
EXAM: Explainable Models for Analyzing
Malicious Android Applications

K. A. Asmitha, P. Vinod(B), K. A. Rafidha Rehiman, Raman Prakash Verma,
Rajkishor Kumar, Surbhi Kumari, and Nishchaya Kumar

Department Computer Applications, Cochin University of Science and Technology, Kochi, India
asmitha@pg.cusat.ac.in, {vinod.p,rafidharehimanka}@cusat.ac.in

Abstract. The open source nature and high performance have made Android
smartphones popular world wide. On the other hand, the ease of usage and popu-
larity has promptedmalware creation. The proposedmethod presents a lightweight
solution capable of detecting unknown malware on Android smartphones based
on static analysis of android.apk files. Here we extract three different kinds of
features i.e. permissions, activities and receivers, in order to evaluate if individual
features are effective in detecting malware. Experiments suggest that our pro-
posed deep learnig detection method is able to identify Android malware with
an overall classification accuracy of 97.35% using boolean representation of the
feature vector table. Comparative analysis of individual features recommends that
the deep learning model resulted in better detection rate with permission feature.
We also performed obfuscation of selected malware.apk files and found that the
detection rate of our trained model is about 100%. Moreover, we also show how
explainability helps the analyst to assess different models.

Keywords: Android malware · Static analysis · Obfuscation · Explainable
models · Deep learning

1 Introduction

Android is the most popular mobile operating system in the world with an 84 percent
market share for smartphones. The open-source nature of Android applications and eas-
iness of usage have led to an increase in the prevalence of security attacks. According
to statistics, more than 50 million instances of malware and potentially unwanted apps
for Android have been found [18]. Various commercial antivirus solutions, including
McAfee, Avast, Kaspersky, BullGuard, Avira and Bitdefender were developed as a solu-
tion for the consequences of the threat. However, because they rely on the signatures of
known malicious apps, they have a serious flaw that prevents them from detecting new
malware. In order to safeguard users from evolving malware, the academic community
has been emphasizing on designing effective methods for malware detection that employ
machine learning or deep learning algorithm [1–3]. Many malware detection methods

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Rajagopal et al. (Eds.): ASCIS 2022, CCIS 1760, pp. 44–58, 2022.
https://doi.org/10.1007/978-3-031-23095-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23095-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-23095-0_3


EXAM: Explainable Models 45

leveraging deep learning algorithms have recently been proposed. The researchers have
addressed the malware detection that are based on a certain collection of attributes
extracted from mobile applications in different approaches. The characteristics chosen
for the proposed model may vary from static ones like commonly used APIs, permis-
sions, and libraries to more action-related aspects like system call graphs. Nevertheless,
these methods cannot provide the explanations of any kind of decision considered by
the proposed model.

Machine learning algorithms create a predictive model to map features to classes
through a training phase. However, biases might lead to inaccurate and unfair choices.
The biggest drawback of black box method is that machine learning developers can’t
explain how themodel came to a particular conclusion, especiallywhen themodelmade a
wrong decision. There comes the importance of Explainable Artificial Intelligence(XAI)
and it is becoming a research topic in recent times [8]. XAI consists of techniques that
helps the professionals to understand the results of their solutions by explaining the
models.

This article suggests an obfuscation-resilient explainable method aimed at detecting
Android malware, allowing security analysts to interpret and evaluate the predictions
immediately. The main contributions are as follows:

– Propose a Deep learning based Android malware detection method using Permission,
Activities and Receivers as features.

– Present an extensive research on several conventional machine learning models for
Android malware detection.

– Analyze the effect of obfuscation on the effectiveness of the proposed approach.
– Demonstrate the attributes that our framework has learnt using explainable SHAP in
order to assess how well it can distinguish between malware and benign.

The remaining sections of the article are arranged as follows: Sect. 2 presents the
Related Works. The proposed method is introduced in Sect. 3. Section 4 details the
experiments and test results. The conclusion and future work are covered in Sect. 5.

2 Related Works

Koli et al. [13] present a static analysis-based method for identifying malware on the
Android operating system. It uses risky permission combinations and dubious API
requests to train the SVM algorithm.

