic algorithms for Exact Edge Balanced Con-

nected Subgraph and Exact Edge Balanced Tree using the color-coding
technique [1,8,19]. Consider an instance (G, k) of Exact Edge Balanced

Connected Subgraph/Tree. Let ER denote the set of red edges and EB

denote the set of blue edges in G. Let σ : E(G) → [k] be a coloring of edges of G
and τ : V (G) → [k+1] be a coloring of vertices of G. For L ⊆ [k+1], a subgraph
H ⊆ G is said to be L-edge-colorful if |E(H)| = |L| and

⋃
e∈E(H) σ(e) = L. Sim-

ilarly, H is said to be L-vertex-colorful if |V (H)| = |L| and
⋃

v∈V (H) τ(v) = L.
We describe dynamic programming algorithms to find a [k]-edge-colorful bal-
anced connected subgraph and a [k + 1]-vertex-colorful balanced tree in G (if
they exist) in O∗(4k) time. Then, a standard derandomization technique using
perfect hash families [1,8,19] leads to the following results.

Theorem 11. [�] Exact Edge Balanced Connected Subgraph can be
solved in O∗((4e)k) time.

Theorem 12. [�] Exact Edge Balanced Tree can be solved in O∗((4e)k)
time.

Analogous to Theorems 11 and 12, we can show that Exact Edge Bal-

anced Path can be solved in O∗((2e)k) time. Subsequently, we describe a faster
algorithm using representative sets. We begin with some definitions and results
related to representative sets. For a finite set U , let

(
U
p

)
denote the set of all

subsets of size p of U . Given two families S1,S2 ⊆ 2U , the convolution of S1 and
S2 is the new family defined as S1 ∗ S2 = {X ∪ Y | X ∈ S1, Y ∈ S2,X ∩ Y = ∅}.

Definition 3. Let U be a set and S ⊆ (
U
p

)
. A subfamily Ŝ ⊆ S is said to q-

represent S (denoted as Ŝ ⊆q
rep S) if for every set Y ⊆ U of size at most q such

that there is a set X ∈ S with X ∩ Y = ∅, there is a set X̂ ∈ Ŝ with X̂ ∩ Y = ∅.
If Ŝ ⊆q

rep S, then Ŝ is called a q-representative family for S.
Representative families (also called representative sets) are transitive and

have nice union and convolution properties [8, Lemmas 12.26, 12.27 and 12.28].
A classical result due to Bollobás states that small representative families exist
[5] and a result due to [12] and [21] (see also [8]) shows that such families can
be efficiently computed.

Theorem 13. [�] Exact Edge Balanced Path can be solved in O∗(2.619k)
time.

Proof. (sketch) Consider an instance (G, k). Let ER and EB denote the sets
of red and blue edges of G. For a pair of vertices u, v ∈ V (G) and non-negative
integers r and b with r + b ≥ 1, define the family P(r,b)

uv as follows.

P(r,b)
uv = {X : X ⊆ V (G), |X| = r + b + 1 and there is a uv-path P with

V (P) = X, |ER ∩ E(P)| = r and |EB ∩ E(P)| = b}.

Balanced Substructures in Bicolored Graphs 189

Now, it suffices to determine if P(k
2 , k2)

uv is non-empty for some u, v ∈ V (G). The
families P(r,b)

uv can be computed using the following formula. For r + b = 1,

P(1,0)
uv =

{
{{u, v}}, if {u, v} ∈ ER

∅, otherwise
and P(0,1)

uv =

{
{{u, v}}, if {u, v} ∈ EB

∅, otherwise

For r+b > 1, P(r,b)
uv = (

⋃

{w,v}∈ER

(P(r−1,b)
uw ∗{{v}}))⋃

(
⋃

{w,v}∈EB

(P(r,b−1)
uw ∗{{v}})).

Clearly, a naive computation of P(r,b)
uv is not guaranteed to result in an FPT (in k)

algorithm. Therefore, instead of computing P(r,b)
uv , we compute P̂(r,b)

uv ⊆k−(r+b)
rep

P(r,b)
uv and use the fact that P̂(k

2 , k2)
uv ⊆0

rep P(k
2 , k2)

uv . Now, we describe a dynamic

programming algorithm to compute P̂(k
2 , k2)

uv for every u, v ∈ V (G). For r+ b = 1,
set P̂(1,0)

uv = P(1,0)
uv and P̂(0,1)

uv = P(0,1)
uv . Clearly, P̂(1,0)

uv ⊆k−1
rep P(1,0)

uv and
P̂(0,1)

uv ⊆k−1
rep P(0,1)

uv . Further, |P̂(1,0)
uv |, |P̂(0,1)

uv | ≤ 1 and this computation is polyno-
mial time. Now, we proceed to computing P̂(r,b)

uv ⊆k−(r+b)
rep P(r,b)

uv for k ≥ r+b > 1
in the increasing order of r + b. Towards this, we compute a new family P̃(r,b)

uv

as follows.

P̃(r,b)
uv = (

⋃

{w,v}∈ER

(P̂(r−1,b)
uw ∗ {{v}}))

⋃
(

⋃

{w,v}∈EB

P̂(r,b−1)
uw ∗ {{v}}))

Using the union and convolution properties of representative sets, P̃(r,b)
uv ⊆k−(r+b)

rep

P(r,b)
uv . Further, |P̃(r,b)

uv | = O∗(|P̂(r−1,b)
uv | + |P̂(r,b−1)

uv |). Then, we use the result of
[12] and [21] to compute a family P̂(r,b)

uv ⊆k−(r+b)
rep P̃(r,b)

uv . By the transitivity
property of representative sets, it follows that P̂(r,b)

uv ⊆k−(r+b)
rep P(r,b)

uv . Further,
from the running time analysis given in [12] and [21], the overall running time
of the algorithm is O∗(2.619k). ��

5 Concluding Remarks

To summarize our work, we studied the complexity of finding balanced con-
nected subgraphs, trees and paths in red-blue graphs. We gave fixed-parameter
tractability results using color-coding, representative sets and reductions to
Multilinear Monomial Detection. En route, we showed combinatorial
results on the existence of small balanced connected subgraphs, trees and paths.
We observe that these results also extend to vertex-balanced connected sub-
graphs, trees and paths. As a result the algorithms described in this work also
generalize to solve the vertex-analogue of the problems. Note that using line
graphs, one can reduce Edge Balanced Connected Subgraph to Vertex

Balanced Connected Subgraph, however, when the solution is required to
be a path or a tree, this reduction is not useful. An interesting next direction of
research is determining the complexity of finding other balanced substructures.
Also, studying the problems on graphs that are colored using more than two
colors and on colored weighted graphs are natural questions in this context.

190 P. S. Ardra et al.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995).
https://doi.org/10.1145/210332.210337. https://doi.org/10.1145/210332.210337

2. Bhore, S., Chakraborty, S., Jana, S., Mitchell, J.S.B., Pandit, S., Roy, S.: The
balanced connected subgraph problem. In: Pal, S.P., Vijayakumar, A. (eds.) CAL-
DAM 2019. LNCS, vol. 11394, pp. 201–215. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-11509-8_17

3. Bhore, S., Jana, S., Pandit, S., Roy, S.: Balanced connected subgraph problem in
geometric intersection graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA
2019. LNCS, vol. 11949, pp. 56–68. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36412-0_5

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). https://doi.
org/10.1016/j.jcss.2009.04.001. https://doi.org/10.1016/j.jcss.2009.04.001

5. Bollobás, B.: On generalized graphs. Acta Math. Hungar. 16(3–4), 447–452 (1965)
6. Brewster, R.C., Dedic, R., Huard, F., Queen, J.: The recognition of bound

quivers using edge-coloured homomorphisms. Discret. Math. 297(1-3), 13–25
(2005). https://doi.org/10.1016/j.disc.2004.10.026. https://doi.org/10.1016/j.disc.
2004.10.026

7. Caro, Y., Hansberg, A., Lauri, J., Zarb, C.: On zero-sum spanning trees and zero-
sum connectivity. Electron. J. Comb. 29(1), P1.9 (2022). https://doi.org/10.37236/
10289. https://doi.org/10.37236/10289

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

9. Darties, B., Giroudeau, R., Jean-Claude, K., Pollet, V.: The balanced connected
subgraph problem: complexity results in bounded-degree and bounded-diameter
graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949,
pp. 449–460. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-
0_36

10. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

11. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through col-
ors and ids. ACM Trans. Algorithms 11(2), 1–20 (2014). https://doi.org/10.1145/
2650261. https://doi.org/10.1145/2650261

12. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of
representative families with applications in parameterized and exact algorithms.
J. ACM 63(4), 1–60 (2016). https://doi.org/10.1145/2886094. https://doi.org/10.
1145/2886094

13. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem in NP complete.
J. SIAM Appl. Math. 32, 826–834 (1977)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

15. Kobayashi, Y., Kojima, K., Matsubara, N., Sone, T., Yamamoto, A.: Algorithms
and hardness results for the maximum balanced connected subgraph problem. In:
Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 303–315.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-0_24

16. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70575-8_47

https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.37236/10289
https://doi.org/10.37236/10289
https://doi.org/10.37236/10289
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-36412-0_36
https://doi.org/10.1007/978-3-030-36412-0_36
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2886094
https://doi.org/10.1145/2886094
https://doi.org/10.1145/2886094
https://doi.org/10.1007/978-3-030-36412-0_24
https://doi.org/10.1007/978-3-540-70575-8_47

Balanced Substructures in Bicolored Graphs 191

17. Koutis, I., Williams, R.: LIMITS and applications of group algebras for parame-
terized problems. ACM Trans. Algorithms 12(3), 1–18 (2016). https://doi.org/10.
1145/2885499. https://doi.org/10.1145/2885499

18. Martinod, T., Pollet, V., Darties, B., Giroudeau, R., König, J.: Complexity and
inapproximability results for balanced connected subgraph problem. Theor. Com-
put. Sci. 886, 69–83 (2021). https://doi.org/10.1016/j.tcs.2021.07.010. https://doi.
org/10.1016/j.tcs.2021.07.010

19. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 IEEE Computer Soci-
ety (1995). https://doi.org/10.1109/SFCS.1995.492475. https://doi.org/10.1109/
SFCS.1995.492475

20. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorith-
mica 65(4), 868–884 (2013). https://doi.org/10.1007/s00453-012-9630-x. https://
doi.org/10.1007/s00453-012-9630-x

21. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based app-
roach. J. Comput. Syst. Sci. 82(3), 488–502 (2016). https://doi.org/10.1016/j.jcss.
2015.11.008. https://doi.org/10.1016/j.jcss.2015.11.008

22. White, K., Farber, M., Pulleyblank, W.R.: Steiner trees, connected domination
and strongly chordal graphs. Networks 15(1), 109–124 (1985). https://doi.org/10.
1002/net.3230150109. https://doi.org/10.1002/net.3230150109

23. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett.
109(6), 315–318 (2009). https://doi.org/10.1016/j.ipl.2008.11.004. https://doi.
org/10.1016/j.ipl.2008.11.004

https://doi.org/10.1145/2885499
https://doi.org/10.1145/2885499
https://doi.org/10.1145/2885499
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1016/j.ipl.2008.11.004

On the Complexity of Scheduling
Problems with a Fixed Number
of Parallel Identical Machines

Klaus Jansen(B) and Kai Kahler(B)

Department of Computer Science, Kiel University, Kiel, Germany
{kj,kka}@informatik.uni-kiel.de

Abstract. In parallel machine scheduling, we are given a set of jobs,
together with a number of machines and our goal is to decide for each
job, when and on which machine(s) it should be scheduled in order to
minimize some objective function. Different machine models, job char-
acteristics and objective functions result in a multitude of scheduling
problems and many of them are NP-hard, even for a fixed number of
identical machines. In this work, we give conditional running time lower
bounds for a large number of scheduling problems, indicating the opti-
mality of some classical algorithms. Most notably, we show that the algo-
rithm by Lawler and Moore for 1|| ∑ wjUj and Pm||Cmax, as well as
the algorithm by Lee and Uzsoy for P2|| ∑ wjCj are probably optimal.
There is still small room for improvement for the 1|Rej ≤ Q| ∑ wjUj

algorithm by Zhang et al., the algorithm for 1|| ∑ Tj by Lawler and the
FPTAS for 1|| ∑ wjUj by Gens and Levner. We also give a lower bound
for P2|any|Cmax and improve the dynamic program by Du and Leung
from O(nP 2) to O(nP), matching this new lower bound. Here, P is the
sum of all processing times. The same idea also improves the algorithm
for P3|any|Cmax by Du and Leung from O(nP 5) to O(nP 2). While our
results suggest the optimality of some classical algorithms, they also
motivate future research in cases where the best known algorithms do
not quite match the lower bounds.

Keywords: SETH · Subset sum · Scheduling · Fine-grained
complexity · Pseudo-polynomial algorithms

1 Introduction

Consider the problem of working on multiple research papers. Each paper j has
to go to some specific journal or conference and thus has a given due date dj .
Some papers might be more important than others, so each one has a weight wj .
In order to not get distracted, we may only work on one paper at a time and
this work may not be interrupted. If a paper does not meet its due date, it is not
important by how much it misses it; it is either late or on time. If it is late, we

Supported by the German Research Foundation (DFG) project JA 612/25-1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 192–206, 2023.
https://doi.org/10.1007/978-3-031-23101-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_13&domain=pdf
http://orcid.org/0000-0001-8358-6796
http://orcid.org/0000-0002-8066-4004
https://doi.org/10.1007/978-3-031-23101-8_13

On the Complexity of Scheduling Problems 193

must pay its weight wj . In the literature, this problem is known as 1||∑ wjUj and
it is one of Karp’s original 21 NP-hard problems [16]. The naming of 1||∑ wjUj

and the problems referred to in the abstract will become clear when we review
the three-field notation by Graham et al. [10] in Sect. 2. Even when restricted to
a fixed number of identical machines, many combinations of job characteristics
and objective functions lead to NP-hard problems. For this reason, a lot of
effort has been put towards finding either pseudo-polynomial exact or polynomial
approximation algorithms. Sticking to our problem 1||∑ wjUj , where we aim to
minimize the weighted number of late jobs on a single machine, there are e.g.
an O (nW) algorithm by Lawler and Moore [21] and an FPTAS by Gens and
Levner [9]. Here, W is the sum of all weights wj and n is the number of jobs.

In recent years, research regarding scheduling has made its way towards
parameterized and fine-grained complexity (see e.g. [2,12,18,26,27]), where one
goal is to identify parameters that make a problem difficult to solve. If those
parameters are assumed to be small, parameterized algorithms can be very effi-
cient. Similarly, one may consider parameters like the total processing time P
and examine how fast algorithms can be in terms of these parameters, while
maintaining a sub-exponential dependency on n. That is our main goal in this
work. Most of our lower bounds follow from a lower bound for Subset Sum:

Problem 1. Subset Sum

Instance: Items a1, . . . , an ∈ N, integer target T ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai = T .

Fine-grained running time lower bounds are often based on the Exponential
Time Hypothesis (ETH) or the Strong Exponential Time Hypothesis (SETH).
Intuitively, the ETH conjectures that 3-Sat cannot be solved in sub-exponential
time and the SETH conjectures that the trivial running time of O (2n) is optimal
for k-Sat, if k tends to infinity. For details, see the original publication by
Impagliazzo and Paturi [13]. A few years ago, Abboud et al. gave a beautiful
reduction from k-Sat to Subset Sum [1]. Previous results based on the ETH
excluded 2o(n)T o(1)-time algorithms [15], while this new result based on the
SETH suggests that we cannot even achieve O (

2δnT 1−ε
)
:

Theorem 1 (Abboud et al. [1]). For every ε > 0, there is a δ > 0 such that
Subset Sum cannot be solved in time O (

2δnT 1−ε
)
, unless the SETH fails.1

By revisiting many classical reductions in the context of fine-grained complexity,
we transfer this lower bound to scheduling problems like 1||∑ wjUj . Although
lower bounds do not have the immediate practical value of an algorithm, it is
clear from the results of this paper how finding new lower bounds can push
research into the right direction: Our lower bound for the scheduling problem
P2|any|Cmax indicated the possibility of an O (nP)-time algorithm, but the
best known algorithm (by Du and Leung [8]) had running time O (

nP 2
)
. A

modification of this algorithm closes this gap.
It should be noted that all lower bounds in this paper are conditional, that

is, they rely on some complexity assumption. However, all of these assumptions
1 Though it might seem unintuitive at first, it is not required that ε < 1.

194 K. Jansen and K. Kahler

are reasonable in the sense that a lot of effort has been put towards refuting
them. And in the unlikely case that they are indeed falsified, this would have
big complexity theoretical implications.

This paper is organized as follows: We first give an overview on terminology,
the related lower bounds by Abboud et al. [2] and our results in Sect. 2. Then
we examine scheduling problems with a single machine in Sect. 3 and problems
with two or more machines in Sect. 4. Finally, we give a summary as well as open
problems and promising research directions in Sect. 5.

2 Preliminaries

In this section, we first introduce the Partition problem, a special case of
Subset Sum from which many of our reductions start. Then we recall common
terminology from scheduling theory and finally, we give a short overview of the
recent and closely related work [2] by Abboud et al. and briefly state our main
results.

Throughout this paper, log denotes the base 2 logarithm. Moreover, we
write [n] for the set of integers from 1 to n, i.e. [n] := {1, . . . , n}. If we con-
sider a set of items or jobs [n] and a subset S ⊆ [n], we use S = [n]\S to denote
the complement of S. The Õ-notation hides poly-logarithmic factors.

2.1 Subset Sum and Partition

In this work, we provide lower bounds for several scheduling problems; our main
technique are fine-grained reductions, which are like polynomial-time reductions,
but with more care for the exact sizes and running times. With these reductions,
we can transfer the (supposed) hardness of one problem to another. Most of the
time, our reductions start with an instance of Subset Sum or Partition and
construct an instance of some scheduling problem. Partition is the special case
of Subset Sum, where the sum of all items is exactly twice the target value:

Problem 2 Partition

Instance: Items a1, . . . , an ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai =∑

i∈S̄ ai.

In the following, we always denote the total size of all items by A :=
∑n

i=1 ai

for Subset Sum and Partition. Note that we can always assume that T ≤ A,
since otherwise the target cannot be reached, even by taking all items. Moreover,
in the reduction by Abboud et al. [1], A and T are quite close, in particular, we
can assume that A = poly(n)T . Hence, if we could solve Subset Sum in time
O (

2δnA1−ε
)

for some ε > 0 and every δ > 0, this would contradict Theorem 1
for large enough n. For details on this, we refer to the full version [14].

Corollary 1. For every ε > 0, there is a δ > 0 such that Subset Sum cannot
be solved in time O (

2δnA1−ε
)
, unless the SETH fails.

On the Complexity of Scheduling Problems 195

Using a classical reduction from Subset Sum to Partition that only adds
two large items, we also get the following lower bound for Partition (for a
detailed proof, see [14]):

Theorem 2. For every ε > 0, there is a δ > 0 such that Partition cannot be
solved in time O (

2δnA1−ε
)
, unless the SETH fails.

2.2 Scheduling

In all scheduling problems we consider, we are given a number of machines and
a set of n jobs with processing times pj , j ∈ [n]; our goal is to assign each
job to (usually) one machine such that the resulting schedule minimizes some
objective.2 So these problems all have a similar structure: A machine model, some
(optional) job characteristics and an objective function. This structure motivates
the use of the three-field notation introduced by Graham et al. [10]. Hence, we
denote a scheduling problem as a triple α|β|γ, where α is the machine model, β is
a list of (optional) job characteristics and γ is the objective function. As is usual
in the literature, we leave out job characteristics like due dates that are implied
by the objective function, e.g. for 1||∑ wjUj . In this work, we mainly consider
the decision variants of scheduling problems (as opposed to the optimization
variants). In the decision problems, we are always given a threshold denoted by
y and the task is to decide whether there is a solution with value at most y. Note
that the optimization and the decision problems are – at least in our context –
equivalent: An algorithm for the decision problem can be used to find a solution
of the optimization problem with a binary search over the possible objective
values (which are always integral and bounded, here). Vice versa, an algorithm
for the optimization problem can also solve the decision problem.

In order to have a unified notation, given some job-dependent parameters
g1, . . . , gn (e.g. processing times), we let gmax := maxi∈[n] gi, gmin := mini∈[n] gi

and G :=
∑

i∈[n] gi. We now briefly go over the considered machine models, job
characteristics and objective functions.

As the title of this work suggests, we consider problems with a fixed number
of m parallel identical machines, denoted by ‘Pm’ if m > 1 or simply ‘1’ if m = 1.
In this setting, a job has the same processing time on every machine.

In the case of rigid and moldable jobs, each job has a given ‘size’ and must
be scheduled on that many machines or it may be scheduled on ‘any’ number
of machines, respectively, needing a possibly different (usually lower) processing
time when scheduled on multiple machines. Sometimes, not all jobs are available
at time 0, but instead each job j arrives at its release date ‘rj ’.3 Similarly, jobs
might have deadlines dj (i.e. due dates that may not be missed) and we must
assure that ‘Cj ≤ dj ’ holds for every job j, where Cj is the completion time of j.
Additionally, every job j might have a weight wj and we are allowed to reject

2 Depending on the scheduling problem, it may also be important in which order the
jobs of a machine are scheduled or whether there are gaps between the execution of
consecutive jobs.

3 This is not to be confused with online scheduling; we know the rj ’s in advance.

196 K. Jansen and K. Kahler

(i.e., choose not to schedule) jobs of total weight at most Q; this constraint is
denoted by ‘Rej ≤ Q’.4

The arguably most popular objective in scheduling is to minimize the so-
called makespan ‘Cmax’, which is the largest completion time Cj among all jobs j,
i.e. the time at which all jobs are finished. In order to give the jobs different pri-
orities, we can minimize the total (weighted) completion time ‘

∑
Cj ’ (‘

∑
wjCj ’).

If there is a due date dj for each job, we might be concerned with minimizing
the (weighted) number of late jobs ‘

∑
Uj ’ (‘

∑
wjUj ’), where Uj = 1 if j is late,

i.e. Cj > dj and Uj = 0 otherwise. Similar objectives are the maximum lateness
‘Lmax’ and the maximum tardiness ‘Tmax’ of all jobs, where the lateness Lj of
job j is the (uncapped) difference Cj − dj and the tardiness Tj is the (capped)
difference max{Cj − dj , 0}. Another objective, the total tardiness ‘

∑
Tj ’, mea-

sures the tardiness of all jobs together and the total late work ‘
∑

Vj ’ is the late
work Vj := min{pj , Cj − dj} summed over all jobs. Both objectives may also
appear in combination with weights. Lastly, if release dates rj are present, we
might be interested in minimizing the maximum flow time ‘Fmax’, the total flow
time ‘

∑
Fj ’ or the weighted total flow time ‘

∑
wjFj ’. These objectives are sim-

ilar to the previous ones; Fj , the flow time of job j, is defined as Fj := Cj − rj ,
i.e. the time that passes between j’s release and completion.

2.3 The Scheduling Lower Bounds by Abboud et al.

In their more recent work [2], Abboud et al. show lower bounds for the problems
1||∑ wjUj , 1|Rej ≤ Q|∑ Uj , 1|Rej ≤ Q|Tmax, 1|rj , Rej ≤ Q|Cmax, P2||Tmax,
P2||∑ Uj , P2|rj |Cmax and P2|level-order|Cmax.5 From those problems, only
1||∑ wjUj appears in this version; the full version [14] also contains results
for 1|Rej ≤ Q|∑ Uj , 1|Rej ≤ Q|Tmax, P2||Tmax and P2||∑ Uj . As we will see
however, the results by Abboud et al. are not directly comparable to our results.

Standard dynamic programming approaches often give running times like
O (nP); on the other hand, it is usually possible to try out all subsets of jobs,
yielding an exponential running time like O (2npolylog(P)) (see e.g. the work
by Jansen et al. [15]). The intuitive way of thinking about our lower bounds
is that we cannot have the best of both worlds, i.e.: ‘An algorithm cannot be
sub-exponential in n and sub-linear in P at the same time.’ To be more specific,
most of our lower bounds have this form: For every ε > 0, there is a δ > 0 such
that the problem cannot be solved in time O (

2δnP 1−ε
)
.

However, note that algorithms with running time Õ (n + P) or Õ (n + pmax)
are not excluded by our bounds, as they are not sub-linear in P . But in a setting
where n and P (resp. pmax) are roughly of the same order, such algorithms
would be much more efficient than the dynamic programming approaches. In
particular, they would be near-linear in n instead of quadratic. This is where

4 This is usually denoted by Rej ≤ R, but since we will use R for the sum of all release
dates, we denote the total rejection weight by Q.

5 In ‘level-order’ problems, the jobs are ordered hierarchically and all jobs of one level
have to be finished before jobs of higher levels can be scheduled.

On the Complexity of Scheduling Problems 197

the lower bounds from the more recent paper [2] by Abboud et al. come into play,
as they have the following form: There is no ε > 0 such that the problem can
be solved in time Õ (

n + pmaxn
1−ε

)
, unless the ∀∃-SETH fails. The ∀∃-SETH is

similar to the SETH, but assuming yet another assumption (the NSETH), ∀∃-
SETH is a strictly stronger assumption than SETH. However, these lower bounds
by Abboud et al. [2] can exclude algorithms with an additive-type running time
Õ (n + pmax). Algorithms with running time Õ (n + pmaxn) may still be possible,
but they would only be near-quadratic instead of near-linear in the n ≈ pmax

setting. It should be noted that our lower bounds also include parameters other
than pmax, e.g. the largest due date dmax or the threshold for the objective
value y.

2.4 Our Results

The main contribution of this work is two-fold: On the one hand, we give plenty of
lower bounds for classical scheduling problems with a fixed number of machines.
These lower bounds all either rely on the ETH, SETH or the (min,+)-conjecture6

and are shown by revisiting classical reductions in the context of fine-grained
complexity, i.e., we pay much attention to the parameters of the constructed
instances. On the other hand, we show how the dynamic programming algo-
rithms for P2|any|Cmax and P3|any|Cmax by Du and Leung [8] can be improved.
Most notably, we show the following (for the precise statements, we refer to the
upcoming sections):

– The algorithm by Lawler and Moore [21] is probably optimal for 1||∑ wjUj

and Pm||Cmax.
– The algorithm by Lee and Uzsoy [23] is probably optimal for P2||∑ wjCj .
– The algorithm by Zhang et al. [30] for 1|Rej ≤ Q|∑ wjUj , the algorithm by

Lawler [19] for 1||∑ Tj and the FPTAS by Gens and Levner [9] for 1||∑ wjUj

are nearly optimal, but there is still some room for improvement.
– P2|any|Cmax can be solved in time O (nP) and this is probably optimal.
– P3|any|Cmax can be solved in time O (

nP 2
)
, which greatly improves upon

the O (
nP 5

)
-time algorithm by Du and Leung [8].

Due to space restrictions, this version does not include the following content,
which can be found in the full version [14]:

– Lower bounds for strongly NP-hard problems,
– implications of our lower bounds for other scheduling problems using classical

reductions between objective functions (see Fig. 1),
– detailed correctness proofs of the classical reductions from the literature and
– proofs of some of our (less prominent or more technical) results.

6 Under the (min, +)-conjecture, the (min, +)-convolution problem cannot be solved
in sub-quadratic time, see [6] for details.

198 K. Jansen and K. Kahler

Note that our SETH-based lower bounds mainly show that improvements for
some pseudo-polynomial algorithms are unlikely. For problems that are strongly
NP-hard, pseudo-polynomial algorithms cannot exist, unless P = NP [4]. How-
ever, the lower bounds for strongly NP-hard problems may be of independent
interest, e.g. in the context of parameterized algorithms.

Fig. 1. Classical reductions between objective functions (see e.g. [20] and the very
useful website http://schedulingzoo.lip6.fr/about.php).

3 Problems with One Machine

In this section, we consider problems on a single machine. For these problems,
the main task is to order the jobs. First, consider again the problem 1||∑ wjUj

of minimizing the weighted number of late jobs on a single machine. With a
reduction very similar to the one by Karp [16], we get the following lower bound:7

Theorem 3. For every ε > 0, there is a δ > 0 such that 1||∑ wjUj cannot be
solved in time O (

2δn(dmax + y + P + W)1−ε
)
, unless the SETH fails.

7 It should be noted that some of the parameters in our lower bounds could be omitted,
as they are overshadowed by others. For example, we can assume w.l.o.g. that dmax ≤
P for 1|| ∑ wjUj , since we can assume a schedule to be gap-less and hence due dates
larger than P could be set to P . But having all the parameters in the lower bound
makes the comparison with known upper bounds easier.

http://schedulingzoo.lip6.fr/about.php

On the Complexity of Scheduling Problems 199

Proof. Let a1, . . . , an be a Partition instance and let T = 1
2

∑n
i=1 ai. Construct

an instance of 1||∑ wjUj by setting pj = wj = aj , dj = T for each j ∈ [n] and
y = T . The idea is that the jobs corresponding to items in one of the partitions
can be scheduled early (i.e. before the uniform due date T).

With this reduction, we get N := n jobs. We have P =
∑n

i=1 ai = A and
hence K := dmax + y + P + W = T + T + A + A = poly(n)A = ncA. The
reduction itself takes time O (N). Assuming that we can solve 1||∑ wjUj in time
O (

2δNK1−ε
)

for some ε > 0 and every δ > 0, we could also solve Partition in
time:

O (N) + O (
2δNK1−ε

)
= O (n) + O (

2δn(ncA)1−ε
) ≤ O (

2δnncA1−ε
)

= O
(
2δn+c log(n)A1−ε

)

≤ O (
22δnA1−ε

)

The last step holds for large enough n; for smaller n, we can solve the problem
efficiently, anyway, as n is then bounded by a constant. Now, to contradict
Theorem 2, we can set ε′ := ε and for every δ′ > 0, we have δ = δ′

2 > 0. So by

assumption, we can solve Partition in time O (
22δnA1−ε

)
= O

(
2δ′nA1−ε′

)
. �	

Using the algorithm by Lawler and Moore [21], 1||∑ wjUj is solvable in time
O (nW) or O (nmin{dmax, P}). Our O (

2δn(dmax + y + P + W)1−ε
)
-time lower

bound suggests the optimality of both variants, as we cannot hope to reduce
the linear dependency on W , dmax or P without getting a super-polynomial
dependency on n. As noted above, Abboud et al. [2] exclude Õ (

n + pmaxn
1−ε

)
-

time algorithms; Hermelin et al. [12] exclude algorithms with running time
Õ (

n + wmaxn
1−ε

)
, Õ (

n + w1−ε
maxn

)
and Õ (

nO(1) + d1−ε
max

)
(all under the stronger

∀∃-SETH).
One interesting property of 1||∑ wjUj is that its straightforward formulation

as an Integer Linear Program has a triangular structure that collapses to a single
constraint when all due dates are equal (see e.g. Lenstra and Shmoys [25]). This
shows that the problem is closely related to Knapsack:

Problem 3. Knapsack

Instance: Item values v1, . . . , vn ∈ N, item sizes a1, . . . , an ∈ N, knapsack
capacity T ∈ N and threshold y.

Task: Decide whether there is a subset S of items with
∑

j∈S aj ≤ T and∑
j∈S vj ≥ y.

Cygan et al. [6] conjectured that the (min,+)-Convolution problem cannot
be solved in sub-quadratic time (this is known as the (min,+)-conjecture) and
showed that this conditional lower bound transfers to Knapsack, excluding
O (

(n + T)2−δ
)

algorithms. As noted by Mucha et al. [28], these results also
hold when we swap the role of sizes and values. As we can discard items with
too large value vi, a lower bound depending on the largest item value vmax

directly follows from Corollary 9.6 in [28]:

200 K. Jansen and K. Kahler

Corollary 2. For any constant δ > 0, there is no O
(
(n + vmax)

2−δ
)
-time exact

algorithm for Knapsack, unless the (min,+)-conjecture fails.

We show that the conditional hardness of Knapsack transfers to 1||∑ wjUj :

Theorem 4. For any constant δ > 0, the existence of an exact algorithm for
1||∑ wjUj with running time O (

(n + wmax)2−δ
)
refutes the (min,+)-conjecture.

Proof. We give a reduction from Knapsack to 1||∑ wjUj . Consider an instance
v1, . . . , vn, a1, . . . , an, T , y of Knapsack. We construct jobs with pj = aj ,
wj = vj and dj = T for every j ∈ [n]. The threshold is set to y′ =

∑n
j=1 vj − y.

Suppose that there is an O (
(n + wmax)2−δ

)
-time algorithm for 1||∑ wjUj .

Since wmax = vmax in the reduction and the reduction takes time O (n), we could
then solve Knapsack in time O (n)+O (

(n + wmax)2−δ
)

= O
(
(n + vmax)

2−δ
)
,

which is a contradiction to Corollary 2, unless the (min,+)-conjecture fails. �	
Lower bounds such as this one also imply lower bounds for approximation

schemes, as setting the accuracy parameter ε small enough yields an exact solu-
tion. The above result implies the following (see the full version [14] for the
proof):

Corollary 3. For any constant δ > 0, the existence of an O (
(n + 1

2nε)2−δ
)
-

time approximation scheme for the optimization version of 1||∑ wjUj refutes
the (min,+)-conjecture.

As the currently fastest FPTAS by Gens and Levner [9] has running time
O (

n2(log(n) + 1
ε)

)
, there is still a small gap. This relation between exact and

approximation algorithms might also be an interesting subject of further inves-
tigation, as many other scheduling problems admit approximation schemes and
exact lower bounds.

We wish to mention two other results that follow from examining classical
reductions, the proofs of which can also be found in the full version [14]. The
first result concerns 1||∑ Tj :

Theorem 5. For every ε > 0, there is a δ > 0 such that 1||∑ Tj cannot be
solved in time O (

2δnP 1−ε
)
, unless the SETH fails.

There is an O (
n4P

)
-time algorithm by Lawler [19] and while we can derive no

statement about the exponent of n, our lower bound suggests that an improve-
ment of the linear factor P is unlikely without getting a super-polynomial depen-
dency on n. We have a similar situation for the problem 1|Rej ≤ Q|Cmax:

Theorem 6. For every ε > 0, there is a δ > 0 such that 1|Rej ≤ Q|Cmax cannot
be solved in time O (

2δn(y + P + Q + W)1−ε
)
, unless the SETH fails.

The lower bound can also be shown to hold for 1|Rej ≤ Q|∑ wjUj using reduc-
tions between objective functions (see Fig. 1) and this problem can be solved
in time O (nQP) with the algorithm by Zhang et al. [30]. This almost matches
our lower bound: An algorithm with running time O (n(Q + P)) might still be
possible, for example.

On the Complexity of Scheduling Problems 201

4 Problems with Multiple Machines

We now turn our attention to problems on two or more machines. For standard
jobs, a straightforward reduction from Partition yields the following result
(for a formal proof, see [14]):

Theorem 7. For every ε > 0, there is a δ > 0 such that P2||Cmax cannot be
solved in time O (

2δn(y + P)1−ε
)
, unless the SETH fails.

This lower bound also applies to the harder objectives (e.g. Tmax) and in par-
ticular to P2||∑ wjUj (using the reductions in Fig. 1); the dynamic program
by Lawler and Moore [21] (which is also sometimes attributed to Rothkopf [29])
solves most common objectives like Cmax and Tmax in time O (ny) but needs
O (

ny2
)

for P2||∑ wjUj (see [25], in particular exercise 8.10). So the gap is
likely closed in the Cmax, Tmax, . . . cases, but there is still a factor-y-gap for the∑

wjUj-objective.
In general, the dynamic program by Lawler and Moore [21] solves Pm||Cmax

in a running time of O (
nmym−1

) ≤ O (
nmPm−1

)
. Our matching lower bound

for m = 2 gives rise to the question whether the running time is optimal for

general m > 1. Chen et al. [5] showed a 2O
(

m
1
2 −δ

√
|I|

)
-time lower bound for

Pm||Cmax and with a careful analysis, one can also show the following lower
bound (see the full version [14] for a proof):

Theorem 8. There is no O
(

nmP
o
(

m
log2(m)

))

-time algorithm for Pm||Cmax,

unless the ETH fails.

So the algorithm by Lawler and Moore [21] is indeed almost optimal, as we
can at best hope to shave off logarithmic factors in the exponent (assuming
the weaker assumption ETH). Since the algorithm not only works for Cmax,
one might ask whether we can find similar lower bounds for other objectives as
well. For most common objective functions, we answer this question positively
using the reductions in Fig. 1 (see the full version [14]), but it remains open for∑

wjCj . Note that the unweighted Pm||∑ Cj is polynomial-time solvable [3].
An alternative dynamic program by Lee and Uzsoy [23] solves Pm||∑wjCj

in time O (
mnWm−1

)
. In order to get a matching lower bound (i.e. one that

depends on the weights) for m = 2, we examine another classical reduction:

Theorem 9. For every ε > 0, there is a δ > 0 such that P2||∑ wjCj cannot
be solved in time O (

2δn(
√

y + P + W)1−ε
)
, unless the SETH fails.

Proof. We show that the lower bound for Partition can be transferred to
P2||∑ wjCj using the reduction by Lenstra et al. [24] and Bruno et al. [3].

Given a Partition instance a1, . . . , an, we construct a P2||∑ wjCj instance
in the following way: Define pj = wj = aj for all j ∈ [n] and set the limit
y =

∑
1≤i≤j≤n ajai − 1

4A2. Of course, the idea of the reduction is that the limit
y forces the jobs to be equally distributed among the two machines (regarding
the processing time).

202 K. Jansen and K. Kahler

Assume that there is an algorithm that solves an instance of P2||∑ wjCj

in time O (
2δNK1−ε

)
for some ε > 0 and every δ > 0, where N := n and

K :=
√

y + P + W . By the choice of y, we can see that

y =
∑

1≤i≤j≤n

ajai − 1
4
A2 ≤

⎛

⎝
∑

j∈[n]

aj

⎞

⎠

2

− 1
4
A2 =

3
4
A2 = O (

A2
)
.

Since wj = pj = aj , we also have P = W = A. Hence, we have K =
√

y+P+W =
O (A + A + A) = O (A) and an algorithm with running time

O (
2δNK1−ε

)
= O

(
2δnO (A)1−ε

)
= O (

2δnc1−εA1−ε
)

= O (
2δnA1−ε

)

would contradict the lower bound for Partition from Theorem 2. Here, c cov-
ers the constants in the O-term and the running time O (N) of the reduction
vanishes. �	
So the O (nW)-time algorithm by Lee and Uzsoy [23] is probably optimal for
P2||∑ wjCj , as we cannot hope to reduce the linear dependency on W without
getting a super-polynomial dependency on n.

We briefly turn our attention towards rigid jobs. Clearly, P2|size|Cmax is
a generalization of P2||Cmax (the latter problem simply does not have two-
machine jobs), so we get the following lower bound (for a formal proof, see the
full version [14]):

Theorem 10. For every ε > 0, there is a δ > 0 such that P2|size|Cmax cannot
be solved in time O (

2δn(y + P)1−ε
)
, unless the SETH fails.

Similarly, the algorithm by Lawler and Moore [21] can be used to find a feasi-
ble schedule for the one-machine jobs and the two-machine jobs can be sched-
uled at the beginning. This gives an O (ny)-time algorithm for P2|size|Cmax,
and the linear dependency on y cannot be improved without getting a super-
polynomial dependency on n, unless the SETH fails. For other objectives, the
problem quickly becomes more difficult: Already P2|size|Lmax is strongly NP-
hard, as well as P2|size|∑ wjCj (for both results, see Lee and Cai [22]). It is still
open whether the unweighted version P2|size|∑ Cj is also strongly NP-hard or
whether there is a pseudo-polynomial algorithm; this question has already been
asked by Lee and Cai [22], more than 20 years ago.

It is not hard to see that the hardness of P2||Cmax also transfers to moldable
jobs (i.e. P2|any|Cmax); we simply create an instance where it does not make
sense to schedule any of the jobs on two machines (again, for a formal proof, see
the full version [14]):

Theorem 11. For every ε > 0, there is a δ > 0 such that P2|any|Cmax cannot
be solved in time O (

2δn(y + P)1−ε
)
, unless the SETH fails.

The problems P2|any|Cmax and P3|any|Cmax can be solved via dynamic pro-
gramming, as shown by Du and Leung [8] (a nice summary is given in the book
by Drozdowski [7]). We show that these programs can be improved to match our
new lower bound for the two-machine case:

On the Complexity of Scheduling Problems 203

Theorem 12. The problem P2|any|Cmax can be solved in time O (nP) via
dynamic programming.

Proof. Assume that we are given processing times pj(k), indicating how long it
takes to run job j on k machines. The main difficulty is to decide whether a job
is to be processed on one or on two machines. Our dynamic program fills out a
table F (j, t) for every j ∈ [n] and t ∈ [y], where the entry F (j, t) is the minimum
load we can achieve on machine 2, while we schedule all the jobs in [j] and
machine 1 has load t. To fill the table, we use the following recurrence formula:

F (j, t) = min

⎧
⎪⎨

⎪⎩

F (j − 1, t − pj(1))
F (j − 1, t) + pj(1)
F (j − 1, t − pj(2)) + pj(2)

Intuitively speaking, job j is executed on machine 1 in the first case, on machine
2 in the second case and on both machines in the third case. The initial entries
of the table are F (0, 0) = 0 and F (0, t) = ∞ for every t ∈ [y].

There are ny ≤ n
∑n

j=1 max{pj(1), pj(2)} = O (nP) entries we have to com-
pute.8 Then, we can check for every t ∈ [y] whether F (n, t) ≤ y. If we find such
an entry, this directly corresponds to a schedule with makespan at most y, so we
can accept. Otherwise, there is no such schedule and we can reject. The actual
schedule can be obtained by traversing backwards through the table; alterna-
tively, we can store the important bits of information while filling the table (this
works exactly like, e.g., in the standard knapsack algorithm). Note that we might
have to reorder the jobs such that the jobs executed on two machines are run in
parallel. But it can be easily seen that all two-machine jobs can be executed at
the beginning of the schedule. Computing the solution and reordering does not
change the running time in O-notation, so we get an O (nP) algorithm. �	
As Theorem 11 shows, improving the dependency on P to sub-linear is only possi-
ble if we get a super-polynomial dependency on n, unless the SETH fails. Using
a similar recurrence formula and the fact that information about an optimal
placement of jobs directly leads to an optimal schedule (i.e. there is a canonical
schedule), one can show a similar result for P3|any|Cmax (see the full version [14]
for a proof):

Theorem 13. The problem P3|any|Cmax can be solved in time O (
n2P

)
via

dynamic programming.

This improves upon the O (
nP 5

)
-algorithm by Du and Leung [8]. Even though

the same approach could be applied to an arbitrary number of machines m in
time O (

nmPm−1
)
, the strong NP-hardness of Pm|any|Cmax for m ≥ 4 shows

that the information on which machine each job is scheduled is not enough to
directly construct an optimal schedule in those cases, unless P=NP (see Henning
et al. [11] as well as Du and Leung [8]).
8 The precise definition of P in this context does not matter for the running time in

O-notation; we can either add pj(1) and pj(2) to the sum or just the larger of the
two.

204 K. Jansen and K. Kahler

5 Conclusion

In this work, we examined the complexity of scheduling problems with a fixed
number of machines. Our conditional lower bounds indicate the optimality of
multiple well-known classical algorithms. For the problems P2|any|Cmax and
P3|any|Cmax, we managed to improve the currently best known algorithm, clos-
ing the gap in the case of two machines.

As we have seen at the example of 1||∑ wjUj , lower bounds for exact
algorithms can be quite easily used to obtain lower bounds for approximation
schemes. We strongly believe that the same technique can be used for other
problems, either to show tightness results or to indicate room for improvement.

For exact algorithms, there is a number of open problems motivated by our
results: First of all, there is still a gap between our lower bound for Pm||Cmax

(and other objectives) and the algorithm by Lawler and Moore [21]. So an
interesting question is where the ‘true’ complexity lies between m − 1 and
o
(

m
log2(m)

)
in the exponent. Zhang et al. give an O (n(rmax + P))-time algorithm

for 1|rj , Rej ≤ Q|Cmax in their work [30]. Since rmax + P ≥ y w.l.o.g., it would
be interesting to find an O (

2δn(rmax + P)1−ε
)

or O (
2δny1−ε

)
lower bound for

this problem. As noted by Lenstra and Shmoys [25], the algorithm by Lawler and
Moore [21] cannot be improved to O (

mnym−1
)

for the objective
∑

wjUj . So
this algorithm would be quadratic in y for two machines, while our lower bound
excludes anything better than linear (and still polynomial in n). Hence, it would
be interesting to see whether there is a different algorithm with running time
O (ny). Similarly, there is an algorithm for 1|Rej ≤ Q|∑ wjUj with running
time O (nQP) [30], while our lower bound suggests that an O (n(Q + P))-time
algorithm could be possible.

On another note, it would be interesting to extend the sub-quadratic equiv-
alences by Cygan et al. [6] and Klein [17] to scheduling problems. Finally, the
question by Lee and Cai [22] whether P2|size|∑ Cj is strongly NP-hard or not
is still open since 1999.

Acknowledgements. The authors wish to thank Sebastian Berndt, Max Deppert,
Sören Domrös, Lena Grimm, Leonie Krull, Marten Maack, Niklas Rentz and anony-
mous reviewers for very helpful comments and ideas.

References

1. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: Seth-based lower bounds
for subset sum and bicriteria path. In: Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, Cal-
ifornia, USA, 6–9 January, 2019, pp. 41–57 (2019). https://doi.org/10.1137/1.
9781611975482.3

2. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: Scheduling lower bounds
via and subset sum. J. Comput. Syst. Sci. 127, 29–40 (2022). https://doi.org/10.
1016/j.jcss.2022.01.005

https://doi.org/10.1137/1.9781611975482.3
https://doi.org/10.1137/1.9781611975482.3
https://doi.org/10.1016/j.jcss.2022.01.005
https://doi.org/10.1016/j.jcss.2022.01.005

On the Complexity of Scheduling Problems 205

3. Bruno, J.L., Coffman, Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Commun. ACM 17(7), 382–387 (1974). https://doi.org/10.
1145/361011.361064

4. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complex-
ity, algorithms and approximability. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization: Volume 1–3, pp. 1493–1641. Springer, US, Boston,
MA (1998). https://doi.org/10.1007/978-1-4613-0303-9 25

5. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for
the classical scheduling problem. In: Chekuri, C. (ed.) Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Port-
land, Oregon, USA, 5–7 January, 2014. pp. 657–668. SIAM (2014). https://doi.
org/10.1137/1.9781611973402.50

6. Cygan, M., Mucha, M., Wundefinedgrzycki, K., W�lodarczyk, M.: On problems
equivalent to (min,+)-convolution. ACM Trans. Algorithms 15(1) (2019). https://
doi.org/10.1145/3293465

7. Drozdowski, M.: Scheduling for Parallel Processing. Springer Publishing Company,
Incorporated, 1st edn. (2009). https://doi.org/10.1007/978-1-84882-310-5

8. Du, J., Leung, J.Y.T.: Complexity of scheduling parallel task systems. SIAM J.
Discret. Math. 2(4), 473–487 (1989). https://doi.org/10.1137/0402042

9. Gens, G., Levner, E.: Fast approximation algorithm for job sequencing with dead-
lines. Discret. Appl. Math. 3(4), 313–318 (1981). https://doi.org/10.1016/0166-
218X(81)90008-1

10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.R.: Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. In: Hammer, P.,
Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Math-
ematics, vol. 5, pp. 287–326. Elsevier (1979). https://doi.org/10.1016/S0167-
5060(08)70356-X

11. Henning, S., Jansen, K., Rau, M., Schmarje, L.: Complexity and Inapproximability
Results for Parallel Task Scheduling and Strip Packing. Theory of Computing
Systems 64(1), 120–140 (2019). https://doi.org/10.1007/s00224-019-09910-6

12. Hermelin, D., Molter, H., Shabtay, D.: Minimizing the weighted number of
tardy jobs via (max,+)-convolutions (2022). https://doi.org/10.48550/ARXIV.
2202.06841

13. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

14. Jansen, K., Kahler, K.: On the complexity of scheduling problems with a fixed
number of parallel identical machines (2022). https://doi.org/10.48550/ARXIV.
2202.07932, https://arxiv.org/abs/2202.07932

15. Jansen, K., Land, F., Land, K.: Bounding the running time of algorithms for
scheduling and packing problems. SIAM J. Discret. Math. 30(1), 343–366 (2016).
https://doi.org/10.1137/140952636

16. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

17. Klein, K.M.: On the Fine-Grained Complexity of the Unbounded SubsetSum and
the Frobenius Problem, pp. 3567–3582. SIAM (2022). https://doi.org/10.1137/1.
9781611977073.141

18. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched.
21(5), 493–503 (2017). https://doi.org/10.1007/s10951-017-0550-0

https://doi.org/10.1145/361011.361064
https://doi.org/10.1145/361011.361064
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1137/1.9781611973402.50
https://doi.org/10.1137/1.9781611973402.50
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1137/0402042
https://doi.org/10.1016/0166-218X(81)90008-1
https://doi.org/10.1016/0166-218X(81)90008-1
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.48550/ARXIV.2202.06841
https://doi.org/10.48550/ARXIV.2202.06841
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.48550/ARXIV.2202.07932
https://doi.org/10.48550/ARXIV.2202.07932
https://arxiv.org/abs/2202.07932
https://doi.org/10.1137/140952636
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1007/s10951-017-0550-0

206 K. Jansen and K. Kahler

19. Lawler, E.L.: A “pseudopolynomial” algorithm for sequencing jobs to minimize
total tardiness. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.)
Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 331–
342. Elsevier (1977). https://doi.org/10.1016/S0167-5060(08)70742-8

20. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H., Shmoys, D.B.: Chapter 9 sequenc-
ing and scheduling: algorithms and complexity. In: Logistics of Production and
Inventory, Handbooks in Operations Research and Management Science, vol. 4,
pp. 445–522. Elsevier (1993). https://doi.org/10.1016/S0927-0507(05)80189-6

21. Lawler, E.L., Moore, J.M.: A functional equation and its application to resource
allocation and sequencing problems. Manage. Sci. 16(1), 77–84 (1969). https://
doi.org/10.1287/mnsc.16.1.77

22. Lee, C.Y., Cai, X.: Scheduling one and two-processor tasks on two par-
allel processors. IIE Trans. 31(5), 445–455 (1999). https://doi.org/10.1080/
07408179908969847

23. Lee, C.Y., Uzsoy, R.: A new dynamic programming algorithm for the parallel
machines total weighted completion time problem. Operations Research Letters
11(2), 73–75 (mar 1992). https://doi.org/10.1016/0167-6377(92)90035-2

24. Lenstra, J.K., Rinnooy Kan, A.H., Brucker, P.: Complexity of machine scheduling
problems. Ann. Discrete Math. 1, 343–362 (1977). https://doi.org/10.1016/S0167-
5060(08)70743-X

25. Lenstra, J.K., Shmoys, D.B.: Elements of scheduling (2020). https://doi.org/10.
48550/ARXIV.2001.06005

26. Mnich, M., van Bevern, R.: Parameterized complexity of machine scheduling: 15
open problems. Comput. Oper. Res. 100, 254–261 (2018). https://doi.org/10.1016/
j.cor.2018.07.020

27. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Mathematical
Programming 154(1–2), 533–562 (dec 2015). https://doi.org/10.1007/s10107-014-
0830-9

28. Mucha, M., Wundefinedgrzycki, K., W�lodarczyk, M.: A subquadratic approxima-
tion scheme for partition. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 70–88. Society
for Industrial and Applied Mathematics, USA (2019). https://doi.org/10.1137/1.
9781611975482.5

29. Rothkopf, M.H.: Scheduling independent tasks on parallel processors. Manage. Sci.
12(5), 437–447 (1966). https://doi.org/10.1287/mnsc.12.5.437

30. Zhang, L., Lu, L., Yuan, J.: Single-machine scheduling under the job rejection
constraint. Theoret. Comput. Sci. 411(16–18), 1877–1882 (2010). https://doi.org/
10.1016/j.tcs.2010.02.006

https://doi.org/10.1016/S0167-5060(08)70742-8
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1080/07408179908969847
https://doi.org/10.1080/07408179908969847
https://doi.org/10.1016/0167-6377(92)90035-2
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1287/mnsc.12.5.437
https://doi.org/10.1016/j.tcs.2010.02.006
https://doi.org/10.1016/j.tcs.2010.02.006

SOFSEM 2023 Best Student Papers

On the 2-Layer Window Width
Minimization Problem

Michael A. Bekos1 , Henry Förster2 , Michael Kaufmann2 ,
Stephen Kobourov3 , Myroslav Kryven3 , Axel Kuckuk2(B) ,

and Lena Schlipf2

1 Department of Mathematics, University of Ioannina, Ioannina, Greece
bekos@uoi.gr

2 Department of Computer Science, University of Tübingen, Tübingen, Germany
{henry.foerster,michael.kaufmann,axel.kuckuk,

lena.schlipf}@uni-tuebingen.de
3 Department of Computer Science, University of Arizona, Tucson, AZ, USA

{kobourov,kryven}@cs.arizona.edu

Abstract. When interacting with a visualization of a bipartite graph,
one of the most common tasks requires identifying the neighbors of a
given vertex. In interactive visualizations, selecting a vertex of interest
usually highlights the edges to its neighbors while hiding/shading the rest
of the graph. If the graph is large, the highlighted subgraph may not fit in
the display window. This motivates a natural optimization task: find an
arrangement of the vertices along two layers that reduces the size of the
window needed to see a selected vertex and all its neighbors. We consider
two variants of the problem; for one we present an efficient algorithm,
while for the other we show NP-hardness and give a 2-approximation.

Keywords: Graph drawing · Bipartite graphs · 2-layer drawings ·
Window width

1 Introduction

Two-layer networks model relationships between two disjoint sets of entities in var-
ious applications. Such networks are naturally modeled by bipartite graphs and
are usually visualized with 2-layer drawings, where vertices are drawn as points
on two distinct parallel lines �t and �b, and edges are straight-line segments [5].
Such drawings occur as components in layered drawings of directed graphs [15]
and also as final drawings, e.g., in tanglegrams for phylogenetic trees [1,2,6,14] or
in network layouts highlighting relationships between two communities [4,10,13].

A common task in the exploration of such networks is to identify the neigh-
bors of a vertex of interest. A typical approach is to click on this vertex and

H. Förster, M. Kaufmann and A. Kuckuk are supported by DFG grant Ka512/18-2.
L. Schlipf is supported by the Ministry of Science, Research and the Arts Baden-
Württemberg (Germany).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 209–221, 2023.
https://doi.org/10.1007/978-3-031-23101-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_14&domain=pdf
http://orcid.org/0000-0002-3414-7444
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0001-9186-3538
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0003-4778-3703
http://orcid.org/0000-0002-5070-3412
http://orcid.org/0000-0001-7043-1867
https://doi.org/10.1007/978-3-031-23101-8_14

210 M. A. Bekos et al.

Fig. 1. The x-spans of vertices v and w.

highlight the edges to its neighbors, while hiding/shading the rest of the graph.
Of course, the highlighted edges should fit in the display window. This motivates
a natural optimization task: find permutations of the vertices that minimize the
size of the window needed to see any vertex and all its neighbors. Related is the
problem of minimizing the number of crossings instead, which is an NP-complete
problem [5,7,11] and does not always result in easy-to-read drawings.

In applications, the vertex orders cannot always be treated as permutations;
the vertices may have specific coordinates in one of the two layers �t or �b.
For instance, the ASCT+B Reporter [8], a tool for displaying anatomical struc-
tures, cell types, and biomarkers, exemplifies this issue; by selecting a cell type its
related biomarkers are highlighted. Minimizing the actual window width makes
the tool easier to use. Note that in this use-case, the window widths of cell types
are very important while the corresponding widths for biomarkers are negligible.

Our Contribution. Motivated by the discussion above, we study the follow-
ing problem. The input consists of a bipartite graph G = (A ∪ B,E). The
output is a 2-layer drawing Γ of G, that is, one in which the vertices in A and B
are placed at distinct integer coordinates on two parallel lines �t and �b, respec-
tively (w.l.o.g., �t : y = 1 and �b : y = 0; top and bottom layers). The objective
is to minimize the window width of Γ , i.e., the maximum taken over all vertices
v in A of the maximum x-distance between all neighbors of v along �b including
the projection of v to �b. Motivated by common assumptions in layered graph
drawing [3,9] we consider two variants, where the x-coordinates of the vertices
of either A or B on �t or �b, respectively, are fixed. The former is NP-complete
(Theorem 3); the latter is efficiently solvable (Theorem 1).

Preliminaries. For a vertex v in a drawing Γ denote by xΓ (v) and yΓ (v) the
x- and y-coordinate of v in drawing Γ ; when the reference drawing is clear, we
simplify the notation to x(v) and y(v). Given a bipartite graph G = (A ∪ B,E)
with nA = |A| and nB = |B|, the x-span xsΓ (v) of a vertex v ∈ A in a 2-
layer drawing Γ of G is the maximum x-distance of all neighbors of v in B
including v itself. To be more formal, xsΓ (v) = maxu,w∈N [v]{|xΓ (u) − xΓ (w)|}
where N [v] = {v} ∪ {w|(v, w) ∈ E} is the closed neighborhood of v. We define
the window width ww(Γ) of the drawing Γ as the maximum of the x-spans over
all vertices in A, that is, ww(Γ) = maxv∈A{xsΓ (v)}, see Fig. 1. In the 2-layer
window width minimization problem, we seek to determine the window width
ww(G) of a graph G, which is the minimum window width of all of its 2-layer
drawings.

On the 2-Layer Window Width Minimization Problem 211

2 Window Width Minimization with Bottom Layer Fixed

We present an efficient algorithm to find a 2-layer drawing of minimum window
width when the x-coordinates of the vertices of B along �b are fixed.

Theorem 1. Given a bipartite graph G = (A∪B,E) and a function ξB : B → Z,
there is an O(nA log nA + |E|)-time algorithm to determine a 2-layer drawing Γ
of G with minimum window width k� and xΓ (b) = ξB(b) for each b ∈ B.

Proof. For each vertex v ∈ A it suffices to focus on its leftmost neighbor �(v) in
ξB and rightmost neighbor r(v) in ξB (ignoring intermediate ones). Note that
�(v) = r(v) is possible. This preprocessing, which can be done in O(|E|) time,
allows us to continue with a graph of O(nA) vertices and edges, called the critical
part of G. We now determine the x-coordinate of each vertex v in A.

Let k0 be the maximum x-distance between �(v) and r(v) over all vertices v
in A and note that k0 is a lower bound for k�. We describe an O(nA log nA)-time
algorithm to compute k� and a corresponding solution. In this process, we start
by attempting to find a drawing with window width k = k0. If at some point, we
conclude that the current value of k is too small, we increase k by 1 and proceed.
When the algorithm terminates it will hold that k = k�.

Let I(v) = [x(r(v)) − k, x(�(v)) + k] be the interval of v ∈ A; the x-distance
of v to �(v) and r(v) is at most k if and only if its x-coordinate is in I(v).

We sweep the intervals of the vertices from left-to-right by a vertical sweep
line L, which is a data-structure maintaining a set of active intervals (i.e., those
intersected by L whose vertices in A have not been placed yet) assumed to be
sorted by their right endpoints. In this process, we distinguish three different
types of events: start, placement and end. If during the sweep multiple events
occur at the same x-coordinate i we first perform all start events at i, followed
by a possible placement event at i before finally performing the end events at i.

Start Event. It occurs at the left endpoint i of each interval I(v). Here, the
interval I(v) is inserted into L. We add a placement event at i, if there is none.

Placement Event at i. We remove the first active interval I(v) from L, set x(v) :=
i and mark I(v) as inactive. If L is not empty, we add a placement event at i+1.
Note that placement events always place a vertex, hence there is only a linear
number of placement events in total.

End Event. It occurs at the right endpoint i of each interval I(v). We check if I(v)
is marked as inactive. If this is the case, we proceed. If not, we failed to place v at
a position within I(v). We increase k by 1 (i.e., all start events and already placed
vertices are moved by −1 and all end events by +1 on the x-axis) and replace the
already existing placement event with a new placement event at i.

Correctness. We begin with two useful observations. First, once our algorithm
failed to place a vertex v within I(v), the partial solution obtained by increasing
k by one and shifting all placed vertices one unit to the left is identical to the
one that would be obtained by restarting the algorithm with window width k+1.

212 M. A. Bekos et al.

Second, by increasing k the ordering of the start events of the intervals remains
the same and the same holds true for the end events. Consequently, the following
property holds. Assume that we increased k by 1 at x-coordinate i after failing
to place a vertex v with I(v) = [�, r]. Note that r = i before increasing k and
r = i + 1 after increasing k. Now let Pi denote the set of vertices that has
been placed by our algorithm so far and let Si denote the set of vertices whose
start event occurs at i after increasing k to k + 1. Then, after handling the end
event, for each p ∈ Pi with interval I(p) = [�p, rp] it holds for each s ∈ Si with
I(s) = [�s, rs] that rp ≤ rs since rp ≤ r = i + 1 and i = �s < rs.1

To complete the correctness proof, we show that we increase k only if it
is necessary. Recall that we increase k if a vertex v cannot be placed within
I(v) = [�, r]. Hence, all x-coordinates of I(v) have been assigned to previously
placed vertices. Let �′ < � be the largest x-coordinate our algorithm assigned no
vertex from A and let Av ⊂ A be the vertices placed in I ′(v) = [�′ + 1, r]. We
prove that in each solution with window width k, all vertices in Av have to be
placed in I ′(v). Assume for a contradiction that there is a vertex a ∈ Av that
can be placed outside of I ′(v) such that its x-span is at most k. To this end,
recall that a has x-span at most k if and only if it is placed within I(a). First,
a cannot be placed at an x-coordinate greater than xr, since a has been placed
before v by the algorithm, i.e., the right end of I(a) is at an x-coordinate of
at most xr. Second, a cannot be placed at an x-coordinate smaller than x′

� + 1
as our algorithm would have placed a at coordinate x′

� (or even beforehand)
if its interval would have started at an x-coordinate smaller or equal to x′

�;
contradiction.

Time Complexity. We store the start and end events in two left-to-right sorted
lists, while we maintain at most one placement event (with associated x-
coordinate). The active intervals are stored in a binary min heap (the keys are
the right endpoints). By keeping offset values for start and end events, as well
as for the last placed vertex, the performed shifts can be done in O(nA) time
with one additional right-to-left pass. Since L maintains at most O(nA) inter-
vals the running time is O(nA log nA), after computing the critical part of G in
O(|V | + |E|) time. ��
Remark 1. The core of the algorithm, given sorted start and end events, can be
completed in O(nA log k�) time since the number of intervals in L is actually
bounded by 2k�.

Proof. Consider some x-coordinate i at which there are 2k� + 2 intervals main-
tained in L. Since there can only be one vertex placed on each integer coordinate,
there must be one placed on x-coordinate i + 2k� + 1, let this be vertex v with
interval I(v) = [�, r]. Note that since this interval is active at i it must hold
that � ≤ i. With the definition of I(v) it follows x(r(v)) ≤ � + k� ≤ i + k. The
interval is maximal if r(v) = �(v), thus x(�(v))+k� ≤ r(v))+k� ≤ i+2k� which
contradicts the placement of v at i + 2k� + 1. ��
1 We point out that the latter relation �s < rs does not hold if k = 0, but since we

increased k by 1, it holds k ≥ 1.

On the 2-Layer Window Width Minimization Problem 213

Next, we show that a variant of our algorithm can be used to optimize the
maximum edge-length.

