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1 Introduction

Individual voting rights entail a potential to affect collective decisions. Greater num-
bers of votes controlled by large shareholders, party leaders, delegates to a council
or committee, etc. typically increase the respective influence. It is not trivial, though,
to tell how much greater the influence of, e.g., a voter wielding 25% of all votes is
compared to one wielding only 5%. This holds even when an a priori perspective
is adopted, meaning that one purposely leaves aside personal affiliations between
the voters and empirical preference information. Various indices try to rigorously
quantify voting power in order to address this problem.

For binary collective decision making of the yes-or-no kind—formalized by sim-
ple voting games (cf. von Neumann and Morgenstern 1953, Chap. 10 or Taylor
and Zwicker 1999)—prominent examples of voting power indices are the Penrose-
Banzhaf, Shapley-Shubik, and Holler-Packel indices (cf. Penrose 1946, Banzhaf
1965, Shapley and Shubik 1954, Holler and Packel 1983). Some of them have been
extended to non-binary settings such as the determination of a winner from a set of
more than two options by alternative methods of social choice (cf. Kurz et al. 2021,
for instance). The respective winner could be a particular law selected from multiple
legal drafts, the managing director of the IMF chosen from a shortlist of three nom-
inees, a presidential candidate who is picked from various primary contenders, and
so on.
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Applied to a particular voting body such as a parliament or party convention,
the IMF Executive Board, the EU Council, or the US Electoral College,1 power
indices illuminate some of the discrete mathematical structure that underlies collec-
tive choices. They identify possible swings between losing and winning coalitions,
which make outcomes depend on a voter’s behavior, or more generally they measure
the potential variation of the winning candidate that derives from a single voter’s
input to the decision process. Light is cast on either a specific institutional arrange-
ment when the focus is on the influence of distinct members of a voting body relative
to another or on multiple competing arrangements. One may evaluate, for instance,
the implications of a change of the majority threshold or a switch from plurality
voting to a runoff system (e.g., see Maskin and Sen 2016 on plurality voting in US
presidential primaries).

So power indices yield insights with political or economic meaning. Common
questions are as follows: Towhat extent can a given shareholder control a corporation
and may, perhaps, be held responsible for its actions? Is the voting power of two
parties at least approximately proportional to their seat shares in parliament? Is a
given allocation of voting rights to delegates from different constituencies (e.g., US
states in the Electoral College, member countries in the EU Council, departments in
a university senate, etc.) ‘fair’ under a particular set of normative premises? Etcetera.

This article, however, is not pursuing serious questions of any such kind. We here
employ a power index for non-binary decisions with a seemingly superficial and
primarily visual purpose: we try to convey the hidden beauty of weighted voting and
want to exhibit artistic aspects of the power that voters can derive from their voting
weights.

The article’smain part therefore consists of several pages of color images.Depend-
ing on personal taste, they may be of interest and produce enjoyment without any
further explanation. At the same time, they represent the result of hours of computer
calculations (several weeks, in fact). They give a graphical picture of the formal
structure behind collective decision making by three players—individuals or homo-
geneous groups of voters—on three candidates.

It will be assumed that winners are determined by a plurality vote, an antiplurality
vote, or one of the many scoring rules that lie ‘in between’, such as Borda’s voting
rule. Other voting methods like the various rules that focus on pairwise majority
comparisons (Copeland’s rule, Kemeny-Young rule, etc.) are amenable to the same
kind of representation. They generate less scintillating results however (cf. Kurz et al.
2020).

Appreciators of art and beauty without interest in the formal framework are wel-
come to jump to Sect. 4. For all others, we will first provide a short introduction to
weighted committee games (Sect. 2).2 These games generalize traditional weighted

1 We recommend the contributions in Holler and Nurmi (2013) for a good overview of typical appli-
cations of power indices. Somewhat atypical applications are discussed by Kovacic and Zoli (2021)
and Napel and Welter (2021). Napel (2019) provides a short introduction to power measurement
with many further references.
2 See Kurz et al. (2020) for details and related literature: the article defines weighted committee
games, characterizes and counts equivalence classes for selected voting rules, and provides lists
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voting from binary majority decisions to social choice from any finite number of
options.We explain the pertinent generalization of the Penrose-Banzhaf power index
and how this can literally provide colorful insights into howvotingweights determine
voters’ influence on collective decisions (Sect. 3). Possible economic and political
implications are briefly pointed out in Sect. 5.

