®

Check for
updates

Synthesis of Trajectory Planning
Algorithms Using Evolutionary
Optimization Algorithms

Dmitry Malyshev!®)@®, Vladislav Cherkasov!'®, Larisa Rybak'®,
and Askhat Diveev?3

! Belgorod State Technological University named after V.G. Shukhov,
Belgorod, Russia
rlbgtu@gmail.com
2 Federal Research Center “Computer Science and Control”
of Russian Academy of Sciences, Moscow, Russia
3 RUDN University, Moscow, Russia

Abstract. The article considers the problem of planning the optimal
trajectory of a delta robot. The workspace of the robot is limited by
the range of permissible values of the angles of the drive revolute joints,
interference of links and singularities. Additional constraints related to
the presence of obstacles have been introduced. Acceptable values of the
robot’s input coordinates are obtained based on the inverse kinematics,
taking into account the constraints of the workspace, represented as a
partially ordered set of integers. For the given initial and final coordi-
nates, a randomly generated family of trajectories belonging to a valid
set is obtained. Optimization of each of the trajectories of the family
based on evolutionary algorithms is performed. The optimization crite-
rion is a function proportional to the duration of movement along the
trajectory. The results of modeling are presented.

Keywords: Trajectory planning - Genetic algorithm + Grey Wolf
optimization + Particle swarm optimization

1 Introduction

Robot trajectory planning is essential for avoiding various obstacles and obtain-
ing the optimal path in terms of various criteria. Currently, there are a number of
methods that can be used for trajectory planning. Some of the well-known meth-
ods are based on route networks, including the method based on the application
of Visibility Graphs [1]. An alternative method for determining routes is based on
the use of Generalized Voronoi Diagrams [2]. Thus, the method of uninformed
search allows implementing breadth-first search, depth-first search, search by
cost criterion [3]. Heuristic pathfinding algorithms are designed to quickly find a

This work was supported by the state assignment of Ministry of Science and Higher
Education of the Russian Federation under Grant FZWN-2020-0017.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

N. Olenev et al. (Eds.): OPTIMA 2022, CCIS 1739, pp. 153-167, 2022.
https://doi.org/10.1007/978-3-031-22990-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22990-9_11&domain=pdf
http://orcid.org/0000-0002-6059-9102
http://orcid.org/0000-0002-6733-3817
http://orcid.org/0000-0002-8856-7823
http://orcid.org/0000-0003-2057-9016
https://doi.org/10.1007/978-3-031-22990-9_11

154 D. Malyshev et al.

route in a graph by propagating towards more promising vertices [4,5]. In recent
years, a number of methods for trajectory planning have been proposed. A two-
stage method for planning the trajectory of two mobile manipulators for joint
transportation in the presence of static obstacles is considered in [6]. At the first
stage of path planning in progress, the shortest possible path between the initial
and target configuration is executed in the workspace. The second stage consists
in calculating a sequence of time-optimal trajectories for passing between con-
secutive points of the path, taking into account non-holonomic constraints and
maximum permissible joint accelerations. A new method of spatial decomposi-
tion is presented in [7]. It was applied to define a space for trajectory planning,
called RV-space. In [8], the method of directed reachable volumes (DRVs) is
presented, which makes it possible to obtain the area taking into account con-
straints on the positions of the robot’s links and end-effector. The current work
considers the application of evolutionary and bio-inspired algorithms for plan-
ning the trajectory of a delta robot, taking into account the limitations of its
workspace.

2 Setting an Optimization Problem

The delta robot [9] with 3 degrees of freedom is showed on Fig.1. The end-
effector of delta robot is the center P of the moving platform with zp,yp, zp
coordinates.