Theorem 2. Given a bipartite graph G = (A∪B,E) and a function ξB : B → Z,
there is an O(nA log nA + |E|)-time algorithm to determine a 2-layer drawing Γ
of G that minimizes the maximum x-distance k� between any vertex in A and
any adjacent vertex in B and xΓ (b) = ξB(b) for each b ∈ B.

Proof. As in the proof of Theorem 1, we first identify the critical part of G which
has O(nA) vertices and edges. In the following, we determine the x-coordinate of
each vertex v in A such that the maximum x-distance between adjacent vertices,
denoted by k, is minimized in the critical part, which implies that it is minimized
in G as well. As in the proof of Theorem 1, for a sufficiently large value of k,
we define for each vertex v ∈ A an interval I(v) such that v is placed on any
x-coordinate in I(v) if and only if its x-distance to any neighbor of v is at most
k. More precisely, I(v) = [x(r(v)) − k, x(�(v)) + k]. We start the algorithm of
Theorem 1 with k = k0, where k0 := 	kmax

2
 and kmax denotes the maximum
x-distance between �(v) and r(v) over all vertices v in A (that is, k0 is the trivial
lower bound for k�). During the algorithm, we might conclude that the current
value of k is not sufficient, thus k is increased by 1 before proceeding.

Since the rest of the algorithm of Theorem 1 consists of finding placements
of all vertices within their intervals and increasing the intervals if necessary, this
part of the algorithm can be completely adopted. Both the correctness and the
time complexity of the algorithm follow analogously to Theorem 1. ��

3 Window Width Minimization with Top Layer Fixed

In contrast to the positive result from Theorem 1, we prove here that the problem
is NP-complete when the order of the vertices A on the top layer �t is fixed.

Theorem 3. Given a bipartite graph G = (A ∪ B,E), a function ξA : A → Z

and an integer k, it is NP-complete to test whether a 2-layer drawing Γ of G
exists, such that ww(Γ) = k and xΓ (a) = ξA(a) for each a ∈ A.

Proof. Membership in NP is obvious. To prove NP-hardness, we adapt a reduc-
tion by Papadimitriou from the Exact-3-Sat problem to the Bandwidth prob-
lem [12]. Let ϕ be an instance of Exact-3-Sat, that is, a Boolean formula with
n variables and m clauses (each with 3 different literals). We assume w.l.o.g.
that n ≥ 5 and reduce the problem of determining whether ϕ is satisfiable to
an instance of our problem consisting of a bipartite graph G = (A ∪ B,E), a
function ξA : A → Z and the integer k = 6n + 3. We first sketch the general idea
of the reduction by Papadimitriou and discuss the relation to our construction;
for an example illustration see Fig. 2.

Introduction to the Reduction. A central concept in the reduction for the Band-
width problem2 is a subgraph H that contains a literal-vertex for each possible
2 Given k ∈ N and a graph G = (V, E) the Bandwidth problem asks for an ordering

≺ of V so that for each (u, v) ∈ E there are at most k vertices between u and v in
≺.

214 M. A. Bekos et al.

literal (i.e., for each variable xi, it contains vertices �xi
and �¬xi

) and two addi-
tional vertices denoted by M and M ′. By fixing the value of the bandwidth, it
can be ensured that in any layout of H exactly n of the literal-vertices appear in
a sequence P to the left of M and M ′ whereas the remaining n literal-vertices
appear to the right of M and M ′ in a sequence Q. The vertices placed in P
correspond to the satisfied literals, while the vertices placed in Q correspond to
unsatisfied literals. In our reduction, we achieve the same behavior using block-
gadgets and H-gadgets where our B2-blocks correspond to vertices M and M ′ in
Papadimitriou’s reduction.

In the reduction for the bandwidth problem, there are n + m consecutive
copies of H that are “synchronized” via the bandwidth restriction. Namely, addi-
tional edges ensure that each literal consistently occurs either in every sequence
P or in every sequence Q. We achieve the same behavior using the propagation
gadgets. Papadimitriou associates each of the first n copies of H with a variable-
gadget that checks that only one of the literal-vertices corresponding to x and
¬x occurs within Q, namely, as the leftmost vertex in Q. Finally, each of the last
m copies of H is associated with a clause-gadget that ensures that at most two
literals of a given clause can occur within sequence Q, namely, as the leftmost
two vertices. In our construction, we use similar gadgets exploiting this idea.

Finally, it is worth remarking that in contrast to the bandwidth problem, in
the window width minimization problem vertices in B are restricted to certain
positions along �b by inputs ξA and k. With these additional restrictions fixing
vertices to certain intervals (e.g., one copy of each literal in each H-gadget) is
simplified, however, it also becomes less apparent that the model still allows for
enough flexibility to show NP-hardness (as for instance required in the propaga-
tion between consecutive H-gadgets).

Next, we provide a description of the gadgets of our construction. The func-
tionality of each gadget is ensured by introducing one or two vertices at appro-
priate coordinates along �t. We start by introducing the basic structure of our
construction consisting of block- and H-gadgets.

Block-Gadget. The purpose of the block-gadget is to fix a certain number β of
vertices of B to be consecutive at fixed x-coordinates i, . . . , i + β − 1 so that no
other vertex can be placed there; see Fig. 3a. Hence, these β block vertices occupy
a block of x-coordinates where no other vertex of B may be placed. To achieve
this property, we introduce two vertices a�, ar ∈ A with ξA(a�) = i − (k − β + 1)
and ξA(ar) = i + k which both are connected to all β block vertices. It is easy
to verify that each block vertex has x-distance at most k to both a� and ar if
and only if it is located inside the interval [i, i + β − 1] in B (the order of the β
vertices inside the interval is free).

We use two types of blocks, namely, one with β1 = 2n+3 vertices of B (empty
dark gray circles in Fig. 2a) and one with β2 = n + 1 vertices of B (filled dark
gray circles in Fig. 2a). We call the B-vertices of such blocks B1- and B2-blocks,
respectively. Further, we assume that the vertices of a B1-block are partitioned
into three parts B�

1, Bm
1 and Br

1 . Part Bm
1 has exactly n vertices, while B�

1 and
Br

1 have �(n + 3)/2 and 	(n + 3)/2)
 vertices, respectively; see Fig. 3b.

On the 2-Layer Window Width Minimization Problem 215

Fig. 2. Example of our NP-hardness reduction for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x4 ∨
x5) ∧ (x1 ∨ ¬x4 ∨ x5) with satisfying assignment x1 = x3 = x5 = � and x2 = x4 = ⊥.
Literal-vertices of x1, x2, x3, x4 and x5 are colored blue, red, green, yellow and pink,
respectively, and filled white or black, if associated with the positive or negative literal,
respectively. Subfigures (a) and (b) show only part of the H-gadgets, in subfigure (c)
all H-gadgets are shown (split into two lines at the B1-block separated with dashed
lines). Subfigures (b) and (c) also show the vertices of the gadgets introduced in the
previous subfigures. (Color figure online)

216 M. A. Bekos et al.

Fig. 3. (a) Block-gadget. (b) H-gadget and propagation-gadget. (Color figure online)

Table 1. First and last x-coordinate of the i-th B1-, P -, B2-, and Q-block as enumer-
ated from left-to-right starting at 1.

Block Type First x-coordinate Last x-coordinate

B1-block p · (i − 1) + 1 p · (i − 1) + 2n + 3

P -block p · (i − 1) + 2n + 4 p · (i − 1) + 3n + 3

B2-block p · (i − 1) + 3n + 4 p · (i − 1) + 4n + 4

Q-block p · (i − 1) + 4n + 5 p · (i − 1) + 5n + 4

B1- and B2-blocks alternate from left-to-right so that in total there are n +
m+1 B1-blocks and n+m B2-blocks. Between a B1-block and a B2-block there
is a P -block while between a B2-block and a B1-block there is a Q-block. Both
P - and Q-blocks are intervals supporting n x-coordinates each and correspond
to sequences P and Q in Papadimitriou’s reduction. Note that the total number
of vertices in a B1-, P -, B2- and Q-block is p = 5n+4. We let the first B1-block
start at x-coordinate 1 and obtain intervals for the block types shown in Table 1.

More precisely, we ensure the correct positions of B1- and B2-blocks as follows.
For the i-th B1-block, vertex a� is placed at ξA(a�) = p·(i−2)+n+4 while vertex
ar is placed at ξA(ar) = p · i+n. In other words, a� is placed above the (n+4)-th
vertex (left-to-right) of the previous B1-block and ar is placed above the n-th
vertex of the next B1-block. Further, for the i-th B2-block, vertex a� is placed at
ξA(a�) = p · (i− 2)+3n+5 whereas vertex ar is placed at ξA(ar) = p · i+4n+3.
Intuitively, vertex ar is placed above the n-th vertex of the next B2-block and
vertex a� is placed above the second vertex of the previous B2-block.

H-Gadget. The purpose of the H-gadget is to introduce literal-vertices for all lit-
erals of ϕ, that is, literals �xi

and �¬xi
for each variable xi (2n in total; see

red, blue, green, yellow and pink vertices in Figs. 2b and 3b). Each H-gadget is
associated with a B2-block b and ensures that each of its 2n literal-vertices is
placed either in the P -block preceding b (containing all satisfied literals) or in
the Q-block succeeding b (containing all unsatisfied literals); Fig. 3b depicts two
consecutive copies of the H-gadget; note that there is a shared part of n ver-
tices, denoted by Bm

1 .

On the 2-Layer Window Width Minimization Problem 217

More precisely, there exists one H-gadget H for each B2-block b. H contains a
vertex h in A that is incident to all vertices of b, to the Bm

1 - and Br
1-vertices of the

B1-block preceding b and to the B�
1- and Bm

1 -vertices of the B1-block succeeding
b, i.e., H-gadgets corresponding to consecutive B2-blocks share n = |Bm

1 | vertices.
If H corresponds to the i-th B2-block, vertex h is placed at ξA(h) = p · (i − 1) +
3n + 4, that is, above the first B-vertex of its associated B2-block. Further, h
is connected to a literal-vertex for each literal of ϕ. Since the leftmost vertex of
the Bm

1 -block preceding b and the rightmost vertex of the Bm
1 -block succeeding

b are at distance k, all literal-vertices connected to h must be placed between
these two blocks. The only available positions in this range are covered by the
P -block preceding b and the Q-block succeeding b. Note that in the following, no
further edges incident to vertices in a B1-block are introduced, i.e., the vertex-
order inside a B1-block is only restricted by h-vertices. Finally, observe that the
h-vertices have x-span k if the vertices in B�

1 precede (left-to-right) those in Bm
1 ,

which precede those in Br
1 .

In the following, we assume literal-vertices in P -blocks and Q-blocks to cor-
respond to satisfied and unsatisfied literals, respectively. Next, we ensure consis-
tency.

Propagation-Gadget. The propagation-gadgets (see red, blue, green, yellow and
pink vertices and edges in Figs. 2b and 3b) ensure consistency, that is, literals
in P -blocks are satisfied, while literals in Q-blocks are unsatisfied in ϕ. Namely,
the propagation gadget for xi ensures that the literal-vertex �λ ∈ {�xi

, �¬xi
}

occurring in the P -block of an H-gadget H1 will also occur in the P -block of the
next H-gadget H2 in their left-to-right order. Since all vertices from P -blocks
are propagated, literal-vertices in the Q-blocks are also propagated from H1 to
H2. Note that literal-vertices do not necessarily have the same order in H1 and
H2.

More formally, for each B1-block b and for each variable xi there is a copy of
the propagation-gadget containing two propagation-vertices pxi

and p¬xi
. Let H1

and H2 be the two (consecutive) H-gadgets incident to the Bm
1 -vertices of b.

Then, vertex pxi
is connected to the literal-vertices �xi

of H1 and H2 while p¬xi

is connected to the literal-vertices �¬xi
of H1 and H2. If b is the j-th B1-block,

we set ξA(pxi
) = p · (j −1)+(i−1) and ξA(p¬xi

) = p · (j −1)+(n+4)+ i, i.e., all
propagation-vertices with positive literals are to the left of the ar-vertex above
b while all propagation-vertices with negative literals are to the right of the a�-
vertex above b. Note that px1 is above the last vertex in the Q-block preceding
b while p¬xn

is above the first vertex in the P -block succeeding b; the remaining
literal-vertices are placed on unique x-coordinates above b. Since the distance
between the leftmost literal-vertex in the P -block of H1 and the rightmost literal-
vertex in the P -block of H2 is k − n + 1, we can reorder all literal-vertices freely
in the P -blocks of H1 and H2; the same holds for the corresponding Q-blocks.
On the other hand, the rightmost literal-vertex �λ of the P -block of H1 cannot
occur in the Q-block of H2 as otherwise their connecting vertex pλ has x-span
at least k + 3; see Fig. 3b. As already mentioned above, since all literals from

218 M. A. Bekos et al.

Fig. 4. (a) Variable-gadget. (b) Clause-gadget.

the P -block are propagated from H1 to H2, all literals from the Q-block are
propagated as well.

Now each literal is either consistently satisfied (in P -blocks) or unsatisfied (in
Q-blocks). It remains to encode the logic of ϕ with variable- and clause-gadgets.

Variable-Gadget. The variable-gadget for variable xi ensures that only one of the
literal-vertices �xi

and �¬xi
can be placed within Q-blocks. Since these gadgets

guarantee that at most one literal for each variable is false, it is only possible to
place all 2n literals if exactly one literal per variable is true while the other is
false. Hence, each variable is either true or false consistently in all H-gadgets.

More precisely, the first n (in left-to-right-order) H-gadgets are augmented
with a variable-gadget. Namely, each variable gadget is associated with a unique
variable x and ensures that one of the literals x and ¬x must be true. The
variable gadget associated with H-gadget H consists of both literal-vertices �x

and �¬x of H and an additional variable-vertex vx connected to �x and �¬x; see
Fig. 4a and purple vertices and edges in Fig. 2c. We set the x-coordinate of vx

so that it is at distance k to the left of the leftmost vertex in the Q-block of H,
i.e., if H is the i-th H-gadget we have ξA(vx) = p · (i − 2) + 3n + 6. As a result,
vx is placed above the third vertex of the B2-block preceding the B2-block of
H. Clearly, the x-span of vx is at most k if at most one of �x and �¬x is in the
Q-block of H. As mentioned above, since for each variable the variable gadget
guarantees this property, it is only possible to place all 2n literals if exactly one
literal per variable is true while the other is false. Thus, each variable is either
consistently true or consistently false.

Clause-Gadget. There are m clause-gadgets associated with the last m copies of
H-gadgets. The clause-gadget for a clause κ = (λ1 ∨ λ2 ∨ λ3) ensures that at
most two of the literal-vertices �λ1 , �λ2 and �λ3 can be placed within Q-blocks.
At least one literal must be placed inside the P -blocks and thus, κ contains at
least one satisfied literal.

To this end, the clause gadget for clause κ = (λ1 ∨ λ2 ∨ λ3) consists of a
vertex cκ ∈ A connected to the three literal-vertices �λ1 , �λ2 , �λ3 ; see Fig. 4b and
brown vertices and edges in Fig. 2c. We assign the x-coordinate of cκ so that it is
at distance k − 1 to the left of the leftmost vertex in the Q-block of H, i.e., if H

On the 2-Layer Window Width Minimization Problem 219

Table 2. Placements of vertices in A above the j-th vertex within B1- and B2-blocks.
If a vertex x of A is above the j-th vertex of the i-th B1-block, ξA(x) = p · (i − 1) + j,
while ξA(x) = p · (i − 1) + 3n + 3 + j if x is above the j-th vertex of the i-th B2-block.

B1-block j B2-block

1 h of associated H-gadget

2 a� of next B2-block

3 vx associated with the next H-gadget

4 cκ associated with the next H-gadget

pxj+1 of prop.-gadget

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[5, n− 1] ————

ar of previous B1-block n ar of previous B2-block

———— [n+ 1, n+ 3]

a� of next B1-block n+ 4

p¬xj−(n−4) of prop.-gadget [n+ 5, 2n+ 3]

}

————

is the i-th H-gadget, then ξA(cκ) = p(̇i − 2) + 3n + 7. Hence, cκ is placed above
the fourth vertex of the B2-block preceding H. Since the distance between the
second vertex in the Q-block of H and cκ is k, the x-span of cκ is at most k if
at most two of �λ1 , �λ2 , �λ3 are in the Q-block, i.e., one of λ1, λ2, λ3 is true.

Polynomial Time of the Reduction and Equivalence. The construction can clearly
be done in O(n · (n + m)) time. Next, we prove that no two vertices of A share
the same x-coordinate, i.e., ξA is injective.

Recall that we have placed vertices in A only on coordinates that are covered
by B1- and B2-blocks (or are located to the left of the first B1-block or to
the right of the last B1-block); see Fig. 2. Table 2 summarizes the positioning
described in the construction. The two exceptions to this are vertices px1 and
p¬xn

of propagation gadgets which are located above the last vertex of P -blocks
and above the first vertex of Q-blocks, respectively. For n ≥ 5 (as assumed at
the beginning) indeed no x-coordinate is assigned twice by ξA.

It remains to prove that ϕ is satisfiable if and only if there is a drawing
Γ with ww(Γ) ≤ k and xΓ (a) = ξA(a) for a ∈ A. First, assume that ϕ is
satisfiable. We can construct a drawing with window width at most k by placing
all satisfied literals in the P -block and each unsatisfied literal in the Q-block of
each H-gadget. The literal-vertices are sorted so that the unsatisfied literals in
a variable- or clause-gadget are the leftmost ones in the corresponding Q-block.
Second, assume that there is a drawing Γ with ww(Γ) ≤ k and xΓ (a) = ξA(a)
for a ∈ A. As discussed above, each variable is either true or false while each
clause contains a satisfied literal. Thus, a satisfying truth assignment for ϕ can
be read from any P -block of Γ . ��
Next, we prove that our algorithm from Theorem 2 can be used for a 2-
approximation algorithm for the window width minimization problem with fixed
top layer.

220 M. A. Bekos et al.

Theorem 4. Given a bipartite graph G = (A∪B,E) and a function ξA : A → Z,
there is an O(nB log nB +|E|)-time 2-approximation algorithm for computing the
minimum value k� such that there is a 2-layer drawing Γ of G with ww(Γ) = k�

and xΓ (a) = ξA(a) for each a ∈ A that also produces a corresponding solution.

Proof. The idea is to use the optimization algorithm from the proof of Theorem 2,
where the vertex sets A and B are interchanged, to compute a placement of the
vertices of B in time O(nB log nB + |E|), so that the length k′ of the longest edge
is minimized. Let k denote the window width of the obtained 2-layer drawing Γ .

Let k� be the minimum window width of a 2-layer drawing Γ � of G with
xΓ �(a) = ξA(a). We show that k ≤ 2k�. First, recall that the longest edge
in Γ has length k′. Thus k ≤ 2k′ as in the worst case, a vertex v ∈ A has
distance k′ to both its leftmost and its rightmost neighbor. Second, consider the
2-layer drawing Γ �. Since the longest edge in Γ � has length at most k� and k′

is chosen optimally, we obtain k′ ≤ k�. Combining both arguments, we obtain
k ≤ 2k′ ≤ 2k�.

Finally, drawing Γ is a corresponding solution as stated in the theorem. ��

4 Open Problems

We conclude with some open problems. First, the case where all vertices can be
freely positioned along �t and �b may be investigated in future work. Second,
the setting of Theorem 3 with the additional constraint that the vertices in A
are degree-restricted, is of interest. Third, other optimization criteria could be
useful in practice. For instance, one may try to minimize the average x-span
while potentially also weighting spans of important vertices differently.

References

1. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R., Wolff,
A.: Drawing (complete) binary tanglegrams. Algorithmica 62(1–2), 309–332 (2012).
https://doi.org/10.1007/s00453-010-9456-3

2. Czabarka, É., Székely, L.A., Wagner, S.G.: A tanglegram Kuratowski theorem. J.
Graph Theory 90(2), 111–122 (2019). https://doi.org/10.1002/jgt.22370

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

4. Dumas, M., McGuffin, M.J., Robert, J.-M., Willig, M.-C.: Optimizing a radial
layout of bipartite graphs for a tool visualizing security alerts. In: van Kreveld, M.,
Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 203–214. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-25878-7 20

5. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994). https://doi.org/10.1007/BF01187020

6. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization.
J. Comput. Syst. Sci. 76(7), 593–608 (2010). https://doi.org/10.1016/j.jcss.2009.
10.014

7. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods 4(3), 312–316 (1983)

https://doi.org/10.1007/s00453-010-9456-3
https://doi.org/10.1002/jgt.22370
https://doi.org/10.1007/978-3-642-25878-7_20
https://doi.org/10.1007/BF01187020
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1016/j.jcss.2009.10.014

On the 2-Layer Window Width Minimization Problem 221

8. HuBMAP Consortium: CCF ASCT+B Reporter. https://hubmapconsortium.
github.io/ccf-asct-reporter/

9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

10. Meulemans, W., Schulz, A.: A tale of two communities: assessing homophily in
node-link diagrams. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol.
9411, pp. 489–501. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 40

11. Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard
for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, pp. 115–123. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45848-4 10

12. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization prob-
lem. Computing 16(3), 263–270 (1976). https://doi.org/10.1007/BF02280884

13. Pezzotti, N., Fekete, J.D., Höllt, T., Lelieveldt, B.P.F., Eisemann, E., Vilanova, A.:
Multiscale visualization and exploration of large bipartite graphs. Comput. Graph.
Forum 37(3), 549–560 (2018). https://doi.org/10.1111/cgf.13441

14. Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic
trees and networks. Bioinformatics 27(13), i248–i256 (2011). https://doi.org/10.
1093/bioinformatics/btr210

15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981).
https://doi.org/10.1109/TSMC.1981.4308636

https://hubmapconsortium.github.io/ccf-asct-reporter/
https://hubmapconsortium.github.io/ccf-asct-reporter/
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1007/978-3-319-27261-0_40
https://doi.org/10.1007/978-3-319-27261-0_40
https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1007/BF02280884
https://doi.org/10.1111/cgf.13441
https://doi.org/10.1093/bioinformatics/btr210
https://doi.org/10.1093/bioinformatics/btr210
https://doi.org/10.1109/TSMC.1981.4308636

Sequentially Swapping Tokens: Further
on Graph Classes

Hironori Kiya1 , Yuto Okada2 , Hirotaka Ono2 , and Yota Otachi2(B)

1 Kyushu University, Fukuoka, Japan
h-kiya@econ.kyushu-u.ac.jp

2 Nagoya University, Nagoya, Japan
okada.yuto.b3@s.mail.nagoya-u.ac.jp, {ono,otachi}@nagoya-u.jp

Abstract. We study the following variant of the 15 puzzle. Given a graph
and two token placements on the vertices, we want to find a walk of the
minimum length (if any exists) such that the sequence of token swappings
along the walk obtains one of the given token placements from the other
one. This problem was introduced as Sequential Token Swapping by
Yamanaka et al. [JGAA 2019], who showed that the problem is intractable
in general but polynomial-time solvable for trees, complete graphs, and
cycles. In this paper, we present a polynomial-time algorithm for block-
cactus graphs, which include all previously known cases. We also present
general tools for showing the hardness of problem on restricted graph
classes such as chordal graphs and chordal bipartite graphs. We also show
that the problem is hard on grids and king’s graphs, which are the graphs
corresponding to the 15 puzzle and its variant with relaxed moves.

Keywords: Sequential token swapping · The (generalized) 15 puzzle ·
Block-cactus graph · Grid graph · King’s graph

1 Introduction

Let G = (V,E) be an undirected graph and f, f ′ : V → {1, . . . , c} be colorings
of G.1 We call a sequence 〈f1, . . . , fp〉 of colorings of G a swapping sequence of
length p − 1 from f to f ′ if f1 = f , fp = f ′, and there is a walk 〈w1, w2, . . . , wp〉
such that for 2 ≤ i ≤ p, fi is obtained from fi−1 by swapping the colors of wi−1

and wi; that is, fi(wi) = fi−1(wi−1), fi(wi−1) = fi−1(wi), and fi(v) = fi−1(v)
for v /∈ {wi−1, wi}. See Fig. 1. Now the problem can be formulated as follows.

Problem: Sequential Token Swapping
Input: A graph G = (V,E), colorings f, f ′ of G, and an integer k.

1 By a coloring, we mean a mapping from the vertex set to a color set, which is not
necessarily a proper coloring.

Partially supported by JSPS KAKENHI Grant Numbers JP17H01698, JP17K19960,
JP18H04091, JP20H05793, JP20H05967, JP21K11752, JP21K19765, JP21K21283,
JP22H00513. The full version is available at https://arxiv.org/abs/2210.02835.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 222–235, 2023.
https://doi.org/10.1007/978-3-031-23101-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_15&domain=pdf
http://orcid.org/0000-0002-0742-4477
http://orcid.org/0000-0002-1156-0383
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0002-0087-853X
https://arxiv.org/abs/2210.02835
https://doi.org/10.1007/978-3-031-23101-8_15

Sequentially Swapping Tokens: Further on Graph Classes 223

Question: Is there a swapping sequence of length at most k from f to f ′?

We assume that f and f ′ color the same number of vertices for each color since
otherwise it becomes a trivial no-instance. We also assume that the input graph
G is connected as a swapping sequence affects only one connected component.

Fig. 1. An example of a swapping sequence.

The intuition behind its name, Sequential Token Swapping, is as follows:
we consider a coloring as an assignment of colored tokens (or pebbles) to the
vertices; we proceed along a walk; and when we visit an edge in the walk, we
swap the tokens on the endpoints. For the ease of presentation, we often use the
concept of tokens in this paper. For example, we call the token on the first vertex
of the walk the moving token as it will always be the one exchanged during the
swapping sequence. In other words, fi(wi) = f1(w1) holds for all i.

Yamanaka et al. [17] introduced Sequential Token Swapping as a variant
of the (generalized) 15 puzzle (Fig. 2), in which the first and last vertices in a
swapping sequence are given as part of input. They showed that Sequential
Token Swapping is polynomial-time solvable in some restricted cases such as
trees, complete graphs, and cycles. They also showed that there is a constant ε >
0 such that the shortest length of a swapping sequence is NP-hard to approximate
within a factor 1 + ε.

Our Results. We unify and extend the positive results in [17] by showing that
Sequential Token Swapping is polynomial-time solvable on block-cactus
graphs, which include the classes of trees, complete graphs, and cycles. To this
end, we first show that Sequential Token Swapping on a graph is reducible to
a generalized problem (called Sub-STS) on its biconnected components, which
may be of independent interest. We then show that the generalized problem
Sub-STS can be solved in polynomial time on complete graphs and cycles. As
a byproduct, we also show that the generalized 15 puzzle is polynomial-time
solvable on the same graph class.

To complement the positive results, we show negative results on several
classes of graphs. We first present two general tools for showing the NP-hardness
of Sequential Token Swapping on restricted graph classes. One is for the
few-color case, where we use only a fixed number of colors, and the other is for
the colorful case, where we use a unique color for each vertex. The graph classes
covered by the general tools include chordal graphs and chordal bipartite graphs.

224 H. Kiya et al.

15

9 1 7 6
4 2 10

14 11
1213

5 3
8

...

15

9
1 7 6
4 2 10

14 11
1213

5 3
8 15

9

1
76

42

10
14

11 12
13

5
3

8

Fig. 2. The 15 puzzle. Each step can be seen as a move of the vacant cell.

We also show the hardness on grids and king’s graphs that play important roles
in the connection to puzzles [9] and video games [5]. For them, our general tools
cannot be applied, but similar ideas can be tailored. Also for split graphs, our
general tools cannot be applied, but the NP-completeness of the few-color case
follows as a corollary to some discussions for grid-like graphs. The complexity of
the colorful case on split graphs remains unsettled.

Related Results. Sequential Token Swapping can be seen as a variant of
the famous 15 puzzle. The 15 puzzle is played on a 4× 4 board with 16 cells. On
the board, there are 15 pieces numbered from 1 to 15 and one vacant cell. In each
turn, we can slide an adjacent piece to the vacant cell. The goal is to place the
pieces at the right positions (see Fig. 2). By regarding the vacant cell (instead
of an adjacent piece) as the piece moving in each step, we can see the sliding
process in the 15 puzzle as a swapping sequence on the 4 × 4 grid that starts
at the vacant cell. If we define the generalized 15 puzzle as the same problem
considered on general graphs with arbitrary colorings, then it is almost the same
as Sequential Token Swapping, and the difference is whether the first and
last vertices in the walk corresponding to a swapping sequence are specified
in the input (for the generalized 15 puzzle) or not (for Sequential Token
Swapping).

The generalized 15 puzzle has been extensively studied with respect to the
“reachability”, i.e., under the setting where the question is the existence of a
swapping sequence (not the minimum length). It was shown by Johnson and
Story [9] that the reachability in the original 15 puzzle can be decided from the
parity of the total distance from the initial to final token placements. This was
later generalized further and a characterization of the reachability was given. For
example, it is easy to see that the characterization given by Trakultraipruk [15] is
polynomial-time testable. On the other hand, the problem of finding a swapping
sequence of the minimum length has been studied only for a couple of cases.
It was shown by Ratner and Warmuth [14] that the generalized 15 puzzle is
NP-complete on n × n grids, in which case the problem is called the (n2 − 1)
puzzle. A short proof for the same result was presented later by Demaine and
Rudoy [2].

Although Sequential Token Swapping is quite close to the generalized
15 puzzle, its concept comes also from its non-sequential variant Token Swap-
ping, which does not ask for the existence of a walk consistent with a swapping
sequence but allows to swap the tokens on the endpoints of any edge in each

Sequentially Swapping Tokens: Further on Graph Classes 225

step. The complexity of Token Swapping has shown to be quite different from
its sequential variant. For example, it is recently shown that Token Swapping
is NP-complete even on trees [1].

The generalized 15 puzzle and (Sequential) Token Swapping are some-
times considered in combinatorial reconfiguration as well. See the surveys [6,13]
for the background and related results in this context.

2 Preliminaries

We use standard terminologies for graphs (see e.g., [3] for the terms not defined
here). Let G = (V,E) be an undirected graph. For S ⊆ V , the subgraph of G
induced by S is denoted by G[S]. A sequence W = 〈w1, . . . , w|W |〉 of vertices is
a walk of length |W | − 1 in G if {wi, wi+1} ∈ E for 1 ≤ i < |W |. A vertex of
a connected graph is a cut vertex if the removal of the vertex makes the graph
disconnected. A connected graph is biconnected if it contains no cut vertex.
A maximal induced biconnected subgraph of a graph is called a biconnected
component of the graph. Let BG denote the set of biconnected components of
G. It is known that BG can be computed in linear time [7].

A graph is a cactus if each biconnected component is a cycle or a 2-vertex
complete graph. A graph is a block graph if each biconnected component is a
complete graph. A graph is a block-cactus graph if each biconnected component
is a cycle or a complete graph. A chordal graph is a graph with no induced
cycle of length 4 or more. A chordal bipartite graph is a bipartite graph with no
induced cycle of length 6 or more. A graph is a split graph if its vertex set can
be partitioned into a clique and an independent set.

The h × w grid has the vertex set V = {1, . . . , h} × {1, . . . , w} and the edge
set {{(x, y), (x′, y′)} | (x, y), (x′, y′) ∈ V, |x−x′|+ |y−y′| = 1}. A graph is a grid
if it is the h × w grid for some integers h and w. A graph is a grid graph if it is
an induced subgraph of some grid. We say that a grid graph G = (V,E) is given
with a grid representation if V ⊆ Z

2 and E = {{(x, y), (x′, y′)} | (x, y), (x′, y′) ∈
V, |x−x′|+ |y−y′| = 1}. The h×w king’s graph is obtained from the h×w grid
by adding all diagonal edges of the unit squares (4-cycles) in the grid; that is, the
vertex set is V = {1, . . . , h} × {1, . . . , h} and the edges set is {{(x, y), (x′, y′)} |
(x, y), (x′, y′) ∈ V, max{|x − x′|, |y − y′|} = 1}. A graph is a king’s graph if it
is the h × w king’s graph for some integers h and w. We call a vertex (x, y) of
a king’s graph even if x + y is even and odd if x + y is odd. In passing, the
name of a king’s graph comes from the legal moves of the king chess piece on a
chessboard.

As mentioned in Sect. 1, the generalized 15 puzzle can be seen as a variant
of Sequential Token Swapping with the first and last vertices specified. In
the following, we call it (s, t)-STS.

Problem: (s, t)-STS
Input: A graph G = (V,E), colorings f, f ′ of G, s, t ∈ V , and an integer k.
Question: Is there a swapping sequence of length at most k from f to f ′ such

that the corresponding walk starts at s and ends at t?

226 H. Kiya et al.

Note that s and t in an instance of (s, t)-STS are not necessarily distinct.

3 Polynomial-Time Algorithm for Block-Cactus Graphs

In this section, we present a polynomial-time algorithm for Sequential Token
Swapping on block-cactus graphs. We prove the following theorem.

Theorem 3.1. Sequential Token Swapping on block-cactus graphs can be
solved in O(n3) time, where n is the number of vertices.

Note that although Theorem 3.1 is stated for Sequential Token Swapping,
which is a decision problem, the algorithm presented below actually solves the
optimization version of the problem in the same running time. That is, it com-
putes the minimum length of a swapping sequence from f to f ′ in O(n3) time.

The main part of the algorithm is the subroutine for solving (s, t)-STS.
Given that subroutine, the algorithm just tries all pairs of vertices as the first
and last vertices. In the following, we focus on this subroutine.

We show that the problem on a graph can be reduced to a generalized problem
on its biconnected components. Then it suffices to show that the generalized
problem can be solved in polynomial time on complete graphs and cycles. We
prove this in a way similar to Yamanaka et al. [17] but the proofs here are much
more involved because of the generality of the problem.

3.1 Reduction to a Generalized Problem on Biconnected
Components

We generalize (s, t)-STS by adding a subset P of vertices to be visited as follows.

Problem: Sub-STS
Input: A graph G = (V,E), colorings f, f ′ of G, s, t ∈ V , and P ⊆ V .
Task: Find the minimum length of a swapping sequence from f to f ′ (if any

exists) such that the corresponding walk W = 〈w1, w2, . . . , w|W |〉 satisfies
that w1 = s, w|W | = t, and P ⊆ {w1, w2, . . . , w|W |}.

Let λ(G, f, f ′, s, t, P) denote the answer for the instance 〈G, f, f ′, s, t, P 〉 of
Sub-STS. We set it to ∞ if no swapping sequence from f to f ′ exists. Note that
λ(G, f, f ′, s, t, ∅) is the minimum k such that 〈G, f, f ′, s, t, k〉 is a yes-instance of
(s, t)-STS.

Let 〈G, f, f ′, s, t, k〉 be an instance of (s, t)-STS and let H be a biconnected
component of G. Let us see how a solution to this instance passes through H.
If s /∈ V (H), then the first vertex visited in H is the cut vertex closest to s.
Similarly, if t /∈ V (H), then the last vertex visited in H is the cut vertex closest
to t. Also, a cut vertex u of G belonging to H has to be visited if at least one
vertex in H is visited and there is a vertex v /∈ V (H) such that f(v)
= f ′(v)
and u is the closest vertex in H to v. With these observations, we construct
an instance 〈H, fH , f ′

H , sH , tH , PH〉 of Sub-STS as follows, where cv is the cut
vertex in H that separates v and V (H).

Sequentially Swapping Tokens: Further on Graph Classes 227

Fig. 3. A swapping sequence on a cycle.

– Set fH = f |V (H). If s /∈ V (H), then update fH as fH(cs) := f(s).
– Set f ′

H = f ′|V (H). If t /∈ V (H), then update f ′
H as f ′

H(ct) := f(s).
– Set sH = s if s ∈ V (H). Otherwise, set sH = cs.
– Set tH = t if t ∈ V (H). Otherwise, set tH = ct.
– Set PH to the set of cut vertices cv of G belonging to V (H) such that cv

separates v and H for some v /∈ V (H) with f(v)
= f ′(v).

The following lemma says that this instance correctly captures how a solution
to (s, t)-STS on G affects H.2

Lemma 3.2 (�). For a graph G, colorings f, f ′ of G, and s, t ∈ V ,

λ(G, f, f ′, s, t, ∅) =
∑

H∈BG

λ(H, fH , f ′
H , sH , tH , PH).

3.2 SUB-STS on cycles

Lemma 3.3 Sub-STS on cycles can be solved in linear time.

Proof Let 〈C, f, f ′, s, t, P 〉 be an instance of Sub-STS, where C is a cycle of n
vertices. We assume that f(s) = f ′(t) since otherwise it is a trivial no-instance.
We arbitrarily fix a cyclic orientation on C and call it the clockwise direction
(and the other one the counterclockwise direction).

Observe that if the moving token goes in one direction on the cycle, then the
other tokens passed are shifted to the other direction (see Fig. 3). Observe also
that if the moving token goes one step in one direction and goes back in the
other direction immediately, then these moves cancel out and the coloring stays
the same. Thus, if P = ∅, then an optimal solution never goes back and forth.
Based on these observations, Yamanaka et al. [17] presented a polynomial-time
algorithm for Sequential Token Swapping on cycles. We also use these facts,
but since P
= ∅ in general, we need some new ideas.

Let W = 〈u1, . . . , up (= v1), . . . , vq (= w1), . . . , wr〉 be a walk corresponding
to a desired swapping sequence of the minimum length, where

– v1 is the last vertex in W such that v1 = s and the coloring after executing
the swapping sequence up to v1 is f , and

– vq is the first vertex in W such that vq = t and the coloring after executing
the swapping sequence up to vq is f ′.

2 The proofs of the statements marked with � are omitted in this short version and
can be found in the full version.

228 H. Kiya et al.

We show that there is a direction ←, which is clockwise or counterclockwise,
such that the following properties hold:

– the moves along 〈u1, . . . , up〉 first go in the direction ← some number of steps
and then go back in the opposite direction → the same number of steps;

– the moves along 〈v1, . . . , vq〉 go in the direction → only;
– the moves along 〈w1, . . . , wr〉 first go in the direction → some number of steps

and then go back in the direction ← the same number of steps.

To show the property of 〈v1, . . . , vq〉, assume that q ≥ 2 and that v2 is the
clockwise neighbor of v1. If vi = s for some i
= 1, then V (C) = {v1, . . . , vq}
holds as the coloring after executing the swapping sequence up to vi is not f .
Similarly, if vi = t for some i
= q, then V (C) = {v1, . . . , vq} holds as the coloring
after executing the swapping sequence up to vi is not f ′. Otherwise, {v1, . . . , vq}
is the set of consecutive vertices on C from s to t in the clockwise direction. In
all cases, if there is a counterclockwise move, then the first such move vj → vj+1

can be removed with the previous one vj−1 → vj without changing the set of
visited vertices. Since W is of the minimum length, we can conclude that there is
no such move. Now the properties of 〈u1, . . . , up〉 and 〈w1, . . . , wr〉 follows easily
as they are necessary only for visiting more vertices (in P).

We compute the minimum length for each of the cases V (C)
= {v1, . . . , vq}
and V (C) = {v1, . . . , vq}.

The case of V (C)
= {v1, . . . , vq}. In this case, 〈v1, . . . , vq〉 is a simple path from
s to t. We assume that this is a clockwise path. (The other case is symmetric.)
Since only 〈v1, . . . , vq〉 changes the coloring and the other parts of W cancel out,
we first check that we get f ′ by applying 〈v1, . . . , vq〉 to f and then compute
the other parts that visit P \ {v1, . . . , vq}. Let 〈x1, . . . , xk〉 be the sequence of
the vertices of P \ {v1, . . . , vq} ordered in the counterclockwise order from s to
t. Observe that if p ≥ 2, then the first part 〈u1, . . . , up〉 of W starts at s in the
counterclockwise direction, visits some vertices x1, . . . , xk′ , and comes back to s.
Thus, its length is the twice of the distance from s to xk′ in the counterclockwise
direction. Similarly, if r ≥ 2, then the last part 〈w1, . . . , wr〉 of W starts at t in
the clockwise direction, visits the remaining vertices xk′+1, . . . , xk, and comes
back to t. Its length is the twice of the distance from t to xk′+1 in the clockwise
direction. The index k′ ∈ {0, . . . , k} that minimizes the sum p+r can be found in
linear time by precomputing the counterclockwise distances from s to x1, . . . , xk

and the clockwise distances from t to x1, . . . , xk in linear time.

The case of V (C) = {v1, . . . , vq}. In this case, W = 〈v1, . . . , vq〉 as there is
no other vertex to visit. Now it is easy to compute the minimum length in
polynomial time: guess the direction of the walk; go in the guessed direction n−1
steps from s; and then further proceed in the same direction until we get the
desired coloring. Since the minimum length is O(n3) (if not ∞) in general [17],
this algorithm runs in polynomial time.

To do it in linear time, we reduce the problem to a substring matching
problem that can be solved in linear time by the KMP algorithm [10].

Sequentially Swapping Tokens: Further on Graph Classes 229

Assume that W goes in the clockwise direction. (The other case is symmet-
ric.) Let g be the coloring obtained from f by executing the swapping sequence
along W up to the first point where all vertices are visited and the moving token
is placed at t. The remaining of the walk we are looking for repeats the (clock-
wise) walk from t to t some number of times. Observe that if we repeat it i times,
then the coloring we get is the one obtained from g by shifting the non-moving
tokens i steps in the counterclockwise direction (see Fig. 3). Thus it suffices to
compute the minimum number of shifts to obtain f ′.

Let tnext and tprev be the clockwise and counterclockwise neighbors of t,
respectively. Let Sg = 〈c1, . . . , cn−1〉 be the sequence of the colors under g of
vertices from tnext to tprev in the clockwise ordering. Similarly, let Sf ′ be the same
sequence but under f ′. Observe that if Sf ′ can be obtained from Sg by i cyclic
shifts (in the counterclockwise direction, or to the left in this context), then Sf ′ =
〈ci+1, . . . , cn−1, c1, . . . , ci〉 holds. The minimum i satisfying this can be found by
finding the first index such that Sf ′ starts in Sg ·Sg = 〈c1, . . . , cn−1, c1, . . . , cn−1〉
as a substring, which can be done in linear time [10]. �

3.3 SUB-STS on complete graphs

Let I = 〈K, f, f ′, s, t, P 〉 be an instance of Sub-STS, where K = (V,E) is
a complete graph. As before, we assume that f(s) = f ′(t). Furthermore, we
assume that s has a unique color under f (and so does t under f ′). We set the
unique color to 0. That is, we assume that f(s) = f ′(t) = 0, f(v)
= 0 if v
= s,
and f ′(v)
= 0 if v
= t. Observe that this does not change the instance since the
moving token anyway moves from s to t.

Let R = {v ∈ V | f(v)
= f ′(v)}∪{s, t}∪P . We define a directed multigraph
D = (VD, ED), possibly with self-loops and parallel edges, as VD = {f(v) | v ∈
R} and ED = {(f(v), f ′(v)) | v ∈ R}. This graph D is almost the same as the
conflict graph defined in [17]. The difference here is the self-loops corresponding
to the vertices in P \ {v ∈ V | f(v)
= f ′(v)} (and s when s = t). Thus the
assumption that f and f ′ use the same number of vertices for each color implies
that the indegree and the outdegree are the same for each vertex (or, color) in
D. This implies that each connected component of D is strongly connected and
has an Eulerian circuit. Let cc(D) denote the number of (strongly) connected
components of D.

We show that the following equation holds (the proof is omitted in this short
version):

λ(I) = |R| + cc(D) − 2. (1)

Lemma 3.4 (�). λ(I) ≤ |R| + cc(D) − 2.

Lemma 3.5 (�). λ(I) ≥ |R| + cc(D) − 2.

3.4 The Whole Algorithm

Let 〈G = (V,E), f, f ′, k〉 be an instance of Sequential Token Swapping,
such that G = (V,E) is a block-cactus graph with |V | = n and |E| = m. We

230 H. Kiya et al.

first compute the set BG of the biconnected components. For each H ∈ BG, we
mark all cut vertices, check whether H contains a vertex v with f(v)
= f(v′),
and check whether H is a cycle or a complete graph. If H is a complete graph,
then we construct an implicit representation so that we do not have to store
the redundant information E(H). These preprocessing can be done in O(m+n)
time in total.

Let s, t ∈ V . We compute the instance IH = 〈H, fH , f ′
H , sH , tH , PH〉 of Sub-

STS for all H ∈ BG. We can do it in O(m+n) time in a bottom-up manner over
the tree structure of the biconnected components. Let H ∈ BG. If H is a cycle,
then we compute λ(IH) in O(|V (H)|) time using the algorithm in Lemma 3.3. If
H is a complete graph, then we compute λ(IH) using Eq. (1), which can be done
in O(|V (H)|) time from the implicit representation of H. Thus, by Lemma 3.2, we
can solve (s, t)-STS in O(n) time, given that the aforementioned preprocessing
is done. Since we have n2 candidates for the pair s, t, the total running time is
O(n3). This completes the proof of Theorem 3.1.

Note that we only need O(m + n) time to solve (s, t)-STS.

Corollary 3.6. (s, t)-STS on block-cactus graphs can be solved in linear time.

4 Hardness of the Few-Color and Colorful Cases

Since Sequential Token Swapping clearly belongs to NP, in the following
we only show the NP-hardness for each case.

4.1 General Tools for Showing Hardness

The first tool uses the hardness of Hamiltonian Path to show the hardness of
Sequential Token Swapping with few colors.

A path (a cycle) in a graph is a Hamiltonian path (a Hamiltonian cycle, resp.)
if it visits every vertex in the graph exactly once. The problems Hamiltonian
Path and Hamiltonian Cycle ask whether a given graph has a Hamiltonian
path or a Hamiltonian cycle, respectively. In the problem (s, t)-Hamiltonian
Path, the first and last vertices s and t are fixed.

By attaching a cycle of length q at a vertex v, we mean the operation of
adding q − 1 new vertices and q edges that form a cycle with v.

Theorem 4.1 (�). Let C be a graph class. For every fixed c ≥ 2, Sequential
Token Swapping with c colors is NP-complete on C if the following conditions
are satisfied:

1. (s, t)-Hamiltonian Path is NP-complete on C;
2. there is an integer q ≥ 3 such that C is closed under the operation that attaches

a cycle of length q at a vertex.

The second tool uses the hardness of Steiner Tree to show the hardness
of the colorful case of Sequential Token Swapping. In this case, we ask f
to be injective and call this condition the colorful condition.

For a walk W , let V (W) be the set of vertices in W .

Sequentially Swapping Tokens: Further on Graph Classes 231

Lemma 4.2 (�). Let f be an injective coloring of a graph G. If a walk W in G
corresponds to a swapping sequence from f to f itself, then |V (W)| ≤ (|W |+1)/2.

For a graph G = (V,E) and a set K ⊆ V , the subgraph T of G is a Steiner
tree if it is a tree and contains all vertices in K.

Problem: Steiner Tree
Input: A graph G = (V,E), a set K ⊆ V with |K| ≥ 2, and an integer �.
Question: Is there a connected subgraph T of G such that K ⊆ V (T) and

|E(T)| ≤ �?

Theorem 4.3 (�). Sequential Token Swapping with the colorful condi-
tion is NP-complete on a graph class C if the following conditions are satisfied:

1. Steiner Tree is NP-complete on C;
2. there is an integer q ≥ 3 such that C is closed under the operation that attaches

a cycle of length q at a vertex.

It is known that Steiner Tree is NP-complete on chordal graphs [16] and
chordal bipartite graphs [12]. It is also known that (s, t)-Hamiltonian Path is
NP-complete on chordal graphs and chordal bipartite graphs [11]. Observe that
chordal graphs and chordal bipartite graphs are closed under the operations that
attach a cycle of length 3 and 4, respectively. Thus, Theorems 4.1 and 4.3 implies
the hardness on them.

Corollary 4.4. Sequential Token Swapping is NP-complete on chordal
graphs and on chordal bipartite graphs in both the colorful and few-color cases.

4.2 The Few-Color Case on Grid-Like Graphs

Recall that a graph is a grid graph if it is an induced subgraph of a grid. A
bipartite graph is balanced if it admits a proper 2-coloring such that the color
classes have the same size. Note that a grid graph is bipartite.

It is known that Hamiltonian Cycle is NP-complete on grid graphs [8].
The next lemma follows easily from this fact.

Lemma 4.5 (�). Hamiltonian Path is NP-complete on balanced grid graphs
given with grid representations.

Theorem 4.6. For every fixed constant c ≥ 2, Sequential Token Swapping
with c colors is NP-complete on king’s graphs.

Proof. We prove the theorem only for the case where c = 2. For c > 2, we add
c − 2 new vertices to G defined below and for each new vertex, set a new color
as its initial and target colors. Then the proof works as it is.

We prove the NP-hardness by a reduction from Hamiltonian Path on bal-
anced grid graphs (see Lemma 4.5).

232 H. Kiya et al.

Let G = (V,E) be a balanced grid graph given with a grid representation.
We assume that G is connected. From G, we construct an instance 〈H, f, f ′, k〉
of Sequential Token Swapping. We set k = |V | − 1.

Let minx = min{x ∈ Z | (x, y) ∈ V } and miny = min{y ∈ Z | (x, y) ∈ V }.
We also define maxx and maxy in the analogous ways. Let U = {(x, y) ∈ Z

2 \V |
minx ≤ x ≤ maxx, miny ≤ x ≤ maxy}. The grid graph represented by U ∪ V
is a grid and has size polynomial in |V |. From this grid, we obtain H by adding
all diagonal edges of the unit squares. Note that H is a king’s graph.

Let f be the coloring of H that maps the odd vertices to 1 and the even
vertices to 2. Let f ′ be the coloring obtained from f by reversing the colors
of the vertices in the original grid graph G. That is, f ′(v) = f(v) for v ∈ U ,
f ′(v) = 1 for v ∈ V with f(v) = 2, and f ′(v) = 2 for v ∈ V with f(v) = 1.

We show that G has a Hamiltonian path if and only if 〈H, f, f ′, k〉 is a yes-
instance of Sequential Token Swapping.

The Only-if Direction. Let P = 〈v1, . . . , v|V |〉 be a Hamiltonian path of G. Let
S = 〈f1, . . . , f|V |〉 be a swapping sequence corresponding to P , where f1 = f .
Since each vertex in the walk is visited only once, we have f|V |(vi) = f(vi+1) for
1 ≤ i ≤ |V | − 1, and f|V |(v|V |) = f(v1). Since P is a path of G, vi and vi+1 have
different parities. Also, since G is balanced, v|V | and v1 have different parities.
Therefore, f|V | is obtained from f1 by changing the color of each vertex in V to
the other one. That is, f|V | = f ′.

The if Direction. Let 〈f1, . . . , fk′+1〉 be a swapping sequence between f and f ′

with k′ ≤ k. Let W = 〈w1, . . . , wk′+1〉 be the corresponding walk in H. Since
f(v)
= f ′(v) for every v ∈ V , the moving token has to visit all vertices in
V . Furthermore, since |W | = k′ + 1 ≤ k + 1 = |V |, indeed the moving token
visits each vertex in V exactly once and does not visit other vertices (and thus,
k′ = k). Hence, it suffices to show that W is a walk also in G; that is, each edge
{wi, wi+1} is not diagonal. Suppose to the contrary that an edge {wi, wi+1} in
W is diagonal. This implies that wi and wi+1 have the same parity, and thus
f(wi) = f(wi+1). Since W visits a vertex at most once, f(wi+1) = f ′(wi) has to
hold. Thus we have that f(wi) = f ′(wi). This contradicts the assumption that
f ′(v)
= f(v) for each v ∈ V . �

In the proof above, we showed that no diagonal edge is used in shortest
swapping sequences. Therefore, the proofs work without the diagonal edges.

Corollary 4.7. For every fixed constant c ≥ 2, Sequential Token Swapping
with c colors is NP-complete on grids.

Observe further that the proof of Theorem 4.6 works even if we add or remove
an arbitrary set of edges connecting vertices of the same parity since we can just
ignore them. Now consider the graph obtained from a king’s graph by removing
all edges connecting even vertices and adding all possible edges connecting odd
vertices. Such a graph is a split graph since the even vertices form an independent
set and the odd vertices form a clique. Thus it is hard on split graphs as well.

Sequentially Swapping Tokens: Further on Graph Classes 233

Corollary 4.8. For every fixed constant c ≥ 2, Sequential Token Swapping
with c colors is NP-complete on split graphs.

4.3 The Colorful Case on Grid-Like Graphs

We now consider Sequential Token Swapping with the colorful condition on
grid-like graphs.

We first show the hardness on the ordinary grids. Recall that (s, t)-STS with
the colorful condition on grids are known as the generalized 15 puzzle (or the
(n2 − 1) puzzle) and shown to be NP-complete [2,14]. For Sequential Token
Swapping, we can use the reduction by Demaine and Rudoy [2] almost directly
with a small change. Their reduction is from the following problem.

Problem: Rectilinear Steiner Tree
Input: A set P ⊆ Z

2
+ of integer points in the plane and an integer �.

Question: Is there a tree T on the plane that satisfies the following conditions?
T contains all points in P ; every edge of T is horizontal or vertical; the total
length of the edges in T is at most �.

Rectilinear Steiner Tree is known to be strongly NP-hard [4], and thus we
assume that the maximum coordinate of the points in P is bounded from above
by a polynomial in |P |.

The high-level idea of the reduction in [2] is to represent the integer points in
the plane by a grid and then each point in P by some local changes of the colors
around the vertex corresponding to the point. Then, a swapping sequence for
this instance forms a rectilinear Steiner tree on the plane. The difference between
their setting and ours is that they can fix the starting and ending vertices, but
we cannot. This difference actually does not affect the correctness of their proof
applied to our case. To not repeat their argument here, we only give a proof
sketch.

Theorem 4.9 (�). Sequential Token Swapping with the colorful condi-
tion is NP-complete on grids.

Before showing the hardness of Sequential Token Swapping with the
colorful condition on king’s graphs, we first show that Steiner Tree is NP-
complete on king’s graphs since the proofs are similar and this one is easier
than the one for Sequential Token Swapping. Also, the result itself might
be useful for connecting some graph problems and geometric problems.

Theorem 4.10 (�). Steiner Tree is NP-complete on king’s graphs.

We now show the hardness of Sequential Token Swapping with the
colorful condition on king’s graphs. Although the proof is similar to the one for
grids, the presence of diagonal edges makes it a little more complicated.

Theorem 4.11 (�). Sequential Token Swapping with the colorful condi-
tion is NP-complete on king’s graphs.

234 H. Kiya et al.

5 Concluding Remarks

We have studied Sequential Token Swapping from the view point of
restricted graph classes and shown several positive and negative results. We
note that the complexity of the problem with the colorful condition remained
unsettled for split graphs.

As another direction, it would be interesting to study the parameterized com-
plexity of the problem. Lemma 3.2 and the O(n3) upper bound of the minimum
length of a swapping sequence [17] together imply that Sequential Token
Swapping is fixed-parameter tractable parameterized by the maximum size of
a biconnected component. To the best of our knowledge, nothing is known for
other structural graph parameters.

References

1. Aichholzer, O., et al.: Hardness of token swapping on trees. In: ESA 2022. LIPIcs,
vol. 244, pp. 3:1–3:15 (2022). https://doi.org/10.4230/LIPIcs.ESA.2022.3

2. Demaine, E.D., Rudoy, M.: A simple proof that the (n2−1)-puzzle is hard. Theor.
Comput. Sci. 732, 80–84 (2018). https://doi.org/10.1016/j.tcs.2018.04.031

3. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

4. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977). https://doi.org/10.1137/0132071

5. GungHo Online Entertainment America, Inc.: Puzzle & Dragons, official website.
https://www.puzzleanddragons.us/. Accessed 22 July 2022

6. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society
Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013).
https://doi.org/10.1017/CBO9781139506748.005

7. Hopcroft, J.E., Tarjan, R.E.: Algorithm 447: efficient algorithms for graph manip-
ulation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.
362272

8. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982). https://doi.org/10.1137/0211056

9. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404
(1879). https://doi.org/10.2307/2369492

10. Knuth, D.E., Jr., J.H.M., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977). https://doi.org/10.1137/0206024

11. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discret. Math. 156(1–
3), 291–298 (1996). https://doi.org/10.1016/0012-365X(95)00057-4

12. Müller, H., Brandstädt, A.: The NP-completeness of steiner tree and dominating
set for chordal bipartite graphs. Theor. Comput. Sci. 53, 257–265 (1987). https://
doi.org/10.1016/0304-3975(87)90067-3

13. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

14. Ratner, D., Warmuth, M.K.: The (n2 − 1)-puzzle and related relocation prob-
lems. J. Symb. Comput. 10(2), 111–138 (1990). https://doi.org/10.1016/S0747-
7171(08)80001-6

https://doi.org/10.4230/LIPIcs.ESA.2022.3
https://doi.org/10.1016/j.tcs.2018.04.031
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1137/0132071
https://www.puzzleanddragons.us/
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1137/0211056
https://doi.org/10.2307/2369492
https://doi.org/10.1137/0206024
https://doi.org/10.1016/0012-365X(95)00057-4
https://doi.org/10.1016/0304-3975(87)90067-3
https://doi.org/10.1016/0304-3975(87)90067-3
https://doi.org/10.3390/a11040052
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/S0747-7171(08)80001-6

Sequentially Swapping Tokens: Further on Graph Classes 235

15. Trakultraipruk, S.: Connectivity properties of some transformation graphs, Ph. D.
thesis, London School of Economics and Political Science, London, UK (2013)

16. White, K., Farber, M., Pulleyblank, W.R.: Steiner trees, connected domination
and strongly chordal graphs. Networks 15(1), 109–124 (1985). https://doi.org/10.
1002/net.3230150109

17. Yamanaka, K., et al.: Sequentially swapping colored tokens on graphs. J. Graph
Algorithms Appl. 23(1), 3–27 (2019). https://doi.org/10.7155/jgaa.00482

https://doi.org/10.1002/net.3230150109
https://doi.org/10.1002/net.3230150109
https://doi.org/10.7155/jgaa.00482

Communication and Temporal Graphs

On the Preservation of Properties When
Changing Communication Models

Olav Bunte1(B), Louis C. M. van Gool2, and Tim A. C. Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{o.bunte,t.a.c.willemse}@tue.nl

2 Canon Production Printing, Venlo, The Netherlands
louis.vangool@cpp.canon

Abstract. In a system of processes that communicate asynchronously
by means of FIFO channels, there are many options in which these chan-
nels can be laid out. In this paper, we compare channel layouts in how
they affect the behaviour of the system using an ordering based on split-
ting and merging channels. This order induces a simulation relation,
from which the preservation of safety properties follows. Also, we iden-
tify conditions under which the properties reachability, deadlock freedom
and confluence are preserved when changing the channel layout.

Keywords: Asynchronous communication · Communication models ·
Property preservation · Confluence

1 Introduction

In asynchronous communication, sending and receiving a message are two sep-
arate actions, which makes it possible for messages to be received in a differ-
ent order than they were sent. What orderings are possible, depends on the
asynchronous communication model(s) used within the system, for which many
flavours are possible. We consider communication models that are implemented
by means of a layout of (unbounded) FIFO (First In First Out) channels, which
defines how messages in transit are stored. For instance, using a channel per
message implements a fully asynchronous model, while having a single input
channel per process enforces that messages that are sent to the same process are
received in the same order in which they are sent.

While (re)designing or refactoring a software system of asynchronously com-
municating processes, it may be desirable to change (part of) the channel layout.
This can, for instance, be the case when design choices are still being explored,
when the performance of the system needs to be improved, when the behaviour
of the system has grown too complex due to the additions of new processes, or
when the channel implementation is part of legacy software. However, changing

This work was carried out as part of the VOICE-B project, which is funded by Canon
Production Printing.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 239–253, 2023.
https://doi.org/10.1007/978-3-031-23101-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_16

240 O. Bunte et al.

the channel layout may impact the behaviour of the system in unexpected ways,
possibly violating desired properties. In this paper, we investigate the extent of
this impact.

We use the notion of a FIFO system [1,7] to represent a software system
of asynchronously communicating processes. Firstly, we define an ordering on
FIFO systems based on whether one can be created from the other by merging
channels. We then analyse the difference in the behaviour between related FIFO
systems and show that it induces a simulation order, from which the preservation
of safety properties follows. Secondly, we analyse whether reachability, deadlock
freedom and confluence are preserved when changing the channel layout. Reach-
ability is particularly relevant in practice, since changing the method of com-
munication should typically not cause previously possible process behaviour to
become impossible. If deadlock freedom is preserved, it is ensured that changing
the method of communication does not introduce undesired situations where all
processes are stuck waiting for each other. Confluence is related to the indepen-
dence of actions, which is often expected between actions of different processes. A
violation of confluence between actions of different processes indicates a possible
race condition, where the faster process determines how the system progresses.
We identify conditions under which these properties are guaranteed to be pre-
served when merging or splitting channels.

Related Work. In [6], seven distinct channel-based asynchronous communica-
tion models are related to each other in a hierarchy based on trace and MSC
implementability. The authors of [4] also consider the causal communication
model [10], and show a similar hierarchy. They prove this hierarchy correct in [3]
using automated proof techniques. Compared to these works, we consider mixed
(channel-based) communication models, which is more realistic for complex soft-
ware systems. For communication models that can be defined by FIFO systems,
the hierarchies in these works relate these models the same way as our relation
does.

Property preservation is closely related to the field of incremental model
checking [8,12,14], which is an efficient method for rechecking a property on
a system that has undergone some changes. Under some conditions, one can
actually prove that a property will be preserved, as shown in multiple contexts
[5,9,11,13,15]. To our knowledge, no such work exists in the context of asyn-
chronously communicating processes however.

Outline. We first introduce the necessary definitions to reason about FIFO sys-
tems in Sect. 2. We define an ordering between FIFO systems in Sect. 3 and show
that it induces a simulation relation. Then in Sect. 4 we identify conditions under
which the aforementioned properties are preserved when changing the channel
layout. Lastly, we conclude in Sect. 5. The proofs for all lemmas and theorems
in Sect. 3 and 4 can be found in [2].

On the Preservation of Properties When Changing Communication Models 241

2 The FIFO System

Let P be a set of processes that make up a software system and let M be
the set of messages that can be communicated between these processes. We
represent the behaviour of each process p ∈ P with a Labelled Transition System
(LTS) Bp = 〈Qp, q

0
p, Lp,−�p〉 where Qp is its set of states, q0p its initial state,

Lp ⊆ ({?, !} × M) ∪ {τ} its set of actions and −�p ⊆ Qp × Lp × Qp its transition
relation. An action ?m indicates the receiving of m, !m the sending of m and
τ is an internal action. We assume that processes do not share non-internal
actions, that is Lp ∩ Lp′ ⊆ {τ} for all distinct p, p′ ∈ P . We write q

a−�p q′ iff
(q, a, q′) ∈ −�p. A FIFO system then describes how these processes communicate
with each other via FIFO channels.

Definition 1. A FIFO system is a tuple 〈P,C,M〉 where C ⊆ P(M) is a set of
(FIFO) channels defined as a partition of M .

Each channel in C is defined as a set of messages, which represents the
messages that this channel can hold. Note that because C partitions M , we
assume that each message can only be sent to and received from exactly one
channel. For a message m ∈ M , we define [m]C as the channel in C that m
belongs to, that is m ∈ [m]C and [m]C ∈ C. We write m �C o iff [m]C = [o]C
for messages m, o ∈ M .

We define M∗ as the set of all finite sequences of messages, also known as
words. We use ε as the empty word and concatenate two words with ++. Given
a word m ++ w for message m ∈ M and word w ∈ M∗, we define its head as
hd(m ++ w) = m and its tail as tl(m ++ w) = w.

