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Abstract. With the popularity of Online Ride-Hailing (ORH) service,
there are growing concerns about location privacy because the taxis
and passengers need to upload their locations to the service provider.
These locations can be used to infer the users’ personal information. In
this paper, we propose a privacy-preserving online ride-hailing match-
ing system, which allows an untrusted service provider to calculate the
distances between the taxis and one passenger and find the nearest
taxi by itself while protecting the users’ location privacy. To calculate
the distances in road networks, we leverage Road Network Embedding
(RNE) in our proposed system. We propose a secure distance calculation
scheme to conduct RNE distance calculation securely. In this scheme, we
redesign Property-Preserving Hash (PPH) with Pseudo-Random Func-
tions (PRF) and use PRF-based PPH to calculate the distance between
two RNE location vectors securely. To enhance security, we embed the
partition ID and generation time in PRF-based PPH ciphertext to limit
the ciphertext match-ability. Our security analysis and experimental
evaluation show that our proposed system is secure and efficient.

1 Introduction

The vigorous development of Online Ride-Hailing (ORH) services has greatly
facilitated people’s daily travel. Unlike traditional taxi cabs that require passen-
gers to hail a car on the street, ORH allows passengers to request a ride using
their mobile phones. The service provider can then match them with the nearest
taxi based on their location information. According to Uber’s latest financial
report [16], there are about 109 million monthly active platform consumers in
Uber.

However, with the growing popularity of ORH services, our society has also
raised strong concerns about the privacy and security of location data. Passen-
gers and taxis must upload their locations to the untrusted service provider.
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The service provider can infer their private information, such as driving paths
or daily activities, based on their uploaded locations.

To address the security issue, a line of papers [3,9,11,12,18,20] have been pro-
posed to provide ORH services while ensuring location privacy. The works [3,12]
were proposed to protect data privacy by cloaking the locations. Since cloaking
may result in a loss of matching accuracy, ORide [11] leveraged the cryptographic
primitives to encrypt the precise locations and matched the nearest taxi based on
Euclidean distances. However, Euclidean distance cannot accurately describe the
distances in the road network. In [9], Luo et al. proposed a design that uses Road
Network Embedding (RNE) [13] as the distance metric instead of Euclidean dis-
tance. The authors leveraged Homomorphic Encryption and Garbled Circuits
to protect the RNE locations. However, it needs another non-colluded crypto
provider to assist the service provider, which leads to high bandwidth overhead
and multiple communication rounds. Recently, the authors [20] devised an ORH
scheme that allows a service provider to perform privacy-preserving ride-hailing
services without involving a third server. Nevertheless, recent work shows that
the service provider can infer the underlying plaintext under some scenarios [17].

In this paper, we propose a privacy-preserving ORH scheme that allows an
untrusted service provider to find the nearest taxi for a passenger by itself while
protecting location privacy. Our design leverages RNE [13] to transform the loca-
tions in the road network and calculate the distance between two locations. To
conduct the secure ride-matching, we redesign Privacy-Preserving Hash (PPH)
with Pseudo-Random Functions (PRFs) and propose a secure difference calcu-
lation with PRF-based PPH. With PRF-based PPH, the component in RNE
vectors will be divided and encrypted into several bit-block ciphertexts. Each
block ciphertext corresponds to a mask weighted difference. Using the binary
comparison between the PRF values, the service provider can calculate the RNE
distances from the ciphertexts and find the nearest taxi for one passenger. To
enhance security, we divide the map into several partitions. The partition ID and
ciphertext generation time will be embedded into the block ciphertext. Given
a passenger ciphertext, it ensures that only the taxi ciphertexts from the same
partition and generated at the same time can be used to calculate the distances.
It reduces the number of candidate taxi ciphertexts cryptographically to improve
the system security. The efficient primitive PRF also improves the PPH’s per-
formance significantly. Besides, we design a tagging scheme to further reduce the
computation overhead in PPH. The service provider can compare the PRF values
with the same tag. Security analysis and experimental evaluation demonstrate
that our proposed system is secure and efficient.

2 Related Works

Some studies proposed some non-cryptographic solutions to hide the exact loca-
tions. PrivateRide [12] hides the pick-up and drop-off locations via cloaking.
In [22], the authors proposed a cloaking scheme to match the passenger and taxi
based on their grid IDs. In [4], the authors proposed a cloaking algorithm based
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on Hilbert Curve. However, such solutions cannot provide accurate service as
they use imprecise locations.