Fig. 1. Structure of the delta robot

Synthesis of Trajectory Planning Algorithms 155

The input coordinates for a delta robot are the angles 6; of rotation of the
drive revolute joints A;. Inverse kinematics allows to transfer the described con-
straints of the workspace to the space of input coordinates. Inverse kinematics
[10]:

_F+JE T P12
92‘ = Qtan_l < G z——’__E C * Gz) (1)

where Ej, F, and G; defined as E; = 2d (yp + gjf) Fy = 2:2pd,
Gi=v+ (“2?/?)2 +2yp <“2:/§C> — % By =—d <\/§ (:cp 42) +ur+ 4\[“)
s (552} (52 (o (55 o (52))
s (52 () 1o (52) o (52))

2c—a 2c—a
=d \/§<z - >— -),v:z2+ 2 422 +d°
< P 1 yp /3 PTYp P

An arbitrary trajectory can be represented as a set of movements (steps),
during which the revolute joint drives operate at a constant angular velocity
and the movement in the space of input coordinates is rectilinear. In order to
reduce the duration of such small movements, the highest of the angular speeds
of the drives at each step should correspond to the maximum possible. The
duration of a move is proportional to the sum of individual steps defined in
accordance with the Chebyshev metric:

n

Z Pi (2)
i=1

1
t =

wmax

where p; = maxXjecq12,.. .m} |0i; — 0i—1;| - according to Chebyshev distance
between the points of the beginning of C;_1(6;-1.1,6i-1,2,.,0i—1,m) and end
with C;_1(6;1,0;.2, .., 0;m) i-th step; m is the number of the input coordinates
(for the Delta robot m = 3); wyq, is the maximum angular velocity of the drive
revolute joints. However, the direct application of this indicator as a criterion
function for optimizing the trajectory is impractical, since the Chebyshev metric
introduces significant ambiguity. On the other hand, using the criterial “usual”
length of the trajectory (the sum of the Euclidean lengths of all steps) as a crite-
rion function also not allowed. The duration of movement in this case may be far
from optimal as a result. Therefore, it is proposed to supplement the criterion
function with a Euclidean metric taken with a small weighting coefficient e:

m
F = Z e{{n;ix |0i,j — 91717j| +e€ Z (010- - 91',11]')2 — min (3)
, je{1,2,...m ;
i=1 j=1
The approach based on the application of a criterion function of this type was
successfully tested by the authors to optimize the 3-RPR mechanism’s trajectory

156 D. Malyshev et al.

[11]. Optimization should be carried out with constraints on the size of the
workspace. In the framework of previous works, the authors proposed to use the
representation of the workspace in the form of a partially ordered set of integers
Ap [12]. Therefore, checking the optimization constraint consists of two steps.

The First Stage. Definition of the Set B of Trajectory Coordinates in
the Space of Integers

For this purpose, an algorithm based on a modification of the algorithm is devel-
oped Bresenham’s algorithm [13], which assumes that the trajectory is repre-
sented as a polyline consisting of many segments. In [14], a modification of the
algorithm was proposed for the 3D case, but the coordinates of the beginning and
end of the segments belong to the space of integers, which leads to a displace-
ment of the trajectory segment and the set B (Fig.2). Cells that intersect the
orthosis are highlighted in red for coordinates represented as integers, yellow for
coordinates represented as real numbers, and orange for both cases. As you can
see from the figure, using integer coordinates does not allow you to accurately
determine the set B.

Fig. 2. Offset of the trajectory segment depending on the source data

Modifying the algorithm considering the original data that belongs to the 3D
space of real numbers (coordinates of the beginning x1,y1, 21 and end xa, Yo, 29
segments). In this case, the coordinates must correspond to the covering set of
the workspace, represented as a partially ordered set of integers, respectively,
they must be obtained taking into account the accuracy of the approximation
A; and the displacement k; along the j coordinate axes by the formula

itk _ Oia+ ko O3+ ko

€Tq = A > i A, s i Ay (4)

Synthesis of Trajectory Planning Algorithms 157

The algorithm works as follows:

