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Abstract. Currently, the number of mobile devices is growing exponentially. To
cope with the demand, a highly efficient network is required. This rising need
for high-speed mobile data rates of up to 1 Tbps might well be satisfied by the
sixth generation of mobile networks. It is anticipated that the 6G network would
feature a sub-terahertz band and be able to achieve speeds of at least 100 Gbps. A
significant amount of resources are required due to the rapid expansion of IoT and
other applications. 6G wireless networks can give worldwide coverage from the
air to the sea, ground to space. Included in the new model is artificial intelligence
with capable security. Dynamic resource allocation is essential to support the
exponential growth of data traffic caused by holographic movies, AR/VR, and
online gaming. This paper focuses on various resource allocation methodologies
and algorithms using deep learning techniques like CNN, DNN, Q learning, deep
Q learning, reinforcement learning, actor critic, etc. briefly. Optimal allocation
of resources dynamically in real time can improve overall system performance.
Consideration is given to computing, radio, power, network, and communication
resources. To establish a solid theoretical foundation for the resource allocation in
6G wireless networks, several deep learning techniques and approaches have been
examined. The key performance indicators such as efficiency, latency, resource
hit rate, decision delay, channel capacity, throughput are discussed.

Keywords: Artificial intelligence - Deep learning - 6G wireless networks -
Resource - Allocation

1 Introduction

End-to-end latency, data throughput, energy efficiency, dependability, spectrum utiliza-
tion, and coverage have changed from 1G to 5G networks. ITU defines 5G networks as
improved mobile broadband (eMBB), massive machine type communication (mMTC),
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and ultra-reliable and low latency communication (URLLC) [1-3] 5G won’t match the
demands of the 2030 technologies. 6G wireless networks will deliver worldwide cov-
erage, intelligence, security, and increased spectrum/energy/cost efficiency [7, 8]. 5G
may have trouble supporting large-scale heterogeneous devices. Most 5G networks save
offline calculations on a server. 6G can meet real-time resource acquisition during job
execution to improve network performance [13]. Storage and computational resources
can be placed at the mobile edge for delay-sensitive and battery-limited devices. For
uncertain situations, online CNN-based algorithms have been suggested [17]. DRL
solves continuous and discrete actions. For discrete offloading choices, new actor-critic
models were created [23]. DQN model [29] optimizes resource allocation and offline
offloading (Table 1; Fig. 1).

Table 1. Abbreviations of key components of 5G and 6G

5G 6G
eMBB- Enhanced Mobile feMBB-Further Enhanced Mobile Broadband
Broadband

mMTC- Massive Machine type umMTC-Ultra Massive Machine Type Communication
Communication

uRLLC- Ultra Reliable Low euRLLC- Extremely Ultra Reliable Low Latency
Latency

eMBB

5G

Fig. 1. Key components of 5G and 6G

Organization of Paper

This paper discusses the vision and technical objectives of 6G wireless networks. Authors
have emphasized on how optimally and dynamically various resources like comput-
ing, communication, networking, storage, bandwidth can be allocated to the request-
ing users/devices using various deep learning algorithms. Discussion on various mea-
suring parameters is done like throughput efficiency system capacity decision delay,
which defines the system performance. Appendix gives the summary of algorithms with
resources used, type of devises used, cost and complexity analysis. Also, future research
directions are listed.

1.1 6G Vision

6G will provide terrestrial as well as non-terrestrial communication. 6G wireless net-
works cover all frequencies like Sub-6 GHz, Tera Hz and optical spectrum which will
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support increase in the data rates as well as it can support dense environment of devices
[1]. 6G wireless networks intended to tremendously diverse, dynamic with high quality
of service (QoS), with complex architecture. Unique and basic solution to this is artifi-
cial intelligence, specifically machine learning and deep learning, is upcoming solution
to form a compete intelligent framework emerging as a fundamental solution to realize
fully intelligent network management and organization [4—6].

6G will be powerful force for and rugged need for the forthcoming IoT enabled
applications to overcome the 5G constraints, 6G, as growing generation, will be based
on 5G. 6G will revolve human life and society which transforms human life as well as
society. Figure 2. Shows the vision of 6G wireless networks and technical objectives for
6G [1, 15, 18, 26]

1.2 Technical Objectives of 6G

Detailed technical objectives are listed below (Fig. 2; Table 2).
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Fig. 2. Vision of 6G wireless networks and technical objectives for 6G [1, 18]

Table 2. Technical objectives of 6G are listed below [18, 27]

6G parameters Specification

Peak data rate At least 1 Tb/s to 10 Tb/s peak data rate (for THz backhaul and
fronthaul), 100 times greater than 5G

User experienced data rate 1 Gb/s and10 Gb/s for some cases like indoor hotspots. Which is
10 times greater than 5G

Latency 10-100 ps in the air, high mobility (> = 1,000 km/h)

Connectivity density up to 1077 devices/km, ten times greater than 5G

Traffic capacity for hotspots scenarios | up to 1/ Gb/s m?2

Energy efficiency 10-100 times more those of 5G

Spectrum efficiency 5-10 more those of 5G
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2 Resource Allocation for 6G Wireless Networks

As applications diversify, dynamic real-time resource allocation is needed. Variety of
algorithms and methodologies have been devised and assessed based on the need for
networking and computational resources, research gaps, and to provide a backbone for
resource allocation challenges in 6G wireless networks [16].