Cryptography techniques, such as secure range query [2,7,19] and homomor-
phic encryption [6], can be used to address this issue. In [1], the authors proposed
a privacy-preserving scheme that determines the meeting point based on Private
Set Intersection. The authors in [14] leveraged secure kNN to calculate the trip
similarity. Pham et al. [11] proposed a scheme that encrypts the exact loca-
tions of passengers and taxis and finds the nearest taxi based on homomorphic
encryption and their Euclidean distances. However, Euclidean distances cannot
represent the distances in road network. To better represent the distances in
the road network, some works used different kinds of transformation methods
to represent the road distances. Yu et al. [21] proposed a privacy-preserving
ride matching system that utilized Hypercube embedding to transform the loca-
tions. They used Somewhat Homomorphic Encryption to calculate the Ham-
ming distance between two transformed locations in the ciphertext domain. Luo
et al. [9] utilized Road Network Embedding (RNE) to transform the locations.
They leveraged homomorphic encryption and Garbled Circuit to calculate the
distances and find the nearest taxi in a privacy-preserving manner. However, it
needs another server to help the service provider in ride-matching. In [20], the
authors proposed a PPH-based scheme that allows the cloud server to provide
the privacy-preserving ORH service by itself. However, the server can infer the
plaintexts under some scenarios in this system [17].

3 Preliminaries

3.1 Road Network Embedding

Road Network Embedding (RNE) [13] is a technique that transforms a road
network into a high dimensional space to calculate the approximate distance
between two points. In this scheme, every point in the road network can be
assigned a vector. The distance between two points can be estimated by using
their given vectors. The road network can be defined as a weighted graph G =
(V,E), where V is the set of road intersections, and E is the set of roads. We
assume that G is an undirected graph. Let n denote the size of V , and d(a, b)
denote the length of minimum weighted path between a and b. A point u can be
transformed into an O(log2n)-dimension vector as follows.

Let β = O(logn) and κ = O(logn). We define R as a set which consists of
β · κ subsets of V , i.e., R = {S1,1, ..., S1,κ, ..., Sβ,1, ..., Sβ,κ}. Each subset Si,j

is a random subset of V with 2i nodes. For example, the subsets S1,1, ..., Sβ,1

have 2 nodes each. The subsets Sβ,1, ..., Sβ,κ have 2β nodes each. Let D(u, Si,j)
denote the minimum distance between u and the nodes in Si,j , i.e., D(u, Si,j) =
minu′∈Si,j

d(u, u′). Thus, the embedded vector E(u) of node u can be defined as:

E(u) = (E1,1(u), ..., E1,κ(u), ..., Eβ,1(u), ..., Eβ,κ(u)) (1)

where Ei,j(u) = D(u, Si,j).
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Now we consider a moving object o which is moving on the edge between
node u and node v. The component Ei,j(o) of its embedded vector E(o) can be
defined as Eq. 2.

Ei,j(o) = min{d(o, u) + D(u, Si,j), d(o, v) + D(v, Si,j)} (2)

Given the embedded vectors E(u) and E(v) of two points u and v, the short-
est distance δ(u, v) between u and v can be estimated by calculating the chess-
board distance between E(u) and E(v), as shown in Eq. 3.

δ(u, v) = max
i,j

(|Ei,j(u) − Ei,j(v)|) (3)

3.2 Pseudo-Random Function

A Pseudo-Random Function (PRF) is a function f : {0, 1}n × {0, 1}s → {0, 1}m

where its output is computationally indistinguishable from the output of a ran-
dom oracle. Formally, a function f : {0, 1}n ×{0, 1}s → {0, 1}m is a (t, ε, q)-PRF
if given k ∈ {0, 1}s and x ∈ {0, 1}n, it is efficient to calculate fk(x) = f(x, k),
and for any t-time oracle algorithm A, we have |Pr∈{0,1}s [Afk ]−Prf∈F [Af ]| < ε
where F = {f : {0, 1}n → {0, 1}m} and A makes at most q queries to the oracle.

