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Abstract. The main cereal crop in the world is rice (Oryza sativa). As a primary
source of energy, more than 50 percent of population of the worlds relies on its
use. Several elements impact rice grain yield and quality, such as rainfall, soil
fertility, diseases, pests, weeds, bacteria and viruses. To control the diseases, the
farmers invest a great deal of time and money and they identify problems with
their poor unqualified techniques, which results in poor yield growth with losses.
Technology in agriculture makes it easier than ever before to detect pathogenic
organisms inrice plant foliage automatically. Convolutional neural network (CNN)
is a deep learning technique used to solve computer vision issues such as image
classification, object segmentation, image analysis, etc. In the proposed five mod-
els achieved the VGG16 98.43%, VGG19 98.65%, InceptionV4 98.57, ResNet-50
98.57% model to identify diseases in rice leaf images with a transfer learning tech-
nique. Using these model parameters, the final proposed VVIR model accurately
classified objects with a accuracy of 98.80%.
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1 Introduction

The global economy cannot function without agriculture. GVA (Gross Value Added) in
2020-21 is 96.54 lakh crore, with agriculture accounting for 20.19% of the country’s
GDP. Agriculture has a more significant contribution to the Indian economy than any
other industry globally, at 6.4 percentage points. Besides China, Indonesia, Vietnam,
Burma, the Philippines, Japan, Pakistan, Brazil, the USA, Nigeria, Egypt and South
Korea have the second most significant rice output (Oryza Sativa) in the world after
India. In India, Telangana is at the top in area and production. Nizamabad, Karimnagar,
Kamareddy, Yadadri, Khammam, Siddipet, Jagityal and Warangal are the central rice-
growing districts of Telangana.

Rice is a product of the paddy field. It is a yearly harvest. It is a staple meal for half
of the world’s population and it provides 40% of the daily protein needs. Rice research
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center in India, International Rice Research Institute (IRRI), ICAR(Indian Council of
Agricultural Research) Hyderabad, NRRI (National Rice Research Institute) Hyderabad
and ISRAC (International Rice Research Institute South Asia region).

Rice infections pose a severe danger to the world’s food supply by reducing the crop’s
yield and quality. As a result, disease prevention is essential to the production of rice.
Correct and prompt detection of diseases is critical to successful pesticide application.
This ensures the timely application of pesticides. As the population grows, so does the
need for rice, increasing consumption. By 2030, rice output must rise by more than 40%
to fulfill the rising global demand for grain. Due to the devastating effects of diseases,
the rice crop has lost between 60 and 100 percent of its production.

It is challenging to find enough competent workers in the region to do these respon-
sibilities quickly. Researchers have employed a variety of Computer Vision (CV), Artifi-
cial Intelligence (AI), Machine Learning(ML) and Deep Learning (DL) technologies that
help in hyper spectral detection and multispectral remote sensing pictures to diagnose
crop diseases throughout the last few decades in Fig. 1 [1].
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Fig. 1. Rice crop from growth to market is controlled by modern technologies

Even while some of the currently available technologies can diagnose agricultural
diseases with a high degree of accuracy, most of them handle the manual due to a lack
of resources. As a result, ideas are constrained, making it harder to extrapolate from
the findings. Aside from that, specific techniques need specialized equipment that may
not be readily available to the general public. Crop disease diagnosis is challenging
because of these disadvantages. The disadvantages of crop disease diagnostic methods
can be solved by using deep learning technology. In recent years, object recognition,
picture categorization and content recommendation have significantly benefited from
the widespread use of deep learning techniques. Researchers have used DL to identify
diseases in various crops [2].

The dataset obtained is summarized in Sect. 2, as it gives a general introduction to the
method. In this part, the procedures for identifying rice diseases and associated studies
and the recommended approach are mostly presented. In Sect. 3, experiments are carried
out to test the performance of the suggested approach and the findings are compared to
those of other methods. Lastly, Sect. 4 wraps things up with a call for future research.
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2 Literature Survey

Kamal et al. (2019) used Reduced MobileNet with a depth-wise separable convolution
architecture. There have been a variety of assertions made about the accuracy of 98.65
percent of recognition [3]. Chen et al. (2020), for the categorization of rice diseases,
employed VGGNet- Inception Model, they obtained an accuracy of 92 percent [4].
Rahman et al. (2020), with 1426 images, developed CNN architecture with two stages,
were able to detect 93.30 percent of the rice diseases and pests correctly [5]. Feng Jiang
et al. (2020), with the 10-fold cross-validation approach, was utilized to test CNN-
SVM. Rice blast, rice blight, rice stripe blight and rice sheath blight were classified and
predicted using CNN-SVM, which reached an accuracy of 98.6 percent [6]. Zhencun
Jiang et al. (2021), with the Visual Geometry Group Network-16 (VGG16) model, was
utilized to represent bacterial rice leaf blight, rice brown spot, rice leaf smut, wheat leaf
rust, wheat powdery mildew [7].