3C resources include physical (computing, wireless access, storage) and logical
(subset of physical) resources [12]. Real-time resource allocation in dynamic tasks.

Using 6G wireless network features like low latency and high speed, fair resource
allocation may enhance network performance by assigning resources dynamically in
real time using deep learning algorithms. Dynamic resource assignments will improve
usage. So, it’s overworked. Al is 6G and beyond [7-9, 12]. Some common Al techniques
will be used for the Resource Allocation for 6G Wireless Networks are listed below [2,
10, 11] (Table 3).

Table 3. Summary of Al techniques used for the resource allocation for 6G wireless networks

Al approach, Ref

Techniques

Specifications

Performance metrics

Supervised Learning
[11, 14]

K-nearest neighbours
(KNN), Gaussian
process regression
(DPR), Support vector
regression (SVR),
support vector
machines (SVM),
decision trees (DT)

Labeled data, uses
classification and
regression

Less complex

Unsupervised Learning
[10, 11, 18]

K-means clustering
and hierarchical
clustering, Isometric
mapping ISOMAP).
Reinforcement
Learning (RL),
Principal component
analysis (PCA)

Extract features from
Unlabeled data

Computationally
complex, real time data
analysis

Deep Learning [11, 28]

Deep neural network
(DNN),), long
short-term memory
(LSTM),
Convolutional neural
network (CNN),
recurrent neural
network (RNN)

Has several layers of
neurons, generates
patterns using artificial
neural networks

Requires large amount
of data
Computationally
expensive

(continued)
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Table 3. (continued)

Al approach, Ref Techniques Specifications Performance metrics
Reinforcement Q-learning, policy Learns to map states to | Make appropriate
Learning [11, 18] learning, Markov actions decisions

decision process
(MDP), actor critic
(AC), multi-armed
bandit

3 Summary of Deep Learning Algorithms Used for 6G Wireless
Networks Resource Allocation

Yang, Helin, et al. [11] demonstrate Al-powered 6G network location and management.
Handover, spectrum, mobility, and edge computing were considered. Offline training,
residual networks, and feature matching graphics processing were also investigated.
CPU/storage. Parallel plans are made. Lin, Mengting, and Youping Zhao [12] address
Al resource management strategies. Authors discussed about radio resources as well
as computing and cashing resources. They reviewed 6G wireless network issues and
prospects. Deep Q-learning, deep double Q-learning, and their types are studied for
resource management.

Lin, Kai, et al [17] proposed a resource-allocating algorithm for 6G-enabled massive
IoT. Examining task change’s impact. Authors employed a backtracking dynamic nested
neural network. Stable system with faster decision-making. They cited Hu, Shisheng,
et al. [19] suggested Deep Reinforcement Learning using block chain for dynamic
resource sharing. Authors reduced blockchain overheads and simplified Al data gather-
ing. Further studies are needed to reduce computational complexity while using private
and public block chains.

Mukherjee, Amrit, et al. [20] proposed algorithm based on convolutional neural net-
work (CCN) with back propagation. They analysed the allocation of resources to the
discrete nodes in cluster. Wastage of resources due to redundant data reduced, improve-
ment in the overall efficiency of network shown in the simulation. Networking and
computational resources are used.

Guan, Wangqing, et al. [21] derived a deep reinforcement learning (DRL) technique
that enabled service-oriented resource allocation employing several logical networks in
network infrastructure that offered Al-customized slicing. Authors employed compu-
tational resources to evaluate service quality for resource allocation. Fast E2E slicing
based on real-time user demand prediction was a future goal.

Kibria, Mirza Golam, et al. [22] discussed about efficient operation, optimization
and control using Al and ML. Authors mentioned system can be made smart, systematic
and intelligent by using big data analytics, resources mentioned were networking. They
also discussed advantages and difficulties of using big data analytics. They mentioned
that the processing, managing and leveraging massive amount of data is difficult and it
is complex.
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Liu, Kai-Hsiang, and Wanjiun Liao [23] DRL was used to deal with time-varying user
requests. Energy consumption and enduring delay in multi user system is focused. Which
ensured good service for tasks uploads. They did optimization jointly of computational
and radio resources.

Yongshuai, Jiaxin, Xin Liu. [24] Computing, storage, and network resources were
allocated using limited MDP and reinforcement learning. The authors introduced instan-
taneous and cumulative network slicing limits using reinforcement learning. Their
strategy reduces constraint costs, they said.

Sami, Hani, et al. [25] introduced Deep Reinforcement Learning (DRL) and Markov
Decision Process for allocating computing resources in dynamically changing service
demands. IScaler is a revolutionary IoE resource scaling and service placement solution.
It used DRL and MDP to estimate resource placement and intelligent scaling. Google
Cluster traces datasets to provide simulation resources.