3.3 Property-Preserving Hash

Property-Preserving Hash (PPH) [2] allows an entity to reveal the order of
ciphertexts. Given the PPH ciphertexts x̂ and x̂′ of two bits x and x′, we define
the property P as Eq. 4.

P (x̂, x̂′) =

{
1 x = x′ + 1
0 otherwise

(4)

In particular, the PPH ciphertext x̂ includes two matchable ciphertexts of x
and x + 1. Thus, given x̂ and x̂′, P (x̂, x̂′) = 1 if the matchable ciphertext of x
in x̂ matches the ciphertext of x′ + 1 in x̂′. With property P , the order between
two ciphertexts can be determined.

4 Problem Statements

4.1 System Model

Our system model considers a ride-hailing system that helps a passenger find
the nearest taxi in the road network. As shown in Fig. 1, our system consists
of three entities, i.e., service provider, taxis, and passengers. Service provider
is the entity that performs taxi-passenger matching based on their encrypted
locations. It calculates the approximate distances between each taxi and an
incoming passenger based on their ciphertexts and matches them by selecting
the nearest taxi. Taxis are entities waiting for passengers. They encrypt their



Privacy-Preserving Online Ride-Hailing Matching System 433

locations and upload the ciphertexts to Service Provider periodically to find the
matched passenger. Passengers are the entities who want to hail the nearest taxi
to start their trips. They encrypt their locations and upload the ciphertexts to
Service Provider to find the nearest taxi.

According to Eq. 3, to calculate the distance and select the nearest taxi
securely, our design should be able to calculate the comparable difference from
the vector ciphertexts.

4.2 Threat Model

We assume that the service provider is honest-but-curious. It honestly follows
our proposed design, but is curious to learn the private information about the
locations of the taxis and passengers from the ciphertexts and results. In prac-
tice, ride-hailing service provider are usually large reputable companies. Active
attacks can be detected easily. We also assume that the passengers and the taxis
are fully trusted so that they can keep their secret keys secure. The road data
that is used to generate the location vectors is assumed to be public.

Result Result
Location Request

Taxis Passengers

Service Provider

Fig. 1. System Structure.

5 Proposed System

5.1 Secure Distance Calculation from PRF-based PPH

In this section, we discuss about how to encrypt the RNE vectors and calculate
the distances between two vectors. Let Ei(u) denote the i-th component of the
RNE vector E(u), and z denote the ID of the partition in the map. Suppose
that there is one passenger up and one taxi ut in the road network. Their RNE
vectors are E(up) and E(ut). They are in the partition z and the vectors are
generated at time slot s. To securely calculate the distance between up and ut in
the RNE context, we need to securely calculate the difference between the i-th
pair of components first, i.e., Ei(up) − Ei(ut).
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To encrypt the components Ei(up) from the passenger, the passenger first
divides the binary representation of Ei(up) into m bit-blocks with the same
block size l. We denote by [Ei(up)]j the j-th bit-block of Ei(up), where j counts
from 0 and is indexed from the least significant bit. For instance, we suppose
that Ei(up) is 41 (“101001” in binary) and it will be divided into 3 bit-blocks
with block size 2. [Ei(up)]2 is “10”, [Ei(up)]1 is “10” and [Ei(up)]0 is “01”. The
component Ei(ut) from the taxi is also divided into m bit-blocks as above.

We discuss about how to encrypt [Ei(up)]j first. As the block size is l, there
are 2l possible values for one block, i.e., from 0 to 2l − 1. Let q denote the
possible value, i.e., q ∈ [0..2l − 1]. For each q ∈ [0..2l − 1], we calculate the
difference between it and [Ei(up)]j . Note that we need to multiply the difference
by a block weight instead of calculating it directly. Each block [Ei(up)]j has its
position-related block weight, similar to bit weight. We denote by wj the block
weight for the j-th block and define wj = (2l)j . In the aforementioned example,
the weight of [Ei(up)]2 is (22)2 = 16. The weight represents the contribution
of the difference in one block. Let [Ei(up)]j,q denote the tuple of the possible
value q and the weighted difference between [Ei(up)]j and q. To encrypt one
block [Ei(up)]j , we encrypt all the possible values q to the matchable ciphertexts
in PPH together with their corresponding weighted differences. To protect the
weighted difference, it should be masked by a token so that it can be unmasked
if and only if there is a correct token from the block ciphertext of the taxi. We
will discuss the details later.

