
Computing the Public Good Index
for Weighted Voting Games
with Precoalitions Using Dynamic
Programming

Jochen Staudacher

1 Introduction

The theory of cooperative games with transferable utility Chakravarty et al. (2015)
deals with the outcomes and benefits which players can gain by forming coalitions.
A large number of different approaches to distribute the payoff of the grand coalition
have been studied in the literature, with the Shapley value Shapley (1953) being the
most widely known solution concept. This article focusses on the Public Good index
(abbreviated PGI, also known as Holler index or as Holler–Packel index) which was
formally proposed by Manfred Holler (1982) and axiomatized by Holler and Packel
(1983) as a solution concept for the special class of simple games, i.e. for games in
which coalitions are either winning with value 1 or losing with value 0. The PGI
assumes that only minimal winning coalitions are relevant for measuring the relative
power of players. Holler and Li (1995) propose a non-normalized version of the PGI
measuring absolute power which they call Public Value and present as a solution
concept for general cooperative games with transferable utility.

Ideological proximity or common economic interests are just two ofmany reasons
why certain coalitions are more likely than others. Hence, transferable utility games
with a partition of the player set into disjoint precoalitions (also known as a priori
unions) have become an important branch of cooperative game theory, with the
generalization of the Shapley value by Owen (1977) being the most widely known
solution concept. As pointed out in the book by Owen (1995), pp. 303, the players
in such a precoalition have agreed to keep together, but, even though they will do
so in most cases, they are not forced to comply. Therefore, the influence of a player
needs to be evaluated in a two-stage process. In the external stage, the power of
the precoalition is determined, and in the internal stage, the results for the members
of the precoalition are computed. In the terminology of cooperative game theory,
this two-stage process translates into an external game (also known as the quotient
game) between the precoalitions and an internal game within each precoalition.
Together with various coauthors Manfred Holler proposed and investigated a total of

J. Staudacher (B)
Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
e-mail: jochen.staudacher@hs-kempten.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. A. Leroch and F. Rupp (eds.), Power and Responsibility,
https://doi.org/10.1007/978-3-031-23015-8_6

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23015-8_6&domain=pdf
mailto:jochen.staudacher@hs-kempten.de
https://doi.org/10.1007/978-3-031-23015-8_6

108 J. Staudacher

six different variations of the PGI with precoalitions in the articles Alonso-Meijide
et al. (2010a, b), Holler and Nohn (2009).

This article discusses the efficient computation of the PGI aswell as its six variants
with precoalitions for weighted voting games, a very important subclass of simple
games.Weighted voting games (also known as weighted majority games or weighted
games) are an established model for decision-making and voting in committees,
panels or boards. There are n players and each player i is allocated a positive weight
wi , which, in some situations, can be interpreted as the number of votes of a voting
bloc. Ameasure or motion gets passed if and only if a certain quota q, normally more
than 50 percent of the sum of all weights, is reached or exceeded. Weighted voting
games are relevant well beyond classical voting situations in politics, described in
Algaba et al. (2007); Kóczy (2021); Kurz (2016). For example, Holler and Rupp
employ the PGI and weighted voting games for analysing social networks in a series
of recent papers Holler and Rupp (2019, 2020, 2021) whereas the contemporary
paper Staudacher et al. (2021) discusses these tools in the context of indirect control
power in corporate shareholding structures. These social and economic network
applications may involve large numbers of players as well as precoalitions making
the need for fast methods for computing the PGI and its variants with precoalitions
(expressed in the final paragraph of the paper by Alonso-Meijide et al. (2010b)) a
very relevant subject of research.

Power indices for simple games are frequently computed using generating func-
tions, see, e.g. Algaba et al. (2007); Alonso-Meijide et al. (2008); Bilbao et al. (2000),
and the paper by Alonso-Meijide and Bowles Alonso-Meijide and Bowles (2005)
for the case of precoalitions. If the subsets of players attain only a small number of
different weight sums, thismethod profits Kurz (2016) and fast-access data structures
for polynomials with few coefficients in computer algebra systems like Mathemat-
ica Tanenbaum (1997) can be employed. In this paper, we use the strongly related,
though mathematically less sophisticated, paradigm of dynamic programming for
power index computation Staudacher et al. (2021, 2022), Uno (2012). The recent
article Staudacher et al. (2021) proposes a new method for computing the PGI for
weighted voting games efficiently. Our goal is to extend the algorithm for the PGI to
its six variants with precoalitions.

In Sect. 2, we introduce the basic concepts from cooperative game theory, includ-
ing simple games, the Public Good index (PGI) and its six variants with precoalitions
along the lines of Alonso-Meijide et al. (2009, 2010a, b); Holler and Nohn (2009).
Section3 explains how dynamic programming is used to count coalitions efficiently
for weighted voting games and discusses the state-of-the-art algorithms for com-
puting the Public Good index from Staudacher et al. (2021) in detail. Section4
forms the centrepiece of this paper and presents the new algorithms for the six Pub-
lic Good indices with precoalitions. We point out how our algorithms reflect both
the definitions of the indices as well as the different internal division procedures and
present a sophisticated new approach for computing theOwenExtended PublicGood
Index. Section5 discusses implementations of our new algorithms in C++ including
numerical experiments and reports supportive computing times. We end with some
concluding remarks and an outlook to open problems in Sect. 6.

Computing the Public Good Index for Weighted Voting Games … 109

2 Preliminaries

In this section, we briefly review some terminology for cooperative games and pre-
coalitions along the lines of the paper by Alonso-Meijide et al. (2009) and define the
Public Good index (PGI) and its variants with precoalitions following the articles
Alonso-Meijide et al. (2010a, b), Holler and Nohn (2009).

2.1 Cooperative Games, Simple Games and Precoalitions

Let N = {1, ..., n} denote a finite set of n players. A group of players S ⊆ N is
called a coalition, whereas 2N symbolizes the set of all subsets of N . ∅ stands for
the empty coalition and N is referred to as the grand coalition. By |S| we denote
the cardinality of a coalition S, i.e. the number of its members, hence |N | = n. An
n-person cooperative game with transferable utility can be characterized as a pair
(N , v)where v : 2N → R is referred to as the characteristic function assigning a real
value to all coalitions S ∈ 2N , with v(∅) = 0, i.e. in a cooperative game the value
of the empty coalition is always zero, see, e.g. one of the books Chakravarty et al.
(2015), p. 20, or Owen (1995), p. 213. A cooperative game is monotone if for all
coalitions S, T ∈ 2N the relation S ⊆ T implies v(S) ≤ v(T).

We call a cooperative game simple if it is monotone and there holds v(N) = 1 and
v(S) = 0 or v(S) = 1 for each coalition S ⊂ N . Coalitions for which v(S) = 1 are
called winning coalitions in simple games, whereas coalitions for which v(S) = 0
are termed losing coalitions. A player i is a critical player (also known as a decisive
player or swing player) in a winning coalition S if v(S\{i}) = 0, i.e. the winning
coalition S becomes a losing one if player i leaves S. We call a winning coalition S
minimal winning if it contains only critical players, i.e. if every proper subset of S is
a losing coalition.