Example 1. Imagine two vending machines, one for healthy snacks and one for
unhealthy snacks, and some user who can interact with these vending machines.
After receiving a “healthy voucher” , the healthy vending machine can sup-
ply apples and bananas . After receiving an “unhealthy voucher , the
unhealthy vending machine can supply chocolate and donuts . The user
decides to use before and can receive the snacks whenever they are ready.

Let PV = {hvm, uvm, user} be processes that represent the two vending
machines and the user. Their LTSs are visualised in Fig. 1. The set of mes-
sages is MV = . The realistic case where both vending

Fig. 1. Processes hvm, uvm and user for Example 1 and 2.

242 O. Bunte et al.

machines have their own voucher slot and output slot is represented by the
channel set CV = , resulting in the FIFO system
〈PV , CV ,MV 〉. Note that and .

Semantics. A FIFO system induces an LTS that represents the communication
behaviour between all processes. A state in this LTS consists of two parts: the
states of the individual processes and the contents of the channels. For a set of
processes P , P = {κ ∈ P → ⋃

p∈P Qp | ∀p∈P : κ(p) ∈ Qp} denotes the set of
functions that map processes to their current states. For a set of channels C,
C = {ζ ∈ C → M∗ | ∀c∈C : ζ(c) ∈ c∗} denotes the set of functions that map
channels to their contents. In case of a set of channels C ′, we write C′. Note
that we assume unbounded channels.

Definition 2. Let F = 〈(Qp, q
0
p,−�p)p∈P , C,M〉 be a FIFO system. The seman-

tics of F is an LTS BF = 〈S, s0, L,−→〉 where

– S = P × C,
– s0 = (κ0, ζε), where κ0(p) = q0p for all p ∈ P and ζε(c) = ε for all c ∈ C,
– L = ({?, !} × M) ∪ {τ},
– −→ ⊆ S × L × S such that for all (κ, ζ) ∈ S, p ∈ P , q ∈ Qp and m ∈ M , with

c = [m]C :

(κ, ζ) τ−→ (κ[p �→ q], ζ) iff κ(p)
τ−�p q

(κ, ζ) ?m−−→ (κ[p �→ q], ζ[c �→ tl(ζ(c)]) iff κ(p)
?m−−�p q ∧ hd(ζ(c)) = m

(κ, ζ) !m−−→ (κ[p �→ q], ζ[c �→ ζ(c) ++ m]) iff κ(p)
!m−−�p q

We write s
a−→ s′ iff (s, a, s′) ∈ −→. We lift the transition relation to one over

sequences of actions −→∗ ⊆ S ×L∗ ×S in the usual way. In the context of a FIFO
system F , we refer to the semantics of the FIFO system as defined above as “the
LTS of F”.

Two LTSs can be compared by means of a simulation relation [11].

Definition 3. Let B = 〈S, s0, L,−→〉 and B′ = 〈S′, s′
0, L,−→′〉 be two LTSs. We

say that B simulates B′ iff there exists a simulation relation R ⊆ S′ × S such
that s′

0Rs0 and for all s ∈ S and s′ ∈ S′, if s′Rs and s′ a−→′ t′ for some t′ ∈ S′

and a ∈ L, then there must exist a t ∈ S such that s
a−→ t and t′Rt.

3 Comparing Channel Layouts

The choice in channel layout affects the behaviour of a FIFO system. The
more channels there are, the more orderings there are in which messages can
be received. With this in mind, we order FIFO systems as follows:

Definition 4. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be two FIFO systems.
We define the relation on FIFO systems such that F F ′ iff C �= C ′ and
∀c∈C : ∃c′∈C′ : c ⊆ c′ (that is, C is a more refined partition of M than C ′ is).

On the Preservation of Properties When Changing Communication Models 243

One can create F ′ from F by merging a number of channels (splitting chan-
nels in the opposite direction). We first illustrate how this affects the behaviour
of the system with an example.

Example 2. Continuing from Example 1, consider the FIFO systems
(one channel per message),

(one output channel per process)
and Fg = 〈PV , {MV },MV 〉 (one global channel). Observe that Fm Fo Fg.

In Fm, the trace is possible, but in Fo it is not. This is because
in Fo, both vouchers sent by user are put in the same channel, so hvm has to
receive its voucher before uvm can. In Fo, the trace is
possible, but in Fg it is not. This is because in Fg, both vending machines send
their snacks to the same channel, which fixes the order in which user receives
the snacks.

In the remainder of this section, to avoid duplication in definitions, lem-
mas and theorems, we universally quantify over FIFO systems F = 〈P,C,M〉
and F ′ = 〈P,C ′,M〉 such that F F ′, with BF = 〈S, s0, L,−→〉 and BF ′ =
〈S′, s′

0, L,−→′〉.
The effect on the LTS when changing the channel layout is visualised in

Fig. 2. When the channels {m} and {o} are merged into one channel {m, o},
state s results in states s1 and s2, one for every interleaving of the contents of
the two channels in s. Conversely, when channel {m, o} is split into channels
{m} and {o}, the channel contents of states s1 and s2 are split as well, making
them coincide, resulting in s. We say that state s generalises states s1 and s2
and that states s1 and s2 specialise state s.

To define this formally, we first define the interleavings of words. Given a
message m ∈ M and a set of words W , let m ++ W = {m ++ w | w ∈ W}. Then
for a set of words W , we define the set of possible interleavings of these words
||W as ||W = {ε} if W = {ε}, else || W =

⋃
m++w∈W m++||((W \{m++w})∪{w}).

Example 3. Continuing from Example 2, let . Then
.

With this, we can define generalisation/specialisation of states as follows:

m
o

s mo

s1

om

s2
!m

!o ?m

?o

!o ?m

!m ?o

merging

splitting

Fig. 2. A visualisation of the effect on the LTS of a FIFO system when merging or
splitting channels. Transitions without a label cover any transition that is not already
represented by other incoming or outgoing transitions.

244 O. Bunte et al.

Definition 5. Let ζ ∈ C. For channels C ′ we define the set of functions C′
ζ ,

each representing possible interleavings of channel contents in ζ, as:

C′
ζ =

{
ζ ′ ∈ C′

∣
∣
∣ ∀c′∈C′ : ζ ′(c′) ∈ ||{ζ(c) | c ∈ C ∧ c ⊆ c′}

}

Definition 6. Let s = (κ, ζ) ∈ S and s′ = (κ′, ζ ′) ∈ S′. We say that s gener-
alises s′ and s′ specialises s, written as s � s′, iff κ = κ′ ∧ ζ ′ ∈ C′

ζ .

Example 4. Continuing from Example 2, take the LTSs of FIFO systems Fo and
Fg. Let κ ∈ PV such that κ(hvm) = 3, κ(uvm) = 3 and κ(user) = 2 (the vending
machines have supplied their snacks). Assume that user has not retrieved any
snack from the channels yet. In Fo there only exists one state s = (κ, ζ) that
represents this situation, namely where , and

. In Fg there are 6 such states, because the two vending
machines use the same channel for output (the only channel M), so their outputs
get interleaved. Let S′

κ be the set of these 6 states. Let (κ, ζ ′) ∈ S′
κ, then the

possible values for ζ ′(MV) are the interleavings mentioned in Example 3. The
states in S′

κ specialise state s since they are stricter in how the snacks are ordered
in the channel(s). Vice versa, state s generalises the states in S′

κ.

For every state in the LTS of a FIFO system, specialising or generalising
states exist in the LTS of -related FIFO systems.

Lemma 1. ∀s′∈S′ : ∃s∈S : s � s′ and ∀s∈S : ∃s′∈S′ : s � s′

As shown in Fig. 2, after merging channels {m} and {o}, the action ?m is
only possible from s1, since it has the interleaving where m is at the head of the
channel. Action !m can only result in s2, since it has the interleaving where m
is at the back of the channel. Similar arguments can be made for ?o and !o. Any
other transitions to and from s are possible for both s1 and s2. When splitting
channel {m, o} the opposite happens: the incoming and outgoing transitions for
s are all transitions to and from s1 and s2 combined.

We show which transitions are preserved in the LTS when changing the
channel layout formally in the below four lemmas, for any κ1, κ2 ∈ P, ζ ∈ C,
ζ ′ ∈ C′

ζ and m ∈ M , with c = [m]C and c′ = [m]C′ . Firstly, internal actions are
always possible from specialising or generalising states after merging or splitting
channels.

Lemma 2. (κ1, ζ) τ−→ (κ2, ζ) iff (κ1, ζ
′) τ−→′ (κ2, ζ

′).

Input actions remain possible from the generalising state after splitting chan-
nels. When merging channels, such actions are not possible from specialising
states that do not have the required message at the head, which may be the case
when the channel of this message was merged, as was illustrated by Fig. 2.

Lemma 3. If c = c′, then (κ1, ζ) ?m−−→ (κ2, ζ[c �→ tl(ζ(c))]) iff (κ1, ζ
′) ?m−−→′

(κ2, ζ
′[c′ �→ tl(ζ ′(c′))]).

On the Preservation of Properties When Changing Communication Models 245

Lemma 4. If c �= c′, then (κ1, ζ) ?m−−→ (κ2, ζ[c �→ tl(ζ(c))]) ∧ hd(ζ ′(c′)) = m iff
(κ1, ζ

′) ?m−−→′ (κ2, ζ
′[c′ �→ tl(ζ ′(c′))]).

Output actions are always possible from specialising or generalising states
after merging or splitting channels. Note however that sending a message to a
merged channel increases the number of possible interleavings, so not all spe-
cialising target states are reached, as was illustrated by Fig. 2.

Lemma 5. (κ1, ζ) !m−−→ (κ2, ζ[c �→ ζ(c)++m]) iff (κ1, ζ
′) !m−−→′ (κ2, ζ

′[c′ �→ ζ ′(c′)++
m]).

Note that for each of the above four lemmas, the target state of the −→-
transition generalises the target state of the −→′-transition. Since the structure
of the transitions in these lemmas is the same as in Definition 2, it follows that
the above lemmas cover all transitions in −→ and −→′. In general, merging channels
reduces the behaviour that a FIFO system allows. This can be formalised with
the simulation preorder.

Lemma 6. �−1 is a simulation relation.

Theorem 1. BF simulates BF ′ .

4 Property Preservation

In the previous section we have formally shown how the LTS of a FIFO system
is affected when changing the channel layout. In this section we investigate how
properties of a system are affected by such changes. Here the question is: if a
property φ holds on the LTS of a FIFO system F , denoted by BF |= φ, under
which conditions does it still hold after changing the channel layout? For this,
we define the following notions.

Definition 7. Let F and F ′ be two FIFO systems such that F F ′ and let φ
be some property on FIFO systems. We say that:

– φ is merge-preserved iff BF |= φ ⇒ BF ′ |= φ.
– φ is split-preserved iff BF |= φ ⇐ BF ′ |= φ.

In [11] it has already been shown that simulation preserves safety proper-
ties, that is properties of the form “some bad thing is not reachable”, so from
Theorem 1 we can derive the following:

Theorem 2. Safety properties are merge-preserved.

In the remainder of this section, we analyse the preservation of reachability,
deadlock freedom and confluence. To avoid duplication in definitions, lemmas
and theorems, we again universally quantify over FIFO systems F = 〈P,C,M〉
and F ′ = 〈P,C ′,M〉 such that F F ′, with BF = 〈S, s0, L,−→〉 and BF ′ =
〈S′, s′

0, L,−→′〉.

246 O. Bunte et al.

4.1 Reachability

Reachability asks whether a state can be reached in the LTS of a FIFO system
by a sequence of transitions, starting from the initial state.

Definition 8. Let B = 〈S, s0, L,−→〉 be an LTS and let L′ ⊆ L. A state s ∈ S
is L′-reachable in B iff there exists a sequence of actions α ∈ L′∗ such that
s0

α−→∗ s. We define ReachL′(S) as the set of all L′-reachable states. We omit L′

if L′ = L. We define Reach(B) as the LTS B restricted to only reachable states
and the transitions between them.

Preservation of reachability depends on whether a state’s specialising or gen-
eralising states are still reachable after changing the channel layout. When split-
ting channels this is the case, as it follows from Theorem 1.

Lemma 7. Let s ∈ S and s′ ∈ S′. Assume that s � s′. Then s ∈ Reach(S) ⇐
s′ ∈ Reach(S′).

When merging channels however, reachability is only guaranteed to be pre-
served when only transitions have been taken with actions that do not use
merged channels. Formally, we define the set of such actions as IL(F, F ′) =
{τ} ∪ {?m, !m | m ∈ M ∧ [m]C = [m]C′}.

Lemma 8. Let s ∈ S and s′ ∈ S′. Assume that s � s′. Then s ∈
ReachIL(F,F ′)(S) ⇒ s′ ∈ ReachIL(F,F ′)(S′).

We argue using Fig. 2 why other actions violate merge-preservation of reach-
ability. The transition with action !m can be done to s and to s2, but not to
s1, because it does not have m at the end of its channel. If s would not have
any other incoming transitions, s2 is possibly unreachable. The transition with
action ?m can be done from s to some state t (not depicted in the figure) and
from s1, but not from s2 since it does not have m at the head of its channel.
Due to this, some states that specialise t are possibly unreachable.

Lifting these results to the full system, we will only focus on the reachability
of process states. For a κ ∈ P and L′ ⊆ L, we say that κ is (L′-)reachable in F
iff there exists a ζ ∈ C such that (κ, ζ) is (L′-)reachable in BF .

Theorem 3. For all κ ∈ P, reachability of κ is split-preserved.

Theorem 4. For all κ ∈ P, IL(F, F ′)-reachability of κ is merge-preserved.

Example 5. See Fig. 3 for an example that shows that reachability of process
states is not merge-preserved in general. In Reach(BF), state 2 of process p2
is reachable, but in Reach(BF ′) it is not. This is because in Reach(BF ′), the
messages m and o can only be received by p2 in the order in which they are sent
by p1. Note that the actions !m, !o and ?o that are necessary to reach state 2 of
p2 in Reach(BF) are not in IL(F, F ′).

On the Preservation of Properties When Changing Communication Models 247

p1 : 0 1 2
!m !o

p2 : 0
1

2
3

?m

?o

?o

?m

Reach(BF) :

0 0 1 0 2 0
m o

1 1

2 2

2 1 2 3

!m !o

?m

?o

?m

!o

?m

?o

Reach(BF) :

0 0 1 0
m

2 0
om

2 0
mo

1 1

2 2
m

2 1
o

2 3

!m !o

?m

?o

?m

!o

?m

?o

Fig. 3. Processes p1 and p2 and LTSs Reach(BF) and Reach(BF ′) for Example 5, with
F = 〈{p1, p2}, {{m}, {o}}, {m, o}〉 and F ′ = 〈{p1, p2}, {{m, o}}, {m, o}〉. The dashed
states are unreachable states that specialise states in Reach(BF).

The preservation of reachability is not only interesting on its own, but also
for property preservation in general, because one is typically only interested in
the preservation of a property within reachable behaviour. Thanks to Theorem3
and Lemma 1, we know that for merge-preservation of a property that needs to
hold for all reachable states, it suffices to check whether if it holds for a state,
then it also holds for its specialising states. We cannot give such local arguments
for split-preservation, because after splitting channels, states may be reachable
that do not generalise any reachable state in the original LTS. To be able to claim
split-preservation of a property, we need to assume that all reachable states in
the new system generalise some state in the original. We call this assumption
unaltered reachability and represent it formally with S � S′, which is true iff for
all s ∈ Reach(S) there exists an s′ ∈ Reach(S′) such that s � s′.

4.2 Deadlock Freedom

A deadlock is a state in an LTS from which no action is possible.

Definition 9. Let B = 〈S, s0, L,−→〉 be an LTS. A state s ∈ S is a deadlock,
denoted as δ(s), iff there does not exist an a ∈ L and t ∈ S such that s

a−→ t. We
say that B is deadlock free iff for all s ∈ Reach(S) it holds that ¬δ(s).

The preservation of deadlock freedom comes down to whether for every non-
deadlock state, its generalising or specialising states are not deadlocks as well.
Whether this is the case can be easily derived from Fig. 2. When splitting chan-
nels, the number of outgoing transitions cannot decrease, so s cannot become a
deadlock if s1 or s2 were not deadlocks already.

248 O. Bunte et al.

Lemma 9. Let s ∈ S and s′ ∈ S′. Assume that s � s′. Then ¬δ(s) ⇐ ¬δ(s′).

When merging channels however, the number of outgoing transitions with
input actions may decrease in specialising states, which can cause some to
become a deadlock. There does always exist a specialising state that is not a
deadlock, namely one where the interleaving of channel contents is such that
the input action is still possible, but much more than this cannot be shown. For
instance, referring to Fig. 2, if only ?m would be possible from s, then s2 is a
deadlock. State s1 is not a deadlock however, since it has m at the head of its
channel.

If we assume unaltered reachability, then we can derive from Lemma9 that
deadlock freedom is split-preserved.

Theorem 5. If S � S′, then deadlock freedom is split-preserved.

Example 6. See Fig. 4 for an example that shows why the condition S � S′

is needed for split-preservation of deadlock freedom. In Reach(BF ′), state 2
of process p2 is not reachable, because the single channel forces p2 to receive
m and o in the order that they are sent. In Reach(BF), m and o are put in
different channels, so p2 is free to choose which it receives first. This makes 2 of
p2 reachable, which violates unaltered reachability. The corresponding state in
Reach(BF) is a deadlock, because p2 expects another o which is never supplied.

p1 : 0 1 2
!m !o

p2 : 0
1

2
3

?m

?o

?o

?o

τ

Reach(BF) :

0 0 1 0 2 0
m o

1 1

2 2

2 1 2 3

!m
!o

?m

?o

?m

!o ?m
τ

Reach(BF) :

0 0 1 0
m

2 0
mo

1 1 2 1
o

2 3

!m
!o

?m ?m

!m ?o
τ

Fig. 4. An example that shows that deadlock freedom is not split-preserved without
assuming unaltered reachability (S � S′), with F = 〈{p1, p2}, {{m}, {o}}, {m, o}〉 and
F ′ = 〈{p1, p2}, {{m, o}}, {m, o}〉.

On the Preservation of Properties When Changing Communication Models 249

4.3 Confluence

Confluence of two actions indicates a form of independence between them. Since
a FIFO system consists of multiple processes acting mostly independently of
each other, confluence in a FIFO system is common.

Definition 10. Let B = 〈S, s0, L,−→〉 be an LTS. For a, b ∈ L and s ∈ S, a and
b are confluent from s, denoted as Confa

b (s), iff for all t, u ∈ S we have that

(s a−→ t ∧ s
b−→ u) ⇒ (∃v∈S : t

b−→ v ∧ u
a−→ v). Note that Confa

b (s) = Conf b
a(s).

We say that a and b are confluent in B iff Confa
b (s) for all s ∈ Reach(S).

Again, we will first look at the preservation on state level. The relation
between confluence and independence is reflected in its preservation: confluence
of two actions from a state is preserved when merging channels, if the two actions
do not use the same channel. This is the case when at least one of two actions
is τ and when both actions use different channels in both FIFO systems. When
splitting channels, there is an exception when an input action a is involved that
uses a split channel. If a choice between a and another action exists from a state
s after splitting channels, there may be some specialising states in the original
LTS from which a is not possible due to the interleaving of channel contents.
This makes confluence trivially true from these states, while confluence may be
false from s. We represent this case with the condition ?SCC

C′(a), which is true
iff a = ?m ⇒ [m]C = [m]C′ for some m ∈ M .

Lemma 10. Let s ∈ S, s′ ∈ S′ and a ∈ L. Assume that s�s′. Then Confτ
a (s) ⇒

Confτ
a (s′) and if ?SCC

C′(a), then Confτ
a (s) ⇐ Confτ

a (s′).

Lemma 11. Let s ∈ S, s′ ∈ S′ and m, o ∈ M . Assume that s�s′ and m ��C′ o.
Let a ∈ {?m, !m} and b ∈ {?o, !o}. Then Confa

b (s) ⇒ Confa
b (s′) and if ?SCC

C′(a)
and ?SCC

C′(b), then Confa
b (s) ⇐ Confa

b (s′).

p1 : 0 1 2 3
!o !m !n

p2 : 0 1
2

3

?n
?m

τ

Reach(BF) : 0 0 1 0 2 0 3 0
m o n

3 1

3 2

3 3

!o !m !n ?n
?m

τ

Reach(BF) : 0 0 1 0 2 0 3 0
om n

3 1 3 3!o !m !n ?n τ

Fig. 5. An example that shows that without condition ?SCC
C′(a) confluence is

not split-preserved, with F = 〈{p1, p2}, {{m}, {o}, {n}}, {m, o, n}〉 and F ′ =
〈{p1, p2}, {{m, o}, {n}}, {m, o, n}〉.

250 O. Bunte et al.

Example 7. See Fig. 5 for an example why condition ?SCC
C′(a) is necessary for

the split-preservation of confluence. In Reach(BF) confluence of ?m and τ is
not met, because there is a choice between the two that does not result in a
confluence diamond. In Reach(BF ′) confluence of ?m and τ is trivially met
because the choice between the two is never possible. Compared to Reach(BF),
the choice was made impossible in Reach(BF ′) because the channels for m and
o have now merged. Because o is sent before m, p2 is forced in Reach(BF ′) to
receive o first, but it never does. Note that ?SCC

C′(?m) is not met.

If both actions a and b use the same channel in both FIFO systems, there is an
edge case where confluence is not preserved when merging channels, namely when
both are the exact same input action. In this case, two messages m are required
at the head of the channel of m to create the confluence diamond. However, if
the channel of m is merged with another channel, there are specialised states
with an interleaving of channel contents without both messages m in front. We
represent this case with a ≡? b for actions a, b ∈ L, which is true iff a = ?m = b
for some m ∈ M .

Lemma 12. Let s ∈ S, s′ ∈ S′ and m, o ∈ M . Assume that s � s′ and m �C o.
Let a ∈ {?m, !m} and b ∈ {?o, !o}. If not a ≡? b, then Confa

b (s) ⇒ Confa
b (s′)

and if ?SCC
C′(a) and ?SCC

C′(b), then Confa
b (s) ⇐ Confa

b (s′).

p1 : 0 1 2 3 4
!m !o !m !n

p2 : 0 1
2

3
4

?n
?m

?m

?m

?m

Reach(BF) :

0 0 · · · 4 1

4 2

4 3

4 4!m ?n
?m

?m

?m

?m

Reach(BF) :

0 0 · · · 4 1

4 2

4 3

!m ?n
?m

?m

Fig. 6. An example that shows that without condition not a ≡? b confluence
is not merge-preserved, with F = 〈{p1, p2}, {{m}, {o}, {n}}, {m, o, n}〉 and F ′ =
〈{p1, p2}, {{m, o}, {n}}, {m, o, n}〉.

On the Preservation of Properties When Changing Communication Models 251

Example 8. See Fig. 6 for an example why condition not a ≡? b is necessary for
merge-preservation of confluence. In Reach(BF) confluence of ?m and ?m is met,
because the only choice between ?m and ?m results in a confluence diamond.
In Reach(BF ′) confluence of ?m and ?m is not met, because there is a choice
between ?m and ?m that does not result in a confluence diamond. This is because
p2 first needs to receive the o before it can receive the second m. In Reach(BF)
this was not an issue, because m and o both had their own channels. Note that
?m ≡??m.

If both actions use channels that are distinct in F but equal in F ′, confluence
of two actions is merge-preserved if at least one of the actions is an input action.
In case one action is an input action and the other an output action, merge-
preservation follows from the fact that the actions touch different ends of the
channel and are therefore in some sense independent. In case both actions are
input actions, the choice between the two actions is not possible from any state in
BF ′ , since they use the same channel. This makes their confluence hold trivially,
from which merge-preservation trivially follows. Confluence is not split-preserved
in these cases for the same reason as for the example in Fig. 5 (for instance,
replace τ with ?o).

In case both actions are output actions, confluence is only split-preserved.
This is because from any state s′ in BF ′ , the two different orders of these actions
produce different orders of channel contents, since both actions use the same
channel. This implies that confluence cannot hold from s′, and therefore it is
trivially preserved when splitting channels. Confluence is still possible in BF ,
so confluence is not necessarily preserved when merging channels. For actions
a, b ∈ L, we formally represent this last case with !ACC

C′(a, b), which is true iff
a = !m, b = !o, m ��C o and m �C′ o for some m, o ∈ M .

Lemma 13. Let s ∈ S, s′ ∈ S′ and m, o ∈ M . Assume that s � s′, m ��C o and
m �C′ o. Let a ∈ {?m, !m} and b ∈ {?o, !o}. If not !ACC

C′(a, b), then Confa
b (s) ⇒

Confa
b (s′).

Lemma 14. Let s ∈ S, s′ ∈ S′ and a, b ∈ L Assume that s � s′. If !ACC
C′(a, b),

then Confa
b (s) ⇐ Confa

b (s′).

Lifting these state-based results to confluence in the LTSs of FIFO systems,
we can derive the following theorems:

Theorem 6. Let a, b ∈ L. If not !ACC
C′(a, b) and not a ≡? b, then confluence of

a and b is merge-preserved.

Theorem 7. Let a, b ∈ L. If ?SCC
C′(a), ?SCC

C′(b) and S � S′, then confluence
of a and b is split-preserved.

252 O. Bunte et al.

4.4 Summary of Results

The results of this section are summarised in the table below. Remember that
IL(F, F ′) = {τ} ∪ {?m, !m | m ∈ M ∧ [m]C = [m]C′}, that S � S′ iff
∀s∈Reach(S) : ∃s′∈Reach(S′) : s � s′, that ?SCC

C′(a) iff a = ?m ⇒ [m]C = [m]C′ for
some m ∈ M , that a ≡? b iff a = ?m = b for some m ∈ M , and that !ACC

C′(a, b)
iff a = !m, b = !o, m ��C o and m �C′ o for some m, o ∈ M .

Merge-preserved Split-preserved

L′-reachability of κ If L′ = IL(F, F ′)
(Theorem 4)

If L′ = L (Theorem 3)

Deadlock freedom No If S � S′ (Theorem 5)

Confluence of a and b If not !ACC
C′(a, b) and not

a ≡? b (Theorem 6)
If ?SCC

C′(a), ?SCC
C′(b) and

S � S′ (Theorem 7)

5 Conclusion

We have studied asynchronously communicating systems and their channel lay-
outs by modelling them as FIFO systems and ordered them based on whether
one can be created from the other by merging channels. We have shown that
the LTS that describes the behaviour of a split FIFO system simulates the LTS
of the original system. As a consequence of this, safety properties are merge-
preserved. We have also identified conditions under which reachability, deadlock
freedom and confluence are preserved when changing the channel layout.

For most conditions that are required for a property to be preserved, their
truth can be derived easily. An exception of this is the unaltered reachability
assumption, for which it should be investigated how feasible it is to check them.
It is also the question how likely the conditions are met in practice, given that
some are rather strict. Using more detailed information from the processes of the
FIFO systems could lead to less strict conditions, but they can be more difficult
to check. Another option would be to find whether sufficient property-specific
conditions exist.

The properties mentioned in this paper are of course not the only interesting
properties one could want to be preserved. Other options would be preservation
of maximum queue length, of eventual termination, of (lack of) starvation and
of behavioural equivalence between two systems.

Acknowledgements. We thank the reviewers for their helpful feedback.

On the Preservation of Properties When Changing Communication Models 253

References

1. Bollig, B., Finkel, A., Suresh, A.: Bounded reachability problems are decidable in
FIFO machines. In: CONCUR. LIPIcs, vol. 171, pp. 49:1–49:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

2. Bunte, O., van Gool, L.C., Willemse, T.A.: On the preservation of properties when
changing communication models (2022). https://doi.org/10.48550/ARXIV.2210.
06196

3. Chevrou, F., Hurault, A., Nakajima, S., Quéinnec, P.: A map of asynchronous com-
munication models. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12233, pp.
307–322. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54997-8 20

4. Chevrou, F., Hurault, A., Quéinnec, P.: On the diversity of asynchronous commu-
nication. Form. Asp. Comput. 28(5), 847–879 (2016)

5. Derrick, J., Smith, G.: Temporal-logic property preservation under Z refinement.
Form. Asp. Comput. 24(3), 393–416 (2012)

6. Engels, A., Mauw, S., Reniers, M.A.: A hierarchy of communication models for
message sequence charts. Sci. Comput. Program. 44(3), 253–292 (2002)

7. Finkel, A., Praveen, M.: Verification of flat FIFO systems. Log. Methods Comput.
Sci. 16(4) (2020)

8. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model
checking. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 332–358. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39910-0 16

9. Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approxima-
tions of timed systems. In: MEMOCODE, pp. 163–171. IEEE Computer Society
(2003)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

11. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Form. Methods Syst. Des.
6(1), 11–44 (1995)

12. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-
calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 67

13. Wehrheim, H.: Behavioural subtyping and property preservation. In: FMOODS.
IFIP Conference Proceedings, vol. 177, pp. 213–231. Kluwer (2000)

14. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
565–579. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 41

15. Xia, C., Li, C.: Property preservation of petri synthesis net based representation
for embedded systems. IEEE CAA J. Autom. Sinica 8(4), 905–915 (2021)

https://doi.org/10.48550/ARXIV.2210.06196
https://doi.org/10.48550/ARXIV.2210.06196
https://doi.org/10.1007/978-3-030-54997-8_20
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/3-540-58179-0_67
https://doi.org/10.1007/978-3-642-36742-7_41
https://doi.org/10.1007/978-3-642-36742-7_41

Introduction to Routing Problems
with Mandatory Transitions

Christian Laforest and Timothée Martinod(B)

Université Clermont Auvergne, CNRS, Mines de Saint-Étienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

{christian.laforest,timothee.martinod}@uca.fr

Abstract. A sequence P of vertices v1, . . . , vk from a directed graph (or
digraph) D = (V, A) is a directed route (or diroute) if (vi, vi+1) ∈ A for
1 ≤ i ≤ k − 1. In this paper, we study a generalisation of this classical
notion. Namely, an instance of our problem contains a digraph D =
(V, A) and a set of mandatory transitions Π from A2. Each mandatory
transition is composed of two contiguous arcs. A diroute P in the instance
(D, Π) is a diroute if ∀i = 1, . . . , k−2, (vi = a, vi+1 = b) =⇒ (vi+2 = c)
for each mandatory transition 〈a, b, c〉 ∈ Π and (a, b) (b, c) ∈ A (we
say that P respects the mandatory transitions). We show that finding
a shortest diroute between two vertices of V , respecting the mandatory
transitions Π, is solvable in polynomial time. On the other side, we show
that finding an elementary shortest diroute between two vertices of V ,
and respecting the mandatory transitions Π is not approximable by any
ratio unless P = NP, even in the very particular case of a dense digraph
(each vertex has at least |V |−2 outgoing arcs). We also show that finding
a shortest diroute containing several target vertices (or all the vertices
at least once) is not approximable by any ratio unless P = NP, even in
very restricted classes of digraphs.

Keywords: Complexity · Obligation · Routing problem · Shortest
path · Directed graph

1 Introduction

Many variants of routing problems according to the additional properties are
considered, namely periodic vehicle routing problem, dynamic vehicle routing
problem, stochastic vehicle routing problem, among others (see [11]). These
problems are central in graph theory and operational research. They are also
useful and daily used for delivery problems, among others. It is well-known that
routing problems are mostly NP-complete (see [4]). However, some polynomial
approximation algorithms exist (see [10]).

This work was sponsored by a public grant overseen by the French National Research
Agency as part of the “Investissements d’Avenir” through the IMobS3 Laboratory of
Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20–25 (ANR-
16-IDEX-0001).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 254–266, 2023.
https://doi.org/10.1007/978-3-031-23101-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_17

Routing Problems with Mandatory Transitions 255

Let D = (V,A) be a directed graph (or digraph), with V its set of vertices
and A its set of arcs. A sequence P of vertices v1, . . . , vk from V (or equivalently
a sequence of arcs (v1, v2), . . ., (vk−1, vk) from A) is a directed route (or diroute)
if (vi, vi+1) ∈ A for 1 ≤ i ≤ k − 1. A diroute P is elementary if vi �= vj for
1 ≤ i �= j ≤ k. A diroute P is simple if (vi, vi+1) �= (vj , vj+1) for 1 ≤ i �=
j ≤ k − 1. An elementary diroute P is Hamiltonian if ∀vi ∈ V , vi ∈ P . A
simple diroute P is eulerian if ∀(vi, vj) ∈ V , (vi, vj) ∈ P . Note that we could use
‘directed path’ instead of ‘directed diroute’. We choose this terminology to avoid
confusing between a solution for routing problems and all the defined paths in it.

In this paper, we study a generalisation of this classical notion. Namely, an
instance of our problem contains a digraph D = (V,A) and a set of mandatory
transitions Π from A2 (each mandatory transition is composed of two contiguous
arcs). A diroute P in the instance (D,Π) is a diroute if ∀i = 1, . . . , k − 2,
(vi = a, vi+1 = b) =⇒ (vi+2 = c) (except if vi+1 is the end of the diroute)
for each mandatory transition 〈a, b, c〉 ∈ Π and (a, b) (b, c) ∈ A (we say that
P respects the mandatory transitions). Given an instance of a routing problem,
a solution is a diroute passing through all the target vertices and respecting
each mandatory transition. The length of a solution (v1, v2),. . . , (vk−1, vk) is its
number of arcs (k − 1 in this case). A mandatory transition 〈a, b, c〉 is composed
by an head arc (a, b) and a tail arc (b, c). So, a diroute respects a mandatory
transition if its tail is the next arc each time the head appears (except if there
is no next arc in the diroute). An arc (a, b) can be the head of at most one
mandatory transition. An arc (b, c) can be the tail of at most the incoming
degree of b. A tail arc in a mandatory transition can be a head arc in another
mandatory transition. Therefore, a digraph has at most as many mandatory
transitions as arcs. Two mandatory transition are consecutive if the tail of the
first is the head of the second (consecutiveness is ordered: 〈a, b, c〉 and 〈b, c, d〉 are
consecutive but 〈b, c, d〉 and 〈a, b, c〉 are not consecutive). Consecutive mandatory
transitions form a directed consecutive path (for example 〈a, b, c〉, 〈b, c, d〉 and
〈c, d, e〉). A directed consecutive circuit is a directed consecutive path such that
the last and the first mandatory transitions are consecutive. Note that if a diroute
passes through an arc in a directed consecutive circuit, the diroute must follow
this circuit: the diroute cannot pass through an arc outside the circuit anymore.
In the instance of Fig. 1, there is no diroute from s to t respecting the mandatory
transitions, even though P = s, u, t is a diroute.

s u v t

Fig. 1. Illustration of a consecutive circuit, with four vertices {s, u, v, t} and three
mandatory transitions Π = { 〈s, u, v〉, 〈u, v, s〉, 〈v, s, u〉 }.

256 C. Laforest and T. Martinod

Mandatory transitions are placed in a broader research context: the obliga-
tions. An obligation can represent a subset of devices that must be used jointly,
not individually or a team of people that must all be present to make an action.
Routing problems use graphs modeling real roads. An obligation can represent a
‘vehicles must turn right/left ahead’ sign. Obligations were recently introduced
in [3] for many graph problems such as vertex cover, connected vertex cover,
dominating set, total dominating set, independent dominating set, spanning
tree, matching, and Hamiltonian path. Some properties of obligations have been
studied in the independent dominating set problem in [8]. The authors mainly
obtained hardness results. Studying classical graph problems with additional
constraints is not new. The introduction of obligations as an object of study was
motivated by considering them as the converse to conflict constraints. They have
been studied for the last years. The general context of conflict constraint is the
following. Given a graph G = (V,E), we add a set of pairs of elements of G (ver-
tices or edges) that cannot appear together in the same solution (which can be
a path, a tree, a dominating set, etc. depending on the goal). Unlike obligations,
a conflict models that two elements of a system cannot be used simultaneously
because they are incompatible for example. Most problems with conflicts are
hard, even if the underlying classical version is solvable in polynomial time. See
the following recent publications on the subject for examples: [1,2,5–7,9].

In this paper, we study the Multi-target Routing problem with Mandatory
Transitions (MRMT), which we define as follows:

Instance: A directed graph D = (V,A), a set of mandatory transitions Π, a
source vertex s ∈ V , target vertices t1, . . . , tk ∈ V and an integer l.

Objective: Find a shortest diroute P starting from s, containing t1, . . . , tk, and
respecting Π.

Question: Does P contain at most l arcs?
We show that the MRMT problem cannot admit an approximation by any

ratio if all the vertices are targets (denoted FRMT version), even in a symmetric
directed complete graph. On the other side, we show it is solvable in polynomial
time if only one vertex is a target (denoted SPMT version) but cannot admit an
approximation by any ratio if the solution diroute has to be elementary (denoted
elementary SPMT version), even if each vertex of the digraph D = (V,A) has
|V |−2 outgoing arcs. Note that we study the complexity of the MRMT problem
only though two special cases: its complexity can be extrapolated from the non
approximability of the FRMT and the SPMT versions. As many results in this
paper are obtained by a reduction from the NP-complete Restricted Exact Cover
by 3-Sets (RX3C) problem (see [4]), we describe it here. Let X be a finite set
of 3q elements and C a collection of 3q triplets (sets of three elements) of X .
Given such an instance (X , C) it is NP-complete to decide whether there is a
sub-collection C ′ ⊆ C such that each element of X occurs in exactly one triplet
of C ′. Such a sub-collection C ′ has exactly q disjoint triplets (each triplet covers
exactly three elements, and each element is covered by exactly one triplet).

Routing Problems with Mandatory Transitions 257

2 Shortest Path Problems with Mandatory Transitions

In this section, we show that the MRMT problem is solvable in polynomial time
in general if we want to find the diroute to a single vertex (only one vertex is a
target), but it is not approximable by any ratio unless P = NP if the solution
diroute has to be elementary, even if each vertex of the digraph D = (V,A)
has |V | − 2 outgoing arcs. For more clarity we denote these special cases as
the Shortest Path with Mandatory Transitions (SPMT) and the elementary
Shortest Path with Mandatory Transitions (elementary SPMT). Note that these
SPMT problems may admit no solutions, even in a symmetric dense digraph.
For example, take a symmetric directed completed graph with vertices u1, . . . , uk

for any k > 1, add the vertex v, the arcs (v, u1) and (u1, v) and the mandatory
transition 〈v, u1, v〉. There are no solutions if v is the source vertex and u1 is not
the target vertex.

We will show that the MRMT problem with only one vertex as a target
(equivalent to find the path to a single vertex) is solvable in polynomial time.
To do so, we will make a polynomial construction to convert an instance of
the SPMT problem into an equivalent instance of the Weighted Shortest Path
problem. This construction will replace directed consecutive paths by weighted
arcs between their extremities. If there is a solution at a cost c in an instance,
there is a solution with the same cost in the other instance.

2.1 Polynomiality of SPMT

The Shortest Path with Mandatory transitions problem is a special case of the
MRMT problem where only one vertex is a target. As seen in Fig. 1, some exist-
ing diroutes do not respect mandatory transitions. These diroutes cannot be
solutions. Since optimal solutions without mandatory transitions can be forbid-
den in SPMT, we cannot use classical algorithms (such as Dijkstra’s algorithm)
to find a diroute between two vertices. To solve this problem, we will make
a reduction to the Weighted Shortest Path problem to remove the mandatory
transitions without adding or removing any solution. Since there cannot be any
solution respecting mandatory transitions if there are no diroutes in the digraph,
we only need to look for instances where a diroute from the source to the destina-
tion exists. Note that directed consecutive circuits can be found and removed in
polynomial time (simply follow consecutive mandatory transitions until passing
through the same arc more than once, these arcs cannot be in a solution).

Construction 1. Let (D = (V,A),Π, s, t) be an instance of SPMT (or MRMT)
without directed consecutive circuits (arcs from directed consecutive circuits con-
taining t are cut after t, all the arcs for the others circuits are deleted), where
s, t ∈ V . We construct (D′ = (V,A′), s, t) of the Weighted Shortest Path problem
and L the list of each arc of A used by each arc of A′ as follows (we number the
arcs of A′ as we add them):

We add the arc (u, v) of weight 1 (∀u, v ∈ V) if (u, v) ∈ A (the arc exists) and
∀w ∈ V, 〈u, v, w〉 /∈ Π (the arc is no constraint by a mandatory transition).

258 C. Laforest and T. Martinod

Let i be the arc number, Li = [u, v].
We add the arc (u, v) of weight k+1 (∀u, v ∈ V) if there is a directed consecutive
path u, u1, . . . , uk, v ∈ (D,Π) and there are no mandatory transitions 〈uk, v, w〉
for any vertex w ∈ V . Let i be the arc number, Li = [u, u1, . . . , uk, v].
We add the arc (u, t) of weight j + 1 (∀u, v ∈ V) if there is a directed
consecutive path u, u1, . . . , uj , t, . . . , uk, v ∈ (D,Π). Let i be the arc number,
Li = [u, u1, . . . , uj , t].

The weighted multi-digraph D′ contains at most |V | vertices and 2(|V |2) arcs.
This digraph is constructed in polynomial time (O(|V |2 ∗ |A|2)).
Lemma 1. Let (D = (V,A),Π, s, t) be an instance of SPMT (or MRMT) with-
out directed consecutive circuits, where s, t ∈ V . Let (D′ = (V,A′), s, t) be the
instance of the Weight Shortest Path problem following Construction 1. There
is a solution for (D = (V,A),Π, s, t) if and only if there is a solution for
(D′ = (V,A′), s, t).

Proof. Suppose that P = u0, u1, . . . , uk with u0 = s and uk = t is a diroute
respecting mandatory transitions in (D,Π). Let P ′ be the diroute in D′ defined
as follows: a) P ′ starts at vertex s, let i = 1; b) if there is a mandatory transition
〈ui−1, ui, ui+1〉, let uj be the extremity of the longest directed consecutive path
starting at the arc (ui−1, ui), i = j; c) add the vertex ui at the end of P ′; d)
if i ≤ k go to step b with i = i + 1. P ′ is the shortest diroute between s and t
in D′.

Suppose that P ′ = u0, u1, . . . , uk with u0 = s and uk = t is a diroute in D′.
Let P be the diroute in (D,Π), respecting the mandatory transitions, defined
as follows: a) P = P ′; b) for each arc (ui, ui+1) (0 ≤ i < k), numbered as
j, substitute in P the vertices ui and ui+1 by the vertices defined in Lj . P
is the shortest diroute between s and t in (D,Π), respecting the mandatory
transitions. �

Since we can use a straightforward generalisation of Dijkstra’s algorithm for
extraction of Shortest Paths in weighted directed multi-graphs, we can state the
following theorem.

Theorem 1. The SPMT problem is solvable in polynomial time.

In a solution of Shortest Path problems, the diroute is elementary and simple.
In the SPMT problem, a solution is still simple but not necessarily elementary.
Next, we will show that the elementary SPMT problem is not approximable by
any ratio unless P = NP.

2.2 Non Approximation of Elementary SPMTand MRMT

As said in the Introduction, we will use a reduction from the RX3C problem.
Each element (resp. triplet) in RX3C is related to exactly three triplets (resp.
elements). To represent the membership of the elements and the intersection

Routing Problems with Mandatory Transitions 259

between triplets, we will create one gadget per triplet (Construction 2): a triplet
covers either all its elements or none of them. We show how gadgets behave in a
complexity proof of the MRMT problem (Theorem 2). We have to ensure that
a) each element is covered by only one triplet and b) each triplet covers either all
its elements or none of them. Next, we will duplicate the instance such that each
copy allows choosing exactly one triplet (Construction 3). Copies form a directed
path between the source and the target vertex. If an instance of RX3C (size q)
has a solution, the associated digraph has a diroute going through q triplets
and all elements before ending at the target vertex. We show the elementary
SPMT problem is not approximable by any ratio unless P = NP (Theorem
4). In the last step, we will propose a gadget to get a dense directed graph
(Construction 4). This gadget is a way to add missing arcs while forbidding
them. We show that the elementary SPMT problem is not approximable by any
ratio unless P = NP, even if each vertex of the digraph D = (V,A) has |V | − 2
outgoing arcs (Theorem 5). In all constructions, we associate each element and
triplet of RX3C to one or more vertices in the associated digraph. In the rest
of our paper, we will call them element vertices and triplet vertices. Let us start
with the first step, the MRMT problem.

Construction 2. Let (X , C) be an instance of RX3C where X = {x1, . . . , x3q}
and C = {c1, . . . , c3q}. We construct (D = (V,A),Π) of the MRMT problem as
follows:
For each ci ∈ C (resp. xi ∈ X), we add the vertices ci,a, ci,b, ci,c, ci,d (resp. xi).
We add the vertex s and the arcs (s, c1,a), . . ., (s, c3q,a) and (c1,d, s), . . .,
(c3q,d, s).
For each ci = {xj , xk, xh} ∈ C, we add the arcs (ci,a, xj), (xj , ci,b), (ci,b, xk),
(xk, ci,c), (ci,c, xh), and (xh, ci,d) as well as the seven mandatory transitions
〈s, ci,a, xj〉, 〈ci,a, xj , ci,b〉, 〈xj , ci,b, xk〉, 〈ci,b, xk, ci,c〉, 〈xk, ci,c, xh〉, 〈ci,c, xh, ci,d〉,
and 〈xh, ci,d, s〉.
The instance (D,Π) contains 15q + 1 vertices, 24q arcs and 21q mandatory
transitions. Mandatory transitions are represented in Fig. 2 (top) for one triplet.
A big picture of the construction is represented in Fig. 2 (bottom). Links between
triplet vertices and their elements vertices are condensed and shown as edges,
mandatory transitions are not shown.

In Construction 2, mandatory transitions ensure that each triplet covers
either all its elements or none of them. Note that the vertex s is the only one
where an arc can be chosen freely. For each other vertex, a mandatory transition
constrains the diroute to only one possible next arc. To make sure each element
is covered exactly one time, we prevent the choice of more than q triplets. To do
that, we choose the size of the solution diroute wisely.

Theorem 2. The MRMT problem is NP-complete.

Proof. Clearly MRMT is in NP.
Let (X , C) be an instance of RX3C with 3q elements and 3q triplets. Let

(D,Π) be the associated instance of MRMT following Construction 2. Let s be

260 C. Laforest and T. Martinod

sc1 c2 c3 c4 c5 c6

x1 x2 x3 x4 x5 x6

s c1,a

x1

c1,b

x2

c1,c

x3

c1,d

Fig. 2. Illustration of Construction 2 for the instance (X , C) of RX3C where X =
{1, . . . , 6} and C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5}, {4, 5, 6}}.

the source vertex, and x1, . . . , x3q the target vertices. Let P be a shortest diroute
starting from s, going through x1, . . . , x3q and respecting Π.

Due to the mandatory transitions structure, we can see P as a succession of
element collectors. Each element collector pf is a directed consecutive path com-
posed of eight arcs. Path pf starts at the vertex s, heads towards a triplet vertex
ci,a, followed by its first element vertex xj , alternates between the triplet vertices
and its element vertices, and ends at vertex s: pf = (s, ci,a), (ci,a, xj), (xj , ci,b),
(ci,b, xk), (xk, ci,c), (ci,c, xh), (xh, ci,d), (ci,d, s), for each ci = {xj , xk, xh} ∈ C.
Thus P = p1, . . . , pλ deprived of the two last arcs. Indeed, the diroute ends as
soon as the last target is reached. Each element collector pf contains exactly
three element vertices among the 3q. The shortest diroute cannot have less than
8q − 2 arcs. Let l be 8q − 2.

Suppose that P is a diroute with exactly 8q − 2 arcs. Each element vertex
is reached exactly one time. Exactly q triplet vertices have been reached. The
triplet vertices crossed in P give a solution for the instance (X , C) of RX3C.

Suppose there is a solution S for the instance of RX3C. Let P ′ be the diroute
defined as follows: a) P ′ starts at vertex s; b) for each triplet ci = {xj , xk, xh} ∈
S, we add the corresponding element collector at the end of P ′ except for the
last two vertices of the last element collector. The diroute P ′ contains 8q−2 arcs,
starts at s, goes through all the targets and respects the mandatory transitions.

Thus, there is a solution for the instance (X , C) of RX3C if and only if there
is, in the associated instance of MRMT, a diroute of size 8q − 2 starting at s,
going through all the targets and respecting the mandatory transitions. �

The MRMT problem contains the core of the proofs: the link between a solu-
tion in RX3C and a solution in our routing problems. The choice of the triplet
to cover the elements is already defined. We now place ourselves in the version
of MRMT in which only one vertex is a target: the elementary Shortest Path
problem with Mandatory Transitions. In the next constructions, we will focus on
the associated digraph. We copy and connect our instance from Construction 2.
The diroute between the source and the destination will pass through q copies
of the previous instance. In each copy three new elements are chosen, such that
there is a diroute only if there is a solution for RX3C. After, in Construction 4,

Routing Problems with Mandatory Transitions 261

we add arcs (that cannot be in a solution diroute) to obtain a dense digraph.
The choice of triplet for RX3C will remain the same (they depend on choice
vertices s1, . . . sq).

Construction 3. Let (X , C) be an instance of RX3C where X = {x1, . . . , x3q}
and C = {c1, . . . , c3q}. We construct (D = (V,A),Π) of the SPMT problem as
follows.

– We add the vertices s1, . . . sq+1 and for each xi ∈ X , we add the vertices xi.
– For 1 ≤ l ≤ q:

• For each ci ∈ C, we add the vertices cl
i,a, cl

i,b, c
l
i,c, c

l
i,d.

• We add the arcs (sl, cl
1,a), . . ., (sl, cl

3q,a) and (cl
1,d, s

l+1), . . ., (cl
3q,d, s

l+1).
• For each ci = {xj , xk, xh} ∈ C, we add the arcs (cl

i,a, xj), (xj , c
l
i,b),

(cl
i,b, xk), (xk, cl

i,c), (cl
i,c, xh), and (xh, cl

i,d), as well as the seven manda-
tory transitions 〈sl, cl

i,a, xj〉, 〈cl
i,a, xj , c

l
i,b〉, 〈xj , c

l
i,b, xk〉,

〈cl
i,b, xk, cl

i,c〉, 〈xk, cl
i,c, xh〉, 〈cl

i,c, xh, cl
i,d〉, and 〈xh, cl

i,d, s
l+1〉.

The instance (D,Π) contains 12q2+4q+1 vertices, 24q2 arcs and 21q2 mandatory
transitions. A big picture of the construction is represented in Fig. 3, where the
red arcs represent directed consecutive paths. For each copy, only one gadget is
shown.

Theorem 3. The elementary SPMT problem is NP-complete.

Proof. Clearly elementary SPMT is in NP.
Let (X , C) be an instance of RX3C with 3q elements and 3q triplets. Let

(D,Π) be the associated instance of SPMT following Construction 3. Let s1 be
the source vertex, and sq+1 the target vertex. Let P be an elementary shortest
diroute starting from s1, ending at sq+1 and respecting Π.

Due to the mandatory transitions structure, we can see P as a succession of
element collectors. Each element collector pl is a directed consecutive path com-
posed of 8 arcs. Path pl starts at a vertex sl, heads towards a triplet vertex cl

i,a,
followed by its first element vertex xj , alternates between the triplet vertices and
its element vertices, and ends at vertex sl+1: pl = (sl, cl

i,a), (cl
i,a, xj), (xj , c

l
i,b),

(cl
i,b, xk), (xk, cl

i,c), (cl
i,c, xh), (xh, cl

i,d), (cl
i,d, s

l+1), for each ci = {xj , xk, xh} ∈ C.
Thus P = p1, . . . , pq. Each element collector pl contains exactly three element
vertices among the 3q. The shortest diroute cannot have less than 8q arcs. Let l
be 8q.

s1
c11,a c12,a c13,a c14,a c15,a

c16,a

1 c11,b 2 c11,c 3 c11,d

s2

c22,a c21,a c23,a c24,a c25,a

c26,a

4 c26,b 5 c26,c 6 c26,d

s3

Fig. 3. Partial illustration of Construction 3 for the instance (X , C) of RX3C where
X = {1, . . . , 6} and C = {{1, 2, 3}, {4, 5, 6}, {1, 2, 6}, {1, 5, 6}, {3, 4, 5}, {2, 3, 4}}.

262 C. Laforest and T. Martinod

Suppose that P is a diroute with exactly 8q arcs. Since the diroute is ele-
mentary, each element vertex is reached exactly once. Exactly q triplet vertices
have been reached. The triplet vertices crossed in P give a solution for the
RX3C instance.

Suppose there is a solution S for the instance of RX3C. We arbitrarily order
each triplet ci of S from 1 to q. We denoted these triplets as cl

i. Let P ′ be
the diroute defined as follows: a) P ′ starts at vertex s1; b) for each triplet
cl
i = {xj , xk, xh} ∈ S with 1 ≤ l ≤ q, we add the corresponding element collector

(starting at sl and ending at sl+1) at the end of P ′. The elementary diroute P ′

contains 8q arcs, starts at s1, ends at sq+1 and respects the mandatory transi-
tions.

Thus, there is a solution for the instance (X , C) of RX3C if and only if there
is, in the associated instance of elementary SPMT, a diroute of size 8q starting
at s1, ending at sq+1 and respecting the mandatory transitions. �

Note that the vertices s1, . . . sq are the only ones where an arc can be chosen
freely. For each other vertex, a mandatory transition constrains the diroute to
only one possible next arc. In Construction 3, all the possible solutions have
the same size. There are no diroutes from s1 to sq+1 respecting the mandatory
transitions with more (or less) than 8q arcs. Since the optimal solution is the
only solution, no approximation algorithm can exist.

Theorem 4. The elementary SPMT problem is not approximable by any ratio
unless P = NP.

We have stated that the elementary SPMT problem cannot be approximate
by any ratio in general cases. The last step is to extend the result to dense
digraphs. We add the missing arcs but prevent any solution from taking them.
The Construction 4 shows the general way to add these arcs. The exact number
of new arcs depends on the problem studied.

Construction 4. Let (D = (V,A),Π) be a directed graph and its associated
mandatory transitions. We add an arc and a mandatory transition as follows.
For an absent arc of D (u, v ∈ V, (u, v) /∈ A), we add the arc (u, v) in A and the
mandatory transition 〈u, v, u〉 in Π.

The new arcs are represented in Fig. 4. We can see two configurations with
missing arcs on the left, and all the arcs on the right.

Theorem 5. The elementary SPMT problem is not approximable by any ratio
unless P = NP, even if each vertex of the digraph D = (V,A) has |V | − 2
outgoing arcs.

Proof. Let (X , C) be an instance of RX3C with 3q elements and 3q triplets.
Let (D,Π) be the associated instance of elementary SPMT following Construc-
tion 3. We add all the missing arcs following Construction 4 except the arcs
(si, sq+1) for 1 ≤ i ≤ q and the arc (sq+1, s1). Note that each vertex has exactly

Routing Problems with Mandatory Transitions 263

u v u v u v u v

Fig. 4. Illustration of new arcs of Construction 4.

|V | − 2 outgoing arcs. Let s1 be the source vertex and sq+1 the target vertex.
Let P be an elementary shortest diroute starting from s1, ending at sq+1 and
respecting Π.

As we mentioned before, there are only q vertices where an arc can be freely
chosen: s1, . . . , sq. Since no arcs can be chosen for other vertices, new outcoming
arcs cannot be passed through either. Due to the mandatory transitions struc-
ture, new outcoming arcs from s1, . . . , sq cannot be chosen in a diroute. If one of
these arcs is chosen, the vertex sq+1 cannot be reached. Since no new arcs can
be used in P , the proof of Theorem 4 also proves Theorem 5. �

3 Routing Problems with Mandatory Transitions

In this section, we extend our results on the MRMT problem and the FRMT pro-
blem thanks to our result on the elementary SPMT problem. Some results can
be obtained with a construction very similar to Construction 3 and the same
arguments of proof. Thus, we do not recall all these proofs here. Note that these
problems may admit no solutions, even in a symmetric complete digraph. For
example, take a symmetric directed completed graph with vertices u1, . . . , uk

for any k > 2 and add the mandatory transitions 〈u1, ui, u1〉 and 〈ui, u1, ui〉 for
2 ≤ i ≤ k. There are no solutions if u1 is the source vertex and there is more
than one target vertices.

We can see element vertices are indirect targets in the elementary SPMT pro-
blem. If we add the vertex sq+2, the arcs (sq+1, sq+2) and (sq+2, sq+1), the
mandatory transitions 〈sq+1, sq+2, sq+1〉 and 〈cq

i,d, s
q+1, sq+2〉 for 1 ≤ i ≤ 3q, and

the missing arcs following Construction 4, we can state the following theorem
(the proof is obtained with x1, . . . , x3q, s

q+1, sq+2 as targets in MRMT problem).

Theorem 6. The MRMT problem (and its elementary version) are not approx-
imable by any ratio unless P = NP, even if the digraph is a symmetric directed
complete graph.

Since the SPMT problem is solvable in polynomial time (Theorem 1) but the
elementary SPMT problem is not approximable by any ratio (Theorem 5), we
can investigate the role of the uniqueness of each vertex in a diroute. However,
if we allow passing k times through the same vertex, the complexity stays the
same. Let k be the number of times a vertex can appear in a solution diroute.
We can make a first directed path starting at s0, passing through the element
vertices k − 1 times following Construction 5 and connect it at the vertex s1.

Construction 5. Let (X , C) be an instance of RX3C where X = {x1, . . . , x3q}
and C = {c1, . . . , c3q}. Let (D = (V,A),Π) be the digraph and its associated

264 C. Laforest and T. Martinod

s0 z11 z12 z13 z14 z15 z16x1 x2 x3 x4 x5 x6

s1 z21 z22 z23 z24 z25 z26

Fig. 5. Illustration of Construction 5 with k = 3 and q = 2.

mandatory transitions following Construction 3. Let k > 1 be the constant num-
ber of time a vertex can appear in a solution diroute. We add some vertices, arcs
and mandatory transitions as follows.

– We add the vertex s0. For 1 ≤ l ≤ k − 1:
• We add the vertices zl

i and the arcs (xi, z
l
i) for 1 ≤ i ≤ 3q.

• We add the arcs (zl
i, xi+1) and the mandatory transitions 〈xi, z

l
i, xi+1〉

and 〈zl
i, xi+1, z

l
i+1〉 for 1 ≤ i ≤ 3q − 1.

– We add the arcs (s0, x1), (zk−1
3q , s1), and (zl

3q, x1) and the mandatory transi-
tions 〈s0, x1, z

1
1〉, 〈x3q, z

k−1
3q , s1〉, and 〈x3q, z

l
3q, x1〉 for 1 ≤ l ≤ k − 2.

The Construction 5 is represented in Fig. 5. Since each arc is constraint by a
directed consecutive path, the red arcs represents arcs and mandatory transi-
tions. For more clarity, the mandatory transitions in element vertices are still
represented. Note that the source vertex becomes s0. Since each element vertex
appears k − 1 times in the diroute between s0 and s1, the diroutes from s1 to
sq+1 for the k-elementary SPMT problem are the same as for the elementary
SPMT problem. We can add all the missing arcs following Construction 4 except
the arcs (si, sq+1) for 0 ≤ i ≤ q and the arc (sq+1, s0). Thus we can state the
following theorem.

Theorem 7. The k-elementary SPMT problem is not approximable by any ratio
unless P = NP, even if each vertex of the digraph D = (V,A) has |V | − 2
outgoing arcs.

The MRMT problem is not approximable by any ratio, even if there is only
one target or if the diroute is elementary. The solution diroutes uses only few ver-
tices. We now investigate the complexity of the Full-target Routing problem with
Mandatory Transitions. The FRMT problem is a special case of the MRMT pro-
blem where all vertices are targets. We show that the FRMT problem is not
approximable by any ratio unless P = NP, even if the digraph is a symmetric
directed complete graph. For that we will complete Construction 3 such that each
vertex appears in a diroute if and only if there is a solution for the RX3C pro-
blem. We will create an additional gadget (Construction 6). This gadget will
construct a directed path between triplets without going through elements. If an
instance of RX3C (size q) has a solution, the associated digraph has a diroute
going through q triplets and all elements before going through the remaining
triplets. We will then use Construction 4 to add all missing arcs while forbid-
ding them. We show that the FRMT problem is not approximable by any ratio

Routing Problems with Mandatory Transitions 265

unless P = NP, even if the digraph is a symmetric directed complete graph
(Theorem 8). Let us start construction.

Construction 6. Let (X , C) be an instance of RX3C where X = {x1, . . . , x3q}
and C = {c1, . . . , c3q}. We construct (D = (V,A),Π) of the FRMT problem as
follows. Let (D′,Π ′) be the obtained instance following Construction 3.

We add D′ to D and Π ′ to Π.
We add the vertex F and the directed consecutive circuit passing through sq+1,
all the triplets vertices (c11,a, . . . c13q,d . . . cq

1,a, . . . cq
3q,d), and F in that order.

The instance (D,Π) contains 12q2 + 4q + 2 vertices. A solution for (D,Π) will
always pass through the vertex sq+1 only after all the element vertices. We
call the diroute passing through all the element vertices (following the element
collectors) the solution collector. This diroute starts at the vertex s1 and ends
at the vertex sq+1. We call the diroute which passes through all the remaining
vertices the remaining collector. This diroute starts at the vertex sq+1 and ends
at the vertex F . The triplet vertices in the solution collector define a solution
for RX3C. The remaining collector does not affect the link between a solution
in RX3C and a solution in FRMT. Indeed, the remaining collector is trapped
in the directed consecutive circuit, without any element vertex. If q triplets
are not enough, there is still no way to pass through all the element vertices.
Since the proof is still the same, we do not recall it here. In Construction 6, all
the possible solutions have the same size. There are no diroutes from s1, going
through all the vertices and respecting the mandatory transitions with more (or
less) arcs than 12q2 + 8q + 1. Since the optimal solution is the only solution,
no approximation algorithm can exist. The last step is to extend the digraph
following Construction 4 to obtain a complete directed graph.

Theorem 8. The FRMT problem is not approximable by any ratio unless P =
NP, even if the digraph is a symmetric directed complete graph.

4 Conclusion

In this paper, we have introduced a problem: the Multi-target Routing pro-
blem with Mandatory Transitions (MRMT). We have shown it cannot admit
an approximation by any ratio if we want to pass through all the vertices
(FRMT version), even if the digraph is a symmetric directed complete graph.
On the other side, we have shown it is solvable in polynomial time if there is only
one target (SPMT version) but cannot admit an approximation by any ratio if
the solution diroute has to be elementary, even if each vertex of the digraph
D = (V,A) has |V | − 2 outgoing arcs. As a perspective we plan to study the
hardness of these problems by considering a limited number of mandatory tran-
sitions and the influence of the place of targets in mandatory transitions. We can
already see we can rewrite arcs and mandatory transitions like in Construction
1 to prove that the MRMT problem is equivalent to the Multi-target Routing
problem unless a target appears in the tail of a mandatory transition’s head arc.

266 C. Laforest and T. Martinod

Acknowledgements. The authors thank the anonymous referees for their advice on
their work.