The set that needs to be encrypted for [Ei(up)]j is defined as shown in Eq. 5,
including all possible values with their weighted differences.

{[Ei(up)]j,q = (q, (q − [Ei(up)]j) ∗ wj)|q ∈ [0..2l − 1]} (5)

To encrypt the block [Ei(ut)]j from the taxi, we generate the matchable
ciphertext for [Ei(ut)]j itself instead of all the possible values on the passen-
ger’s side. Our basic idea is to ensure that the matchable ciphertext of [Ei(ut)]j
matches the ciphertext of q if and only if [Ei(ut)]j = q. Thus, the weighted dif-
ference between q and [Ei(up)]j is that between [Ei(ut)]j and [Ei(up)]j so that
the difference is revealed correctly.

Now we focus on how to encrypt one possible tuple [Ei(up)]j,q based on PPH.
We leverage PRF as the matching cryptographic primitive. Let ˆ[Ei(up)]j,q denote
the ciphertext of [Ei(up)]j,q. It is defined as

(tagi,j,q, F (H(k1, q||i||j||z||s), γj),
F (H(k2, q||i||j||z||s), γj) ⊕ ((q − [Ei(up)]j) ∗ wj))

(6)

where || is the string concatenation operator, ⊕ is the XOR operator, H and F
are PRFs, γj is a random number shared among all the ciphertexts for block
[Ei(up)]j , and k1 and k2 are two secret keys shared among the passengers and
taxis. They are distributed by a key manager, an independent admittance control
entity that is not involved in taxi matching. tagi,j,q is a tag used to improve the
query efficiency, which is defined as

tagi,j,q = F (H(k1, q||i||j||z||s), γj)&(2θ − 1) (7)
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where & is bit-wise AND operator, and θ is a pre-defined value which is smaller
than l. That means we use the last θ bits as the tag of this ciphertext. The
ciphertexts with the same tag can be grouped together. The ciphertext order in
one group can be shuffled. We will discuss about how to use it to improve the
query efficiency later.

We denote by ˆ[Ei(up)])j the ciphertext of block [Ei(up)]j . ˆ[Ei(up)]j includes
the ciphertexts of all possible tuples [Ei(up)]j,q and the random nunce γj , as
shown in Eq. 8.

ˆ[Ei(up)]j = {γj , ˆ[Ei(up)]j,q|q ∈ [0..2l − 1]} (8)

In the above discussion, we have discussed that we generate the matchable
ciphertext for [Ei(ut)]j itself for the taxi block. In particular, the ciphertext

ˆ[Ei(ut)]j is defined as Eq. 9.

(H(k1, [Ei(ut)]j ||i||j||z||s),H(k2, [Ei(ut)]j ||i||j||z||s)) (9)

The ciphertexts of Ei(up) and Ei(ut) consists of the ciphertexts of all the
blocks respectively, as shown in Eq. 10 and Eq. 11.

ˆEi(up) = { ˆ[Ei(up)]j |j ∈ [0..2l − 1]} (10)

ˆEi(ut) = { ˆ[Ei(ut)]j |j ∈ [0..2l − 1]} (11)

Thus, given two block ciphertexts ˆ[Ei(up)]j and ˆ[Ei(ut)]j , the service provider
can scan the possible ciphertexts in ˆ[Ei(up)]j . The block ciphertext ˆ[Ei(ut)]j
matches one possible ciphertext ˆ[Ei(up)]j,q if and only if Eq. 12 holds, which
the left side is from ˆ[Ei(up)]j,q and the right side is the PRF value with the
ciphertext from ˆ[Ei(ut)]j and γj from ˆ[Ei(up)]j .

F (H(k1, q||i||j||z||s), γj)
?= F (H(k1, [Ei(ut)]j ||i||j||z||s), γj) (12)

According to Eq. 12, we can find that Eq. 12 holds if and only if q = [Ei(ut)].
The other parameters in PRF also ensures that they are from the j-th block in
the i-th components, from the same zone z, and generated at the same time slot
s.