Weighted voting games (also known as weighted majority games or weighted
games) are probably themost important subclass of simple games. They are employed
as models in a large number of practical applications Algaba et al. (2007); Holler and
Rupp (2019, 2020, 2021); Kóczy (2021); Kurz (2016); Staudacher et al. (2021). An
n-player weighted voting game is specified by n non-negative real weights wi , i =
1, . . . , n, and a non-negative real quota q, normally q > 1

2

∑n
i=1 wi . Its characteristic

function v : 2N → {0, 1} takes the value v(S) = 1 for every winning coalition S,
i.e.w(S) = ∑

i∈S wi ≥ q, and v(S) = 0otherwise, implying that coalition S is losing.
Let us create an external division of our set of players N = {1, ..., n} into precoali-

tions (also known as a priori unions). Let P(N) denote for the set of all partitions
of N , with a partition being a set of non-empty subsets of N satisfying the con-
straint that N is a disjoint union of these subsets. We call an element P ∈ P(N) a
coalition structure (also known as a system of unions) of the set N . A simple game
with a coalition structure can be written as a triplet (N , v, P). Following Alonso-
Meijide et al. (2009), we write our coalition structure in the form P = {P1, . . . , Pl},

110 J. Staudacher

i.e. we have l precoalitions P1, . . . , Pl and the set L = {1, . . . , l} serves as the index
set of the partition P . For a weighted voting game with a coalition structure P ,
the external game (also known as the quotient game) is defined as the weighted
voting game vP played between the l precoalitions Alonso-Meijide et al. (2009);
Malawski (2004). The external game is formally defined as the weighted voting
game [q;w(P1), . . . ,w(Pl)], i.e. it is characterized by the (unmodified) quota q and
the weights w(P1), . . . ,w(Pl) of the l precoalitions, where w(Pk) = ∑

i∈Pk
wi with

k ∈ L , L = {1, . . . , l}.

2.2 The Public Good Index and Its Variants
with Precoalitions

A function f that receives an n-person simple game (N , v) specified by its player set
N and its characteristic function v as its input, and passes a unique vector f (N , v) =
(f1(N , v), . . . , fn(N , v)) as its output is called a power index. The literature offers
an array of power indices, including the Shapley–Shubik index Shapley and Shubik
(1954), the Banzhaf index Banzhaf III (1964), the Johnston index Johnston (1978)
and the Deegan–Packel index Deegan and Packel (1978). In this paper, we focus
entirely on the Public Good Index (PGI) formally defined by Manfred Holler (1982)
and refer the reader to the overview article by Bertini et al. (2013) for a deeper
discussion of power indices.

Given a simple game (N , v) with n players, let M denote the set of its minimal
winning coalitions and Mi the set of minimal winning coalitions containing player
i ∈ {1, . . . , n}. The Public Good index (PGI) δi of player i is given as

δi (N , v) = |Mi |
∑n

j=1 |Mj | . (1)

A coalitional power index g is a function which gets an n-person simple game
with a coalition structure (N , v, P) specified by its player set N , its characteristic
function v and a partition P as its input and delivers a unique vector g(N , v, P) =
(g1(N , v, P), . . . , gn(N , v, P)) as its output.

Taking up the idea of the external game vP played between the precoalitions
introduced at the end of Sect. 2.1, we can measure the power of a union Q ∈ P =
{P1, . . . , Pl} in terms of the PGI. We denote the set of minimal winning coalitions in
the external game by MP and by MP

Q the set of those minimal winning coalitions in
the external game containing precoalition Q ∈ P . Following Alonso-Meijide et al.
(2010a), we can write

δQ(P, vP) = |MP
Q |

∑
k |MP

Pk
| . (2)

Computing the Public Good Index for Weighted Voting Games … 111

With the definitions of the PGI on the levels of individual players (1) and pre-
coalitions (2) in place, we can define the six variants of the PGI with precoalitions.

The Solidarity PGIAlonso-Meijide et al. (2010b) assigns power to each precoali-
tion according to its PGI in the external game (2) in the first step. In the second step,
the Solidarity PGI stresses the public good property and attributes equal power to
each member of the same precoalition. We can formally define the Solidarity PGI
ϒi of player i ∈ P(i), i.e. player i contained in union P(i), as follows:

ϒi (N , v, P) = δP(i)(P, vP)
1

|P(i)| . (3)

The Union PGI Holler and Nohn (2009) reflects the spirit of the original PGI
by assuming that the coalitional value is a public good and only minimal winning
coalitions (with respect to the coalition structure P) are relevant. The power of an
individual player i ∈ P(i), i.e. player i contained in union P(i), is thus proportional to
the number of minimal winning coalitions her precoalition belongs to in the external
game. We can formally define the Union PGI �i of player i ∈ P(i), as follows:

�i (N , v, P) = |MP
P(i)|

∑
k |Pk ||MP

Pk
| . (4)

As for the Solidarity PGI, players within the same precoalition obtain the identical
Union PGI. We note that among the six extensions of the PGI for precoalitions, the
Union PGI is the only solution concept that does not attribute power to precoalitions
based on the PGI in the external game (2).

Holler and Nohn (2009) propose three different approaches for reflecting an indi-
vidual player’s threat power to leave the union. In all three cases, the total power
attributed to a precoalition Q is given by its external PGI (2). That power is then
distributed internally among individual members of unions in threat games.

For the Threat PGI 1 (TPGI 1) Holler and Nohn (2009), only a minimal degree
of stability of the precoalition structure P is assumed. As soon as a single player i
leaves her coalition P(i), then not only that union P(i), but the complete precoalition
structure P breaks apart. In terms of intra-union allocation of power, this model
implies that subsets of a union are not only able to cooperate with other precoalitions,
but also with subsets of these precoalitions. Hence, we define the Threat PGI 1 T 1

i
of player i ∈ P(i) as follows:

T 1
i (N , v, P) = δP(i)(P, vP)

δi (N , v)
∑

j∈P(i) δ j (N , v)
, (5)

whenever
∑

j∈P(i) δ j (N , v) > 0 and T 1
i (N , v, P) = 0 otherwise.

The Threat PGI 2 (TPGI 2) Holler and Nohn (2009) assumes a greater degree
of stability of the precoalition structure P . As soon as a single player i leaves her
coalition P(i), then only that union P(i) breaks apart into singletons, but the rest

112 J. Staudacher

of the precoalition structure remains intact. In terms of intra-union allocation of
power, this model implies that subsets of a union are only allowed to cooperate with
other precoalitions, but not with subsets of these precoalitions. Following Holler
and Nohn (2009), for union Q ∈ P , let P/Q = P\{Q} ∪ {{i}}|i ∈ Q} stand for the
precoalition structure after Q breaks up into singletons {i}, i ∈ Q. We define the
Threat PGI 2 T 2

i of player i ∈ P(i) as follows:

T 2
i (N , v, P) = δP(i)(P, vP)

δi (P/P(i), vP/P(i))
∑

j∈P(i) δ j (P/P(i), vP/P(i))
, (6)

whenever
∑

j∈P(i) δ j (P/P(i), vP/P(i)) > 0 and T 2
i (N , v, P) = 0 otherwise.