2 Weighted Committees and Scoring Rules

Binary weighted voting games involve a set of n players who, respectively, wield
voting weights denoted by w1, w2, . . . , wn ≥ 0. The majority threshold or decision
quota is set to q > 0: the players can jointly pass any proposal that is made to them
if the subset of players who support the motion wield a combined voting weight of
at least q. For instance, if players 1, 2, and 3 have weights of w1 = 40%, w2 = 35%,
and w3 = 25% and face a quota q = 51%, then at least two players must support a
proposal for it to pass. Subsets S ⊆ N of the set N of players with

∑
i∈S wi ≥ q are

also referred to as winning coalitions, while subsets T ⊆ N with
∑

i∈T wi < q are
known as losing coalitions.

Weighted voting games constitute a special kind of (binary) simple voting games.
The latter do not necessarily require a link between winning or losing to weights and
a quota. They merely assume that the full player set N is winning, the empty set ∅

is losing, and winning is monotonic with respect to set inclusion, i.e., any superset
of a winning coalition is also winning.

Simple voting games are commonly specified in set-theoretic terms. This is done
either by directly listing a subclass of winning coalitions (typically those that are
minimal with respect to set inclusion) or using an indicator function v that takes
a set S ⊆ N as its argument and outputs a 1 if and only if S is winning. A simple
voting game can, however, also be described as a mapping from the set of all possible
profiles of players’ preferences over a status quo option a1 and an alternative motion
a2 that is voted on to the set of possible outcomes, specifying for each preference
profile the collective decision a1 or a2 that is adopted. Weighted committee games
follow this route and allow to handle also non-binary decisions.

In particular, the latter consider a finite set N of n ≥ 2 players and assume that each
player i ∈ N has strict preferences Pi over a set A = {a1, . . . , am} of m ≥ 2 options
that the committee needs to choose from. The set of all m · (m − 1) · . . . · 1 = m!
conceivable strict preference orderings on A is denoted by P(A). Any collective
decision rule can then be conceived of as a mathematical mapping ρ : P(A)n →
A. This translates any preference profile P = (P1, . . . , Pn) into a single winning
alternative a∗ = ρ(P). The respective combination (N , A, ρ) of a set of voters, a

of structurally distinct committees. Mayer and Napel (2021) does similarly for the special case of
scoring rules. Kurz et al. (2021) generalizes the Penrose-Banzhaf and Shapely-Shubik indices to
committee games. For a practical application of the framework, see Mayer and Napel (2020).
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set of alternatives, and a decision rule is referred to as a committee game or as a
committee for short.

A committee (N , A, ρ) is called a weighted plurality committee if the decision
rule ρ amounts to each voter i casting wi ≥ 0 votes for its favorite option and then
selecting the alternative a∗ that received the most votes as winner. Similarly, for a
weighted antiplurality committee the decision rule ρ amounts to each voter i cast-
ing wi ≥ 0 negative or dissenting votes for its least preferred option and then the
alternative a∗ that received the fewest dissenting votes becomes the winner. In the
case of ties, we suppose that they are resolved lexicographically: if, for instance,
A = {a1, a2, a3, a4} and these alternatives, respectively, receive 3, 4, 0, and 4 plu-
rality votes from n = 11 voters with a weight of wi = 1 each, then a2 rather than
a4 is chosen. Declaring both a2 and a4 to be winners and tossing a coin to reach a
resolute decision would be a possibility too. But randomness would complicate the
mathematical exposition without changing the illustrations below.

