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Abstract. Cyber defense tools, such as intrusion detection systems,
often produce huge amounts of alerts which must be parsed for defensive
purposes, particularly cyber triage. In this paper, we utilize the notion
of alert trees to represent the collection of routes that may have been
used by a cyber attacker to compromise a set of computers. Although
alert trees can be visualized to aid analysis, their usefulness in prac-
tice is often discounted by the fact that they can become unmanageable
in size. This makes it difficult for cyber defenders to identify patterns
or pinpoint network hotspots in order to prioritize defensive maneuvers,
raising the need to reduce strain on defenders by minimizing the presence
of non-critical information. To address this problem, we propose several
methods, as well as a novel data structure, for modifying alert trees in
order to reduce visual strain on defenders. We evaluate our methods using
a real-world dataset, which demonstrates that our methods are effective
at reducing redundancy while limiting collateral information loss.

Keywords: Alert tree · Cyber triage · Visualization · Hypotree ·
Information loss · Intrusion detection · Network security

1 Introduction

Real-world cyber defense tools often produce a huge number of alerts on a daily
basis. It is an important problem to leverage these alerts for defense purposes
because they are often the first opportunity for the defender to detect attacks. A
common approach for this problem is to use graph-based visualization. However,
large graphs can be difficult to analyze manually. It is important to enable this
process because human defenders may be able to detect attacks or make sense
of alerts that automated tools cannot. Nevertheless, the practice of maintaining
“human in the loop” decision-making is often overlooked.

Alert trees have been proposed as an alternative to arbitrary network graphs
(or multigraphs). Intuitively, alert trees offer several advantages over graphs:
The first advantage is their planarity, under which no edges overlap [14]. This
is important because planarity makes it easier to visually distinguish edges.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Yuan et al. (Eds.): NSS 2022, LNCS 13787, pp. 140–154, 2022.
https://doi.org/10.1007/978-3-031-23020-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23020-2_8&domain=pdf
http://orcid.org/0000-0002-3762-6475
http://orcid.org/0000-0002-2949-5145
http://orcid.org/0000-0001-8034-0942
https://doi.org/10.1007/978-3-031-23020-2_8


Reducing Intrusion Alert Trees to Aid Visualization 141

The second advantage is that alert trees show the temporal relationships among
alerts. Graphs prioritize spatial relationships, and can only model temporal rela-
tionships by either adding dynamic animations, which take time to observe, or
annotating edges with timestamps, which require the effort of granular inspec-
tion and interpretation.

Alert trees themselves exhibit some limitations, such as: (i) trees can be
prohibitively large; and (ii) trees may present redundant information, which
can confuse defenders. Thus it is not trivial to use alert trees to represent the
temporal relationships between alerts. This motivates the present study.

1.1 Our Contributions

In order to aid the visualization of alert trees, we hereby contribute a data struc-
ture, three algorithms, two metrics and a case study. First, we introduce the
concept of hypotree, which is useful in the set of reductions that follow by identi-
fying repeated attack patterns across particular links. Second, we propose several
novel algorithms for reducing the size of alert trees. One algorithm for merging
sibling leaves: this eliminates redundancy while preserving significant threats.
One algorithm for merging sibling branches: this eliminates redundancy while
preserving the underlying structure. One algorithm for truncating hypotrees, the
aforementioned novel data structure: this reduces redundancy by grouping sub-
sequent co-located alerts. Third, we propose methods and metrics for evaluating
the usefulness of the above algorithms. Specifically, we consider the effects of
the algorithms on tree size and information retention. These act as trade-offs,
representing the sensitive conflict between not enough and too much informa-
tion. This trade-off poses as a new challenge because information loss has not
been studied in the present context, despite research in other contexts (e.g.,
data anonymization [18] and data perturbation [19]). Fourth, we demonstrate
the usefulness of the proposed approach by applying these three algorithms to
a well-known dataset. We measure the reduction in visual strain (i.e., tree size)
and compare it to the trade-off in lost information.