The Threat PGI 3 (TPGI 3) Holler and Nohn (2009) assumes a maximal degree of
stability of the precoalition structure P . In case a single player i leaves her coalition
P(i), then the rest of that union P(i) remains intact as do all the other precoalitions.
Following Holler and Nohn (2009), let P/ i = P\{P(i)} ∪ {{i}, P(i)\{{i}} stand for
the precoalition structure after player i breaks away from her union P(i) and plays
on her own. We define the Threat PGI 3 T 3

i of player i ∈ P(i) as follows:

T 3
i (N , v, P) = δP(i)(P, vP)

δi (P/ i, vP/ i)
∑

j∈P(i) δ j (P/j, vP/j)
, (7)

whenever
∑

j∈P(i) δ j (P/j, vP/j) > 0 and T 3
i (N , v, P) = δP(i)(P,vP)

|P(i)| otherwise.
The Owen Extended PGI Alonso-Meijide et al. (2010a, b), Holler and Nohn

(2009), distributes power within precoalitions according to the possibilities which
the subsets of this precoalitions possess to form winning coalitions with other pre-
coalitions. We call a subset S ⊆ Q of a precoalition Q an essential part with respect
to a minimal winning coalition R ∈ MP

Q (on the external level) if S ∪ ⋃
Q′∈R\{Q} Q′

is a winning coalition in (N , v) and T ∪ ⋃
Q′∈R\{Q} Q′ is a losing coalition for all true

subsets T ⊂ S.We denote the set of essential partswith respect to aminimal winning
coalition R ∈ MP (on the external level) containing player i by ER

i (N , v, P). The
Owen Extended PGI �i of player i ∈ P(i) is defined as follows:

�i (N , v, P) = δP(i)(P, vP)
∑

R∈MP
P(i)

1

|MP
P(i)|

|ER
i (N , v, P)|

∑
j∈P(i) |ER

j (N , v, P)| . (8)

We note that the definition (8) coincides with the “counting PGI” from the work by
Malawski (2004) and stress that the Owen Extended PGI manages to be as close as
possible in spirit to the extension of the Shapley value to gameswith a coalition struc-
ture proposed by Owen (1977). For the coalition structures Pn = {{1}, {2}, . . . , {n}}
and PN = {N }, the Owen Extended PGI reduces to the PGI in both cases (just as
the Owen value Owen (1977) reduces to the Shapley value in both cases).

Computing the Public Good Index for Weighted Voting Games … 113

3 Dynamic Programming for Computing the Public Good
Index

In this section, we introduce the technique of dynamic programming for counting
coalitions in weighted voting games efficiently and present the state-of-the-art algo-
rithms for computing the PGI for weighted voting games from the paper Staudacher
et al. (2021). Given that Staudacher et al. (2021) is partly a survey paper, the discus-
sion of the PGI in Staudacher et al. (2021) is rather brief and thus the new algorithm
merits a more detailed presentation in this section of our article. In other words,
we are not computing any PGIs with precoalitions in this section, but prepare the
groundwork for doing so in Sect. 4.

3.1 Counting Winning and Losing Coalitions via Dynamic
Programming

Every weighted voting game allows for an integer representation Kurz (2016).
Therefore, we assume that the weights wi of the n players in our weighted vot-
ing game as well as the quota q are positive integers for the rest of the article. We set
w̃ = w(N) = ∑n

i=1 wi and assume q ≤ w̃. We stress that the algorithms presented
in this and the next section are valid for any integer quota with 1 ≤ q ≤ w̃.

Dynamic programming is an algorithmic paradigm based on two pillars. We
aim to solve a problem algorithmically by dividing it into subproblems and stor-
ing intermediate results efficiently. We employ this paradigm to find out how many
subsets S ⊆ {1, 2, . . . , n} there are with weight x , i.e. w(S) = ∑

i∈S wi = x , for
x ∈ {0, 1, . . . , w̃}.
Theorem 1 (see Chakravarty et al. (2015), p. 229). Let T (i, x) be the number of
possibilities to write the integer x as a sum of the first i weights w1, . . . ,wi . For all
i ∈ {0, . . . , n} and all x ∈ {0, 1, . . . , w̃}, the following recursion delivers T (i, x):

T (i, 0) = 1 for 0 ≤ i ≤ n

T (0, x) = 0 for x > 0

T (i, x) = T (i − 1, x) + T (i − 1, x − wi) otherwise.

Note that the above equations can be interpreted as a boundary condition stating
that we can obtain the sum 0 in exactly one way, i.e. via the empty set, as another
boundary condition stating that we cannot obtain any sum x > 0 without any term
and an actual recursionmirroring that the first i weights can deliver a sum x > 0 either
with or without player i . In practice, T is normally not stored as a two-dimensional
table, but efficiently as a vector updated from T (i − 1, x) to T (i, x). In our discussion
of memory space requirements, we follow the convention by Uno (2012) throughout
our paper and omit the need to store the n weights and the corresponding n values of

114 J. Staudacher

the power indices. This facilitates a clearer andmore concise presentation. According
to this convention, Theorem 1 enables us to compute the vector T (n, x) for x ∈
{0, 1, . . . , w̃} in O(nw̃) time and O(w̃) memory space. We finally note that it is as
simple to update from T (i − 1, x) to T (i, x) in Theorem 1 as it is to “downdate” the
vector T (i + 1, x) to T (i, x) via

T (i, x) = T (i + 1, x) − T (i, x − wi). (9)

3.2 Computing the Public Good Index via Dynamic
Programming

The recent article Staudacher et al. (2021) proposes a newalgorithmwith a favourable
pseudopolynomial complexity for computing the PGI of weighted voting games. We
present this algorithm in more detail. In this subsection, we assume the positive
integer weights of our n players to be in a descending order, i.e. w1 ≥ · · · ≥ wn .

As pointed out in the textbook Chakravarty et al. (2015), p. 235, it is relatively
simple to find the total number |M | of minimal winning coalitions in a weighted
voting game via dynamic programming in O(qn) time. We observe

|M | =
n∑

i=1

q−1∑

x=q−wi

T (i − 1, x)

and note that
∑q−1

x=q−wi
T (i − 1, x) counts the number of minimal winning coalitions

with player i being the player with largest index in the minimal winning coalition.
The recent paper Staudacher et al. (2021) shows that not only |M |, but also the

cardinalities |Mi | of the sets of minimal winning coalitions containing player i can be
found in O(qn) time and O(q) memory space for all players. Following Staudacher
et al. (2021), we define the operator d(S) removing the player with largest index
from a coalition S. Further, let w(S) = ∑

i∈S wi stand for the weight of coalition S
and

B(i, x) = |{S ∈ 2N |S ⊆ {i, . . . , n}, i ∈ S,w(d(S)) < x ≤ w(S)}| (10)

for all players i ∈ {1, . . . , n} and all weights 1 ≤ x ≤ q. B(i, x) is the number of
coalitions S with i as the player with smallest index such that any coalition S has
weight greater or equal x whereas S without its player with largest index has weight
less than x . We observe |M1| = B(1, q). Apart from that observation, Eq. (10) may
seem awkward at first, but it helps count |Mi | efficiently without any need to know
the player with largest index in any minimal winning coalition contained in Mi . We
can obtain B by looping for i from n to 1, as follows.

