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Abstract. The fact that apps are available for free via Android’s official
store has helped the platform become more popular. The functionality of
Android apps is reliant on permissions. Due to these permissions, cyber-
criminals developed malware-infected apps for smartphone users. The
main fault lies in the permission model of Android. To address this issue,
a framework entitled “DNNdroid” is proposed that work on the princi-
ple of federated learning. Information related to newly installed apps
is stored on the user’s device only and this information is not revealed
to the developer. In the meantime, input from all the users is collected
simultaneously to train the model with a federated learning process, so
that a better classification model is developed. The main challenge in this
is that a user is not able to identify whether an app is malware-infected
or not. The experiment result reveals that the cloud server has an F1
score of 97.8% having a recall rate of client than 0.95 false positive rates
using 1,00,000 unique Android apps with 500 plus users and 50 rounds of
the federation. Further, an experiment is performed by using frameworks
available in the literature and different anti-virus scanners.

Keywords: Android apps · Smartphones · Machine learning · Deep
neural network · Security

1 Introduction

According to the global data report1, Android has captured 71.54% market share.
The main reason for its popularity is the availability of free apps in its official
play store. Cybercriminals are taking advantage of this and developing malware-
infected apps on a daily basis for smartphone users. In the literature [5,16–18],
researchers and academicians proposed different malware detection frameworks
that work on machine learning techniques and achieved success too. Often, devel-
oping an accurate malware detection model with classification machine learning
algorithms is dependent upon the extensive collection of datasets. But it has

1 https://gs.statcounter.com/os-market-share/mobile/worldwide.
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a limitation, it affects the privacy of smartphone users [23]. To address these
issues, there is a need for decentralized entry information which also respects
the user’s privacy and will not expose to third parties too.

In the literature [14,19], academicians and researchers proposed three dif-
ferent machine learning solutions for malware detection i.e., client-based, cloud-
based, and hybrid (combination of cloud-based and client-based) techniques.
In the client-based approach, collected data is protected due to the machine
learning model being developed locally on the host computer but the process is
time-consuming and has the highest value of false positives. In the cloud-based
approach, this process is reversed of it. It is developed by using a large set of
features and reveals which app is installed by the users too. Last, in the hybrid
model, Android apps that are malware-infected are sent to the cloud for further
analysis. This type of solution has a high number of false positives and reveals
users’ private data to the cloud.

In identifying malware from Android devices, machine learning algorithms
are without a doubt incredibly effective. But, to develop effective malware detec-
tion model, a large amount of information is required. In the literature [25], it
was observed that large amount of features are available at the central place for
training and testing the model. Addition to it, it has seen that developed model
memorize and disclose information related to the dataset. To address this issue,
we consider the key question that is to be answer in this study, i.e. How can we
create a decentralized, privacy-preserving classifier for Android malware?

In this study, we proposed DNNdroid - a model that is based on classifica-
tion techniques and uses the principle of federated learning and respecting the
user’s privacy. The proposed model collects the features from the user’s smart-
phone without prior knowledge that an app was installed from its official play
store or any other promised repositories. The proposed framework reduces the
dependency of users on cloud-based technique and also benefit them in term of
privacy.

In the literature [1,2,6,12,21], state-of-the-art federated learning techniques
were discussed by researchers and academicians. In which, smartphone users test
their data locally by using a supervised machine learning algorithm and the resul-
tant performance is updated to the cloud for the betterment of the model. Our
proposed model enhances the existing work by incorporating the principle of deep
learning at the time of training themodel. Further, we evaluate our proposedmodel
by using 1,00,000 unique Android apps out of which 75,000 are benign and 25,000
are malware-infected apps with 500 plus users and 108 rounds of the federation.
Additionally, we contrasted our approach with pre-existing frameworks found in
the literature and several anti-virus scanners sold today.

The novel and unique contributions of this study are as under:

– To the best of our knowledge, this is the first research paper, which trained
with the help of dynamic features of Android apps and prevent the users
privacy too.

– In this study, we also demonstrate the effectiveness of our proposed model
against malware-infected apps.
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The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work done in the field of Android malware detection using federated learning.
Section 3, described the collection of datasets from different promised repos-
itories. The machine learning technique implemented in our proposed frame-
work is discussed in Sect. 4. Section 5 describes the architecture of our proposed
framework. Evaluating the proposed framework is discussed in Sect. 6. In Sect. 7,
we compare our proposed framework with the existing framework and the dis-
tinct anti-virus available in the market. The experimental finding is discussed in
Sect. 7. Section 8 discusses the conclusion and the future scope of this study.

