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Abstract. As the primary method of track support, traditional sloping embank-
ments are typically used by railroad lines. Geosynthetically Reinforced Soil (GRS)
systems, as an alternative to traditional embankments, have gained appeal, notably
for high-speed lines in India. This system’s reduced base area compared to tradi-
tional embankments means that less ground stabilisation, improvement, and land
taking is necessary. The research’s findings provide intriguing strategies that may
be implemented into the way tracks are designed now to accommodate faster
freight trains pulling greater loads. This research explains how to anticipate the
bearing capacity of weak sand supported by a method of compacted granular
fill over natural clay soil using a hybrid Recurrent Neural Network (RNN) and
Elephant Herding Optimization (EHO) with Geogrid reinforced soil foundation.
The exact prediction target for the proposed model was developed by using dis-
placement amplitude as an output index. A number of elements influencing the
foundation bed’s properties, Geogrid reinforcement, and dynamic excitation have
been taken into account as input variables. The RNN-anticipated EHO’s accuracy
was compared to that of three other popular approaches, including ANN, HHO,
CFA, and MOA. Strict statistical criteria and a multi-criteria approach were prin-
cipally used to assess the predictive power of the developed models. The model is
also examined using fresh, independent data that wasn’t part of the initial dataset.
The hybrid RNN-EHO model performed better in predicting the displacement
amplitude of footing laying on Geogrid-reinforced beds than the other benchmark
models. Last but not least, the sensitivity analysis was used to highlight how input
parameters might affect the estimate of displacement amplitude.
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1 Introduction

High-speed train track and ground responses are primarily influenced by the interplay of
train loads and Rayleigh surface waves on the railway embankment and track bed [1–3].
One of themost crucial elements in explaining, forecasting, or predicting a track reaction
and considering the proper remedial action is the bed’s Rayleigh wave velocity. Studies
have demonstrated the requirement for safety on soft ground railroads due to the high-
speed trains’ extensive range of vibration, particularly while operating at critical speed.
The inherent vibrating characteristics of the rail systems define this speed. The important
speed is the train speed that induces a pseudo-resonance event in the bed and is roughly
equal to or larger than the Rayleigh wave speed of the bed [4, 5]. The critical speed
also leads to significant track deviations, severe embankment vibration, and cone-shaped
groundwavemotion. The processes for bed soil augmentation are influenced by a number
of variables, including train speed, soil type, embankment height, and the thickness of
soft and loose sediments. Numerous methods, including geosynthetics (geogrid), vibro-
replacement with stone columns, dry deep soil mixing (cement columns), concrete piles
with or without integrated caps, removal replacement methods with suitable materials,
and the installation of mechanical reinforcements like plate anchors and helical piles,
can be used to improve the soils beneath railway embankments [6, 7].

While geogrid reinforcement has long been employed in other geotechnical applica-
tions, there hasn’t been much research on how it may be applied in railway engineering.
This could be the case since there isn’t a design procedure especially for railway embank-
ments and the industry is cautious [8]. Although it has been shown that the reinforce-
ment improves performance under static and cyclic loads, little is known about where
the geogrid works best and how it performs in difficult conditions like railway gravel.
Additional knowledge of how ballast and geogrid behave in a railway application may
aid in the advancement of useful design techniques. In terms of cost and the environ-
ment, such an application may have an effect on future train design and track restoration
[9]. To sustain the repeated stress caused by train passes, ballast acts as a foundation to
absorb energy, drain easily, and withstand pressures acting both vertically and laterally
(Selig and Waters). However, significant technological issues [10] make it difficult to
carry out these important duties. Train loading forces may cause ballast to be rearranged
and degraded during several loading cycles, diminishing grain interlocking and allowing
lateral particle migration. As ballast particles migrate laterally, track stability may suffer
as a result of a reduction in frictional strength. Loss of track geometry results from verti-
cal and lateral deformations brought on by spreading or foundation issues. Maintaining
the ballasted foundation’s shape is essential since track maintenance due to geotechnical
issues is more costly than other track expenditures.