1.2 Related Work

Since our study is centered at visualizing alerts to help defenders, we divide the
relevant prior studies into the following three categories.

Alert and Attack Trees. There have been studies on leveraging alerts to
help defenders, such as: correlating alerts to construct attack scenarios or enable
collaborative defense [7,20,28], leveraging alerts to learn attack strategies [21],
and alert fusion and reasoning [12]. These approaches are useful for modeling
various attack patterns. However, these patterns are often not reliable enough
to incorporate into a fully automated system, which could damage systems if
deployed too aggressively. In light of this, it remains important for alert-based
systems to present models that are intuitive to human defenders.

Alert trees [9] are conceptually related to attack trees [1,5,22]. Attack trees
are often used to describe the preconditions that allow attackers to achieve their
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goals. Because of this, attack trees are often used to guide the hardening of a
network, and constitute preventive measures. By contrast, alert trees are meant
to make sense of the alerts produced by cyber defense tools as attacks enter the
network. This means that alert trees are more appropriate than attack trees for
the sake of cyber triage, which measures the scope of various attacks against a
network. Alert trees are detective measures. Because the semantics of alert trees
differ from attack trees and arbitrary network graphs, the patterns exhibited
by alert trees are likely unique. This motivates us to tailor our approach to the
specific case of alert trees. To our knowledge, no other works have targeted the
problem of reducing redundancy for alert trees in particular.

Alert Aggregation. While the notion of an alert tree does not necessarily
demand alert reduction in general, it may be useful during alert tree construc-
tion. In this regard, alert reduction is related to the notion of alert aggregation
(see, e.g., [17,23,24]), which aims to reduce alert cardinality in order to improve
efficiency. The present work contrasts this by managing redundancies after the
trees have been constructed, rather than before or during construction. This
difference means that any potential data loss is delayed until further down the
processing line and should be easier to recover if necessary.

Graph Visualization. Network visualization has been used to present data to
defenders for the purposes of cyber triage [16,26]. These visualizations are pri-
marily targeted at identifying individual attacks or aggregating similar attacks,
rather than tracking consecutive attacks in a spatiotemporal context. Other
works have used graphs in which nodes represent computers, while arcs rep-
resent security events, such as attacks or remote access [11,13]. These works
focus on detecting anomalies, rather than tracking attacks deterministically and
over time. As mentioned above, planarity is guaranteed in alert trees but not
alert graphs. Metrics used to rank and color graphs vary, as alert trees contain
multiple types of data such as the type and number of attacks observed, ver-
tex connectedness, and number of paths [1,15]. Some libraries used for graph
visualization include Tulip [2], Graphviz [8], and Pajek [3].

1.3 Paper Outline

The rest of the paper is organized as follows. Section 2 introduces the research
problem and defines important terms. Section 3 details the methods used.
Section 4 presents a case study. Section 5 discusses strengths and weaknesses of
the work. Section 6 concludes the present paper with future research directions.

2 Problem Formalization

This section introduces the concepts and terms used throughout the paper and
describes the context for their use. It also discusses the research questions we
hope to answer.
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2.1 Setting and Terminology

We investigate the problem of intuitive and efficient cyber triage. We use the con-
text of an enterprise network, which consists of computers, networking devices,
and security devices, is managed by a cyber defender, and is targeted by a
cyber attacker who resides inside or outside the enterprise network. Once the
attacker establishes a foothold in the network (through exploits, social engi-
neering attacks, or other means), they conduct lateral movement to compromise
additional computers. These attacks leave footprints that can be detected by
security devices in order to form alert paths. The first computer in an alert path
is known as the origin and all other computers are considered victims. The final
computer may also be called the path’s target.

Fig. 1. A forward alert tree, where vertices represent computers (labeled by IP
address), arcs represent sets of attacks between computers (according to alerts from
security devices), and node colors indicate the threat score of the incoming set of attacks
(i.e., the arc from the parent), with red being the highest score. A given computer may
appear multiple times, indicating that multiple alert paths exist from the root to that
computer. (Color figure online)

When multiple paths branch out from a single origin, these can be formulated
into an alert tree. Computers in an alert tree are represented by vertices, and
arcs between them denote sets of alerts. Alert trees may be forward-looking or
backward-looking, such that the root of the tree belongs to all of the tree’s paths
as either the origin or target, respectively.