2 Related Work

Hsu et al. [9] proposed a malware detection for Android named as privacy-
preserving federated learning (PPFL). The proposed model is trained by using
SVM as a base classifier. They developed their model by trained them using
static analysis. Experiment result reveals that proposed model achieved higher
detection rate as compared to decentralized models. Empirical results also reveals
that if number of clients increases the accuracy is also increases. Gálvez et al. [6]
proposed a malware detection model named as LiM that work on the principles
of semi-supervised machine learning technique and federated learning. Experi-
ment was performed on 50,000 Android apps having 200 users and 50 rounds of
federation. Taheri et al. [26] proposed malware detection model entitled FEd-
IIoT for detecting malware in IIoT. The results of the experiment corroborate
the high accuracy rates of our attack and defence algorithms and demonstrate
how the A3GAN defensive strategy protects the robustness of data privacy for
Android mobile users and is around 8% more accurate than current state-of-the-
art solutions.

3 Datasets

In this study, we collect Android application packages (.apk) from Google play
store2, AppChina3, Android4 and Mumayi5. Malware-infected apps were col-
lected from AndroMalShare6 and Malgenomeproject [29]. Table 1 represent the
collected Android apps.

Feature Dataset. Extraction of features are done as per the study [15]. 1844
distinct features are extracted from collected Android apps. Features play an
important role to train the classification model. In the literature [11,20], different
feature selection techniques were proposed by researchers and academics. In this
work, we implement chi-square test to select significant features that helps to
train the model.
2 https://play.google.com/store?hl=en.
3 http://m.appchina.com/.
4 https://android.d.cn/.
5 http://www.mumayi.com/.
6 http://sanddroid.xjtu.edu.cn:8080/.

https://play.google.com/store?hl=en
http://m.appchina.com/
https://android.d.cn/
http://www.mumayi.com/
http://sanddroid.xjtu.edu.cn:8080/
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Table 1. Collected Android apps.

Category Normal Trojan Backdoor Worms Botnet Spyware

Books and reference 12205 100 16 52 120 150

Business 1308 110 120 130 22 14

Casual 11271 3250 79 66 160 130

Communication 1414 2500 50 420 33 23

Entertainment 1222 5000 500 400 102 40

Health and fitness 1551 98 85 25 120 160

Lifestyle 10650 135 150 150 195 190

News and magazines 1064 500 42 500 200 22

Social 2159 100 240 300 450 112

Weather 11841 2 200 300 200 10

4 Machine Learning Technique

Deep Neural Network (DNN) is implemented to train the model in cloud-based
architecture i.e., base learner in our study. In the literature, authors proposed
two distinct methods to develop model using DNN i.e., Deep Belief Networks
(DBN) and Convolutional neural networks (CNN). In the current study, we
decide to build our deep learning model using DBN architecture. The deep
learning method’s architecture is shown in Fig. 1. It consists of two stages: super-
vised back propagation in the first and unsupervised pre-training in the second.
Restricted Boltzmann Machines (RBM) and a deep neural network are used to
train the model in the initial stages of model construction. The model is built

Fig. 1. Architecture of deep neural network.



100 A. Mahindru and H. Arora

using an iterative procedure in the training phase using unlabeled Android apps.
Pre-trained DBN is adjusted using labelled Android apps in a supervised way
during the back-propagation step. An Android app is used in both stages of the
training process for a model created using the deep learning technique.

5 Proposed Framework Architecture

Federated learning is implemented based on a decentralized approach to training
the model. Clients implement the process locally and the outcome is shared
with the service provider. The main success of federated learning is dependent
upon the labeled dataset which can be used to train the model. But it has one
limitation, smartphone users do not know what to label malicious or benign.
To overcome this issue, in our study we implement supervised learning at the
cloud-based structure i.e., labeled dataset, and unsupervised learning at the
client-based structure i.e., unlabelled dataset.

In the proposed framework, the federation of learning has happened in the
cloud database and the client estimates the unlabeled dataset at the time of test-
ing. In addition, this cloud server collects all the data from clients and aggregates
them, and presents the weight. Figure 2 demonstrates the architecture of the pro-
posed work. The following steps are taken to train and evaluate the model.

1. Server Side: First of all, labeled data is given to the server to train it as a
base classifier and send unlabeled data to assess the weight from it.

2. Client Side: Client receive baseline classifier and base learner.
3. Weight Gain: Client gained the estimated weights from installed apps.

Fig. 2. Proposed framework i.e., DNNDroid.
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4. Calculate Estimate Weight: Client calculates the average weight.
5. Predict at the Client Side: Client classifies the installed apps.
6. Complete the process: Client computes the aggregate weight and uploads

them to the cloud for further processing.
7. Aggregate at the cloud: Cloud collects all the weight and averages them.
8. Median client-cloud weight: At last the median weight of both client and

cloud are computed and used for further processing.

6 Evaluation of Proposed Framework

To evaluate the proposed framework, we set up a server with 500 users iterating
over 100 different federation rounds. The client model is run parallelly on Intel
Core i7 machine having 16GB RAM. In this study, we consider two different
parameters to evaluate our proposed model i.e., Accuracy and F-measure. Table 2
shows the confusion matrix for determining if an app is malware-infected or
benign.

Table 2. Confusion matrix consider in this study. (.apk)

Benign Malware

Benign Benign->Benign (TP) Benign->Malware (FP)
Malware Malware->Benign (FN) Malware->Malware (TN)

Following terminology are used in this study for evaluate the proposed frame-
work.