Input: x1,y1, 21, %2, Y2, 22
1: 5w=$2—$1a5y:y2—yla52222_21

2: if 57 =0 then I = [Il],xz = [IQ] end if
3: if §, = 0 then y; = [y1],y2 = [y2] end if
4: if 6, = 0 then 2, = [21], 22 = [22] end if
5: B = BU {[z1],], [=1]}
6: if §, < 0 then = = [z1 +0.5] — 0.5 else x = [z — 0.5] + 0.5 end if
7. if §, <0 then y = |y1 +0.5] — 0.5 else y = [y1 — 0.5] + 0.5 end if
8 if 0, <0 then z= |z +0.5] —0.5 else z = [z —0.5] + 0.5 end if
9: while z - sign(d,) < x4 - sign(d,) do
10: xz = +0.5-51g0(0z), yr = Y1+ 0y - (€ —x1) /05, 2r = 21+ 0. - (x—21) /0.
11: if (lyr] # yr — 0.5) or (sign(yg) = sign(d,)) then
12: yz = Y]
13: else
14: yz =sign(yr) - [|[yr]
15: end if
16: if (|zr] # zr — 0.5) or (sign(zgr) = sign(d,)) then
17: 2z = [ZR}
18: else
19: zz = sign(zr) - ||2r|]
20: end if
21: B=BU{zz,yz,22},x = x + sign(d,)
22: end while
23: while y - sign(d,) < yo - sign(d,) do
24: TR =21+ 0z (Y —y1)/dy
25: if |xr] # xr — 0.5 then
26: rz = [zRr],yz =y +0.5-sign(dy), zr = 21 + 0. - (x — 1)/0.
27: if (|zr] # zr — 0.5) or (sign(zg) = sign(d,)) then
28: 2y = [ZR]
29: else
30: zz = sign(zgr) - ||2rl]
31: end if
32: B:BU{xz,yz,Zz}
33: end if
34: y =y + sign(dy)
35: end while
36: while z - sign(d,) < zo - sign(d,) do

37: Tr=01+0z- (2 —21)/02,yr =y1 + 0y - (2 — 21) /02,
38: if |zr] # xr — 0.5 and |yr| # yr — 0.5 then

39: xz = |zRr|,yz = [yr], 2z = 2+ 0.5 - sign(4,,)
40: B:BU{xz,yz,Zz}
41: end if

42: z =z +sign(d,)
43: end while

158 D. Malyshev et al.

The algorithm for determining the coordinates of the trajectory in the space
of integers for a 2D trajectory assumes the exclusion of the z dimension. Other-
wise, it is similar to the algorithm given above for the 3D case.

The Second Stage. Checking Whether the Resulting set B Belongs to
the Workspace Set Ay
Thus the optimization constraint condition has the form

B; C Ap,iel,...n (5)

where n is the number of segments that make up the trajectory.
Thus, the optimization problem looks like this.

— parameters: coordinates of intermediate points of the trajectory z;,y;, i, €
1,..,(n —1). For a delta robot, the coordinates are the rotation angles of the
drive revolute joints, i.e. [(2;y:2:)]T = [(6;.10; 20 3)].

— parameter change range: overall dimensions of the workspace in the space of
input coordinates 6; ; € [6;.min; 0, maz]-

It should be noted that the optimization parameters change in the space
of real numbers. The transition to the space of integers to calculate the cells
checked at the second stage is carried out using the formula (4) and the modified
Bresenham’s algorithm.

— criterion: the function F' calculated by formula (3).
— constraint: condition (5).

To increase the efficiency of optimization in the presence of obstacles, we
transfer the optimization constraint to the criterion function

n m
Fr=F+Y |9 p1,|> (0i;—0i—1,)° +p2| | = min (6)
i=1 j=1
where p1, po are the penalty coefficient, and ¥; is the Heaviside function:

9 — 0,if B, C A
"7 11— otherwise

(7)

3 Algorithms for a Path Optimization

The choice of algorithms is justified by their efficiency and high level of applica-
bility to a number of different problems. However, the authors do not conclude
that these algorithms are better than other evolutionary algorithms for solving
this particular problem. The purpose of this investigation is an initial assessment
of the applicability of some of the most widely used evolutionary and bio-inspired
algorithms for optimizing a trajectory within a workspace represented as a par-
tially ordered set of numbers. This creates the prerequisites for further in-depth
research, including a comparative analysis of the application of a larger number
of algorithms for this problem and the selection of their parameters.