Abdulrahman et al. [9] proposed a newmethod based on deep learning for identifying
malware applications that employ pseudo-dynamic analysis. The researchers instead
developed an API call graph to represent the execution routes that malicious apps may
follow during its entire duration. By comparingmultiplemethods and fine-tuning various
network setup settings, they also focused on increasing network efficiency.

To identify Androidmalware, Suleiman et al. [10] devised a categorization technique
based on parallel machine learning. Total 179 features were collected and separated into
API calls, instructions andpermissions.Aparallel collectionof heterogeneous classifiers,
including Simple Naive Bayes, Logistic, RIDOR, PART, and Decision Tree, were used



46 K. A. Asmitha et al.

to create a composite classification model. PART surpassed all the other classifiers,
achieving accuracy rates of 96%.

A lightweight machine learning-based system was proposed by Long et al. in [11]
to distinguish between benign and malicious applications using both static and dynamic
techniques. Additionally, he suggested a novel strategy for reducing the dimensionality
of the features called PCA-RELIEF. By utilizing both their SVM model and the newly
presented model to lower the dimensions, their study demonstrated a high degree of
effectiveness in identifying malware and improving the detection rate.

Alhebsi, Mohamed Salem [12], proposed a technique to scan the application to
identify malware using two types of features permissions and signature. They found that
K-Nearest Neighbour(KNN) and Random Forest (RF) classifiers are effective in terms
of detection rate.

The detailed review of the above papers shows enough space to enhance and con-
struct new solutions for detecting Android malware employing explainable machine
learning/deep learning models. Explainable models in Android malware detection are
crucial as deep learning models are challenging to evaluate, since they cannot be bro-
ken down into simple, intuitive parts. Moreover, obfuscation-resiliency is needed as
developers always use sophisticated obfuscations to conceal their dangerous activities.

The challengesmentioned above are addressed in our study by evaluating themodel’s
resistance against obfuscation and generating model explanations. Additionally, our
article compares and thoroughly examines the effectiveness of various conventional
classification and deep learning techniques in identifying Androidmalware applications.

3 Proposed Method

In this section, we demonstrate our Android malware detection framework based
on machine learning and deep learning models. We have extracted three prime fea-
tures specifically-permissions, activities and receivers by disassembling.apk files using
Androguard [4] tool. Experiments are conducted using boolean feature vector tables
created individually for different feature category and prepared models using machine
learning as well as deep learning. Figure 1 depicts the complete flow of our proposed
system and we describe the different components in the following subsections.

3.1 Data Set Preparation

The research is based on 5000 malware.apk files gathered from Drebin dataset [7] and
7000 benign samples obtained from a variety of sources. Each benign.apk file examined
using professional antivirus software to ensure that they were all trustworthy.



EXAM: Explainable Models 47

Fig. 1. Proposed method architecture

3.2 Feature Extraction

In the initial stage, the features are extracted from benign as well as malicious Android
applications without execution. The disassembler tool called andro-guard gets the.apk
files as input and an adroguard function called Analyze apk() which returns an object
that has the capability to extract necessary features. The generation of model on each
individual feature needs three different feature sets (Fig. 2):

1. Permissions: When a program wants to access sensitive user data or system func-
tionalities, the authorisation is obtained through permissions. These are described
statically in the AndroidManifest.XML file.

2. Activities: Activities are indeed the starting point for user interaction and launched to
identifywhat should happen next when a user or another app launches an application.
The activity names in the application are the features.



48 K. A. Asmitha et al.

Fig. 2. Extraction of features

3. Recievers: These are areaswheremessages are received fromavariety of sources and
enable to register for system and application events. Application receives a message
when the phone is in airplane mode is an example.

3.3 Pre-processing the Feature Set and FVT Creation

In this step, first we eliminate the irrelevant features and subsequently consider union
of features from both the classes (i.e. malware and benign files). After extracting the
features, we convert the feature set into a vector of 0’s and 1’s where 1 indicates that the
feature is present in the app and 0 indicates that it is not.