The concept of alert trees is important because they serve a critical role in
facilitating incident response. Specifically, alert trees help defenders intuitively
understand the scope of an attack in terms of the breadth of network impact
and focal points thereof.

The visualization of alert trees has presented some significant limitations.
Firstly, alert trees have been shown to be particularly large, with some cases
resulting in over 5000 nodes, in under a week of attacks [9]. This size of tree
is prohibitive to analyze as a whole, but simply removing parts may introduce
errors. Thus, the focus of this paper is reducing visual strain while minimizing
information loss.
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2.2 Intuitive Problem Statement

The above discussion naturally leads to several intuitive needs regarding alert
tree visualization. Specifically: (i) trees must be reasonably sized for visualiza-
tion and viewing by defenders, (ii) trees must accommodate or preserve valu-
able information, and (iii) relevant information on trees must stand out. These
problems highlight some of the limitations in the related literature, which offers
visualization techniques but does not analyze them for robustness. This inspires
us to design and implement the methods here proposed. In what follows we first
introduce the concepts used in this paper using formal definitions.

2.3 Data Structures

The core of this work is the reduction operations on alert paths and trees. These
concepts are used throughout the paper.

Alert Path. Intuitively, an alert path describes a series of attacks traversing
one or more network connections, which may have been used by an attacker to
conduct a multi-step attack.

Definition 1 (Alert Path). Given a graph G = (V,E), define an alert path
p = (nodes, edges); where p.nodes = (v1, v2, . . . , v�) ⊆ V , such that ∀vi, vj ∈
p.nodes, v = v → i = j; and p.edges = ((v1, v2), (v2, v3), . . . , (v�−1, v�)), such
that e ∈ p.edges → e ∈ E.

Alert Tree. An alert tree represents a set of alert paths with a common origin or
target and is composed of nodes with corresponding parent/child relationships.

Each node has a name and a color that represents some metric used to
show the importance of a node. For this work, we will use the threat score
(TS) metric as defined in [9], although the model is metric agnostic. Threat
score is used to describe the severity of attacks against a given target. For alert
trees, we isolate threat score with respect to a given attacker as well (the node’s
parent, as described below). It is sufficient to note that node colors range from
red to black (i.e., in hexadecimal notation: 0xFF0000 to 0x000000), where red
indicates a higher value of the relevant metric, denoting a higher importance.
This is demonstrated in Fig. 1, and will be elaborated further in Sect. 3. These
nodes are used to construct an alert tree based on the following definition.

Definition 2 (Alert Tree). An alert tree t is an arborescence (i.e., a rooted
directed acyclic graph (DAG) where each node is accessible from the root by a
unique sequence of ancestors), rooted at a particular node t.root, and for which
each node n is annotated by name (denoted n.name) and color (denoted n.color).
Nodes may not share names with any of their siblings or ancestors.

Alert trees come in two logical forms: forward and backward. For any node nf

in a forward tree, an arc (nf .parent, nf ) indicates an attack from nf .parent to
nf . Conversely, for any node nb in a backward alert tree, an edge (nb.parent, nb)
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indicates an attack from nb to nb.parent. These are formulated respectively to
show the scope of victims that a particular attacker may have targeted, and the
scope of attackers that may have targeted a particular victim.

It is also worth noting that alert paths can be reconstructed from an alert
tree by extracting a node’s ancestors. Note that in the case of backward alert
trees, the ancestors must be reversed to retrieve the proper alert path.

Hypotree. Intuitively, a hypotree is a tree which resembles a portion of another
tree (i.e., its hypertree), where the two trees have identical roots. This relation-
ship is distinct from the concept of a subtree, which constitutes a branch of its
supertree. By contrast, a hypotree may be missing individual nodes or branches
relative to its hypertree.