We apply the following evolutionary and bio-inspired algorithms to solve
optimization problem.

Synthesis of Trajectory Planning Algorithms 159

3.1 Genetic Algorithm (GA)

The basic principles of GA were first rigorously formulated by Holland [15]. The
GA works with a population of “individuals”, each representing a possible solu-
tion to a given problem. Genetic algorithms are widely applied, including for the
synthesis of a control system for robots [16], for planning the trajectory of col-
laborative robots [17]. We use a modification of the genetic algorithm described
earlier in [18]. To speed up the algorithm, we apply parallel computing (Fig. 3).
Dashed lines indicate areas where calculations are performed simultaneously.

C Begin D)
v

I Creating the initial population I

Calculation of the
fitness function for
solution (1)

Calculation of the
fitness function for
possible solution (1)

Calculation of the
fitness function for
possible solution (n)

Fmin update [
YES
End Termination condition
NO
i ¢ l
: I Selection | Selection | Selection
' v v v
1
1 | Crossover | Crossover | Crossover
1
| ' ' i
: | Mutation | Mutation | Mutation
' B v v
1
: Calculation of the Calculation of the Calculation of the fitness
' fitness function for fitness function for function for solution (m-1)
1 solution (1) and (2) solution (i) and (i+1) and (m)
1
1
1

Creating the new population

Fig. 3. A genetic algorithm using parallel computing

3.2 Particle Swarm Algorithm (PSO)

Particle Swarm Optimization (PSO) is a widely applied two-component swarm-
based evolutionary optimization method [19,20]. The particle swarm algorithm
solves the problem by having a population of potential solutions, here called

160 D. Malyshev et al.

particles, and moving these particles in the search space according to a sim-
ple mathematical formula over the position and velocity of the particle. The
movement of each particle depends on its local best-known position, but is also
directed to the best-known positions in the search space, which are updated as
other particles find better positions. This is expected to move the swarm towards
better solutions [18]. New position of the s; particle At time t is determined by
the vector of its coordinates ¢;, and its velocity by the vector 9J;:

Qit+1 = Git + Vit41; (8)
Vitp1 = ;g + Po[0; 8] X (gt — Gist) + Pal0;7] X (gpt — i) 9)

where P, [a; b] is an n-dimensional vector of pseudorandom values uniformly
distributed over the interval [a,b];qq.+ is the coordinate vector of the best particle
in the group; ¢p + is the coordinate vector of the best in population particle; o, 3,
~ are free parameters of the algorithm with the following recommended values:
a = 0.7, 8 = 1.4, and v = 1.4 according to [18]. To speed up the work, parallel
calculations are applied in the same way when determining the new position of
particles and the value of the criterion function in the new position.

3.3 Grey Wolf Algorithm (GWO)

Algorithm The Grey Wolf Optimization (GWO) algorithm [21] shows its relia-
bility in solving real optimization problems where the objective function is not
linear. The study in [21] shows that the PSO and GWO algorithms show better
results in comparison with a number of other algorithms. The paper [22] presents
a method for optimal trajectory generation (OTG) for creating a simple and
error-free continuous motion along a trajectory with fast convergence using the
GWO method. The authors of [23] compared the GA, PSO, and GWO algorithms
for optimizing efficient hybrid robot control for controlling the foot trajectory of
a robot during walking. The results showed that the GWO algorithm performs
more efficiently and quickly at similar torques for configuring a hybrid controller
based on LQR (Linear quadratic regulator) and PID (proportional-integral—
derivative controller) than other traditional algorithms. Based on these works,
newer methods for controlling robot navigation were also developed, which uses
a hybrid concept of using the GWO algorithm and the artificial potential field
(APF) method for planning the trajectory of a mobile robot [24].