(Weighted) plurality and antiplurality committees are special cases of (weighted)
scoring committees. These entail the application of a scoring rule: the winning candi-
date or option a∗ always is the one that received the highest total score from the voters.
Candidates’ scores are determined by their positions in each voter’s preference rank-
ing and a given vector s = (s1, s2, . . . , sm) with s1 ≥ s2 ≥ . . . ≥ sm and s1 �= sm :
when voters’ weights are w1 = . . . = wn = 1, any alternative a ∈ A receives s1
points for every voter that ranks a first, s2 points for every voter that ranks a second,
and so on. When the voters have non-uniform weights w1, . . . , wn ≥ 0, the respec-
tive points derived from how voter i ∈ N ranks the alternatives are multiplied by
wi .

For illustration, suppose that a committee—perhaps the board of a sports club—
involves four voter groups, i.e., players N = {1, 2, 3, 4}, with group 1 wielding 5
votes, group 2 having 4 votes, group 3 wielding 3 votes, and group 4 having only
one vote. The weights are summarized by w = (5, 4, 3, 1). The voters must select
one of three candidates, say, Ann, Bob, or Clara, to lead their club.

Let the players’ preferences P = (P1, P2, P3, P4) rank the candidates as in the
following table:

P1 P2 P3 P4

1st best Bob Ann Ann Bob
2nd best Clara Clara Bob Clara
3rd best Ann Bob Clara Ann

Using the scoring vector s = (1, 0, 0) amounts to a weighted plurality vote: Ann
receives a total score of 5 · 0 + 4 · 1 + 3 · 1 + 1 · 0 = 7; Bob’s score is 5 · 1 + 4 ·
0 + 3 · 0 + 1 · 1 = 6; and Clara, being ranked first by nobody, gets a score of 0. Ann
wins.

Had the above committee used the scoring vector s = (1, 1, 0) instead, Clara
would have won with a score of 10 vs. 7 for Ann and 9 for Bob. The latter vector
s is equivalent to conducting an antiplurality vote because minimizing the number
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of dissenting votes is the same as maximizing the number of non-dissenting votes
captured by s = (1, 1, 0).

An example of a voting rule in between plurality and antiplurality is Borda’s rule:
voters state their full preferences and each candidate a receives as many points from
a given voter i as there are candidates that i ranks below a. For instance, Bob would
receive 2 points for each vote wielded by group 1, 0 points from group 2, 1 point for
each of the votes held by group 3, and again 2 points from group 4. This gives Bob
a total Borda score of 5 · 2 + 4 · 0 + 3 · 1 + 1 · 2 = 15. That number is greater than
the analogous figures of 14 for Ann and 10 for Clara. So Bob would win if scoring
vector s = (2, 1, 0) or Borda’s rule were used.

Maximizing the total score given the scoring vector s = (2, 1, 0) is equivalent
to maximizing the total score for vectors s′ = (1, 1/2, 0) or s′′ = (4, 3, 2). Vector s′
merely halves above numbers,while preserving the order ofAnn’s, Bob’s, andClara’s
totals. Similarly, using s′′ raises all candidates’ scores by (5 + 4 + 3 + 1) · 2 = 26
without changing their order. In particular, scoring winners are invariant to positive
affine transformations of the adopted scoring vector s. Hence, whenever a commit-
tee picks a winner from three candidates by a scoring rule—plurality, antiplurality,
Borda, or any other rule that determines the winner by evaluating the candidates’
positions in the applicable preference profile P with decreasing scores—it is without
loss of generality to suppose a vector s = (1, s, 0) such that 0 ≤ s ≤ 1.

When a committee with player set N and voting weights w = (w1, . . . , wn)

decides on a set A of m = 3 alternatives and uses a decision rule ρ that amounts to
applying the scoring vector s = (1, s, 0), wewrite (N , A, r s |w) instead of (N , A, ρ).
We refer to such committee as a (weighted) s-scoring committee (see Mayer and
Napel 2021).

We have seen that the special s-scoring committees with s = 1, s = 1/2, and
s = 0 amount to weighted plurality, Borda, and antiplurality committees. As the
above example illustrates, the respective committees differ for the considered voting
weightsw = (5, 4, 3, 1). Namely, they select a differentwinner from three candidates
for at least some configuration of preferences. Similarly, two plurality committees
(s = 0) are different depending on whether weightsw = (5, 4, 3, 1) or weightsw′ =
(5, 1, 1, 1) apply to the players (club members, shareholders, parties, etc.): for the
profile P at hand, Bob rather than Ann would be selected if w were replaced by w′.