Computing the Public Good Index for Weighted Voting Games … 115

Theorem 2 (see Staudacher et al. (2021)) For all 1 ≤ i ≤ n and all weights 1 ≤
x ≤ q there holds

B(i, x) =
⎧
⎨

⎩

1 for 1 ≤ x ≤ wi

B(i + 1, x − wi) + B(i + 1, x − wi + wi+1) for x > wi , i < n
0 otherwise.

Proof By definition of B(i, x) from (10), there holds B(i, x) = 1 for 1 ≤ x ≤ wi as
we count the singleton coalition consisting of player i . Furthermore, the statement
holds true for i = n. In all other cases, i.e. for x > wi and i < n, the recursion means
that either player i + 1 is part of a coalition counted in B(i, x) (first term) or player
i + 1 is not part of a coalition counted in B(i, x) (second term).

B(i, x) = |{S ∈ 2N |S ⊆ {i + 1, . . . , n}, (i + 1) ∈ S,w(d(S)) < x − wi ≤ w(S)}|
+|{S ∈ 2N |S ⊆ {i + 1, . . . , n}, (i + 1) /∈ S,w(d(S)) < x − wi ≤ w(S)}|
=|{S ∈ 2N |S ⊆ {i + 1, . . . , n}, (i + 1) ∈ S,w(d(S)) < x − wi ≤ w(S)}|
+|{S ∈ 2N |S ⊆ {i + 1, . . . , n}, (i + 1) ∈ S,w(d(S)) < x − wi + wi+1 ≤ w(S)}|

= B(i + 1, x − wi) + B(i + 1, x − wi + wi+1).

Theorem 3 (see Staudacher et al. (2021)) Let v be an n-player weighted voting
game with positive integer weights sorted in a descending order. With the help of
the quantities T (i, x) from Theorem 1 and B(i, x) from Theorem 2, the Public Good
index can be computed in O(qn) time and O(q) memory space for all players as
there holds

|Mi | =
q−1∑

x=0

T (i − 1, x) · B(i, q − x).

Proof The statement is true for i = 1 as |M1| = T (0, 0) · B(1, q) = 1 · B(1, q) =
B(1, q). For i ≥ 2 we find

|Mi | = |{S ∈ 2N |i ∈ S,w(d(S)) < q ≤ w(S)}|
=|{S ∈ 2N |S = S1 ∪ S2, S1 ⊆ {1, . . . , i − 1}, S2 ⊆ {i, . . . , n}, i ∈ S2,

w(d(S2)) < q − w(S1) ≤ w(S2)}|

=
q−1∑

x=0

|{S1 ⊆ {1, . . . , i − 1}|w(S1) = x}|·

|{S2 ⊆ {i, . . . , n}|w(d(S2)) < q − x ≤ w(S2)}|

=
q−1∑

x=0

T (i − 1, x) · B(i, q − x).

116 J. Staudacher

Since Staudacher et al. (2021) does not list any algorithms, we conclude this section
with Algorithm 1 for computing the PGI for a weighted voting game specified by
its number of players n, its quota q and its vector w of n weights in O(qn) time and
O(q) space.

Algorithm 1 Computing the PGI for weighted voting games
1: procedure PGI(n, q, w)
2: Compute vector T (x) = T (n − 1, x) for x ∈ [0, q − 1] according to Theorem 1
3: Prepare vector B(x) = B(n, x) for x ∈ [1, q] according to Theorem 2
4: for i from n to 1 do
5: |Mi | = ∑q−1

x=0 T (x) · B(q − x).
6: if i > 1 then
7: Update vector B(x) = B(i − 1, x) according to Theorem 2
8: Downdate vector T (x) = T (i − 2, x) according to Equation (9)
9: end if
10: end for
11: for i from 1 to n do
12: Compute δi = |Mi |∑n

j=1 |Mj |
13: end for
14: Return vector δ

15: end procedure

4 Computing Public Good Indices with Precoalitions
via Dynamic Programming

This section forms the centrepiece of the article. It discusses new dynamic program-
ming algorithms for the six Public Good indices introduced in Sect. 2.2. Thereby,
we complement the recent work Staudacher et al. (2022). While Staudacher et al.
(2022) generalizes the state-of-the-art algorithms for computing the Banzhaf index
Banzhaf III (1964) and the Shapley–Shubik index Shapley (1953); Shapley and
Shubik (1954) from the papers by Uno (2012) and Kurz (2016) to the Banzhaf-
Owen (1981), Owen (1977) and Symmetric Coalitional Banzhaf Alonso-Meijide
and Fiestras-Janeiro (2002) indices via two-level procedures, we hereby extend our
algorithm for the PGI from the previous section to its six variants with precoalitions.

As we stated in Sect. 2.1, we assume that there are l precoalitions P1, . . . , Pl .
The external game (also known as the quotient game) is defined as the weighted vot-
ing game played between the precoalitions Alonso-Meijide et al. (2009); Malawski
(2004), i.e. a weighted voting game represented by the (unmodified) quota q and the
m weights w(P1), . . . ,w(Pl) where w(Pk) = ∑

i∈Pk
wi with k ∈ L , L = {1, . . . , l}.

Furthermore, we define p as themaximal size of a precoalition, i.e. p = maxk∈L |Pk |,
and r as the maximal weight of a precoalition.

Computing the Public Good Index for Weighted Voting Games … 117

In the following, we point out how the ideas and algorithms from the previous
section translate into external and internal weighted voting games and algorithms
for the six Public Good indices with precoalitions from Sect. 2.2 possessing fairly
attractive pseudopolynomial computing times and storage requirements.

Theorem 4 For a weighted voting game with positive integer weights and a pre-
coalition structure P = {P1, . . . , Pl}, both the Solidarity Public Good and Union
Public Good indices can be computed in O(lq) time and O(q) space for all players.

Proof The proof is trivial. As we can see from the definitions of the Solidarity PGI
(3) and the Union PGI (4), the only computational challenge is to find |MP

Q | for all
precoalitions Q ∈ P on the external level using Algorithm 1. For l unions, this can
be achieved in O(lq) computing time and O(q) space. �

Next, we devote one theorem to the three Threat PGIs from Sect. 2.2 each.