We apply a modification of the GWO algorithm described earlier in [25]
using parallel calculations to modify the parameters of a possible solution and
determine the value of the fitness function.

4 Numerical Results

The problem of determining the workspace Ap for a delta robot in the space of
output coordinates is considered by the authors in [26]. The constraints of the
workspace Ap are transferred from the space of output coordinates zp, yp, zp

Synthesis of Trajectory Planning Algorithms 161

to the space of input coordinates #; using the solution of the inverse kinematics
(1). The workspace Ay in the input coordinate space is similarly represented as
a partially ordered set of integers after the transfer. An object was added as an
obstacle with a parallelepiped shape (Fig.4a). Elements of the covering set of
the workspace in the output coordinate space (Fig. 4b) belonging to the obstacle
were excluded A = Ap\C. The transfer of constraints A, — Ag (Fig. 4c) was
performed for the updated set A%.

Fig. 4. Additional boundaries, related to the overall dimensions of the obstacle: a)
obstacle C; b) Workspace set Ap; c) Ap; c) Ag

We perform trajectory optimization using the above-mentioned algorithms
for the 2D and 3D case of forming a trajectory inside the workspace of a delta
robot, as well as for a randomly generated 2D contour with a large number
of obstacles. A C++ software package has been developed for this purpose.
Parallel computing is implemented using the OpenMP library. Visualization of
2D results is performed using developed Python scripts Python (Matplotlib and
JSON libraries). Visualization of 3D results is performed by exporting an ordered
set of integers describing the workspace in STL format and arrays of co-ordinates
of trajectory points in JSON format, and then importing data in the Blender
software package using developed Python scripts.

4.1 2D Case

Let’s make a slice of the workspace Ay of the delta robot in the space of input
coordinates 0, 05 03, taking the angle §; = 0. In this case, the set Ay will be
2D (Fig.5). We assume that the starting point of the trajectory is 61 o = —70°,
01,3 = 20°, the end point is 6,2 = 50°, 8, 3 = 0°, and the number of vertices
of the trajectory is n = 3. Accordingly, the number of optimization parameters
p = 2n = 6. The weight coefficient ¢ = 0,1, the penalty coefficients: p; = 5,
p2 = 500. Parameters of the GA algorithm: the number of individuals in the
initial population H = 1000, the number of generations W = 250, the number

162 D. Malyshev et al.

of crossovers at each iteration Sga = 500, the number of possible values of each
of the parameters g = 22°, the probability of mutation p,, = 70%. Parameters
of the GWO algorithm: H = 1000, W = 250, number of new individuals at each
iteration Sgwo = 1000. Parameters of the PSO algorithm: H = 1000, W =
250, number of groups G = 2, values of free parameters a = 0.7, § = 1.4, ~
= 1.4. Optimization for each of the tests was performed in four stages. At the
first stage, the range of parameters was changed to the ranges corresponding
to the overall dimensions of the workspace for each of the coordinates. The
parameter ranges at each subsequent stage were reduced by a factor of 10%. At
the same time, the center of the ranges corresponded to the best result obtained
at the previous stage. The optimization results are shown in Table 1. The PSO
algorithm provides the best average value of the criterion function.