References

1. Cornet, A., Laforest, C.: Total domination, connected vertex cover and steiner tree
with conflicts. Discret. Math. Theor. Comput. Sci. 19(3) (2017)

2. Cornet, A., Laforest, C.: Domination problems with no conflicts. Discret. Appl.
Math. 244, 78–88 (2018)

3. Cornet, A., Laforest, C.: Graph problems with obligations. In: Kim, D., Uma, R.N.,
Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 183–197. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04651-4 13

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

5. Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence
of (elementary) paths and a generalisation of the cut problem in graphs with forbid-
den transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35843-2 23

6. Kanté, M.M., Laforest, C., Momège, B.: Trees in graphs with conflict edges or
forbidden transitions. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC
2013. LNCS, vol. 7876, pp. 343–354. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38236-9 31

7. Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with
forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–
168. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7 12

8. Laforest, C., Martinod, T.: On the complexity of independent dominating set with
obligations in graphs. Theoret. Comput. Sci. 904, 1–14 (2022)

9. Laforest, C., Momège, B.: Some hamiltonian properties of one-conflict graphs. In:
Kratochv́ıl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp.
262–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19315-1 23

10. Laporte, G.: The traveling salesman problem: an overview of exact and approxi-
mate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

11. Rachid, M.H., Cherif, W.R., Bloch, C., Chatonnay, P.: Proposition de notation
pour les problèmes de tournées. In: 9ème congrès de la ROADEF: ROADEF 2008,
pp. 63–77. Presses universitaires de l’Université Blaise Pascal (2008)

https://doi.org/10.1007/978-3-030-04651-4_13
https://doi.org/10.1007/978-3-642-35843-2_23
https://doi.org/10.1007/978-3-642-38236-9_31
https://doi.org/10.1007/978-3-642-38236-9_31
https://doi.org/10.1007/978-3-662-53174-7_12
https://doi.org/10.1007/978-3-319-19315-1_23

Payment Scheduling in the Interval Debt
Model

Tom Friedetzky , David C. Kutner(B) , George B. Mertzios ,
Iain A. Stewart , and Amitabh Trehan

Department of Computer Science, Durham University, Durham, UK
{tom.friedetzky,david.c.kutner,george.mertzios,i.a.stewart,

amitabh.trehan}@durham.ac.uk

Abstract. The networks-based study of financial systems has received
considerable attention in recent years, but seldom explicitly incorpo-
rated the dynamic aspects of such systems. We consider this problem
setting from the temporal point of view, and we introduce the Interval
Debt Model (IDM) and some scheduling problems based on it, namely:
Bankruptcy Minimization/Maximization, in which the aim is to
produce a schedule with at most/at least k bankruptcies; Perfect
Scheduling, the special case of the minimization variant where k = 0;
and Bailout Minimization, in which a financial authority must allo-
cate a smallest possible bailout package to enable a perfect schedule.

In this paper we investigate the complexity landscape of the various
variants of these problems. We show that each of them is NP-complete,
in many cases even on very restrictive input instances. On the positive
side, we provide for Perfect Scheduling a polynomial-time algorithm
on (rooted) out-trees. In wide contrast, we prove that this problem is
NP-complete on directed acyclic graphs (DAGs), as well as on instances
with a constant number of nodes (and hence also constant treewidth).
When the problem definition is relaxed to allow fractional payments, we
show by a linear programming argument that Bailout Minimization
can be solved in polynomial time.

Keywords: Temporal graph · Financial network · Payment
scheduling · NP-complete · Polynomial-time algorithm

1 Introduction

In the study of financial systems, network-based paradigms were introduced to
model behaviors associated with the connectedness and complexity exhibited in
real-world financial systems. We introduce the Interval Debt Model, focusing on
the choices that real-world financial entities have in times at which they pay their
debts by applying temporal graphs to this setting. Previous work in the study
of financial networks had seldom explicitly incorporated the temporal aspects
inherent to real-world debt.

G.B. Mertzios—Partially supported by the EPSRC grant EP/P020372/1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 267–282, 2023.
https://doi.org/10.1007/978-3-031-23101-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_18&domain=pdf
http://orcid.org/0000-0002-1299-5514
http://orcid.org/0000-0003-2979-4513
http://orcid.org/0000-0001-7182-585X
http://orcid.org/0000-0002-0752-1971
http://orcid.org/0000-0002-2998-0933
https://doi.org/10.1007/978-3-031-23101-8_18

268 T. Friedetzky et al.

Financial Networks have been studied by applying concepts from ecology [9],
statistical physics [3], and Boolean networks [6]. In 2001, Eisenberg and Noe
(EN) [7] introduced a paradigm which has been the basis for much work in
the network-based analysis of financial systems, see also e.g. the survey [11]. In
this model, financial entities all operate within a single clearing system. The
paradigm has been extended to include default costs [18], Credit Default Swaps
(CDSs) (derivatives through which banks can bet on the default of another bank
in the system) [19], and the sequential behavior of bank defaulting in real-world
financial networks [16].

A core motivation of financial network analysis is to inform central banks’
and regulators’ policies. The concepts of solvency and liquidity are core to this
task: a bank is said to be solvent if it has enough assets (including non-liquid
assets) to meet all its obligations, and is said to be liquid if it has enough liquid
assets (e.g. cash) to meet its obligations on time. An illiquid but solvent bank
may exist even in modern interbank markets [17]. In such cases, a central bank
may act as a lender of last resort and extend loans to such banks to prevent
their defaulting on debts [2,17]. The optimal allocation of bailouts to a system
in order to minimize damage has also been studied as an extension of Eisenberg
and Noe’s model [15]. Here, bailouts refer to funds provided by a third party
(such as the government) to entities to help them avoid bankruptcy.
Temporal Graphs are graphs whose underlying network structure changes over
time. These allow us to model real-world networks which have inherent dynamic
properties, such as transportation networks [20], contact networks in an epidemic
[8], and communication networks; for an overview see [4,5,10]. Most commonly,
following the formulation introduced by Kempe, Kleinberg and Kumar [13], a
temporal graph has a fixed set of vertices, and edges which appear and disappear
at integer times up to an (integer) lifetime T . In such cases the temporal graph
can be thought of as a static graph G = (V, E) in which the edges are labeled
with the times at which they appear. Often, a natural extension of a prob-
lem on static graphs to the temporal setting yields a computationally harder
problem; for example, finding node-disjoint paths in a temporal graph remains
NP-complete even when the underlying graph is itself a path [14], and finding a
temporal vertex cover remains NP-complete even on star temporal graphs [1].

Our Contribution. In this paper we present a new framework for considering
problems of bailout allocation and payment scheduling in financial networks
by taking into account the temporal aspect of debts between financial entities,
the Interval Debt Model (IDM). We introduce several natural problems and
problem variants in this model, and show that the tractability of such problems
depends greatly on the network topology and on the restrictions on payments
(i.e. the admission or exclusion of partial and fractional payments on debts).
While previous work has mainly focused on static financial networks, we go
further and introduce the time dimension in financial networks to account for the
temporal nature of real-world debts. In particular, the IDM offers the capability
to represent the flexibility that entities have in paying debts earlier or later,

Payment Scheduling in the Interval Debt Model 269

within some interval. In Sect. 2 we present our new model IDM in detail. The
formal definitions of our problems, as well as a summary of our results (see
Table 1) are given in Sect. 2.3. All our results are formally presented in Sect. 3.
Due to space constraints, some proofs are deferred to more complete versions of
this paper.

2 The Interval Debt Model

In this section, we introduce (first by example, then formally) the Interval Debt
Model, a framework in which temporal graphs are used to represent the system
of debts in a financial network.

As an example, consider a tiny financial network consisting of 3 banks
u, v, w, with e30, e20 and e10 respectively in initial assets, and the following
inter-bank financial obligations. Bank u owes bank v e20, which it must pay by
time 3, and e15, which it must pay between times 4 and 5. Bank v has agreed to
lend bank w e25 at time 2 exactly, which bank w must repay to bank v between
times 4 and 6. A graphical representation of this system is shown in Fig. 1.

u
30

v
20

w
10

20@[1,3]

15@[4,5]

25@2

25@[4,6]

Fig. 1. A simple instance of the IDM

Several points can be made about this system: node u is insolvent as its e30
in assets are insufficient to pay all its debts; node v may be illiquid (it may
default on part of its debt to w, e.g. if u pays all of its first debt at time 3) or
may remain liquid (e.g. if it receives at least e5 from u by time 2); and node w
is solvent and certain to remain liquid in any case.

One may ask several questions about this system: Are partial payments
admitted (i.e. u paying e18 of the e20 debt at time 1, and the rest later)?
If so, are non-integer payments admitted? Can money received be immediately
forwarded (e.g. u paying v e20 at time 2, and v paying w e25 at time 2)?

We now specify in detail the setting we consider in the remainder of the
paper.

2.1 Formal Setting

Formally, an Interval Debt Model (IDM) instance is a 3-tuple (G, D, A0), where:

– G = (V,E) is a finite digraph with n nodes (or, alternatively, banks) from
V = {vi : i = 1, 2, . . . , n} and directed labelled multi-edges (but no loops)
from E ⊆ V × V × N, with the edge (u, v, id) ∈ E denoting that there is a
debt, whose label is id, from the debtor u to the creditor v; moreover, the

270 T. Friedetzky et al.

labels of some pair (u, v) (appearing in at least one triple (u, v, id) ∈ E) form
a non-empty contiguous integer sequence 0, 1, 2, . . . We refer to the subset of
edges directed out of or in to some specific node v by Eout(v) and Ein(v),
respectively.

– D : E → {(a, t1, t2) : a, t1, t2 ∈ N \ {0}, t1 ≤ t2} is the debt function
which associates terms to every debt (ordinarily, we abbreviate D((u, v, n))
as D(u, v, n)). Here, if e is a debt with terms D(e) = (a, t1, t2) then a is the
monetary amount to be paid and t1 (resp. t2) is the first (resp. last) time
at which any portion of this amount can be paid; also, for any debt e ∈ E,
we write D(e) = (Da(e),Dt1(e),Dt2(e)). For simplicity of notation, we some-
times denote the terms D(e) = (a, t1, t2) by a@[t1, t2], and a@t1 when t1 = t2.

– A0 = (e0v1
, e0v2

, ...e0vn
) ∈ N

n is a tuple with e0vi
denoting the initial external

assets of bank vi.

We refer to the greatest timestamp that appears in any debt for a given
instance as lifetime. The instance shown in Fig. 1, which has lifetime T = 6, is
given by: V = {u, v, w}, E = {(u, v, 0), (u, v, 1), (v, w, 0), (w, v, 0)}, D(u, v, 0) =
(20, 1, 3), D(u, v, 1) = (15, 4, 5), D(v, w, 0) = (25, 2, 2), D(w, v, 0) = (25, 4, 6),
and A0 = (e0u, e

0
v, e

0
w), where e0u = 30, e0v = 20, and e0w = 10.

u
1

v
0

w
0

1@[1,2] 1@[1,1]

Fig. 2. An instance of the IDM with exactly two schedules.

Similarly, the instance shown in Fig. 2 has lifetime T = 2 and is given by V =
{u, v, w}, E = {(u, v, 0), (v, w, 0)}, D(u, v, 0) = (1, 1, 2), D(v, w, 0) = (1, 1, 1),
and A0 = (e0u, e

0
v, e

0
w), where e0u = 1, e0v = 0, e0w = 0.

2.2 Schedules

Given an IDM instance (G,D,A0), a schedule describes at what times the banks
transfer assets to one another via payments. Formally, a schedule is a set of
|E| ∗ T payment values pte ≥ 0, one for each time-edge pair. Equivalently, a
schedule can be expressed as an |E| × T matrix S, and the variables pte are the
entries of that matrix. The value of pte is the monetary amount of the debt e paid
at time t. Our intention is that at any time t ∈ [1, T], every payment pte > 0 of a
schedule S is paid by the debtor of e to the creditor of e, not necessarily for the
full amount Da(e) but for the amount pte. A schedule for the instance of Fig. 2
consists of the four payments p1(u,v,0), p

1
(v,w,0), p

2
(u,v,0) and p2(v,w,0). Note that,

using the above representations of a schedule S, we might have a large number
of zero payments. Therefore, for simplicity of presentation, in the remainder of
the paper we specify schedules by only specifying the non-zero payments. An
example schedule for the instance in Fig. 2 is then p1(u,v,0) = 1, p1(v,w,0) = 1.

Payment Scheduling in the Interval Debt Model 271

We now introduce some auxiliary variables which are not strictly necessary
but help us to concisely express constraints on and properties of schedules (for
nodes u, v ∈ V (G) and time t ∈ [T]):

– Denote by Itv the total monetary amount of incoming payments of node v at
time t.

– Denote by Ot
v the total monetary amount of outgoing payments (expenses)

of node v at time t.
– We write ptu,v to denote the total amount of all payments made from u to v

at time t in reference to all debts from u to v. That is, ptu,v =
∑

i p
t
(u,v,i).

– We denote by etv node v’s external assets at time t. Then etv = et−1
v + Itv −Ot

v

for every v and t.

Note that, whenever there is only one edge from a node u to a node v, we have
ptu,v = pt(u,v,0); we use this in proofs for conciseness where possible. Recall the
example schedule for Fig. 2, which we can then represent as p1u,v = 1, p1v,w = 1.
As we shall see, the payments in this schedule can be legitimately discharged in
order to satisfy the terms of all debts but in general this need not be the case.
In fact, there might be schedules that are invalid, as well as schedules in which
banks default on debts (go bankrupt). We deal with the notions of validity and
bankruptcy now.

Definition 1 (Valid schedule; payable, due, overdue debts). A schedule
is valid if it satisfies the following properties (for any edge e and debt D(e) =
(a, t1, t2)):

– All payment variables are nonnegative. That is, pte ≥ 0 for every e and t.
– All asset variables (as derived from payment variables and initial assets) are

nonnegative. That is, etv ≥ 0 for every v and t.
– No debts are overpaid. That is,

∑
t∈[t1,T] p

t
e ≤ a.

– No debts are paid early.
∑

t∈[0,t1−1] p
t
e = 0.

Given some IDM instance and schedule, a debt D(e) = a@[t1, t2] is said to be
payable for the interval [t1, t2 − 1]. At time t2, D(e) is said to be due. At every
time t ≥ t2, if the full amount a has not yet been paid with reference to e, then
D(e) is said to be overdue at time t. A debt is active whenever it is payable,
due, or overdue.

A bank is said to be withholding if, at some time t, it has an overdue debt
and sufficient assets to pay (part of, where fractional or partial payments (see
below) are permitted) the debt. If any bank is withholding in the schedule, then
the schedule is not valid.

Definition 2 (Bankrupt). A bank is said to be bankrupt (at time t) if it is
the debtor of an overdue debt (at time t). We say a schedule has k bankruptcies
if k distinct banks go bankrupt at any point in the schedule. A bank may recover
from bankruptcy if it receives sufficient income to pay off all its overdue debts.

272 T. Friedetzky et al.

Definition 3 (Insolvent). A bank v is said to be insolvent if all its assets (the
sum of all debts due to v and of v’s initial assets) are insufficient to cover all
its obligations (the sum of all debts v owes). Formally, v is insolvent if

e0v +
∑

e∈Ein(v)

Da(e) <
∑

e∈Eout(v)

Da(e)

A bank which is insolvent will necessarily be bankrupt in any schedule.

We emphasize that the timing of bankruptcy and recovery or not of the banks
is not considered.

We consider three natural variants of the model, in which different natural
constraints are imposed on the payment variables:

– In the Fractional Payments (FP) variant, the payment variables may take
rational values. That is, pte ∈ Q for every e and t.

– In the Partial Payments (PP) variant, the payment variables may take
only integer values. That is, pte ∈ N for every e and t, and we allow payments
for a smaller amount than the total debt.

– In the All-or-Nothing (AoN) variant, every payment must fully cover the
relevant debt; every payment variable must be for the full amount, or zero.
That is, pte ∈ {Da(e), 0} for every edge e.

For example, the instance of Fig. 2 has the following valid schedules:

– (In all variants) the one above in which p1u,v = p1v,w = 1 (all debts are paid in
full at time 1).

– (In all variants) one in which p2u,v = p2v,w = 1 (all debts are paid in full at
time 2). Under this schedule, node v is bankrupt at time 1, as e1 of the
debt D(v, w, 0) is unpaid and that debt is due.

– (In the FP variant only) for every a ∈ Q, where 0 < a < 1, the schedule in
which p1u,v = p1v,w = a and p2u,v = p2v,w = 1 − a. Under each of these, node v
is bankrupt at time 1, as e1 − a of the debt D(v, w, 0) is unpaid and that
debt is due.

Instant Forwarding and Cycles. We emphasize that we allow a bank to
instantly spend income received. Note that in all valid schedules for the instance
in Fig. 2 above, v instantly forwards money received from u to w; the assets of
v never exceed 0 in any valid schedule. This behavior is consistent with the EN
model [7] in which financial entities operate under a single clearing authority.
Indeed, in such cases a payment chain of any length is admitted and the payment
takes place in unit time regardless of chain length. Furthermore, still consistent
with the EN model is the possibility of a payment cycle.

Payment Scheduling in the Interval Debt Model 273

Fig. 3. Examples illustrating the behavior of cycles in the IDM.

Figure 3 shows three cyclic IDM instances, all with lifetime T = 2. By our
definition of a valid schedule, the schedule p1u,v = p1v,w = p1w,x = p1x,u = 1 is valid
in all three instances. In Fig. 3b we may imagine the e1 moves from node u along
the cycle, satisfying every debt at time 1. This is a useful abstraction, but not
strictly accurate - rather, we may imagine that all 4 banks simultaneously order
payments forward under a single clearing system. The clearing system calculates
the balances that each bank would have with those payments executed, ensures
they are all nonnegative (one of our criteria for schedule validity) and then
executes the transfer by updating all accounts simultaneously. This distinction
is significant when we consider Fig. 3c, in which no node has assets. A clearing
system ordered to simultaneously pay all debts would have no problem doing
so in the EN model, and in our model this constitutes a valid schedule. We
highlight that there also exist valid schedules for the instance in Fig. 3c in which
all 4 banks go bankrupt, namely the schedule in which every payment variable
is set to zero; then no bank is withholding (they all have zero assets), so the
schedule is valid, and every bank has an overdue debt.

Lemma 1. For any given IDM instance and a (FP/PP/AoN) schedule, it is pos-
sible to check in polynomial time whether the schedule is valid for that instance,
and to compute the number of bankruptcies under the schedule.

Proof Sketch. It is possible to iterate over the schedule once and calculate: the
assets of every node at every time; the number of debts which are overdue; the
number of nodes which have overdue debts. The validity of the schedule (no
withholding banks, nonnegative assets at every time, no overpaid debts, and no
debts paid early, FP/PP/AoN constraint) can similarly be verified in a single
iteration over the schedule. �	

274 T. Friedetzky et al.

Definition 4. Let (G,D,A0) be an instance. Then the set of timestamps {t :
Dt1(e) = t or Dt2(e) = t for some edge e} is the set of extremal timestamps.

Remark 1. There is a simple preprocessing step such that we can assume after-
wards that the lifetime T is polynomially bounded in the input size. This pre-
processing step modifies the instance such that every t ∈ [T] is an extremal
timestamp. Observe that this procedure does not make any previously impos-
sible schedule outcome (number of bankruptcies and finishing assets) possible,
nor does it make any previously possible outcome impossible.

Hence we need not consider pathological cases in which the lifetime (and so
the size of schedules) is exponential in the size of the input.

2.3 Problem Definitions

Here, we define some problems with natural real-world applications in the IDM.

IDM Bankruptcy Minimization

Input: an IDM instance (G,D,A0) and integer k
Question: does there exist a valid schedule S for the input such that at most
k banks go bankrupt (have overdue debts) at any point in the schedule?

IDM Perfect Schedule

Input: an IDM instance (G,D,A0)
Question: does there exist a valid schedule S for the input such that no debt
is ever overdue?

This problem is equivalent to IDM Bailout Minimization where b = 0 and
to IDM Bankruptcy Minimization where k = 0.
IDM Bailout Minimization

Input: an IDM instance (G,D,A0) and integer b
Question: does there exist a positive bailout vector B = (b1, b2, . . . b|V |) with∑

i∈|V | bi ≤ b and schedule S such that S is a perfect schedule for the instance
(G,D,A0 + B)?

IDM Bankruptcy Maximization

Input: an IDM instance (G,D,A0) and integer k
Question: does there exist a valid schedule S for the input such that at least
k banks go bankrupt (have overdue debts) at any point in the schedule?

Payment Scheduling in the Interval Debt Model 275

This problem is interesting to consider for quantifying a “worst-case” schedule,
where banks’ behavior is unconstrained beyond the terms of their debts.
All of the problems above exist in the All-or-Nothing (AoN) variant, where
an AoN schedule is required; in the Partial Payments (PP) variant, in which
a PP schedule is required; and in the Fractional Payments (FP) variant, in
which an FP schedule is required.

All of the above problems, in all three variants, are in NP. For every yes-
instance, there exists a witness schedule polynomial in the size of the input the
validity of which can be verified in polynomial time by Lemma 1.

Every valid PP schedule is a valid FP schedule. Not every valid AoN sched-
ule is a valid PP schedule. In an AoN schedule, a bank may go bankrupt while
still having assets (insufficient to pay off any of its debts) - this is prohibited in
any PP schedule as that bank would be withholding. If we restrict the input
to only those in which for every edge e Da(e) = 1 then every valid AoN schedule
for that instance is a valid PP schedule and a valid FP schedule.

We call a graph multiditree whenever the underlying undirected graph (i.e.
the undirected graph that is obtained by replacing each directed multiedge with
an undirected edge) is a tree. We call rooted out-tree (or out-tree) a multiditree
in which every edge is directed away from the root. By an out-path we mean an
out-tree where the underlying undirected graph is a path, and the root is either
of the endpoints.

3 Our Results

In this section we investigate the complexity of the problems presented. We
first present our hardness results in Subsect. 3.1, and then show in Subsect. 3.2
that under certain constraints the problem of Bailout Minimization becomes
tractable.

3.1 Hardness Results

Here we show that every problem introduced is NP-complete in the PP and
AoN variants, even in various special cases, and that Bankruptcy Minimization
is NP-complete and para-NP-Hard in all three variants for a variety of possible
parameters.

Theorem 1. For each of the variants AoN, PP, and FP, Bankruptcy Min-
imization is (i) NP-complete, even when the underlying graph G has O(1) ver-
tices, and (ii) NP-complete, even when T = 1, the underlying graph G is a DAG
with a longest path of length 4, out-degree at most 2, in-degree at most 3, debt
at most e3 per edge, and starting assets at most e3 per bank.

276 T. Friedetzky et al.

Table 1. Summary of results. Note that Perfect Scheduling is a subproblem of
both Bailout Minimization and Bankruptcy Minimization.

Problem \ Constraint on graph G Out-tree Multiditree DAG General case

FP Bailout Minimization and FP

Perfect Scheduling

P

(Theorems 8,9)

P

(Theorem 9)

P

(Theorem 9)

P

(Theorem 9)

FP Bankruptcy Minimization ? ? NP-C

(Theorem 1)

NP-C

(Theorem 1)

PP Bailout Minimization and PP

Perfect Scheduling

P

(Theorem 8)

NP-C

(Theorem 3)

NP-C

(Theorems 2,4)

NP-C

(Theorems 2,3,4)

PP Bankruptcy Minimization ? NP-C

(Theorem 3)

NP-C

(Theorem 1)

NP-C

(Theorems

1-3,4)

PP Bankruptcy Maximization ? ? NP-C

(Theorem 5)

NP-C

(Theorem 5)

AoN, all problems NP-C

(Theorems 6+7)

NP-C

(Theorems 6+7)

NP-C

(Theorems 6+7)

NP-C

(Theorems 6+7)

By Theorem 1(i) it follows that each of the AoN, PP, and FP variants
of Bankruptcy Minimization are para-NP-hard, when parameterized by any
parameter that is upper-bounded by the number of vertices, such as e.g. the
number of bankruptcies k, or the treewidth of the underlying graph.

Theorem 2. AoN Perfect Scheduling and PP Perfect Scheduling are
both NP-complete even when T ≤ 3, the underlying graph G is a DAG with out-
degree at most 3, in-degree at most 3, debt at most e2 per edge, and starting
assets at most e3 per bank.

Theorem 3. PP Perfect Scheduling is NP-complete even when the input
is restricted to multiditrees with diameter 6, to e1 debts, and to a maximum of
6 multiedges between any two nodes.

In all the above results, the input is allowed to have unlimited
(i.e. unbounded) total assets in the system, which might be unrealistic in practi-
cally relevant financial systems. We now show that, even in the highly restricted
case where just e1 in liquid assets exists in the system, PP Perfect Schedul-
ing still remains NP-complete.

Theorem 4. AoN Perfect Scheduling and PP Perfect Scheduling are
both NP-complete even when sum(A0) = 1, i.e. the total of all external assets is
e1.

Proof. We proceed by reduction from Directed Hamiltonian cycle (DHC),
an NP-complete problem [12]:

Input: a digraph G = (V,E).
Question: does there exist a DHC on G (a directed cycle which visits every

vertex exactly once)?
For this reduction, we introduce the at-least-once gadget shown in Fig. 4.

The intuition of the proof is that there is only e1 in the system, and that in

Payment Scheduling in the Interval Debt Model 277

any perfect schedule that e1 must pass through each gadget at least once, and
therefore exactly once since there are n such gadgets and n timesteps the e1
can “rest” at a center node vC .

vL vC vRuR wL

1@[1,T] 1@[1,T]

1@T1@T

1@1 1@3 ... 1@T−2

n−1@[1,T−1]

1@2 1@4 ... 1@T−1

n−1@[1,T−1]

1@T
At-least-once(v)

Fig. 4. The at-least-once gadget for node v ∈ V (GDHC) where {(u, v), (v, w)}
⊆ E(GDHC). Note the lifetime T = 2|V (GDHC)| + 1.

Given a DHC instance GDHC , construct a PP Perfect Scheduling
instance (GPS , D, A0) by introducing a copy of the at-least-once gadget for
each node v ∈ GDHC and then connecting gadgets within GPS iff there exists
a directed edge from one of the corresponding nodes in GDHC to the other, as
shown in Fig. 4. We then give e1 in assets to exactly onearbitrarily-chosen right
node vR in GPS , and e0 in assets to every other node.

Claim 1. If the IDM instance GPS , D, A0 admits a perfect schedule, then the
DHC instance GDHC admits a directed Hamiltonian cycle.

Claim 2. If the DHC instance GDHC admits a directed Hamiltonian cycle, then
GPS admits a perfect schedule.

Proof Sketch. Given a DHC v1, v2, . . . , vn, v1, we describe the order in which
the e1 in “real” assets moves through the network in our constructed perfect
schedule. All other payments in the schedule can be efficiently found by debt
cancellation, i.e. some node u pays some node v some amount e1 at time t
and v pays u the same amount e1 also at time t, resulting in no “real” asset
movement. This is possible by construction of the instance (GPS , D, A0) - in
general, there is no guarantee that v would also have an active debt to u at time
t. The e1 starts in node v1R, then is paid forward in the order indicated by the
edge labels in Fig. 5. We emphasize once more that the “payment” around the
entire cycle at time 2n + 1 does not result in any “real” asset movement – all
balances remain unchanged. �	

Hence we have that there exists a perfect schedule in (GPS ,D,A0) iff there
exists a Hamiltonian cycle in GDHC . This completes the proof of Theorem 4. �	
Theorem 5. AoN Bankruptcy Maximization and PP Bankruptcy
Maximization are both NP-complete even when T = 2, the underlying graph G
is a DAG with out-degree at most 2, in-degree at most 3, debt at most e2 per
edge, and assets at most e3 per bank.

278 T. Friedetzky et al.

v1L

v1C

v1R

v2Lv2C
v2R

v3L

v3C

v3R

v4L

v4C

v4R

v5L
v5C v5R

···
vnL

vnC

vnR

1

12

2

3

4

4

5

6

6

7 8
8

2n−4

2n−3

2n−2

2n−2

2n−1

2n

2n+1

2n+1

2n+1

2n+1
2n+12n+1

2n+1

2n+1

2n+1

2n+1

2n+1
2n+1

2n+1

Fig. 5. The path that the “real” e1 takes in our constructed PP Perfect Scheduling
instance, if the input graph G contained a Hamiltonian cycle.

The constraints imposed by AoN schedules rapidly increase the problem
complexity. Indeed, every problem considered is NP-complete, even whenever
the input graph is an out-path on at most 4 vertices and with lifetime T ≤ 2.

Theorem 6. When the underlying graph G is an out-path on 4 vertices AoN
Perfect Scheduling is weakly NP-Hard when the lifetime T = 2, and strongly
NP-Hard when T is unbounded.

Theorem 7. AoN Bankruptcy Maximization is NP-Hard even when the
underlying graph G is an out-path on 3 vertices and the lifetime T of the graph
is at most 2.

3.2 Polynomial-Time Algorithms

In this section we show that the PP variant of Bailout Minimization
is solvable in polynomial time on out-trees, while its FP variant is always
polynomial-time solvable. Our algorithm for the PP variant contrasts with the
NP-completeness of its subproblem PP Perfect Scheduling on both DAGs
(Theorem 2) and multiditrees (Theorem 3); note that out-trees are a subclass of
both DAGs and multiditrees.

Theorem 8. PP Bailout Minimization is in P when the input is restricted
to out-trees.

Payment Scheduling in the Interval Debt Model 279

Proof Sketch. We show that, given an instance of PP Bailout Minimization
G, D, A0, b in which G is an out-tree on at least 3 nodes, it is always possible to
produce an updated instance which is equivalent (a yes-instance iff the original
instance was a yes-instance) and in which G is strictly smaller (has fewer nodes).
The process is illustrated in Fig. 6, and is as follows:

...b=39

u
23

v
3

w
5

x
0

. . .

1@[2,4]
4@[1,9]
2@[8,9]

1@[1,5]
3@[3,5]

3@[3,7]
4@[5,5]

(a)

...b=38

u
23

v
4

w
5

x
0

. . .

1@[2,4]
4@[1,9]
2@[8,9]

1@[1,5]
3@[3,5]

3@[3,7]
4@[5,5]

(b)

...

b=38

u
23

v
4

wx
5

. . .

1@[2,4]
4@[1,9]
2@[8,9]

8@[5,5]
3@[7,7]

(c)

...

b=36

u
23

v
6

. . .

1@[2,4]
1@[1,5]
3@[1,7]
2@[8,9]

(d)

Fig. 6. Example of shrinking an out-tree while preserving (non)existence a bailout
schedule.

1. While any node v is insolvent, increment v’s assets and decrement the bailout
amount b. In Fig. 6a, for instance, node v has e7 in income and e3 in external
assets, but e11 in debt, so is insolvent. In Fig. 6b v’s assets have increased
by e1 and the bailout amount has decreased by e1.

2. Update every debt from a parent to its leaf children to be a 1-interval at the
end timestep as, so a debt due in the interval [3,7] is updated to be due at
time 6 exactly (i.e. at [7,7]).

3. While any parent has two leaf children (i.e. in Fig. 6b v has two leaf children
w and x), merge the two sibling leaves into a single leaf (i.e. in Fig. 6c w
and x are combined into wx). Sum node assets, and combine debts due at
the same time into a single debt (i.e. v’s debts 1@[6,6] to w and 4@[6,6] to x
are combined into a single debt 5@[6,6] to wx).

4. While there exist 3 nodes j, k, l with l a leaf and the only child of k, and
k a child of j prune l. In Fig. 6c j = u, k = v, and l = wx, and we prune
wx. That is, update the debts from j to k to reflect exactly the constraints
imposed by k’s debts to l, then remove l from the graph. If payments from j
cannot cover all payments to l in time (i.e. k is necessarily illiquid), increment
k’s assets and decrement the bailout amount b until they do, then update the
debts. (Binary search may be applied where debt amounts are very large.)

280 T. Friedetzky et al.

In Fig. 6d, the 8@[5,5] debt to wx will be paid using e6 of v’s external assets
(including e1 of “solvency” bailout and e2 of “liquidity” bailout), e1 from
u’s debt 1@[2,4], and e1 of u’s debt at [1,9], now constrained to the interval
[1,5]. The 3@[7,7] debt to wx will be paid using e3 of u’s debt at [1,9], now
constrained to the interval [1,7]. The money received at v in the interval [8,9]
cannot be usefully directed to wx, as the earliest it could be received (t = 8)
is still later than the latest debt from v (t = 7).

5. If the instance has more than two nodes, loop to step 2. Otherwise, if the
bailout amount b < 0, reject, else accept. We emphasize the root necessarily
has enough assets to pay all its debts, because every node is solvent after
step 1.

Note that the algorithm presented loops |V (G)| times in the worst case (i.e.
when the input is a path), and each step runs in polynomial time. �	
Theorem 9. FP Bailout Minimization is in P.

Proof Sketch. We show that an instance of FP Bailout Minimization
G, D, A0, b can be encoded in a linear program. The constraints are all
expressed as linear expressions:

– sum(B) ≤ b.
– The set of payment variables pte is defined as in Subsect. 2.2.
– The definitions of Itv, O

t
v, and etv are all linear combinations of payment vari-

ables. Set e0v := A0[v] + B[v]; that is, the starting assets of v are its external
assets combined with the bailouts received at v under the vector B.

– The constraints on valid schedules in Definition 1 can all also be expressed
as linear combinations.

– We additionally impose that no banks are bankrupt under the schedule, or
equivalently that no debt is ever overdue. That is, for every edge e and debt
D(e) = (a, t1, t2),

∑
t∈[t1,t2]

pte = a.

Any assignment to B and to the payment variables satisfying the above is nec-
essarily a valid perfect schedule on an instance in which starting assets of nodes
were supplemented by at most eb in total.

Linear programs can be efficiently solved when fractional solutions are admit-
ted, hence all instances of FP Bailout Minimization are tractable. We
emphasize that this is in contrast with PP Bailout Minimization and FP
Bankruptcy Minimization, both of which are NP-complete. The method
above solves neither of these: the former would correspond to an integer linear
program (which are NP-complete in general) and it is not possible to express a
constraint on the number of bankruptcies through a linear combination on the
payment variables. �	

4 Conclusion and Open Problems

This paper introduces the Interval Debt Model (IDM), a new model seeking
to capture the temporal aspects of debts in financial networks. We investigate

Payment Scheduling in the Interval Debt Model 281

the computational complexity of various problems involving debt scheduling,
bankruptcy and bailout with different payment options (All-or-nothing (AoN),
Partial (PP), Fractional (FP)) in this setting. We prove that many variants are
hard even on very restricted inputs but certain special cases are tractable. For
example, we present a polynomial time algorithm for PP Bailout Minimiza-
tion where the IDM graph is an out-tree. However, for a number of other classes
(DAGs, multitrees, total assets are e1), we show that the problem remains
NP-hard. This leaves open the intriguing question of the complexity status of
problems which are combinations of two or more of these constraints, most nat-
urally on multitrees which are also DAGs, an immediate superclass of our known
tractable case.

We prove that FP Bailout Minimization is polynomial-time solvable by
expressing it as a Linear Program. Can a similar argument be applied to some
restricted version of FP Bankruptcy Minimization (which is NP-Complete, in
general)? A natural generalization is simultaneous Bailout and Bankruptcy min-
imization i.e. can we allocate eb in bailouts such that a schedule with at most k
bankruptcies becomes possible. Variations of this would be of practical interest.
For example, if regulatory authorities can allocate bailouts as they see fit, but
not impose specific payment times, it would be useful to consider the problem
of allocation of eb in bailouts such that the maximum number of bankruptcies
in any valid schedule is at most k. Conversely, where financial authorities can
impose specific payment times, the combination of the problems Bankruptcy
Minimization and Bailout Minimization would be more applicable.

Finally, can we make our models even more realistic and practical? How well
do our approaches perform on real-world financial networks? Can we identify
topological and other properties of financial networks that may be leveraged in
designing improved algorithms?

Acknowledgements. The authors are thankful to Roger Wattenhofer for insightful
discussions and suggestions and to Nina Klobas and Tamio-Vesa Nakajima for technical
discussions early in the project.

References

1. Akrida, E.C., Mertzios, G.B., Spirakis, P.G., Zamaraev, V.: Temporal vertex cover
with a sliding time window. J. Comput. Syst. Sci. 107, 108–123 (2020)

2. Bagehot, W.: Lombard Street: A Description of the Money Market. King, London
(1873)

3. Bardoscia, M., et al.: The physics of financial networks. Nat. Rev. Phys. 3, 1–18
(2021)

4. Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: For-
mal Models and Metrics. Tech. rep., Defence R&D Canada CR 2013-020, April
2013. https://hal.archives-ouvertes.fr/hal-00865762

5. Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Prob-
lems, Analysis, and Algorithmic Tools. Tech. rep., Defence R&D Canada CR 2013-
021, April 2013. https://hal.archives-ouvertes.fr/hal-00865764

https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764

282 T. Friedetzky et al.

6. Eisenberg, L.: A summary: Boolean networks applied to systemic risk. Neural Net-
works Financ. Eng. 436–449 (1996)

7. Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manage. Sci. 47(2),
236–249 (2001)

8. Enright, J., Meeks, K., Mertzios, G.B., Zamaraev, V.: Deleting edges to restrict
the size of an epidemic in temporal networks. J. Comput. Syst. Sci. 119, 60–77
(2021)

9. Haldane, A.G., May, R.M.: Systemic risk in banking ecosystems. Nature 469(7330),
351–355 (2011)

10. Holme, P., Saramäki, J. (eds.): Temporal Networks. Springer Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36461-7

11. Jackson, M.O., Pernoud, A.: Systemic risk in financial networks: a survey. Annu.
Rev. Econ. 13(1), 171–202 (2021)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

13. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. In: Proceedings of the 32nd Annual ACM Symposium on The-
ory of computing (STOC), pp. 504–513 (2000)

14. Klobas, N., Mertzios, G.B., Molter, H., Niedermeier, R., Zschoche, P.: Interference-
free walks in time: temporally disjoint paths. In: Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 4090–4096 (2021)

15. Papachristou, M., Kleinberg, J.: Allocating stimulus checks in times of crisis. In:
Proceedings of the ACM Web Conference 2022, pp. 16–26 (2022)

16. Papp, P.A., Wattenhofer, R.: Sequential defaulting in financial networks. In: 12th
Innovations in Theoretical Computer Science Conference ITCS, pp. 52:1–52:20
(2021)

17. Rochet, J.C., Vives, X.: Coordination failures and the lender of last resort: was
Bagehot right after all? J. Eur. Econ. Assoc. 2(6), 1116–1147 (2004)

18. Rogers, L.C., Veraart, L.A.: Failure and rescue in an interbank network. Manage.
Sci. 59(4), 882–898 (2013)

19. Schuldenzucker, S., Seuken, S., Battiston, S.: Finding clearing payments in financial
networks with credit default swaps is PPAD-complete. In: Proceedings of the 8th
Innovations in Theoretical Computer Science (ITCS) Conference, vol. 67, pp. 32:1–
32:20 (2017)

20. Tesfaye, B., Augsten, N., Pawlik, M., Böhlen, M., Jensen, C.: Speeding up reach-
ability queries in public transport networks using graph partitioning. Inf. Syst.
Front. 24, 11–29 (2022)

https://doi.org/10.1007/978-3-642-36461-7
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Multi-Parameter Analysis of Finding
Minors and Subgraphs in Edge-Periodic

Temporal Graphs

Emmanuel Arrighi1 , Niels Grüttemeier2 , Nils Morawietz2,
Frank Sommer2(B) , and Petra Wolf1

1 University of Bergen, Bergen, Norway
emmanuel.arrighi@uib.no, mail@wolfp.net

2 Philipps-Universität Marburg, Marburg, Germany
{niegru,morawietz,fsommer}@informatik.uni-marburg.de

Abstract. We study the computational complexity of determining
structural properties of edge-periodic temporal graphs (EPGs). EPGs
are time-varying graphs that compactly represent periodic behavior of
components of a dynamic network, for example, train schedules on a rail
network. In EPGs, for each edge e of the graph, a binary string se deter-
mines in which time steps the edge is present, namely e is present in
time step t if and only if se contains a 1 at position t mod |se|. Due to
this periodicity, EPGs serve as very compact representations of complex
periodic systems and can even be exponentially smaller than classic tem-
poral graphs representing one period of the same system, as the latter
contain the whole sequence of graphs explicitly. In this paper, we study
the computational complexity of fundamental questions of the new con-
cept of EPGs such as is there a time step or a sliding window of size Δ in
which the graph (1) is minor-free; (2) contains a minor; (3) is subgraph-
free; (4) contains a subgraph; with respect to a given minor or subgraph.
We give a detailed parameterized analysis for multiple combinations of
parameters for the problems stated above including several algorithms.

Keywords: Temporal graphs · Minor-free · Minor containment ·
Subgraph-free · Subgraph containment · Parameterized complexity ·
FPT-algorithm

1 Introduction

In general, a time-varying graph describes a graph that changes over time. For
most applications, this change can be reduced to the availability or weight of

E. Arrighi—Supported by Research Council of Norway (no. 274526 and 329745) and
IS-DAAD (no. 309319).
N. Morawietz—Supported by DFG project OPERAH (KO 3669/5–1).
F. Sommer—Supported by DFG project EAGR (KO 3669/6–1).
P. Wolf—The research was mainly performed when the author was associated with
University of Trier, Germany, and supported by DFG project FE 560/9–1 and DAAD
PPP (no. 57525246).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 283–297, 2023.
https://doi.org/10.1007/978-3-031-23101-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_19&domain=pdf
http://orcid.org/0000-0002-0326-1893
http://orcid.org/0000-0002-6789-2918
http://orcid.org/0000-0003-4034-525X
http://orcid.org/0000-0003-3097-3906
https://doi.org/10.1007/978-3-031-23101-8_19

284 E. Arrighi et al.

edges, meaning that edges are only present at certain time steps or the time
needed to cross an edge changes over time. Time varying graphs are of great
interest in the area of dynamic networks [8,14–16] such as mobile ad hoc net-
works [35] and vehicular networks [4,11] as in those networks, the topology nat-
urally changes over time. There are plenty of representations for time-varying
graphs in the literature which are not equivalent in general, see [6–8] for some
overview. In general, a time-varying graph G consists of an underlying graph G
and functions describing how the availability or weights of edges change over
time. Thereby, settings with discrete and continuous time steps are consid-
ered [8,21,24,27]. In this work, we only deal with the discrete time setting.
Usually, in the field of time-varying graphs, for each time step t of the lifetime
of the graph, the snapshot graph G(t), i.e., the graph present in time step t, is
explicitly given in the input [5,26,33]. This implies that the lifetime of G is lin-
ear in the input size and that the input is mostly dominated by the sequence of
snapshot graphs (G(t))t. In addition, the lifetime might be superpolynomially in
the size of the underlying graph G. We will call graphs where the whole sequence
of snapshot graphs is explicitly given temporal graphs.

Knowing the whole sequence of snapshot graphs of the temporal graph
requires a detailed knowledge of the usually complex system that is modelled by
the graph. On the other hand, describing a system by its components is a natural
concept in computer science [10,17,30] and requires only individual knowledge
of the components. In the context of time-varying graphs, this approach is real-
ized by so called edge-periodic (temporal) graphs, EPGs for short, categorized as
Class 8 in [8] and considered for instance in [12,28,29]. An edge-periodic (tem-
poral) graph G = (V,E, τ) consists of an underlying graph G = (V,E) and a
function τ that assigns each edge with a binary string, the edge label, that indi-
cates in which time step the edge is present. Thereby, the time step is considered
modulo the length of the edge label. As the length of the edge labels can differ,
the sequence of snapshot graphs only repeats after the least common multiple
of the individual edge label lengths. Hence, an EPG can compactly represent an
exponentially longer sequence of snapshot graphs without explicitly describing
each snapshot graph individually. This implies that the lifetime can be exponen-
tial in the input size. Figure 1 shows an example of an EPG together with some
snapshot graphs.

As humans tend to follow a daily routine and the systems that are to be
described by time-varying graphs are mostly influenced by human behavior, they
naturally exhibit a periodic behavior. For instance, in social networks describing
the dynamics of people meeting, see [22,32], the whole network will be quite
complex, but every person individually follows mostly a daily routine. Another
example is to model a train network. There, the underlying graph represents the
railway system, while an edge is present in a time step if and only if a train is
scheduled to run on the respective rail segment at that time. A major advantage
of modelling a time-varying system with EPGs is that, if we are only interested
in a part of the temporal graph (for instance, we are only interested in the train
schedule of a commune and not of the whole state), then we can first extract

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 285

001

01
1

01
10

1

0011

10
001

10

(a) EPG G (b) G(0) (c) G(1) (d) G(4) (e) G(26) (f) G(33)

Fig. 1. Example EPG G and snapshot graphs for t ∈ {0, 1, 4, 26, 33}. G has a period of
length 60. It illustrates the blow-up in complexity due to the compact representation.
For example, the first K2-free snapshot graph is at time step 33.

the corresponding subgraph of G and then compute the sequence of snapshot
graphs. Thereby, the size of the individual snapshots will be smaller, and the
sequence of considered snapshot graphs might be shorter as the period of the
sequence might be smaller. Hence, we avoid considering the complete huge and
complicated system if we are only interested in a part of the system.

So far, to the best of our knowledge, the class of edge-periodic (temporal)
graphs is not studied in detail yet. We counter this by giving a fundamental
analysis of the parameterized complexity of essential graph-theoretical problems
on EPGs such as being minor- or subgraph-free, containing a minor or sub-
graph, and the fundamental short traversal problem [1,34] from the theory of
time-varying graphs. The theory on graph minors, established by Robertson and
Seymour in a series of over 20 publications [23], is one of the most fundamen-
tal results in graph theory. They showed that minor closed properties of a given
graph can be checked in polynomial time. Hence, it is natural to ask, whether the
toolbox of minors carries over to EPGs. For those, one could be interested in two
questions: (1) Do all snapshot graphs obey a minor closed property? (2) Is there
some snapshot graph that obeys a minor closed property? As those properties
are proved by excluding certain minors, question (1) relates to a no-answer to
the question whether there exists a snapshot graph containing a certain minor
and question (2) relates to a yes-answer to the question whether there exists a
snapshot graph being minor-free. Note that for EPGs, the underlying graph may
not be contained in a minor closed graph class while each snapshot is contained.

While classically, both problems of being minor-free and finding a minor are
FPT in the size of the sought minor, we observe that for EPGs, both problems
are NP-hard even if the minor is fixed and very simple, such as a triangle, or
a a star with four leaves. This implies that the graph minor toolbox does not
translate to EPGs. In fact, our NP-hardness results hold even in the case of
topological minors. On the other hand, the problem of finding a subgraph is not
getting harder when we shift from classic graphs to EPGs. This problem is clas-
sically W[1]-hard for the size of the subgraph (consider cliques as subgraphs) [9]

286 E. Arrighi et al.

and in XP for the same parameter. Surprisingly, we can obtain a similar XP-
algorithm for EPGs in the same parameter. For the problem of checking whether
there is a snapshot graph that does not contain a fixed subgraph/minor, we
obtain NP-completeness for both problems, while if the sought subgraph/minor
is given in the input (and hence not fixed), we lift the coNP-completeness from
the classic setting to ΣP

2 -completeness concerning EPGs. Despite the high com-
plexity, we present FPT-algorithms in a combined parameter, including the size
|G| of the underlying graph, for all four problems of containment/freeness of
minors/subgraphs. We indicate that the parameter |G| is necessary by giving
hardness results when |G| is replaced by smaller structural parameters such as
vertex cover number, treewidth, and pathwidth of the underlying graph.

Proofs of statements annotated with (*) are deferred to the full version.

2 Preliminaries

For a string w = w0w1 . . . wn−1 with wi ∈ {0, 1}, for 0 ≤ i ≤ n − 1, we denote
with w[i] the symbol wi at position i in w. Let |w| = n be the length of w.
We write the concatenation of strings u and v as u · v. For non-negative integers
i ≤ j we denote with [i, j] the interval of natural numbers n with i ≤ n ≤ j. Given
two graphs H = (V,E) and G = (V ′, E′), a (graph) monomorphism ϕ : V → V ′

is an injective mapping such that {ϕ(v), ϕ(w)} ∈ E′ if and only if {v, w} ∈ E
for all v ∈ V and w ∈ V . For a set S = {s1, s2, . . . , sn}, we might denote the
set {ϕ(s1), ϕ(s2), . . . , ϕ(sn)} by ϕ(S). Given a graph G = (V,E), we let |G| =
|V | + |E| denote the size of the graph.

An edge-periodic (temporal) graph, EPG for short, G = (V,E, τ) (see also [12])
consists of a graph G = (V,E) (called the underlying graph) and a function τ :
E → {0, 1}∗ where τ maps each edge e to a string τ(e) ∈ {0, 1}∗ such that
e exists in a time step t ≥ 0 if and only if τ(e)[t]◦ = 1, where τ(e)[t]◦ := τ(e)[t
mod |τ(e)|]. Let |G| = |V | + |E| +

∑
e∈E |τ(e)| be the size of G. For an edge e

and non-negative integers i ≤ j, we inductively define τ(e)[[i, j]]◦ = τ(e)[i]◦ ·
τ(e)[[i + 1, j]]◦ and τ(e)[[j, j]]◦ = τ(e)[j]◦. Every edge e exists in at least one
time step. We might abbreviate i repetitions of the same symbol σ in τ(e) as
σi. We call #1max the maximal number of ones appearing in an edge label τ(e)
over all edges e ∈ E. Similarly, we call #0max the maximal number of zeros
appearing in some τ(e). Let LG = {|τ(e)| | e ∈ E} be the set of all edge-periods
of some edge-periodic graph G = (V,E, τ) and let lcm(LG) be the least common
multiple of all periods in LG . We denote with G(t) the subgraph of G present
in time step t. We do not assume that G is connected in any time step. If not
stated otherwise, we assume an edge-periodic graph to be undirected.

For an EPG G = (V,E, τ) and an integer Δ ∈ N, we let a Δ-expansion
of G be an EPG GΔ = (V,E, τΔ) such that for every time step t, we have
GΔ(t) = G(t) ∪ G(t + 1) ∪ . . . ∪ G(t + Δ − 1). In other words, for every time step,
GΔ(t) represents the union of the snapshot of G in a sliding window of size Δ
starting at position t.

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 287

3 Temporal Extension of Graph Problems

There exists several ways to generalize problems on graphs to temporal graphs.
In this work, we are interested in problems that ask for the existence or non
existence of some sub-structures in a graph (subgraphs, minors). Such problems
can be generalized in two natural ways. One can ask if there exists a snapshot
that contains the sub-structure. Or, for a more temporal setting, given an integer
Δ ∈ N, one can ask if there exists a sliding window of size Δ that contains
the sub-structure. Such generalizations have been considered for other graph
problems such as vertex cover [2] and graph coloring [25]. Using the Δ-expansion
defined earlier, we can rephrase the sliding window question as follow: given an
EPG G, does a snapshot of GΔ contain the sub-structure? If we take as example
the existence of a minor, we have those two generalizations to temporal graphs:

EPG Minor
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step t,
s.t. H is a minor of G(t)?

Sliding Window EPG Minor
Input: EPG G = (V,E, τ), graph
H = (VH , EH), and integer Δ.
Question: Is there a time step t,
s.t. H is a minor of GΔ(t)?

The next lemma shows that both approaches are equivalent.

Lemma 1. Given an EPG G and an integer Δ ∈ N, one can construct in poly-
nomial time a Δ-expansion GΔ of G such that |GΔ| ≤ |G|.
Proof. Let G = (V,E, τ) be an EPG, and Δ ∈ N an integer. We let GΔ =
(V,E, τΔ) such that for all edges e ∈ E, |τΔ(e)| = |τ(e)| and for all time step
t ∈ [0; |τ(e)|), τΔ[t] = 1 if and only if there exist a time step t′ ∈ [t; t + Δ) such
that τ(e)[t′]◦ = 1. By construction of τΔ, GΔ is a Δ-expansion of G. ��

This allows us to reduce instances of problems defined with a sliding window
to instances of problems looking for a single time step. In the other direction,
looking for a single time step correspond to looking for a sliding window of
size 1. Hence, in the rest of the paper, we focus only on finding one time step
containing the sub-structure. By using the Δ-expansion construction (Lemma 1),
all our results can be extended to work with a sliding window.

4 Periodic Character Alignment

Most of our hardness results presented in this work will be based on the Peri-
odic Character Alignment problem which was shown to be NP-complete
in [28]. This problem builds a bridge between the modern setting of edge-periodic
temporal graphs and the classical field of automata theory as it is closely related
to the Intersection Non-Emptiness problem of deterministic finite automata
over a unary alphabet.

Periodic Character Alignment (PCA)
Input: A finite set X ⊆ {0, 1}∗ of binary strings.
Question: Is there a position i, such that x[i]◦ = 1 for all x ∈ X?

288 E. Arrighi et al.

The parameterized complexity of PCA was already considered in [28] where
W[1]-hardness was shown for the parameter |X| and FPT-algorithms were given
for the total number of runs of 1’s, in all strings, the combined parameter |X|
plus the greatest common divisor of any pair of lengths of strings of X, and the
length of the longest string in X. Here, a run is a nonextendable repetition of
one symbol in a string. As the reductions from PCA, presented in this work,
are parameter preserving, we inherit several W[1]-hardness results from PCA
for the different problems on EPGs. Due to this tight connection, we begin with
a more detailed analysis of the parameterized complexity of the PCA problem.

Theorem 1 (*). PCA is NP-hard even if #0max = 1 or #1max ≤ 9.

Corollary 1 (*). PCA is W[1]-hard with respect to the number of different
prime numbers in the prime factorizations of the integers in LG.

The core task of the problems introduced in the next sections is to determine
whether a certain graph structure exists in one time step or over a sequence of
consecutive time steps. As the existence of an edge e in an EPG is determined by
a binary string τ(e), we associate each EPG with a corresponding PCA instance.
Hence, if the location of the sought graph structure in the underlying graph of
the EPG is known, the problem of finding a time step in which the structure
exists is equivalent to finding a time step in which the 1’s of the corresponding
PCA-instance align. We refer to Theorem 11 for details.

Definition 1. Let X be an instance of PCA. A triple (G,H, ϕ), where G =
(V,E, τ) is an EPG, H = (VH , EH) is a subgraph of the underlying graph G =
(V,E) of G, and ϕ : VH → V is a monomorphism that identifies H in G, is
called an X-embedding if τ(EH) = X.

Lemma 2 (*). Let X be an instance of PCA and let (G,H, ϕ) be an X-
embedding. Then, there exists a time step t in which ϕ(H) exists in G(t) if
and only if X is a yes-instance of PCA.

5 Minors and Subgraphs

We now come to the main part of this paper considering the existence and non
existence of sub-structures in an EPG such as induced subgraphs and minors.
Recall that G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. If further for all u, v ∈ V ′ it holds that {u, v} ∈ E′ if and only
if {u, v} ∈ E, we call G′ an induced subgraph of G. In the following, we see
subgraphs as induced subgraphs. We call G′ a minor of G if G′ can be obtained
from G, by deletion of vertices, deletion of edges, and contraction of edges. Here,
we consider the following questions: Does there exists a time step t, such that
G(t) has a subgraph/minor or is subgraph-/minor-free.

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 289

5.1 Subgraphs

EPG Subgraph
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step t,
s.t. H is a subgraph of G(t)?

EPG Subgraph-Free
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step t,
s.t. H is not a subgraph of G(t)?

Theorem 2. The EPG Subgraph problem is NP-complete and W[1]-hard
parameterized by |G|. This holds even if H is a path and G = H.

Proof. EPG Subgraph belongs to NP, since we may non-deterministically
choose a time step t of size at most lcm(LG) and an embedding ϕ : VH → V and
check, whether ϕ identifies H in G(t). Since t ≤ max(LG)(n

2), this certificate can
be encoded polynomially in the input size.

It remains to show that EPG Subgraph is NP-hard. Let X := {x1, . . . , x|X|}
be an instance of PCA. We define an equivalent instance (G,H) of EPG Sub-
graph. First, we define H := (VH , EH) to be a path on |X| edges e1, . . . , e|X|.
Second, we define G := (VH , EH , τ) with τ(ei) := xi for every i ∈ [1, |X|].

We next use Lemma 2 to show that X is a yes-instance of PCA if and only
if (G,H) is a yes-instance of EPG Subgraph. Observe that ϕ : VH → VH

with ϕ(v) := v is a trivial monomorphism that identifies H in the underlying
graph of G. Note that φ, and the isomorphic monomorphism reversing the path,
are the only monomorphisms that identify H, as H and G share their vertices and
edges. Furthermore, by the definition of τ we have τ(EH) = X. Thus, (G,H, ϕ) is
an X-embedding according to Definition 1. Then, by Lemma 2 we have that X
is a yes-instance of PCA if and only if there is a time step t in which ϕ(H)
exists in G(t). Consequently, X is a yes-instance of PCA if and only if (G,H) is
a yes-instance of EPG Subgraph. ��

Note that the length of the paths in the construction behind Theorem 2
corresponds to the size of the PCA instance. Thus, these paths might be arbi-
trarily long. If we—in contrast—assume that the size of sought subgraph H is
bounded by some constant h, we obtain a polynomial time algorithm for EPG
Subgraph. In other words, EPG Subgraph is XP when parameterized by h
as we show in the following theorem.

Theorem 3. EPG Subgraph can be solved in time O(nh · max(LG)(h
2)) ·

2O(
√
h log h), where h is the number of vertices in H.

Proof. We prove the theorem by describing the algorithm. Let (G = (V,E, τ),H)
be an instance of EPG Subgraph. The algorithm is straightforward: We iterate
over all possible subsets W ⊆ V of size h. For each of these sets we check whether
there is a time step t ∈ [1,max(LG)(h

2)] such that G(t)[W] is isomorphic to H.
If such a time step exists, return yes. Otherwise, return no.

290 E. Arrighi et al.

The algorithm runs within the claimed running time since there are
(
n
h

) ∈
O(nh) possible choices of W . For each choice, we consider max(LG)(h

2) dis-
tinct graphs G(t) and check whether one of these graphs is isomorphic to H

in 2O(
√
h log h) time [3].

We next show that the algorithm is correct. Suppose that the algorithm
returns yes. Then, for one choice of W and one time step t, the graph G(t)[W]
is isomorphic to H and therefore, (G,H) is a yes-instance.

Conversely, suppose that (G,H) is a yes-instance. Let W ⊆ V be the subset of
size h such that G(t)[W] is isomorphic to H at some time step t. Let e1, . . . , ek ∈
E be all edges between vertices of W in (V,E). Since |W | = h we have k ≤
h2. Thus, the least common multiple of all string lengths |τ(e1)|, . . . , |τ(ek)|
is at most max(LG)(h

2). Therefore, we may assume that t ∈ [1,max(LG)(h
2)].

Consequently, the algorithm returns yes. ��
Recall that Theorem 3 reveals that the NP-hardness of EPG Subgraph

crucially relies on the fact that the size of H is unbounded. In contrast, we show
next that EPG Subgraph-Free is NP-hard for every fixed size of H.

Theorem 4 (*). EPG Subgraph-Free is NP-complete and W[1]-hard
parameterized by |G| for every fixed subgraph H containing at least two vertices.

The containment in Theorem 4 follows by guessing the time step t in which G
is H-free and checking for each subset V ′ of V whether G(t)[V ′] is not isomorphic
to H. As H is fixed, this can be done in polynomial time. For the hardness, we
distinguish whether H contains an edge ore not. If H is edgeless, having H as
a subgraph correspond to having an independent set of size |H|. The key idea
is that, by putting the label of a PCA instance on the edges of a clique, the
obtained EPG has a time step with a maximum independent set of size 1 if and
only if the PCA instance is a yes-instance. On the other hand, if H contains at
least one edge, then we can take the disjoint union of several copies of H. Given
a PCA instance, by putting the complement of each string (that is, replacing
each 1 by a 0 and vice versa) of the PCA instance to an edge in each copy, we
obtain that the PCA instance is a yes-instance if and only if there exists a time
step where H is not a subgraph.

In contrast, if the subgraph H is not fixed, then the problem becomes even
harder. Intuitively, the following theorem is based on a construction from the
problem ∃∀3UNSAT, where in the resulting EPG, we first have to guess a time
step t and then need to check that each selection of k vertices is not a clique
in G(t). More precisely, the underlying graph is the k-partite graph from the
classic reduction by Karp [20] where each partite set corresponds to a clause of
a given 3SAT-formula. We use edge labels to model which variables are existen-
tially and which variables are universal.

Theorem 5 (*). EPG Subgraph-Free is Σ2
P -complete even if H is a clique.

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 291

5.2 Minors
EPG Minor
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step t,
s.t. H is a minor of G(t)?

EPG Minor-Free
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step t,
s.t. H is not a minor of G(t)?

As in the subgraph variant, we obtain ΣP
2 -completeness for EPG Minor-

Free.

Theorem 6 (*). The EPG Minor-Free problem is ΣP
2 -complete.

If we fix the minor, the complexity falls to NP-completeness, which is still
significantly harder than the poly-time solvability in the case of static graphs [31].

Theorem 7 (*). EPG Minor-Free is NP-complete and W[1]-hard parame-
terized by |G| for every fixed H containing at least one edge.

In the case that H is edgeless, in contrast to the subgraph variant, we only
need to compare the number of vertices in H and G.

Proposition 1 (*). EPG Minor-Free can be solved in linear time using log-
arithmic space for every fixed edgeless graph H.

We now turn to the related problem EPG Minor, in which we ask whether
a graph H exists as a minor in some time step t in an EPG. For finding an
H-minor, the problem is already NP-complete for very simple minors. More
precisely, we provide a dichotomy for minors of constant sizes into cases which
are NP-complete and those which are solvable in polynomial time. First, we
provide NP-completeness for the case that H contains at least one cycle.

Theorem 8 (*). EPG Minor is NP-complete and W[1]-hard parameterized by
|G| for every fixed H containing a cycle.

Since Theorem 8 shows hardness for each fixed minor containing a cycle,
it remains to consider fixed minors H which are forests. Second, we provide
NP-hardness for forests containing a tree with some minimum-degree vertices.

Theorem 9 (*). EPG Minor is NP-complete and W[1]-hard parameterized
by |G| for every fixed forest H with a connected component that contains a) two
vertices of degree at least 3 or b) one vertex of degree at least 4.

For all remaining cases, that is, each connected component of H is either
a path, or a tree with exactly one vertex of degree 3 and no vertex of degree
at least 4, we provide an XP-algorithm for the parameter h, the number of
vertices of H. The algorithm works completely analogously to the algorithm of
Theorem 3 for EPG Subgraph. This algorithm also works for minors, since for
this structure of H the minor must already be contained as a subgraph.

Corollary 2. The EPG Minor problem can be solved in O(nh ·max(LG)(h
2)) ·

2O(
√
h log h) time if H is a forest such that each connected component of H con-

tains no vertex of degree at least 4 and at most one vertex of degree 3.

292 E. Arrighi et al.

5.3 Further Parameterized Analysis

Finally, we take a closer look on the parameterized complexity of the 4 problems
concerning minors and subgraphs.

Corollary 3 (*). The problems EPG Subgraph, EPG Subgraph-Free,
EPG Minor, and EPG Minor-Free are

– NP-hard even if G is a disjoint union of paths and #1max ∈ O(1) and
– NP-hard even if G is a disjoint union of paths and #0max ∈ O(1).

Theorem 10 (*). The problems EPG Subgraph, EPG Subgraph-Free,
EPG Minor, and EPG Minor-Free are W[1]-hard when parameterized by
the vertex cover number of the underlying graph even if #1max = 1.

Theorem 11. The problems EPG Subgraph, EPG Subgraph-Free, EPG
Minor, and EPG Minor-Free are FPT with respect to the combined param-
eter min(#1max,#0max) plus the number of vertices |V | of G.

Proof. We prove the theorem by providing a class of FPT-algorithms solving
the four considered problems. Intuitively, our algorithms iterate over all possible
graphs that can be present in some time step and check, whether these graphs
(not) contain H as an induced subgraph or as a minor, respectively. To this end,
we introduce an auxiliary problem that asks whether there exists a time step
where G(t) consists of a specific edge set.