B

GF

B

F G H

T1: T2:

Fig. 2. Example hypotree, where T1 � T2. Color coding shows analogous nodes in the
hypertree. (Color figure online)

Remark 1 (“Hypotree” Usage). The term hypotree has been used to refer to an
altered subtree structure in [10], but is otherwise absent from the literature.
Our usage is not inconsistent with this one. However, this usage may seem to
imply that its inverse is a hypertree, which has been used to denote an unrelated
concept [4,25]. For our purposes, it is sufficient to exclusively use the one-way
relationship of hypotree.

Based on the naming restrictions given in the definition of alert tree, we can
see that for any given alert tree, each node has a single ancestry which is unique
in the tree. With this in mind, we define hypotree in Definition 3.

Definition 3 (Hypotree). A tree Thypo is a hypotree relative to a tree Thyper

if ∀n ∈ Thypo,∃n′ ∈ Thyper : n′.ancestors = n.ancestors

Denote “Thypo is a hypotree of Thyper” as Thypo . Similarly, we derive
hypertree ( ); proper hypertee (�), a hypertree that is not also a hypotree;
and proper hypotree (�), a hypotree that is not also a hypertree. Recall that
“hypertree” is an existing concept in other contexts, so “hypotree” is preferred
where possible. Where necessary, the symbol ( ) can be used to avoid confusion,
as this is specific to the current usage.

An example hypotree is given in Fig. 2. If these were each members of the
same alert tree, it would indicate that the T1 attacks occurred after the T2

attacks, since consecutive links in an alert path follow a happens-before rela-
tionship. In other words, the attacks (B,F ) and (B,G) must have come after
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the attack (B,H). This means that if the two trees were produced by different
attackers and only node H was compromised, we can conclude it was done by
the attacker that produced T2.

2.4 Formalizing Intuitive Problems as Research Questions

Equipped with the preceding formalisms, we can now translate the intuitive prob-
lems into rigorous Research Questions (RQs) as follows. Computers may appear
multiple times in an alert tree, and thus represent redundant data. Removing
this redundant data can improve usability of alert trees. This motivates RQ1
and RQ2.

– RQ1: How much can we reduce alert tree size by merging similar nodes?
– RQ2: How much can we reduce alert tree size by removing duplicate nodes?

While modifying an alert graph, the removal and merging of nodes can reduce
the amount of information available to the defender. Specifically, when merging
nodes, we want to maximize the ratio of size reduction to information loss.
Similarly, when removing duplicate nodes, we want to preserve to location infor-
mation of the nodes that were removed. This motivates RQ3.

– RQ3: How can we preserve information lost in the solutions to RQ1 and
RQ2?

Salient information can represent a wide variety data, such as threat score,
asset value, etc. One way to represent such data is to color-code the relevant
graph elements. This motivates RQ4.

– RQ4: How can we highlight salient information in an alert graph without
increasing visual strain on the user?

3 Methods

In this section, we propose several methods for reducing an alert trees. Specifi-
cally, we propose merging sibling leaves, merging sibling branches, and truncating
hypotrees, as highlighted in Fig. 3.

Each of the three base functions can be used on its own to reduce a given
alert tree. These represent reduction schedules one, three and five, respectively.
However, because the nodes they merge or remove may overlap, it is unsafe to
apply more than one reduction at a time. The only exception is the merge sibling
leaves reduction, which may be applied after (but not before) either of the other
two base reductions because it does not create conflicts with them. This forms
reduction schedules two and four.