Table 1. Results table for the 2D case

Trials | GA GWO |PSO Trials GA GWO |PSO

1 160,089 | 160,197 | 160,044 | 6 160,107 | 160,378 | 160,044

2 160,821 | 160,145 | 160,044 | 7 160,007 | 160,457 | 160,044

3 160,344 | 160,340 | 160,045 | 8 160,060 | 160,397 | 160,042

4 160,048 | 160,228 | 160,040 | 9 160,198 | 160,212 | 160,045

5 160,123 | 160,070 | 160,044 | 10 160,471 | 160,189 | 160,044
Avg. values | 160,227 | 160,261 | 160,044

The obtained trajectories for all tests are almost identical. Examples of tra-
jectories for the first and second tests are shown in Fig. 5. In the second test, the
GWO algorithm obtained the trajectory with the largest value of the criterion
function. This is clearly seen in Fig. 5b.

teta3

-150 -100 -50 0 50 100 -150 -100 -50 0 50 100
teta2 teta2

a) b)

Fig. 5. Results of optimization of the test path: a) 1, b) 2.

Synthesis of Trajectory Planning Algorithms 163

The convergence graphs for each of the algorithms are shown in Fig. 6. The
minimum value of the criterion function obtained as a result of optimization is
applied as the reference value of the function. The minimum value of the criterion
function in one of the tests was obtained using the GA algorithm, but in other
tests, the PSO algorithm has better convergence rates.

0 2 4 6 8 10 0 2 4 8 8 o 0 2 4 6 8 10

iterations, 105 feratons, 10° iterations, 105

a) b) <)

Fig. 6. Convergence of algorithms for planning a 2D trajectory: a) GA, b) GWO, c¢)
PSO

4.2 3D Case

A computational experiment is performed, which consists in planning the tra-
jectory inside the 3D workspace By of a delta robot in the space of input coor-
dinates, taking into account the obstacle, shown in Fig. 4c. Set the starting and
ending points of the trajectory in the output coordinate space: x,; = 250 mm,
Yp1 = 250 mm, z,1 = —500 mm, x,0 = —270 mm, y,2 = —270 mm, 2z, = —450
mm, and the number of vertices of the trajectory n = 3. Accordingly, the num-
ber of optimization parameters p = 3n = 9. Let’s take the parameters of the
algorithms H = 250, W = 200,Sga = 125, and Sgwo = 250. The remaining
parameters of the computational experiment coincide with the 2D case. Opti-
mization for each of the tests is performed in four stages, similar to the 2D case.
The optimization results are shown in Table 2. In this case, The GA algorithm
showed the best average value of the criterion function.

Table 2. Results table for the 3D case

Trials | GA GWO |PSO Trials GA GWO |PSO

1 152,499 | 149,852 | 149,737 | 6 131,130 | 149,863 | 149,891

2 151,070 | 150,136 | 130,477 | 7 130,719 | 130,433 | 130,459

3 131,368 | 130,477 | 149,778 | 8 150,506 | 131,111 | 149,915

4 137,201 | 150,394 | 130,385 | 9 152,649 | 149,941 | 149,914

5 149,876 | 150,427 | 149,674 | 10 149,772 | 150,083 | 149,769
Avg. values | 143,679 | 144,272 | 144,000

164 D. Malyshev et al.

The convergence graphs are shown in Fig. 7. The minimum value of the cri-
terion function is obtained using the PSO algorithm.

10 10 \
10!
2
10 102 o \
109
0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
iterations, 103 iterations, 10° iterations, 10°

a) b) c)

Fig. 7. Convergence of algorithms for planning a 3D trajectory: a) GA, b) GWO, c¢)
PSO.

Figure 8 shows the trajectories for Test 3 inside the workspace. As can be
seen from the figure, the PSO algorithm found only a local minimum of the
criterion function for avoiding the obstacle.