To improve query efficiency, we can extract the last θ bits of the right side in
Eq. 12, as shown in Eq. 13. We can only test the possible ciphertexts ˆ[Ei(up)]j,q
with the same tag, i.e., tag′ = tagi,j,q, to reduce the number of matching tests.

tag′ = F (H(k1, [Ei(ut)]j ||i||j||z||s), γj)&(2θ − 1) (13)

Once ˆ[Ei(ut)]j matches one ˆ[Ei(up)]j,q, we can generate the mask maskj

with H(k2, [Ei(ut)]j ||i||j||z||s) from ˆ[Ei(ut)]j and γj from ˆ[Ei(up)]j , as shown
in Eq. 14. According to Eq. 6, we can find that maskj is equal to the mask of
weighted difference (q − [Ei(up)]j) ∗ wj if [Ei(ut)]j = q, i.e., they are matched.
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Thus, by using XOR operation, we can reveal the weighted difference ([Ei(ut)]j−
[Ei(up)]j) ∗ wj from the block ciphertext.

maskj = F (H(k2, [Ei(ut)]j ||i||j||z||s), γj) (14)

After revealing ([Ei(ut)]j − [Ei(up)]j) ∗ wj for all j ∈ [0..m], the absolute
difference between the i-th components |Ei(ut) − Ei(up)| can be calculated as
Eq. 15.

|Ei(ut) − Ei(up)| = |
∑

j∈[0..m]

(([Ei(ut)]j − [Ei(up)]j) ∗ wj)| (15)

Let ˆE(ut) and ˆE(up) denote the ciphertexts of RNE vectors E(ut) and E(up)
respectively. The ciphertext ˆE(ut) for the taxi is defined as Eq. 16. It consists of
the ciphertexts of all the components, the time slot and the partition ID.

ˆE(ut) = {s, z, ˆEi(ut)|i ∈ [0..β · κ]} (16)

The ciphertext ˆE(up) for the passenger is defined as Eq. 17.

ˆE(up) = {s, z, ˆEi(up)|i ∈ [0..β · κ]} (17)

As we can calculate the absolute differences for one pair of components, given
the ciphertexts of two RNE vectors, the distance between one passenger and one
taxi can be calculated according to Eq. 3.

In summary, the service provider can calculate the RNE distance between
a passenger and a taxi securely if they are from the same partition and their
ciphertexts are generated in the same time slot.

5.2 Passenger-Driver Matching

In Sect. 5.1, we discussed about how to calculate the distance between a pas-
senger and a taxi. Let Ut denote the set of all taxis, and ˆE(Ut)z,s denote the
ciphertexts of the taxis with partition ID z and time slot s. Given a passenger’s
ciphertext ˆE(up) with partition ID z and time slot s, as the partition ID and
time slot are included explicitly, the service provider can select the taxis with the
same partition ID and time slot to calculate the distances, i.e., between ˆE(up)
and the ciphertexts in ˆE(Ut)z,s. It can reduce the number of candidate taxis
to improve the query efficiency. These two values that are embedded in PRFs
also ensures that the service provider cannot calculate the distance between two
ciphertexts if their partition IDs or time slots are different. After calculating all
the distances between ˆE(up) and the ciphertexts in ˆE(Ut)z,s, the service provider
selects the taxi with minimum distance as the nearest taxi. The distance does
not leak the location information of both passenger and taxi.

In the above design, only the passenger and taxi in the same partition can
be matched. However, the nearest taxi in one partition may not be the nearest
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one in the global map. To improve the accuracy, we let the taxi in the partition
z generate the another extra 8 ciphertexts of its current RNE vectors with z′,
which is the adjacent partition of z. Thus, a taxi will participate the matching
procedure for its partition and its neighbor partitions. Relatively, one hailing
request from a passenger will be served by the taxis from its partition and its
neighbor partitions. This design can improve the query accuracy of our proposed
system.

5.3 Early Stopping in Distance Calculation

In the above discussion, we calculate the absolute differences for all the compo-
nents and select the maximum as the distance between the passenger and one
taxi. The taxi with smallest distance will be selected as the nearest taxi. As the
service provider needs to calculate the distances between the passenger and taxis
one by one, we denote by min as the current smallest distance when the service
provider is calculating the distance between the passenger up and one taxi ut.
We have one observation.