The model requires alert trees as inputs, as defined in Sect. 2. Once the trees
are imported, it annotates them to facilitate the reduction algorithms and sends
them to the appropriate functions. The remainder of this section describes the
base reductions.
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Fig. 3. Reductions overview. The colored boxes represent reductions, while colored
arrows represent reduction schedules. Reduction schedules 1,3, and 5 utilize only a
single reduction, while 2 and 4 apply two reductions in sequence. (Color figure online)

Fig. 4. Example tree with reduction schedules 3 and 1 applied. Colors show unique
nodes. Black denotes merges along with number of nodes merged. (Color figure online)

Fig. 5. Example reduction schedules 2, 5 and 4. Colors shows unique nodes. Black
denotes merges or truncations along with the number of nodes reduced. (Color figure
online)

3.1 Merging Sibling Leaves

Intuitively, high volume and low yield information can be reduced by merging
sibling leaves, preserving information about the severity of attacks against the
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merged leaves according to the TS of the merged leaves. In attack trees, this is
done by adopting the color of the node with the highest TS among those merged.

The approach is as follows. We use a breadth-first traversal to iterate over
the tree, parsing the list of each internal node’s children. For each set of children,
we check each node to determine if it is a leaf node and document the highest
TS within the set of those leaves. We then replace the leaves with a single
node, showing the number of leaves merged and color coded according to the TS
selected above. Figure 4b shows the result of merging leaves on the example tree
from Fig. 4a.

3.2 Merging Sibling Branches

We can reduce the amount of duplicate information presented to the viewer
by merging identical branches. This allows the viewer to more quickly identify
common patterns within the tree.

The approach is as follows. In order to find identical branches, we conduct a
breadth-first traversal of the tree, recursively comparing the branches of each set
of siblings. When we identify two siblings with identical subtrees, we combine
the siblings into a single node, preserving the shared form of the subtree. We
label the new node with the number of siblings that were merged, applying the
same color from the sibling with the highest ETS. Node data for the merge is
archived in case it needs to be retrieved later.

Branches are compared using a hash function, which produces a tuple
H(root) = (root, (H(node) : node ∈ root.children)), which incidentally pro-
duces H(leaf) = (leaf, ()) for leaf nodes. Figures 4c and 5a show examples of
the merge branches reduction.

3.3 Truncating Hypotrees

Because all nodes in hypotrees are duplicated in their respective hypertrees, they
are redundant. For this reason, we choose to truncate hypotrees in order to reduce
visual strain on the viewer. This preserves the most amount of information since
all edges are preserved (in the corresponding hypertree), even if their location
and number are lost.

The basic idea of the algorithm is described as follows. We parse the tree
using a breadth-first traversal, marking all nodes that share the same address.
We then compare the hypotrees of each set of identical nodes, preserving trees
which have no proper hypertrees and truncating the rest. In the case of two
equivalent hypotrees (i.e., ), we preserve only the one appearing
first in the traversal. Truncated trees contain annotations to refer viewers to the
corresponding hypertree. Archives save information about removed hypotrees
so they can be reconstructed if needed. The method for truncating hypotrees is
given in Algorithm 1. Figures 4b and 4c show an example usage of the algorithm.
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Algorithm 1. Truncate Hypotrees
Input: Root
Output: Root, Archives

1: Candidates ← ∅
2: Unique Names ← ∅
3: for each Node ∈ Root.descendants do
4: if ∃Name List ∈ Unique Names : Name List1 = Node.name then
5: Name List ← Name List ∪ (Node)
6: Candidates ← Candidates ∪ {Node.name} � Nodes sharing a name

become candidates
7: else
8: Unique Names ← Unique Names ∪ {(Node.name, Node)}
9: � Here elements 2 onward are nodes with the same name

10: end if
11: end for
12: Trunks ← (∅|Unique Nodes|)
13: Colors ← (()|Unique Nodes|)
14: for each n ∈ [1, 2, . . . , |Unique Names|] do
15: if Unique Namesn ∈ Candidates then
16: for each i, j ∈ [2, 3, . . . , n), i < j] do � Compare pairs of candidates
17: if Unique Namesn,i � Unique Namesn,j then
18: if |Unique Namesn,i.descendants| > 1 then
19: Trunksn ← Trunksn ∪ (Unique Namesn,i) � Mark i for