Prabira Kumar Sethy et al. (2020), a CNN ResNet50-SVM model developed by four
different formstungro, brownspot, blast and bacterial blight of diseases and produced
an F1 score of 0.9838 [8]. Murat Koklu et al. (2021), ANN, DNN and CNN models
applied to 75,000 grain images of five distinct types of rice to obtain 99.87 percent
accuracy for ANN, 99.95 percent accuracy for DNN and 100 percent accuracy for CNN
[9]. Radhakrishnan Sree vallabha dev (2020), used the CNN-SVM for predicting blast
diseases and attained an accuracy rate of 96.8 percent [10].

Junde Chen et al. (2021), using the MobileNet-V2 model, studied 12 rice disease
outbreaks and found an average accuracy of 98.48 percent [11].

Pitchayagan Temniranrat et al. (2021), used the YOLOv3 model to acquire an average
True Positive Point of 95.6% for diseases including rice blast, rice blight, rice brown
spot and rice narrow brown spot [12].

Yibin Wang et al. (2021), used an attention-based depth wise separable neural net-
work (ADSNN-BO) model to classify brown spot, hispa and leaf blast in rice. The test
accuracy is 94.65 percent [13].

If you’re looking to identify diseases in crops, deep learning is an excellent option
because it can reach high accuracy. Deep learning for rice disease research has been
confined to a small number of disorders. In the field of rice disease categorization, there
are just a few publicly available datasets. Our dataset on rice disease is used to train and
evaluate a convolutional neural network- based disease classification model to fill this
gap (CNN).

This research aimed to improve rice disease diagnostics in terms of accuracy, effi-
ciency, price and convenience. A Deep Learning network model for identifying six
distinct rice diseases was developed, evaluated and then used to execute the diagnosis
process and put it through rigorous testing in a real-world setting.
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3 Methodology

The methodological approach to any experiment serves as a road-map for conducting
any experimental endeavor. Data collection, preparation, data separation into training,
validation and finally, the use of a DL model to identify rice images dataset are the four
stages of our technique. This is the first stage in every experiment is vital to remember
that datasets are the foundation of any ML and DL model; therefore, we started by
collecting real-time datasets from primary and secondary sources. As a backup plan, if
the primary data sources fail or the preliminary data gathered is insufficient or does not
meet the criteria, secondary data sources such as online repositories and data websites
will be utilized to acquire the dataset. Rice leaf diseases were employed to collect dataset
images, which are a must for the following phases in this process [14]. Pre-processing
is the next phase in our technique, as it is highly usual for the dataset acquired after
collection to be noisy in Fig. 2. This data may be used for additional experiments [15].
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Fig. 4. Depicts a variety of rice diseases using CNN

To avoid the computational load in the model, the picture was scaled appropriately
before reading. This was followed by applying random affine modification to the picture.
Images must be filliped, scaled, rotated, translated and resized in any way it pleased at
random [16]. The training algorithm needs resized final images by 224 x 224 pixels in
Figs. 3 and 4 [17]. The primary goals of these operations were the model’s over fitting on
the initial dataset [18]. After that, the ImageNet dataset’s mean and standard deviation
were used to normalize the images, resulting in the most uniform distribution of color
values possible [19]. In each training period, the number of images read by each model
varied and the number of image samples available in the dataset increased as a result in
VGG16, VGG19, Inception models in Fig. 5a, b, ¢).

CNN greatly influences final model performance. For rice disease, a comparison of
network performance was essential. The five network models’ performance evaluations
were compared to choose the top models. Each network model’s of rice leaf disease
prediction findings were categorized into four groups as TPLD, TNLD, FPLD and FNLD
in Fig. 6.

TPLD: A predicted rice leaf disease is same to the actual rice leaf disease. So both
the actual and predicted leaf diseases are positive.

TNLD: A predicted rice leaf disease is not same to the actual rice leaf disease. So
both the actual and predicted leaf diseases are negative.

FPLD: A predicted rice leaf disease is same to the actual rice leaf disease. So the
actual leaf disease is negative and predicted leaf disease is positive.

FNLD: A predicted rice leaf disease is same to the actual rice leaf disease. So the
actual leaf disease is positive and predicted leaf disease is negative.

Precision(P) : (TPLD)/(TPLD + FPLD) (1)

Recall(R) : (TPLD)/(TPLD + FPLD) 2)

Accuracy((A) : (TPLD + TNLD)/(TPLD + TNLD + FPLD + FNLD) 3)
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F1 —SCORE : 2% (P*R)/(P +R) 4

With the Eq. (1), Eq. (2), Eq. (3), Eq. (4) demonstrate how these results were utilized
to calculate the following performance indicators: accuracy, precision, recall and F1
score. For each disease type, the accuracy was tested; for each disease type, the other
indicators were analyzed. Another way to judge the models is by looking at their loss
value. In contrast to the other metrics, loss measures how well the training set fits the
test set. Loss changes during training can be used to evaluate the model’s fit state, even
though it cannot directly reflect model performance.
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4 Results

Successful model testing took roughly a week because the entire dataset was run on
varied batch sizes and epochs, which resulted in superior model performance of VVIR

(Table 1).