Theorem 5 For a weighted voting game with positive integer weights and a pre-
coalition structure P = {P1, . . . , Pl} the Threat Public Good indices T 1 can be
computed in O((l + n)q) time and O(q) space for all players.

Proof The definition of the TGPI 1 indices (5) reveals the claim. We need two
computations of PGIs using Algorithm 1, one on the level of the l precoalitions,
another on the level of the n individual players. This can be achieved in O((l + n)q)

computing time and O(q) space. �
For the TPGI 2 indices (6), more PGI computations are needed.

Theorem 6 For a weighted voting game with positive integer weights and a pre-
coalition structure P = {P1, . . . , Pl}, the Threat Public Good indices T 2 can be
computed in O(l(l + p)q) time and O(q) space for all players.

Proof The definition of the TGPI 2 indices (6) reveals that we need l + 1 computa-
tions of PGIs using Algorithm 1, one on the level of the l precoalitions and another l
simulating the break-up of each precoalition into singletons. The number of entities
in a PGI computation is bounded by l + p − 1 with p being the maximal size of a
precoalition. According to the conventions of the O-notation, we may state that the
computation can be performed in O(l(l + p)q) time and O(q) memory space. �

Computing the TPGI 3 indices (7) means more effort as players break away as
singletons leading to one internal game per player.

Theorem 7 For a weighted voting game with positive integer weights and a pre-
coalition structure P = {P1, . . . , Pl}, the Threat Public Good indices T 3 can be
computed in O(nlq) time and O(q) space for all players.

Proof The definition of the TGPI 3 indices (7) reveals that we need n + 1 computa-
tions of PGIs using Algorithm 1, one on the level of the l precoalitions and another n
internal PGIs when each player breaks away individually. The number of entities in
a PGI computation in any internal threat game is l + 1. According to the conventions
of the O-notation, we may state that the computation can be performed in O(nlq)

time and O(q) memory space. �

118 J. Staudacher

Computing the Owen Extended PGI for weighted voting games is more compli-
cated than for the other five PGI variants with precoalitions. From its definition (8),
we know that in the internal games we need to work out how many times player
i ∈ P(i) is part of a minimal winning coalition S formed together with other players
from P(i) and other precoalitions from the set P\P(i). We formulate a theoremwith
worst-case estimates for computing the Owen Extended PGI. Its proof describes our
algorithm.

Theorem 8 For a weighted voting game with positive integer weights and a pre-
coalition structure P = {P1, . . . , Pl}, the Owen Extended Public Good indices �

can be computed in O(l(l + p)q + lpr2) time and O(q + pr) space for all players.

Proof We assume the weights of the l precoalitions to be in a descending order,
i.e. w(P1) ≥ · · · ≥ w(Pl). The case r = w(P1) ≥ q is fairly simple. There are
l̃ ≤ l precoalitions with w(Pk) ≥ q for all k = 1, . . . , l̃. We obtain the Owen
Extended Public Good indices �i for all players i contained in precoalition Pj for
j = 1, . . . , l by first computing the PGIs for the internal games with the weights
wint = (w1, . . . ,w|Pj |) and quota q and then dividing the results by l̃.
For r = w(P1) < q, it is more challenging to compute �i for all players i contained
in precoalition Pj for j = 1, . . . , l. Equation (8) tells us to find the relative frequen-
cies with which player i ∈ Pj is contained in an essential part of a minimal winning
coalition R ∈ MP

Pj
on external level. We initialize a vector f with f (i) = 0 for

i = 1, . . . , |Pj | for summing these relative frequencies. By wint = (w1, . . . ,w|Pj |)
we denote the vector of the individual weights of the members of union Pj and by

w(Pj) = ∑|Pj |
i=1 w

int
i its sum. Since w(

⋃
Q′∈R\{Pj } Q

′) < q, we start with a prepro-
cessing step and use Algorithm 1 to compute

h(i, x) = PGI (|Pj |, x,wint) (11)

for all 1 ≤ i ≤ |Pj | and all 1 ≤ x ≤ w(Pj). We first look at minimal winning coali-
tions R ∈ MP

Pj
on external level such that unions Pj+1, . . . , Pl are not contained in

R. Let T ext (j − 1, x) for 0 ≤ x ≤ q − 1 be the vector obtained from Theorem 1 for
the weights of the first j − 1 unions, i.e. from w(P1), . . . ,w(Pj−1). We update

f (i) = f (i) +
q−1∑

x=q−w(Pj)

T ext (i − 1, x) · h(i, q − x) (12)

for all 1 ≤ i ≤ |Pj |. Next, we loop for k from j + 1 to l − 1 and deal with min-
imal winning coalitions R ∈ MP

Pj
on external level such that unions Pk+1, . . . , Pl

are not contained in R. We update the vector T ext (j − 1, x) for 0 ≤ x ≤
q − 1 successively while omitting the weight w(Pj) of precoalition j , i.e. we
compute T ext

− j (k − 1, x) for 0 ≤ x ≤ q − 1 using Theorem 1 with the weights
w(P1), . . . ,w(Pj−1),w(Pj+1), . . . ,w(Pk−1). We update

Computing the Public Good Index for Weighted Voting Games … 119

f (i) = f (i) +
q−w(Pj)−1∑

x=q−w(Pj)−w(Pk)

T ext
− j (k − 1, x) · h(i, q − w(Pk) − x) (13)

for all 1 ≤ i ≤ |Pj |. Finally, with δPj (P, vP) from (2) and |MP
Pj

| we find

�i (N , v, P) = δPj (P, vP)
f (i)

|MP
Pj

| .

Computing the values h(i, x) in (11) for all 1 ≤ i ≤ |Pj | and all 1 ≤ x ≤ w(Pj)

can be done in at most O(pr2) time and O(pr) memory space as there are at most
p ≥ |Pj | members of a precoalition and as the weight of a precoalition is at most
r ≥ w(Pj). For all l precoalitions, the preprocessing step (11) costs at most O(lpr2)
time and O(pr) memory space. The vector T ext needs additional O(q) memory
space justifying the estimate O(q + pr) for storage. As for computing time, we also
need to consider the outer loop for j = 1, . . . , l over all precoalitions as well as the
inner loops for k = j + 1, . . . , l for updating the vector f in (12) and (13). This can
be done in O(l(l + p)q) time justifying our total estimate O(l(l + p)q + lpr2). �

There is one major difference between Algorithm 1 for computing the PGI and
our new algorithm for the Owen Extended PGI from Theorem 8. In Algorithm 1 for
the PGI, we do not need to know the concrete indices of the players with largest
index in a minimal winning coalition (assuming that weights are in a descending
order). However, our algorithm for the Owen Extended PGI fromTheorem 8 not only
assumes that precoalitions are in a descending order by their weights, but it also needs
the information on the precoalition with largest index in a minimal winning coalition
on the external level. The latter requires an additional loop over precoalitions.