We call two committees (N , A, ρ) and (N , A, ρ ′) that never select differ-
ent winners from set A—no matter which preference profile P = (P1, . . . , Pn) is
considered—equivalent. This means that the respective mappings ρ : P(A)n → A
and ρ ′ : P(A)n → A are identical, denoted by ρ ≡ ρ ′. We can have ρ ≡ ρ ′ even
though the verbal descriptions of ρ and ρ ′ may differ. For instance, ρ may be
described as plurality voting with weightsw′ = (5, 1, 1, 1) and ρ ′ as the dictatorship
of voter 1: the committee in either case always chooses the alternative that is ranked
first according to P1.

When two s-scoring committees (N , A, r s |w) and (N , A, r s |w′) with w �= w′
are equivalent, i.e., r s |w ≡ r s |w′, we learn that it does not matter which of the two
voting weight distributions prevails: decisions will coincide. From the perspective
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of an outsider who does not care about the labeling of the players, this is also true if
weights w′′ are used that only label the players differently than w.

Consider, for instance, w′′ = (1, 3, 4, 5) instead of w = (5, 4, 3, 1) in our exam-
ple. This represents the same abstract decision structure except that player numbers
have changed. In particular, the situation for the preferences P = (P1, P2, P3, P4)

depicted in the table above for weights w (with Ann winning under plurality rule,
Clara under antiplurality rule, etc.) is the same as that with weights w′′ and prefer-
ences P′′ = (P4, P3, P2, P1). We then say that w and w′′ are structurally equivalent
under the considered s-scoring rule: the implied mappings r s |w and r s |w′′ become
equivalent after suitably relabeling the players.

Having fixed a scoring rule, such as r s for s = 1, the set of all weights w =
(w1, . . . , wn) that are structurally equivalent to a given reference distribution of
weights w̃ = (w̃1, . . . , w̃n) can be grouped together and form an equivalence class
of weights: if two weight distributions w �= w′ belong to the same class, the corre-
sponding s-scoring committees always produce identical decisions (once labels of the
players are harmonized). If the weight distributions belong to different classes, there
exists at least some preference configuration P that results in different committee
decisions.

For antiplurality rule (s = 1) and three players (n = 3), it turns out that there are
only five different equivalence classes—namely those that correspond to reference
weights of w̃ = (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), and (2, 2, 1). Any other distri-
bution of weights among three players is structurally equivalent to one of these, i.e.,
leads to the same decisions after suitable relabeling (cf. Kurz et al. 2020). Similarly,
there are only six structurally different plurality committees for three players. The
respective reference weights equal the five just listed for antiplurality rule in addition
to w̃ = (3, 2, 2).

The numbers of structurally distinct s-scoring committees for s = 1/2 (Borda)
and,more pronouncedly, for 0 < s < 1/2 or 1/2 < s < 1 aremuch higher than those
for s = 0 and s = 1. Exact values have not been published for all s yet, but Mayer
and Napel (2021) provide the numbers of equivalence classes for all s that are integer
multiples of 1/20. These numbers range up to 229 and exhibit an M-shaped pattern
reproduced in Fig. 1.

Knowing that a givenweight distribution among three players structurally amounts
to, say, (2, 1, 1) can simplify the analysis of the respective committee: the distribu-
tion of voting power is as if weights were (2, 1, 1). So are players’ manipulation
incentives, strategic voting equilibria, the scope for voting paradoxes, etc.

Alas, it is generally an arduous task to determine for a given weight distribution
w to which scoring equivalence class it belongs (for fixed vector s). The respective
equivalence classes form convex polyhedra that are defined by linear inequalities.
When we consider three players and restrict attention to their relative voting weights
w̄ = w/(w1 + w2 + w3) (so that w̄1 + w̄2 + w̄3 = 100%), the polyhedra are either
points, lines, or area pieces bounded by lines. They jointly cover the triangle high-
lighted in Fig. 2 below—the so-called two-dimensional unit simplex.