truncation
20: Colorsn ← Colorsn∪ (maxd∈Unique Namesn,i.descendants(d.color))
21: end if
22: else
23: if |Unique Namesn,j .descendants| > 1 then
24: Trunksn ← Trunksn ∪ (Unique Namesn,j) � Mark j for

truncation
25: Colorsn ← Colorsn∪ (maxd∈Unique Namesn,j .descendants(d.color))
26: end if
27: end if
28: end for
29: end if
30: end for
31: Archives ← ∅
32: for i ∈ [1, . . . , |Trunks|] do
33: for j ∈ [1, . . . , |Trunksi| do � Truncate and archive
34: trunk archive ← copy(Trunksi,j .parent)
35: trunk archive.parent ← ∅
36: new trunk ← copy(Trunksi,j)
37: new trunk.color ← Colorsi,j
38: Trunki,j .parent ← trunk archive
39: Archives ← Archives ∪ {trunk archive}
40: end for
41: end for
42: return Root, Archives
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4 Case Study

For the case study, we used CSE-CIC-IDS2018 [27], a well-known dataset col-
lected from a testbed with both injected and wild attacks. From the network
traffic, Snort [6] produced 3.3M alerts. These were assembled into trees using
APIN [9]. Nodes were ranked according to threat score, calculated as the geo-
metric mean of the volume and diversity of alerts incident to the node. Trees
were ranked according to the threat score of their root node.

From the resulting trees, we selected 15 for AVR to reduce: 5 each from
the top ranked, bottom ranked, and randomly selected trees. Statistics for the
selected trees are as follows. The top 5 set had on average 9.8 vertices, 7.6 unique
vertices and 8.8 unique arcs. Next, the bottom 5 set had on average 15 vertices,
10.6 unique vertices and 14 unique arcs. Finally, the random 5 set had on average
1999 vertices, 234.4 unique vertices and 825.6 unique arcs.

4.1 Evaluation Metrics

In order to evaluate the effectiveness of our methods, we utilize a total of 4
metrics, including three atomic metrics and one aggregate metric. The atomic
metrics are visual strain reduction (VSR), node retention (NR) and threat score
retention (TSR). The latter two are derived from the notion of information loss,
as its additive inverse (i.e., 1 − loss). These three metrics are also combined to
create a reduction index.

For the first metric, we measure VSR as the number of nodes in the reduced
tree relative to the full tree. VSR has a range of [0,1], where 100% is ideal.

For the following two metrics, we measure information retention as the num-
ber of unique nodes or threat score values from the full tree that remain after the
reduction. For unique nodes, recall that a given computer may appear multiple
times in an alert tree because there may be multiple paths that an attacker may
have taken to reach it. If the unique node remains in the tree after the reduc-
tion, it is considered retained. For threat score values, recall that threat score
describes the severity of a set of attacks between two nodes. Thus, if the corre-
sponding color (for the node representing the target of those attacks) remains in
the tree, the corresponding TS is considered retained. Both NR and TSR have
a range of [0,1], where 100% is ideal.

Note that NR is not necessarily 1 − VSR, since some reductions add supple-
mental nodes after pruning. These new nodes increase visual strain but not node
retention, since they do not belong to the full tree. However, they may increase
TSR, since some of the supplemental nodes inherit color codes (i.e., threat score)
from the node(s) they replaced.

To ensure a balance between size reduction and information retention, we
combine the three metrics into a reduction index using their harmonic mean.

4.2 Results

Results of the experiments are given in Table 1. Of the basic reductions, the
truncate hypotrees performed the worst in most cases, with its RI trailing by
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margins of 0.373 and 0.354 for the random 5 and bottom 5 categories, respec-
tively. In the top 5 category, however, it outperformed both other algorithms by
at least 0.131.

Table 1. Results evaluated on alert trees sampled according to threat score. VSR is
average visual strain reduction, NR is average node retention, TSR is average threat
score retention, and RI is reduction index as the harmonic mean of VSR, NR and TSR.