5 Numerical Results and Software

In the recent articles Staudacher et al. (2021, 2022), a powerful software pack-
age named EPIC (Efficient Power Index Computation) providing efficient C++
implementations of various power indices (both with and without precoalitions) for
weighted voting games was introduced. EPIC is freely available via https://github.
com/jhstaudacher/EPIC/. We integrated our new algorithms for the six PGI variants
with precoalitions in EPIC. For further details on the internal workings of EPIC,
readers are referred to Staudacher et al. (2021, 2022).

For testing our new algorithms, we created a number of games, publicly available
at https://github.com/jhstaudacher/EPIC/tree/master/test_cases/precoalitions.

Tables1 and 2 list computing times of the PGI without precoalitions (PGI), the
Solidarity PGI (SPGI), theUnion PGI (UPGI), the three Threat PGIs (TPGI1, TPGI2,
TPGI3), and the Owen Extended PGI (OPGI) for some of these example problems.
The numerical results in Tables1 and 2 were obtained under Ubuntu 20.04 focal (64

https://github.com/jhstaudacher/EPIC/
https://github.com/jhstaudacher/EPIC/
https://github.com/jhstaudacher/EPIC/tree/master/test_cases/precoalitions

120 J. Staudacher

Table 1 Computing times for three test problems with quotas equal to 50 % plus 1 vote

Problem 1: Problem 2: Problem 3:

741 players, 3034 players, 3434 players,

w̃ = 37064, w̃ = 152098, w̃ = 72068,

40 precoalitions, 60 precoalitions, 200 precoalitions,

max. coal. size 40, max. coal. size 78, max. coal. size 54,

avg. coal. size 18, avg. coal. size 50, avg. coal. size 17,

max. prec. weight
2049

max. prec. weight
4150

max. prec. weight
1488

Index Time (sec) Time (sec) Time (sec)

PGI 0.973 95.148 56.413

SPGI 0.42 0.252 0.394

UPGI 0.42 0.252 0.396

TPGI1 1.022 96.985 57.891

TPGI2 2.056 25.887 80.330

TPGI3 26.987 747.713 1274.111

OPGI 38.967 624.871 65.645

bit) on an Intel Core(tm) i7-6600U CPU with a clock speed of 2.60GHz and 16 GB
RAM, i.e. on a standard laptop PC.

In Table1, we compare three different problems with quotas equal to 50 % plus 1
vote in each case. As reported in Staudacher et al. (2021), the new algorithm for the
PGI is very fast, handling problems with more than 3000 players and large quotas
in less than two minutes. Not surprisingly, the computing times of the SPGI and the
UPGI coincide and are very small since sophisticated computations are performed
only on precoalition level. Computing times for TPGI1 are only a little larger than
for the PGI confirming our claims from Theorem 5. Comparing computing times for
TPGI2, more than three times as many precoalitions (and more players) in problem 3
outweigh the fact that the quota in problem 2 is more than twice the quota in problem
3. As predicted by Theorem 7, the computing times for TPGI3 are much larger than
for TPGI2mirroring the internal games for each individual player. Our new algorithm
for OPGI proves to be applicable for large problems and outperforms TPGI3 for test
problems 2 and 3. Comparing the computing times of OPGI and TPGI2 for problems
1, 2 and 3 underlines the influence of the preprocessing steps (11) and the maximal
weight of a precoalition on our algorithm from Theorem 8.

In Table2, we study the effects of the quota for another test problem. For PGI,
SPGI, UPGI, TPGI1, TPGI2 and TPGI3, these effects on computing times are as
predicted by Theorems 3, 4, 5, 6 and 7. For OPGI, the quota has hardly any impact
on computing times underlining the fact that the preprocessing steps in (11) are by
far the most time-consuming part of the algorithm.

Computing the Public Good Index for Weighted Voting Games … 121

Table 2 Computing times for a test problems with 1031 players, w̃ = 22031, 60 precoalitions,
max. coal. size 52, avg. coal. size 18 and max. prec. weight 1493 for three different quotas

q = 5508(≈ 25%) q = 11016(≈ 50%) q = 16524(≈ 75%)

Index Time (sec) Time (sec) Time (sec)

PGI 0.447 0.875 1.286

SPGI 0.021 0.037 0.052

UPGI 0.021 0.037 0.052

TPGI1 0.473 0.945 1.330

TPGI2 1.214 2.401 3.536

TPGI3 16.304 32.340 47.582

OPGI 14.482 14.536 14.563

6 Outlook and Conclusions

This article proposes new dynamic programming algorithms for six variants of the
PGI with precoalitions Alonso-Meijide et al. (2010a, b); Holler and Nohn (2009) for
weighted voting games. All the new algorithms employ an algorithm for computing
the PGI efficientlywhichwas recently proposed in Staudacher et al. (2021) and super-
sedes the previous state-of-the-art approach from Matsui and Matsui (2000). Even
though further algorithmic improvements for both the Threat Public Good indices
2 and 3 and the Owen Extended PGI (OPGI) might be possible, we emphasize that
our current C++ implementations can be applied for large numbers of players. With
the software EPIC Staudacher et al. (2021, 2022) for weighted voting games (with
and without precoalitions) and the R package CoopGame Staudacher and Anwander
(2021) providing a prototypical implementation of the Public Value by Holler and Li
(1995) for cooperative games with transferable utility, there is now publicly available
software for many solution concepts proposed by Manfred Holler.

Still, open questions in the context of power index computation abound. Over-
coming the limitations of weighted voting games and solving other classes of sim-
ple games efficiently is one of them. Wilms (2020) presents dynamic programming
algorithms for computing Banzhaf and Shapley–Shubik indices for conjunctions and
disjunctions of weighted voting games. It appears rewarding to expand these ideas to
other power indices, including the PGI and power indices with precoalitions. Wilms
(2020) compares his algorithms with quasi-ordered binary decision diagrams (QOB-
DDs) Bolus (2011, 2012), i.e. a recent technique based on relational algebra, which
has not yet been extended to power indices with precoalitions. These binary deci-
sion diagrams provide representations of weighted voting games which come with
computational costs for their generation, but are independent of the integer weights
and quota. Hence, Wilms (2020) speaks of a minimum quota effect meaning that
when using QOBDDs the same bounds for the quota and the sum of all weights
can be used as for a minimum sum representation Freixas and Molinero (2009) of
the weighted voting game. As we confirmed in Sect. 5, our new algorithms benefit

122 J. Staudacher

from small integer weights and quotas. In all cases except for OPGI, a smaller quota
implies lower storage requirements.

As stated in our introduction, dynamic programming and generating functions
Algaba et al. (2007); Alonso-Meijide and Bowles (2005); Alonso-Meijide et al.
(2008); Bilbao et al. (2000) are strongly related. The publicly available doctoral
dissertation by Lindner (2004) points out in detail how we can use the recursion
from Theorem 1 to find the coefficients of a corresponding generating function and
elaborates relations between generating functions and recursions used in dynamic
programming algorithms for the Banzhaf and Shapley–Shubik indices.While clearly
beyond the scopeof this article, studying themathematical relations betweendynamic
programming and generating functions for power index computation, including the
PGI and its variants with precoalitions, appears to be a very promising field of future
research. It bears the potential to lead to even faster algorithms. Furthermore, it could
be interesting to study whether a recent result by Koiliaris and Xu (2019) can be used
to make the dynamic programming algorithms from Staudacher et al. (2021, 2022)
even faster.