Suppose that we have a ‘map’ of all equivalence classes in this simplex. Then one
may start out with an arbitrary weight distribution w = (w1, w2, w3), compute the
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Fig. 1 Number of s-scoring committees for m = 3 and s ∈ {0, 0.05, 0.1, . . . , 1}

corresponding relative weight distribution w̄, locate it in the simplex map, and now
identify the applicable class.

Such simplex maps can indeed be constructed. Namely, the figures depicted in
Sect. 4 show the links from all possible weights to equivalence classes, except that we
leave out a legend that would identify the respective equivalence classes via reference
distributions of weights.3

3 Voting Power and Color

Before we present our figures, let us explain how the selected coloring relates to
the a priori voting power of the three players involved. An index of voting power
generally takes a description of a voting body—a simple voting game or, in our case,
an s-scoring committee of three players deciding on three options—as its input and
produces a real number for each player as its output. The respective numbers reflect
the players’ influence on collective decisions according to a specific conception of a

3 See Fig. 5 in Mayer and Napel (2021). It provides a map of the 51 Borda equivalence classes for
n = m = 3 and w1 ≥ w2 ≥ w3 with a reference distribution of weights for each class. Maps could
be constructed for more than three alternatives, too, but the higher number of preference profiles
and perturbations has considerable computational costs. Equivalence classes for scores 0 < s < 1
change fast: the number of Borda classes rises from 51 to 505 and≥2251 for m = 3, 4, and 5 (Kurz
et al. 2020). Corresponding analogues of Fig. 3 exhibit smoother transitions with even more shades
of color.
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player being influential. They are based on specific probabilistic assumptions about
the voting situations faced by the players.

The popular Penrose-Banzhaf power index (Penrose 1946, Banzhaf 1965) equates
‘being influential’ with the possibility of the considered player changing or swing-
ing a decision at hand if the preferences and behavior of all other players are held
fixed. This possibility arises, for instance, in unweighted binary majority decisions
when the other players are split equally into a yes-camp and a no-camp, so that the
player in question can determine which option receives the majority. In other words,
the considered player’s vote is pivotal for the outcome. The Penrose-Banzhaf index
assesses the probability of pivotality events for a given player under the assumption
that all other players vote yes or no with equal probabilities and independently of
another. This is equivalent to assuming that all yes-or-no configurations or all coali-
tions S ⊆ N of players who support a change of the status quo are equally likely.4

When the collective decision requires a choice from three or more options, such as
candidates Ann, Bob, and Clara above, one can similarly identify ‘being influential’
with the committee’s decision depending on or varying in the considered player’s
preferences. For instance, if in our sports club example, player 3 did not rank Ann
before Bob and Clara but had Bob as its first preference before Ann and Clara, then
the plurality winner would be Bob rather than Ann. Hence, player 3 is pivotal in
the considered voting situation. So is player 2, whereas players 1 and 4 have no
scope to individually change the winner for the given preferences of the respective
others. Players 1 and 4 are, however, pivotal formany other preference configurations
P = (P1, P2, P3, P4) ∈ P(A)4 that may arise. So also they are influential from an
a priori perspective that considers all preference combinations to be possible.

Just as the Penrose-Banzhaf index is based on independent and equiprobable yes-
or-no preferences in the binary case, players’ preferences Pi will be assumed to be
distributed independently from the others also for more than two options, assigning
equal probability to each of the conceivable strict orderings of the options. When
assessing the a priori influence implications of voting weights w = (5, 4, 3, 1), for
instance, we will therefore assume player 1 to be as likely to rank (i) Ann before
Bob before Clara, as to rank (ii) Ann before Clara before Bob, (iii) Bob before Ann
before Clara, (iv) Bob before Clara before Ann, (v) Clara before Ann before Bob,
or (vi) Clara before Bob before Ann. We allow the same six possibilities to arise
independently also for players 2, 3, and 4. So there are a total of 6 · 6 · 6 · 6 = 64 =
1296 different voting situations that are equally probable when four players decide
on three options.