Numerous studies have focused at ways to improve the bearing capacity of shallow
foundations as well as how to produce construction materials like concrete and geopoly-
mer bricks from waste resources. Ziegler et al. [11].‘s comparison of the reinforced
case with the unreinforced one under the same load revealed an improvement in bear-
ing capacity and a discernible reduction in indisplacements. These results were shown
to be caused by the geogrid reinforcement’s limiting effect and interlocking mecha-
nism, which convert the reinforced case’s more or less straight deviatoric stress route
into an isotropic stress path. Ballasted railway track samples that had been exposed to
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mixed vertical-horizontal cyclic stresses experienced settlement at high relative train
speeds, according to Yu et al. [12]. At the ballast-subballast contact, the subballast-
subgrade interface, and the effect of subgrade stiffness on geogrid performance at the
subballast-subgrade interface, we looked at the performance advantages of installing
geogrid. Using laboratory testing and finite element modeling, Esmaeili et al. [13] have
shown how geogrid affects the stability and settlement of high railway embankments.
To achieve this, the crest of a loading chamber with dimensions of 240 x 235 x 220 cm
was covered with five sets of 50 cm-high embankments created at a scale of 1:20. The
original embankments weren’t strengthened with geogrid layers. In order to lessen the
persistence of train-induced deformation, Zhang et al. [14] developed a ground rehabil-
itation strategy that includes continual permeation grouting injections into the bearing
strata of the group piles. The consequences of the suggested mitigation strategy were
then investigated using numerical simulations based on complex constitutivemodels and
soil-water linked finite element-finite difference (FE)-(FD) compound arithmetic. Recy-
cled concrete aggregates and geosynthetics may improve the performance of ballasted
railway tracks, according to study by Punetha et al. [15]. Employing two-dimensional
finite element analysis, the value of using geogrids, geocells, and recycled concrete
aggregates in the ballasted railway tracks is examined. Effectiveness is assessed using
the track settlement. The results show that using recycled aggregates and geosynthetics
significantly lowers track settlement and could enable greater train speeds at the same
allowable settlement level. Understanding the operation of the geogrid material layers
used to reinforce high railway embankments is the major goal of this investigation. The
study focuses on two elements that impact the serviceability of railway embankments:
reducing crest settling and preventing sliding in the embankment body. The results of
all reinforced numerical models and preliminary numerical modeling were taken into
account to determine the appropriate level for installing the geogrid layers. This was
accomplished by adding one to four layers of geogrid to each of the second through fifth
set of embankments to strengthen them. No additional geogrid reinforcement was used
while building the original sequence of embankments.

2 Proposed Methodology

2.1 Model Clay Barrier’s Compositional Characteristics

Sand and kaolin were combined in a 4:1 dry weight ratio, much as the soil in the current
experiment, to imitate the clay barrier and attain the required hydraulic conductivity of
109 m/s. The model clay barrier material was determined to have a maximum dry unit
weight of 15.9 kN/m3, a liquid limit of 38%, a plastic limit of 16%, a coefficient of
permeability of 0.4 109 m/s, and an ideal moisture content of 22% (standard Proctor
compaction test). The Unified Soil Classification System (UCSC), which classifies the
chosen combination as a CL type, was found to have qualities that are equivalent to
those of the bulk of locally accessible organically generated clays in most of India.
Additionally, it illustrates the clay barriers used in landfills’ fine-grained soil bandwidth
features [16].Whenwet compacted at OMC+ 5%, it was discovered that the clay barrier
had a comparable dry unit weight and shear strength of between 30 and 40 kN/m2.
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2.2 Geogrid

Bi-directional geogrids are used throughout all series of experiments. Table 1 displays
the geogrid’s characteristics utilised in this investigation.