Observation: We suppose that the service provider is calculating the absolute
difference between the i-th pair of components, i.e., |Ei(ut) − Ei(up)|. ut is not
the nearest taxi if |Ei(ut)−Ei(up)| > min, as the distance between up and ut is
impossible to be smaller than |Ei(ut)−Ei(up)| according to Eq. 3. The distance
must be larger than the current smallest distance min if |Ei(ut)−Ei(up)| > min.

According to the above Observation, the distance calculation between up and
ut can be terminated if the service provider finds that |Ei(ut) − Ei(up)| > min.
Thus, the unneccessary calculation can be avoided.

6 Security Analysis

6.1 Leakage Definition

As the difference between two components are calculated from the revealed
weighted differences in plaintext, our security analysis will focus on the secure
block weighted difference calculation. First we define the following leakage func-
tions:

Leakage Function L1(u): Let (tagi,j,q, CT1, CT2) denote the ciphertext in
Eq. 6. Given a block value u from one passenger, the leakage function for pas-
sengers is defined as L1(u) = (〈|tagi,j,q|, |CT1|, |CT2|〉, l, |γ|), where l is the block
size, and |tagi,j,q|,|CT1|,|CT2|, and |γ| are the bit lengths.

Leakage Function L2(u∗): Let (CT ′
1, CT ′

2) denote the ciphertext in Eq. 9.
Given a block value u∗ from one taxi, the leakage function for taxis is defined as
L2(u∗) = (|CT ′

1|, |CT ′
2|).

Leakage Function L3(û, û∗): Given two block ciphertexts from a passenger
and a taxi, the leakage function for the comparison is defined as L3(û, û∗) =
(MP, dif,Nt×t), where MP is the matched possible ciphertext, dif is the
revealed weighted difference, and Nt×t is a symmetric binary matrix that records
the repeated comparisons.
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Based on the simulation-based security definition in [5], the security definition
of our system is defined as follows.

Definition 1. Let Ω = {EncPassBlock, EncTaxiBlock, BlockDiff} be the secure
block weighted difference calculation scheme, A be a probabilistic polynomial time
(PPT) adversary, S be a PPT simulator, and λ be the security parameter. The
probabilistic experiments RealΩ,A(1λ) and IdealΩ,A,S(1λ) are defined as:

RealΩ,A(1λ): A selects a block value u and lets a passenger generate a cipher-
text via EncPassBlock. Then A launches a polynomial number of comparisons,
which lets a taxi generate the ciphertext via EncTaxiBlock, and gets the result
via BlockDiff. Finally, A outputs a bit as the output.

IdealΩ,A,S(1λ): A selects the block value u. S simulates the ciphertext for A
based on L1. Then A launches a polynomial number of comparisons adaptively,
which lets S simulate the ciphertexts based on L2 and the comparisons based on
L3. Finally, A outputs a bit as the output.

Definition 2. Ω is (L1,L2,L3)-secure if for any PPT adversary A, there exists
a PPT simulator S such that |Pr[RealΩ,A(1λ) = 1]−Pr[IdealΩ,A,S(1λ) = 1]| ≤
neg(λ), where neg(λ) is a negligible function for λ.

6.2 Analysis

Theorem 1. Ω is (L1,L2,L3)-secure if F and H are PRFs.

Proof. We first define a sequence of hybrid experiments.
H0: It is the same as the experiment RealΩ,A(1λ).
H1: It is the same as H0, except that S picks random strings as the passen-

ger’s ciphertext using L1 instead of calling F .
H2: It is the same as H1, except that S picks random strings as the taxi’s

ciphertext using L2 instead of calling H.
H3: it is the same as H2, except that S simulates the comparison result using

L3 adaptively, which is IdealΩ,A,S(1λ).
First, due to the pseudo-randomness of PRF, A cannot distinguish between

a PRF string and a random string computationally. Thus, H0 and H1 is com-
putationally indistinguishable to A. Due to the same reason, H1 and H2 is
also computationally indistinguishable to A. In H3, S generates the random
strings if one taxi’s block value is not requested before. Otherwise, it returns
the same ciphertext. As discussed before, A cannot distinguish between the ran-
dom string and the ciphertexts generated by PRF computationally. Thus, H2

and H3 are computationally indistinguishable. In summary, RealΩ,A(1λ) and
IdealΩ,A,S(1λ) are computationally indistinguishable to A. This completes the
proof.