Another promising task could be the parallel computation of power indices. Our
new algorithms for PGIs with precoalitions presented in the proofs of Theorems 6,
7 and 8 appear to be suitable for parallel processing, given that one can compute
internal games independently. We also note that dynamic programming algorithms
for the Deegan–Packel index with precoalitions Alonso-Meijide et al. (2011) and the
Johnston index with precoalitions Mercik and Ramsey (2017) for weighted voting
games have yet to be developed. In terms of practical applications, the author hopes
that the new algorithms proposed in this workwill prove useful for extending existing
studies of social and economic networks Holler and Rupp (2019, 2020, 2021);
Staudacher et al. (2021) to precoalitions among the player set and large numbers of
players.

Acknowledgements The author thanks his former student Jan Filipp for his advice and assistance
in implementing the six new PGIs with precoalitions in C++ and an anonymous reviewer whose
comments and suggestions helped improve the paper.

References

Algaba, E., Bilbao, J., & M.,& Fernández-García, J. R. (2007). The distribution of power in the
European Constitution. European Journal of Operational Research,176(3), 1752–1766. https://
doi.org/10.1016/j.ejor.2005.12.002.

Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices:
An application to the IMF. Annals of Operations Research, 137(1), 21–44. https://doi.org/10.
1007/s10479-005-2242-y.

Alonso-Meijide, J. M., & Fiestras-Janeiro, M. G. (2002). Modification of the Banzhaf value for
games with a coalition structure. Annals of Operations Research, 109(1), 213–227. https://doi.
org/10.1023/A:1016356303622.

https://doi.org/10.1016/j.ejor.2005.12.002
https://doi.org/10.1016/j.ejor.2005.12.002
https://doi.org/10.1007/s10479-005-2242-y
https://doi.org/10.1007/s10479-005-2242-y
https://doi.org/10.1023/A:1016356303622
https://doi.org/10.1023/A:1016356303622

Computing the Public Good Index for Weighted Voting Games … 123

Alonso-Meijide, J. M., Casas-Mendez, B., Holler, M. J., & Lorenzo-Freire, S. (2008). Computing
power indices: Multilinear extensions and new characterizations. European Journal of Opera-
tional Research, 188(2), 540–554. https://doi.org/10.1016/j.ejor.2007.04.019.

Alonso-Meijide, J. M., Bowles, C., Holler, M. J., & Napel, S. (2009). Monotonicity of power in
games with a priori unions. Theory & Decision, 66(1), 17–37. https://doi.org/10.1007/s11238-
008-9114-2.

Alonso-Meijide, J. M., Casas-Méndez, B., Fiestras-Janeiro, M. G., Holler, M. J., & Nohn, A.
(2010a). Axiomatizations of public good indices with a priori unions. Social Choice and Welfare,
35(3), 517–533. https://doi.org/10.1007/s00355-010-0451-z.

Alonso-Meijide, J. M., Casas-Méndez, B., Fiestras-Janeiro, M. G., & Holler, M. J. (2010b). Two
variations of the Public Good Index for games with a priori unions. Control & Cybernetics, 39,
839–855.

Alonso-Meijide, J. M., Casas-Méndez, B., Fiestras-Janeiro, M. G., & Holler, M. J. (2011). The
Deegan-Packel index for simple games with a priori unions.Quality & Quantity, 45(2), 425–439.
https://doi.org/10.1007/s11135-009-9306-z.

Banzhaf, J. F., III. (1964). Weighted voting doesn’t work: A mathematical analysis. Rutgers L. Rev.,
19, 317–343.

Bertini, C., Freixas, J., Gambarelli, G., & Stach, I. (2013). Comparing power indices. International
Game Theory Review, 15, 1340004. https://doi.org/10.1142/S0219198913400045.

Bilbao, J. M., Fernández-García, J. F., Jiménez Losada, A., & López, J. J. (2000). Generating
functions for computing power indices efficiently. TOP, 8(2), 191–213. https://doi.org/10.1007/
BF02628555.

Bolus, S. (2011). Power indices of simple games and vector-weighted majority games by means of
binary decision diagrams. European Journal of Operational Research, 210(2), 258–272. https://
doi.org/10.1016/j.ejor.2010.09.020.

Bolus, S. (2012). A QOBDD-based approach to simple games. Ph.D. thesis, Christian-Albrechts
Universität Kiel, Kiel, Germany. RetrievedMay 17, 2022 from https://macau.uni-kiel.de/receive/
diss_mods_00009114.

Chakravarty, S. R., Mitra, M., & Sarkar, P. (2015). A Course on Cooperative Game Theory. Cam-
bridge University Press.

Deegan, J., & Packel, E. W. (1978). A new index of power for simple n-person games. International
Journal of Game Theory, 7(2), 113–123.

Freixas, J., & Molinero, X. (2009). On the existence of a minimum integer representation for
weighted voting systems. Annals of Operations Research, 166(1), 243–260. https://doi.org/10.
1007/s10479-008-0422-2.

Holler, M. J., & Rupp, F. (2019). Power in networks: A PGI analysis of Krackhardt’s Kite network.
In N. Nguyen, R. Kowalczyk, J. Mercik, & A. Motylska-Kuźma (Eds.), Transactions on Com-
putational Collective Intelligence XXXIV (Vol. 11890, pp. 21–34). Lecture Notes in Computer
Science. Springer. https://doi.org/10.1007/978-3-662-60555-4_2.

Holler, M. J., & Rupp, F. (2020). Power in networks and the urban space. In E. Macrì, V. Morea, &
M. Trimarchi M. (Eds.), Cultural Commons and Urban Dynamics (pp. 37–52). Springer. https://
doi.org/10.1007/978-3-030-54418-8_4.

Holler, M. J. (1982). Forming coalitions and measuring voting power. Political Studies, 30(2),
262–271.

Holler, M. J., & Li, X. (1995). From public good index to public value: An axiomatic approach and
generalization. Control & Cybernetics, 24, 257–270.

Holler, M. J., & Nohn, A. (2009). The Public Good Index with threats in a priori unions. Essays in
Honor of Hannu Nurmi, 1, 393–401.

Holler, M. J., & Packel, E. W. (1983). Power, luck and the right index. Zeitschrift für Nation-
alökonomie, 43(1), 21–29.