Table 1. Rice model the accuracy obtained from the training and validation datasets

Epoch Time Loss Accuracy Val-loss Val- accuracy
1/100 1245 2.7649 0.1738 2.0936 0.23
2/100 1235 2.1389 0.2476 2.0615 0.25
3/100 135s 2.0554 0.3024 1.9620 0.30
4/100 139s 1.9367 0.3214 1.9142 0.31
5/100 1425 1.8987 0.3095 1.7976 0.40
6/100 150 s 1.8158 0.3452 1.8196 0.35
7/100 146 s 1.8078 0.3905 1.7557 0.34
8/100 145 s 1.7494 0.4000 1.7481 0.40
9/100 148 s 1.6657 0.4286 1.6914 0.42
10/100 1508 1.6891 0.4167 1.6914 0.43
100/100 1420 s 0.0598 0.9880 0.0418 0.98

IT is possible to achieve a best accuracy of 98.80% in training and 98% on the
100th epoch of the model’s execution in the validation phase. The resulting performance
measure is created based on how many epochs and the output accuracy the model is
tested. Model performance for rice disease identification is visible from the correctness
of validation data encountered. Because we only have a small quantity of data to train
the model on, the number of epochs is higher in this situation, increasing the likelihood
that the model will successfully detect images of rice diseases (Table 2).

Table 2. Accuracy of various Deep Learning different models with proposed models

SNo | Authors Model Accuracy
1 Kamal et al. (2019) | [3] MobileNet 98.65
2 Chen et al. (2020), | [4] VGGNet - Inception | 92
3 Rahman et al. (2020), | [5] CNN two stages 93.3
4 Feng Jiang et al. (2020), |[6] CNN-SVM 98.6
5 Zhencun Jiang et al. (2021), |[7] VGG16 95.5

(continued)
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Table 2. (continued)

SNo | Authors Model Accuracy
6 Prabira Kumar Sethy et al. (2020), | [8] ResNet50-SVM 98.38
Murat Koklu et al. (2021), |[9] ANN 99
Murat Koklu et al. (2021), |[9] DNN 95
9 Murat Koklu et al. (2021), | [9] CNN 100
10 RadhakrishnanSreevallabhadev (2020) [10] CNN-SVM 96.8
11 Junde Chen et al. (2021), | [11] MobileNet-V2 98.48
12 PitchayaganTemniranrat et al. (2021), | [12] YOLOv3 95.6
13 Yibin Wang et al. (2021) |[13] ADSNN-BO 94.65
14 Proposed VGG16 98.43
15 Proposed VGGI19 98.65
16 Proposed ResNet150 98.55
17 Proposed Inception-v3 98.57
18 Proposed Hybrid Model VVRI 98.80

We’ve had to deal with a wide range of difficulties during the experiment and those
difficulties appear at every stage.

Accuracy

ld accuracy

100
98.65 98.6 98.38 99 98.48 98.43 98.6598-55 98 57

Fig. 7. Comparison of accuracy of various deep learning models

The following challenges are encountered in the process of collecting and executing
a model on a dataset:

Because there are so few rice plants affected by rice diseases that there are no
photographs of rice plants with rice diseases in the dataset, gathering many images of
these plants is first problem. In the case of CNN implementation, a limited dataset causes
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underfitting and overfitting of the data, which reduces the final detection accuracy. The
accuracy of the model may be increased by increasing the number of convolutional and
dense layers used to train the data. Research into the severity of rice diseases has not yet
been fully completed; therefore, this study’s findings can be built upon in the future.
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Fig. 8. Accuracy of proposed hybrid model

Applying the four models VGG16 VGG19 Inception ResNetV?2 and taking outputs
each model and gives the maximum of the models is VVIR in Fig. 7 and Fig. 8.

5 Discussion

Diseases are all frequent growth stages of the rice plant. Identification of these pathogens
is critical for the discovery of new rice-related diseases. We divided the dataset into
three parts training (70%), a validation (20%) and a test (10%). The model acquired
the essential characteristics of each disease from the trained results. As a result of the
trained set’s high degree of resemblance to the test set, various disease images from
diverse sources were gathered to create a separate test set. This study’s network design
is generalizable and used for practical purposes based on the independent test findings.
A collection of 600 images of seven different rice diseases was created in this study.
Five sub-models based on these images were trained and evaluated and achieved an
accuracy of VGG16 is 98.43%, VGG19 is 98.65%, InceptionV4 is 98.57, ResNet-50
is 98.57% and final proposed Hybrid-VVIR is 98.80% were the top performers in this
comparison. An examination of visual data validated the sub models’ ability to learn
about rice diseases Ensemble Model features many characteristics that might slow down
the identification process. Efforts to minimize the number of parameters will be made
in future investigations.
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