EPG Present Edges
Input: An EPG G = (V,E, τ) and an edge set E′ ⊆ E
Question: Is there a time step t such that G(t) = (V,E′)?

Claim 1 (*). EPG Present Edges is FPT for |V | + min(#1max,#0max).

We prove the claim by providing a parameterized reduction to PCA param-
eterized by the total number of runs of 1’s, that is, the number of groups of
consecutive 1’s, in all strings, which is known to be FPT [28].

We next describe the FPT-algorithms for EPG Subgraph, EPG
Subgraph-Free, EPG Minor, and EPG Minor-Free. Let (G = (V,E, τ),H)
be an instance of one of these problems. We iterate over every possible E′ ⊆ E
and check if (V,E′) (not) contains an induced H or (not) contains H as a minor,
respectively. If this is the case, we check whether (G, E′) is a yes-instance of
EPG Present Edges and return yes or no accordingly.

The correctness follows by the fact that we consider every possible graph
(V,E′) that might be present in some time step. It remains to consider the
running time. Due to the previous claim, checking whether (G, E′) is a yes-
instance of EPG Present Edges can be performed in FPT time parameterized
by |V | + min(#1max,#0max). Checking whether H is a minor of (V,E′) or H
is an induced subgraph of (V,E′) can clearly be done in a running time only
depending on the graph size |V |. Consequently, the four considered problems
are FPT when parameterized by |V | + min(#1max,#0max). ��

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 293

6 Short Traversal

One class of subgraphs plays a special role in temporal settings: paths. Our
general positive results for EPG Subgraph generalize the temporal setting of
finding paths of fixed length that are present in a sliding window in an EPG. If
we consider paths as subgraphs in temporal graphs, one may also ask for other
temporal aspects: The most natural question in this context is to ask if there is
a path connecting two vertices a and b such that the edges of this path can be
traversed in a consecutive manner in our temporal setting. More precisely, we
want to know the most favorable time step t to start the traversal from a in order
to have the shortest traversal time. Note that, in contrast to EPG Subgraph,
we do not ask for a path of fixed length. Furthermore, the ordering in which the
edges appear in our graph becomes important.

EPG Short Traversal (EPG-ST)
Input: Edge-periodic graph G = (V,E, τ), vertices a, b ∈ V , and k ∈ N.
Question: Is there a time step t such that starting from vertex a at time
step t, we can reach vertex b at the beginning of time step t + k while
traversing at most one edge per time step?

Theorem 12 (*). EPG Short Traversal is NP-hard and W[1]-hard with
respect to the combined parameter |G| + k even if G is a path.

Theorem 13 (*). EPG Short Traversal is W[1]-hard when parameterized
by the vertex cover number of the underlying graph and k, even if #1max = 1.

In contrast, if we combine the size of the underlying graph and the maximal
number of ones per edge label, we can obtain an FPT-algorithm. Note that the
length of each edge label τ(e), and therefore lcm(LG), is not restricted by the
combination of parameters.

Theorem 14. EPG Short Traversal is FPT with respect to the com-
bined parameter |G| + #1max and can be solved in O(|G| · #1max)O(|G|·#1max) ·
|G|O(1) time.

Proof. Let I = (G = (V,E, τ), a, b, k) be an instance of EPG Short Traver-
sal. To obtain an FPT-algorithm, we perform two steps: First, we iterate over
all possible (a, b)-paths P = (v0, . . . , vr) in the underlying graph G, where v0 = a
and vr = b. Since we can assume that the temporal walk with the shortest traver-
sal time is vertex simple, that is, each vertex is visited at most once, it remains
to show that there is a time step t and an (a, b)-path in the underlying graph,
such that at time step t one can start at vertex a and reach vertex b in at most k
time steps by only traversing edges of the path P . To check if such a time step
exists for a given path P , we present the following ILP-formulation.

For each edge ei := {vi−1, vi}, we use a variable ti which is equal to the time
step in which the considered temporal walk with shortest traversal time traverses
edge ei. Since at most one edge can be traversed at a time step, we need to ensure

294 E. Arrighi et al.

that ti + 1 ≤ ti+1. Moreover, an edge ei can only be traversed at time step ti,
if τ(ei)[ti mod |τ(ei)|] = 1. Hence, we first introduce two additional variables ci
and mi for each edge ei, where mi ∈ [0, |τ(ei)| − 1] and |τ(ei)| · ci + mi =
ti. That is, mi stores the value of ti mod |τ(ei)|. Finally, we have to ensure
that τ(ei)[mi] = 1. Let Ji := {j ∈ [0, |τ(ei)|] | τ(ei)[j] = 1} denote the set
of positions where τ(ei) is equal to one. We introduce for each i ∈ [1, r] and
each j ∈ Ji a new binary variable �i,j ∈ {0, 1} which is equal to zero if and only
if mi = j. To make sure that τ(ei)[mi] = 1, the value of exactly one �i,j has to
be zero, which can be achieve by adding the constraint

∑
j∈Ji

�i,j = |Ji|−1. The
complete ILP formulation now reads as follows:

ti, ci ∈ N for each i ∈ [1, r]
mi ∈ {0, |τ(ei)| − 1} for each i ∈ [1, r]

�i,j ∈ {0, 1} for each i ∈ [1, r], j ∈ Ji

Minimize tr − t1 subject to

ti + 1 ≤ ti+1 for each i ∈ [1, r − 1]
ci · |τ(ei)| + mi = ti for each i ∈ [1, r]

−�i,j · 2|τ(ei)| + j ≤ mi for each i ∈ [1, r], j ∈ Ji

�i,j · 2|τ(ei)| + j ≥ mi for each i ∈ [1, r], j ∈ Ji
∑

j∈Ji

�i,j = |Ji| − 1 for each i ∈ [1, r]

Note that the number of variables in this ILP-formulation is bounded by O(r·
maxi∈[1,r] |Ji|). Since r ≤ |G| and maxi∈[1,r] |Ji| ≤ #1max, this ILP can be solved
in O(|G| · #1max)O(|G|·#1max) · |I|O(1) time [13,18,19].

Since there are at most 2|G| many possible (a, b)-paths in G and we can solve
for each such path the corresponding ILP in O(|G| · #1max)O(|G|·#1max)|I|O(1)

time, EPG Short Traversal can be solved in the stated running time. ��

7 Conclusion

We studied the computational and parameterized complexity of multiple essen-
tial graph-theoretical problems on edge-periodic temporal graphs (EPGs). Inter-
estingly, it turned out to be equivalent whether we ask for the (non)existence of
a minor or subgraph in a single time step or in a sliding window of size Δ.

We emphasize that EPGs can trivially be converted into temporal graphs by
unrolling the whole sequence of snapshot graphs in exponential time and space.
Hence, the apparent complexity blow-up comes from the compact representation
via periodic edge labels. Intuitively, as for encoding a problem in binary instead of
unary, we do not need more time than for temporal graphs, we are just measuring
in a smaller input size. But we can exploit the additional structure of EPGs to

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 295

obtain better algorithms than with the naive approach of unrolling the EPG.
For example, we presented an FPT-algorithm for the parameter |G|+#1max for
EPG-ST that relies on an ILP-formulation which checks if at time step t one
can start at vertex a and reach vertex b in at most k time steps. The idea of this
ILP-formulation might be useful for other problems on EPGs.

Another direction of research is to evaluate to which extent the model of
EPGs is suitable to model real-world time-varying graphs by only using little
space. Furthermore, one could also consider a model where each edge label cor-
responds to a compression that is even smaller than the periodic representation
(for example, a run length encoding). Is it possible to adapt our positive results
for EPGs to this model? Note for instance that in the current encoding, the
label of an edge can be interpreted as the encoding of a deterministic unary
permutation finite automaton that accepts the unary encodings of all time steps
in which the edge is present (for details, see [28]). A more powerful model could
be obtained by considering deterministic finite automata over a binary alphabet.
Here, the time step is encoded in binary and the automaton corresponding to
an edge accepts all time steps in which the edge is present. This would allow, for
example, for edges being present in time steps that are powers of two. Another
approach is to simplify edge labels by going to multi-graphs and splitting a label
into multiple labels. This would correspond to decomposing the respective finite
automaton as it was considered in [17].

References

1. Akrida, E.C., Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.,
Zamaraev, V.: How fast can we reach a target vertex in stochastic temporal graphs?
J. Comput. Syst. Sci. 114, 65–83 (2020)

2. Akrida, E.C., Mertzios, G.B., Spirakis, P.G., Zamaraev, V.: Temporal vertex cover
with a sliding time window. J. Comput. Syst. Sci. 107, 108–123 (2020)

3. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Johnson, D.S., et al.
eds, Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts, USA, pp. 171–183. ACM (1983)

4. Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks 28(3), 125–134 (1996)

5. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S., Bar-
beau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6 23

6. Casteigts, A., Flocchini, P.: Deterministic algorithms in dynamic networks: formal
models and metrics. Technical Report (2013)

7. Casteigts, A., Flocchini, P.: Deterministic algorithms in dynamic networks: prob-
lems, analysis, and algorithmic tools. Technical Report (2013)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/978-3-319-21275-3

296 E. Arrighi et al.

10. de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol.
1536. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5

11. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: Kemper, A., et al. eds, Proceedings of the 11th International Conference
on Extending Database Technology, vol. 261 of ACM International Conference
Proceeding Series, pp. 205–216. ACM (2008)

12. Erlebach, T., Spooner, J.T.: A game of cops and robbers on graphs with periodic
edge-connectivity. In: Chatzigeorgiou, A., Dondi, R., Herodotou, H., Kapoutsis, C.,
Manolopoulos, Y., Papadopoulos, G.A., Sikora, F. (eds.) SOFSEM 2020. LNCS,
vol. 12011, pp. 64–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38919-2 6

13. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

14. Ganguly, N., Deutsch, A., Mukherjee, A.: Dyn. Complex Netw. Computer Science,
and the Social Sciences, Applications to Biology (2009)

15. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9),
1–30 (2015)

16. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
17. Jecker, I., Mazzocchi, N., Wolf,P.: Decomposing permutation automata. In: Had-

dad, S., Varacca, D., eds, 32nd International Conference on Concurrency Theory,
CONCUR 2021, Virtual Conference, vol. 203 of LIPIcs, pp. 18:1–18:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021)

18. Hendrik, W., Lenstra: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

20. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

21. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

22. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection.
http://snap.stanford.edu/data/ (2014)

23. Lovász, L.: Graph minor theory. Bull. Am. Math. Soc. 43(1), 75–86 (2006)
24. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject

to connectivity constraints. Algorithmica 81(4), 1416–1449 (2019)
25. Mertzios, G.B., Molter, H., Zamaraev, V.: Sliding window temporal graph coloring.

J. Comput. Syst. Sci. 120, 97–115 (2021)
26. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. The-

oret. Comput. Sci. 634, 1–23 (2016)
27. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun.

ACM 61(2), 72 (2018)
28. Morawietz, N., Rehs, C., Weller, M.: A timecop’s work is harder than you think.

In: Esparza, J., Král’, D., eds, 45th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2020, Prague, Czech Republic, vol. 170
of LIPIcs, pp. 71:1–71:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

29. Morawietz, N., Wolf, P.: A timecop’s chase around the table. In: Bonchi, F., Puglisi,
S.J., eds, 46th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2021, Tallinn, Estonia, vol. 202 of LIPIcs, pp. 77:1–77:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

30. Pagin, P.: Compositionality, computability, and complexity. Rev. Symbolic Logic
14(3), 551–591 (2021)

https://doi.org/10.1007/3-540-49213-5
https://doi.org/10.1007/978-3-030-38919-2_6
https://doi.org/10.1007/978-3-030-38919-2_6
http://snap.stanford.edu/data/

Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs 297

31. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem.
J. Comb. Theory Ser. B 63(1), 65–110 (1995)

32. Sapiezynski, P., Stopczynski, A., Gatej, R., Lehmann, S.: Tracking human mobility
using WiFi signals. PLoS ONE 10(7), 1–11 (2015)

33. Wehmuth, K., Ziviani, A., Fleury, E.: A unifying model for representing time-
varying graphs. In: 2015 IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, pp. 1–
10. IEEE (2015)

34. Huanhuan, W., Cheng, J., Huang, S., Ke, Y., Yi, L., Yanyan, X.: Path problems
in temporal graphs. Proc. VLDB Endowment 7(9), 721–732 (2014)

35. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: overview and challenges. IEEE Commun. Surv. Tutorials 8(1–4),
24–37 (2006)

Complexity and Learning

Lower Bounds for Monotone
q-Multilinear Boolean Circuits

Andrzej Lingas(B)

Department of Computer Science, Lund University, 22100 Lund, Sweden

Andrzej.Lingas@cs.lth.se

Abstract. A monotone Boolean circuit is composed of OR gates, AND
gates and input gates corresponding to the input variables and the
Boolean constants. It is multilinear if for any AND gate the two input
functions have no variable in common. We consider a generalization of
monotone multilinear Boolean circuits to include monotone q-multilinear
Boolean circuits. Roughly, a sufficient condition for the q-multilinearity
is that in the formal Boolean polynomials at the output gates of the
circuit no variable has degree larger than q. First, we study a relation-
ship between q-multilinearity and the conjunction depth of a monotone
Boolean circuit, i.e., the maximum number of AND gates on a path from
an input gate to an output gate. As a corollary, we obtain a trade-off
between the lower bounds on the size of monotone q-multilinear Boolean
circuits for semi-disjoint bilinear forms and the parameter q. Next, we
study the complexity of the monotone Boolean function Isolk,n verifying
if a k-dimensional matrix has at least one 1 in each line (e.g., each row
and column when k = 2) in terms of monotone k-multilinear Boolean
circuits. We show that the function admits Π2 monotone k-multilinear
circuits of O(nk) size. On the other hand, we demonstrate that any Π2

monotone Boolean circuit for Isolk,n is at least k-multilinear. Also, we
show under an additional assumption that any Σ3 monotone Boolean
circuit for Isolk,n is not (k − 1)-multilinear or it has an exponential in n
size.

Keywords: Monotone Boolean circuit · Monotone multilinear Boolean
circuit · Monotone arithmetic circuit · Circuit size

1 Introduction

The derivation of superlinear lower bounds on the size of Boolean circuits for
natural problems appeared extremely hard. Therefore, already at the end of the
70s and the beginning of the 80s, several researches started to study the com-
plexity of monotone arithmetic circuits or monotone Boolean circuits for natural
multivariate arithmetic polynomials and natural Boolean functions, respectively.
The monotone arithmetic circuits are composed of addition gates, multiplication
gates and input gates for variables and non-negative real constants. Similarly,
monotone Boolean circuits are composed of OR gates, AND gates, and the input

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 301–312, 2023.
https://doi.org/10.1007/978-3-031-23101-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_20&domain=pdf
http://orcid.org/0000-0003-4998-9844
https://doi.org/10.1007/978-3-031-23101-8_20

302 A. Lingas

gates for variables and Boolean constants. In the case of monotone arithmetic
circuits, one succeeded to derive even exponential lower bounds relatively easily
[3,18] while in the case of monotone Boolean circuits, the derivation of exponen-
tial lower bounds for natural problems required much more effort [1,16].

The problem of computing the permanent of an n × n matrix equivalent to
counting the number of perfect matchings in a bipartite graph is an example
of a problem for which the gap between lower bounds in the models of mono-
tone arithmetic circuits and monotone Boolean circuits remains very large up to
today. Namely, Jerrum and Snir established an exponential lower bound on the
size of monotone arithmetic circuits for this problem [3] while the best known
lower bound on the size of a monotone Boolean circuit computing the Boolean
variant of the permanent shown by Razborov [17] is only superpolynomial. In
order to tackle the gap, Ponnuswami and Venkateswaran considered the con-
cept of monotone multilinear Boolean circuits and showed an exponential lower
bound on the size of the restricted monotone Boolean circuits for the Boolean
permanent [12]. A Boolean circuit is multilinear if for any AND gate the two
input functions have no variable in common. To be more precise, the authors of
[12] used a semantic version of multilinearity by forbidding minimal representa-
tions of the two input functions to share a variable [12]. This means for example
that if the first function is represented by x∨x∧y and the second one by y then
the AND gate represented by (x ∧ y) ∨ (x ∧ y ∧ y) is allowed in their multilinear
Boolean circuit. In fact, soon later, Krieger claimed exponential lower bounds on
the number of OR gates in multilinear Boolean circuits for among other things
a clique function [6]. He used a much more restricted syntactic version of multi-
linearity, where the function computed at a gate is declared to be dependent on
a variable if there is a path from the input gate with the variable or its negation
to the gate in the circuit. This syntactic version directly makes impossible for a
multilinear Boolean circuit to produce terms with two or more occurrences of a
variable or its negation. Hence, in particular term cancellation, i.e., terms with a
variable x and its negation x̄, is not possible in syntactically multilinear Boolean
circuits.

Note however that the concept of multilinearity in the case of unrestricted
Boolean circuits does not make too much sens as any Boolean circuit can be
easily turned into a multilinear one. It is just enough to apply the DeMorgan
rule f1 ∧ f2 = ¬(¬f1 ∨ ¬f2) in order to eliminate all AND gates increasing the
total number of gates at most by the factor 4. Therefore, it seems that Krieger
used implicitly a restriction of Boolean circuits to DeMorgan Boolean circuits,
a generalization of monotone Boolean circuits, where negation can be applied
solely to input gates. This seems to be evident in the proof Lemma 3 in [6] stating
that any optimal multilinear Boolean circuit for a monotone Boolean function
is monotone. The negation seems to occur solely at the input gates in the proof.
So, the proof of the lower bound of

(
n
k

) − 1 on the number of OR gates in any
multilinear Boolean circuit for the k-clique function in [12] seems to work solely
for DeMorgan multilinear Boolean circuits1.

1 A similar interpretation of Krieger’s results can be found in [5].

Lower Bounds for Monotone Q-Multilinear Boolean Circuits 303

In our recent report [7], we have used a simple argument to obtain a more gen-
eral result than the lower bounds of Ponnuswami and Venkateswaran or Krieger
in [12] and [6], respectively. We have shown that the known lower bounds on the
size of monotone arithmetic circuits for multivariate polynomials that are sums
of monomials consisting of the same number of distinct variables [3,18] yield
almost the analogous lower bounds on the size of monotone multilinear Boolean
circuits computing the functions represented by the corresponding multivariate
Boolean polynomials. Our result can be slightly improved to yield exactly anal-
ogous lower bounds by using the lower envelope argument from [3] as observed
in [5].

On the other hand, Raz and Widgerson showed that monotone Boolean cir-
cuits for the Boolean permanent require linear depth [15] and Raz proved that
multilinear Boolean formulas for this problem have superpolynomial size [14].

The concept of circuit multilinearity is also natural for circuits over other
semi-rings beside the Boolean one ({0, 1}∨,∧) such as the arithmetic one
(R+,+,×) or the tropical one (R+,min,+), where R+ stands for the set of
nonnegative real numbers [5]. In particular, Jukna observed that the classi-
cal dynamic programming algorithms for shortest paths and traveling salesman
problems can be expressed as multilinear circuits over the tropical semi-ring [5].

In this paper, we consider a generalization of monotone multilinear Boolean
circuits to include monotone q-multilinear Boolean circuits. Roughly, a sufficient
condition for the q-multilinearity is that in the formal Boolean polynomials at the
output gates of the circuit, no variable has degree larger than q. The requirement
can be relaxed to hold only for monom representatives of prime implicants of the
computed functions (see Sect. 3). Monotone q-multilinear circuits correspond to
the so called monotone read-q Boolean circuits introduced in [5].

The central question is how restrictive is the requirement of q-multilinearity
in monotone Boolean circuits and whether or not there are substantial gaps
between the sizes of monotone q-multilinear Boolean circuits and those of the
(q + 1)-multilinear ones computing the same Boolean functions. Of course,
Razborov’s approximation method [16] and several other proofs of lower bounds
on the size of monotone Boolean circuits (e.g., for the clique function [1] or
matrix multiplication [9,11,13]) work for any q. It seems that the lowest enve-
lope argument from [3] can be solely used to show the gap between monotone
1-multilinear Boolean circuits and the q-multilinear ones, where q ≥ 2 [5].

First, we study a relationship between the q-multilinearity and the con-
junction depth of a monotone Boolean circuit, i.e., the maximum number of
AND gates on a path from an input gate to an output gate. As a corollary,
we obtain a general lower bound trade-off between the size of monotone q-
multilinear Boolean circuits computing a semi-disjoint bilinear form and the
parameter q. For instance, in case of Boolean convolution of two n-dimensional
Boolean vectors, our lower bound is higher than the best known lower bound
of Ω(n/ log6 n) on the size of monotone Boolean circuits for this problem [2], as
long as q = O(log log n).

304 A. Lingas

Jukna [5] gave a nice example of a Boolean function that admits polynomial
size monotone 2-multilinear Boolean circuits but any monotone 1-multilinear
Boolean circuit computing it has to have an exponential size. The function,
termed Isoln, verifies if an input n × n Boolean matrix has at least one Boolean
1 in each row and each column of the matrix. The lower bound follows from the
fact that the shortest prime implicants of Isoln form exactly the set of prime
implicants of the Boolean permanent combined with the exponential lower bound
on the size of monotone multilinear Boolean circuits for the latter problem from
[12] via arithmetization and the lower envelope argument from [3].

We generalize the function Isoln to include the function Isolk,n which verifies
if the input k-dimensional Boolean matrix has a Boolean 1 in each line of the
matrix (a generalization of a row or a column). We show that Isolk,n admits
Π2 monotone k-multilinear circuits of linear, i.e., O(nk), size. In a Π2 monotone
Boolean circuit, each output gate is an AND gate and on each path from an
input gate to an output gate there is at most one block of OR gates and one
block of AND gates. On the other hand, we demonstrate that any Π2 monotone
Boolean circuit for Isolk,n is at least k-multilinear. Also, we show under an
additional assumption2 that any Σ3 monotone Boolean circuit for Isolk,n is not
(k − 1)-multilinear or it has an exponential in n size. In a Σ3 monotone Boolean
circuit, each output gate is an OR gate and on each path from an input gate to
an output gate there is at most one block of AND gates and two blocks of OR
gates.

2 Monotone Boolean Circuits and Functions

A monotone Boolean circuit is a finite directed acyclic graph with the following
properties:

1. The indegree of each vertex (termed gate) is either 0 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are

labeled by variables or the Boolean constants 0, 1.
3. The vertices of indegree 2 are labeled by elements of the set {OR,AND} and

termed OR gates and AND gates, respectively.
4. A distinguished set of gates forms the set of output gates of the circuit.

For convenience, we shall denote also by g the function computed at a gate
g of a monotone Boolean circuit. The size of Boolean circuit is the total number
of its non-input gates.

A monotone Boolean circuit is multilinear if for any AND gate the two input
Boolean functions have no variable in common. The conjunction depth of a mono-
tone Boolean circuit is the maximum number of AND gates on a path from an
input gate to an output gate. A monotone Boolean circuit has the alternation
depth d iff d is the highest number of blocks of OR gates and blocks of AND

2 Recently, the author has obtained an alternative proof, eliminating the need of the
additional assumption. The new proof will be included in the journal version.

Lower Bounds for Monotone Q-Multilinear Boolean Circuits 305

gates on paths from input gates to output gates. A Σd -circuit (respectively,
Πd-circuit) is a circuit with the alternation depth not exceeding d such that the
output gates are OR gates (AND gates, respectively).

With each gate g of a monotone Boolean circuit, we shall associate a set T (g)
of terms in a natural way. Thus, with each input gate, we associate the singleton
set consisting of the corresponding variable or constant. Next, with an OR gate,
we associate the union of the sets associated with its direct predecessors. Finally,
with an AND gate g, we associate the set of concatenations t1t2 of all pairs of
terms t1, t2, where ti ∈ T (gi) and gi stands for the i-th direct predecessor
of g for i = 1, 2. The function computed at the gate g is the disjunction of
the functions (called monoms) represented by the terms in T (g). The monom
con(t) represented by a term t is obtained by replacing concatenations in t
with conjunctions, respectively. A term in T (g) is a zero-term if it contains the
Boolean constant 0. Clearly, a zero-term represents the Boolean constant 0. By
the definition of T (g) and induction on the structure of the monotone Boolean
circuit, g =

∨
t∈T (g) con(t) holds. For a term t ∈ T (g), the set of variables in t is

denoted by V ar(t).
A Boolean form is a finite set of Boolean 0–1 functions. An implicant of a

Boolean form F is a conjunction of some variables and/or Boolean constants
(monom) such that there is a function belonging to F which is true whenever
the conjunction is true. If the conjunction includes the Boolean 0 then it is a
trivial implicant of F.

A non-trivial implicant of F that is minimal with respect to included variables
is a prime implicant of F. The set of prime implicants of F is denoted by PI(F).

A (monotone) Boolean polynomial is a disjunction of monoms, where each
monom is a conjunction of some variables and Boolean constants. It is a minimal
Boolean polynomial representing a given Boolean function if after the removal
of any variable or constant occurrence, it does not represent this function.

A set F of monotone Boolean functions is a semi-disjoint bilinear form if it
is defined on the set of variables X ∪ Y and the following properties hold.

1. For each minimal Boolean polynomial representing a Boolean function Q in
F and each variable z ∈ X ∪Y, there is at most one monom of the polynomial
containing z.

2. Each monom of a minimal Boolean polynomial representing a Boolean func-
tion in F consists of exactly one variable in X and one variable in Y.

3. The sets of monoms of minimal Boolean polynomials representing different
Boolean functions in F are pairwise disjoint.

Boolean matrix product and Boolean vector convolution are the best known
examples of semi-disjoint bilinear Boolean forms.

3 Monotone q-multilinear Boolean Circuits

Recall that a monotone Boolean circuit is multilinear if for any of its AND gates
the two input functions do not share a variable.

306 A. Lingas

The following lemma provides a characterization of the terms produced at the
gates of a monotone multilinear circuit which lays ground to the generalization
of the multilinearity to include the q-multilinearity. To specify the lemma, we
need to introduce the following additional notation.

Let g stand for a gate of a monotone multilinear circuit. For two terms
t, t′ ∈ T (g), the relationship t′ ≤ t holds if and only if for each variable x, the
number of occurrences of x in t′ does not exceed that in t. A variable repetition
takes place in t if there is a variable which occur at least two times in t.

Lemma 1. (companion lemma) Let g be a gate of a monotone multilinear
Boolean circuit without the Boolean constants, and let t ∈ T (g). There is
t′ ∈ T (g) without variable repetitions such that t′ ≤ t.

Proof. The proof is by induction on the structure of the circuit in a bottom-up
manner. If g is an input gate corresponding to a variable then t′ = t. If g is an
OR gate then the lemma for the gate immediately follows from the induction
hypothesis. Suppose that g is an AND gate with two direct gate predecessors g1
and g2. Consider t = t1t2 ∈ T (g), where ti ∈ T (gi) for i = 1, 2. By the induction
hypothesis, there are (non-zero) terms t′i ∈ T (gi) without variable repetitions
such that t′i ≤ ti for i = 1, 2. Let t′ = t′1t

′
2. It follows that t′ ≤ t. If t′ has a

variable repetition then there exist a variable x and j ∈ {1, 2} such that t′j has
an occurrence of the variable but the function gj does not depend on x. Hence,
there must exist a term t′′j ∈ T (gj) without an occurrence of x such that the
monom represented by t′′j is implied by t′j , i.e., V ar(t′′j) ⊂ V ar(t′j). We may
assume without loss of generality that t′′j does not contain variable repetitions
since otherwise we can replace it with a smaller term with respect to ≤ without
variable repetitions by the induction hypothesis. We may also assume without
loss of generality that j = 1. Hence, t′′1 t′2 ≤ t and if t′′1 t′2 is free from variable
repetitions we are done. Otherwise, we repeat the procedure eliminating next
variable on one of the sides. Because the number of variables is finite the process
must eventually result in a term satisfying the lemma. 	

Fix a positive integer q. Roughly, a sufficient condition on a Boolean mono-
tone circuit to call it q-multilinear mentioned in the introduction is that in the
formal Boolean polynomials at the output gates of the circuit, no variable has
multiplicity larger than q. More formally, in terms of our notation it can be
rephrased as follows:

In each term in T (g), where g is an output gate, each variable has at most q
occurrences. We shall call a monotone Boolean circuit satisfying this condition
strictly q-multilinear.

Our definition of a monotone q-multilinear Boolean circuit imposes a weaker
condition and it corresponds to that of a monotone read-k Boolean circuit from
[5].

A monotone Boolean circuit computing a monotone Boolean form F is said
to be q-multilinear if for each prime implicant p of each function f ∈ F, there is a
term t ∈ T (g) representing p, where g is the output gate of the circuit computing
f , such that no variable occurs more than q times in t.

Lower Bounds for Monotone Q-Multilinear Boolean Circuits 307

By the companion lemma, a monotone multilinear Boolean circuit is 1-
multilinear. For the reverse implication in terms of monotone read-1 Boolean
circuits see Lemma 4 in [5]. Among other things because of the aforementioned
equivalence, we believe that the name “k-multilinear” is more natural than the
name “read-k” used in [5].

3.1 q-multilinearity Versus Bounded Conjunction Depth

Recall that a monotone Boolean circuit is of conjunction depth d if the maximum
number of AND gates on any path from an input gate to an output gate in the
circuit is d. A bounded conjunction depth yields a rather weak upper bound on
the q-multilinearity of a monotone Boolean circuit.

Theorem 1. Let F be a monotone Boolean form, and let k be the minimum
number of variables forming a prime implicant of F. A monotone Boolean circuit
of conjunction depth d computing F is strictly (2d − k + 1)-multilinear.

Proof. An AND gate can at most double the maximum length of the terms (i.e.,
the number of variable occurrences in the terms) produced by its direct prede-
cessors. Hence, the output terms of a monotone Boolean circuit of conjunction
depth d have length not exceeding 2d. Consider a variable x occurring in an
output term of a monotone Boolean circuit of conjunction depth d computing
F. As the term represents an implicant of F, it has to contain at least k − 1
other variables. Hence, the maximum number of occurrences of x in the term is
2d − k + 1. 	

The reverse relationship is much stronger.

Theorem 2. Let C be an optimal monotone q-multilinear Boolean circuit with-
out the Boolean constants computing a monotone Boolean form F whose prime
implicants are formed by at most k variables. The circuit has conjunction depth
not exceeding kq − 1.

Proof. Consider terms at the output gates of C representing prime implicants
of F. We know that for each prime implicant p of F there is such a term tp
representing p, where each variable occurs at most q times. Consider the sub-
dag Cp of the circuit generating the term tp. Note that Cp includes the input
gates corresponding to the at most k variables in tp and for any OR gate included
in Cp exactly one of the direct predecessors gates in C is included (such a sub-
dag is termed parse graph in [19]). Let P be a path from an input gate labeled
by a variable x to the output gate in the sub-dag having the maximum number
of AND gates. Note that at each AND gate h on the path P , a subterm of
tp including x and belonging to T (h) has to be larger at least by one variable
occurrence than that belonging to the direct predecessor of h on the path. We
conclude that there are at most kq − 1 AND gates on the path P.

Form the sub-dag C ′ of C that is the union of the sub-dags Cp, p ∈ PI(F).
Note that some OR gates in C ′ may have only one direct predecessor, we replace

308 A. Lingas

the missing one with the Boolean 0. Let g′ be the output gate of C ′ corresponding
to the output gate g of C. By the definition, T (g′) includes terms representing
all prime implicants of F represented in T (g). Consider a non-zero (i.e., not
including 0) term t ∈ T (g′) that does not represent a prime implicant of F.
Consider the sub-dag (parse-graph) C ′

t of C ′ that generates exactly the term t.
It also generates the term t in the original circuit C. We conclude that t is an
implicant of F and consequently that C ′ computes F. By the definition, C ′ has
conjunction depth bounded by kq−1, size not exceeding that of C, and it is also
q-multilinear. Since the Boolean constants can be eliminated from C ′ without
increasing its size, we conclude that C ′ has the same size as C by the optimality
of C and consequently that C = C ′ by the construction of C ′. 	

4 Lower Bounds for q-multilinear Boolean Circuits

4.1 Lower Bound Trade-Offs for Semi-disjoint Bilinear Forms

Our result in this subsection relies on Theorem 2 in [8] which in terms of our
notation can be restricted and rephrased as follows.

Fact 1. [8] Let C be a monotone Boolean circuit of conjunction depth at most d
computing a semi-disjoint bilinear form F with p prime implicants. The circuit
C has at least p

24d
(1 − 1

2d
)2

d−2 AND gates.

The following theorem is immediately implied by Fact 1 and Theorem 2.

Theorem 3. Let C be a monotone q-multilinear Boolean circuit computing a
semi-disjoint bilinear form F with p prime implicants. The circuit C has at least

p
28q−4 (1 − 1

22q−1)2
2q−1−2 gates.

In particular, Theorem 3 yields the lower bound of Ω(n2

28q−4) on the number of
gates in a monotone q-multilinear Boolean circuit computing the n-dimensional
Boolean vector convolution. The latter bound subsumes the best known lower
bound of Ω(n2/ log6 n) on the size of monotone Boolean circuits for this problem
due to Grinchuk and Sergeev [2] as long as q = o(log log n).

4.2 Lower Bounds for Isolk,n

We generalize the monotone Boolean function Isoln defined on two-dimensional
n×n Boolean matrices to the function Isolk,n defined on k-dimensional Boolean
n × n...n Boolean matrices as follows.

Let X = (xi,j,...,r) be an k-dimensional Boolean matrix, where the indices
i, j, ..., r are in [n], where [s] stands for the set of natural numbers not exceeding
s. A line in X is any sequence of n variables in X, where k − 1 indices are
fixed and the index on the remaining position varies from 1 to n. E.g., in the
three-dimensional case, it can be x7,1,5, x7,2,5, ..., x7,n,5.
Isolk,n(X) = 1 if and only if in each line in X there is at least one 1.

Jukna showed that Isoln, i.e., Isol2,n in terms of our notation, admits a
monotone 2-multilinear Boolean circuit with ≤ 2n2 gates [5]. We can easily
generalize his result to include Isolk,n.

Lower Bounds for Monotone Q-Multilinear Boolean Circuits 309

Theorem 4. Isolk,n admits a Π2 monotone strictly k-multilinear Boolean cir-
cuit with knk−1(n − 1) OR gates and knk−1 − 1 AND gates.

Proof. Observe that there are knk−1 lines in the input matrix. It is sufficient to
compute for each line the disjunction of the variables in the line and then the
conjunction of all the disjunctions. Since each variable occurs only in k lines, the
strict k-multilinearity of the resulting circuit follows. 	

As we have mentioned in the introduction, Jukna observed an exponential
gap between the size of monotone 2-multilinear Boolean circuits and the size
of monotone multilinear (i.e., also 1-multilinear) circuits for Isol2,n [5]. In the
following, we give an evidence that a similar gap holds between monotone k-
multilinear Boolean circuits and monotone (k − 1)-multilinear Boolean circuits
for Isolk,n, if we restrict the circuits to Σ3 circuits.

Lemma 2. Consider a gate computing a disjunction of variables in an optimal
monotone Boolean circuit for Isolk,n. All the variables in the disjunction belong
to a common line in the input matrix.

Proof. Suppose that there are two variables in the disjunction that do not share
a line. Then, no variable occurrence from the disjunction is necessary to “guard”
uniquely a line in any output term depending on the disjunction in order to make
the term an implicant of Isolk,n. Otherwise, the sibling output term resulting
from replacing the variable by another one belonging to the disjunction but not
lying on the line would not be an implicant of Isolk,n. Hence, the gate can be
replaced by the Boolean constant 1. Consequently, each pair of variables in the
disjunction shares a line which implies that all variables in the disjunction occur
on the same line of the matrix. 	

Theorem 5. Any Π2 monotone Boolean circuit for Isolk,n is not strictly
(k − 1)-multilinear.

Proof. By Lemma 2, for each line there must be at least one OR gate or input
variable gate computing a disjunction of some variables on the line that is a
direct predecessor of an AND gate.

In fact, there are no two OR gates or input variable gates that are direct
predecessors of AND gates and compute distinct disjunctions of variables on the
same line. Otherwise, a term representing a shortest prime implicant including
a single variable on this line belonging to the symmetric difference of the dis-
junctions could not occur at the output AND gate of the circuit. (Such a prime
implicant can be formed by completing the single variable on the line with any
minimum cardinality set of variables outside the line so all lines are guarded.)
Therefore, for each line there must be at least one OR gate computing a dis-
junction of all variables on the line that is a direct predecessor of an AND gate.
Otherwise, terms representing shortest prime implicants with a single variable x
on the line missing in the disjunction could not occur at the output gate. (Such
a prime implicant can be again formed by completing x with any minimum
cardinality set of variables so all lines are guarded.)

310 A. Lingas

Thus, for each entry of the input matrix, the variable corresponding to the
entry has to appear at least in the k disjunctions corresponding to the k lines
it occurs in, computed at k OR gates directly preceding AND gates. In effect,
a term representing an implicant of Isolk,n with at least k occurrences of the
variable will be created. 	

Note that the monotone strictly k-multilinear circuit for Isolk,n, presented
in Theorem 4, produces nknk−1

output terms. For Σ3 monotone Boolean circuit
for Isolk,n, we have the following conditional result.

Theorem 6. Let k > 2. Consider an optimal Σ3 monotone Boolean circuit
for Isolk,n that has the smallest possible number of AND gates. Suppose that
it produces at least nknk−1

e−δnk−1
terms, where δ < 1. The circuit includes an

exponential in n number of AND gates or it is not strictly (k − 1)-multilinear.

Proof. Suppose that the number of AND gates that are direct predecessors of
the OR gates is at most t. Let L ≥ nknk−1

e−δnk−1
be the total number of terms

produced by the circuit at its output gate. Consequently, there must be an AND
gate g among the direct predecessors of the OR gates on the top level such that
the total number of terms in T (g) is at least L/t.

Let C be the subcircuit with the gate g being an output gate. By Lemma
2, we may assume w.l.o.g. that each at least two variable disjunction computed
at an OR gate that is a direct predecessor of an AND gate in the subcircuit
is composed of variables lying on the same line. On the other hand, for each
line, there must be at least one disjunction composed of some variables on the
line, computed at an OR gate that is a direct predecessor of an AND gate in
the subcircuit, in case the disjunction consists of a single variable on the line,
the input gate corresponding to the variable may be a direct predecessor of an
AND gate in the subcircuit. Otherwise, the terms in T (g) would not represent
implicants of Isolk,n. Suppose that for a line, there are j disjunctions with at least
two variables and all its variables lying on the line, computed at OR gates that
are direct predecessors of AND gates in the subcircuit. Then, we can compute a
disjunction of’ these j disjunctions using j − 1 OR gates and use the resulting
disjunction instead of the j disjunctions saving on j−1 AND gates. The resulting
circuit still computes Isolk,n, it is optimal and it uses a smaller number of AND
gates, a contradiction. So, from now on, we may assume that for each line there
is at most one disjunction with at least two variables on the line and no variable
outside it, representing the line.

For i = 1, ..., knk−1, let di, 1 ≤ di ≤ n, be the number of variables in the
disjunction representing the i-th line. In case, there is no at least two variable
disjunction representing the i-th line, the line is represented by a single variable
on the line at an input gate or an OR gate that is a direct predecessor of an AND
gate. Such a single variable can represent up to k lines it belongs too. So, in this
case, we set di = 1 for only one of the lines represented by the variable and for
the remaining ones for which there are no at least two variable representatives,
we set di = 0, alternatively, we can set di to a proportional fractional value. It
follows that

∏
di≥2 di ≥ L/t.

Lower Bounds for Monotone Q-Multilinear Boolean Circuits 311

Each tine some di is decreased by one, the product
∏

di≥2 di decreases at
least by the factor of 1 − 1

n . Hence, the maximal number of knk−1 variable
occurrences in the disjunctions decreases at most by n(loge(eδnk−1

) + loge t)
for sufficiently large n since L can be smaller by the factor of eδnk−1

than the
maximal possible value of the product of the disjunctions and

∏
di≥2 di ≥ L/t

yields further possible decrease by at most t. We infer that
∑

i di > knk − δnk −
n loge t.

Now, it is sufficient to set t to an exponential in n number, e.g., en, so
knk − δnk − nloge t > knk − δnk − n2 > (k − 1)nk by δ < 1 and k ≥ 3 for
sufficiently large n. There are

∑
i di > (k − 1)nk slots to be divided between at

most nk variables in the entries of the matrix, so at least one variable must be
repeated at least k times, each time in a distinct disjunction. 	

Theorem 6 shows that the number of terms produced by a monotone Boolean
circuit for Isolk,n is related to its q-multilinearity and size. In particular, if there
was an optimal Σ3 monotone (k − 1)-multilinear Boolean circuit of polynomial
size for Isolk,n then it would need to produce a substantially smaller number of
terms than that k-multilinear one of Theorem 4.

Presumably, the lower bound assumption on the number of terms produced
by the circuit in Theorem 6 can be substantially weakened to reach almost
n(k−1)nk−1 by using more involved analysis.

On the other hand, note that the lowest possible number of produced output
terms equal to the number of prime implicants of Isolk,n can be achieved by a
monotone 1-multilinear Boolean circuit of exponential size computing just the
(minimal) disjunctive normal form of Isolk,n.

Acknowledgments. The author thanks Susanna de Rezende for bringing attention to
the monotone Boolean circuit complexity of the Boolean permanent problem studied in
[12,17] and valuable discussions. Thanks also go to Stasys Jukna for valuable comments.
The research was supported by Swedish Research Council grant 621-2017-03750.

References

1. Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions.
Combinatorica 7(1), 1–22 (1987)

2. Grinchuk, M.I., Sergeev, I.S.: Thin circulant matrices and lower bounds on the
complexity of some Boolean operations. Diskretn. Anal. Issled. Oper. 18, pp. 35–
53, (2011). (See also CORR.abs/1701.08557 2017

3. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations
over semirings. J. ACM 29(3), 874–897 (1982)

4. Jukna, S.: Personnal communication, June (2022)
5. Jukna, S.: Notes on Boolean Read-k Circuits. Electron. Colloquium Comput. Com-

plex. TR22-094 (2022)
6. Krieger, M.P.: On the incompressibility of monotone DNFs. Theor. Comput. Syst.

41(2), 211–231 (2007)
7. Lingas, A.: A Note on Lower Bounds for Monotone Multilinear Boolean Circuits.

Electron. Colloquium Comput. Complex. TR22-085 (2022)

312 A. Lingas

8. Lingas, A.: Small normalized Boolean circuits for semi-disjoint bilinear forms
require logarithmic conjunction-depth. Theoretical Computer Science 820, pp. 17–
25 (2020) (prel. version Computational Complexity Conference (CCC) 2018)

9. Mehlhorn, K., Galil, Z.: Monotone switching circuits and Boolean matrix product.
Computing 16, 99–111 (1976)

10. Nes̆etr̆il, J., Poljak, S.: On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

11. Paterson, M.: Complexity of monotone networks for Boolean matrix product.
Theor. Comput. Sci. 1(1), 13–20 (1975)

12. Ponnuswami, A.K., Venkateswaran, H.: Monotone multilinear Boolean circuits for
bipartite perfect matching require exponential size. In Proceedings of 24th Inter-
national Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FST-TCS), pp. 16–18 (2004)

13. Pratt, R.: The power of negative thinking in multiplying Boolean matrices. SIAM
J. Comput. 4(3), 326–330 (1975)

14. Raz, R.: Multi-linear formulas for permanent and determinant are of super-
polynomial size. Electron. Colloquium Comput. Complex. (067) (2003)

15. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. J.
ACM 39(3), 736–744 (1992)

16. Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean func-
tions. Soviet Math. Dokl. 31, 354–357 (1985)

17. Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent.
Math. Notes of the Acad. of Sci. of the USSR, 37(6), pp. 485–493 (1985)

18. Schnorr, C.P.: A lower bound on the number of additions in monotone computa-
tions. Theor. Comput. Sci. 2(3), 305–315 (1976)

19. Sengupta, R., Venkateswaran, H.: Multilinearity can be exponentially restrictive
(pre-liminary version). Technical Report GIT-CC-94-40, Georgia Institute of Tech-
nology. College of Computing (1994)

20. Shamir, E., Snir, M.: Lower bounds on the number of multiplications and the
number of additions in monotone computations. Tech. Rep. RC 6757, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, (1977)

A Faster Algorithm for Determining
the Linear Feasibility of Systems

of BTVPI Constraints

Piotr Wojciechowski and K. Subramani(B)

LDCSEE, West Virginia University, Morgantown, WV, USA
{pwojciec,k.subramani}@mail.wvu.edu

Abstract. In this paper, we discuss an approach for determining the fea-
sibility of a polyhedron defined by a system of Binary Two Variable Per
Inequality (BTVPI) constraints. A constraint of the form: ai ·xi+aj ·xj ≥
bij is called a BTVPI constraint, if ai, aj ∈ {0, 1, −1, 2, −2} and bij ∈ Z.
These constraints find applications in a number of domains, including
scheduling and abstract interpretation. Our algorithm is based on a
rewrite version of the well-known Fourier-Motzkin elimination procedure
for linear programs. We show that our algorithm converges in polynomial
time and is faster than all known algorithms for this class of problems.

1 Introduction

The focus of this paper is on the design and analysis of a fast algorithm for a
specialized class of linear programs. This class of linear programs is defined by
linear constraints having at most two non-zero coefficients. Furthermore, the non-
zero coefficients must belong to the set {±1,±2}. These constraints are called
Binary Two Variable Per Inequality (BTVPI) constraints and they subsume
constraints such as difference constraints and UTVPI constraints (see Sect. 2).
The more general class of TVPI constraints has been studied by others [6,14].
For this class, the best known algorithm runs in O(m · n2 · log m) time [14], on
a system with m constraints over n variables. Our algorithm runs in O(m · n2)
time and is thus asymptotically superior. However, our algorithm works for a
smaller constraint class. We use the same idea as in [14], i.e., Fourier-Motzkin
elimination. However, owing to the specialized nature of our constraints, we are
able to incorporate substantially different pruning techniques, which simplify
our algorithm and its analysis.

For the longest time, the Simplex algorithm discovered by Dantzig [9] was
the algorithm of choice for linear programming problems. Since then, the linear
programming problem was shown to be in P through the use of the ellipsoid
algorithm [13]. Although provably polynomial time, the ellipsoid algorithm has
not proven to be efficient in practice. The projective and affine scaling methods

This research was made possible by the NASA Established Program to Stimulate Com-
petitive Research, Grant # 80NSSC22M0027.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 313–327, 2023.
https://doi.org/10.1007/978-3-031-23101-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_21

314 P. Wojciechowski and K. Subramani

for linear programming discussed in [15] are both theoretically and practically
efficient. Research has also progressed along the direction of finding efficient
algorithms for special classes of linear programs. For instance, Tardos [24] dis-
cusses a strongly polynomial time algorithm for combinatorial linear programs.
Recall that a combinatorial linear program is one in which all the entries in
the constraint matrix A are bounded by a polynomial in the dimensions of A.
Similarly, there exists a strongly polynomial time algorithm for Horn programs.
Recall that in a Horn program, every entry in A is in the set {0, 1,−1} and fur-
thermore, there is at most one positive entry per constraint. Horn programs have
several interesting properties which have been documented in [25] and [26]. In
[5], an incremental approach to solve Horn programs with absolute constraints is
discussed. This approach was distilled into a strongly polynomial time algorithm
in [4].

Over the years, a number of approaches have been developed to handle TVPI
systems and in particular, difference constraint systems, and UTVPI constraint
systems. It is well-known that the LF problem in difference constraints is AC0-
equivalent to the problem of finding shortest paths in a weighted, directed graph
[7,27]. Consequently, strongly polynomial time algorithms such as Bellman-Ford
[1] can be used to solve the same. It must be noted though that although
Bellman-Ford is asymptotically the best choice for DCSs, there is documented
evidence of other approaches being faster on real-world instances [12].

[16] and [18] showed that there exists an AC0-reduction from the LF problem
in UCSs to a path problem in a specialized network. Similar reduction schemes
with difference constraint networks have been discussed in [21] and [23].

For general TVPI constraints, Shostak provided the first AC0-reduction to
transform the LF problem into a path problem in graphs. He defined the notion
of residues in graph loops and identified negative loop residues with infeasibility
of the underlying TVPI system. His approach is exponential in the worst case.
This approach was improved by Nelson [19], who gave an nO(log n) algorithm.
The loop residue approach was further refined by Aspvall, et. al., in [3] and
they produced the first polynomial time algorithm for linear feasibility in TVPI
constraints. The main contribution in [3] was the efficient propagation of inequal-
ities around loops. The running time of their algorithm is O(m · n3 · I), where
I represents the number of bits required the represent the problem instance. In
[14], Hochbaum and Naor provided the first strongly polynomial time algorithm
for this problem. Their algorithm runs in time O(m · n2 · log m) and does not
depend upon the values in b. The algorithm in [14] is based on the Fourier-
Motzkin elimination technique used to solve systems of linear inequalities [11].
Yet another loop-following approach is proposed in [6]. Their approach runs in
time O(m ·n2 · (log m+log2 n)), which is slightly inferior to the approach in [14],

It is well-known that the linear feasibility problem is P-complete [2]. Thus,
any problem in P can be reduced in log-space (or in NC) to LF. The advantage
of such a reduction is that there are a number of highly optimized solvers such
as CPLEX and Gurobi [20] that can be used to solve instances in these problem
domains. From the parallel perspective, the LF problem in both DCSs and

Linear Feasibility in BTVPI Constraint Systems 315

UCSs is in NC. For arbitrary TVPI systems, Cohen and Meggido propose an
algorithm that runs in Õ(n) time using O(m · n) processors [6]. It is mentioned
in [6] that the approach in [14] can be parallelized to run in O(n2 · log m) time.
Our algorithm is superior to the current best algorithm for TVPI constraints. At
the same time, we are considering only a subset of the constraints considered by
[14] and [6]. Table 1 contains the best known results for solving the LF problem
in DCSs, UCSs, BCSs, and systems of TVPI constraints.

Table 1. Best known algorithms

System Linear feasibility

Difference O(m · n) [7]
UTVPI O(m · n) [16]
BTVPI O(m · n2) (This paper)
TVPI O(m · n2 · log m) [14]

The principal contributions of this paper are as follows: 1. A rewrite ver-
sion of Fourier-Motzkin Elimination. 2. A combinatorial algorithm for the linear
feasibility problem in BCSs.

2 Statement of Problems

In this section, we introduce the concepts examined in this paper and define the
problems under consideration. In this paper, we examine the feasibility problem
for a restricted form of linear programs.

Definition 1. A Linear Program (LP) is a conjunction of constraints in
which each constraint is an inequality of the form aj · x ≥ bj where aj ∈ Z

n,
bj ∈ Z, and each variable xi can take any real value.

As mentioned before, an LP can be expressed in matrix form as: A · x ≥ b.
Furthermore, the LF problem is concerned with checking if a given LP is non-
empty. In this paper, we focus on LPs where each constraint has at most two
non-zero variables.

Definition 2. A Two Variable Per Inequality (TVPI) constraint is a con-
straint with at most two non-zero variables.

An LP in which every constraint is a TVPI constraint is called a TVPI
Constraint System (TCS). We can further restrict constraints by limiting the
values which the non-zero coefficients can take.

Definition 3. A difference constraint is a TVPI constraint such that each
non-zero variable has a coefficient belonging to the set {±1}, at most one coef-
ficient is 1, and at most one coefficient is −1.

316 P. Wojciechowski and K. Subramani

An LP in which every constraint is a difference constraint is known as a
Difference Constraint System (DCS).

Definition 4. A Unit Two Variable Per Inequality (UTVPI) constraint is
a TVPI constraint such that each non-zero variable has a coefficient belonging
to the set {±1}.

Note that every difference constraint is a UTVPI constraint. An LP in which
every constraint is a UTVPI constraint is known as a UTVPI Constraint System
(UCS).

Definition 5. A Binary Two Variable Per Inequality (BTVPI) constraint
is a TVPI constraint such that each non-zero variable has a coefficient belonging
to the set {±1,±2}.

Every UTVPI constraint is a BTVPI constraint and every BTVPI constraint
is a TVPI constraint. An LP in which every constraint is a BTVPI constraint is
known as a BTVPI Constraint System (BCS).

Definition 6. A constraint with only one non-zero coefficient is known as an
absolute constraint.

It is well-known that absolute constraints can be rewritten as difference con-
straints using an auxiliary variable [7]. It follows that every absolute constraint
is a difference constraint. At this juncture, we distinguish between binary con-
straints (constraints having two non-zero variables) and absolute constraints
(constraints with only one non-zero variable).

From an input constraint system, new constraints can be derived using infer-
ence rules. For LPs, we use a single inference rule, viz., Rule (1).

ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′
i · xi ≥ b2∑n

i=1(ai + a′
i) · xi ≥ b1 + b2

(1)

Example 1. Consider the constraints x1 − x2 ≥ 1 and x2 + 2 · x3 ≥ −1, applying
the ADD rule to these constraints results in the constraint x1 + 2 · x3 ≥ 0.

We refer to Rule (1) as the ADD rule. It is easy to see that Rule (1) is sound
since any assignment that satisfies the hypotheses also satisfies the consequent.
Furthermore, as per Farkas’ lemma (a theorem of the alternative relating the
feasibility LPs), Rule (1) is complete as well. Thus, any infeasible LP has a
refutation using the ADD rule.

In this paper, we use two specializations of the above-mentioned ADD rule.
Fourier-Motzkin elimination – Fourier-Motzkin Elimination (FM) is a procedure
to eliminate a single variable from a constraint system [10]. Consider a variable
xi. For each pair of constraints such that one constraint has xi with positive
coefficient and the other constraint has xi with negative coefficient, the FM
procedure derives a new constraint without xi [10]. This can be accomplished
through use of the ADD rule.

Linear Feasibility in BTVPI Constraint Systems 317

Example 2. Consider the constraints x1−2 ·x2 ≥ 2 and x2+2 ·x1 ≥ 1. Applying
the FM procedure to eliminate x2 results in the constraint x1 + 4 · x3 ≥ 4. This
constraint can be derived using the ADD rule as follows:

1. Apply the ADD rule to the constraints x1 − 2 · x2 ≥ 2 and x2 + 2 · x1 ≥ 1 to
get x1 − x2 − 2 · x3 ≥ 3.

2. Apply the ADD rule to the constraints x1 −x2 +2 ·x3 ≥ 3 and x2 +2 ·x1 ≥ 1
to get x1 + 4 · x3 ≥ 4.

To represent the FM procedure, we introduce a new rule called the FM
Rule. The FM Rule takes two constraints which share a variable and derives the
constraint that Fourier-Motzkin elimination would derive from those constraints.
Rule (2) shows this when applied to TVPI constraints.

FM :
ai · xi + aj · xj ≥ b1 a′

i · xi + ak · xk ≥ b2 ai · a′
i < 0

aj · |a′
i| · xj + ak · |ai| · xk ≥ b1 · |a′

i| + b2 · |ai| (2)

Note that, if the constraints to which the FM rule is being applied are TVPI
constraints, then so is the derived constraint. Observe that the application of
the FM Rule in Rule (2) can be accomplished using (|ai| + |a′

i| − 1) applications
of the ADD rule. Note that if aj = 0, ak = 0, or xj = xk, then the constraint
derived by the FM Rule in Rule (2) rule is an absolute constraint.

Lifting – Lifting is a technique used in [4] to derive new absolute constraints
by using existing absolute constraints to eliminate all but one variable from a
constraint.

Example 3. Consider the constraint x1 − x2 ≥ 5. If in addition, we have the
absolute constraints x1 ≥ 5 and x2 ≥ 6, then we can derive (infer) the absolute
constraint x1 ≥ 11. Note that this raises (or “lifts”) the lower bound on x1 from
5 to 11. This constraint can be derived using the ADD rule as follows: Apply
the ADD rule to the constraints x1 − x2 ≥ 5 and x2 ≥ 6 to get x1 ≥ 11.

The algorithm for linear feasibility in BCSs relies exclusively on the ADD
operation and the two specializations described above.

3 A Rewrite Version of Fourier-Motzkin Elimination

In this section, we design a rewrite version of Fourier-Motzkin Elimination. In
Sect. 4, we will utilize various properties of BCSs to show that, when applied
to BCSs, this rewrite procedure can be implemented efficiently. We refer to this
procedure as FM-Rewrite.

Fourier-Motzkin elimination is a well known procedure for determining if a
system of linear constraints is linearly feasible [10]. In Fourier-Motzkin Elimina-
tion, variables are eliminated one-by-one from the system until only one variable
remains. The bounds on that variable are then used to determine if the original
system is feasible. It is important to note that Fourier-Motzkin Elimination is
both sound and complete [10].

Let L be a system of linear constraints. Throughout this section, we refer to
useless constraints.

318 P. Wojciechowski and K. Subramani

Definition 7. A constraint l :
∑n

i=1 ai · xi ≥ b is useless with respect to L, if
there exists a constraint l′ :

∑n
i=1 a′

i · xi ≥ b′ in L such that: 1. l and l′ use the
same variables. 2. There exists a positive constant c, such that c · ai = a′

i for
i = 1 . . . n and c · b ≤ b′.

Any x that satisfies l′ also satisfies l. Thus, we do not need to add the
constraint l to L, i.e., it is redundant. Thus, we only keep the tightest version
of each constraint, breaking ties arbitrarily. Note that each constraint in L is
trivially useless with respect to L. This means that no additional copies of those
constraints need to be added to L. Any constraint which is not useless with
respect to L is called useful with respect to L. There are three special types of
systems that we want to consider. These are as follows:

1. Systems that contain a constraint of the form 0 ≥ b where b > 0 (Type 1).
2. Non-Type 1 systems in which no constraint that is useful with respect to L

can be derived by a single application of the FM Rule (Type 2).
3. Non-Type 1 systems in which a constraint that is useful with respect to L

can be derived by a single application of the FM Rule (Type 3).

Note that Type 1 systems are trivially infeasible. We now show that Type 2
systems are feasible.

Theorem 1. Let L be a system of linear constraints. If L is a Type 2 system,
then L is feasible.

Proof. Let L be a Type 2 system. Assume, for the sake of contradiction, that
L is infeasible. Note that Fourier-Motzkin elimination is a complete refutation
system [10]. Thus, Fourier-Motzkin elimination, when applied to L will eventu-
ally produce a constraint l∗ of the form 0 ≥ b where b > 0. Thus, the constraint
l∗ is derivable from L by a sequence of applications of the FM Rule.

Since L does not contain a constraint of the form 0 ≥ b where b > 0, the
constraint l∗ is useful with respect to L. Consider the sequence of applications
of the FM Rule used to derive l∗ and let l′ be the first constraint derived by this
sequence that is useful with respect to L. Since l∗ is useful with respect to L,
such a constraint must exist.

Let l′1 and l′2 be the constraints used to derive l′. Note that l′1 was either
derived earlier by the sequence of applications of the FM Rule, or l′1 ∈ L. In
either case, l′1 is useless with respect to L. The same holds for l′2.

Let l1 ∈ L and l2 ∈ L be the constraints that make l′1 and l′2 useless, respec-
tively. Consider the constraint l3 derived from l1 and l2 by the FM rule. Since
L is a Type 2 system, l3 is useless with respect to L. Thus, there is a con-
straint l′3 ∈ L that makes l3 useless. However, l′3 also makes l′ useless. This is a
contradiction. Thus, L must be feasible. ��

The rewrite version of Fourier-Motzkin Elimination classifies LPs by rewrit-
ing them until they become either a Type 1 system or a Type 2 system. Those
that become Type 1 systems will be declared infeasible. Those that become Type

Linear Feasibility in BTVPI Constraint Systems 319

2 systems will be declared feasible. This rewriting will be accomplished through
use of the FM Rule.

Let L be a Type 3 system. Let l be a constraint that is useful with respect
to L and is derivable from L by an application of the FM Rule. Note that if
no such constraint exists, then L would be a Type 2 system. We rewrite L as
L ∪ {l} and then repeat this procedure until L becomes a Type 1 system or a
Type 2 system. The flowchart in Fig. 1 illustrates this procedure:

Fig. 1. Flow of the FM-Rewrite algorithm.

We now show that FM-Rewrite correctly determines the feasibility of a
linear program.

Theorem 2. Let L be an LP. FM-Rewrite(L) returns feasible if and only if
L is linearly feasible.

Proof. If L is a Type 1 system, then L is infeasible and FM-Rewrite(L) cor-
rectly returns infeasible. If L is a Type 2 system, then, by Theorem 1, L is
feasible and FM-Rewrite(L) correctly returns feasible.

If L is a Type 3 system, then there is a constraint l that is useful with respect
to L and is derivable from L by a single application of the FM rule. Since Fourier-
Motzkin Elimination is a sound refutation system [10], L is feasible if and only
if L ∪ {l} is feasible. In this case, FM-Rewrite(L) correctly returns the same
value as FM-Rewrite(L ∪ {l}). ��

In the worst case, for a system L with m constraints over n variables,
Fourier-Motzkin Elimination produces 4 · (m4)(2

n) constraints [10]. Thus, FM-

Rewrite(L) runs in time Ω(m(2n)) with a naive implementation.

320 P. Wojciechowski and K. Subramani

4 The BCS Linear Programming Algorithm

In this section, we show that FM-Rewrite can be implemented efficiently for
BCSs.

Let B be a BCS with m constraints over n variables and let B∗ be a set of
constraints derivable from B by a sequence of applications of the FM rule that
are useful with respect to B. First, we establish that the constraints in B∗ take a
specific form. In fact, each constraint in B∗ is of the form ai·2li ·xi+aj ·2lj ·xj ≥ bij
where ai, aj ∈ {1, 0,−1}, and li, lj ≥ 0. Since the order of xi and xj does
not matter, the proofs and algorithms in this section assume without loss of
generality that li ≥ lj .

Theorem 3. Let B be a BCS and let B∗ be a set of useful constraints derivable
from B by a sequence of applications of the FM rule. Each constraint in B∗ is
of the form ai · 2li · xi + aj · 2lj · xj ≥ bij where ai, aj ∈ {1, 0,−1}, and li, lj ≥ 0.

Proof. We will prove this by induction on the number of applications of the FM
rule.

Before the FM rule is applied, there are no derived constraints. Since B is
a BCS, all constraints in B have the desired form. Assume that all constraints
derivable from B by a sequence of h applications of the FM rule have the desired
form.

Consider the (h + 1)th application of the FM rule. There are two cases we
need to consider.

1. We derive a new constraint using ai · 2li · xi + aj · 2lj · xj ≥ bij and
−ai · 2l

′
i · xi + ak · 2lk · xk ≥ bik where li ≥ l′i. In this case, the constraint

derived by the FM Rule is aj · 2lj · xj + ak · 2lk+li−l′i · xk ≥ bij + 2li−l′i · bik.
2. We derive a new constraint using ai · 2li · xi + aj · 2lj · xj ≥ bij and

−ai · 2l
′
i · xi + ak · 2lk · xk ≥ bik where l′i ≥ li. In this case, the constraint

derived by the FM rule is aj · 2lj+l′i−li · xj + ak · 2lk · xk ≥ 2l
′
i−li · bij + bik.

Note that in each case, the derived constraint is of the desired form. Note
that if xj = xk, then the derived constraint is an absolute constraint. ��

We further reduce the number of constraints in B∗ by looking at the value
of (li − lj) for each constraint in B∗.