Fig. 8. Results of trajectory optimization

4.3 Trajectory Planning When There are a Large Number
of Obstacles

In the first two cases, the trajectory was planned inside the workspace of the
delta robot in the presence of a single obstacle. To test the algorithms on
the problem of planning a trajectory with a large number of obstacles, a 2D
domain was generated, similarly represented as an ordered set of integers. Dur-
ing the experiment, 10 tests were performed similarly for the following initial

Synthesis of Trajectory Planning Algorithms 165

data: ;1 = —95 mm,y; = —95 mm, z2 = 85 mm, yo = 85 mm, the num-
ber of vertices of the trajectory n = 7. Accordingly, the number of optimiza-
tion parameters p = 2n = 14. We assume the parameters of the algorithms
H = 2000, W = 1000, Sg4 = 1000, Sewo = 2000, p,, = 90%. The other param-
eters were not changed. Optimization for each of the tests was performed in two
stages, rather than four. Figure 9 shows examples of the trajectories obtained as
a result of optimization. In Fig. 9a, the path that allows you to avoid all obsta-
cles is obtained only for the GA algorithm, in Fig.9b and ¢ - by the GA and
GWO algorithms, in Fig.9d - by all algorithms. Figure 10 shows an example of
the convergence graph of the algorithms. As a result of performing 10 tests for
each of the algorithms, the GA algorithm showed the best results GA (Fig. 10a),
each time reaching a trajectory that allows to avoid all obstacles. The GWO
algorithm (Fig. 10b) it allowed to exclude the interference with an obstacle in 4
cases, and the PSO algorithm-only in one case.

100 100
75 7
50 5
25 25
> 0 - 0
-25 s
f: -50
-100 s
-100 -75 50 -25 0 25 50 75 100 -100 :
X -100 -75 50 25 0 25 50 75 100
a) b)
100 100 — o
— GWO
75 751
50 501
25 251
> 0 > 0
-25 -251
-50 -501
75 =751
-100 -1004
-100 -75 -50 -25 2 25 50 75 100 -100 -75 -50 -25 2 25 50 75 100
c) d)

Fig. 9. The result of planning a trajectory in the presence of a large number of obstacles

166 D. Malyshev et al.

104 L
2 \
107 1031]

0 5 10 15 20 25 30 Hh & 5 10 15 20 25 30 35 40 6 5 1 15 20 25
iterations, 10° iterations, 105 iterations, 105

a) b) c)

30 35 40

Fig. 10. Convergence of algorithms when planning a trajectory with a large number
of obstacles: a) GA, b) GWO, c) PSO.

5 Conclusion

The application of heuristic algorithms made it possible to solve the problem
of trajectory planning for both 2D and 3D domains represented as a partially
ordered set of integers. The PSO algorithm showed better convergence rates for
planning a trajectory within a 2D workspace of a robot with a single obsta-
cle. In all other cases, the GA algorithm showed the better results. As part of
future research in-depth research will be carried out, including a comparative
analysis of the application of a larger number of algorithms for this problem and
the selection of their parameters. Also, more experiments will be performed for
accurate comparative evaluation of algorithms.

Acknowledgements. This work was supported by the state assignment of Ministry
of Science and Higher Education of the Russian Federation under Grant FZWN-2020-
0017.

References

1. El Khaili, M.: Visibility graph for path planning in the presence of moving obsta-
cles. IRACST - Eng. Sci. Technol. Int. J. (EST1J) 4(4), 118-123 (2014)

2. Choset, H., et al.: Principles of Robot Motion-Theory, Algorithms, and Implemen-
tation. MIT Press, Cambridge (2005)

3. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Neurocomput-
ing 9(2), 215-218 (1995)

4. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for
A*. Int. J. Geogr. Inf. Sci. 23(4), 531-543 (2009)

5. Korf, R.E.: Depth-first iterative-deepening. An optimal admissible tree search.
Artif. Intell. 27(1), 97-109 (1985)

6. Bolandi, H., Ehyaei, A.F.: A novel method for trajectory planning of cooperative
mobile manipulators. J. Med. Signals Sens. 1(1), 24-35 (2011)

7. Volz, A., Graichen, K.: An optimization-based approach to dual-arm motion plan-
ning with closed kinematics. In: Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pp. 8346-8351. IEEE (2018)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Synthesis of Trajectory Planning Algorithms 167