We will focus here on only n = 3 players who decide on m = 3 options, so
that (m!)n = 63 = 216 different preference profiles P = (P1, P2, P3) are possible.
Holding a particular player of interest, say player i ∈ {1, 2, 3}, fixed, we check for
each profile whether a change of i’s ranking Pi to one of the alternative five rankings

4 The Shapley-Shubik index (1954) belongs to the same family of indices but supposes a posi-
tive correlation of yes-or-no preferences across voters. In technical terms, it assumes an impartial
anonymous culture (IAC), while the Penrose-Banzhaf index reflects an impartial culture (IC). The
Holler-Packel index (1983) does not consider all coalitions of yes-supporters but only minimal
winning coalitions S ⊆ N in which every yes-vote is pivotal for the outcome.
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P ′
i would make a difference to the collective decision. Whenever this is the case, i.e.,

the profile P′ that is created by replacing Pi in P by P ′
i yields a collective decision

r s |w(P′) �= r s |w(P), we count this as a swing position for player i . Player i’s power
index value is then taken to be the ratio of actual swing positions to the maximum
conceivable number of such positions.

The latter corresponds to the number of swing positions that a dictator player
would hold. For each of the 216 possible preference profiles of three voters on
three options, the collective choice under a dictatorship equals the dictator’s most
preferred alternative. So starting from given preferences of the dictator over three
candidate, say ranking (i) above, a switch to four of the five alternative rankings
produces a different winner—namely preference changes from (i) to (iii), (iv), (v),
or (vi). These perturbations involve a different top preference than (i) and let Bob or
Claire win instead of Ann. It follows that a dictator player has 216 · 4 = 864 swing
positions: they derive from considering 216 distinct voting situations and, for each
situation, checking all five ways to spontaneously change the dictator’s ranking of
the options. Such a change might reflect an idiosyncratic change of mind, perhaps
due to new private information on the candidates; it might arise because the player is
corrupt and sells its vote to an outside agent; it could simply be a demonstration of
the player’s power; etc. If a player i in the actual scoring committee should have 432
swing positions, then the corresponding ratio 432/864 = 1/2 reveals i to be half as
powerful as a dictator would be.

Expressing this reasoning in generalmathematical terms leads to the (generalized)
Penrose-Banzhaf index

PBIi (N , A, ρ) =
∑

P∈P(A)n

∑
P ′

i �=Pi ∈P(A) �ρ(P; P ′
i )

m!n · (m! − (m − 1)!) (1)

of player i’s a priori influence or voting power in committee (N , A, ρ), as introduced
and axiomatically characterized by Kurz et al. (2021).5 Here �ρ(P; P ′

i ) denotes an
indicator function that is 1 ifρ(P′) �= ρ(P), and 0 otherwise. Equation (1) is summing
over all voting situations (i.e., all conceivable preference configurations P), counts
the number of changes of mind by player i (i.e., perturbations of i’s preferences Pi

to some P ′
i �= Pi ) that change the collective decision, and then divides this by the

total number of swing positions for a hypothetical dictator player (63 · 4 = 864 for
m = 3 options and n = 3 players). So for an s-scoring committee (N , A, r s |w) of
three players, the triplet

(PBI1(N , A, r s |w),PBI2(N , A, r s |w),PBI3(N , A, r s |w)
)
,

5 Replacing the IC assumption that underlies Eq. (1) by the IAC assumption (cf. fn. 4) naturally
generalizes the Shapley-Shubik index (see Kurz et al. 2021). By contrast, generalization of the
Holler-Packel index would first require the definition of a suitable analogue of minimal winning
coalitions in weighted committee games. One possibility would be to study eachwinning alternative
a ∈ A separately and to consider a-minimal preference profilesPwhereρ(P) = a such thatρ(P′) �=
a for any profile P′ in which a is ranked lower by some voter with constant preferences on subset
A � a.
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or PBI for short, quantifies the distribution of voting power in the commit-
tee in terms of how close the individual players are to having dictatorial influ-
ence. In our sports club example, the power distribution amounts to PBI ≈
(0.6296, 0.4815, 0.4444, 0.0741). That is, player 1 has about 63% of the influence
of a dictator while player 4 only has about 7% of the influence of a dictator. The
influence of players two and three is just under 50% of that of a dictator.