Theorem 4. Let B be a BCS and let B∗ be a set of useful constraints derivable
from B. For each 1 ≤ i, j ≤ n, ai, aj ∈ {1,−1}, and l ∈ Z, we can assume
without loss of generality that B∗ contains at most one constraint of the form
ai · 2li · xi + aj · 2lj · xj ≥ bij such that li − lj = l.

Proof. Let ai · 2li · xi + aj · 2lj · xj ≥ bij and ai · 2l′i · xi + aj · 2l′j · xj ≥ b′
ij be two

constraints derivable from B such that l = li − lj = l′i − l′j . Since li − lj = l′i − l′j ,
li − l′i = lj − l′j

Linear Feasibility in BTVPI Constraint Systems 321

Assume without loss of generality that li ≥ l′i. In this case, the constraint
ai · 2l

′
i · xi + aj · 2l

′
j · xj ≥ b′

ij is equivalent to the constraint ai · 2li · xi + aj ·
2l

′
j+li−l′i ·xj ≥ b′

ij ·2li−l′i . Since li− l′i = lj − l′j , this is equivalent to the constraint
ai · 2li · xi + aj · 2lj · xj ≥ b′

ij · 2li−l′i .
If bij > b′

ij · 2li−l′i , then the constraint ai · 2li · xi + aj · 2lj · xj ≥ bij is
stronger than the constraint ai · 2l′i · xi + aj · 2l′j · xj ≥ b′

ij . Thus, the constraint
ai · 2l

′
i · xi + aj · 2l

′
j · xj ≥ b′

ij is useless with respect to B.
Similarly, if b′

ij · 2li−l′i > bij , then the constraint ai · 2l′i · xi + aj · 2l′j · xj ≥ b′
ij

is stronger than the constraint ai ·2li ·xi +aj ·2lj ·xj ≥ bij . Thus, the constraint
ai · 2li · xi + aj · 2lj · xj ≥ bij is useless with respect to B. ��

From Theorem 4, B∗ only needs to contain at most one constraint for a given
i, j, ai, aj and l = li − lj . Thus, we can store B∗ as a 5-dimensional array in
which B∗[i, j, ai, aj , l] is a constraint of the form ai · 2li · xi + aj · 2lj · xj ≥ bij
such that li − lj = l.

Algorithm 4.1, uses the technique described in the proof of Theorem 4 to
eliminate useless constraints. This algorithm takes as input a new constraint
and the array of derived constraints. The algorithm checks to see if an already
derived constraint makes the new constraint useless with respect to B∪B∗. If no
constraint does, the new constraint is added to the array of derived constraints.

Input: Array B∗ and BTVPI constraint c.

Output: None.

1: procedure Add-Constraint-Lin(B∗, c)

2: if (B∗ contains a constraint c′ whose left-hand side is a multiple of c’s left-hand

side) then

3: if (c makes c′ useless) then

4: Replace c′ with c in B∗.

5: else

6: Add c to B∗.

Algorithm 4.1: Add the constraint c to B∗ if it is useful.

Note that Algorithm 4.1 runs in constant time. From Theorem 4, the con-
straint c is added to B∗ by Algorithm 4.1 if and only if it is useful with respect
to B ∪ B∗.

We will later establish that at any point in the derivation procedure l ≤ n.
Thus, we only need to keep at most 4 · n constraints using any pair of variables.
Thus B∗ contains at most 4 · n3 non-absolute constraints.

We explain how to handle absolute constraints. Algorithm 4.1 handles the
addition of non-absolute constraints. We handle the derivation of new absolute
constraints by using a technique called lifting. This technique utilizes existing

322 P. Wojciechowski and K. Subramani

absolute constraints to derive new absolute constraints. Theorem 5 shows how
new absolute constraints are generated through lifting.

Theorem 5. Let B be a BCS and let ai ·2li ·xi+aj ·2lj ·xj ≥ bij be a constraint
derivable from B. If B contains the absolute constraint −aj · xj ≥ bj, then the
constraint ai · 2li · xi ≥ bij + 2lj · bj is derivable from B.

Proof. We can use the constraint −aj · xj ≥ bj to eliminate the term aj · 2lj · xj

from the constraint ai · 2li · xi + aj · 2lj · xj ≥ bij . This results in the constraint
ai · 2li · xi ≥ bij + 2lj · bj as desired. ��

In addition to using B∗ to store non-absolute constraints, the absolute con-
straints derivable from B can be represented by a two dimensional array D,
where D[i, ai] stores the tightest bound on the term ai · xi derived so far. Thus,
at any point we know that −D[i,−1] ≥ xi ≥ D[i, 1].

Algorithm 4.2 uses the technique described in the proof of Theorem 5 to
generate new absolute constraints.

Input: Array D and BTVPI constraints c.

Output: None.

1: procedure Update-Bounds-Lin(D, c)

2: Assume that c is of the form ai · 2li · xi + aj · 2lj · xj ≥ b.

3: if (
b+2

lj ·D[j,−aj]

2li
> D[i, ai]) then

4: D[i, ai] ← b+2
lj ·D[j,−aj]

2li
. � ai · 2li · xi ≥ b + 2lj · D[j, −aj] is a derivable

absolute constraint.

5: if (b+2li ·D[i,−ai]

2
lj

> D[j, aj]) then

6: D[j, aj] ← b+2li ·D[i,−ai]

2
lj

. � aj · 2lj · xj ≥ b + 2li · D[i, −ai] is a derivable

absolute constraint.

Algorithm 4.2: Update the bounds stored in D to account for the constraint c.

Note that Algorithm 4.2 runs in constant time. From Theorem 5, the new
bounds derived by Algorithm 4.2 are all derivable from constraint c and the
existing bounds stored in D.

We utilize Algorithms 4.1 and 4.2 to solve the linear feasibility problem for
BCSs. Algorithm 4.3 represents our approach. A flowchart for this algorithm is
depicted in Fig. 2.

Observe that each application of the FM rule uses a constraint in B. Thus,
each application of the FM rule is done to constraints of the form ai · 2li · xi

+aj · 2lj · xj ≥ bij and −ai · 2l′i · xi + ak · 2l′k · xk ≥ bik where l′i, l
′
k ∈ {0, 1}. Thus,

each iteration of the for loop on Line 9 of Algorithm 4.3 increases the maximum
value of l = li − lj by at most 1. Thus, l ≤ n as desired.

Linear Feasibility in BTVPI Constraint Systems 323

Fig. 2. Flow of BCS feasibility algorithm.

324 P. Wojciechowski and K. Subramani

Input: BCS B.

Output: Return a linear solution to B or false if B linear infeasible.

1: procedure Lin-Binary-BCS(B)

2: Let B∗ be an array storing the non-absolute derived constraints.

3: Let D be an array storing the derived bounds.

4: Initially, each element of D is −∞.

5: for (each constraint c ∈ B) do

6: Add-Constraint-Lin(B∗, c).

7: if (c is an absolute constraint) then

8: Update the appropriate bound in D.

9: for (each constraint c ∈ B) do

10: for (each constraint c′ ∈ B∗ that shares a variable with c) do

11: if (the FM rule can be applied to c and c′) then

12: Let c′′ be the constraint derived from c and c′ by the FM rule.

13: if (c′′ is a contradiction) then

14: return false.

15: Add-Constraint-Lin(B∗, c′′).

16: Update-Bounds-Lin(D, c′′).

17: if (c′′ is an absolute constraint) then

18: Update D with the new bound.

19: for (each variable xi) do � Construct a feasible solution.

20: if (D[i, 1] > −D[i, −1]) then

21: return false. � The lower bound on xi exceeds the upper bound.

22: if (D[i, 1] �= −∞) then

23: D[i, −1] ← −D[i, 1].

24: else if (D[i, −1] �= −∞) then

25: D[i, 1] ← −D[i, −1].

26: else � −∞ ≤ xi ≤ ∞.

27: D[i, 1] ← D[i, −1] ← 0.

28: y[i] ← D[i, 1].

29: for (each variable xj) do

30: for (l = 0 . . . n) do

31: Update-Bounds-Lin(D,B∗[i, j, ±1, ±1, l]).

32: return y.

Algorithm 4.3: Determine if a BCS B is linear feasible.

Example 4. Let B the BCS consisting of the constraints l1 : x1 + 2 · x2 ≥ 1,
l2 : −x2 + 2 · x3 ≥ 1, l3 : 2 · x4 − x1 ≥ 2, l4 : −x1 ≥ −2, and l5 : x1 ≥ 1.
Initially, we have B∗[1, 2, 1, 1, 1] = 1, B∗[2, 3,−1, 1, 1] = 1, B∗[1, 4,−1, 1, 1] = 2,
D[1,−1] = −2, and D[1, 1] = 1.

Linear Feasibility in BTVPI Constraint Systems 325

First, we process the constraint l1. l1 can be used together with the constraint
l2, the constraint l3, or the constraint l4 to derive a new constraint. When used
with the constraint l2, the constraint derived by the FM Rule is l6 : x1+4·x3 ≥ 3.
This constraint is stored by setting B∗[1, 3, 1, 1, 2] = 3. When used with the
constraint l3, the constraint derived by the FM Rule is l7 : 2 · x2 + 2 · x4 ≥ 3.
This constraint is stored by setting B∗[2, 4, 1, 1, 0] = 2. When used with the
constraint l4, the constraint derived by The FM Rule is l8 : 2 · x2 ≥ −1. This
constraint is stored by setting D[2, 1] = − 1

2 .
Next, we process the constraint l2. l2 can be used together with the constraint

l1 or the constraint l8 to derive a new constraint. When used with the constraint
l1, the constraint derived by the FM Rule is l6 which was already generated.
When used with the constraint l8, the constraint derived by Algorithm 4.2 is
l9 : 4 · x3 ≥ 1. This constraint is stored by setting D[3, 1] = 1

4 .
Next, we process the constraint l3. l3 can be used together with the constraint

l1, the constraint l5, or the constraint l6 to derive a new constraint. When used
with the constraint l1, the constraint derived by the FM Rule is l7 which was
already generated. When used with the constraint l5, the constraint derived by
Algorithm 4.2 is l10 : 2 · x4 ≥ 3. This constraint is stored by setting D[4, 1] = 3

2 .
When used with the constraint l6, the constraint derived by the FM Rule is
l11 : 2 · x4 + 4 · x3 ≥ 5. This constraint is stored by setting B∗[4, 3, 1, 1, 1] = 5.

When constructing the solution, we set x1 = D[1, 1] = 1. At this point,
l1 is used to set D[2, 1] = 0 and l6 is used to set D[3, 1] = 1

2 . Then, we set
x2 = D[2, 1] = 0. At this point, no further updates to D are made. Then, we set
x3 = D[3, 1] = 1

2 . At this point, no further updates to D are made. Finally, we
set x4 = D[4, 1] = 3

2 . This gives a solution of x = (1, 0, 1
2 , 3

2). It is easy to see
that this solution satisfies every constraint.

4.1 Analysis

Note that the the runtime of Algorithm 4.3 is dominated by the for loop between
Line 9 and Line 18. This loop iterates over all m constraints, all n variables, and
all n possible values of l. In each iteration, a fixed number of constant time
operations are performed. Thus, the for loop on Line 9 of Algorithm 4.3 runs in
time O(m · n2). Consequently, Algorithm 4.3 runs in time O(m · n2).

The linear solution y is constructed by the for loop between Line 19 and
Line 31. This loop assigns each xi a valid value and then updates the bounds of
the remaining variables based on that assignment. To update the bounds, each
constraint in B∗ that uses xi is processed. There are O(n2) such constraints.
Thus, producing y takes O(n3) time. We now prove that Algorithm 4.3 always
returns a valid linear assignment to BCS B if one exists.

Theorem 6. Let B be a BCS. Algorithm 4.3 returns a valid linear assignment
to B, if and only if B is linear feasible.

Proof. First assume that Algorithm 4.3 returns false. Thus, there is a variable xi

such that D[i, 1] > −D[i,−1]. From Theorem 5, the constraints xi ≥ D[i, 1] and

326 P. Wojciechowski and K. Subramani

−xi ≥ D[i,−1] are both derivable from B. Thus, xi ≥ D[i, 1] > −D[i,−1] ≥ xi.
This is a contradiction. Consequently, B is infeasible.

Now assume that Algorithm 4.3 returns a vector y. Assume that there is a
constraint Bk that is violated by y. From Theorems 3, 4, and 5, when the for
loop on Line 9 processes constraint Bk the bounds in D and B∗ are adjusted so
that this cannot happen. Thus, the constraint Bk is satisfied by y. Consequently,
B is feasible. ��

5 Conclusion

In this paper, we introduced the BTVPI constraint system and studied the lin-
ear feasibility problem in the same. As mentioned before, BTVPI constraint
systems find applicability in a wide range of domains, including program verifi-
cation [22] and operations research [17]. It follows that there is a need for efficient
algorithms which exploit their structure. We designed and analyzed a combina-
torial algorithm for the same. The running time of our algorithm improves on
the heretofore best running time for this problem [6,14]. Additionally, our algo-
rithms are simple and based on well-understood refutation rules. In fact our
algorithm uses a single refutation rule, i.e., the ADD rule and its variants. We
plan on implementing the algorithm discussed in this paper and contrasting its
performance with a general-purpose solvers such as CPLEX [8]. It would be
interesting to see if our specialized algorithm outperforms an optimized solver.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory. Prentice-Hall,
Algorithms and Applications (1993)

2. Àlvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric
logarithmic space. Electronic Colloquium on Computational Complexity (ECCC),
vol. 3, no. 39 (1996). https://doi.org/10.1007/PL00001603

3. Aspvall, B., Shiloach, Y.: A fast algorithm for solving systems of linear equations
with two variables per equation. Linear Algebra Appl. 34, 117–124 (1980)

4. Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for Horn programs.
Discret. Optim. 10, 85–101 (2013)

5. Chandru, V., Hooker, J.N.: Optimization methods for logical inference. Series in
Discrete Mathematics and Optimization. John Wiley & Sons Inc. (1999)

6. Cohen, E., Meggido, N.: Improved algorithms for linear inequalities with two vari-
ables per inequality. SIAM J. Comput. 23(6), 1313–1347 (1994)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge, MA (2009)

8. CPLEX Manual. IBM ILOG CPLEX Optimization Studio V12.8.0 Documentation
(2017)

9. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton, NJ (1963)

10. Dantzig, G.B., Eaves, B.C.: Fourier-motzkin elimination and its dual. J. Comb.
Theor. (A) 14, 288–297 (1973)

https://doi.org/10.1007/PL00001603

Linear Feasibility in BTVPI Constraint Systems 327

11. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristics for improving network
partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181
(1982)

12. Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13, 1–79 (1988)
13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
14. Hochbaum, D.S., (Seffi) Naor, J.: Simple and fast algorithms for linear and integer

programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192
(1994)

15. Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. In:
Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pp.
302–311 (1984)

16. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 9

17. Luyo, L.E.F., Agra, A., Figueiredo, R., Anaya, E.O.: Mixed integer formulations
for a routing problem with information collection in wireless networks. Eur. J.
Oper. Res. 280(2), 621–638 (2020)

18. Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. 19(1),
31–100 (2006)

19. Nelson, C.G.: An no(log n) algorithm for the two-variable-per-constraint linear
program satisfiability problem. Technical Report Technical Note STA, Stanford
University, Computer Science Department, pp. 78–689 (1978)

20. Gurobi Optimization. Gurobi optimizer reference manual4. http://www.gurobi.
com (2014)

21. Revesz, P.Z.: Tightened transitive closure of integer addition constraints. In: Sym-
posium on Abstraction, Reformulation, and Approximation (SARA), pp. 136–142
(2009)

22. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 1–30 (2019)

23. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear
feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

24. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Oper. Res. 34(2), 250–256 (1986)

25. Veinott, A.F., Dantzig, G.B.: Integral extreme points. SIAM Rev. 10, 371–372
(1968)

26. Veinott, A.F., LiCalzi, M.: Subextremal functions and lattice programming, unpub-
lished manuscript (1992)

27. Vollmer, H.: Introduction to Circuit Complexity. Springer (1999). https://doi.org/
10.1007/978-3-662-03927-4

https://doi.org/10.1007/11559306_9
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4

Quantum Complexity for Vector
Domination Problem

Andris Ambainis and Ansis Zvirbulis(B)

Center for Quantum Computer Science, Faculty of Computing,
University of Latvia, Riga, Latvia

ansis.z@inbox.lv

Abstract. In this paper we investigate quantum query complexity of
two vector problems: vector domination and minimum inner product.
We believe that these problems are interesting because they are closely
related to more complex 1-dimensional dynamic programming problems.
For the general case, the quantum complexity of vector domination is
Θ(n1−o(1)), similarly to the more known orthogonal vector problem (OV).
We prove a Õ(n2/3) upper bound and a Ω(n2/3) lower bound for spe-
cial case of vector domination where vectors are from {1, . . . , W}d and
number of dimensions d is a constant and W ∈ O(poly n). We also prove
a Ω(n2/3) lower bound for minimum inner product with the same con-
straints. To prove bounds we use reductions from the element distinctness
problem as well as a classical data structure - Fenwick trees.

Keywords: Quantum query · Quantum query complexity · LWS ·
Element distinctness · QSETH · Fenwick trees

1 Introduction

Dynamic programming is one of among the most widely used methods for algo-
rithm design. It has been used to solve many well known problems. For example,
Dijkstra’s algorithm for finding shortest paths in graphs, the O(n2) algorithm
for edit distance [17,21], the fastest exponential time algorithm for the travelling
salesman problem by Held and Karp [11] are all based on dynamic programming
and there are many more applications of it.

Given the widespread applicability of dynamic programming, it is natural
to ask whether it can be combined with quantum effects to produce quantum
speedups for problems whose best classical solutions involve dynamic program-
ming. Up to now, this question has been considered for two types of dynamic
programming algorithms.

First, it was studied for exponential-time algorithms that use dynamic pro-
gramming over subsets of an n-element set. The most famous algorithm of this
type is the Held-Karp algorithm for Travelling Salesman problem (TSP) [11]
which solves it in time O(2nn2) and is still the fastest classical algorithm for
this problem. This algorithm can be combined with quantum search, resulting
in a quantum algorithm that runs in time O(1.728...n) [2]. This was followed by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 328–341, 2023.
https://doi.org/10.1007/978-3-031-23101-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_22

Quantum Complexity for Vector Domination Problem 329

other quantum speedups for exponential-time dynamic programming algorithms
based on similar combinatorial structures [15,20].

Second, possible quantum speedups for dynamic programming have been
studied in the context of the Edit Distance problem whose best classical algo-
rithm uses dynamic programming over a 2-dimensional array. Classically, the
best algorithm for this problem runs in time O(n2). Despite a considerable effort,
no quantum speedup has been discovered. An Õ(n1.5) quantum lower bound
has been shown, either in the quantum query model for an abstract version of
the problem [3] or in the time complexity model under a plausible complexity
assumption [6].

Another class of dynamic programming algorithms is based on computing
values for elements of a 1-dimensional array [16]. A prototypical example of a
problem that can be solved in this way is the Least Weight Subsequence (LWS)
problem. In this problem, one is given a sequence of n items together with
weights for every pair of items and has to determine a subsequence S which
minimizes the sum of weights of pairs that are adjacent in S. As described in
[16], this problem can serve as a model for a variety of situations. Classically,
various cases of LWS are subquadratically equivalent to much simpler problems,
such as Orthogonal Vectors (OV), Vector Domination (VD) and Minimum Inner
Product (MIP), called core problems in [16].

The goal of this paper is to understand the complexity of these core problems
in the quantum setting, with the perspective of finding quantum lower and upper
bounds for problems that are classically solved via dynamic problem.

Orthogonal vector problem (OV) is rather well known and researched from
the perspective of both classical and quantum computing [1]. In this problem
we are given 2 sets of the same size A, B of d-dimensional vectors with binary
coordinates and we must find whether there are 2 vectors perpendicular to each
other, where one belongs to set A and the other - to set B.

The main focus of this paper is another similar problem, called Vector
domination problem (VD) and is defined as follows: we are given 2 sets of
the same size A, B of d-dimensional vectors, with integer coordinates from
{−W, ...,W}. We must find whether there are 2 vectors u ∈ A, v ∈ B such
that u ≤ v ⇐⇒ ∀i : u[i] ≤ v[i]. We can notice that the problem OV is actually
a special case of vector domination problem, because with binary coordinates:
〈u|v〉 = 0 ⇔ u ≤ v. Vector v is vector v with inverted coordinates.

Natural question might arise - why this problem is interesting to look at? One
reason is that although general case is as at least as complex as OV problem,
this problem has more special cases than OV and we can prove some new things
about them. Another reason is that this problem is core problem for nested
boxes problem [16]. Finding faster algorithm than currently known for VD will
immediately provide faster algorithm for nested boxes problem. At the moment,
we have not seen or found any faster quantum algorithm for this problem than
O(n1.5) - there are trivial and more complex algorithms, however both yield the
same complexity. [24]

In this paper we will also look into problem minimum inner product (MIP)
[16]. This problem is also somewhat similar - we are given 2 sets of the same

330 A. Ambainis and A. Zvirbulis

A, B size of d-dimensional vectors, with integer coordinates from {−W, ...,W}
and integer r. We must find whether there are 2 vectors a ∈ A, b ∈ B, where
〈a|b〉 ≤ r.

This problem is also interesting because of the same reason - it is also a core
problem of the dynamic programming problem LowRankLWS [16].

1.1 Prior Work

All three problems - OV, VD and MIP have been researched quite a lot from the
perspective of classical computing, but at the moment we have found quantum
results only for the OV problem.

Problem OV was researched in [1] where author proved conditional lower
bounds for OV under QSETH. Strangely enough, for general case of this problem,
there have not been found better quantum algorithm than just running Grover’s
search over all pairs of vectors. And if QSETH is true then it also is the best
algorithm.

Results of [1] for the OV problem can be seen in the following table:

Dimension Algorithm Lower bounds Upper bounds

Θ(1) Classical Ω(n) O(n)

Quantum Ω(
√

n) O(
√

n)

poly log n Classical n2−o(1) under SETH n2−o(1)

Quantum n1−o(1) under QSETH Õ(n)

1.2 Our Results

Our main results are for special cases of the vector domination problem - we
prove quantum lower and upper bounds for some of these special cases. We
either use already proven bounds for OV or use results for element distinctness
(ED) problem and use Radix and Fenwick tree classical data structures. We also
prove quantum lower bounds for special case of MIP where number of dimensions
is constant. We prove that to solve MIP in such case at least Ω(n2/3) queries
will be necessary (Th. 5). Results for VD can be seen in the following table.

Constraints Lower Bounds Upper Bounds

d ∈ O(poly log n) n1−o(1) under QSETH (Th. 2) Õ(n) (Th. 2)

d ∈ Θ(1), W ∈ O(poly n) Ω(n
2
3) (Th. 3) Õ(n

2
3) (Th. 4)

d = c log n, W ≤ 4 Ω(n
2
3) (Th. 3) Õ(n

2
3+c) (Th. 4)

d, W ∈ Θ(1) Ω(
√

n) (sec. 3.2) O(
√

n) (sec. 3.2)

Quantum Complexity for Vector Domination Problem 331

2 Preliminaries

2.1 Problem Definitions

In this section we define problems considered in this paper in a more formal way.

Definition 1 (Orthogonal vectors, OV). Given two sets A, B of n vectors
in {0, 1}d, find whether there are 2 vectors a ∈ A and b ∈ B such that 〈a|b〉 = 0.

Definition 2 (Vector domination, VD). Given two sets A, B of n vectors
in {−W, . . . , W}d ⊂ Z

d, find whether there are two vectors a ∈ A and b ∈ B
such that a ≤ b. a ≤ b ⇐⇒ ∀i : a[i] ≤ b[i], where with u[i] we denote coordinate
i of vector u.

Definition 3 (Minimum inner product, MIP). Given two sets A, B of n
vectors in {−W, . . . , W}d ⊂ Z

d and r ∈ Z find whether there are 2 vectors a ∈ A
and b ∈ B such that 〈a|b〉 ≤ r.

2.2 Quantum Query Model

We consider the quantum query model in this work [4]. Main parts of this model
are a quantum register with finite number of base states (typically depends on
the size of input), a quantum query transformation Q also called oracle and
unitary operations U0, U1, . . . , Ut.

In the beginning the quantum register is in a starting state |ψstart〉. Then
query transformations and unitary operations are applied to the starting state
in an alternating way. In the end we get final state |ψfinal〉. If algorithm contains
T query transformations, its final state is

|ψfinal〉 = UT QUT−1Q . . . U1QU0|ψstart〉

In the end we measure the final state. The starting state and the unitary trans-
formations Ui do not depend on input data - only on its length.

Oracle Q. Oracle is one of the most important components of the model. It is
used to change quantum state depending on the input (x1, ..., xN). In general
case we can define it in following way:

Q|i〉|a〉 = |i〉|a ⊕ xi〉

where typically i ∈ {1, 2, . . . , N} is index of input variable xi. Here, N denotes
the length of the input.

We say that algorithm solves a particular problem if it gives correct answer
on all possible inputs with probability at least 2

3 . When we calculate complexity
of the algorithm we count the number of oracle calls.

332 A. Ambainis and A. Zvirbulis

2.3 Techniques

In this section we describe techniques used in our proofs.

QSETH. QSETH is quantum version of classical SETH (strong exponential time
hypothesis). It is used to prove conditional lower bounds for OV problem in [1]
and we use it when we reduce VD to OV.

Hypothesis 1. For every ε > 0 there exists k = k(ε) ∈ N such that there is
no quantum algorithm which could solve the k-SAT problem in time O(2(

1
2−ε)n),

where n is the number of variables in the formula. Additionally this holds true
even if the number of clauses is no more than c(ε)n where c(ε) denotes some
constant, which depends entirely on value of ε.

Algorithm for Element Distinctness Problem . This algorithm allows us
to find out whether there are at least 2 equal elements in the input or more
generally - whether there are at least 2 elements with some common property
or relation. This generalization is called 2-Subset Finding or Claw finding when
relation is equality and the first of the two elements has to be from the first half
of the input and the second element from the second half of the input.

Theorem 1. Our input contains 2 lists A,B ⊆ {1, 2, . . . , n}, where |A| = |B| =
n and we have a function f : A × B −→ {0, 1}. We need to find out whether
there are 2 different input numbers a ∈ A, b ∈ B such that f(a, b) = 1. There
exists a quantum algorithm that solves this problem with O(n2/3) queries and
this is optimal - there is also a Ω(n2/3) lower bound on the number of queries.
([7,19,23]).

In this paper, we will also be concerned about the time complexity of quantum
algorithms. The element distinctness algorithm uses a quantum memory that
stores values ai, i ∈ S for a set S : |S| ∈ {m,m + 1}, m = O(n2/3). The
algorithm uses the following resources:

1. O(n2/3) queries to oracle (x1, ..., xn);
2. O(n2/3) update operations that add or remove an element from a data struc-

ture storing the set S and values ai, i ∈ S;
3. O(n2/3) steps of a quantum walk, each of which can be implemented in time

O(log n) in the QRAM model with an appropriate data structure storing the
set S;

4. O(n1/3) checking operations that check whether the current set S contains
x, y : f(x, y) = 1.

In the case of element distinctness (when f(x, y) = 1 if x = y), there is a
data structure for which both update operations and checking operations can be
performed in time O(logc n) in the QRAM model of computation. This leads to
an implementation of the whole quantum algorithm in time Õ(n2/3).

For other choices of f(x, y), to construct a time-efficient implementation of
the quantum algorithm, a data structure with similar properties needs to be

Quantum Complexity for Vector Domination Problem 333

provided. We note that one can reuse the implementation for the steps of the
quantum walk because this part does not depend on the choice of f(x, y). Thus,
one only needs to describe an additional data structure which ensures that the
checking operations can be performed efficiently.

To be usable within a quantum algorithm, the data structure must be history-
independent. If S (and values xi, i ∈ S) is stored as a quantum state |ψS〉, then
|ψS〉 must only depend on S and not on the order in which elements have been
added and removed to S.

Fenwick Tree. Fenwick tree also called BIT (binary indexed tree) is a simple
yet powerful classical data structure, which allows to quickly find prefix sums
and max/min values in an array ([8,18]). This data structure will turn out to be
very important when proving upper bounds for the vector domination problem.

In the simplest version we are given an array T [x], x ∈ [W] with natural
numbers and we want the following:

(a) Find T [1] + T [2] + · · · + T [i], 1 ≤ i ≤ W
(b) Change value T [i] by δ.

With Fenwick trees we can accomplish these operations in O(log W) time. We can
also generalize Fenwick trees to d dimensional data. We are given d-dimensional
array T [x1, x2, . . . , xd], x1, . . . , xd ∈ [W] and we want very similar operations:

(a) Find
∑

x1,x2,...,xd
T [x1, x2, . . . , xd], where ∀i : 1 ≤ xi ≤ ai, where a1, . . . , ad

are given. Sometimes it is convenient to denote this sum sum as T [(1, . . . , 1) :
(a1, . . . , ad)].

(b) Change value T [a1, a2, . . . , ad] by some δ.

In this d-dimensional case we can execute these operations in O(logd W) time.
A simple implementation of a Fenwick tree would require O(W d) memory

cells, with O(logd W) cells accessed in each update or lookup. If the number of
performed updates is bounded by T << W d, we can use a dictionary of size
S = O(T logd W) to simulate the Fenwick tree. Namely, we use dictionary to
store the memory cells of the Fenwick tree that have been set to a value that is
different from its initial value. To read the value from a memory cell, we first use
the dictionary to find it. If a memory cell is not in the dictionary, we conclude
that it has not been changed away from its initial value.

If dictionary is implemented efficiently, O(log S) time will be sufficient to
access a cell, where S is number of keys in dictionary. Then, each update or
lookup for the Fenwick tree takes O(logd W log S) time, as it involves accessing
O(logd W) memory cells.

If we use Fenwick tree as a part of a quantum algorithm (for example, to
implement the element distinctness algorithm), there is a very important detail
- the implementation must be history independent, that is, it must be stored in
the memory in a way that depends only on the current data in the set and not
on any operations done previously. This causes an issue - how to implement a

334 A. Ambainis and A. Zvirbulis

dictionary. Many popular implementations of efficient dictionaries (such as AVL,
R&B tree, Treap) are history dependent and, therefore, cannot be used.

We can solve this issue by implementing dictionary with a quantum radix
tree [1,5,14] - a quantum version of the radix tree (a binary tree, where all
values are stored in leaves). This data structure achieves history-independence
by randomizing memory layout of the tree and using the superposition over all
possible memory layouts to store the dictionary. As shown in [1,5,14]), quantum
radix tree can be implemented so that elements can be added and deleted from
the data structure in O(l) time, where l is maximum length of binary key string.
In the cases considered in this paper, l = d ∗ log W , since the key is made of d
numbers each from [W].

With this layer, the overall complexity of each operation in a quantum
implementation of a Fenwick tree is O(logd W ∗ l) = O(logd W ∗ d ∗ log W) =
O(d ∗ logd+1 W).

3 Vector Domination

We first analyze the general case of the problem, where d ∈ O(poly log n) and
coordinates are integers from {−W, . . . , W}. We can get results for it directly
from previous results for the OV problem.

Theorem 2. If the input to VD is a1, a2, . . . , an, b1, b2, . . . , bn ∈ {−W, . . . , W}d

and d ∈ O(poly log n), then we can solve this problem in Õ(n) time. Furthermore,
if QSETH is true, there is no quantum algorithm that can solve VD in O(n1−o(1))
time.

Proof. Firstly we can notice, that the orthogonal vector problem is special case
of the vector domination problem - VD is equivalent to OV when all coordinates
are binary. To be more precise if a, b,∈ {0, 1}d, then 〈a|b〉 = 0 ⇔ a ≤ b, where b
is vector b with inverted coordinates. Therefore, VD is at least as hard as OV -
we get a conditional lower bound of Ω(n1−o(1)) under QSETH.

We can also solve VD in the same way OV is solved - we run Grover search (
[10]) over all pairs a, b and check whether a ≤ b, achieving an Õ(n) upper bound.

Now, let us move on to the special case where the number of dimensions is
constant.

3.1 Lower Bounds

In this section we show Ω(n2/3) lower bounds by making a reduction from the
element distinctness problem.

Theorem 3. If VD input is a1, a2, . . . , an, b1, b2, . . . , bn ∈ {1, . . . , n}d and d ∈
Θ(1), then any quantum algorithm will require at least Ω(n2/3) queries to solve
this problem.

Quantum Complexity for Vector Domination Problem 335

Proof. We consider the Claw Finding problem where we are given two lists A,B
and we must find if there are a ∈ A, b ∈ B such that a = b [23]). By Theorem
1, solving this problem requires Ω(n2/3) queries, even if all elements are natural
numbers from {1, . . . , n}.

Let QCF (k,i) denote an oracle answering queries about an input to Claw
Finding (CF). For where k ∈ {1, 2} and i ∈ {1, . . . , n}, QCF (k, i) returns the ith

number from the kth list (the list A if k = 1, the list B if k = 2).
Then we define oracle for VD: QV D(k, i, j). k denotes the choice between

A and B, i ∈ {1, . . . , n} - index of the vector and j ∈ {1, 2} coordinate of the
vector.

QV D(k, i, j) =

{
QCF (k, i) if j = 1
n + 1 − QCF (k, i) if j = 2

We claim that if an algorithm solves the VD problem for the oracle input
QV D with t queries, it also solves the CF problem for the input QCF with the
same number of queries.

Let us look at two vectors a ∈ A, b ∈ B which correspond to input variables
u ∈ A, v ∈ B for the CF problem.

a =
(

u
n + 1 − u

)

, b =
(

v
n + 1 − v

)

Then there are 3 possible cases:

1) u < v =⇒ n + 1 − u > n + 1 − v =⇒ a � b ∧ a � b
2) u > v =⇒ n + 1 − u < n + 1 − v =⇒ a � b ∧ a � b
3) u = v =⇒ a ≤ b ∧ a ≥ b

To put it informally - there are 2 comparable vectors if and only if there are
2 equal numbers.

Since CF requires Ω(n2/3) queries and, in the above reduction, one query to
VD involves one query to CF, the lower bound for VD is also Ω(n2/3).

3.2 Upper Bounds

In this section we describe the main result of this work - quantum algorithm for
a special case of the vector domination problem. The algorithm is based on the
element distinctness algorithm. It also uses such classical data structures as radix
trees and Fenwick trees. The complexity of this algorithm is Õ(n

2
3 logd+1 W).

Although the algorithm can be used in general case, its complexity gets worse
than trivial Grover search, therefore it is useful only in special cases, e.g. with
constant dimensions.

Theorem 4. If the input to VD is a1, a2, . . . , an, b1, b2, . . . , bn ∈ {1, . . . , W}d,
then we can solve this problem in Õ(n

2
3 logd+1 W) quantum time, provided that

d ∈ O(poly log n).

336 A. Ambainis and A. Zvirbulis

Proof. To solve this problem we use the element distinctness algorithm (Theorem
1) with an appropriate data structure for the set S and xi, i ∈ S . As described
in Sect. 2.3, we can reuse the part of the element distinctness algorithm that
implements the quantum walk. Thus, we only need to provide a data structure
that provides fast updates to S and fast checking if S contains x, y : f(x, y) = 1.

We say that there is an edge u → v ⇔ u ≤ v. To implement S we define two
d-dimensional Fenwick trees that will be stored using dictionaries (see Sect. 2.3):

– Fin [W, . . . , W]
︸ ︷︷ ︸

d

- to find the number of incoming edges to vector u

– Fout [W, . . . ,W]
︸ ︷︷ ︸

d

- to find the number of outgoing edges from vector u.

We define Fin[u] = Fout[w + 1 − u] = number of vectors u in S, where w + 1 =⎛

⎜
⎝

W + 1
...

W + 1

⎞

⎟
⎠. Then:

– the number of edges going into u is equal to the sum:

Fin[(1, . . . , 1) : (x1, . . . , xd)]

– the number of edges going out of u is equal to the sum:

Fout[(1, . . . , 1) : (W + 1 − x1, . . . , W + 1 − xd)]

If v ≤ u, then it will be counted in the Fin interval, else if v ≥ u it will be
counted in the Fout interval, because v ≥ u ⇔ w + 1 − u ≥ w + 1 − v. In other
cases the vector will not be counted. Additionally we create counter edgeCnt in
which we store number of edges or comparable pairs of vectors.

Addition of Vector u to the Set

1) Find the number of outgoing edges (including edges u → u):

outCnt = Fout[(1, . . . , 1) : (W + 1 − x1, . . . , W + 1 − xd)]

2) Find the number of incoming edges (not including edges u → u because those
were already counted in the previous step):

inCnt∗ = Fin[(1, . . . , 1) : (x1 + 1, . . . , xi, . . . , xd)] + · · · +
+ Fin[(1, . . . , 1) : (x1, . . . , xi + 1, . . . , xd)] + · · · +
+ Fin[(1, . . . , 1) : (x1, . . . , xi, . . . , xd + 1)].

3) edgeCnt = edgeCnt + outCnt + inCnt∗

4) Fin[(x1, . . . , xd)] = Fin[(x1, . . . , xd)] + 1
5) Fout[(W + 1 − x1, . . . , W + 1 − xd)] = Fout[(W + 1 − x1, . . . , W + 1 − xd)] + 1

Quantum Complexity for Vector Domination Problem 337

Deletion of Vector u from the Set

1) Find the number of outgoing edges (including edges u → u):

outCnt = Fout[(1, . . . , 1) : (W + 1 − x1, . . . , W + 1 − xd)] − 1

We need to subtract 1, to ignore the edge from itself.
2) Find the number of incoming edges (not including edges u → u because those

were already counted in the previous step):

inCnt∗ = Fin[(1, . . . , 1) : (x1 + 1, . . . , xi, . . . , xd)] + · · · +
+ Fin[(1, . . . , 1) : (x1, . . . , xi + 1, . . . , xd)] + · · · +
+ Fin[(1, . . . , 1) : (x1, . . . , xi, . . . , xd + 1)]

(the same as in addition of vector).
3) edgeCnt = edgeCnt − outCnt − inCnt∗

4) Fin[(x1, . . . , xd)] = Fin[(x1, . . . , xd)] − 1
5) Fout[(W + 1 − x1, . . . , W + 1 − xd)] = Fout[(W + 1 − x1, . . . , W + 1 − xd)] − 1

Time Complexity. The time for each addition or deletion is O(d∗logd+1 W), as
described in Sect. 2.3. The time for checking if the current set S contains an edge
can be done in constant time, by examining edgeCnt. Since element distinctness
algorithm involves O(n2/3) updates and O(n1/3) checking operations, the overall
complexity is Õ(n2/3 logd+1 W).

Some More Special Cases. In the following special cases, the complexity
bound from Theorem 4 is close to O(n2/3):

1. If d ∈ Θ(1),W ∈ O(poly n), we have Õ(n2/3 ∗ logd+1 W) = Õ(n2/3).
2. If d = c ∗ log n,W ≤ 4, then we have Õ(n2/3 ∗ logd+1 W) = Õ(n

2
3+c).

Constant Number of Dimensions and Values. If vectors are from the set
{1, 2, . . . ,W}d where d,W ∈ O(1) we can generalize OV algorithm to get optimal
algorithm:

1) Generate all possible vectors and put them into the set V, |V | = W d.
2) ∀a, b ∈ V : if a ≤ b search with Grover’s algorithm vector a in A and b in B.

If both are found - we can give the answer yes.
3) If no comparable vectors were found, give the answer no.

Time complexity of the algorithm is O(W d) + O(W d ∗ 2
√

n) = O(
√

n), which is
in fact optimal (follows from Grover’s search algorithm [10]).

338 A. Ambainis and A. Zvirbulis

4 Minimum Inner Product

Firstly we must note, that orthogonal vector problem is a special case of this
problem as well - if vectors are from {0, 1}d and r = 0 MIP is equivalent to OV.
Secondly, there does not seem to be a simple relationship between MIP and VD,
therefore we cannot reuse VD results.

Theorem 5. Solving MIP with constant number of dimensions (d ≥ 4) requires
Ω(n2/3) queries.

Proof. The proof is via a reduction from the Claw finding variant of the element
distinctness problem (Theorem 1):

– We are given 2 arrays a1, . . . , an and b1, . . . , bn with n number each. Each
number is from {1, . . . , n} = [n].

– We must find if there are i, j such that ai = bj .

Usually the numbers would be from larger set [M], but it has been proven that
this version is just as hard - the lower bound for this problem is still Ω(n2/3)
[19].

4.1 Idea

We show a reduction from ED to MIP with 4 dimensional vectors. For this
reduction we need to do some preprocessing. First we choose n vectors from
{1, 2, . . . , n}4, with all n vectors being of the same length l. We then define

1 : 1 correspondence f : [n] →

⎛

⎜
⎜
⎝

u1

u2

u3

u4

⎞

⎟
⎟
⎠ between [n] and the chosen vectors. This

preprocessing will depend only on the length of the input.
Then in the reduction, for each ED variable ai we take the vector �f(ai) and for

each bj , we take the vector − �f(bj). Then all inner products of these vectors will

be in the interval [−l2; 0) and, for any i, j,
〈

�f(ai)| − �f(bj)
〉

= −l2 ⇔ ai = bj .
Next we show how to construct such n vectors that are of length l for this
correspondence f .

4.2 Preprocessing

We use the four square theorem [12]:

r4(S) = 8 ∗
∑

m|S
m,S is odd

Here r4(S) denotes number of ways it is possible to write natural number S as
sum of 4 integer squares. Order is important - 1 + 0 + 0 + 0 and 0 + 0 + 1 + 0
are 2 different ways how to write 1.

Quantum Complexity for Vector Domination Problem 339

We note that r4(S) above includes quadruples (x, y, z, t) : x2+y2+z2+t2 = S
in which some of x, y, z, t are negative. For our purposes, we would like to use
only (x, y, z, t) in which all numbers are non-negative.

To count the number of such (x, y, z, t), we note that, from each (x, y, z, t)
with non-negative elements, we can obtain at most 15 (x, y, z, t) in which some
elements are negative by changing signs of some of x, y, z, t (possibly less, because
0 = −0). Then we can claim, that r+4 (S) ≥ r4(S)

16 , where r+4 counts only non-
negative integer square sums.

We can notice that r4(S) ≥ S. This implies r+4 (S) ≥ r4(S)
16 ≥ 8S

16 = S
2 .

If we choose S = 2n + 1:

r+4 (2n + 1) ≥
⌊

2n + 1
2

⌋

= n

Then if we choose l =
√

S =
√

2n + 1 there will be at least n vectors with
length l and natural number coordinates. Such vectors can be found with the
following algorithm:

1) Generate and save all i, j ∈ [l] and also sum of their squares. The number of
such pairs are l2. Then sort these pairs by their sum of squares.

2) Traverse all saved sums. For each sum i2 + j2 = s: search for a square sum
2n + 1 − s = x2 + y2.
(a) If n vectors already found - exit.

(b) If found - save the vector in the array f :

⎛

⎜
⎜
⎝

i
j
x
y

⎞

⎟
⎟
⎠.

(c) If not - move on to the next sum

Time complexity of the algorithm is O(l2 log l2) = O(n log n). This is preparation
algorithm that depends only on the length of problem’s input. It does not make
any queries - there is no effect on the query complexity.

4.3 Reduction

We assume we are given ED oracle QED(k, i) that returns ai if k = 1 and bi if
k = 2 (the same as in VD). We define MIP oracle QMIP (k, i, j), where

– k denotes whether the query is to A or B;
– i denotes the index of the queried vector from A or B;
– j denotes the queried coordinate.

QMIP (k, i, j) can be calculated by a following procedure that uses 1 query to
QED:

1) ind = QED(k, i)
2) u = �f(ind)

340 A. Ambainis and A. Zvirbulis

3) Return

{
uj , if k = 1
−uj , else

Then we can solve ED with 4-dimensional MIP =⇒ if d ≥ 4 MIP lower bounds
are Ω(n2/3).

5 Open Questions

The results in this paper help to understand the complexity of VD and MIP
problems in the quantum case but there are many questions that remain open.
Firstly, we did not find better than trivial linear upper bounds for MIP spe-
cial case. It seems that Fenwick trees do not help here, but maybe we can use
something similar to technique used for closest pair problem in [1]. It seems
reasonable to believe that special case can be solved faster.

Secondly, it might be interesting to look at other more general special cases
of VD and find whether anything interesting can be proven. Maybe quantum
algorithms can improve the classical algorithm in [13].

And, thirdly, the most ambitious question is: can we solve VD or MIP (and
also OV) faster than in linear time and break QSETH? However, this is a
question, that is unlikely to be answered.

Acknowledgment. This research was supported by ESF project 1.1.1.5/18/A/020
“Quantum algorithms: from complexity theory to experiment”.

References

1. Aaronson, S., Chia, N.H., Lin, H.H., Wang, C., Zhang., R.: On the quantum com-
plexity of closest pair and related problems. In: Proceedings of the 35th Compu-
tational Complexity Conference (CCC 2020), vol. 16, pp. 1–43 (2020)

2. Ambainis A., Balodis K., Iraids J., Kokainis M., Prusis K., Vihrovs J.: Quantum
speedups for exponential-time dynamic programming algorithms. In: Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1783–
1793 (2019) Society for Industrial and Applied Mathematics. https://doi.org/10.
1137/1.9781611975482.107

3. Ambainis A., et al.: Quantum lower and upper bounds for 2D-grid and dyck lan-
guage. In: 45th International Symposium on Mathematical Foundations of Com-
puter Science, vol. 170, pp. 1–14. Prague, Czech Republic (2020)

4. Ambainis, A., Yeung, D.: CS860 Quantum algorithms and complexity, lecture 07
(2006)

5. Bernstein, J.D., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: International Workshop on Post-Quantum Cryptography,
pp. 16–33 (2013)

6. Buhrman, H., Patro, S., Speelman, F.: A framework of quantum strong
exponential-time hypotheses. In: 38th International Symposium on Theoretical
Aspects of Computer Science (STACS 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2021)

7. Childs, A.: Lecture Notes on Quantum Algorithms University of Maryland (2017)

https://doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1137/1.9781611975482.107

Quantum Complexity for Vector Domination Problem 341

8. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Experience 24(3), 327–336 (1994)

9. Gall F.L., Seddighin, S.: Quantum meets fine-grained complexity: sublinear time
quantum algorithms for string problems. In: 13th Innovations in Theoretical Com-
puter Science Conference (ITCS 2022), vol. 215, pp. 1–23 (2022)

10. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

11. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18(6), 1138–1162 (1970)

12. Hirschhorn, M.D., McGowan, J.A.: Algebraic consequences of Jacobi’s two-and
four-square theorems. In: Symbolic Computation, Number Theory, Special Func-
tions, Physics and Combinatorics, pp. 107–132. Springer, Boston, MA (2001).
https://doi.org/10.1007/978-1-4613-0257-5 7

13. Impagliazzo, R., Lovett, S., Paturi, R., Schneider, S.: 0–1 Integer linear program-
ming with a linear number of constraints. Electronic Colloquium on Computational
Complexity, p. 24 (2014)

14. Jeffery, S.: Frameworks for quantum algorithms, Ph. D. thesis, University of Water-
loo (2014)

15. Klevickis, V., Prusis, K., Vihrovs, J.: Quantum speedups for treewidth. arXiv
preprint arXiv:2202.08186 (2022)

16. Künnemann, M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-
dimensional dynamic programming. ICALP 80, 1–15 (2017). https://doi.org/10.
4230/LIPIcs.ICALP.2017.21

17. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

18. Mishra, P.: A new algorithm for updating and querying sub-arrays of multidimen-
sional arrays. arXiv preprint arXiv:1311.6093 (2013)

19. Rosmanis, A.: Quantum adversary lower bound for element distinctness with small
range. Chic. J. Theor. Comput. Sci. 4, 2014 (2014)

20. Shimizu, K., Mori, R.: Exponential-time quantum algorithms for graph coloring
problems. In: Kohayakawa, Y., Miyazawa, F.K. (eds.) LATIN 2021. LNCS, vol.
12118, pp. 387–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61792-9 31

21. Wagner, R., Fisher, M.: The string-to-string correction problem. J. JACM 21, 1
(1974)

22. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoret. Comput. Sci. 348(2–3), 357–365 (2005)

23. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/
10.1007/11533719 44

24. Zvirbulis, A.: A quantum query complexity for dynamic programming problems.
[Unpublished master’s thesis]. Faculty of Computing, University of Latvia (2022)

https://doi.org/10.1007/978-1-4613-0257-5_7
http://arxiv.org/abs/2202.08186
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
http://arxiv.org/abs/1311.6093
https://doi.org/10.1007/978-3-030-61792-9_31
https://doi.org/10.1007/978-3-030-61792-9_31
https://doi.org/10.1007/11533719_44
https://doi.org/10.1007/11533719_44

Learning Through Imitation by Using
Formal Verification

Avraham Raviv, Eliya Bronshtein, Or Reginiano, Michelle Aluf-Medina,
and Hillel Kugler(B)

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
{ravivav1,hillelk}@biu.ac.il

Abstract. Reinforcement-Learning-based solutions have achieved many
successes in numerous complex tasks. However, their training process
may be unstable, and achieving convergence can be difficult, expensive,
and in some instances impossible. We propose herein an approach that
enables the integration of strong formal verification methods in order to
improve the learning process as well as prove convergence. During the
learning process, formal methods serve as experts to identify weaknesses
in the learned model, improve it, and even lead it to converge. By evaluat-
ing our approach on several common problems, which have already been
studied and solved by classical methods, we demonstrate the strength
and potential of our core idea of incorporating formal methods into the
training process of Reinforcement Learning methods.

Keywords: Reinforcement learning · Q-learning · Formal
verification · Model checking

1 Introduction

Reinforcement Learning (RL) [1] is a paradigm of machine learning focused
on training intelligent agents leading to a strategy of selecting actions in an
environment to maximize their cumulative reward. RL involves an agent, a set
of states (S), and a set of actions per state (A). The transition of an agent
from state to state is effected by performing an action a ∈ A. Each (s, a) pair,
i.e. action execution in a specific state, provides the agent with a reward (r),
represented by a numerical score.

The agent’s goal is to maximize total reward over a complete trajectory, a
set of N steps defined by τ = {a0, s0, r0, ..., an, sn, rn}. Formally, the goal is to
find the steps that maximize the following expression:

N∑

t=1

rt

Link to our code: https://github.com/eliyabron/Formal verification with RL.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 342–355, 2023.
https://doi.org/10.1007/978-3-031-23101-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_23&domain=pdf
https://github.com/eliyabron/Formal_verification_with_RL
https://doi.org/10.1007/978-3-031-23101-8_23

Learning Through Imitation by Using Formal Verification 343

The numerous RL algorithms that deal with this expression and its vari-
ants, can be divided into two groups – model-based methods, those which use
known/learned models, and model-free methods, those that do not. Model-free
algorithms focus on control, searching for the best policy, and prediction, eval-
uating the future when given a policy.

Despite its success in solving real-world problems, such as autonomous driv-
ing [2], natural language processing [3], genetic algorithms [4], and more, RL
faces several significant challenges. The algorithms do not use pure labeled data,
so they have to explore it themselves. A major challenge with RL solutions is
that the state distribution changes as policies change. Using some exploration
policy, sampling many states and actions, and then using that model to improve
the policy will result in a revised distribution over states. The model may have
been fairly accurate for the previous distribution, but there is no guarantee that
it will be accurate for the updated distribution as well.

Rather than trying to learn only from sparse rewards or manually specifying a
reward function, Imitation Learning [5] provides us with a set of demonstrations
from an expert (typically a human). Following and imitating the expert’s deci-
sions, the agent attempts to learn the optimal policy. Behavioral cloning [6] is the
simplest type of imitation learning, which uses supervised learning to mimic the
expert’s policy. Using imitation learning methods tackles the mentioned chal-
lenge since learning from an expert reduces the changes in the environmental
distribution and allows for more stable and accurate learning. It is unfortunate
that experts can be expensive, and sometimes they are simply not available. One
can use Inverse Learning [7] to reduce the dependencies on experts, but it still
requires prior data.

In this paper, we propose a method of learning through imitation in which
formal verification tools serve as experts. It includes two separate innovations:
The first is to formulate RL solutions as a transition system, essential for apply-
ing formal verification tools; the second is to use these tools’ output to re-input
the learned model as if it were a human expert’s trajectories. In particular,
we evaluate the model as a transition system and formulate a specification for
checking. Model checkers then take both the translated transition system and
a specification and check for counter examples, that the model failed to han-
dle, and use them as expert trajectories with appropriate rewards. When model
checkers return true, i.e. they didn’t find a counter example, the model has con-
verged. This is another strength of our method, as RL solutions are difficult to
prove in terms of convergence. A high-level illustration of the entire mechanism
is shown in Fig. 1.

To demonstrate the effectiveness of our approach, we examine several com-
mon tasks in the field of RL, each of which contains an environment of potentially
hundreds of thousands of possibilities. This highlights how formal methods can
play a crucial role in the learning process. Our contribution can be expressed in
several ways: reducing the number of epochs to reach convergence, proving con-
vergence of a given model, exploring states not seen during training, and assisting
model convergence when getting stuck in non-terminal states by exploring new
trajectories.

344 A. Raviv et al.

Old Policy +
results from
last epoch

Optimal
Strategy

counter
example

Transition
system

Fig. 1. An overview of the approach. In the training phase, we pass the evaluated
model to the Formal Verification tool, and use the output as re-input for the next
epoch. By doing so, convergence can both be reached and proved.

In summary, our work has three main contributions:

• Demonstrates a new simple way of bridging two distinct fields — Reinforce-
ment Learning and Formal Verification — by translating RL models into
transition systems and using model checker outputs as an expert’s trajecto-
ries.

• Exhibits the ability of this combination to prove convergence where standard
RL algorithms may have difficulty.

• Shows this combination’s effectiveness using applications to different prob-
lematic scenarios such as getting stuck in non-terminal states, and too many
epochs until convergence.

2 Related Work

The field of Artificial Intelligence [8,9] suggests many approaches toward safe
reinforcement learning, though most do not take advantage of formal verification.
Garćıa et al. [10] divide many of these algorithms that do not utilize formal
verification into two groups by their objective goal—the optimality criterion
(the discounted horizon), and the exploration process.

In recent years, several works have used formal methods for RL. In [11], for-
mal verification and run-time monitoring are combined in order to ensure system
safety. Their technique, called Justified Speculative Control (JSC), provides a
set of proofs that transfer computer-checked safety proofs for hybrid dynamical
systems to policies derived by common reinforcement learning algorithms.

Another approach, called Verily [12], verifies deep-RL-based systems by intro-
ducing deep neural networks (DNNs) as Satisfiability (SAT) problems, and then
solving them via a SAT solver. This method is based on algorithms for DNN
verification and it expands them so that they are suitable for RL systems based

Learning Through Imitation by Using Formal Verification 345

on DNNs as well. Yang et al. [13] use RL methods to synthesize DNN controllers
for nonlinear systems subject to safety constraints. In [14], a fully integrated sys-
tem that allows both training and verification is proposed. It enables Deep RL
systems to be trained with an abstraction-based approach, resulting in DNNs
with finite input states that can be directly verified using model checking. As
these methods require the algorithm being verified to be based on a DNN, they
cannot be applied to other RL algorithms.

Zhu et al. [15] suggested a counter example driven technique, in which states
and actions that are heavily weighted could be found directly and more efficiently.
The search of safety moves is followed by checking trajectories that satisfy safety
properties by forcing the agent to take certain actions in key states to avoid
property violations. During the epochs, the policy is improved by utilizing only
formal methods that lead the agent to avoid bad actions and choose actions with
higher weights.

3 Method

In order to implement formal verification methods, the problem should be pre-
sented as a finite-state machine (FSM), and then solved using an RL algorithm
whose solution can be represented by an FSM. We also require the RL algorithm
to have a structure and characteristic that allows creation of a robust commu-
nication infrastructure between the algorithm and the model checker. The RL
field includes many algorithms that offer different approaches to solutions for
the same problem and could potentially use our approach.

To demonstrate our approach, we consider several common tasks and apply
our method to Q-learning algorithms, though it can naturally be extended to
other algorithms as well. In Sect. 3.1 we give a brief overview on Q-learning and
in Sect. 3.2, we explain how to formulate the model as a transition system which
enables the model to be verified by a model checker. In addition, we describe
the output of the model checker, along with how it is used.

3.1 Q-Learning

Q-learning, one of the most popular model-free algorithms, is a family of methods
that attempts to assess the quality of an action taken in order to move to a given
state. The algorithm calculates the quality of each (s, a) pair:

Q : S × A → R (1)

Before learning begins, Q is initialized to an arbitrary fixed value, and is
then updated at each time t with action at and reward rt. The updated equation
takes into account the previous value of Q along with the new information for
the current reward, as follows:

Qnew(st, at) = Q(st, at) + α ·
(
rt + γ · max

a
Q(st+1, a) − Q(st, at)

)
, 0 ≤ α ≤ 1

(2)

346 A. Raviv et al.

This equation can be rearranged into a more easily interpreted form:

Qnew(st, at) = (1 − α)Q(st, at) + α rt + αγ max
a

Q(st+1, a) (3)

This form has three elements:

1. The current value, weighted by the learning rate α. The higher the learning
rate, the faster Q changes.

2. The reward, weighted by the learning rate.
3. The maximum reward that can be obtained from state st+1, weighted by the

learning rate and a discount factor γ.

This equation is the basis of the learning process, where at each step the
value of a specific state is updated, based on a number of factors—the previous
value, the reward and the possible reward of the next state.

The learning process creates a table, called a Q-table, which represents a
strategy in which each (st, at) pair has a value. This table guides the agent to take
an action from the current state, based on the expression a = argmaxa(st, at),
thereby moving the agent from st to st+1. To balance between exploration and
exploitation we use the ε-greedy method: before choosing an action we sample
a random number from a uniform distribution U [0, 1]. If the number is below
the chosen epsilon, a random action is selected, otherwise the action with the
highest value in the Q-table is selected.

Although this algorithm can reach convergence [16], if the largest difference
between the current and updated Q-table is less than the given ε, it is not always
a simple task and is often so computationally expensive that it is impractical.
Bearing in mind the possible implications exploration-exploitation might have
on the duration until convergence is reached, the proposed approach adds an
external tool as an add-on to the RL algorithm to speed-up, ensure and verify
reaching the optimal policy.

3.2 Using a Model Checker on the Q-learning Model

RL solutions are formulated as transition systems, which can be read by model
checkers. In order to implement the solution as an FSM, we describe the updated
Q-table as a transition system:

T = 〈V, θ, ρ〉 (4)

where V are the system variables, θ is the initial condition and ρ is the transition
relation. In general, the variables V encode the state space S, ρ represents the
actions from each state based on the the current policy πQ and θ includes the
initial position(s). Once the Q-table is encoded as an FSM, it can be checked
by model checkers using temporal logic queries. A query will return one of two
options through model checkers—True, or False with a counter example. True
means the Q-table holds for the query, which in the current context means
an optimal strategy has been identified. On the other hand, whenever False is

Learning Through Imitation by Using Formal Verification 347

Algorithm 1. Convergence of Q-table
procedure Conv(Q-table, task) � calculate optimal Q-table for a given task

Q-table ← 0
ans ← False
while Q-table did not converge do

x epoch of Q-learning
ans ← Check LTL\CTL spec
if ans is False then � There is a path

Path ← model checker counter example
update Q-table using Path

else � There is no path
break

return � The strategy is optimal

returned and a counter example is found, the counter example can then be used
to improve the model. To find the optimal solution of a specific task, we use
the model checker repeatedly, update the results through counter examples until
reaching convergence. The algorithm is depicted in Algorithm 1.

A number of critical scenarios can be greatly improved by applying this
algorithm which uses the model checker as an expert. Situations where the state
space is large and the agent takes a long time to reach convergence, or more
seriously, gets stuck in non-terminal states, as well as when it is unknown whether
convergence has been reached, can all benefit from using model checkers.

The abstraction of the Q-table as a transition system can be easily converted
to a standard model checker’s input, which is made up of three main parts.
The first initializes all possible vectors for the defined task derived from its
characteristics. The second describes the selected move for the agent according
to a given state, for which the next selected move is either all the possible
moves for this state or the one with the highest score in the Q-table. If values
in the Q-table are equal, there may be more than one possible next move. In
the third and final part, a temporal logic specification is used to check if the
model is successful under all circumstances. This specification enables encoding
of formulae about the system’s future path, and applying a condition or rule on
the system behavior.

4 Model Checker as an Expert—Applications

Here, we demonstrate our approach and its effectiveness in several applications.
We will show that even on small and easy problems, classical Q-learning may
not always work properly and could benefit greatly from the incorporation of
model checkers. Specifically, RL results are improved in a number ways by the
implementation of model checkers as an expert.

348 A. Raviv et al.

4.1 Convergence with Fewer Epochs

We use the well-investigated game of Cops and Robbers [17], also termed the
pursuit-evasion game [18], in order to demonstrate how we can reduce the number
of required epochs to reach convergence. Typically the game is presented as a
graph [17,18], but can also be viewed as a two-dimensional board, as illustrated
in Fig. 2. There are two kinds of players in a grid, cops and robbers, where each
game must have at least one cop and one robber. Every turn, only one player
can move in one of four directions—up, down, left or right—but not outside of
the border. As soon as the cops catch the robbers, the cops win, and when the
maximum number of turns is over, the robbers win.

In RL terminology, the board is the environment, agents are the cops and the
goal is to converge in the smallest number of games (i.e. an epoch) to an optimal
policy, if possible. An optimal policy ensures the agent wins from every initial
position. Alongside the standard training procedure, we use model checkers to
indicate, at each game, whether or not the optimal policy has been reached. In
the case where the model checker returns False (optimal policy hasn’t yet been
reached), a counter example is provided, and can be used as an initial state for
the next epoch. By classic machine learning terms, the model checker holds the
loss function derived at each game’s end, thus returning the gradient’s direction.

In this system, each state is defined by the current position of cops and
robbers on the board using x, y coordinates, i.e. 1,3 indicates the third cell from
left in the first row from the top. A letter indicating the team taking the current
turn (C for cops, R for robbers) is attached to the state as well. Possible moves
for the next turn emerge from each state, up/down/left/right, for each player in
the team, excluding illegal moves (e.g. moving to coordinate 0).

As shown in Eq. 4, using a model checker is made possible by formulating
the RL solution as a transition system—a tuple 〈V, θ, ρ〉. The variables encode
the position of the agent in the network and its direction of movement, V =
{vec, turn}. The variable vec represents the cops and robbers positions. The
positions, together with the team carrying out the next move, are saved each
turn as a state vector. State vectors are modified by a number that holds the cops
and robbers positions (x, y coordinates). The second variable, turn ∈ {C,R},
identifies the team making the next move.

The initial condition, θ, is chosen from all vec options by the model checker,
as explained below. The transition relation ρ specifies how variables are updated
based on the current state:

(turn′ = C ∧ turn = R) ∨ (turn′ = R ∧ turn = C) (5)

vec′ = Choose Action(Available Positions) (6)

“Available Positions” relate to the set of all possible positions for the next
state. “Choose Action” is a function of these “Available Positions”. This function
may differ for each team. Cops select from the available positions by the learned
Q-table, meaning they choose from the actions with the highest value in the
table.