Bhattacharya, Pronaya, et al. [29] proposed dynamic resource allocation to solve
spectrum allocation difficulties. Block chain is used to model 6G DQN-based dynamic
spectrum allocation. Q learning and DQN algorithms are used to simulate system per-
formance. Block chain improves spectrum allocation fairness by 13.57% compared to
non-DQN solutions.

Li, Meng, et al. [30] propose using blockchain technology to overcome restricted
computing resources and non-intelligent resource management. Authors suggest novel
reinforcement learning to improve resource allocation and reduce waste. Markov
decision procedure forms cloud edge collaborative resource allocation.

Wagar, Noor, et al. [31] built network access and infrastructure. The author presents
a time-varying dynamic system model for HAPs with MEC servers. Decentralizing
reinforcement learning-based value iteration reduces computation and communication
overhead. I vehicles as intelligent agents are assessed using Q learning, deep Q learning,
and double deep Q learning in terms of competency, complexity, cost, and size.

Ganewattha, Chanaka et al. [32] used deep learning to allocate wireless resources
in shared spectrum bands for reliable channel forecasting. Encoder-decoder-based
Bayesian models are used to model wireless channel uncertainty. University of Oulu
provided channel usage and fake data. The RA technique reaches Nash equilibrium
under 2N access points. The channel allocation process converges quickly, enhancing
network Sam rates.

Alwarafy et al. [33] discussed the 6G network scalability and heterogeneity problems
in paper. Deep reinforcement learning technique is used to solve resource allocation
problem. Dynamic power allocation and multi-RAT assignment in 6G HET Nets are
addressed by the suggested solution.

Gong, Yongkang, et al. [9] presented deep reinforcement learning for industrial IoT
systems to allocate resources and schedule tasks. Author emphasized energy use and
delay. Loading is distinguished by a new isotone action generating technique and an
adaptive action updating strategy. Convex optimization solves time-varying resource
allocation problems. Gain rate, batch size, RHC intervals, and training steps measure
system performance.

Kasgari, Ali Taleb Zadeh, et al. [34] presented free resource allocation for the down-
link wireless network (uUR LLC) 6G. Under specified data limitations, achieve end-to-end
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high reliability and low latency. A GAN-based model enables deep reinforcement learn-
ing. To capture network conditions and run reliable systems. Proposed resource alloca-
tion model leverages multi-user OFDM (OFDMA). Deep reinforcement learning net-
work is fed rate constraints and latency to minimize power while maintaining reliability.
The proposed model reduces transition training time, according to simulations.

Sanghvi, Jainam, et al. [35] proposed edge intelligent model uses micro base station
units, which are used for resource allocation MBS guarantees increased channel gain and
decreased energy loss. Deep reinforcement enabled edge Al scheme supports responsive
edge cache and better learning. Proposed scheme is compared with 5Gfor throughput
and latency.

Xiao, Da, et al. [36] author proposed deep Q network, DQN to maximize acceptance
ratio and high priority placement for uRLLC request first, that was slicing as MDP
characterized. Reward function based on service prioritization defined. MDP selected
for easy action in DQN, once trained DQN approximate ideal solution.

Authors have proposed in previous research work [37] a deep learning network to
optimize resource allocation to base stations in a 6G communications network. The 6G
network was simulated using standard 6G parameter values. On the MATLAB software,
a neural network called Base Station Optimization Network (BSOnet) was created, and
a dataset with varying parameter values was fed to it for training. When this network
was deployed in the simulated 6G network, it consumed less power. This network is a
step toward optimizing the developing 6G networks, and authors have hoped that this
study will provide the scientific community with a path to further research in this area.
Table 4. Shows Summary of Deep Learning Algorithms used for Resource Allocation
for 6G Wireless Networks (Fig. 3).

Deep Learning techniques used in various papers

12

10

E 6
O
4
7 -
5 [ I N
Number of Reference Papers
®Q Learning " Deep Q Learning
Double ddep Q learning Deep Neural Network
m Deep Reinforcement Learning u Convolutional Neural Network
uGAN ® encoder-decoder-based Bayesian models

Fig. 3. Deep Learning techniques used in various papers from the survey made
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4 Conclusion and Future Scope

This study discusses vision, trends, and the convergence of artificial intelligence for
the 6G wireless networks. The authors have informed of numerous Al algorithms that
will be employed for resource allocation. A summary of several deep learning-based
algorithms for resource optimization in support of varied services, emphasising certain
research paths and possible solutions for 6G wireless networks. Other topics to be stud-
ied include choosing between several deep learning algorithms for different application
scenarios and designing techniques to lower computing costs. Deep learning algorithms’
powerful learning and reasoning abilities can improve network performance. Deep learn-
ing techniques are being designed to improve accuracy and computing efficiency. 6G
networks will require effective resource allocation to provide diversified services and
huge connections. Collaborations between hardware and deep learning algorithms may
be possible.

Appendix
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