Table 1. Geogrid index characteristics

Parameter Value

Thickness (mm) 1.8

Mass per unit area (Kg/m2) 0.532

Ultimate tensile strength (kN/m) 7.6

Aperture size (mm) 23

2.3 Measuring Subgrade Stiffness

The stiffness and strength characteristics of the subgrade and formationwere evaluated at
various testing phases (the formation layer was replaced prior to each test). Unrestricted
compression tests were used to measure strength, and a circular plate load test was
used to measure stiffness under the Losenhausen piston. These figures were contrasted
with studies utilizing pocket penetrometers, dynamic penetration tests, and light falling
deflectometers [17]. The plate load test stiffness results were thought to be the most
trustworthy, and the Young’s modulus was calculated using:

Spit = 2P(1 − PR2)

πrμ
(1)

The plate applied load is P, Poisson’s ratio is PR and μ plate deflection is all present
and the plate’s radius is r located. In order to prevent problems with early setup Spit , the
phrase is used to describe the tangent Young’s modulus computed from the first half of
the second load cycle curve (i.e. plate-surface contact errors).

Although a track settling analysis is provided, the approach used here employs the
route restriction (t) given by:

t = Spit
P

= Sriff

Press
(2)

The relevant unreinforced ballast control tests in this research are designated as CT1,
CT2, and CT3, along with details regarding the testing. The consistency of the tests was
shown by the fact that the predicted resilient modulus values at the breakpoint stress
for each test often followed the same pattern as the measured plate load Spit(t) modulus
values.
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2.4 Multi Objective Function

The bad sand’s stability is improved in this step using the optimization parameter of the
hybrid RNN-EHO method, which is also employed to improve the appearance of the
proposed Geogrid. The main goal of the suggested hybrid RNN-EHO approach in this
case is to reduce the form characteristic, which is scientifically unique in Eq. (3),

OF = MinE(δP, δbc, δs) (3)

where, δs are the pressure and bearing capacity error minimizations and the pressure and
δP , δbc are bearing capacity error minimizations of the weak soil formation.

2.5 Improving Settlement-Based Geogrid using Hybrid RNN-EHO Technique

Use RNN to choose the most appropriate subset of dataset attributes in this case to
discriminate between susceptible and regular data. RNN mimics the creation of goal
functions and feature selection. According to the same theory, an RNN enhances the
answer by progressively choosing the best options while removing the less desirable
ones [18]. Figure 1 shows the RNN model’s architectural layout. The input layer is
made up of vectors that x, y(t), z(t) and,w(t − 1) respectively, correspond to the present
user, item, response action, and hidden layer state. The userm is referenced in the model
via l ∗ 1 a vector, where mth element is 1 and the remaining elements are 0. An n ∗ 1 or
1 ∗ 1 vector refers to each item (or kind of feedback action) in the same manner. H and
m stand for the user’s and the item’s respective hidden layers. The hidden layer’s output
w at the current period stage t is referenced by the vector w(t). O is the layer of output.

I1

I 2

W4,1 

W4, 2 

W4,3

W5, 2 

H 1

W5,1 

H 2

C 

W4,6 

O1

W5,6 

W5,3I 3  C

Fig. 1. The architecture of the RNN model

Through the weight matrix A the user vector x from the input layer is linked to
the hidden layer H . This portion is non-recurring, and equation is used to compute the
hidden layer’s output (4),

H = f (Ax) (4)

The dimension of the concealed layer H is represented by the vector D ∗ 1 in this
area. A is a D ∗ m matrix with a user’s choice referred to in each column. The equation
provides the sigma function f as the Eq. (5).

f (x) = 1

1 + e−x
(5)
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The weight matrices M ,N and L respectively, link the input layer’s vectors and to
the hidden layer’s vectors x, y(t), z(t) and w(t − 1). The hidden layer records s(t − 1)
prior user behaviour while this section of the model is repeated. To determine the hidden
layer’s output at the time stamp, t,w(t) apply Eq. (6).