3.4 Model Preparation and Classification

In this step, we aim to classify the unknown applications and it involves both training as
well as testing. The model generation process using the feature vector tables generated
in the previous step can be divided into: (a) Training ML classifiers (b) Training using
deep neural networks. Former uses five different machine learning classifiers namely-
Random forest, Support Vector Machine, K-nearest neighbour, XGBoost and Logistic
Regression. Latter uses our own classifier for the classification The learned models will
be used to predict the unseen samples.

3.5 Obfuscation of Samples

In our approach, we further tried to inspect the impact of obfuscation by generating
obfuscated samples using the advanced obfuscator for Android app called Obfuscapk
[14]. It will decompile the original input apk file and give an obfuscated app having same
functionality as output. For obfuscating the samples, we have used four types of process
called (1) Call indirection: It alters the control-flow graph (CFG) without compromising
the semantics of the function. (2) Re-build: Rearrange the bytecode without altering its
meaning but maintaining the app’s original behavior (3) New alignment: The output is
a restructured application with an improved file structure for Android device compati-
bility (4) New signature: Re-sign phase is the final step after applying obfuscation since
Android mandates that all APKs be digitally signed with certificates or updated.



EXAM: Explainable Models 49

3.6 Interpretation of Results Using SHAP

Explainable AI (XAI) is a developing area of study in machine learning with the goal of
enabling people to comprehend, believe in, and efficiently manage the next-AI solutions
[5, 6]. Themajority of XAI techniques created in recent times aim to describe supervised
machine learning models. The SHAP [6] technique is a unified strategy that attempts to
describe the output data using shapely values to determine the respective contributions
of various coalition members. In order to develop effective solutions, the explanation for
the result is particularly crucial inmalware detection. In this investigation, we employ the
SHAP technique that is especially well-suited for explaining machine learning models.

4 Experiments and Results

The investigations are performed on a computer with Ubuntu 21.10 as OS, Intel core i9
CPU and 32 GB RAM. The extensive experimentation involves two parts (1) Prepared
models using the real samples considering individual features and (2) Models are tested
against obfuscated samples.

4.1 Evaluation Measures

Theconfusionmatrixwhich summarises the classifier’s predictionoutcomeswasused for
empirical evaluation of its performance and effectiveness. In order to forecast unknown
samples, many assessment measures such as accuracy, precision, recall, and F-measure
are calculated.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F − measeure = 2 ∗ P ∗ R

P + R
(4)

Here, the malicious app that has been identified as malicious is referred to as TP, and the
malicious app that has not been detected as malicious is referred to as TN. The Benign
app that has been designated as benign iteself is FN and FP denotes the number of benign
app’s that have been misclassified as malicous.

4.2 Research Questions

The following five major research questions are addressed in this paper:

RQ1: How effective our android malware detection framework in detecting malicious
apps?



50 K. A. Asmitha et al.

RQ2 Whether the model prepared is resilient against obfuscation?
RQ3: Can proposed method interpret the classification results?
RQ4: Which type of permissions, activities, recievers are used more?

RQ1: Our proposed Android malware detection framework is effective enough in
detection of malicious apps? First, we carry out tests to see whether our proposed
method is capable of categorising basic Android malware. Both deep learning and con-
ventionalmachine learning classifiers have been used in our experiments.We first use the
dataset to train the classifiers, test and finally,assess the results. The classifications in both
trials are based on features from permissions, activities, and receivers categories. A fea-
ture’s presence or absence is recorded (i.e. Boolean features) to create the classification
models.

Conventional Approach: From Table 1 we can observe that, RF classifier is getting
highest F-measure of 0.97 for permissions. Receivers category of features also have
highest F-measure of 0.90 with RF classifier. From Table 4, it is evident that the model
is classifying samples with an F-measure of 0.95 when RF is used. The above obser-
vations shows that the model designed using permissions features is performing well
with highest F-measure when Random Forest classifier is used. An app’s functionality is
dependent on the rights (permissions) it requests, and all malicious applications require
some permissions that are different from those required by benign.apk files.