For graphical purposes, one might now associate player 1’s power value PBI1

with the color red, player 2’s power PBI2 with green, and player 3’s power PBI3

with blue. Thus, we would have linked the scoring rule r s for a given value of
s and a particular distribution w of voting weights to a particular color using the
common RGB color code. For instance,PBI(N , A, r s |(1, 0, 0)) = (1, 0, 0) for any
0 ≤ s ≤ 1 and this would correspond to bright red color. Or the power distribution
PBI = (588/864, 516/864, 312/864) ≈ (0.6806, 0.5972, 0.3611) that is derived
by Kurz et al. (2021) for s = 1/2 and weights w = (6, 5, 3) would correspond to a
dark khaki color.

Although this would be feasible, the figures in Sect. 4 will not use exactly this col-
oring option. We will rather make two modifications: first, we will adopt a structural
view on committee equivalences, i.e., we do not consider player labels important.
Hence, we will give the same color to all six points in the unit simplex that represent
relative voting weights of, e.g., w̄ = (6/14, 5/14, 3/14) after sorting the weights in
decreasing order. This implies that the coloring of the weight simplex will be three-
fold radially symmetric around w̄ = (1/3, 1/3, 1/3), as well as mirror symmetric
with the three symmetry axes w̄1 = w̄2, w̄2 = w̄3, and w̄1 = w̄3.

Second, we will apply a transformation when turning power triplets PBI into
RGB levels. The motivation is to make better use of the available color palette, to
obtain a somewhat lighter image than by, e.g., associating w̄ with dark khaki, and to
represent dictatorial power by the dark blue color that has already been used, e.g.,
by Kurz et al. (2020).

4 Simplex Maps of Equivalence Classes

All images displayed in this section are derived via the following five steps:

1. We fix a scoring vector s = (1, s, 0) and consider the corresponding scoring rule
r s for collective decisions on m = 3 options by n = 3 players.

2. We use a finite grid of rational numbers and let the computer loop through all
relative voting weight distributions w̄ with 1 ≥ w̄1 ≥ w̄2 ≥ w̄3 ≥ 0 on this grid.

3. For each of the 282376 weight distributions w̄k , k = 1, 2, . . . , 282 376, on the
adopted grid, we compute the Penrose-Banzhaf voting powerPBIk in the respec-
tive weighted s-scoring committee (N , A, r s |w̄k).

4. The obtained triplet (PBIk
1,PBIk

2,PBIk
3) is then transformed into red, green,

and blue intensities (R, G, B) = ( 2·PBIk
3

maxk PBIk
3
,

PBIk
2

maxk PBIk
2
,
PBIk

1−mink PBIk
1

1−mink PBIk
1

).
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Fig. 2 Relative weight distributions among three voters in the unit simplex

5. For each weight distribution w̄, the six points in the simplex (cf. Fig. 2) that
structurally correspond to w̄—that is, (w̄1, w̄2, w̄3), (w̄2, w̄1, w̄3), (w̄1, w̄3, w̄2),
etc.—are coloredwith the RGB intensities given by (R, G, B). For instance,PBI
figures of (1, 0, 0) translate into (R, G, B) = (0, 0, 1) and dark blue color.

It is noteworthy that the distribution of voting power in two s-scoring committees
(N , A, r s |w) and (N , A, r s |w′) can coincide even though the committees are non-
equivalent: players are exactly as influential in either but some preference profiles
yield different decisions so that r s |w �≡ r s |w′. Someof the illustrations in Fig. 3 there-
fore involve fewer different colors than there are distinct equivalence classes for the
considered value of s. Moreover, equivalence classes that are represented by a sin-
gle point in the simplex like the symmetric distribution of relative voting weights
w̄ = (1/3, 1/3, 1/3), or a line—e.g., w̄ = (x, 1 − x, 0) for 0 < x < 1/2—may not
be visiblewithoutmagnification.Wehavemanually enlarged themonly for s = 0 and
s = 1. Bearing these caveats in mind, the colored simplices below provide accurate
maps of all equivalence classes of scoring committees that exist for a given value of s.