w(t) = f (Mx(t) + Ny(t) + Lw(t − 1) (6)

where,D∗1 a vector isw(t).M ,N and L areDXn,DX 1 andDXD are the corresponding
matrices M . The feature of an item is referenced in each column of the matrix N .
Additionally, each column in the matrix denotes a certain kind of feedback activity. A
vector nX 1 is produced by the system at the period imprint and t,O(t) is computed using
Eq. (7),

O(t) = g(Ys(t) + Zh) (7)

The weight matrices for the hidden layer and the output layer are Y and Z . The
equation provides the softmax function as g.

g(x) = ex
∑k

i=1 e
xi

(8)

The assessment of the likelihood that the user m would approach the item j at the
following timestamp provided by the historical feedback that is calculated using Eq. (9)
Oj(t + 1) is the output element jth after the network has been trained.

Oj(t + 1) = P(vj(t + 1) = 1/x, y(t), z(t),w(t − 1) (9)

When a proposal is executed, the output at themodel’s final time stamp is determined
for each user. Simply choose the P output’s largest items, and it is advisable to use their
indexes. The Geogrid controller is then given the RNN as input based on the weak soil
development in the railway track.

2.6 The Procedure of the EHO in Realizing the Learning of RNN

The learning function of the RNN algorithm is implemented by the EHO algorithm. The
programme was inspired by the herding behaviour of elephants. Due to the gregarious
character of the elephant, there are several factions of female elephants in the group, each
of which is carrying a calf [19]. Each group’s movement is influenced by its matriarch
or leader elephant. As seen in Fig. 2, the Female Elephant (FE) once lived with family
gatherings while the Male Elephant (ME) grew up and lives alone while maintaining
contact with his family group.
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ME1  ME2  ME3  ME4
FE1  FE2  FE3  FE4
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FE5       FE6
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BFE3

C4
BFE4

Matriarch 1  Matriarch 2  Matriarch 3  Matriarch 4

Best Matriarch

Fig. 2. EHO elephants’ behaviours

The following assumptions about herding are taken into consideration in EHO:

• The total elephant population is divided into clans, with each clan containing a
specified number of elephants.

• A established population of ME permits their clan and life to be left alone.
• A matriarch oversees the operations of each tribe.

One can infer that there are the same number of elephants in each clan. The matri-
archal group in the elephant herd is organised in the greatest way possible, whereas the
male elephant herd is positioned in the worst way possible. The EHO framework or
initiatives were shown as follows [20].

Step 1: Initialization Process.
These procedures set the hidden layers, neurones, basis weights (which range from

−10 to + 10), and reference values for the RNN using real learning function values.
The EHO parameters are scaling factors and the optimisation model starts with random
values.

Step 2: Process for Evaluating Fitness.
The weak soil formation and EHO settling are taken into consideration by this

Geogridmodel. Below is the equation that is producedwhen this value is derived utilising
the best hidden layers and RNN structure neurones.

FF = δ (10)

Utilizing the hybrid algorithm, the fitness is attained.
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Step 3: Current elephant location.
The best and worst options for each elephant in each family in this third stage, with

the exception of the matriarch and a male elephant, are included in the status of each
elephant P and each clan Ci has elephants. The elephant’s i = 1, 2, 3, . . . . . .P rank and
jth clan i = 1, 2, 3, . . . . . .C are symbolised by Lci,j . The elephant’s current location ith

is stated as,

Lnew,ci,j = Lci,j + α
(
Lbest,ci,j − Lci,j

) ∗ r (11)

Here Lnew,ci,j is the updated position, Lci,j is the old position, Lbest,ci,j is the Position of
best in the clan. α and β = o to 1.

By following the methods above, the optimum position that reflects the matriarch
cannot be modified.