McMahon, T., Sandstrom, R., Thomas, S., Amato, N.M.: Manipulation planning
with directed reachable volumes. In: IEEE International Conference on Intelligent
Robots and Systems 2017, pp. 4026-4033 (2017)

Clavel, R.: Conception d’un robot parallele rapide a 4 degrés de liberté. Ph.D.
Thesis, EPFL, Lausanne, Switzerland (1991)

Williams II, R.L.: The delta parallel robot: kinematics solutions.
www.ohio.edu/people/williar4 /html/pdf/DeltaKin.pdf. Accessed 9 Oct 2022
Khalapyan, S., Rybak, L., Malyshev, D., Kuzmina, V.: Synthesis of parallel robots
optimal motion trajectory planning algorithms. In: IX International Conference on
Optimization and Applications (OPTIMA 2018), pp. 311-324 (2018)

Rybak, L., Malyshev, D., Gaponenko, E.: Optimization algorithm for approximat-
ing the solutions set of nonlinear inequalities systems in the problem of determining
the robot workspace. Commun. Comput. Inf. Sci. 1340, 27-37 (2020)

Rogers, D.: Procedural Elements for Computer Graphics. McGraw-Hill (1985)
line3D - 3D Bresenham’s (a 3D line drawing algorithm). https://ftp.isc.org/pub/
usenet/comp.sources.unix/volume26/line3d. Accessed 9 Oct 2022

Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge (1975)

Diveev, A.: Cartesian genetic programming for synthesis of control system for group
of robots. In: 28th Mediterranean Conference on Control and Automation, MED
2020, pp. 972-977 (2020)

Zanchettin, A.M., Messeri, C., Cristantielli, D., Rocco, P.: Trajectory optimisation
in collaborative robotics based on simulations and genetic algorithms. Int. J. Intell.
Robot. Appl. 9, 707-723 (2022)

Diveev, A.L., Konstantinov, S.V.: Evolutionary algorithms for the problem of opti-
mal control. RUDN J. Eng. Res. 18(2), 254-265 (2017)

Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. IV, pp. 1942-1948 (1995)

Shi, Y.; Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 69-73 (1998)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46-61 (2014)

Choubey, C., Ohri, J.: Optimal trajectory generation for a 6-DOF parallel manip-
ulator using grey wolf optimization algorithm. Robotica 39(3), 411-427 (2021)
Sen, M.A., Kalyoncu, M.: Grey wolf optimizer based tuning of a hybrid LQR-PID
controller for foot trajectory control of a quadruped robot. Gazi Univ. J. Sci. 32(2),
674-684 (2019)

Zafar, M.N.; Mohanta, J.C., Keshari, A.: GWO-potential field method for mobile
robot path planning and navigation control. Arab. J. Sci. Eng. 46(8), 80878104
(2021). https://doi.org/10.1007/s13369-021-05487-w

Diveev, A.IL., Konstantinov, S.V.: Optimal control problem and its solution by grey
wolf optimizer algorithm. RUDN J. Eng. Res. 19(1), 67-79 (2018)

Malyshev, D., Rybak, L., Carbone, G., Semenenko, T., Nozdracheva, A.: Opti-
mal design of a parallel manipulator for aliquoting of biomaterials considering
workspace and singularity zones. Appl. Sci. 12(4), 2070 (2022)

https://www.ohio.edu/people/williar4/html/pdf/DeltaKin.pdf
https://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d
https://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d
https://doi.org/10.1007/s13369-021-05487-w

	Synthesis of Trajectory Planning Algorithms Using Evolutionary Optimization Algorithms
	1 Introduction
	2 Setting an Optimization Problem
	3 Algorithms for a Path Optimization
	3.1 Genetic Algorithm (GA)
	3.2 Particle Swarm Algorithm (PSO)
	3.3 Grey Wolf Algorithm (GWO)

	4 Numerical Results
	4.1 2D Case
	4.2 3D Case
	4.3 Trajectory Planning When There are a Large Number of Obstacles

	5 Conclusion
	References