Learning Through Imitation by Using Formal Verification 349

Fig. 2. Cops and Robbers. (Left) 5×5 Cops and Robbers grid with two cops (blue)
and one robber (red). (Right) For each experiment we run 50 games, 25 with the model
checker (blue squares) and 25 without (red squares). Median is marked with dotted line.
Number of epochs required for convergence, as well as variance, with model checker
is much lower than without, suggesting a more stable learning method. (Color figure
online)

The robber can choose from all the possible actions for its current state. The
last part given to the model checker is a temporal logic statement, which requires
that in each possible FSM path, the cops eventually win. When the model checker
answers False, it accompanies this with a counter example by which the initial
position of the following game in the epoch is derived. This initial position is
selected from the loop detected in the counter example (i.e. a repeated set of
steps the robber can force the cops to take without being caught). Starting from
such an initial position, which can result in a loss under the current strategy,
forces the model to improve the current strategy for this position.

The first game runs on the initial Q-learning table (i.e. all values set to
0), therefore it uses an arbitrary policy. The game is finished when a winner
is declared, and the reward of 100 and −100 points is divided according to the
rules previously defined. The reward per state is back-propagating, so the overall
reward is divided unequally across all states by the modified hyperparameter.
The Q-table that describes the policy is saved after each game, thus imple-
menting the “experience” from previous games. Communication with the model
checker is established at the end of each game. The state-vectors list is fed into
the model checker, in effect defining an FSM by which the connection between
the Q-learning algorithm and formal verification is created.

The FSM created at each game’s end is used as the input into the model
checker together with the CTL or LTL statement. The CTL and LTL statements
ask the model checker if, for all branches in the FSM, the cops win. Formally:

LTLSPEC := F (vec = 0), CTLSPEC := AF (vec = 0) (7)

350 A. Raviv et al.

If the model checker returns a counter example it means the robber can
win and the optimal policy hasn’t yet been reached, otherwise it means the
cops always win for all branches. In practice, a counter example means that
there exists a loop of moves that prevents the cops from winning before the
maximum number of turns is reached, therefore the win goes to the robber.
Shifting to formal verification terminology, in the presence of such a branch we
cannot ensure the correctness of the FSM. Therefore, the outcome of the LTL
statement is False. As there are a large number of trajectories (i.e. possible
branches) even in small grids, the existence of a single branch that prevents the
cops from winning, thus disqualifying the current policy, shows the strength of
this approach and the degree of confidence when an optimal policy is finally
reached. A main advantage of the model checker implementation is the counter
example provided when the answer is False. The counter example indicates from
which initial state to start the next epoch in order to prevent the robbers from
reaching this specific branch, maximizing policy convergence.

In essence, the model checker returns the loss function’s gradient to the
optimal policy. The option to play without utilizing the counter example was also
evaluated, meaning that the model checker returns only the True or False answer,
while the initial position for next game is decided randomly. While such an
answer from the external tool to the Q-learning algorithm can be helpful toward
convergence efforts, the added value of the counter example’s contribution to
these efforts (together with the True-False outcome) is non-negligible.

Experiments have been run with different exploration rates, discount factors,
grid sizes, and cop numbers, all leading to the same result. By using a model
checker as an expert, the number of epochs required to reach convergence is
significantly reduced. Additionally, variance is much lower, resulting in much
more stable learning. A few examples of small-size boards are shown in Fig. 2,
while the trends are the same for large-sized boards with different parameters.

4.2 Help Convergence by Avoiding Sub-optimal Solutions

Unlike the previous example, where the model was able to reach convergence
without the help of a model checker though under higher number of epochs,
sometimes the model does not reach optimal convergence at all. Integrating the
model checker is even more critical in these cases. We use Frozen Lake, a game
consisting of a grid containing four types of squares (start, finish, frozen and
hole), as seen in Fig. 3 (upper left), for demonstration. Possible actions are the
same as in Cops and Robbers, though if the agent takes a step into a hole, it
loses the game, and if it reaches the goal, it wins.

As seen in Fig. 3 (bottom), several boards are difficult to learn as they have
many holes and few paths to the goal. As seen in Fig. 3 (bottom), several boards
are difficult to learn as they have many holes and few paths to the goal. We
train the model using Q-learning until the difference between the Q-tables of
two consecutive epochs is smaller than epsilon. Even when using a very small
epsilon (ε = 10−30), the algorithm fails to converge to the optimal policy on
these boards.

Learning Through Imitation by Using Formal Verification 351

Fig. 3. Frozen Lake. (Upper Left) 10 × 10 Frozen Lake grid. (Upper Right) For a
100 × 100 grid, we run 20 games, 10 with the model checker (blue squares) and 10
without (red squares). Median is marked with dotted line. Though the number of
epochs to convergence is similar, the policy reached with the model checker is optimal,
while the policy reached without is sub-optimal. (Bottom) Three difficult scenarios
that fail reaching optimal policy without the model checker. (Color figure online)

We overcome this problem by utilizing an expert to assist Q-learning by
supplying a possible route. The expert is also able to declare if there are no
possible routes to the goal in advance. Similar to the previous task, we define the
possible states as V, while the transition relation ρ is derived from the possible
actions for each state. Every environment is initially defined by the placement of
holes in the grid, with the agent starting at the top left, setting the initial state
θ. Once the system has been defined and formulated, LTL statements are added
asking whether the agent will always reach the goal according to the current
strategy:

LTLSPEC := !F (currentPosition = Goal) (8)

As the goal of the game is to reach the last square, we ask the model checker
if “there is no route by which the agent can reach the goal”. Whenever a counter
example is returned, there is a route that can be used to help the Q-table con-
verge. For every x epochs of updating the Q-table, the model checker is used to
find a possible path with which to update the Q-table. Eventually, the Q-table
converges to the optimal policy.

Experiments conducted on various grids that are hard for Q-learning to learn,
all showed that the model was unable to converge without routes from the model
checker. For each board 20 games are run, 10 using the model checker for the

352 A. Raviv et al.

expert’s trajectory and 10 without using the model checker. We successfully ran
games with a 105 dimension Q-table.

Similar results were found for experiments on different sized boards. Games
using model checkers had their Q-table converge to the optimal policy while for
games that did not use model checkers optimal policy was not reached and the
agent failed to reach the goal. Even boards that did not converge to the optimal
solution, when using information from the expert managed to find the shortest
path to the goal. These results show our method’s effectiveness, as it enables
success even when the RL algorithm alone fails.

4.3 Explore Unseen States

Similar to the previous section, the model for this example also fails to reach
convergence by itself, though, unlike frozen lake, the model checker is used to
explore unseen states during training. The game Catch the Cheese, illustrated
in Fig. 4, where the player P must move to catch the cheese C without falling
into the hole O, will be used for this example. The player gets one point for
each cheese she finds and loses if she falls into the hole. The game ends when
the player either collects the cheese K times, or falls into the hole.

Each state of the transition system is defined by the location of the player. As
in the previous games, the agent can move to another square in the grid only by
legal actions (right or left, except for the borders where there is only one action).
In this game, the number of steps the player can take is deliberately limited so
she won’t be able to reach all the possible states, and thus the goal (the cheese).
This is a simple example for the problem where the run-time of each epoch is
limited. The expert starts from the most advanced state the player was able to
reach and teaches the Q-learning algorithm the states it was not able to see due
to the steps limit.

Similar to the previous tasks, we define the possible states as V while the
transition relation ρ is derived from the possible actions for each state. Each
environment is initially defined by the placement of hole in the grid, with the
agent starting somewhere in the middle of the grid, thus setting the initial state
θ. Once the system has been defined and formulated, we add the following LTL:

LTLSPEC := !F (score ≥ K) (9)

As the goal of the game is to reach the cheese at least K times, the LTL asks
if “the agent cannot reach the cheese more than K times”. If a counter example
is returned, it is used to teach the Q-learning algorithm.

Learning Through Imitation by Using Formal Verification 353

Fig. 4. Catch the Cheese. (Upper) 1 × 10 Catch the Cheese grid. (Lower) For a
1×100 grid, we run 20 games, 10 with the model checker (blue squares) and 10 without
(red squares). Median is marked with dotted line. Even though number of epochs to
convergence is on average higher, the policy reached with the model checker is optimal,
and the policy reached without is sub-optimal. (Color figure online)

In this algorithm, for every x epochs (determined by the user) of updating
the Q-table, we check for convergence. Whenever a model is not convergent, we
input the counter example path into the Q-table. This procedure is repeated
until the Q-table converges to the optimal policy.

In order to test the impact of the model checker, we performed a large number
of experiments, while for each setup we ran 20 games—10 using the model checker
for information on unseen states and 10 without. When using the expert, the
player managed to achieve the desired score, while the player failed to converge
to a Q-table containing the optimal solution when not using the expert. This
shows the value of using formal verification tools as experts for unseen states, as
a reduced number of steps per epoch still achieves optimal results. This approach
is also helpful when it is hard to estimate the number of steps needed, as you can
choose an approximate number of steps, and use the model checker to explore
paths beyond the limits of the agent.

5 Discussion

We present a method combining formal verification as an expert for reinforce-
ment learning algorithms. This enables both obtaining formal guarantees on the
correctness of the learned strategy, as well as speeding up the learning process
by utilizing counter examples produced by the model checker. Using well-studied
tasks, we demonstrate the feasibility and effectiveness of the approach on a Q-
learning algorithm that solves finite-length games on a grid, and show empirically
that we can identify when the Q-learning algorithm has converged on an optimal
policy, and can both speed up this convergence, and direct the player in scenar-
ios in which the policy fails. Our tasks included tens of thousands of scenarios

354 A. Raviv et al.

and possibilities, illustrating the idea’s success even when applied to non trivial
problems. The theoretical knowledge we proposed and examined can serve as
a good benchmark for evaluating verification extensions to more reinforcement
learning methods and help in eventually moving to more practical applications.

Future research may focus on some of the limitations and shortcomings of our
current work. Although the theory is general, we only show tabular-RL problems,
and several parts of the current implementation require manual engineering, e.g.
the construction of temporal logic formulas. Our goal is to extend our infras-
tructure so that it can handle large-scale RL problems automatically. We also
omit an evaluation of the overhead of verification tools and the comparison with
modern versions of Q-learning, which we hope to address in the future.

Acknowledgments. This work is supported by the Horizon 2020 research and inno-
vation programme for the Bio4Comp project under grant agreement number 732482
and by the ISRAEL SCIENCE FOUNDATION (Grant No. 190/19). We would like to
thank Assaf Grundman and Shlomi Mamman for their work and feedback on an early
version of this project, and the Data Science Institute at Bar-Ilan University.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press
(2018)

2. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey.
IEEE Trans. Intell. Transp. Sys.23, 4909–4926 (2021)

3. Xiong, C., Zhong, V., Socher, R.: DCN+: mixed objective and deep residual coat-
tention for question answering. arXiv preprint arXiv:1711.00106 (2017)

4. Weile, D.S., Michielssen, E.: Genetic algorithm optimization applied to electro-
magnetics: a review. IEEE Trans. Antennas Propag. 45(3), 343–353 (1997)

5. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of
learning methods. ACM Comput. Surv. (CSUR) 50(2), 1–35 (2017)

6. Pomerleau, D.A.: Alvinn: an autonomous land vehicle in a neural network. In:
Advances in Neural Information Processing Systems 1 (1988)

7. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
p. 1 (2004)

8. Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence 65,
153–201 (2005)

9. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. ArXiv
e-prints (2016)

10. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

11. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: AAAI (2018)

12. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-rl-driven systems.
In: Proceedings of the 2019 Workshop on Network Meets AI & ML, NetAI’19, pp.
83–89 New York, NY, USA (2019). Association for Computing Machinery

http://arxiv.org/abs/1711.00106

Learning Through Imitation by Using Formal Verification 355

13. Yang, Z., et al.: An iterative scheme of safe reinforcement learning for nonlinear
systems via barrier certificate generation. In: Silva, A., Leino, K.R.M. (eds.) CAV
2021. LNCS, vol. 12759, pp. 467–490. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81685-8 22

14. Jin, P., Zhang, M., Li, J., Han, L., Wen, X.: Learning on abstract domains:
a new approach for verifiable guarantee in reinforcement learning. CoRR.
arXiv:2106.06931 (2021)

15. Zhu, H., Magill, S.: Systems support for hardware anti-rop. Technical report,
Galois Inc (2017). https://galois.com/reports/formal-methods-for-reinforcement-
learning/

16. Watkins, C.J.C.H., Dayan, P.: Q-learning. In: Machine Learning, vol. 8, pp. 279–
292 (1992). https://doi.org/10.1007/BF00992698

17. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1),
1–12 (1984)

18. Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs,
pp. 426–441. Springer (1978). https://doi.org/10.1007/BFb0070400

https://doi.org/10.1007/978-3-030-81685-8_22
https://doi.org/10.1007/978-3-030-81685-8_22
http://arxiv.org/abs/2106.06931
https://galois.com/reports/formal-methods-for-reinforcement-learning/
https://galois.com/reports/formal-methods-for-reinforcement-learning/
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BFb0070400

Robots and Strings

Delivery to Safety with Two Cooperating
Robots

Jared Coleman2(B), Evangelos Kranakis3, Danny Krizanc4,
and Oscar Morales-Ponce1

1 Department of Computer Engineering and Computer Science,
California State University, Long Beach, CA, USA

Oscar.MoralesPonce@csulb.edu
2 Department of Computer Science, University of Southern California,

Los Angeles, CA, USA
jaredcol@usc.edu

3 School of Computer Science, Carleton University, Ottawa, ON, Canada
kranakis@scs.carleton.ca

4 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT, USA
dkrizanc@wesleyan.edu

Abstract. Two cooperating, autonomous mobile robots with arbitrary
nonzero max speeds are placed at arbitrary initial positions in the plane.
A remotely detonated bomb is discovered at some source location and
must be moved to a safe distance away from its initial location as quickly
as possible. In the Bomb Squad problem, the robots cooperate by com-
municating face-to-face in order to pick up the bomb from the source
and carry it away to the boundary of a disk centered at the source in the
shortest possible time. The goal is to specify trajectories which define
the robots’ paths from start to finish and their meeting points which
enable face-to-face collaboration by exchanging information and passing
the bomb from robot to robot.

We design algorithms reflecting the robots’ knowledge about orienta-
tion and each other’s speed and location. In the offline case, we design
an optimal algorithm. For the limited knowledge cases, we provide online
algorithms which consider robots’ level of agreement on orientation as
per OneAxis and NoAxis models, and knowledge of the boundary as per
Visible, Discoverable, and Invisible. In all cases, we provide upper
and lower bounds for the competitive ratios of the online problems.

Keywords: Boundary · Mobile robots · Delivery · Cooperative ·
Competitive ratio

1 Introduction

A remotely detonated bomb is located at the center of some critical zone. Since
the time of detonation is unknown, the bomb must be removed as quickly as

Research supported in part by NSERC Discovery grant.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 359–371, 2023.
https://doi.org/10.1007/978-3-031-23101-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_24&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_24

360 J. Coleman et al.

possible from the critical zone by two autonomous mobile robots. How can these
robots, each with their own speeds and initial location, collaborate to carry the
bomb out of the critical zone as quickly as possible? We assume the bomb is
initially located at a point S (the source) and must be transported at least dis-
tance D (called the critical distance) away from the source. The critical distance
defines a disk centered at S of radius D. Each robot has its own maximum speed
and the bomb can be passed from robot to robot in a face-to-face communica-
tion exchange. We refer to this as the Bomb Squad problem. The perimeter of
the disk centered at S and radius D is also called the boundary and encloses the
critical zone which must be rid of the bomb.

In the sequel, we study various versions of the Bomb Squad problem which
depend on what knowledge the collaborating robots have regarding the location
of the other robot and the boundary. We are interested in designing both offline
(full knowledge) and online (limited knowledge) algorithms that describe the
trajectories and collaboration of the participating robots.

1.1 Model, Notation, and Preliminaries

There are two autonomous mobile robots, r1 and r2, with maximum speeds
v1 and v2 initially placed in the plane distances d1 and d2 from the source,
respectively. We use the standard mobility model for the robots. At any time,
they may stop and start, change direction/speed, and carry the bomb when they
decide to do so. A robot trajectory is a continuous function f : [0, T] → R

2 such
that f(t) is the location of the robot at time t and T is the duration of a robot’s
trajectory. If the robot’s speed cannot exceed v then ‖f(t) − f(t′)‖2 ≤ v|t − t′|,
for all 0 ≤ t, t′ ≤ T , where ‖ · ‖2 denotes the Euclidean norm in the plane R

2.
Robots may collect information as they traverse their trajectories. Moreover,

they may exchange information only when they are collocated (also known as
F2F model). When collocated, they may compare their speeds and decide which
robot is faster. They can recognize the bomb initially placed at location S and
can carry it around and pass it from robot to robot without their speed being
affected.

We assume robots have a common unit of distance. We consider both the
offline and online settings. In the offline setting, all information regarding the
robots (their initial positions and speeds) is available and an algorithm provides
robot trajectories and a sequence of robot meetings that relay the bomb from
the source to the boundary in optimal time.

In the online setting, a robot has limited knowledge of the other robot’s
location and the critical distance. We consider both OneAxis and NoAxis (or
Disoriented) models (see [12]). In the OneAxis model robots agree on a single
axis and direction (i.e. North). In the NoAxis model, we say robots are disoriented
and do not agree on any axis or direction. With respect to knowledge of the
critical distance, we consider three models:

1. VisibleBoundary: the boundary is always visible and thus the critical dis-
tance D is known by all robots.

Delivery to Safety with Two Cooperating Robots 361

2. DiscoverableBoundary: the boundary (and thus the critical distance) is not
known ahead of time but is “discoverable”. Robots can discover the bound-
ary (and the critical distance) by visiting any point on the boundary or by
encountering another robot which has already discovered it.

3. InvisibleBoundary: the boundary is completely invisible and robots have no
knowledge of whether or not they’ve already visited a point on the boundary.

Each of these models has intuitive inspiration from the bomb-squad scenario.
The VisibleBoundary model considers the situation where a safe distance is
known ahead of time, while the DiscoverableBoundary model considers a sit-
uation where a boundary—physical (i.e. a fence or a wall) or abstract (i.e. a
border, patrol line, maximum communication distance)—must be discovered by
the robots. Finally, the InvisibleBoundary model considers the situation where
a safe distance is not known by the robots (i.e. they don’t know the detonation
radius of the bomb). In this case, the goal is to deliver the bomb to an unknown
radius as quickly as possible. Interestingly, each of these models yields unique
algorithms with different competitive ratios.

In all of our algorithms, both robots start at the same time from arbitrary
locations in the plane. The delivery time TA(I) of an algorithm A solving the
Bomb Squad problem is the time it takes the algorithm A to deliver the bomb
to the boundary for an instance I of the problem (a source location S, critical
distance D, and robots’ initial positions and maximum speeds). If Topt(I) is the
optimal time of an offline algorithm for the same instance I, then the competitive
ratio of an online algorithm A is defined by the ratio CRA := supI TA(I)/Topt(I).
If A is a class of algorithms solving an online version of the Bomb Squad prob-
lem, then its competitive ratio is defined by CRA := infA∈A CRA. Usually, the
subscripts will be omitted since the online version of the problem will be easily
understood from the context.

In proving upper bounds on the competitive ratio, if the faster robot cannot
arrive at S before the slow robot then we may restrict our attention to the case
where the slow robot starts at the source. We state this useful claim as a lemma.

Lemma 1.1. Consider any online algorithm solving an online version of the
Bomb Squad problem. Assume that the faster robot cannot arrive at S before the
slow robot does. If c is an upper bound on the competitive ratio of the algorithm
for all instances in which the slow robot starts at the source, then c is also an
upper bound on the competitive ratio for that algorithm.

1.2 Related Work

The Bomb Squad problem is closely related to the message delivery problem with
a set of robots. In that problem, the source and destination are predefined and
robots jointly work to deliver the message. Two different objective functions have
been studied. The first assumes that the robots have limited battery and conse-
quently the objective function is to minimize the maximum movement (minmax).
The second is to minimize the time to deliver the message. Anaya et al. [7] study a

362 J. Coleman et al.

more general minmax problem where the message must be delivered to many des-
tinations. The authors show that the decision problem is NP-hard and provide a
2 approximation algorithm.

Chalopin et al. [8] study the minmax problem on a line and show that the
decision problem is NP-Complete for instances where all input values are integers.
The authors also provide an algorithm for delivering the message that runs in
O(d2 ·n1+4 log d) time where d is the distance between the source and destination
for the general case. Coleman et al. [10] study the broadcast and unicast versions
of the problem on a line and present optimal offline algorithms and online algo-
rithms with optimal constant competitive ratio. In [11] Czyzowicz et al. study
the problem in a weighted graph and show that the problem is NP-Complete.
They also show that by allowing robots to exchange energy, the problem can be
solved in polynomial time. Carvalho et al. [6] also study the problem in weighted
graphs. They provide an offline algorithm that runs in O(kn log n + km) time
where k is the number of robots, n is the number of nodes, and m the number
of edges.

More recently, Coleman et al. [9] studied the point-to-point delivery problem
on the plane and gave an optimal offline algorithm for two robots as well as
approximation offline algorithms and online algorithms with constant competi-
tive ratio. The delivery problem differs significantly from the problem studied
in our current paper, where the goal is to reach any point on a given boundary
(namely the perimeter of a disk centered at the source) as opposed to a specific
destination.

The delivery problem studied in our paper focuses on the knowledge the
robots have about each other as well as the environment. To this end we design
algorithms for the OneAxis and NoAxis models. In particular, in the latter model
and based on the knowledge the robots have in Subsect. 4.3 one has to design a
search algorithm that makes the robots perform a “zigzag” procedure in order to
collect appropriate information and pass the bomb to the faster robot, if feasible,
that will eventually deliver the bomb to the boundary. This has similarities to the
well-known linear search algorithms proposed by Baeza-Yates et al. [3], Beck [4]
and Bellman [5], Ahlswede et al. [1], as well as Alpern et al. [1,2]. However,
search in the previously given research works is based only on one robot while
in our case we have two collaborating robots with incomplete information about
the environment.

1.3 Outline and Results of the Paper

In this paper, we design and analyze algorithms for the Bomb Squad problem
with two cooperating robots. In the offline case, we design an optimal algorithm
that assumes robots have knowledge of their own and each other’s location but
does not require knowledge of each other’s speed. For the online case Table 1
displays upper and lower bounds on the competitive ratio for the OneAxis and
NoAxis models, and for Visible, Discoverable, and Invisible Boundary as
well as the specific (sub)section where the results are proved. Section 2 presents
an optimal offline algorithm, Sect. 3 presents an online algorithm for the OneAxis

Delivery to Safety with Two Cooperating Robots 363

Table 1. Upper and lower bounds on the competitive ratio of online algorithms for
two cooperating robots in the OneAxis and NoAxis models for Visible, Discoverable,
and Invisible Boundary:

Axis Model Boundary Model Upper Bound Lower Bound Section

OneAxis All 1
7

(
5 + 4

√
2
) ≈ 1.5224 1.48102 3

NoAxis Visible 1 +
√

2 1 +
√

2 4.1

NoAxis Discoverable 15
4

3 4.2

NoAxis Invisible 7+
√
17

2
2 +

√
5 4.3

model, while Sect. 4 includes the results of the three Subsections for the NoAxis
model. There are many interesting open problems and in Sect. 5 we summarize
the results and discuss potential extensions and alternatives. The full version of
this paper with all missing proofs can be found on arXiv [11].

2 Optimal Offline Algorithm

Our problem may be solved optimally using Algorithm 1.

Algorithm 1. Offline Delivery Algorithm for Two Robots
1: move toward S
2: if arrived at S then
3: pick up the bomb
4: move in direction of other robot
5: else if encountered other robot with bomb and other robot is slower then
6: take the bomb from other robot
7: move away from S toward boundary

Theorem 2.1. For any two robots r1, r2 such that v1 ≤ v2, the offline Algo-
rithm 1 is optimal in that it delivers the bomb to the perimeter of the circle
centered at S with radius D in minimum time

min
(
d1 + D

v1
,
d2 + D

v2
,
D − d2

v2
+ 2

d1 + d2
v1 + v2

)
(1)

where S is the initial location of the bomb and d1, d2 are the starting distances
(from S) of the r1, r2, respectively.

Proof. First, observe that the cases where the fast robot can reach S first or
where the slow robot can deliver the bomb before the fast robot can get within
a distance D of S are trivial and justify the first two arguments of the min term
in (1). In each case the robot which reaches S first simply completes the delivery
by itself and the algorithm is optimal. In all other cases, the slow robot reaches
S first and must hand the bomb over to the fast robot at some point M which

364 J. Coleman et al.

then delivers it to the boundary. Observe that the trajectory of the bomb itself
must be a straight line since the closest point from M to the perimeter of the
circle must be along SM (by the definition of a circle).

Consider all the candidate trajectories of the bomb. Since it must travel a
total distance of exactly D, the trajectory which minimizes the delivery time is
clearly that which involves the faster of the two robots carrying the bomb for
the greatest portion of this distance. In other words, if s is the distance the slow
robot carries the bomb before handing it over to the fast robot (Fig. 1), then the
delivery time is

s

v1
+

D − s

v2
=

s(v2 − v1) + Dv1
v1v2

which is clearly minimized when s is minimum since v1 ≤ v2. Intuitively, this
means the slow robot should carry the bomb as short a distance as possible.
Clearly, s is minimum when the slow robot moves directly toward the fast robot.

S

K

M

M ′

Boundary

s′
s

Fig. 1. Two candidate trajectories given by robot meeting points M and M ′, where
the slow robot starts at S and the fast robot at K. Clearly, M is superior since s < s′

and the faster robot spends a larger portion of the bomb’s trajectory carrying it. In
other words, the bomb is moving at the faster speed v2 for a larger portion of its trip
to the boundary.

The delivery time for this case can then be easily written as the sum of the
time for the robots to meet and the time for the fast robot to travel back to the
boundary for delivery:

d1 + d2
v1 + v2

+
1
v2

(
D −

((
d1 + d2
v1 + v2

− d1
v1

)
v1

))
=

D − d2
v2

+ 2
d1 + d2
v1 + v2

.

��

Delivery to Safety with Two Cooperating Robots 365

3 Online Algorithm for the OneAxis Model

Here we assume the robots agree on a single axis and direction and can therefore
choose to move along the same radius emanating from S. We start by proving a
lower bound.

Theorem 3.1. Any online algorithm for the OneAxis model has a competitive
ratio of at least 1.48102.

Now, we propose the following Algorithm 2 and prove its competitive ratio
is at most 1

7

(
5 + 4

√
2
)
.

Algorithm 2. Online Delivery Algorithm for the OneAxis Model
1: move toward S, taking the bomb from any slower robot encountered
2: upon reaching S, move along common axis/direction away from S, taking the bomb

from any slower robot encountered

Theorem 3.2. Algorithm 2 has competitive ratio 1
7

(
5 + 4

√
2
)
.

Proof. If the fast robot arrives at the center first, then clearly the algorithm
is optimal (it completes the delivery entirely by itself). Similarly, if the optimal
algorithm involves only the slow robot (i.e. the fast robot is too far away to help),
the algorithm is also optimal. Thus, we may consider only the case where the slow
robot arrives first and where an optimal offline algorithm involves cooperation
between the two robots.

Unlike in the optimal algorithm, the slow robot will not move directly toward
the fast robot, since it doesn’t know where it is. Rather, the slow robot will move
along the shared axis in a previously agreed-upon direction (i.e. North). The fast
robot will continue to move toward the source and, seeing the bomb is no longer
there, begin to move along the shared axis. If the fast robot is fast enough, it
will catch the slow robot, take the bomb, and complete the delivery. Otherwise,
the slow robot will deliver the bomb.

Let d1 and d2 be the initial distances of the slow and fast robots to the source,
respectively. Without loss of generality, suppose D = 1 and the fast robot moves
at speed v2 = 1. By Lemma 1.1, setting d1 = 0 cannot decrease the competitive
ratio, and so a bound on the competitive ratio can be written as

min
{

1
v1
, d2 + 1

}
d2

v1+1 +
(
1 − d2

v1+1v1

) =
min

{
1
v1
, d2 + 1

}
d2

1−v1
1+v1

+ 1
.

For the first case, where 1
v1

≤ d2+1, we can write an upper bound by substituting
1/(d2 + 1) for v1 since 1/v1 decreases w.r.t v1 and 1−v1

1+v1
increases w.r.t v1:

1
v1

d2
1−v1
1+v1

+ 1
≤ 1 +

2d2
2 + d2 + d22

366 J. Coleman et al.

which is maximized when d2 =
√

2 (giving a value of 1
7

(
5 + 4

√
2
)
). For the

second case, when 1
v1

> d2 + 1, observe:

d2 + 1
d2

v1+1 (1 − v1) + 1
=

(1 + v1) + d2(1 + v1)
(1 + v1) + d2(1 − v1)

≤ 1 + v1
1 + v1(2v1 − 1)

which is maximized when v1 =
√

2 − 1 (giving a value of 1
7

(
5 + 4

√
2
)
). ��

Remark 1. This algorithm makes no use of the critical distance and
thus applies to all three boundary-knowledge models (VisibleBoundary,
DiscoverableBoundary, and InvisibleBoundary).

4 Online Algorithms for the NoAxis Model

The previous algorithms made use of a common axis and direction between the
two robots. Now we consider an even weaker model where robots are disori-
ented (they have no common axis or sense of direction). We consider the three
boundary-knowledge models introduced in Sect. 1.

We begin with the following lemma which will be useful for the analysis of
online algorithms.

Lemma 4.1. Assume at the start the slow robot is at S. Any online algorithm
that involves the robots meeting at any point other than S cannot have constant
competitive ratio.

4.1 VisibleBoundary Model

First, we study the model where the critical distance D is known. Clearly, the
optimally competitive algorithm for the OneAxis is not feasible in this model,
since robots cannot decide on a common axis or direction to move along and
potentially meet for a handover. By Lemma 4.1, the robots only hope for coop-
eration is by meeting at S. So if robots are going to collaborate, at least one
of the robots will need to wait at S for the other robot to arrive. Clearly, it
cannot do this forever though—it may be the case that the other robot is so far
away or slow that the first robot may as well have delivered the bomb by itself!
On the other hand, if the first robot simply commits to delivering the bomb by
itself without waiting for the other robot to arrive, it may miss an opportunity
to deliver the bomb very quickly if the other robot arrives at S shortly after and
is very fast. It would seem, then, that an optimal algorithm must balance the
cost of waiting for the other robot to arrive and completing the delivery without
collaboration.

The main result of this section is the following theorem:

Theorem 4.1. There exists an algorithm in the NoAxis/VisibleBoundary
model with optimal competitive ratio 1 +

√
2.

Delivery to Safety with Two Cooperating Robots 367

We’ll start by proving that there exists no algorithm with a better competi-
tive ratio:

Lemma 4.2. Any online algorithm for the NoAxis/VisibleBoundary model
has competitive ratio at least 1 +

√
2.

Now, we propose Algorithm 3 and then prove its competitive ratio to be at
most 1 +

√
2.

Algorithm 3. Online Algorithm for NoAxis model for robot with speed v

1: move to S and wait for D/v time
2: if other robot arrives within D/v time then
3: faster of two robots picks up bomb and moves toward boundary for delivery
4: else
5: pick up bomb and move toward boundary for delivery

Lemma 4.3. Algorithm 3 has a competitive ratio of at most 1 +
√

2.

4.2 DiscoverableBoundary Model

In this section, we consider the scenario where the robots are disoriented (NoAxis
model) and do not know the distance D of the boundary from the source, but
can discover it by passing through a point on the boundary or by encountering
another robot which has previously discovered it.

Theorem 4.2. Any algorithm for the NoAxis / DiscoverableBoundary model
has competitive ratio at least 3.

Now, we present Algorithm 4 with competitive ratio of 15/4.

Algorithm 4. Online Algorithm for DiscoverableBoundary Model for robot
with speed v
1: move to S
2: if discovered boundary on the way to S then
3: wait time D/v;
4: else
5: move away from S (without the bomb) until arriving at the boundary
6: return to S
7: if bomb is still at S then
8: take bomb to the boundary

Theorem 4.3. Algorithm 4 has a competitive ratio of exactly 15/4.

368 J. Coleman et al.

4.3 InvisibleBoundary Model

Finally, we analyze an online algorithm under much stricter conditions. Robots
cannot perceive the boundary at any time and therefore can never know the
critical distance. It follows, then, that any valid algorithm must involve robots
carrying the bomb away from the source without knowing how far they must
take it in order to terminate.

Assume the slow robot starts at the source. By Lemma 4.1 there is no online
algorithm with bounded competitive ratio unless the two robots have a meeting
at the source. Further, it is easy to see that if the slow robot leaves the source
without the bomb then unless it returns to the source there can be no online
algorithm with bounded competitive ratio.

Lemma 4.4. There exists no algorithm with constant competitive ratio for any
instance of the problem under the NoAxis/InvisibleBoundary model in which
one robot starts at S and no lower bound on D is known to the robots.

In order to provide an online algorithm with constant competitive ratio, we
make the necessary assumption (by Lemma 4.4) that the critical distance D ≥ 1.
In the sequel, we provide an algorithm that involves the first robot arriving at S
taking the bomb a certain distance away from S and then returning (without the
bomb) to see if a faster robot has arrived. If a faster robot has arrived, it shares
information about the distance and direction of the bomb and allows the faster
robot to complete the delivery. Otherwise, it travels back to where it left the
bomb and carries it a bit further, expanding the distance each time. Formally,
we present Algorithm 5 below.

We now prove a theorem that gives an upper bound on the competitive ratio
of Algorithm 5. Note that Algorithm 5 uses the as yet unspecified expansion
factor a > 1. The optimal selection of a will turn out to be a = 3+

√
17

4 and this
will be determined in the course of the proof of the following theorem.

Theorem 4.4. For two robots, Algorithm 5 with a = 3+
√
17

4 delivers the bomb
to the boundary in at most 7+

√
17

2 times the optimal offline time.

Before proceeding to show a lower bound of 2 +
√

5 for any online algorithm
for the NoAxis/InvisibleBoundary model, we introduce a few basic concepts
and ideas. Assume two robots r1, r2 with v1 = 1 < v2 and a source S. Recall that
each robot knows the location of the source and its own location and speed but
not the speed and location of the other robot. If the two robots meet, they can
exchange information and determine which of the two is faster. If a robot knows
it is faster than the other robot then if/when it acquires the bomb, it should
simply move away from S forever to guarantee eventual delivery. If a robot holds
the bomb and is “searching” for the perimeter but does not know whether it is
the faster robot then it must return to the source (without the bomb) to check
whether or not the other robot is waiting there. If it is, then it will share the
direction of the bomb so that the fast robot can complete the delivery. Therefore

Delivery to Safety with Two Cooperating Robots 369

Algorithm 5. Online Algorithm for the InvisibleBoundary Model for a robot
speed v and expansion factor a
1: i ← 0
2: while never encountered another robot do
3: move to S
4: if faster robot is at S then
5: share direction of bomb with faster robot and stay at S forever
6: else if slower robot is at S then
7: get direction of bomb from slow robot (if not already known)
8: move to bomb, pick it up, and continue moving away from S forever
9: else if bomb is at S then

10: Wait for another robot for at most time 2/v
11: if faster robot has not arrived then
12: pick up bomb
13: move away from S for a distance a
14: set the bomb down
15: else
16: stay at S forever

17: else if bomb is not at S but its location is known then
18: move toward the bomb a distance of ai distance away from S
19: pick up bomb
20: move another ai distance away from S
21: set the bomb down, marking its location
22: else
23: wait for other robot to return
24: if other robot is slower then
25: get direction of the bomb from other robot

26: i ← i + 1

the slow robot is forced to execute a zigzag strategy as defined below, otherwise,
the adversary will make the competitive ratio arbitrarily large.

A general algorithm is encapsulated by a strategy in which the robot starts at
the source and executes Algorithm 6 implying a search at a distance xk in the k-
th round of the algorithm, for each k ≥ 1. The algorithm is parameterized by an
infinite ordered sequence of positive distances X = {x1, x2, . . . , xk, . . .} measured
from the source that specifies the turning points that a moving robot will make.
In the argument below we assume that given a strategy X the adversary has
the power to choose the speed of the fast robot and its initial distance from the
source S.

To ensure progress in searching, each trip away from the source should explore
farther towards the perimeter than in the previous trip: this is formalized by the
requirement that xk < xk+1 for all k ≥ 1. Moreover, limk→∞ xk = +∞ (if not,
the strategy could not solve all instances of the problem).

Consider a strategy X. Let the perimeter be at an unknown distance D. In
each round k for which the perimeter is not found the robot must return to the
source and will therefore cover a length 2xk. The total length covered up to and

370 J. Coleman et al.

Algorithm 6. Zig-Zag Delivery Algorithm (X)
1: Input: Infinite sequence X = {x1, x2, . . . , xk, . . .} with 0 < xk < xk+1 for all k ≥ 1;
2: for k ← 1, 2, 3, . . . do
3: if k = 1 then
4: move distance xk away from S (in any direction)
5: else
6: move distance xk away from S in diretion of bomb, picking it up on the way

7: set down bomb
8: return to source and k ← k + 1

including round k will be equal to 2
∑k

i=1 xi. If the perimeter is found during
the next round the total distance covered by the robot will be D + 2

∑k
i=1 xi.

The resulting competitive ratio will be equal to

D + 2
∑k

i=1 xi

D
= 1 +

2
∑k

i=1 xi

D

Since the perimeter can be placed arbitrarily close to xk by an adversary it
follows that the highest lower bound on the competitive ratio for this step will
be equal to

1 + sup
D>xk

2
∑k

i=1 xi

D
= 1 +

2
∑k

i=1 xi

xk
= 3 +

2
∑k−1

i=1 xi

xk

It follows from the previous discussion that the resulting competitive ratio of
the strategy X will satisfy

CRX = 3 +
2 supk≥1

∑k−1
i=1 xi

xk
. (2)

Observe that the lower bound obtained in Eq. (2) is valid for two robots
provided the adversary can force the slow robot to execute the zigzag strategy.
So we consider an optimal strategy X = {x1, x2, . . . , xk, . . .}. Let xk be the last
move of this strategy with which we reach the destination perimeter.

Now we are ready to complete our analysis in the InvisibleBoundary model
by proving the following:

Theorem 4.5. The competitive ratio of every strategy X solving the bomb squad
problem in the InvisibleBoundary model must satisfy CRX ≥ 2 +

√
5.

5 Conclusion

The main focus of the paper was to investigate algorithms for delivering a bomb
to a safe location and compare the performance of online algorithms under sev-
eral models which describe the knowledge the two robots have about each other
and the environment (in this case the boundary). There are many interesting

Delivery to Safety with Two Cooperating Robots 371

and challenging open problems remaining. For the two-robot case studied in
the present paper, one can see the gaps remaining by glancing at the results
displayed in Table 1. An interesting class of problems arises in the multi-robot
(more than two robots) case, where, generally, it is much harder to give tight per-
formance bounds. Finally, it would be interesting to investigate algorithms that
are resilient to faults that arise either from robot miscommunication or faults
caused by the planar environment on which the robots operate (e.g. based on
visibility obstructions, distance constraints, etc.) and/or are sensitive to energy
consumption limitations.

References

1. Ahlswede, R., Wegener, I.: Search problems. Wiley-Interscience (1987)
2. Alpern, S., Gal, S.: The theory of search games and rendezvous. Springer, New

York (2003). https://doi.org/10.1007/b100809
3. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.

106(2), 234–252 (1993)
4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
5. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)
6. Carvalho, I.A., Erlebach, T., Papadopoulos, K.: On the fast delivery problem with

one or two packages. J. Comput. Syst. Sci. 115, 246–263 (2021)
7. Chalopin, J., Das, S., Mihal’ák, M., Penna, P., Widmayer, P.: Data delivery by

energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer
auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5 9

8. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-
constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43951-7 36

9. Coleman, J., Kranakis, E., Krizanc, D., Ponce, O.M.: Message delivery in the plane
by robots with different speeds. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.)
SSS 2021. LNCS, vol. 13046, pp. 305–319. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-91081-5 20

10. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: The pony express com-
munication problem. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol.
12757, pp. 208–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79987-8 15

11. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for
mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 18

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile enti-
ties. Current Research in Moving and Computing 11340 (2019). https://doi.org/
10.1007/978-3-030-11072-7

https://doi.org/10.1007/b100809
https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1007/978-3-662-43951-7_36
https://doi.org/10.1007/978-3-030-91081-5_20
https://doi.org/10.1007/978-3-030-91081-5_20
https://doi.org/10.1007/978-3-030-79987-8_15
https://doi.org/10.1007/978-3-030-79987-8_15
https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7

Space-Efficient STR-IC-LCS Computation

Yuuki Yonemoto1, Yuto Nakashima2(B) , Shunsuke Inenaga2,3 ,
and Hideo Bannai4

1 Department of Information Science and Technology, Kyushu University,
Fukuoka, Japan

yonemoto.yuuki.240@s.kyushu-u.ac.jp
2 Department of Informatics, Kyushu University, Fukuoka, Japan

nakashima.yuto.003@m.kyushu-u.ac.jp, inenaga@inf.kyushu-u.ac.jp
3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

4 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
hdbn.dsc@tmd.ac.jp

Abstract. One of the most fundamental methods for comparing two
given strings A and B is the longest common subsequence (LCS), where
the task is to find (the length) of the longest common subsequence. In
this paper, we address the STR-IC-LCS problem which is one of the
constrained LCS problems proposed by Chen and Chao [J. Comb. Optim,
2011]. A string Z is said to be an STR-IC-LCS of three given strings A,
B, and P , if Z is one of the longest common subsequences of A and
B that contains P as a substring. We present a space efficient solution
for the STR-IC-LCS problem. Our algorithm computes the length of an
STR-IC-LCS in O(n2) time and O((� + 1)(n − � + 1)) space where � is
the length of a longest common subsequence of A and B of length n.
When � = O(1) or n − � = O(1), then our algorithm uses only linear
O(n) space.

Keywords: String algorithm · Constrained longest common
subsequence · Dynamic programming

1 Introduction

Comparison of two given strings (sequences) has been a central task in Theoret-
ical Computer Science, since it has many applications including alignments of
biological sequences, spelling corrections, and similarity searches.

One of the most fundamental method for comparing two given strings A and
B is the longest common subsequence LCS, where the task is to find (the length
of) a common subsequence L that can be obtained by removing zero or more
characters from both A and B, and no such common subsequence longer than
L exists. A classical dynamic programming (DP) algorithm is able to compute
an LCS of A and B in quadratic O(n2) time with O(n2) working space, where n

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 372–384, 2023.
https://doi.org/10.1007/978-3-031-23101-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_25&domain=pdf
http://orcid.org/0000-0001-6269-9353
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
https://doi.org/10.1007/978-3-031-23101-8_25

Space-Efficient STR-IC-LCS Computation 373

is the length of the input strings [12]. In the word RAM model with ω machine
word size, the so-called “Four-Russian” method allows one to compute the length
of an LCS of two given strings in O(n2/k + n) time, for any k ≤ ω, in the case
of constant-size alphabets [9]. Under a common assumption that ω = log2 n,
this method leads to weakly sub-quadratic O(n2/ log2 n) time solution for con-
stant alphabets. In the case of general alphabets, the state-of-the-art algorithm
computes the length of an LCS in O(n2 log2 k/k2 + n) time [2], which is weakly
sub-quadratic O(n2(log log n)2/ log2 n) time for k ≤ ω = log2 n. It is widely
believed that such “log-shaving” improvements would be the best possible one
can hope, since an O(n2−ε)-time LCS computation for any constant ε > 0 refutes
the famous strong exponential time hypothesis (SETH) [1].

Recall however that this conditional lower-bound under the SETH does not
enforce us to use (strongly) quadratic space in LCS computation. Indeed, a
simple modification to the DP method permits us to compute the length of an
LCS in O(n2) time with O(n) working space. There also exists an algorithm
that computes an LCS string in O(n2) time with only O(n) working space [6].
The aforementioned log-shaving methods [2,9] use only O(2k + n) space, which
is O(n) for k ≤ ω = log2 n.

In this paper, we follow a line of research called the Constrained LCS prob-
lems, in which a pattern P that represents a-priori knowledge of a user is given
as a third input, and the task is to compute the longest common subsequence of
A and B that meets the condition w.r.t. P [3–5,7,8,11]. The variant we consider
here is the STR-IC-LCS problem of computing a longest string Z which satisfies
that (1) Z includes P as a substring and (2) Z is a common subsequence of A
and B. We present a space-efficient algorithm for the STR-IC-LCS problem in
O(n2) time with O((�+1)(n−�+1)) working space, where � = lcs(A,B) denotes
the length of an LCS of A and B. Our solution improves on the state-of-the-art
STR-IC-LCS algorithm of Deorowicz [5] that uses Θ(n2) time and Θ(n2) work-
ing space, since O((�+1)(n−�+1)) ⊆ O(n2) always holds. Our method requires
only sub-quadratic o(n2) space whenever � = o(n). In particular, when � = O(1)
or n − � = O(1), which can happen when we compare very different strings or
very similar strings, respectively, then our algorithm uses only linear O(n) space.

Our method is built on a non-trivial extension of the LCS computation
algorithm by Nakatsu et al. [10] that runs in O(n(n − � + 1)) time with
O((� + 1)(n − � + 1)) working space. We remark that the O(n2−ε)-time con-
ditional lower-bound for LCS also applies to our case since STR-IC-LCS with
the pattern P being the empty string is equal to LCS, and thus, our solution is
almost time optimal (except for log-shaving, which is left for future work).

Related Work. There exists four variants of the Constrained LCS prob-
lems, STR-IC-LCS/SEQ-IC-LCS/STR-EC-LCS/SEQ-EC-LCS, each of which is
to compute a longest string Z such that (1) Z includes/excludes the constraint
pattern P as a substring/subsequence and (2) Z is a common subsequence of
the two target strings A and B [3–5,7,8,11]. Yamada et al. [13] proposed an
O(nσ + (�′ + 1)(n − �′ + 1)r)-time and space algorithm for the STR-EC-LCS

374 Y. Yonemoto et al.

problem, which is also based on the method by Nakatsu et al. [10], where σ is
the alphabet size, �′ is the length of an STR-EC-LCS and r is the length of P .
However, the design of our solution to STR-IC-LCS is quite different from that
of Yamada et al.’s solution to STR-EC-LCS.

2 Preliminaries

2.1 Strings

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string
S is denoted by |S|. The empty string ε is a string of length 0. For a string
S = uvw, u, v and w are called a prefix, substring, and suffix of S, respectively.

The i-th character of a string S is denoted by S[i], where 1 ≤ i ≤ |S|. For a
string S and two integers 1 ≤ i ≤ j ≤ |S|, let S[i..j] denote the substring of S
that begins at position i and ends at position j, namely, S[i..j] = S[i] · · · S[j].
For convenience, let S[i..j] = ε when i > j. SR denotes the reversed string of
S, i.e., SR = S[|S|] · · · S[1]. A non-empty string Z is called a subsequence of
another string S if there exist increasing positions 1 ≤ i1 < · · · < i|Z| ≤ |S|
in S such that Z = S[i1] · · · S[i|Z|]. The empty string ε is a subsequence of any
string. A string that is a subsequence of two strings A and B is called a common
subsequence of A and B.

2.2 STR-IC-LCS

Let A,B, and P be strings. A string Z is said to be an STR-IC-LCS of two
target strings A and B including the pattern P if Z is a longest string such that
(1) P is a substring of Z and (2) Z is a common subsequence of A and B.

For ease of exposition, we assume that n = |A| = |B|, but our algorithm to
follow can deal with the general case where |A| �= |B|. We can also assume that
|P | ≤ n, since otherwise there clearly is no solution. In this paper, we present
a space-efficient algorithm that computes an STR-IC-LCS in O(n2) time and
O((�+1)(n−�+1)) space, where � = lcs(A,B) is the longest common subsequence
length of A and B. In case where there is no solution, we use a convention that
Z = ⊥ and its length |⊥| is −1. We remark that � ≥ |Z| always holds.

3 Space-efficient Solution for STR-IC-LCS Problem

In this section, we propose a space-efficient solution for the STR-IC-LCS prob-
lem.

Problem 1 (STR-IC-LCS problem). For any given strings A,B of length n and
P , compute an STR-IC-LCS of A,B, and P .

Theorem 1. The STR-IC-LCS problem can be solved in O(n2) time and O((�+
1)(n − � + 1)) space where � is the length of LCS of A and B.

Space-Efficient STR-IC-LCS Computation 375

Fig. 1. Let A = bcdababcb, B = cbacbaaba, and P = abb. The length of an STR-
IC-LCS of these strings is 6. One of such strings can be obtained by minimal intervals
[4..7] over A and [6..8] over B because lcs(bca, cbacb) = 2, |P | = 3, and lcs(cb, c) = 1.

In Sect. 3.1, we explain an overview of our algorithm. In Sect. 3.2, we show a
central technique for our space-efficient solution and Sect. 3.3 concludes with the
detailed algorithm.

3.1 Overview of Our Solution

Our algorithm uses an algorithm for the STR-IC-LCS problem which was pro-
posed by Deorowicz [5]. Firstly, we explain an outline of the algorithm. Let IA

be the set of minimal intervals over A which have P as a subsequence. Remark
that IA is linear-size since each interval cannot contain any other intervals.
There exists a pair of minimal intervals [bA, eA] over A and [bB , eB] over B
such that the length of an STR-IC-LCS is equal to the sum of the three values
lcs(A[1..bA − 1], B[1..bB − 1]), |P |, and lcs(A[eA + 1..n], B[eB + 1..n]) (see also
Fig. 1 for an example). First, the algorithm computes IA and IB and computes
the sum of three values for any pair of intervals. If we have an LCS table d of
size n×n such that d(i, j) stores lcs(A[1..i], B[1..j]) for any integers i, j ∈ [1..n],
we can check any LCS value between prefixes of A and B in constant time.
It is known that this table can be computed in O(n2) time by using a simple
dynamic programming. Since the LCS tables for prefixes and suffixes requires
O(n2) space, the algorithm also requires O(n2) space.

Our algorithm uses a space-efficient LCS table by Nakatsu et al. [10] instead
of the table d for computing LCSs of prefixes (suffixes) of A and B. The algorithm
by Nakatsu et al. also computes a table by dynamic programming, but the table
does not gives lcs(A[1..i], B[1..j]) for several pairs (i, j). In the next part, we
show a way to resolve this problem.

3.2 Space-efficient Prefix LCS

First, we explain a dynamic programming solution by Nakatsu et al. for com-
puting an LCS of given strings A and B. We give a slightly modified description
in order to describe our algorithm. For any integers i, s ∈ [1..n], let fA(s, i) be
the length of the shortest prefix B[1..fA(s, i)] of B such that the length of the
longest common subsequence of A[1..i] and B[1..fA(s, i)] is s. For convenience,
fA(s, i) = ∞ if no such prefix exists. The values fA(s, i) will be computed using
dynamic programming as follows:

fA(s, i) = min{fA(s, i − 1), js,i},

376 Y. Yonemoto et al.

where js,i is the index of the leftmost occurrence of A[i] in B[fA(s−1, i−1)+1..n].
Let s′ be the largest value such that fA(s′, i) < ∞ for some i, i.e., the s′-
th row is the lowest row which has an integer value in the table fA. We can
see that the length of the longest common subsequence of A and B is s′ (i.e.,
� = lcs(A,B) = s′). See Fig. 2 for an instance of fA. Due to the algorithm, we
do not need to compute all the values in the table fA for obtaining the length of
an LCS. Let FA be the sub-table of fA such that FA(s, i) stores a value fA(s, i)
if fA(s, i) is computed in the algorithm of Nakatsu et al. Intuitively, FA stores
the first n − l+1 diagonals of length at most l. Let 〈i〉 be the set of pairs in the
i-th diagonal line (1 ≤ i ≤ n) of the table fA:

〈i〉 = {(s, i + s − 1) | 1 ≤ s ≤ n − i + 1}.

Formally, FA(s, i) = undefined if

1. s > i,
2. (s, i) ∈ 〈j〉 (j > n − � + 1), or
3. FA(s − 1, i − 1) = ∞ or undefined.

Any other FA(s, i) stores the value fA(s, i). Since the lowest row number of each
diagonal line 〈j〉 (j > n− �+1) is less than �, we do not need to compute values
which is described by the second item. Actually, we do not need to compute the
values in 〈n − �+ 1〉 for computing the LCS since the maximum row number in
the last diagonal line is also �. However, we need the values on the last line in
our algorithm. Hence the table FA uses O((� + 1)(n − � + 1)) space (subtable
which need to compute is parallelogram-shaped of height � and base n − �). See
Fig. 3 for an instance of FA.

Now we describe a main part of our algorithm. Recall that a basic idea is to
compute lcs(A[1..i], B[1..j]) from FA. If we have all the values on the table fA,
we can check the length lcs(A[1..i], B[1..j]) as follows.

Observation 1. The length of an LCS of A[1..i] and B[1..j] for any i, j ∈ [1..n]
is the largest s such that fA(s, i) ≤ j. If no such s exists, A[1..i] and B[1..j] have
no common subsequence of length s.

However, FA does not store several integer values w.r.t. the second condition of
undefined for some i and j. See also Fig. 3 for an example of the fact. In this
example, we can see that lcs(A[1..7], B[1..4]) = fA(3, 7) = 3 from the table fA,
but FA(3, 7) = undefined in FA. In order to resolve this problem, we also define
FB (and fB). Formally, for any integers j, s ∈ [1..n], let fB(s, j) be the length of
the shortest prefix A[1..fB(s, j)] of A such that the length of the longest common
subsequence of B[1..j] and A[1..fB(s, j)] is s. Our algorithm accesses the length
of an LCS of A[1..i] and B[1..j] for any given i and j by using two tables FA

and FB . The following lemma shows a key property for the solution.

Space-Efficient STR-IC-LCS Computation 377

Fig. 2. The LCS-table fA which is defined by Nakatsu et al. of A = bcdababcb. This
figure also illustrates the table fB of B = cbacbaaba.

Fig. 3. A sparse table FA of fA for A = bcdababcb and B = cbacbaaba does not give
lcs(A[1..i], B[1..j]) for some (i, j).

Lemma 1. Let s be the length of an LCS of A[1..i] and B[1..j]. If FA(s, i) =
undefined then FB(s, j) �= undefined.

This lemma implies that the length of an LCS of A[1..i] and B[1..j] can be
obtained if we have the two sparse tables (see also Fig. 4). Before we prove this
lemma, we show the following property. Let UFA

be the set of pairs (s, i) of
integers such that FB(s, j) �= undefined where FA(s, i) = j.

378 Y. Yonemoto et al.

Fig. 4. Due to Observation 1, fA(3, 7) gives the fact that lcs(A[1..7], B[1..4]) = 3.
However, FA(3, 7) = undefined. Then we can obtain the fact that lcs(A[1..7], B[1..4]) =
3 by using FB . Namely, FB(3, 4) gives the LCS value.

Lemma 2. For any 1 ≤ s ≤ lcs(A,B), there exists i such that (s, i) ∈ UFA
.

Proof. Let � = lcs(A,B) and A[i1] · · · A[i�] be an LCS of A and B which can be
obtained by backtracking over FA. Suppose that FB(s, FA(s, is)) = undefined
for some s ∈ [1..�]. Since FA(1, i1) < . . . < FA(�, i�), FB(s′, FA(s′, is′)) =
undefined for any s′ ∈ [s..�]. However, FB(�, FA(�, i�)) is not undefined. Therefore,
FB(s, FA(s, is)) �= undefined for any s ∈ [1..�]. This implies that the statement
holds. ��
Now we are ready to prove Lemma 1 as follows.

Proof (of Lemma 1). Let � = lcs(A,B) and X = A[i1] · · · A[i�] be an LCS of A
and B which can be obtained by FA. j1, . . . , j� denotes the sequence of positions
over B where FA(k, ik) = jk for any k ∈ [1..�]. Assume that FA(s, i) = undefined.
Let m be the largest integer such that is+m ≤ i holds. If no such m exists,
namely i < i1, the statement holds since FA(s, i) �= undefined. Due to Lemma 1,
FA(s + m, i) > j. Thus j < js+m holds. On the other hand, we consider the
table FB (and fB). Let i′ = fB(s, j) and i′′ = fB(s + m, j). Due to Lemma 1,
i′ ≤ i < i′′ holds. From Lemma 2, FB(s + m, js+m) �= undefined. This implies
that FB(s + m, j) (= i′′) is not undefined. By the definition of X, js+m − j ≥
m− 1. Notice that (s, j) is in (j − s+1)-th diagonal line. These facts imply that
FB(s, j) �= undefined. See also Fig. 5 for an illustration. ��

Space-Efficient STR-IC-LCS Computation 379

Fig. 5. This figure shows an illustration for the proof of Lemma 1. The length s of an
LCS of A[1..i] and B[1..j] cannot be obtained over FA because FA(i, s) = undefined
(the highlighted cell). However, the length can be obtained by FB(s, j) over FB . The
existence of FB(s + m, js+m) from an LCS path guarantees the fact that FB(s, j) �=
undefined.

3.3 Algorithm

First, our algorithm computes sets of minimal intervals IA and IB (similar to
the algorithm by Deorowicz [5]). Second, compute the tables FA and FB for
computing LCSs of prefixes, and the tables FAR and FBR for computing LCSs
of suffixes (similar to the algorithm by Nakatsu et al. [10]). Third, for any pairs
of intervals in IA and IB, compute the length of an LCS of corresponding pre-
fixes/suffixes and obtain a candidate of the length of an STR-IC-LCS. As stated
above, the first and the second steps are similar to the previous work. Here, we
describe a way to compute the length of an LCS of prefixes on FA and FB in the
third step. We can also compute the length of an LCS of suffixes on FAR and
FBR by using a similar way.

We assume that IA and IB are sorted in increasing order of the beginning
positions. Let [bA(x)..eA(x)] and [bB(y)..eB(y)] be a x-th interval in IA and a y-
th interval in IB, respectively. We process O(n2)-queries in increasing order of the
beginning position of the intervals in IA. For each interval [bA(x)..eA(x)] in IA,
we want to obtain the length of an LCS of A[1..bA(x) − 1] and B[1..bB(1) − 1].
For convenience, let ix = bA(x) − 1 and jy = bB(y) − 1. In the rest of this
section, we use a pair (x, y) of integers to denote a prefix-LCS query (computing
lcs(A[1..ix], B[1..iy])). We will find the LCS by using Observation 1. Here, we
describe how to compute prefix-LCS queries (ix, j1), . . . , (ix, j|IB |) in this order
for a fixed ix.

380 Y. Yonemoto et al.

Lemma 3. All required prefix-LCS values for an interval [bA(x)..eA(x)] in IA

and all intervals in IB can be computed in O(n) time.

Proof. There exist two cases for each ix. Formally, (1) FA[ix, 1] �= undefined or
(2) FA[ix, 1] = undefined.

In the first case, we scan the ix-th column of FA from the top to the bottom
in order to find the maximum value which is less than or equal to j1. If such
a value exists in the column, then the row number s1 is the length of an LCS.
After that, we are given the next prefix-LCS query (ix, j2). It is easy to see that
s0 = lcs(A[1..ix], B[1..j1]) ≤ lcs(A[1..ix], B[1..j2]) since j1 < j2. This implies that
the next LCS value is equal to s0 or that is placed in a lower row in the column.
This means that we can start to scan the column from the s0-th row. Thus we
can answer all prefix-LCSs for a fixed ix in O(n) time (that is linear in the size
of IB).

In the second case, we start to scan the column from the top FA[ix, ix − n −
� + 1] (the first ix − n − � rows are undefined). If FA[ix, ix − n − � + 1] ≤ j1,
then the length of an LCS for the first query (ix, j1) can be found in the table
(similar to the first case) and any other queries (ix, j2), . . . , (ix, j|IB |) can be also
answered in the similar way. Otherwise (if FA[ix, ix −n− �+1] > j1), the length
which we want may be in the “undefined” domain. Then we use the other table
FB . We scan the j1-th column in FB from the top to the bottom in order to find
the maximum value which is less than or equal to ix. By Lemma 1, such a value
must exist in the column (if lcs(A[1..ix], B[1..j1]) > 0 holds) and the row number
s′ is the length of an LCS. After that, we are given the next query (ix, j2). If
FA[ix, ix − n − � + 1] ≤ j2, then the length can be found in the table (similar
to the first case). Otherwise (if FA[ix, ix − n − � + 1] > j2), the length must
be also in the “undefined” domain. Since such a value must exist in the j2-th
column in FB by Lemma 1, we scan the column in FB. It is easy to see that
s′ = lcs(A[1..ix], B[1..j1]) ≤ lcs(A[1..ix], B[1..j2]). This implies that the length
of an LCS that we want to find is in lower row. Thus it is enough to scan the
j2-th column from the s′-th row to the bottom. Then we can answer the second
query (ix, j2). Hence we can compute all LCSs for a fixed ix in O(n + �) time
(that is linear in the size of IB or the number of rows in the table FB).

Therefore we can compute all prefix-LCSs for each interval in IA in O(n)
time (since n ≥ �). ��

On the other hand, we can compute all required suffix-LCS values with com-
puting prefix-LCS values. We want a suffix-LCS value of A[eA(x) + 1..n] and
B[eB(y) + 1..n] (1 ≤ y ≤ |IB |) when we compute the length of an LCS of
A[1..bA(x)− 1] and B[1..bB(y)− 1]. Recall that we process all intervals of IB in
increasing order of the beginning positions when computing prefix-LCS values
with a fixed interval of IA. This means that we need to process all intervals of
IB in “decreasing order” when computing suffix-LCS values with a fixed interval
of IA. We can do that by using an almost similar way on FAR and FBR . The
most significant difference is that we scan the |A[eA(x)+1..n]|-th column of FAR

from the �-th row to the first row.

Space-Efficient STR-IC-LCS Computation 381

Overall, we can obtain the length of an STR-IC-LCS in O(n2) time in total.
Also this algorithm requires space for storing all minimal intervals and tables,
namely, requiring O(n+ (�+ 1)(n − �+ 1)) = O((�+ 1)(n − �+ 1)) space in the
worst case. Finally, we can obtain Theorem 1.

Algorithm 1. Algorithm for computing the length of STR-IC-LCS
Input: A,B, P (|A| = n, |B| = n, |P | = r)
Output: l, C

1: compute IA and IB

2: compute FA, FB , FAR , and FBR

3: � ← lcs(A,B);
4: l ← 0;
5: for i = 1 to |IA| do
6: kA

1 ← 1; kB
1 ← 1; kA

2 ← �; kB
2 ← �;

7: for j = 1 to |IB | do
8: k1 ← 0; k2 ← 0;
9: compute lcs(A[1..bA(i) − 1], B[1..bB(j) − 1]) // as k1 by Algorithm 2

10: compute lcs(A[eA(i) + 1..n], B[eB(j) + 1..n]) // as k2 by Algorithm 3
11: if k1 + k2 + r > l then
12: l ← k1 + k2 + r
13: end if
14: end for
15: end for
16: return l

In addition, we can also compute an STR-IC-LCS (as a string), if we store a
pair of minimal intervals which produce the length of an STR-IC-LCS. Namely,
we can find a cell which gives the prefix-LCS value over FA or FB . Then we
can obtain a prefix-LCS string by a simple backtracking (a suffix-LCS can be
also obtained by backtracking on FAR or FBR). On the other hand, we can also
use an algorithm that computes an LCS string in O(n2) time and O(n) space
by Hirschberg [6]. We conclude with supplemantal pseudocodes of our algorithm
(see Algorithms 1,2, and 3).