Step 4: Movement update for each clan’s fittest elephant.
The position update for the clan member that fits in best is provided by,

Lnew,ci,j = β ∗ Lcemter,cj and Lcemter,ci =
∑n

i=1

Lci,j
nl

(12)

Here nl the overall quantity of elephants in individually clan and β ∈ {0, 1}
Step 5: Separating the worst of the clan’s elephants.
Male elephants or the worst elephants would be taken away from their family

groupings. The lowest ranking changed to,

Lworst,ci,j=Lmin + (Lmax − Lmin + 1) ∗ r (13)

where Lworst,ci,j is the clan’s worst male elephants, Lmax and Lmin are, as well as the
elephants’ permitted maximum and lowest range.

Step 6: Ending procedure.
It completes one iteration since the weakest elephant in the clan has been separated.

Theprocess is continueduntil theRNN’s leaning function for settlingweak soil formation
is achieved, at which time it is deemed complete. Steps 2 through 6 are repeated until the
convergence requirements are met if the criteria are not met. The process flow diagram
for the hybrid RNN-EHO technique is shown in Fig. 3.
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Fig. 3. Flowchart of proposed hybrid RNN-EHO method

3 Results and Discussion

Two reinforced and unreinforced examples with the test results are provided. It will be
explained how bearing pressure compares to normalised settlement, how much of the
load is supported by piles, and how axial stress is distributed throughout the length of the
pile. The ideal cushion thickness and pile spacing were found in the unreinforced case,
while in the reinforced case, the ideal placement of the first layer of the geogrid and the
ideal length of geogrids were discovered. The Geogrid sand foundations are powered
by Matlab 7.10.0 (R2021a) and an Intel (R) Core (TM) i5 CPU with 4GB RAM. In
order to confirm its performance, the new system was put to the test and its processing
parameters were compared to a number of techniques, including the Artificial Neural
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Network (ANN), Harris Hawks Optimization (HHO), Cuttlefish algorithm (CFA), and
Mayfly Optimization Algorithm (MOA) models.

3.1 Uncertainty Analysis

Wilmot’s Index of Agreement (WI), Mean Absolute Percentage Error (MAPE), Mean
Absolute Percentage Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean
Absolute Percentage Error (RMSE), coefficient of correlation (R2), and mean absolute
error (MAE) were all calculated to evaluate the performance of the final selected archi-
tecture for the proposed ANN-MGSA (i.e., testing information that the network hasn’t
encountered throughout the training process). Equations (14) to (18) are used to compute
the values of MAE (mean absolute error), RMSE (root-mean-square error), and R for
the training and testing portions.

Five indicators were used to assess how well the suggested machine learning models
performed:

RMSE: The standard errors between predicted values and actual values can be repre-
sented using RMSE. The algorithm is defined as being given in Eq. (14) and is said to
be more exact the smaller the RMSE.

RMSE =
√
1

n

n∑

i=1

(Oi
s − Pi

s)
2

(14)

Correlation Coefficient (R): R Measures how strongly the measured values and the
variation in forecasted values are related. The R value varies from −1 to 1, where
−1 denotes a completely inverse correlation and −1 denotes a completely inverse
correlation. The definition of R is given in Eq. (15)

R
(
pi,Oi

)
= cov

(
pi,Oi

)

√
var

[
pi

] ∗ var[Oi]
(15)

Mean Absolute Percentage Error (MAPE): A dimensionless measure called MAPE
may be used to rate a model’s ability to anticipate outcomes. The greater the model’s
derived predictive performance, the closerMAPE is to 0. Equation represents theMAPE
definition (16).

MPA = 100%

n

n∑

i=1

|Pi
S − Oi

S |
Pi
S

(16)

Coefficient of Determination (R2): R2 measures how closely the anticipated value
resembles the actual value. R2 is between 0 and 1. The perfect match between the
anticipated value and the actual value is shown by an R2 of 1. Equation (17) displays
R2’s definition.