– Recall: Recall measures the number of precise class predictions generated
from all of the positive examples in the dataset.

Recall =
a

a+ c
, (1)

where a = NMalware→Malware,
b = NBenign→Malware,
c = NMalware→Benign

– Precision: Precision is the percentage of predicted members of a positive class
that really belong to that class.

Precision =
a

a+ b
. (2)
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Accuracy: Accuracy is computed as mentioned in [14]:

Accuracy =
a+ d

Nclasses
, (3)

where Nclasses = a+ b+ c+ d,
d = NBenign→Benign

F-measure: F-measure is computed as mentioned in [14]:

F − measure =
2 ∗ Recall ∗ Precision

Recall + Precision

=
2 ∗ a

2 ∗ a+ b+ c
(4)

Table 3 shows the calculated value of accuracy and F-measure using above
mentioned equations features selected by using chi-square analysis. From empir-
ical study, it can be observed that by using 300 unique features we gain the
optimal value in terms of detection rate. Figure 3, demonstrate the computed
value of the F-measure and False positive rate having 40 round of federation.

Table 3. Calculated Accuracy and F-measure by using first 50, 100, 150, 200 and 300
features having 50 rounds of federation learning.

ID Accuracy F-measure
50 100 150 200 300 50 100 150 200 300

C1 81.4 80.0 81.4 80.6 81.4 0.8 0.73 0.8 0.72 0.8
C2 82.4 83 83.4 81.9 93.8 0.77 0.79 0.82 0.83 0.94
C3 82.4 83 83.4 83 94.9 0.82 0.81 0.82 0.83 0.94
C4 80.4 83 83.4 83.8 93.8 0.83 0.80 0.81 0.82 0.93
C5 80.4 82 83.4 84.8 94.9 0.82 0.83 0.83 0.82 0.94
C6 83.4 84 83.4 84.8 95.2 0.83 0.84 0.82 0.84 0.95
C7 80.4 83 83.4 83.8 93.8 0.83 0.80 0.81 0.82 0.93
C8 83.4 82 84.4 83 94 0.73 0.75 0.80 0.82 0.94
C9 80.4 83 83.4 83.8 93.8 0.83 0.80 0.81 0.82 0.93
C10 80.4 83 83.4 83.8 93.8 0.83 0.80 0.81 0.82 0.93

Based on Table 3 and Fig. 3, we are having the following observations:

– It can be inferred that how an optimal number of features are required to
train the model.

– It can reveal that increasing the value of the federated learning model it is a
directly paid impact on the detection rate of malware-infected apps.

– By increasing the value of the federated model, it can also be paid to impact
the value of the false positive rate.
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Fig. 3. F-measure and False positive rate after federation round.

7 Comparison of Proposed Framework

In this study, we select two different methods to validate our proposed work
which are described below:

7.1 Comparison on the Basis of Framework Available
in the Literature

To examine whether our proposed framework is equivalent to a previously devel-
oped framework or not, we compare our proposed framework with ten distinct
previously developed frameworks available in the literature. To perform this, we
consider Drebin dataset [3] in our study. Table 4 shows the result of our empirical
analysis.

7.2 Comparison of the Proposed Framework with Different
Anti-virus Scanners

In this study, we evaluate the available free antivirus scanners on the market
with our suggested framework for detecting malware. In this study, the Drebin
dataset is used to provide empirical results. Table 5 compares various antivirus
scanners using the structure we’ve suggested.

8 Experimental Findings

Based on the experimental outcomes, the following are the experimental findings
of this research article.

– Tables 4 and 5 provide evidence that the suggested framework is capable of
identifying malware in real-world apps.

– Based on empirical findings, it can be concluded that the suggested method-
ology can identify malware-infected apps more quickly than other anti-virus
scanners on the market.
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Table 4. Comparing the proposed framework to existing frameworks or methods.

Framework/Approach Detection rate

Andromaly [24] 78.9%
DroidDet [31] 76.3%
AndroSimilar [5] 78.2%
Aurasium [28] 79.1%
Andrubis [13] 82.5%
TaintDroid [4] 88.9%
Paranoid Android [22] 89.9%
MalDozer [10] 80.5%
HinDroid [8] 86.3%
HEMD [30] 87.9%
MalInsight [7] 90.2%
Wei Wang [27] 93.8%
Proposed framework 96.3%

Table 5. Comparative analysis using various antivirus scanners.

Name of the anti-virus Detection rate (in %) Speed to detect malware in sec

Ikarus 81.68 68
McAfee 82.9 38
AVG 91.2 30
ESET NOD32 93.9 29
Proposed framework 98.5 12
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9 Conclusion

Based on empirical studies, it can be concluded that our suggested framework
has an accuracy of 98.7% and can identify malware-infected apps with 500
unique attributes and 40 different federation rounds. Additionally, experimental
results show that our suggested framework is more accurate than other anti-
virus scanners and proposed frameworks in the literature. Further, the work
will be extended by implementing distinct feature selection approaches and soft
computing techniques.
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