382 Y. Yonemoto et al.

Algorithm 2. Computing lcs(A[1..bA(i) − 1], B[1..bB(j) − 1])
1: for k ← kA

1 to � do
2: if FA[bA(i) − 1, k] ≤ bB(j) − 1 then
3: if FA[bA(i) − 1, k + 1] > bB(j) − 1 then
4: k1 ← k
5: kA

1 ← k
6: break
7: end if
8: else if FA[bA(i) − 1, k] > bB(j) − 1 then
9: if FA[bA(i) − 1, k − 1] = undefined then
10: kA

1 ← k

11: for k′ = kB
1 to � do

12: if FB [bB(j) − 1, k′] > bA(i) − 1 then
13: k1 ← 0
14: kB

1 ← k′
15: break
16: else if FB [bB(j) − 1, k′ + 1] > bA(i) − 1 then
17: k1 ← k′
18: kB

1 ← k′
19: break
20: end if
21: end for
22: else
23: k1 ← 0
24: kA

1 ← k
25: break
26: end if
27: end if
28: end for

Algorithm 3. Computing lcs(A[eA(i) + 1..n], B[eB(j) + 1..n])
1: for k = kA

2 to 1 do
2: if FAR [n − eA(i), k] ≤ n − eB(j) then
3: k2 ← k
4: kA

2 ← k
5: break
6: else if FAR [n − eA(i), k] > n − eB(j) then
7: if FAR [n − eA(i), k − 1] = undefined then
8: kA

2 ← k

9: for k′ = kB
2 to 1 do

10: if FBR [n − eB(j), k′] ≤ n − eA(i) then
11: k2 ← k′
12: kB

2 ← k′
13: break
14: else if FBR [n − eB(j), k′ − 1] = undefined then
15: k2 ← 0
16: kB

2 ← k′
17: break
18: end if
19: end for
20: end if
21: end if
22: end for

Space-Efficient STR-IC-LCS Computation 383

4 Conclusions and Future Work

We have presented a space-efficient algorithm that finds an STR-IC-LCS of two
given strings A and B of length n in O(n2) time with O((�+1)(n−�+1)) working
space, where � is the length of an LCS of A and B. Our method improves on
the space requirements of the algorithm by Deorowicz [5] that uses Θ(n2) space,
irrespective of the value of �.

Our future work for STR-IC-LCS includes improvement of the O(n2)-time
bound to, say, O(n(n−�+1)). We note that the algorithm by Nakatsu et al. [10]
for finding (standard) LCS runs in O(n(n − � + 1)) time. There also exists an
O(nσ + (�′ + 1)(n − �′ + 1)r)-time solution for the STR-EC-LCS problem that
runs fast when the length �′ of the solution is small [13], where r = |P |.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP21K17705 (YN), JP22H03551 (SI), JP20H04141 (HB), and by JST PRESTO Grant
Number JPMJPR1922 (SI).

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: FOCS 2015, pp. 59–78 (2015)

2. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. Theor.
Comput. Sci. 409(3), 486–496 (2008)

3. Chen, Y.C., Chao, K.M.: On the generalized constrained longest common sub-
sequence problems. J. Comb. Optim. 21(3), 383–392 (2011). https://doi.org/10.
1007/s10878-009-9262-5

4. Chin, F.Y., Santis, A.D., Ferrara, A.L., Ho, N., Kim, S.: A simple algorithm
for the constrained sequence problems. Inf. Process. Lett. 90(4), 175–179 (2004).
https://doi.org/10.1016/j.ipl.2004.02.008, http://www.sciencedirect.com/science/
article/pii/S0020019004000614

5. Deorowicz, S.: Quadratic-time algorithm for a string constrained LCS problem.
Inf. Process. Lett. 112(11), 423–426 (2012). https://doi.org/10.1016/j.ipl.2012.02.
007, http://www.sciencedirect.com/science/article/pii/S0020019012000567

6. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Commun. ACM 18(6), 341–343 (1975)

7. Kuboi, K., Fujishige, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster STR-IC-LCS
computation via RLE. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th
Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4–6,
2017, Warsaw, Poland. LIPIcs, vol. 78, pp. 20:1–20:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.20

8. Liu, J.J., Wang, Y.L., Chiu, Y.S.: Constrained Longest Common Subsequences
with Run-Length-Encoded Strings. Comput. J. 58(5), 1074–1084 (2014). https://
doi.org/10.1093/comjnl/bxu012

9. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

10. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982). https://doi.
org/10.1007/BF00264437

https://doi.org/10.1007/s10878-009-9262-5
https://doi.org/10.1007/s10878-009-9262-5
https://doi.org/10.1016/j.ipl.2004.02.008
http://www.sciencedirect.com/science/article/pii/S0020019004000614
http://www.sciencedirect.com/science/article/pii/S0020019004000614
https://doi.org/10.1016/j.ipl.2012.02.007
https://doi.org/10.1016/j.ipl.2012.02.007
http://www.sciencedirect.com/science/article/pii/S0020019012000567
https://doi.org/10.4230/LIPIcs.CPM.2017.20
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437

384 Y. Yonemoto et al.

11. Tsai, Y.T.: The constrained longest common subsequence problem. Inf. Process.
Lett. 88(4), 173–176 (2003). https://doi.org/10.1016/j.ipl.2003.07.001, http://
www.sciencedirect.com/science/article/pii/S002001900300406X

12. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811, http://doi.acm.
org/10.1145/321796.321811

13. Yamada, K., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster STR-
EC-LCS computation. In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS,
vol. 12011, pp. 125–135. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38919-2_11

https://doi.org/10.1016/j.ipl.2003.07.001
http://www.sciencedirect.com/science/article/pii/S002001900300406X
http://www.sciencedirect.com/science/article/pii/S002001900300406X
https://doi.org/10.1145/321796.321811
http://doi.acm.org/10.1145/321796.321811
http://doi.acm.org/10.1145/321796.321811
https://doi.org/10.1007/978-3-030-38919-2_11
https://doi.org/10.1007/978-3-030-38919-2_11

The k-Centre Problem for Classes
of Cyclic Words

Duncan Adamson1(B), Argyrios Deligkas2, Vladimir V. Gusev3,4,
and Igor Potapov4

1 Department of Computer Science, Reykjavik University, Reykjavik, Iceland
duncana@ru.is

2 Department of Computer Science, Royal Holloway, University of London,
Egham, UK

argyrios.deligkas@rhul.ac.uk
3 Materials Innovation Factory, University of Liverpool, Liverpool, UK

Vladimir.Gusev@liverpool.ac.uk
4 Department of Computer Science, University of Liverpool, Liverpool, UK

potapov@liverpool.ac.uk

Abstract. The problem of finding k uniformly spaced points (centres)
within a metric space is well known as the k-centre selection problem.
In this paper, we introduce the challenge of k-centre selection on a class
of objects of exponential size and study it for the class of combinatorial
necklaces, known as cyclic words. The interest in words under transla-
tional symmetry is motivated by various applications in algebra, cod-
ing theory, crystal structures and other physical models with periodic
boundary conditions. We provide solutions for the centre selection prob-
lem for both one-dimensional necklaces and largely unexplored objects in
combinatorics on words - multidimensional combinatorial necklaces. The
problem is highly non-trivial as even verifying a solution to the k-centre
problem for necklaces can not be done in polynomial time relative to the
length of the cyclic words and the alphabet size unless P = NP . Despite
this challenge, we develop a technique of centre selection for a class of
necklaces based on de-Bruijn Sequences and provide the first polynomial
O(k ·n) time approximation algorithm for selecting k centres in the set of
1D necklaces of length n over an alphabet of size q with an approximation

factor of O
(
1 +

logq(k·n)

n−logq(k·n)

)
. For the set of multidimensional necklaces

of size n1 ×n2 × . . .×nd we develop an O(k ·N2) time algorithm with an

approximation factor of O
(
1 +

logq(k·N)

N−logq(k·N)

)
in O(k · N2) time, where

N = n1 · n2 · . . . · nd by approximating de Bruijn hypertori technique.

1 Introduction

The problem of finding k uniformly spaced points (centres) within a metric space
is well known as the k-centre selection problem. So far, the problem has been

I. Potapov—Partially supported by ESPRC grant (EP/R018472/1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Ga̧sieniec (Ed.): SOFSEM 2023, LNCS 13878, pp. 385–400, 2023.
https://doi.org/10.1007/978-3-031-23101-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23101-8_26&domain=pdf
https://doi.org/10.1007/978-3-031-23101-8_26

386 D. Adamson et al.

intensely studied for finite, and explicitly given inputs like the k-centre problem
for graphs, grids, or a set of strings, which are essential in the context of facility
location and distribution [9,16,33].

The k-centre problem is also a tool in state space exploration, where cluster
centres or equally spaced centres need to be selected to guarantee effective cover-
age of the configuration space. For algebraic and combinatorial structures with a
state space of exponential size, sampling techniques have been used to generate
equally probable objects [7]. However, while such sampling techniques can give
uniform probability to the selection of any given object, there is a substantial
gap in the problem of ensuring that k samples are representative. The k-centre
problem is a natural means of modelling this objective, with the goal of ensuring
that no object is significantly far from the set of samples under a distance based
on some similarity metric. However, if the explicit representation of the whole
class of objects is infeasible to store and process due to its exponential size, the
k-centre selection problem requires new solutions and approaches.

In this work, we consider the class of combinatorial necklaces (also known as
cyclic words). The study of 1D necklaces has been motivated by applications in
the coding theory, free Lie algebras, and Hall sets [2,3,5,17,23,24,30]. Moreover,
2D necklaces have been recently studied for counting the number of toroidal
codes in [6] and can be used in the construction of 2D Gray codes [8]. Algorithms
for multidimensional combinatorial necklaces have remained a largely unexplored
area in combinatorics on words [2,27,32]. A multidimensional necklace is an
equivalence class of multidimensional words under translational symmetry, which
is the natural generalisation of the shift operation in 1D, see Fig. 1.

Fig. 1. An illustration of translational symmetry for a 4 × 4 word. Note that all 4
words presented here (out of a total of 16) correspond to the same necklace and can be
reached from one another through some two-dimensional translation denoted (g1, g2).
In red, the translation from the starting word to the new word is highlighted, with the
original word overlaid in grey. (Color figure online)

One natural use of multidimensional necklaces up to dimension three is the
combinatorial representation of crystal structures. In computational chemistry,
crystals are represented by periodic motives known as “unit cells”. Informally,
translational symmetry can be thought of as the equivalence of two crystals
under translation in space. Intuitively this symmetry makes sense in the context
of real structures, where two different “snapshots” of a unit cell both represent
the same periodic and infinite global structure, see Fig. 2.

The k-Centre Problem for Classes of Cyclic Words 387

Crystal Structure Prediction (CSP) is one of the most central and challenging
problems in materials science and computational chemistry [1,4]. The objective
is to find the “best” periodic three-dimensional structure of ions that yields the
lowest interatomic potential energy. The aim of our k-centre selection algorithms
for multidimensional necklaces is to replace the currently-used random genera-
tion approaches of unit cells [12] that often lead to identical crystal structures
during the process of configuration-space exploration.

Fig. 2. The crystal of SrT iO3 (left) and its 3D (middle) and 1D (right) necklace
representations.

Most of the existing methods for CSP require the exploration of different
configurations of periodic structures that combine local exploration and selec-
tion of new random locations in unexplored configuration space. The number
of unit cells of size n1 × n2 × . . . × nd in the d-dimensional integer lattice and
considering them up to translational symmetry is exponential and it is larger

than qN

N , where q is the number of different ions and N =
d∏

i=1

ni. The size of

such an object makes it infeasible to represent this set explicitly in the form of a
weighted graph. By extension, applying existing centre selection algorithms will
lead to an EXPSPACE solution and therefore require new techniques for oper-
ating on implicitly represented combinatorial objects. The same problem exists
when it may be required to construct k equally spaced code words from a set of
multidimensional cyclic words.

Even the original k-centre problem on graphs is non-trivial. The k-centre
problem is both NP-hard with respect to the size of a graph and is APX-hard
[18], making a PTAS unlikely. Additionally, the k-centre problem is unlikely to
be fixed-parameter tractable in the context of the most natural parameter k [13].
A different form of the k-centre problem appears in stringology with important
applications in computational biology; for example, to find the approximate gene
clusters for a set of words over the DNA alphabet [14,25,26].

This paper introduces the challenge of k-centre selection for implicitly repre-
sented sets. Notably, we aim for polynomial time algorithms in the length of the
output rather than in the size of the graph. The length of the output corresponds
to a logarithmic factor relative to the size of the graph, multiplied by some func-
tion on the number of centres. The k-centre problem for strings or words can
be defined over various distance functions. In this paper we focus on the overlap
distance, based on the overlap coefficient (well known in linguistic processing
[11,28,29]). The overlap coefficient measures the similarity of two words relative

388 D. Adamson et al.

to the number of common subwords. This measure can, in turn, be used as a
proxy for the closeness of potential energy in crystals. However, it is not critical
for our algorithmic results; all results could be reformulated using other distance
functions at the cost of slightly different approximation bounds.

In particular we develop a technique of centre selection based on de-Bruijn
Sequences and provide the first polynomial O(k · n) time approximation algo-
rithm for selecting k centres in the set of 1D necklaces of length n over an
alphabet of size q with an approximation factor of O

(
1 + logq(k·n)

n−logq(k·n)
)
. In the

multidimensional case, the results on generating de Bruijn tori are highly lim-
ited, so we developed a technique to select centres by approximating de Bruijn
hypertori. We present an algorithm that generates k centres for the set of mul-
tidimensional necklaces of size n1 × n2 × . . . × nd with an approximation of
O

(
1 + logq(k·N)

N−logq(k·N)

)
in O(k · N2) time, where N = n1 · n2 · . . . · nd. Moreover,

we show that verifying a solution to the k-centre problem for necklaces can not
be done in polynomial time relative to the length of the cyclic words and the
alphabet size unless P = NP , indicating that the k-centre problem itself is likely
to be at least NP-hard.

2 Preliminaries

Let Σ be a finite alphabet of size q. In this paper, we assume that Σ is linearly
ordered. We denote by Σ∗ the set of all words over Σ and by Σn the set of all
words of length n. The length of a word u ∈ Σ∗ is denoted by |u|. We use ui,
for any i ∈ {1, . . . , |u|}, to denote the ith symbol of u.

Let [n] return the ordered set of integers from 1 to n inclusive. Given 2 words
u, v ∈ Σ∗ where |u| = |v|, u = v if and only if ui = vi for every i ∈ [|u|].
A word u is lexicographically smaller than v if there exists an i ∈ [|u|] such
that u1u2 . . . ui−1 = v1v2 . . . vi−1 and ui < vi or |u| < |v| and u1u2 . . . u|u| =
v1v2 . . . v|u|. For example, given the alphabet Σ = {a, b} where a < b, the word
aaaba is smaller than aabaa as the first 2 symbols are the same and a is smaller
than b. For a given set of words S, the rank of v with respect to S is the number
of words in S that are smaller than v.

The translation (cyclic shift) of a word w = w1w2 . . . wn by r ∈ [n] returns
the word wr+1 . . . wnw1 . . . wr, and is denoted by 〈w〉r, i.e. 〈w1w2 . . . wn〉r =
wr+1 . . . wnw1 . . . wr. Under the translation operation, u is equivalent to v if
v = 〈w〉r for some r ∈ [n]. The tth power of a word w, denoted by wt, is equal
to w repeated t times. For example (aab)3 = aabaabaab. A word w is periodic
if there is some word u and integer t ≥ 2 such that ut = w. Equivalently, word
w is periodic if there exists some translation r ∈ [|w| − 1] where w = 〈w〉r. A
word is aperiodic if it is not periodic. The period of a word w is the length of
the smallest word u for which there exists some value t for which w = ut.

A necklace is an equivalence class of words under the translation operation.
An aperiodic necklace is called a Lyndon word. For notation, a word w is written
as w̃ when treated as a necklace. Given a necklace w̃, the canonical form of w̃

The k-Centre Problem for Classes of Cyclic Words 389

is the lexicographically smallest element of the set of words in the equivalence
class w̃. The canonical form of w̃ is denoted by 〈w̃〉, and the rth shift of the
canonical form is denoted by 〈w̃〉r. Given a word w, 〈w〉 denotes the canonical
form of the necklace containing w.

A subword of the necklace w, denoted by w[i,j] is the word u of length |w| +
j − i − 1 mod |w| such that ua = wi−1+a mod |w| for every a ∈ |w|. For notation,
u � w denotes that u is a subword of w. Further, u �i w denotes that u is a
subword of w of length i. If a word u is a subword of w, then u is also a subword
of the necklace 〈w〉. We denote that u is a subword of some necklace w̃ by u � w̃,
and that u is a subword of w̃ of length i by u �i w̃.

If w = uv, then u is a prefix and v is a suffix. For notation, the tuple S(v, �)
is defined as the set of all subwords of v of length �. Formally let S(v, �) =
{s � v : |s| = �}. Further, S(v, �) is assumed to be in lexicographic order, i.e.
S(v, �)1 ≥ S(v, �)2 ≥ . . .S(v, �)|v|, where S(v, �)i denotes the ith entry of S(v, �).
The set of necklaces of length n over an alphabet of size q is denoted by N n

q .

Multidimensional Words and Necklaces: In order to establish multidi-
mensional necklaces, notation for multidimensional words must first be intro-
duced. A d-dimensional word over Σ is an array of size �n = (n1, n2, . . . , nd) of
elements from Σ. In this work we tacitly assume that n1 ≤ n2 ≤ . . . ≤ nd

unless otherwise stated. Let |w| denote the vector of length d defining the
size of the multidimensional word w. Given a size vector �n = (n1, n2, . . . , nd),
Σ�n is used to denote the set of all words of size �n over Σ. Given a vec-
tor �n = (n1, n2, . . . , nd) where every ni ≥ 0, [�n] is used to denote the set
{(x1, x2, . . . , xd) ∈ N

d|∀i ∈ [d], xi ≤ ni}. Similarly [�m,�n] is used to denote the
set {(x1, x2, . . . , xd) ∈ N

d | ∀i ∈ [d], mi ≤ xi ≤ ni}.
For a d-dimensional word w, the notation w(p1,p2,...,pd) is used to refer to

the symbol at position (p1, p2, . . . , pd) in the array. Given two d-dimensional
words w, u such that |w| = (n1, n2, . . . , nd−1, a) and |u| = (n1, n2, . . . , nd−1,
b), the concatenation wu is performed along the last dimension, returning the
word v of size (n1, n2, . . . , nd−1, a + b) such that v�p = w�p if pd ≤ a and v�p =
u(p1,p2,...,pd−1,pd−a) if pd > a.

A multidimensional subword of w of size �m is denoted by v ��m w. As in the
1D case, a subword is defined by a start and an end position within the original
word w. Let w[�i,�j] for�i,�j ∈ [�n] denote the subword u of size (j1− i1+1, j2− i2+
1, . . . , jd − id + 1). The symbol at position �p of u equals the symbol at position
(i1 + p1, i2 + p2, . . . , id + pd) of w, i.e. u�p = w(i1+p1,i2+p2,...,id+pd).

A d-dimensional translation r is defined by a d-tuple r = (r1, r2, . . . , rd). The
translation of the word w ∈ Σ�n by r, denoted by 〈w〉r, returns the word v ∈ Σ�n

such that v�p = w�j for every position �p ∈ [�n] where �j = (p1 + r1 mod n1, p2 +
r2 mod n2, . . . , pd + rd mod nd). It is assumed that ri ∈ [0, ni − 1], so the set of
translations Z�n is equivalent to the direct product of the cyclic groups, giving
Z�n = Zn1 × Zn2 × . . . × Znd

. Given two translations r = (r1, r2, . . . , rd) and t =
(t1, t2, . . . , td) in Z�n, t+ r is used to denote the translation (r1 + t1 mod n1, r2 +
t2 mod n2, . . . , rd + td mod nd).

390 D. Adamson et al.

Definition 1. A multidimensional necklace w̃ is an equivalence class of
multidimensional words under the translation operation. The set of multidimen-
sional necklaces over an alphabet of size q of size n1 × n2 × . . . × nd is denoted
by N �n

q where �n = (n1, n2, . . . , nd).

Proposition 1. The number of multidimensional necklaces of size n1 × n2 ×
. . . × nd over an alphabet of size q is bounded by qN

N ≤ |N �n
q |, where N =

d∏

i=1

ni.

Proof. Given any word w ∈ Σ�n, there are at most N − 1 words equivalent to w

under the translation operation, giving |N �n
q | ≥ |Σ�n|

N = qN

N . 	

3 The k-centre Problem for Necklaces

In this section, we formally define the k-centre problem for a set of necklaces.
The input to our problem is some positive integer k, an alphabet Σ, and positive
integer length n. The goal is to choose a set S of k centres from the implicitly
defined set of necklaces such that the maximum distance between any member
of the input set and the set of centres S is minimised. For example, when the
problem is defined over the set N n

q of q-ary necklaces of length n, the problem is
to select some subset S ⊆ N n

q such that |S| = k and the distance between each
necklace w̃ ∈ N n

q and the necklace ũ ∈ S that is closest to w̃ is minimised.
The remainder of this section formalises the k centre problem for necklaces.

Section 3.1 defines the overlap distance between necklaces. At a high-level, the
overlap distance between two necklaces is the inverse of the overlap coefficient
between them, in this case, 1 minus the overlap coefficient. This distance can be
seen as a natural distance based on “bag-of-words” techniques used in machine
learning [15]. Section 3.2 uses the overlap distance to define the k-centre problem
for classes of necklaces. Along with a problem definition, we provide preliminary
results on the complexity of the k-centre problem for necklaces, as well as theo-
retical lower bounds on the optimal solution in the necklace setting.

3.1 The Overlap Distance and the k-centre Problem

Our definition of the overlap distance depends on the well-studied overlap coeffi-
cient, defined for a pair of sets A and B as C(A,B) = |A∩B|

min(|A|,|B|) . In the context
of necklaces C(w̃, ṽ) is defined as the overlap coefficient between the multisets of
all subwords of w̃ and ṽ. For some necklace w̃ of size �n, the multiset of subwords
of size �� contains all u ��� w. For each subword u appearing m times in w̃, m

copies of u are added to the multiset. This gives a total of N subwords of size �� for
any ��, where N = n1 ·n2 · . . . ·nd. For example, given the necklace represented by
aaab, the multiset of subwords of length 2 are {aa, aa, ab, ba} = {aa × 2, ab, ba}.
The multiset of all subwords is the union of the multisets of the subwords for
every size vector, with a total of N2 subwords; see Fig. 3.

The k-Centre Problem for Classes of Cyclic Words 391

To use the overlap coefficient as a distance between w̃ and ṽ, the overlap
coefficient is inverted so that a value of 1 means w̃ and ṽ share no common
subwords while a value of 0 means w̃ = ṽ. The overlap distance (see example in
Fig. 3) between two necklaces w̃ and ṽ is O(w̃, ṽ) = 1 − C(w̃, ṽ). Proposition 2
shows that this distance is a metric distance.

word ababab word abbabb Intersection
1 a × 3, b × 3 a × 2, b × 4 5
2 ab × 3, ba × 3 ab × 2, bb × 2, ba × 2 4
3 aba × 3, bab × 3 abb × 2, bba × 2, bab × 2 2
4 abab × 3, baba × 3 abba × 2, bbab × 2, babb × 2 0
5 ababa × 3, babab × 3 abbab × 2, bbabb × 2, babba × 2 0
6 ababab × 3, bababa × 3 abbabb × 2, bbabba × 2, babbab × 2 0

Total 11

Fig. 3. Example of the overlap coefficient calculation for a pair of words ababab and
abbabb. There are 11 common subwords out of the total number of 36 subwords of
length from 1 till 6, so C(ababab, abbabb) = 11

36
and O(ababab, abbabb) = 25

36
.

A aaaa B aaab C aabb
D abab E abbb F bbbb

w̃\ṽ A B C D E F
A 0 10

16
13
16

14
16

15
16 1

B 10
16 0 9

16
10
16

12
16

15
16

C 13
16

9
16 0 10

16
8
16

13
16

D 14
16

10
16

10
16 0 6

16
14
16

E 15
16

12
16

8
16

10
16 0 10

16
F 1 15

16
13
16

14
16

8
16 0

Fig. 4. Example of the overlap distance O(〈w̃〉, 〈ṽ〉) for all necklaces in N 4
2 .

Proposition 2. The overlap distance for necklaces is a metric distance.

Proof. Let ã, b̃, c̃ ∈ N �n
q , for some arbitrary vector �n ∈ N

d and q ∈ N. The
overlap distance is metric if and only if O(ã, b̃) ≤ O(ã, c̃) + O(b̃, c̃). Rewriting
this gives 1 − C(ã, b̃) ≤ 2 − C(ã, b̃) − C(b̃, c̃) which can be rewritten in turn
as C(ã, b̃) + C(b̃, c̃) ≤ 1 + C(ã, b̃). Observe that if C(ã, c̃) + C(b̃, c̃) > 1 then
|ã∩c̃|
N2 + |b̃∩c̃|

N2 > 1, meaning that |ã ∩ c̃| + |b̃ ∩ c̃| > N2. This implies that ã and
b̃ share at least |ã ∩ c̃| + |b̃ ∩ c̃| − N2 subwords. Therefore C(ã, ñ) must be at
least C(ã, ñ) + C(b̃, c̃) − 1. Hence O(ã, b̃) ≤ O(ã, c̃) + O(b̃, c̃). 	

3.2 The k-centre Problem

The goal of the k-centre problem for necklaces is to select a set of k necklaces of
size �n over an alphabet of size q that are “central” within the set of necklaces
N �n

q . Formally the goal is to choose a set S of k necklaces such that the maxi-
mum distance between any necklace w̃ ∈ N �n

q and the nearest member of S is

392 D. Adamson et al.

minimised. Given a set of necklaces S ⊂ N �n
q , we use D(S,N �n

q) to denote the
maximum overlap distance between any necklace in N �n

q and its closest necklace
in S. Formally D(S,N �n

q) = maxw̃∈N �n
q

minṽ∈S O(w̃, ṽ).

Problem 1. k-centre problem for necklaces.

Input: A size vector of d-dimensions �n ∈ N
d, an alphabet of size q, and an

integer k ∈ N.
Question: What is the set S ⊆ N �n

q of size k minimising D(S,N �n
q)?

There are two significant challenges we have to overcome in order to solve Prob-
lem 1: the exponential size of N �n

q , and the lack of structural, algorithmic, and
combinatorial results for multidimensional necklaces. We show that the concep-
tually more straightforward problem of verifying whether a set of necklaces is a
solution for Problem 2 is NP-hard for any dimension d.

Problem 2. The k-centre verification problem for necklaces.

Input: A d-dimensional size vector �n ∈ N, an alphabet of size q, a rational
distance � ∈ Q, and a subset S ⊆ N �n

q .
Question: Does there exist a necklace w̃ ∈ N �n

q such that O(w̃,S) ≥ �?

Theorem 1. Given a set S ⊆ N �n
q and a distance �, it is NP-hard to determine

if there exists some necklace ṽ ∈ N �n
q such that O(s̃, ṽ) > � for every s̃ ∈ S.

Proof. This claim is proven via a reduction from the Hamiltonian cycle problem
on bipartite graphs to Problem 2 in 1D. Note that if the problem is hard in the 1D
case, then it is also hard in any dimension d ≥ 1 by using the same reduction for
necklaces of size (n1, 1, 1, . . . , 1). Let G = (V,E) be a bipartite graph containing
an even number n ≥ 6 of vertices. The alphabet Σ is constructed with size n
such that there is a one to one correspondence between each vertex in V and
symbol in Σ. Using Σ a set S of necklaces is constructed as follows. For every
pair of vertices u, v ∈ V where (u, v) /∈ E, the necklace corresponding to the
word (uv)n/2 is added to the set of centres S. Further the word vn, for every
v ∈ V , is added to the set S.

For the set S, we ask if there exists any necklace in N n
q that is further than

a distance of 1 − 3
n2 . For the sake of contradiction, assume that there is no

Hamiltonian cycle in G, and further that there exists a necklace w̃ ∈ N �n
q such

that the distance between w̃ and every necklace ṽ ∈ S is greater than 1 − 3
n2 .

If w̃ shares a subword of length 2 with any necklace in S then w̃ would be at a
distance of no less than 1 − 3

n2 from S. Therefore, as every subword of length 2
in S corresponds to a edge that is not a member of E, every subword of length
2 in w̃ must correspond to a valid edge.

As w̃ can not correspond to a Hamiltonian cycle, there must be at least one
vertex v for which the corresponding symbol appears at least 2 times in w̃. As G
is bipartite, if any cycle represented by w̃ has length greater than 2, there must

The k-Centre Problem for Classes of Cyclic Words 393

exist at least one vertex u such that (v, u) /∈ E. Therefore, the necklace (uv)n/2

is at a distance of no more than 1 − 3
n2 from w̃. Alternatively, if every cycle

represented by w̃ has length 2, there must be some vertex v that is represented
at least 3 times in w̃. Hence in this case w̃ is at a distance of no more than
1 − 3

n2 from the word vn ∈ S. Therefore, there exists a necklace at a distance of
greater than 1 − 3

n2 if and only if there exists a Hamiltonian cycle in the graph
G. Therefore, it is NP-hard to verify if there exists any necklace at a distance
greater than l for some set S. 	

The combination of this negative result with the exponential size of N �n

q relative
to �n and q makes finding an optimal solution for Problem 1 exceedingly unlikely.

Lemma 1. Let S ⊆ N �n
q be an optimal set of k centres minimising D(S,N �n

q)

then D(S,N �n
q) ≥ 1 − logq(k·N)

N .

Proof. Recall that the distance between the furthest necklace w̃ ∈ N n
q and the

optimal set S is bounded from bellow by determining an upper bound on the
number of shared subwords between w̃ and the words in S. For the remainder of
this proof let w̃ to be the necklace furthest from the optimal set S. Further for
the sake of determining an upper bound, the set S is treated as a single necklace
S̃ of length n · k. As the distance between w̃ and S̃ is no more than the distance
between w̃ and any ṽ ∈ S, the distance between w̃ and S̃ provides a lower bound
on the distance between w̃ and S.

In order to determine the number of subwords shared by w̃ and S̃, consider
first the subwords of length 1. In order to guarantee that w̃ shares at least one
subword of length 1, S̃ must contain each symbol in Σ, requiring the length of
S̃ to be at least q. Similarly, in order to ensure that w̃ shares two subwords of
length 1 with S̃, S̃ must contain 2 copies of every symbol on Σ, requiring the
length of S̃ to be at least 2q. More generally for S̃ to share i subwords of length
1 with w̃, S̃ must contain i copies of each symbol in Σ, requiring the length of
S̃ to be at least i · q. Hence the maximum number of subwords of length 1 that
w̃ can share with S̃ is either �n·k

q �, if �n·k
q � ≤ n, or n otherwise.

For subwords of length 2, the problem becomes more complicated. In order
to share a single word of length 2, it is not necessary to have every subword
of length 2 appear as a subword of w̃. Instead, it is sufficient to use only the
prefixes of the canonical representations of each necklace. For example, given
the binary alphabet {a, b}, every necklace has either aa, ab or bb as the prefix of
length 2. Note that any necklace of length 2 followed by the largest symbol q in
the alphabet n−2 times belongs to the set Nn

q . As such, a simple lower bound on
the number of prefixes of the canonical representation of necklaces is the number
of necklaces of length 2, which in turn is bounded by q2

2 . Noting that the prefixes
in S̃ may overlap, to ensure that S̃ and w̃ share at least one subword of length 2,
the length of S̃ must be at least q2

2 . Similarly, for S̃ and w̃ to share i subwords
of length 2, the length of S̃ must be at least i·q2

2 . Hence the maximum number
of subwords of length 2 that S̃ and w̃ can share is either � 2n·k

q2 �, if � 2n·k
q2 � ≤ n, or

394 D. Adamson et al.

n otherwise. In order for S̃ to share at least one subword of length j with w̃, the
length of S̃ must be at least qj

j . Further the maximum number of subwords of
length j that S̃ and w̃ can share is either � j·n·k

qj �, if � j·n·k
qj � ≤ n or n otherwise.

The maximum length of a common subword that w̃ can share with S̃ is the
largest value l such that ql

l ≤ n · k. By noting that ql

l ≥ ql

n , a upper bound

on l can be derived by rewriting the inequality ql

n ≤ n · k as l = 2 logq(n · k).
Note further that, for any value l′ > l, there must be at least one necklace that
does not share any subword of length l′ with S̃ as S̃ can not contain enough
subwords to ensure that this is the case. This bound allows an upper bound
number of shared subwords between w̃ and S̃ to be given by the summation
2 logq(n·k)∑

i=1

min(� i·n·k
qi �, n) ≤ n · logq(n · k) + logq(k·n)

q−1 ≈ q·n logq(k·n)
q−1 ≈ n logq(k · n).

Using this bound, the distance between w̃ and S̃ must be no less than 1− logq(k·n)
n .

In the multidimensional case, let �m = (m1, m2, . . ., md) be a size vector of
d-dimensions such that M = m1 · m2 · . . . · md. The largest value of M such that
S̃ can contain every subword with M positions is 2 logq(n · k). From Proposition

1, the lower bound on the number of necklaces of size �m is qM

M . The maximum

number of shared subwords between w̃ and S̃ is
M∑

i=1

i · N ·k
qi ≤ logq(k · N). Hence

the distance between w̃ and s̃ is at most 1 − logq(k·N)

N . 	

The key idea behind our algorithms for approximating the k-centre problem on
necklaces is to find the largest vector �� = (l1, l2, . . . , ld) such that every word of
size �� appears as a subword within the set of centres. In this setting �m is larger
than �� if m1 · m2 · . . . · md > l1 · l2 · . . . · ld. This is motivated by observing that
if two necklaces share a subword of length l, they must also share 2 subwords of
length l − 1, 3 of length l − 2, and so on.

Lemma 2. Given w̃, ṽ ∈ N �n
q sharing a common subword a of size �m, let xi =

ni · mi if ni = mi, and xi = mi(mi+1)
2 otherwise. The distance between w and

v is bounded by O(w, v) ≤ 1 −
∏d

i=1 xi

N2 ≤ 1 − M2

2N2 where N =
∏

i∈[d] ni and
M =

∏

i∈[d]

mi.

Proof. Note that the minimum intersection between w̃ and ṽ is the number of
subwords of a, including the word a itself. To compute the number of subwords of
a, consider the number of subwords starting at some position �j ∈ [|a|]. Assuming
that |a|i < ni for every i ∈ [d], the number of subwords starting at �j corresponds

to the size of the set [�j, |a|], equal to
d∏

i=1

mi − |a|i. This gives the number of

shared subwords as being at least
∑

�j∈[|a|]

∏

i∈[d]

mi −|a|i ≥ ∑

j∈[M]

j ≥ M2

2 . Therefore,

the distance between w̃ and ṽ is no more than 1 − M2

2N2 . 	

The k-Centre Problem for Classes of Cyclic Words 395

4 Approximating the k-centre Problem for necklaces

In this section we provide our approximation algorithms. The main idea is to
determine the longest de-Bruijn sequence that can fit into the set of k-centres.
As the de Bruijn sequence of order l contains every word in Σl as a subword,
by representing the de Bruijn sequence of order l in the set of centres we ensure
that every necklace shares a subword of length l with the set of k-centres.

Definition 2. A de Bruijn hypertorus of order �n is a cyclic d-dimensional
word T containing as a subword every word in Σ�n exactly once.

Lemma 3. There exists an O(n · k) time algorithm for the k-centre problem on

N n
q returning a set of centres S such that D(S,N n

q) ≤ 1 − log2
q(k·n)
2n2 .

Proof. Our algorithm operates by partitioning a de Bruijn sequence S of order
λ into a set of k centres of size n − λ + 1, with the final λ − 1 symbols of the
ith centre being shared with the (i + 1)th centre. In this manner, the first centre
is generated by taking the first n symbols of the de Bruijn sequence. To ensure
that every subword of length λ occurs, the first λ − 1 symbols of the second
centre is the same as the last λ − 1 symbol of the first centre. Repeating this,
the ith centre is the subword of length n starting at position i(n − λ + 1) + 1 in
the de Bruijn sequence. An example of this is given in Fig. 5.

Sequence: 0000001000011000101000111001001011001101001111010101110110111111
Centre Word
1 000000100001100010100
2 101000111001001011001
3 110011010011110101011
4 000000 0101110110111111

Fig. 5. Example of how to split the de Bruijn sequence of order 6 between 4 centres.
Highlighted parts are the shared subwords between two centres.

This leaves the problem of determining the largest value of λ such that qλ ≤
k · (n − λ + 1). Rearranging qλ ≤ k · (n − λ + 1) in terms of λ gives λ ≤
logq(k · (n + 1) − k · λ). Noting that λ ≤ logq(k · n), this upper bound on the
value of λ can be rewritten as logq(k · (n + 1 − logq(k · n))) ≈ logq(k · n). Using
Lemma 2, along with logq(k · n) as an approximate value of λ gives an upper
bound on the distance between each necklace in N n

q and the set of centres of

1 − log2
q(kn)

2n2 . As the corresponding de Bruijn sequence can be computed in no
more than O(k · n) time [31], the total complexity is at most O(k · n). 	

Theorem 2. The k-centre problem for N n

q can be approximated in O(n ·k) time

with an approximation factor of 1 + logq (k·n)
n−logq (k·n) − log2

q(k·n)
2n(n−logq (k·n)) .

396 D. Adamson et al.

Proof. Using the lower bound of 1 − log2
q(kn)

2n2 given by Lemma 3 gives
1− log2q(kn)

2n2

1− logq(k·n)
n

= 2n2−log2
q(kn)

2n2−2n logq (kn) = 1 + 2n logq (kn)−log2
q(kn)

2n2−2n logq (kn) = 1 + logq (kn)

n−logq (kn) − log2
q(kn)

2n(n−logq (kn)) . 	

Theorem 3. Let T be a d-dimensional de Bruijn hypertorus of size (x, x, . . . , x).
There exist k subwords of T that form a solution to the k-centre problem for

N (y,y,...,y)
q with an approximation factor of 1 + logq (kN)

N−logq (k·N) − log2
q(k·N)

2N(N−logq (k·N))

where yd = N and xd = logN (y).

Proof. Recall from Lemma 1 that the lower bound on the distance between the
centre and every necklace in N �n

q is 1 − logq(k·N)
N . As in Theorem 2, the goal is

to find the largest de Bruijn torus that can “fit” into the centres. To simplify
the reasoning, the de Bruijn hyper tori here is limited to those corresponding
to the word where the length of each dimension is the same. Formally, the de
Bruijn hypertori are restricted to be of the size m1 = m2 = . . . = mj = j

√
N for

some j ∈ [d], giving the total number of positions in the tori as M . Similarly,
the centres is assumed to have size n1 = n2 = . . . = nd = d

√
N , giving N total

positions.
Observe that the largest torus that can be represented in the set of centres has

M positions such that qM ≤ k ·N (d−j)/d(d
√

N − j
√

M +1)j . This can be rewritten
to give M ≤ logq(k ·N (d−j)/d(d

√
N − j

√
M +1)j). Noting that M is of logarithmic

size relative to N , this is approximately equal to M ≤ logq(k ·N). Using Lemma

2, the minimum distance between any necklace in N �n
q is 1 − log2

q(kN)

2N2 . Following

the arguments from Theorem 2 gives a ratio of 1 + 2·N logq (k·N)−log2
q(k·N)

2·N2−2·N ·logq (k·N) = 1 +
logq (kN)

N−logq (kN) − log2
q(kN)

2N(N−logq (kN)) . 	

While this provides a good starting point for solving the k-centre problem for N �n
q ,

this work is restricted by the limited results on generating de Bruijn hypertori,
particularly in higher dimensions [10,19–22]. As such, we present an alternative
approach below. The high-level idea is to reduce the problem from the multi-
dimensional setting to the 1D problem, which we can approximate well using
Theorem 2. Given a size vector �n, integer k and alphabet Σ our approach can
be thought of as finding a set of k · n1 · . . . · nd−1 centres of length nd over Σ,
taking advantage of the added number of centres to increase the length of shared
subwords.

Case 1, qnd ≥ k · N
nd

: In this case the set of centres is constructed by using
k′ = k·N

nd
centres of N nd

q . The motivation behind this approach is to optimise
the length of the 1D subwords that are shared by the centre and every other
necklace in N �n

q . Let S ⊆ N nd
q be a set of centres k · N

nd
from N nd

q constructed
following the algorithm outlined in Lemma 3. Following the arguments from
Lemma 3, every necklace in N nd

q must share a subword of length logq(k · N)
with at least one centre in S. As every subword of size (1, 1, . . . , 1, nd) of any

The k-Centre Problem for Classes of Cyclic Words 397

necklace in N �q
q belongs to a necklace w̃ ∈ N nd

q , by ensuring that every necklace
in S appears as a subword in the centre S′ ⊆ N �n

q it is ensured that w̃ shares
at least one subword of length logq(k · N) with some necklace in S′. This can
be done by simply splitting S into k sets of N

nd
centres, each of which can be

made into a word of size �n through concatenation. From Lemma 2, the maximum

distance between any necklace in S′ and necklace in N �n
q is 1 − log2

q(k·N)

2N2 . This
equals the bound given by Lemma 3, giving the same approximation ratio.

Case 2, qnd < k · N
nd

: Following the process outlined above, it is possible to rep-
resent every word of length nd over Σ with some redundancy. In order to reduce
the redundancy an alternative reduction from the 1D setting is constructed. The
high-level idea is to construct a new alphabet such that each symbol corresponds
to some word in Σ �m for some size vector �m.

The first problem is determining the size vector allowing for this reduction.
Let Σ(�m) denote the alphabet of size qm1·m2·...·md such that each symbol in Σ(�m)
corresponds to some word in Σ �m. Given a word w ∈ Σ(�m)n1/m1,n2/m2,...,nd/md

a word v ∈ Σ�n can be constructed by replacing each symbol in w with the
corresponding word in Σ �m. Note that the largest value of �m such that every
symbol in Σ(�m) can be represented in k words from Σ(�m)n1/m1,n2/m2,...,nd/md

is bounded by the inequality qm1·m2·...·md ≤ k · � n1
m1

� · � n2
m2

� · . . . · � nd

md
�. Letting

M = m1 · m2 · . . . · md, this inequality can be rewritten as approximately qM ≤
k · N

M . Treating M as being approximately N gives M ≤ logq(k).
Using this bound on M let �m be some set of vectors such that M =

m1 · m2 · . . . · md. We may assume without loss of generality that md = 1. The
centres for N �n

q are constructed by making a set S of k N
M ·nd

centres for N nd

qM .
Following the arguments from Lemma 3, every necklace in N nd

qM must share a

subword of length at least logqM (k · N
M) =

logq(k· N
M)

M =
logq

(
k· N

logq(k)

)

logq(k)
. Note fur-

ther that, as each symbol in Σ(�m) corresponds to a word in Σ �m, converting
each word in S to a word of size (m1,m2, . . . ,md−1, n1) provides a set of cen-
tres such that every necklace in N (m1,m2,...,md−1,n1)

q shares a subword of size(

m1,m2, . . . ,md−1,
logq

(
k· N

logq(k)

)

logq(k)

)

with some centre. Converting this new set

of centres into a set S′ ⊆ N �n
q maintains the same size of shared subwords. From

Lemma 2, the furthest distance between S′ and any necklace in N �n
q is bounded

from above by 1 −
log2

q(k)·
log2q

(

k· N
logq(k)

)

log2q(k)

2N2 = 1 − log2
q

(
k· N

logq(k)

)

2N2 ≈ 1 − log2
q(k·N)

2N2 .

Theorem 4. The k-centre problem for N �n
q can be approximated in O(N2k) time

within a factor of 1 + logq (kN)

N−logq (kN) − log2
q(kN)

2N(N−logq (kN)) , where N =
∏d

i=1 ni.

398 D. Adamson et al.

Proof. Following the above construction, note that in both cases the distance
between the set of centres S and the necklaces N �n

q is bounded from above by

1 − log2
q(k·N)

2N2 . The approximation ratio of 1 + logq (kN)

N−logq (kN) − log2
q(kN)

2N(N−logq (kN)) is
derived using the same arguments as in Theorem 2. Regarding time complexity,
in the first case the problem can be solved in O(k ·N) time using Theorem 2. In
the second case, a brute force approach to find to best value of �m can be done
in O(N) additional time steps giving a total complexity of O(k · N2). 	

Acknowledgements. The authors thank the Leverhulme Trust via the Leverhulme
Research Centre for Functional Materials Design at the University of Liverpool for
their support.

References

1. Adamson, D., Deligkas, A., Gusev, V.V., Potapov, I.: On the hardness of energy
minimisation for crystal structure prediction. In: Chatzigeorgiou, A., Dondi, R.,
Herodotou, H., Kapoutsis, C., Manolopoulos, Y., Papadopoulos, G.A., Sikora, F.
(eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 587–596. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38919-2 48

2. Adamson, D., Deligkas, A., Gusev, V.V., Potapov, I.: Combinatorial algorithms
for multidimensional necklaces (2021). https://arxiv.org/abs/2108.01990, https://
doi.org/10.48550/ARXIV.2108.01990

3. Adamson, D.: Ranking binary unlabelled necklaces in polynomial time. In: Han,
Y.S., Vaszil, G. (eds.) Descriptional Complexity of Formal Systems, DCFS 2022.
LNCS, vol. 13439, pp. 15–29. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-13257-5 2

4. Adamson, D., Deligkas, A., Gusev, V.V., Potapov, I.: The complexity of peri-
odic energy minimisation. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, pp. 8:1–
8:15, Dagstuhl, Germany (2022). Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik. https://drops.dagstuhl.de/opus/volltexte/2022/16806, https://doi.org/10.
4230/LIPIcs.MFCS.2022.8

5. Adamson, D., Gusev, V.V., Potapov, I., Deligkas, A.: Ranking bracelets in poly-
nomial time. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2021). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 191, pp. 4:1–4:17. Dagstuhl, Germany
(2021). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://drops.dagstuhl.
de/opus/volltexte/2021/13955, https://doi.org/10.4230/LIPIcs.CPM.2021.4

6. Anselmo, M., Madonia, M., Selmi, C.: Toroidal codes and conjugate pictures. In:
Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp.
288–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8 21

7. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite groups. In: Proceedings of the Twenty-Third Annual ACM Symposium on
Theory of Computing, STOC 1991, New York, NY, USA, pp. 164–174. Association
for Computing Machinery (1991). https://doi.org/10.1145/103418.103440

https://doi.org/10.1007/978-3-030-38919-2_48
https://arxiv.org/abs/2108.01990
https://doi.org/10.48550/ARXIV.2108.01990
https://doi.org/10.48550/ARXIV.2108.01990
https://doi.org/10.1007/978-3-031-13257-5_2
https://doi.org/10.1007/978-3-031-13257-5_2
https://drops.dagstuhl.de/opus/volltexte/2022/16806
https://doi.org/10.4230/LIPIcs.MFCS.2022.8
https://doi.org/10.4230/LIPIcs.MFCS.2022.8
https://drops.dagstuhl.de/opus/volltexte/2021/13955
https://drops.dagstuhl.de/opus/volltexte/2021/13955
https://doi.org/10.4230/LIPIcs.CPM.2021.4
https://doi.org/10.1007/978-3-030-13435-8_21
https://doi.org/10.1145/103418.103440

The k-Centre Problem for Classes of Cyclic Words 399

8. Bae, M.M., Bose, B.: Gray codes for torus and edge disjoint Hamiltonian cycles.
In: Proceedings of the 14th International Parallel and Distributed Processing Sym-
posium, IPDPS 2000, pp. 365–370 (2000). https://doi.org/10.1109/IPDPS.2000.
846007

9. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
ACM Trans. Algorithms 16(4) (2020). https://doi.org/10.1145/3392720

10. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures.
Discret. Math. 110(1–3), 43–59 (1992)

11. Cohen, W.W., Ravikumar, P., Fienberg, S.E., et al.: A comparison of string dis-
tance metrics for name-matching tasks. IIWeb 2003, 73–78 (2003)

12. Collins, C., et al.: Accelerated discovery of two crystal structure types in a complex
inorganic phase field. Nature 546(7657), 280 (2017)

13. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem
in transportation networks. Algorithmica 82(7), 1989–2005 (2020)

14. Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst.
30(2), 113–119 (1997)

15. Gärtner, T.: A survey of kernels for structured data. ACM SIGKDD Explor. Newsl.
5(1), 49–58 (2003)

16. Gasieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
Hamming Center Problem. In: SODA 1999, pp. 905–906 (1999)

17. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics?: A Foundation
for Computer Science. Addison-Wesley, Upper Saddle River (1994)

18. Hochbaum, D.S.: Approximation algorithms for NP-hard problems. In: Various
Notions of Approximations: Good, Better, Best and More (1997)

19. Horan, V., Stevens, B.: Locating patterns in the de Bruijn Torus. Discret. Math.
339(4), 1274–1282 (2016)

20. Hurlbert, G., Isaak, G.: On the de Bruijn Torus problem. J. Comb. Theory Ser. A
64(1), 50–62 (1993)

21. Hurlbert, G., Isaak, G.: New constructions for de Bruijn Tori. Des. Codes Crypt.
6(1), 47–56 (1995)

22. Hurlbert, G.H., Mitchell, C.J., Paterson, K.G.: On the existence of de Bruijn Tori
with two by two windows. J. Comb. Theory Ser. A 76(2), 213–230 (1996)

23. Kociumaka, T., Radoszewski, J., Rytter, W.: Computing k-th Lyndon word
and decoding lexicographically minimal de Bruijn sequence. In: Kulikov, A.S.,
Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 202–211.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2 21

24. Kopparty, S., Kumar, M., Saks, M.: Efficient indexing of necklaces and irreducible
polynomials over finite fields. Theory Comput. 12(1), 1–27 (2016)

25. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inf. Comput. 185(1), 41–55 (2003)

26. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM
49(2), 157–171 (2002)

27. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library, 2nd
edn. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/
CBO9780511566097

28. Piskorski, J., Sydow, M., Wieloch, K.: Comparison of string distance metrics for
lemmatisation of named entities in polish. In: Language and Technology Confer-
ence, pp. 413–427 (2007)

29. Recchia, G., Louwerse, M.M.: A comparison of string similarity measures for
toponym matching. In: SIGSPATIAL 2013, pp. 54–61 (2013)

https://doi.org/10.1109/IPDPS.2000.846007
https://doi.org/10.1109/IPDPS.2000.846007
https://doi.org/10.1145/3392720
https://doi.org/10.1007/978-3-319-07566-2_21
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097

400 D. Adamson et al.

30. Ruskey, F., Savage, C., Min Yih Wang, T.: Generating necklaces. J. Algorithms
13(3), 414–430 (1992)

31. Ruskey, F., Sawada, J.: Generating Necklaces and Strings with Forbidden Sub-
strings. In: Du, DZ., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds)
Computing and Combinatorics, COCOON 2000. LNCS, vol 1858, pp. 330–339.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44968-X 33

32. Siromoney, G., Siromoney, R., Robinson, T.: Kahbi kolam and cycle grammars,
pp. 267–300. Springer-Verlag (1987). https://www.worldscientific.com/doi/abs/10.
1142/9789814368452 0017, https://doi.org/10.1142/9789814368452 0017

33. Thorup, M.: Quick k-median, k-center, and facility location for sparse graphs.
SIAM J. Comput. 34(2), 405–432 (2005). http://arxiv.org/abs/https://doi.org/
10.1137/S0097539701388884, https://doi.org/10.1137/S0097539701388884

https://doi.org/10.1007/3-540-44968-X_33
https://www.worldscientific.com/doi/abs/10.1142/9789814368452_0017
https://www.worldscientific.com/doi/abs/10.1142/9789814368452_0017
https://doi.org/10.1142/9789814368452_0017
http://arxiv.org/abs/https://doi.org/10.1137/S0097539701388884
http://arxiv.org/abs/https://doi.org/10.1137/S0097539701388884
https://doi.org/10.1137/S0097539701388884

Author Index

Adamson, Duncan 385
Aluf-Medina, Michelle 342
Ambainis, Andris 328
Ardra, P. S. 177
Arrighi, Emmanuel 283

Bannai, Hideo 372
Barish, Robert D. 129
Bekos, Michael A. 209
Brinkop, Hauke 33
Bronshtein, Eliya 342
Buchin, Kevin 80
Bunte, Olav 239

Christodoulou, Filippos 18
Coleman, Jared 359

Deligkas, Argyrios 385
Didimo, Walter 111

Evans, Will 80

Firman, Oksana 3
Förster, Henry 209
Frati, Fabrizio 80
Friedetzky, Tom 267

Gonen, Rica 144
Grüttemeier, Niels 283
Gupta, Siddharth 111
Gupta, Sushmita 47
Gusev, Vladimir V. 385

Inenaga, Shunsuke 372

Jain, Pallavi 47
Jansen, Klaus 33, 192

Kahler, Kai 192
Kaufmann, Michael 209
Kindermann, Philipp 3, 111
Kiya, Hironori 222
Klawitter, Jonathan 96
Klemz, Boris 3
Klesen, Felix 96

Kobourov, Stephen 209
Kostitsyna, Irina 80
Koutecký, Martin 144
Kranakis, Evangelos 359
Krithika, R. 177
Krizanc, Danny 359
Kryven, Myroslav 209
Kuckuk, Axel 209
Kugler, Hillel 342
Kutner, David C. 267

Laforest, Christian 254
Lingas, Andrzej 301
Liotta, Giuseppe 111
Löffler, Maarten 80

Martinod, Timothée 254
Menashof, Roei 144
Mertzios, George B. 267
Montecchiani, Fabrizio 159
Morales-Ponce, Oscar 359
Morawietz, Nils 283

Nakashima, Yuto 372
Niederer, Moritz 96
Nikoletseas, Sotiris 18

Okada, Yuto 222
Ono, Hirotaka 222
Ophelders, Tim 80
Ortali, Giacomo 65, 159
Otachi, Yota 222

Piselli, Tommaso 159
Potapov, Igor 385

Raptopoulos, Christoforos 18
Raviv, Avraham 342
Ravsky, Alexander 3
Reginiano, Or 342

Saurabh, Saket 177
Schlipf, Lena 209
Seetharaman, Sanjay 47

402 Author Index

Sharma, Roohani 177
Shibuya, Tetsuo 129
Sommer, Frank 283
Spirakis, Paul G. 18
Stewart, Iain A. 267
Subramani, K. 313

Talmon, Nimrod 144
Tappini, Alessandra 159
Tollis, Ioannis G. 65
Trehan, Amitabh 267

van Gool, Louis C. M. 239

Willemse, Tim A. C. 239
Wojciechowski, Piotr 313
Wolf, Petra 283
Wolff, Alexander 3, 80, 96, 111

Yonemoto, Yuuki 372

Zehavi, Meirav 111
Zink, Johannes 3
Zvirbulis, Ansis 328

	Preface
	Organization
	Contents
	Graphs Problems and Optimisation
	The Complexity of Finding Tangles
	1 Introduction
	2 Exact Algorithms
	3 Complexity
	4 Counterexample to Conjecture 1
	References

	A Spectral Algorithm for Finding Maximum Cliques in Dense Random Intersection Graphs
	1 Introduction
	1.1 Previous Work on Maximum Cliques in Random Intersection Graphs

	2 Our Contribution
	3 Definitions, Notation and Useful Results
	3.1 Range of Values for m,n,p

	4 The Spectral Algorithm
	4.1 Running Time of Our Algorithm

	5 Experimental Evaluation
	6 Conclusions
	7 Appendix
	7.1 Greedy-Clique Algorithm
	7.2 Mono-Clique Algorithm
	7.3 Maximum-Clique Algorithm

	References

	Solving Cut-Problems in Quadratic Time for Graphs with Bounded Treewidth
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Max-Bisection: From O(2t n3) to O(2tn2)
	5 Our Framework
	6 Conclusion
	References

	More Effort Towards Multiagent Knapsack
	1 Introduction
	2 Hardness of Median-UK
	3 Algorithms for Special Cases
	3.1 When = 1: Diverse Knapsack

	4 Conclusion
	References

	Graph Drawing and Visualization
	Dominance Drawings for DAGs with Bounded Modular Width
	1 Introduction
	2 Preliminaries
	3 The Compaction Lemma
	4 Minimizing the Number of Fips
	5 Minimizing the Number of Dimensions
	6 Concluding Remarks
	References

	Morphing Planar Graph Drawings Through 3D
	1 Introduction
	2 An Upper Bound
	2.1 3D Morph Operations
	2.2 3D Morphs for Biconnected Planar Graphs
	2.3 3D Morphs for General Planar Graphs

	3 Discussion: Lower Bounds
	4 Open Problems
	References

	Visualizing Multispecies Coalescent Trees: Drawing Gene Trees Inside Species Trees
	1 Introduction
	2 Drawing Style
	3 NP-Hardness
	4 Planar Instances
	5 Algorithms
	References

	Parameterized Approaches to Orthogonal Compaction
	1 Introduction
	2 Basic Definitions
	3 Number of Kitty Corners: An FPT Algorithm
	4 A Polynomial Kernel for Cycle Graphs
	5 Maximum Face Degree: Parameterized Hardness
	6 Height of the Representation: An XP Algorithm
	7 Open Problems
	References

	NP-Hardness and Fixed Parameter Tractability
	Hardness of Bounding Influence via Graph Modification
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Theoretic Terminology
	3.2 Centrality Measures

	4 Bounding the Influence of Vertex Centrality Scores
	References

	Heuristics for Opinion Diffusion via Local Elections
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Formal Model
	2.1 Opinion Graphs
	2.2 Campaigning and Bribery
	2.3 Diffusion Processes via Local Elections
	2.4 Election Results via Global Voting Rules
	2.5 Optimization Goals

	3 Computing Optimal Bribery Schemes
	3.1 Heuristic Methods

	4 Simulations
	4.1 Experimental Design
	4.2 Results

	5 Outlook
	References

	On the Parameterized Complexity of s-club Cluster Deletion Problems
	1 Introduction
	2 Preliminaries
	3 Algorithm for s-Club Cluster Edge Deletion
	3.1 Definition of the Records
	3.2 Description of the Algorithm

	4 Algorithm for s-Club Cluster Vertex Deletion
	5 Discussion and Open Problems
	References

	SOFSEM 2023 Best Papers
	Balanced Substructures in Bicolored Graphs
	1 Introduction
	2 NP-hardness Results
	2.1 Complexity in Split Graphs

	3 Small Balanced Paths, Trees and Connected Subgraphs
	4 FPT Algorithms
	4.1 Randomized Algorithms
	4.2 Deterministic Algorithms

	5 Concluding Remarks
	References

	On the Complexity of Scheduling Problems with a Fixed Number of Parallel Identical Machines
	1 Introduction
	2 Preliminaries
	2.1 Subset Sum and Partition
	2.2 Scheduling
	2.3 The Scheduling Lower Bounds by Abboud et al.
	2.4 Our Results

	3 Problems with One Machine
	4 Problems with Multiple Machines
	5 Conclusion
	References

	SOFSEM 2023 Best Student Papers
	On the 2-Layer Window Width Minimization Problem
	1 Introduction
	2 Window Width Minimization with Bottom Layer Fixed
	3 Window Width Minimization with Top Layer Fixed
	4 Open Problems
	References

	Sequentially Swapping Tokens: Further on Graph Classes
	1 Introduction
	2 Preliminaries
	3 Polynomial-Time Algorithm for Block-Cactus Graphs
	3.1 Reduction to a Generalized Problem on Biconnected Components
	3.2 Sub-STS on cycles
	3.3 Sub-STS on complete graphs
	3.4 The Whole Algorithm

	4 Hardness of the Few-Color and Colorful Cases
	4.1 General Tools for Showing Hardness
	4.2 The Few-Color Case on Grid-Like Graphs
	4.3 The Colorful Case on Grid-Like Graphs

	5 Concluding Remarks
	References

	Communication and Temporal Graphs
	On the Preservation of Properties When Changing Communication Models
	1 Introduction
	2 The FIFO System
	3 Comparing Channel Layouts
	4 Property Preservation
	4.1 Reachability
	4.2 Deadlock Freedom
	4.3 Confluence
	4.4 Summary of Results

	5 Conclusion
	References

	Introduction to Routing Problems with Mandatory Transitions
	1 Introduction
	2 Shortest Path Problems with Mandatory Transitions
	2.1 Polynomiality of SPMT
	2.2 Non Approximation of Elementary SPMTand MRMT

	3 Routing Problems with Mandatory Transitions
	4 Conclusion
	References

	Payment Scheduling in the Interval Debt Model
	1 Introduction
	2 The Interval Debt Model
	2.1 Formal Setting
	2.2 Schedules
	2.3 Problem Definitions

	3 Our Results
	3.1 Hardness Results
	3.2 Polynomial-Time Algorithms

	4 Conclusion and Open Problems
	References

	Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge-Periodic Temporal Graphs
	1 Introduction
	2 Preliminaries
	3 Temporal Extension of Graph Problems
	4 Periodic Character Alignment
	5 Minors and Subgraphs
	5.1 Subgraphs
	5.2 Minors
	5.3 Further Parameterized Analysis

	6 Short Traversal
	7 Conclusion
	References

	Complexity and Learning
	Lower Bounds for Monotone q-Multilinear Boolean Circuits
	1 Introduction
	2 Monotone Boolean Circuits and Functions
	3 Monotone q-multilinear Boolean Circuits
	3.1 q-multilinearity Versus Bounded Conjunction Depth

	4 Lower Bounds for q-multilinear Boolean Circuits
	4.1 Lower Bound Trade-Offs for Semi-disjoint Bilinear Forms
	4.2 Lower Bounds for Isolk,n

	References

	A Faster Algorithm for Determining the Linear Feasibility of Systems of BTVPI Constraints
	1 Introduction
	2 Statement of Problems
	3 A Rewrite Version of Fourier-Motzkin Elimination
	4 The BCS Linear Programming Algorithm
	4.1 Analysis

	5 Conclusion
	References

	Quantum Complexity for Vector Domination Problem
	1 Introduction
	1.1 Prior Work
	1.2 Our Results

	2 Preliminaries
	2.1 Problem Definitions
	2.2 Quantum Query Model
	2.3 Techniques

	3 Vector Domination
	3.1 Lower Bounds
	3.2 Upper Bounds

	4 Minimum Inner Product
	4.1 Idea
	4.2 Preprocessing
	4.3 Reduction

	5 Open Questions
	References

	Learning Through Imitation by Using Formal Verification
	1 Introduction
	2 Related Work
	3 Method
	3.1 Q-Learning
	3.2 Using a Model Checker on the Q-learning Model

	4 Model Checker as an Expert—Applications
	4.1 Convergence with Fewer Epochs
	4.2 Help Convergence by Avoiding Sub-optimal Solutions
	4.3 Explore Unseen States

	5 Discussion
	References

	Robots and Strings
	Delivery to Safety with Two Cooperating Robots
	1 Introduction
	1.1 Model, Notation, and Preliminaries
	1.2 Related Work
	1.3 Outline and Results of the Paper

	2 Optimal Offline Algorithm
	3 Online Algorithm for the OneAxis Model
	4 Online Algorithms for the NoAxis Model
	4.1 VisibleBoundary Model
	4.2 DiscoverableBoundary Model
	4.3 InvisibleBoundary Model

	5 Conclusion
	References

	Space-Efficient STR-IC-LCS Computation
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 STR-IC-LCS

	3 Space-efficient Solution for STR-IC-LCS Problem
	3.1 Overview of Our Solution
	3.2 Space-efficient Prefix LCS
	3.3 Algorithm

	4 Conclusions and Future Work
	References

	The k-Centre Problem for Classes of Cyclic Words
	1 Introduction
	2 Preliminaries
	3 The k-centre Problem for Necklaces
	3.1 The Overlap Distance and the k-centre Problem
	3.2 The k-centre Problem

	4 Approximating the k-centre Problem for necklaces
	References

	Author Index