R2 = 1 −
∑n

i=1

∣
∣Pi

S − Oi
S

∣
∣

∑n
i=1

∣
∣Oi

S − OS
∣
∣

(17)
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Wilmot’s Index of Agreement (WI): WI, which ranges from 0 to 1, is a standardised
index to measure the prediction efficacy of established models. A WI of 0 shows no
match at all, whereas a WI of 1 shows complete agreement between predicted values
and actual values. Equation (18) displays the WI definition.

WI = 1 −
∑n

i=1

∣
∣Pi

S − Oi
S

∣
∣

∑n
i=1

∣
∣Oi

S − OS
∣
∣

(18)

where, Oi
S , P

i
S and n stands for ith the observed value of settlement, ith the anticipated

value of settlement, and the quantity of data samples, respectively (Table 2) (Fig. 4).

Table 2. Analysis of suggested models and other approaches based on statistical indices for
comparison

Statistical index ANN HHO CFA MOA Proposed

RMSE 0.813 0.586 0.512 0.481 0.352

MAE 0.44 0.321 0.28 0.26 0.22

Efficiency 0.963 0.974 0.977 0.98 0.985

RWI 0.897 0.885 0.905 0.933 0.951

1
0.8
0.6
0.4
0.2

0
ANN HHO CFA MOA Proposed

RMSE MAE Efficiency RWI

Fig. 4. Performance analysis of statistical measurement

Three different scenarios’ pressure-settlement behaviours are compared in Fig. 5.
The bearing capacity of the geogrid reinforced foundation bed increased with the height
of the geogrid. Comparable observational methods that rely on numerical analysis. As
the geocell’s height increases, the footing load will be dispersed across a larger area.
Figure 6 illustrates typical data on settlement variation for a 53mmthick granular subbase
layer with various geosynthetic reinforcement layer types. The results demonstrated that
the initial modulus of the poor sand is relatively high; as settlement increased with the
number of cycles, the modulus value decreased; and ultimately, near the conclusion of
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Fig. 6. Results of settlement with number of load repetitions

22000 cycles, the modulus value stabilised at a constant value. Figure 7 shows that with
geogrid of an 80 mm height, the ultimate bearing capacity of lime stone aggregate bases
reinforced with geogrid increases by 1.1 times over unreinforced bases. Additionally,
a 76 percent increase in the total bearing capacity augmentation factor was made. The
findings show a significant increase in the performance of the suggested RNN-EHO
approach employing Geogrid compared to other techniques such as ANN, CFA, MOA,
and HHO, respectively, when the proposed method course was correctly compacted.
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4 Conclusion

Analyses and pertinent conclusions were reached by applying the geogrid to the pre-
cise geometry of a ballasted railway track substructure utilizing a proven recommended
hybrid RNN-EHO technique. It may be possible to analyze the system’s performance on
actual railroads using realistic geometry and applications. The assessments mimicked
weaker track material, compressible subgrades, and the impacts of reinforcing material
on overall performance by varying the stiffness of the foundation, the geogrid, and the
ballast. In this report, a hybrid recurrent neural network (RNN)-elephant herding opti-
mization (EHO) technique was introduced to investigate the geogrid-reinforced sand’s
improvement under static stress. The containment of the ballast using geogrid was par-
ticularly efficient in decreasing vertical deformations, even when low-quality material
was utilized, according to numerical modeling of geogrid applied to a railway scenario.

• Although geogrid confinement was used, the reduction in vertical settlement was
not as substantial as anticipated. This is promising since it could allow for longer
maintenance cycles when the ballast loses shear strength or the use of weaker ballast
materials, including recycled ballast or well-graded particles.

• The likely cause of this is because the subgrade is subject to significant forces whether
or not there is a geogrid. The geogrid did help with the loads being distributed more
uniformly, which may have prevented the development of significant shear stresses
and collapse, particularly on softer subgrades. The geogrid reduces vertical settling
on stronger foundations by lessening the lateral ballast pressure brought on by heavy
loads.
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