Table 1. Evaluation measures for permissions

Classifiers Accuracy Recall F-measure Precision

RF 97.04 97 97 97

SVM 88.42 78.53 90.5 94.12

XGBoost 87.86 97.59 86.0 84.03

KNN 82.55 90.04 80.5 77.26

LR 88.47 98.42 89.2 84.30

Deep Learning: From the Table 3, it is clear that using activities and Recievers we
were able to classify the samples with 0.85%, 0.88% F-measure respectively with a
100% Detection Rate. Moreover, our deep learning technique has highest F-measure of
0.973% and successfully categorized Android malware with 100% detection rate using
permissions as features. The results demonstrate that deep learning techniques have
improved model performance and outperform those of conventional machine learning
classifiers.

Summary ofRQ1:Our proposed deep learning approach classifiesmore accurately than
conventional approach. However, both studies produced outstanding results, making the
models based on permissions look promising for detecting Android malware.



EXAM: Explainable Models 51

Table 2. Evaluation measures for recievers

Classifiers Accuracy Recall F-measure Precision

RF 90 90 90 92

SVM 85.95 87.53 87.82 88.13

XGBoost 82.36 84.40 84.72 85.05

KNN 83.94 84.38 85.89 87.47

LR 85.60 86.93 87.49 88.06

Table 3. Performance measures for deep learning model

Classifiers Activity Permissions Receivers

F-Measure DR F-Measure DR F-Measure DR

DNN 85.86 100 97.35 100 88.21 100

Table 4. Evaluation measures for activities

Classifiers Accuracy Recall F-measure Precision

RF 95.34 95 95 95

SVM 88.42 97.59 89 84.03

XGBoost 82.55 99.04 80.50 77.26

KNN 87.86 97.59 89.00 84.03

LR 88.47 98.42 89.2 84.30

RQ2: Whether the model prepared is resilient against obfuscation? Next, we eval-
uate the effectiveness of our proposed strategy in classifying Android malware that has
been obfuscated usingObfuscapk,which obfuscatesAndroid apps automatically. Specif-
ically, we use 80% samples from the dataset to train the model. Then, select 200 samples
correctly predicted as malware from the test set and use them for obfuscation. Table 5
demonstrates the evaluation results after obfuscation. RF classifier can correctly classify
the obfuscated samples with a detection rate of 100% using permissions features. Using
Activities, Receivers can also classify obfuscated samples with 88.5%, 86.6% detection
rates, respectively. On comparing Table 1, we noticed that the proposed model outper-
forms with obfuscated samples when permissions are used as features. When Activities
are used, all the obfuscated samples can correctly classify with an average true positive
rate of 88.5% using RF. Therefore the effectiveness is marginally reduced.



52 K. A. Asmitha et al.

Summary of RQ2:When permissions are used as features, even if the samples are obfus-
cated, the samples are correctly classified with high detection accuracy. Additionally,
obfuscation has seriously affected the detection rate of obfuscated samples when other
types of features are used. Utilizing deep learning on permissions may increase the
detection rate and robustness of the model.

Table 5. Detetction rate of obfuscated samples

Classifiers Detection rate

Permissions Activities Recievers

Random Forest 100 88.5 86.6

SVM 96.01 80.51 79.20

KNN 96.75 80.51 79.87

XGboost 96.00 75.97 68.83

LR 96.00 79.87 77.92

RQ3:Canproposedmethod interpret the classification results?SinceRandomForest
is performing well in terms of true positive rate in all the feature categories, we decided
to generate visual explanations to interpret our classification results. Security analysts
can use these interpretations to better comprehend the reasons behind amalware samples
classification. Specifically, we use SHAP summary plots to display the importance and
effects of the features. Each point on the summary plot represents a feature’s Shapley
value for the prediction. Red indicates a feature’s value is higher whereas blue denotes
features with a lesser value. Based on the distribution of the red and blue dots, we may
generalize the directionality influence of the features. a request to the external storage-
Fig. 3 reveals that the permission called read_phone_state have a greater and a positive
impact in prediction of a malware. The features such as read_sms and send_sms are
positively correlated with prediction but the permission called access_network_state is
negatively correlated with prediction.