6.3 Discussion About the Difference Leakage

In the comparison, weighted differences for matched possible ciphertexts will be
leaked to the service provider. One ciphertext for a passenger’s block includes
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2l possible ciphertexts with different weighted differences. An attack against
PPH shows that a passenger’s block value can be revealed if the service provider
collects block ciphertexts from 2l taxis, each of which leaks a different weighted
difference from this passenger’s block ciphertext [17]. However, in our proposed
system, the attack is difficult to be achieved under real-world conditions. For
example, according to the statistics [15] from Uber, there are about 14, 000 taxis
in Hong Kong. We suppose that taxis are distributed uniformly. If we set the
partition scheme to 20 × 20 and set the block size l to 12, there are about 315
taxis in a 3 × 3 area, which can participate in one passenger’s comparison, but
the number of needed taxis is at least 4096. It is difficult to be achieved.

7 Experimental Evaluation

7.1 Experiment Setup

The prototypes of our proposed system and the baseline [20] are implemented by
C. The evaluations were conducted on a computer equipped with Intel i7-10700
and 64 GB memory. The binary length of one component in a vector is set as 24.
Our proposed system uses HMAC-SHA256 as the PRF and uses the first 128
bits. We compare with the baseline [20], a privacy-preserving ride-hailing system
based on RNE and PPH with bilinear maps. It is implemented by Pairing-Based
Cryptography library [10] with Type A, where r is 160 bits and q is 512 bits.
The block size l in the baseline is set as 2. We use a real-world dataset [8] which
includes road information of 21048 nodes and 21693 edges. The passengers and
taxis are generated randomly on the edges. The results is the mean of 10 trials.

(a) Matching Accuracy (b) Passenger’s Generation (c) Taxi’s Generation

(d) (e) (f) Communication Cost

Fig. 2. System evaluation
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7.2 Performance

Accuracy: Since RNE estimates the distances in the road network, it may incur
inaccurate result. Moreover, we use partition to reduce the number of candidate
taxis. We evaluate the accuracy of our system and the influence of partition
granularity on accuracy. We generate 100 passengers randomly and count the
number of passengers whose matched taxis from RNE are the same as the ground
truths. From Fig. 2a, the accuracy raises as the component raises. The accuracy
is 98% when the component is 32. Our partition scheme is not influence on the
accuracy.

The Performance of Generation: Figure 2b shows that the passenger’s time
cost of ciphertext generation increases when the number of components increases.
Figure 2c illustrates that taxi’s also increases as the number of components
increases. The taxi’s time cost is smaller than the passenger’s, although the taxi
needs to encrypt 9 vector ciphertexts for different partition IDs. That is because
the passenger needs to encrypt several possible values for each block encryption,
while the taxi only needs to encrypt one value. According to Fig. 2f, as the same
reason, the taxi’s cost is smaller than the passenger’s. It is reasonable because
taxis need to upload their tokens frequently to wait for the passenger.

The Performance of Taxi-Passenger Matching: Our evaluation is con-
ducted under 800 taxis and the partition scheme 10 × 10. According to Fig. 2d,
we can find that the time cost of our scheme is significantly better than the
baseline. From Fig. 2e, the time costs of all the three block settings raise linearly
as the number of components increases. We can find that the time cost decreases
as the block size increases, as the increase of the block size leads to the decrease
of the number of blocks in one vector component. Although the number of the
ciphertexts for the possible values is exponential to the block size in one block,
the service provider needs to compare only a small part of them by using our
tag optimization scheme. The comparison costs in one block with different block
size are close. Thus, less blocks result in less time cost. PRFs provide efficient
ciphertext matching, and our partition design and tagging scheme reduce the
number of ciphertext matching operations.

8 Conclusion

In this work, we proposed a privacy-preserving online ride-hailing system with an
untrusted server. The service provider can find the nearest taxi for one passenger
by itself. We used RNE to transform the road location to a vector. To calculate
the distance securely, we redesigned PPH using PRF as its matching primitive,
and used PRF-based PPH to propose a secure distance calculation scheme. To
enhance security, we divided the map into several partitions and embedded the
information about partition and generation time into PPH ciphertexts. The effi-
cient PRFs and our tag scheme improve the efficiency. We provided the security
analysis, and evaluation results showed that our system is accurate and efficient.
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