Holler, M. J., & Rupp, F. (2021). Power in networks: The Medici. Homo Oeconomicus, 38, 1–17.
https://doi.org/10.1007/s41412-021-00108-1.

https://doi.org/10.1016/j.ejor.2007.04.019
https://doi.org/10.1007/s11238-008-9114-2
https://doi.org/10.1007/s11238-008-9114-2
https://doi.org/10.1007/s00355-010-0451-z
https://doi.org/10.1007/s11135-009-9306-z
https://doi.org/10.1142/S0219198913400045
https://doi.org/10.1007/BF02628555
https://doi.org/10.1007/BF02628555
https://doi.org/10.1016/j.ejor.2010.09.020
https://doi.org/10.1016/j.ejor.2010.09.020
https://macau.uni-kiel.de/receive/diss_mods_00009114
https://macau.uni-kiel.de/receive/diss_mods_00009114
https://doi.org/10.1007/s10479-008-0422-2
https://doi.org/10.1007/s10479-008-0422-2
https://doi.org/10.1007/978-3-662-60555-4_2
https://doi.org/10.1007/978-3-030-54418-8_4
https://doi.org/10.1007/978-3-030-54418-8_4
https://doi.org/10.1007/s41412-021-00108-1

124 J. Staudacher

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment &
Planning A, 10(8), 907–914.

Kóczy, L. Á. (2021). Brexit and power in the council of the European Union. Games, 12(2), 51.
https://doi.org/10.3390/g12020051.

Koiliaris, K., & Xu, C. (2019). Faster pseudopolynomial time algorithms for subset sum. ACM
Transactions on Algorithms (TALG), 15(3), 1–20. https://doi.org/10.1145/3329863.

Kurz, S. (2016). Computing the power distribution in the IMF. arXiv Preprint arXiv: 1603.01443.
Lindner, I. (2004). Power measures in large weighted voting games. Ph.D. thesis, Universität
Hamburg, Hamburg, Germany. Retrieved May 17, 2022 from https://ediss.sub.uni-hamburg.de/
bitstream/ediss/715/1/Dissertation.pdf.

Malawski, M. (2004). “Counting” power indices for games with a priori unions. In G. Gambarelli
(Ed.) Essays in cooperative games: Theory and decision library (Vol. 36, pp. 125–140). Springer.
https://doi.org/10.1007/978-1-4020-2936-3_10.

Matsui, T., & Matsui, Y. (2000). A survey of algorithms for calculating power indices of weighted
majority games. Journal of the Operations Research Society of Japan, 2000(43), 71–86.

Mercik, J., & Ramsey, D.M. (2017). The effect of Brexit on the balance of power in the European
Union Council: An approach based on pre-coalitions. In N. Nguyen, R. Kowalczyk, & J. Mercik,
(Eds.) Transactions on Computational Collective Intelligence XXVII (Vol. 10480, pp. 87–107).
Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-319-70647-4_7.

Owen, G. (1977). Values of games with a priori unions. In R. Henn, & O. Moeschlin (Eds.),
Mathematical Economics and Game Theory (Vol. 141, pp. 76–88). Lecture Notes in Economics
and Mathematical Systems. Springer. https://doi.org/10.1007/978-3-642-45494-3_7.

Owen, G. (1981). Modification of the Banzhaf-Coleman index for games with a priori unions. In
M. J. Holler (Ed.) Power, Voting, and Voting Power (pp. 232–238). Physica. https://doi.org/10.
1007/978-3-662-00411-1_17.

Owen, G. (1995). Game theory (3rd ed.). Academic Press.
Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 28(2),
307–317.

Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a com-
mittee system. American Political Science Review, 48(3), 787–792.

Staudacher, J., & Anwander J. (2021). Using the R package CoopGame for the analysis, solution
and visualization of cooperative games with transferable utility. Retrieved May 17, 2022 from
https://cran.r-project.org/package=CoopGame. R Vignette for package version 0.2.2.

Staudacher, J., Olsson, L., & Stach, I. (2021). Implicit power indices for measuring indirect control
in corporate structures. In N. Nguyen, R. Kowalczyk, J. Mercik, & A. Motylska-Kuźma (Eds.),
Transactions on Computational Collective Intelligence XXXVI (Vol. 13010, pp. 73–93). Lecture
Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-662-64563-5_4.

Staudacher, J., Kóczy, L. Á., Stach, I., Filipp, J., Kramer, M., Noffke, T., et al. (2021). Computing
power indices for weighted voting games via dynamic programming. Operations Research and
Decisions, 31(2), 123–145. https://doi.org/10.37190/ord210206.

Staudacher, J., Wagner, F., & Filipp, J. (2022). Dynamic programming for computing power
indices for weighted voting games with precoalitions. Games, 13(1), 6. https://doi.org/10.3390/
g13010006.

Tanenbaum, P. (1997). Power in weighted voting games. Mathematica Journal, 7, 58–63.
Uno, T. (2012). Efficient computation of power indices for weighted majority games. In K. M.
Chao, T. Hsu, & D. T. Lee (Eds.), International Symposium on Algorithms and Computation.
ISAAC 2012 (Vol. 7676, pp. 679–689). Lecture Notes in Computer Science. Springer. https://doi.
org/10.1007/978-3-642-35261-4_70.

Wilms, I. (2020).Dynamic programming algorithms for computing power indices inweightedmulti-
tier games. Mathematical Social Sciences, 108, 175–192. https://doi.org/10.1016/j.mathsocsci.
2020.06.004.

https://doi.org/10.3390/g12020051
https://doi.org/10.1145/3329863
http://arxiv.org/abs/1603.01443
https://ediss.sub.uni-hamburg.de/bitstream/ediss/715/1/Dissertation.pdf
https://ediss.sub.uni-hamburg.de/bitstream/ediss/715/1/Dissertation.pdf
https://doi.org/10.1007/978-1-4020-2936-3_10
https://doi.org/10.1007/978-3-319-70647-4_7
https://doi.org/10.1007/978-3-642-45494-3_7
https://doi.org/10.1007/978-3-662-00411-1_17
https://doi.org/10.1007/978-3-662-00411-1_17
https://cran.r-project.org/package=CoopGame
https://doi.org/10.1007/978-3-662-64563-5_4
https://doi.org/10.37190/ord210206
https://doi.org/10.3390/g13010006
https://doi.org/10.3390/g13010006
https://doi.org/10.1007/978-3-642-35261-4_70
https://doi.org/10.1007/978-3-642-35261-4_70
https://doi.org/10.1016/j.mathsocsci.2020.06.004
https://doi.org/10.1016/j.mathsocsci.2020.06.004

	 Computing the Public Good Index for Weighted Voting Games with Precoalitions Using Dynamic Programming
	1 Introduction
	2 Preliminaries
	2.1 Cooperative Games, Simple Games and Precoalitions
	2.2 The Public Good Index and Its Variants with Precoalitions

	3 Dynamic Programming for Computing the Public Good Index
	3.1 Counting Winning and Losing Coalitions via Dynamic Programming
	3.2 Computing the Public Good Index via Dynamic Programming

	4 Computing Public Good Indices with Precoalitions via Dynamic Programming
	5 Numerical Results and Software
	6 Outlook and Conclusions
	References