The Fig. 4 shows that the messageReceiver is positively correlated with prediction
but HireBaseInstanceIdReceiver has a negative impact on prediction. From the Fig. 5, it
is clear that the Adactivity andMainActivity is negatively contributing to the prediction.
Since deep learning on permissions outperforms all other methods, we construct the
SHAP summary plot (Refer Fig. 6). The Send_Sms permission have a high and positive
impact on predicting malware and low impact when it is having a low value. Similarly,
Read_Phone_State also have a negative correlation with the class malware.



EXAM: Explainable Models 53

Fig. 3. Summary plot of Random Forest classifier using SHAP

Fig. 4. SHAP summary plot of Random Forest classifier for Receivers

Summary of RQ3: The proposed method uses a graphical tool called SHAP to interpret
the findings of the malware categorization. Since it provides information about the con-
tribution of each feature in predicting malware, we can even distinguish the malware
from benign files directly through the summary plots (Table 6).

RQ4: Which type of permissions, activities, recievers are used more? The features
with high absolute Shapley values are the most prominent ones and are arranged in
the order of importance. The SHAP feature importance for the deep learning model is
shown in the Fig. 7. Send_sms, Read_phone_state, Recieve, Read_External_Storage,
Access_network_State, Read_Sms are the most prominent permissions. We can observe
from the results that the malware always captures personal data and writes it into newly



54 K. A. Asmitha et al.

Fig. 5. SHAP summary plot of activities

Table 6. The prominent features and its descriptions

Feature name Descriptions

SEND_SMS Enables an app to send SMS

READ_PHONE_STATE Accesses phone state read-only

RECEIVE Obtain information from the
Internet

READ_EXTERNAL_STORAGE Authorization for a request to the
external storage for writing

ACCESS_NETWORK_STATE Permission to access network
data

READ_SMS App permission to read SMS

generated files. Then, these files are uploaded to the network or kept on other exter-
nal storage systems and can be misused to discover the victim’s location or to distin-
guish between the actual system and sandboxes. This can be considered as a suspicious
behavior and qualifies it as malware.

Summary of RQ4: The findings show that the explanation technique (SHAP) is capable
of evaluating the model as well as assisting us in learning about the most prevalent and
harmful features for malware classification.



EXAM: Explainable Models 55

Fig. 6. SHAP summary plot for deep learning using permissions

4.3 Comparison with State-of-the-Art Approaches

Table 7 presents the comparison of the proposed scheme to other state-of-the-art tech-
niques in terms of F1 sore reported in [15–17] which is tested on DREBIN dataset. Our
detection scheme accurately classifies the samples with an F1 of 97.35% using explain-
able deep neural network. Also, the obfuscated samples are detected using Random
Forest classifier with 100% detection rate.



56 K. A. Asmitha et al.

Fig. 7. The prominent features (permissions) selected through deep learning

Table 7. Comparative analysis

No. Author Remarks Explainable
model

Obfuscation

1 Masum et.al. [15] Droid-NNet, a neural network-based
framework with a L2

regularization approach, early stopping
criterion, and the mini-batch gradient
descent method, is used to train the
Droid-NNet. Obtained F1 score of 0.98

2 Sharma et.al. [16] Hybrid technique based on Deep
learning and
Binary Particle Swarm Optimization
(BPSO) Obtained an F1 score of
92.39% for DREBIN dataset

(continued)



EXAM: Explainable Models 57

Table 7. (continued)

No. Author Remarks Explainable
model

Obfuscation

Shiqi et.al. [17] The deep residual LSTM-based
sequence model known as
MalResLSTM is then used to identify
and categorize Android malware. Using
static features obtained an F1 score of
0.92%

Proposed method Obtained an F-measure of 0.973 using
Deep learning
Achieved 100% detection rate for
obfuscated samples

✓ ✓

5 Conclusion

This research presents an explainable deep learning model based on static features using
SHAP to detect Android malware. The proposed system is helpful for the primary classi-
fication of malicious samples. Additionally, classic machine learning and deep learning
techniques are used to select the most effective model for identifying Android malware.
Evaluation results reveal that the deep learning model outperforms all conventional
machine learning algorithms with an F-measure of 0.973 and a detection rate of 100%.
Furthermore, we have examined the effect of obfuscation on themodel’s efficacy, and the
proposed method can categorize all obfuscated malware samples with a 100% detection
rate. Such a finding implies that our model is resistant to obfuscation.