Algorithm VSR NR TSR RI

1. Merge branches (top 5) 0 1 1 0

1. Merge branches (rand 5) .448 .533 .254 .373

1. Merge branches (bot 5) .567 .493 .360 .457

2. MB-ML (top 5) .977 .008 .010 .013

2. MB-ML (rand 5) .561 .357 .929 .530

2. MB-ML (bot 5) .761 .205 .120 .206

3. Merge leaves (top 5) .977 .008 .010 .013

3. Merge leaves (rand 5) .118 .824 .799 .274

3. Merge leaves (bot 5) .209 .255 .270 .242

4. TH-ML (top 5) .981 .008 .010 .013

4. TH-ML (rand 5) .118 .824 .201 .204

4. TH-ML (bot 5) .239 .743 .713 .433

5. Trunc hypotrees (top 5) .053 1 1 .144

5. Trunc hypotrees (rand 5) 0 1 1 0

5. Trunc hypotrees (bot 5) .037 1 .983 .103

Overall, reduction schedule 2 performed the best in the random 5 category,
and schedule 4 performed the best in the bottom 5 category. This suggests
that merging branches then leaves is the best general-purpose strategy, while
truncating hypotrees then merging leaves then is the best strategy for reducing
relatively small trees.

With respect to any one particular metric, results varied across reduction
schedules and sample sets. This means it may be difficult to predict which sched-
ule one should use when trying to optimize for any particular metric.

4.3 Answering Research Questions

Answering RQ 1: How much can one reduce alert tree size by merging similar
nodes? By merging leaves, tree size can be reduced by as much 98%, and by
merging branches tree size can be reduced by as much as 57%.
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Answering RQ 2: How much can one reduce alert tree size by removing dupli-
cate nodes? By truncating hypotrees, tree size can be reduced by as much as
5.3%.

Answering RQ 3: How can one preserve the information lost in the solutions
to RQ1 and RQ2? The best way to preserve information is to truncate hypotrees,
which contain almost exclusively redundant information. Otherwise, results from
the other algorithms have variable results depending on the sample used.

Answering RQ 4: How can one highlight salient information in an alert graph
without increasing visual strain on the user? Color-coding salient information
allows the tree to highlight important data such as network hotspots and threat
activity. Color can be used for both nodes and edges, so NR and TSR are the
metrics to look at when one needs information salience.

The novel reductions had a broad range of performance, with each one having
a different strength. Since user needs will vary, it will be important to consider
these differences when choosing how to handle alert trees. Meanwhile, these
results are only preliminary and warrant further study.

5 Discussion

Limitations of the Methodology. The methods used in this study have the
following limitations. First, the reductions for merging branches and truncating
hypotrees have overlapping domains under composition. This means running
them in sequence may give different results depending on the order used. This
results in only five valid reduction schedules.

Additionally, alert paths do not necessarily give a precise account of an
attacker’s activity. This is for the following reasons: (i) attacks may fail, pro-
ducing alerts that do not indicate compromise; (ii) attacker addresses may be
spoofed or reflected, such that the source of the connection is not visible to net-
work monitors; (iii) security devices may have false positives or negatives; and
(iv) some attacks may use client-side exploits, resulting in arcs that are inverted
(i.e., the compromised computer may be the source of an attack rather than its
destination). These phenomena can induce errors in the experimental results.

Limitations of the Case Study. The dataset in the case study utilizes threat
score to rank edges and paths. This metric has not been robustly studied and
may not produce the best scores relative to a particular attack. However, the
methods proposed in the present study need not use threat score, but could easily
be adapted to rank nodes according to monetary value, vulnerability score, or
other related risk metrics.

6 Conclusion

This work introduced several methods for reducing the size of alert trees while
retaining as much information as possible. The three core functions can be used
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independently or combined in a total of five reduction schedules. One of the
reductions involves the use of a novel data structure, the hypotree. These reduc-
tions were applied to alert trees from a research testbed dataset, and were eval-
uated for information retention and visual strain reduction. Results show that
the reductions have varied performance relative to each other for different types
of trees. This finding warrants more research into how the application of the
reductions may be optimized.
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