For instance, the large blue triangles inside the panel for s = 0, i.e., weighted plu-
rality committees, correspond to w̃ = (1, 0, 0), i.e., the dictatorship of oneplayer. The
green midpoints of the simplex’s boundary lines represent the equivalence class with
w̃ = (1, 1, 0): two players decide symmetrically, and the third never makes a differ-
ence. The simplex’s light yellowmidpoint reflects w̃ = (1, 1, 1), i.e., three absolutely
symmetric players. The remaining three plurality equivalence classes with reference
weights of w̃ = (2, 1, 1), w̃ = (2, 2, 1), and w̃ = (3, 2, 2) correspond, respectively,
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Fig. 3 Weighted s-scoring committees in Penrose-Banzhaf coloring

to the purple lines between the boundary midpoints, the dark yellow lines from the
simplex’s center to the three boundary midpoints, and the residual orange triangles.
Lists of reference weight distributions for other values of s are provided by Mayer
and Napel (2021).
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Fig. 3 (continued)

5 Concluding Remarks

The illustrations in Sect. 4 exhibit the hidden beauty of weighted voting in com-
mittees. However, the artistically appealing (at least to us) geometry and changing
colors have substantive implications. They reveal structural properties of collective
decision making in politics and economics.
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Fig. 3 (continued)
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Fig. 3 (continued)

Take, for instance, the large blue triangles in the panel for s = 0. As pointed out
already, they correspond to the dictatorship of one player. Namely, if some player’s
voting weight slightly exceeds 50%—because a shareholder has acquired a small
majority stake in a corporation, committee seats are awarded in proportion to popu-
lation shares in an ethnically polarized society with one majority and several large
minorities, etc.—then all plurality decisions correspond to the top preference of that
player. This is not the case for many other scoring rules: consider different levels
of s and watch how the blue triangle shrinks from panel to panel. The shrinkage
documents how basing decisions on more than just the top preference over all can-
didates makes the collective choice more ‘inclusive’. For instance, adopting Borda’s
rule instead of taking plurality decisions turns a previous dictator with w̄i slightly
above 50% into just a very dominant player. Player i can swing the joint decision
for many but no longer for all preference configurations under Borda’s rule. Antiplu-
rality awards dictatorial influence not even to a player who has a perfect monopoly
of votes. The player’s relative weight of 100% makes it impossible for the respec-
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tive worst-ranked candidate to win but with lexicographic tie-breaking relatively few
perturbations of the dominant player’s preferences alter the winner.

The changing variety of colors in the panels visualizes the findings reported in
Fig. 1: equivalence maps for scoring rules with 0 < s < 1/2 or 1/2 < s < 1 involve
many more color shades than those for s = 0, s = 1, and also s = 1/2. We can
moreover locate the ranges of weights where most of the color changes are concen-
trated, i.e., where sensitivity to small weight changes is the greatest. In these weight
regions, the incentives to, say, increase one’s corporate shareholdings or to try to
attract a party switcher are much greater than in monochrome areas.

The multiplicity of colors in a panel also indicates the scope for achieving a
particular distribution of influence as an institutional designer who can determine
the distribution of weights (the so-called ‘inverse problem’ of voting power; cf. Kurz
2012). Think of a federation of three differently sized states: it may be desirable to
make states’ voting power a specific function of population sizes—e.g., to achieve
direct proportionality or proportionality to the square root of population sizes.Though
perfect symmetry (light yellow) or dictatorship by one state (dark blue) are always
feasible, the chances of finding voting weights that achieve the targeted distribution
of influence are arguably smaller for, say, s = 1 with only five equivalence classes
than for s = 1/2 with 51. There is also a tendency for the distribution of relative
voting power to match the underlying distribution of relative voting weights better,
themore equivalence classes or colors in our illustrations. This relates to the so-called
‘transparency’ of a voting rule (cf. Kurz et al. 2021, Sect. 7.4).

We readily admit that illustrations of voting power in three-player committees that
decide between three options have neither the complexity nor the aesthetic qualities
of Julia sets or Mandelbrot sets, which have crossed the boundaries between art and
science much earlier (see, e.g., Peitgen and Richter 1986). But there is definitely
more art and beauty in weighted voting and the resulting voting power than typically
meets the eye.
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