Future of this work extends to combine static and dynamic features for ensuring
greater accuracy. Additionally, it is necessary to test different obfuscation techniques
in combination. Future assessments of the effects of adversarial attacks can also be
estimated using explainable techniques.

References

1. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: Android malware detection using deep
learning on API method sequences. Comput. Sci. arXiv:1712.08996v1 (2017)

2. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal deep learning method for
androidmalware detection using various features. IEEETrans. Inform. Forensics Secur. 14(3),
733–788 (2018)

3. Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4MalDroid: a deep learning framework for android
malware detection basedon linuxkernel systemcall graphs. In: IEEE/WIC/ACMInternational
Conference on Web Intelligence Workshops (WIW), pp. 104–111 (2016)

4. Androguard: http://code.google.com/p/androguard/ (2019). v3.3.5
5. Gunning, D.: In: Defense Advanced Research Projects Agency (DARPA), nd Web 2.

Explainable artificial intelligence (xai) (2017)

http://arxiv.org/abs/1712.08996v1
http://code.google.com/p/androguard/


58 K. A. Asmitha et al.

6. Scott, M.L., Su-In, L.: A unified approach to interpreting model predictions. In Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS’17),
pp. 4768–4777. Curran Associates Inc., Red Hook, NY, USA (2017)

7. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.D.: Effective and explainable
detection of android malware in your pocket. In: Proceedings of the 21st annual network
distributed system security symposium (NDSS). The Internet Society (2014)

8. Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Inform. Fusion 58, 82–115 (2020)

9. Pektaş, A., Acarman, T.: Deep learning for effective android malware detection using API
call graph embeddings. Soft Comput. 24(2), 1027–1043 (2019). https://doi.org/10.1007/s00
500-019-03940-5

10. Yerima, S.Y., Sezer, S., Muttik, I.: Android malware detection using parallel machine learn-
ing classifiers. In: 2014 Eighth International Conference on Next Generation Mobile Apps,
Services and Technologies, pp. 37–42. IEEE (2014)

11. Wen, L., Yu, H.: An android malware detection system based on machine learning. In: AIP
Conference Proceedings, vol. 1864. AIP Publishing LLC (2017)

12. Alhebsi, M.S.: Android Malware Detection using Machine Learning Techniques. Thesis.
Rochester Institute of Technology (2022)

13. Koli. J.D.: RanDroid: android malware detection using random machine learning classifiers.
In: International Conference on Technologies for Smart City Energy Security and Power
(ICSESP) IEEE (2018)

14. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk: an open-source black-box
obfuscation tool for android apps. SoftwareX 11, 100403 (2020)

15. Masum, M., Shahriar, H.: Droid-NNet: Deep learning neural network for android malware
detection. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE (2019)

16. Sharma, R.M., Agrawal, C.P.: A BPSO and deep learning based hybrid approach for android
feature selection and malware detection. In: 2022 IEEE 11th International Conference on
Communication Systems and Network Technologies (CSNT). IEEE (2022)

17. Shiqi, L., et al.: Android malicious code classification using deep belief network. KSII Trans.
Internet Inform. Syst. 12(1), 454–475 (2018)

18. https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport
2021.pdf

https://doi.org/10.1007/s00500-019-03940-5
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf

	EXAM: Explainable Models for Analyzing Malicious Android Applications
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Data Set Preparation
	3.2 Feature Extraction
	3.3 Pre-processing the Feature Set and FVT Creation
	3.4 Model Preparation and Classification
	3.5 Obfuscation of Samples
	3.6 Interpretation of Results Using SHAP

	4 Experiments and Results
	4.1 Evaluation Measures
	4.2 Research Questions
	4.3 Comparison with State-of-the-Art Approaches

	5 Conclusion
	References




